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REGULAR TREE ALGEBRAS
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Abstract. We introduce a class of algebras that can be used as recognisers for regular
tree languages. We show that it is the only such class that forms a pseudo-variety and we
prove the existence of syntactic algebras. Finally, we give a more algebraic characterisation
of the algebras in our class.

1. Introduction

There are many different formalisms to study regular languages, the most prominent ones
being automata and logic. In this paper we are interested in the algebraic approach to formal
language theory, in the context of infinite trees. Such algebraic methods are particularly
successful in deriving decidable characterisations for various fragments of monadic second-
order logic. For instance, a theorem of Schützenberger [15] states that a language of finite
words is definable in first-order logic if, and only if, its syntactic monoid is finite and
aperiodic. The latter condition is decidable as we can compute the syntactic monoid of a
regular language and check it for aperiodicity.

Besides a comprehensive algebraic theory for the usual word languages, there also exist
well-developed frameworks for languages of infinite words and – to a lesser degree – finite
trees. For languages of infinite trees, the combinatorics involved are much more challenging.
As a result, the existing theory is still fragmentary. The first preliminary results were
provided in [7, 8], with one article considering languages of regular trees only, and one
considering languages of thin trees. The first framework that could deal with arbitrary
infinite trees was provided by [4, 5]. Unfortunately, it turned out to be too complicated and
technical to be very useful.

In this article we propose an alternative, much simpler approach, and we develop it to a
point where it is suitable for devising decision procedures. Because of space considerations
we defer the actual applications to a subsequent article [3]. Our first simplification concerns
the notation. It turns out that much of the notational overhead of the old framework can be
avoided by adopting the category-theoretical formalism of a monad and an Eilenberg-Moore
algebra. Our second contribution is in isolating a suitable class of algebras as recognisers of
regular languages. While admittedly its definition is rather näıve and not as concrete as
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one would like it to be, our key insight – and the main contribution of this paper – is the
fact that the resulting class has all the required properties: it forms a pseudo-variety and it
has syntactic algebras. Furthermore, we prove that it is the only class that does the trick
(cf. Corollary 4.4 below).

The overview of this article is as follows. We start in Section 2 with setting up our
algebraic framework. In particular, we explain the notion of an Eilenberg–Moore algebra.
In Section 3 we isolate the property (‘regularity’) we need for a tree algebra to recognise
regular languages only, and we give a first characterisation of when an algebra has this
property. While both the definition and our characterisation are rather abstract, we show
that the resulting class is the only possible one that satisfies all our requirements: we prove
in Section 4 that it is the only class with the desired closure properties; and in Section 5
we prove the existence of syntactic algebras, a prerequisite for characterisation results. We
conclude in Section 6 with a second, more specific characterisation of regularity for tree
algebras.

Acknowledgements. This paper owes much to unpublished work of and discussions with
Bojańczyk and Klin who gracefully allowed me to include their results. In particular the proof
of Theorem 5.2 is entirely due to them. As it is rather hard to separate their contributions
from my own, I have refrained from adding attributions to specific results. Instead Bojańczyk
and Klin should be considered co-authors in spirit, even if they chose not to be listed as
such.

2. Tree algebras

A convenient algebraic formalism for the various kinds of language theories has turned
out to be one based on the category-theoretical notions of a monad and an Eilenberg-
Moore algebra [6]. To make this article accessible to readers without a category-theoretical
background we refrain from using category-theoretical terminology where possible and use
elementary definitions instead. Readers familiar with category theory should be able to
translate our results into their language.

To prepare the reader for our notion of a tree algebra, let us take a look at semigroups
first. Instead of using the usual binary product, we can see a semigroup as a set S equipped
with a product π : S+ → S of variable arity that multiplies an arbitrary sequence of
semigroup elements in one step. Analogously, we will define a tree algebra as a set A together
with a product π : TA→ A that takes an A-labelled tree and returns a single element of A.
Let us make this idea precise.

First of all, we will not work with simple sets but with ranked sets, that is, sets where each
element has an arity or rank. Formally, we consider such a set as a sequence A = (An)n<ω
where An is the subset of elements of arity n. A function f : A → B of such sets is then
a family f = (fn)n<ω of functions fn : An → Bn. We will frequently identify a ranked set
A = (An)n with its disjoint union A = ·

⋃
nAn. A function (fn)n : (An)n → (Bn)n then

corresponds to a rank preserving function f : A→ B. In the rest of this article all sets will
be assumed to be ranked, if not explicitly stated otherwise, and all functions will be rank
preserving.

Now let A be a ranked set. An A-labelled tree t is a (finite or infinite) tree where
every vertex is labelled by an element from A in such a way that the arity of a label
matches the number of successors. We set TA = (TnA)n<ω where TnA is the set of all
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(A∪{x0, . . . , xn−1})-labelled trees t where the additional labels xi are called variables. These
are considered as having arity 0 and we require that

• each variable xi occurs at most once in the tree t and
• the root is not labelled by any variable.

(We will always assume that xi /∈ A.) Note that a tree t containing the variables, say,
x0, x3, and x7, can be regarded as an element of T8A, of T9A, and so on. According to our
convention these elements are considered to be different. For a tree t, we denote its set of
vertices by dom(t), and we write t(v) for the label of a vertex v ∈ dom(t). We say that two
trees have the same shape if there become equal when we remove all non-variable labels.

Remark 2.1. There is some freedom in choosing how to define TA. Instead of requiring
that every variable occurs at most once, we could allow each occurring several, even infinitely
many times. We also could allow the use of infinitely many different variables by adding
elements of arity ω. Finally, we could require that every variable appears at least once. For
most of our results, these details do not matter. Hence, the precise definition is more of a
matter of taste. But let us mention that some results in Section 6 fail if we allow multiple
occurrences of the same variable. In particular, this is the case for Proposition 6.5.

To write down trees concisely we use the usual term notation. For instance, a(x3, c)
denotes the tree where the root is labelled by a and its two successors by x3 and c, respectively.
Another useful piece of notation is the following one. Given a (rank-preserving) function
f : A→ B we denote by Tf : TA→ TB the function that applies f to every (non-variable)
label of the input tree.

Now we can define a tree algebra A = 〈A, π〉 as a ranked set A together with a product
π : TA→ A that satisfies certain associativity laws. Before stating these laws formally let
us again take a look at semigroups. For a function π : S+ → S to be the product associated
with a semigroup it has to satisfy two conditions. First of all, we require that the product is
the identity on singletons, that is,

π(〈a〉) = a , for every a ∈ S .
Let us call this the unit law. Secondly, if we factorise a product in different ways, we always
get the same result. That means, for a sequence of sequences w = 〈w0, . . . , wm−1〉 ∈ (S+)

+
,

we require that

π
(
π(w0), . . . , π(wm−1)

)
= π(w0 . . . wm−1) .

Writing π+ : (S+)
+ → S+ for the function that multiplies each component of the given

sequence and flat : (S+)
+ → S+ for the concatenation function, we can write this equation

in the compact form

π ◦ π+ = π ◦ flat .

This is the associative law.

S+ S

(S+)+ S+

π

π+

flat

π

Introducing the corresponding auxiliary functions for trees, we can write similar laws
for a tree algebra A = 〈A, π〉:
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Figure 1: The flattening operation

π ◦ sing = id

and π ◦ Tπ = π ◦ flat .

TA A

TTA TA

π

Tπ

flat

π

Here, the singleton function sing : A → TA maps a label a ∈ An to the singleton tree
a(x0, . . . , xn−1) ∈ TnA, and the flattening function flat : TTA → TA takes a tree t whose
vertices v are labelled by trees t(v) from TA and returns the tree obtained by simultaneously
substituting in t(v) each variable xi by the tree associated with the corresponding successor
of v. In more detail, we compute flat(t) as follows. We start with the disjoint union of all
trees t(v), for v ∈ dom(t). We then remove every leaf of (the copy of) t(v) that is labelled
by a variable xi, and replace it with an edge to the root of the corresponding copy of t(ui),
where ui is the (i + 1)-th successor of v. Of the resulting forest, we take the connected
component containing the root t(〈〉). This is the value of the flattening flat(t). For instance,
in Figure 1 the tree on the left evaluates to the tree on the right.

To summarise let us give the formal definition.

Definition 2.2. (a) A tree algebra is a pair A = 〈A, π〉 consisting of a ranked set A and a
product π : TA→ A which satisfy

π ◦ sing = id and π ◦ Tπ = π ◦ flat .

(b) A morphism of tree algebras is a function f : A → B between their domains
commuting with the respective products:

f ◦ π = π ◦ Tf .

TB B

TA A

π

Tf

π

f

An important example of a tree algebra is a free one. Given a ranked set Σ, the free tree
algebra over Σ is 〈TΣ,flat〉. (The facts that this is indeed a tree algebra and that it has the
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desired universal property follow from a general category-theoretical result on monads; see
e.g. Proposition 4.1.4 of [10].)

Let us next explain how to use a tree algebra to recognise tree languages. For the
purpose of this article, a tree language is a subset L ⊆ TmΣ where Σ is a finite ranked set
and the arity m < ω is fixed. A tree language L ⊆ TmΣ is called regular if it is recognised by
a nondeterministic tree automaton with the parity condition, or it is definable by a formula
of monadic second-order logic, see [17]. (For m > 0, the automaton or formula treats the
variables as distinguished letters in the leaves.) Such a language is recognised by a morphism
ϕ : TΣ → A if there is a subset P ⊆ Am such that L = ϕ−1[P ]. In this case, we also say
that the algebra A recognises L.

As an example, let us construct a tree algebra recognising the set of all trees t ∈ T0{a, b}
that contain the label a at least once. For every (part of an) input tree, we have to remember
one bit of information: whether or not it contains the label a. This suggests to have
two elements, say 0m and 1m, for each arity m. When constructing arbitrary products of
such elements, we obtain additional elements that are of the form c(xi, xj , . . . , xk) where
c ∈ {0m, 1m} and i < j < · · · < k < m. (As it is important to know which variables appear
in a term, we cannot simply identify these with 0m and 1m.) Thus, the domain Am for
arity m of our algebra A will consist of all these elements and the recognising morphism
maps a term t ∈ Tm{a, b} to the element c(xi, xj , . . . , xk) where c specifies whether or not
t contains the label a and xi, xj , . . . , xk are the variables that actually appear in t.

3. Regular tree algebras

The goal of this paper is to find a class C of tree algebras that characterises the class
of regular tree languages in the sense that a tree language is regular if, and only if, it is
recognised by some algebra from C. One obvious condition we have to impose on such a
class is that all algebras A ∈ C are finitary, which means that

• A is finitely generated (i.e., there is a finite set C ⊆ A such that every element a ∈ A can
be written as a product of some tree in TC) and
• for every n < ω, there are only finitely many elements of arity n.

Unfortunately, this in itself is not enough. There are examples of finitary tree algebras that
recognise non-regular languages [9].

A näıve way to obtain the desired class of algebras is to take the class of all tree algebras
that only recognise regular languages. This is obviously the largest class that will do (if any
exists at all). The problem with this definition is that it is not very enlightening: we have
no idea of what these algebras look like. We will nevertheless adopt this näıve approach for
its simplicity. A more satisfying, but also much more complicated, alternative definition will
be provided in Section 6 below.

By looking at what it means to only recognise regular languages, we arrive at the
following definition.

Definition 3.1. A tree algebra A = 〈A, π〉 is regular if it is finitary and there exists a finite
set C ⊆ A of generators such that, for every element a ∈ A, the preimage

π−1(a) ∩ TC is a regular language.
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Note that an alternative way to write the set in the above definition is (π � TC)−1(a),
where π � X denotes the restriction of π to the set X. This will come in handy in several of
the proofs below.

Before showing that our definition has the desired effect, let us mention that it does not
depend on the choice of the set C of generators.

Lemma 3.2. Let A be a regular tree algebra and D ⊆ A a finite set. Then

π−1(a) ∩ TD is regular, for all a ∈ A .

Proof. For each d ∈ D, we fix some term t ∈ TC with π(t) = d. This defines a function
s0 : D → TC such that π ◦ s0 = id. We can extend s0 to a morphism s : TD → TC by
setting

s(t) = flat(Ts0(t)) .

For t ∈ TD, it follows that

(π ◦ s)(t) = (π ◦ flat ◦ Ts0)(t) = (π ◦ Tπ ◦ Ts0)(t)

= (π ◦ T(π ◦ s0))(t) = (π ◦ Tid)(t) = π(t) ,

which implies that π � TD = (π � TC) ◦ s. For a ∈ A, we therefore have

(π � TD)−1(a) = s−1[(π � TC)−1(a)] .

By assumption the set (π � TC)−1(a) = π−1(a) ∩ TC is regular. As regular languages are

closed under inverse morphisms (see Lemma A.1), so is (π � TD)−1(a).

Let us now establish the rather obvious fact that our definition does what it is supposed
to.

Theorem 3.3. A finitary tree algebra is regular if, and only if, all languages recognised by
it are regular.

Proof. (⇐) Suppose that A is not regular. Then there exists a finite set C ⊆ A and an
element a ∈ A such that the preimage L := π−1(a) ∩ TC is not regular. Consequently, the
restriction π � TC : TC → A of the product is a morphism that recognises a non-regular
language L.

(⇒) Suppose that A is regular and let ϕ : TΣ → A be a morphism recognising the
language L := ϕ−1[P ] with P ⊆ Am. Set C := (ϕ ◦ sing)[Σ]. By Lemma 3.2, each preimage

Ka := π−1(a) ∩ TC , for a ∈ A ,
is regular. Hence, so is the (finite) union K :=

⋃
a∈P Ka. Let i : C → A be the inclusion

map, π0 := π � TC : TC → A the restriction of the product, and set ϕ0 := ϕ ◦ sing : Σ → C.
It follows that

ϕ ◦ sing = i ◦ ϕ0 = π0 ◦ sing ◦ ϕ0 = π0 ◦ Tϕ0 ◦ sing .
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Since TΣ is generated by the range of sing, this implies that ϕ = π0 ◦ Tϕ0. Hence,

L = ϕ−1[P ] = (π0 ◦ Tϕ0)−1[P ] = (Tϕ0)−1[π−1
0 [P ]] = (Tϕ0)−1[K] .

As regular languages are closed under inverse projections (see Lemma A.1), it therefore
follows that L is regular.

Conversely one can prove that every regular language is recognised by some regular tree
algebra.

Theorem 3.4. A tree language is regular if, and only if, it is recognised by a regular tree
algebra.

One direction follows immediately from Theorem 3.3. For the other one, we have to
construct a regular tree algebra recognising a given regular language L.

We start by fixing notation and collecting a few basic definitions (more details can
be found in, e.g., [12]). We work with non-deterministic parity automata of the form
A = 〈Q,Σ,∆, q0, Ω〉, where Q is the (unranked) set of states, Σ the (ranked) input alphabet,
q0 the initial state, Ω : Q → ω a priority function, and ∆ ⊆ Q × Σ × Q∗ the transition
relation. Each transition 〈q, a, p0, . . . , pn−1〉 consists of the current state q, the current
letter a, and states p0, . . . , pn−1 for the successors. For leaves, the letter a has arity 0 and
the transition simply takes the form 〈q, a〉.

A partial run of A on some input tree t ∈ TΣ is a labelling % : dom(t)→ Q of the tree
such that

• there are arbitrary states at vertices carrying a variable xi,
• the labelling respects the transition relation ∆ at all other vertices, and
• every infinite branch satisfies the parity condition.

The profile of a partial run % is the tuple

〈q, k0, p0 . . . , km−1, pm−1〉 ,
where q is the state at the root of t, pi the state at the vertex carrying the variable xi, and
ki the minimal priority seen along the path from the root to this vertex. If there is no vertex
labelled xi, we set ki := ⊥ and pi := ⊥, for some special bottom symbol ⊥.

We aim to construct a tree algebra where the elements encode sets of possible profiles,
i.e., sets of possible behaviours of A on a given input tree. To simplify the definition and
accommodate the material in Section 6 below, we will construct an algebra that is slightly
larger than necessary: instead of using only the usual profiles of A, we will work with partial
ones, i.e., profiles where we only specify data for some of the variables. Formally, this can
be done by labelling the paths to the variables by elements of a suitable ω-semigroup (for
the definition of an ω-semigroup, see, e.g., [13, Section 4.1]). The construction is performed
in three steps. (We keep the presentation rather informal. More details can be found in [2].)

(i) We denote by SA = 〈S, Sω〉 the (partial) ω-semigroup where
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• S := Q×D×Q contains all triples of the form 〈p, k, q〉 for states p, q ∈ Q and a priority k
(D is the set of priorities used by A) and
• Sω := Q contains the states of A.

A triple 〈p, k, q〉 ∈ S encodes a finite path of a run that starts in state p, ends in state q,
and has minimal priority k. A state p ∈ Sω encodes an infinite branch that starts in state p
and satisfies the parity condition.

The product is defined naturally: if we multiply two triples 〈p, k, q〉 and 〈p′, k′, q′〉
with matching states p′ = q, the result is 〈p,min(k, k′), q′〉. If p′ 6= q, the product remains
undefined. Similarly, the product of 〈p, k, q〉 and p′ ∈ Sω evaluates to p ∈ Sω, provided
that q = p′. Otherwise, it is again undefined. Finally, an infinite product of a sequence
〈pi, ki, qi〉i<ω produces the state p0, provided that qi = pi+1 for all i and the parity condition

lim inf
i→∞

Ω(pi) is even

is satisfied.
(ii) Next we turn SA into a tree algebra where the elements of arity m are of the form

a(xi) or b with a ∈ S, b ∈ Sω, and i < m. The product is induced by the ω-semigroup
product: given a tree t labelled by elements of this form, we construct a branch by starting
at the root and proceeding downwards as follows. If the label of the current vertex is a(xi),
we continue with the (i+ 1)-th successor. If it is of the form b ∈ Sω, we stop. This process
yields a sequence of elements of the ω-semigroup, which we can multiply to a new element c.
If the chosen branch ends in a variable xk, we return c(xk), otherwise we simply return c. We
leave the product of t undefined, if the product of the ω-semigroup elements is not defined.

(iii) Finally, we formally close the tree algebra constructed in (ii) first under conjunctions,
and then under disjunctions, that is, the new elements are formal expressions of the from∨
i

∧
k aik where the elements aik all have the same arity. We define a product of such elements

by requiring that disjunction and conjunctions commute with the product operation. If a
product of basic elements is undefined, we treat it as an empty conjunction.

Let A be the tree algebra constructed in (iii). (It is straightforward, but rather tedious,
to check that A is indeed a tree algebra, i.e., that the product is associative. The interested
reader can find a full proof in [2].)

To show that A recognises L(A), note that conjunctions of ω-semigroup elements can
be used to encode partial profiles of A and disjunctions of such conjunctions sets of partial
profiles. Hence, we consider the morphism ϕ : TΣ → A that maps a tree t to the disjunction∨
% %̃ where % ranges over all partial runs of A on t and %̃ is an element encoding the run %

defined as follows. Let q be the state at the root, (vi)i an enumeration of all vertices of t
with a variable, (pi)i the corresponding sequence of states, xm(i) the variable at vi, and let
ki be the minimal priority on the path from the root to vi. We set

%̃ := q ∧
∧
i

〈q, ki, pi〉(xm(i)) .

It follows that A accepts a tree t if, and only if,

ϕ(t) ≥ q0 ∧
∧
i

〈q0, ki, pi〉(xm(i)) ,

for some pi, ki,m(i) such that, when starting in state pi, the automaton A accepts the
singleton tree with label xm(i). (The ordering ≥ here is the one induced by the conjunctions
and disjunctions. In case of the above formula it simply means that ϕ(t) is a disjunction
where one of the terms is a conjunction that contains the right-hand side as a subconjunction.)



Vol. 16:1 REGULAR TREE ALGEBRAS 16:9

Consequently, we can find a set P ⊆ A such that

L(A) = ϕ−1[P ] ,

as desired.
Finally, let A0 ⊆ A be the image of ϕ. We claim that A0 is the desired regular tree

algebra. We already have a morphism ϕ : TΣ → A0 recognising L. Hence, it remains
to show that A0 is regular. Clearly, A0 is generated by the finite set C := (ϕ ◦ sing)[Σ].
Consider an element

∨
i

∧
k aik. To check that a product π(t) with t ∈ TC evaluates to this

value we have to select, for every conjunction
∧
k aik and every vertex v of t, some term of

the disjunction t(v). Then we have to multiply the corresponding ω-semigroup elements
along every branch of t and check that the result is equal to the corresponding element aik.
This process can clearly be performed by a tree automaton.

4. Closure properties

So far, we have done nothing deep. The interesting realisation is that our näıve definition is
actually sufficient for applications: the class of regular algebras has all the desired closure
properties and it allows the computation of syntactic algebras. We start by taking a look at
the closure properties. Syntactic algebras are the topic of Section 5.

Recall that a variety is a class C of algebras that is closed under the operations of taking:
(i) H homomorphic images (i.e., quotients), (ii) S subalgebras, and (iii) P arbitrary products.
Equivalently, this can be written as the equation C = HSP(C). It follows from the axioms
that every variety is also closed under directed colimits (see, e.g., Remark 3.6 (6) of [1]).
Furthermore, the famous Variety Theorem of Birkhoff states that varieties are exactly those
classes of algebras that can be defined by systems of equations (see, e.g., Theorem 3.9 of [1]).

If we are interested in classes of finite algebras only, one has to adapt these definitions
slightly. Since the product operation P can produce infinite algebras, we replace it by the
operation Pω of taking finite products only. This leads to the definition of a pseudo-variety,
which is a class C satisfying C = HSPω(C). For classes of finite algebras, closure under directed
colimits is trivial. There is also a variant of the Birkhoff Variety Theorem by Reiterman [14]
that characterises pseudo-varieties as exactly those classes that can be defined by a system
of profinite equations.

In our setting with infinitely many sorts, we are interested in classes of finitary algebras,
and we are again forced to slightly modify the definitions. The problem is that subalgebras
and finite products of finitary algebras are not necessarily finitely generated (we will provide
counterexamples below). Therefore we replace S by the operation Sω of taking finitely-
generated subalgebras only and we require closure under HSωPω. As closure under directed
colimits is not automatic anymore we also have to add it as an extra requirement. In
fact a slightly weaker condition suffices: closure under rank-limits. We say that a tree
algebra A is the rank-limit of a sequence (Bn)n<ω of tree algebras if, for every m < ω, the
algebras A and Bn, for n ≥ m, are isomorphic if we restrict them to elements of arity at
most m. Note that closure under rank-limits is a rather natural condition. For instance, it
is satisfied by every class axiomatised by a set of equations. One can show that, for classes
of finitary algebras that are closed under quotients, closure under rank-limits and under
directed colimits are equivalent.
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Definition 4.1. A pseudo-variety of tree algebras is a class C of finitary tree algebras
that is closed under (i) quotients, (ii) finitely generated subalgebras of finite products, and
(iii) rank-limits.

We start by showing that the regular tree algebras form a pseudo-variety. At the moment
it is open whether there is an analogue to the Theorem of Reiterman in our setting. There is
a general result by Milius and Urbat [11] which provides variety theorems for many classes,
including the class of regular tree algebras. But it uses a rather abstract notion of an
equation and it remains to be worked out how exactly such equations look like in our case.

Before continuing, let us introduce a bit of notation concerning rank-limits. First, for
a ranked set A and an arity k, we set A<k := A0 ∪ · · · ∪ Ak−1. We consider A<k as a
ranked set that has no elements of arity k or higher. For our functor T we similarly set
T<kA := (TA<k)<k. Finally, for a tree algebra A = 〈A, π〉 we denote by A|<k the algebra
with domain A<k and product π � T<kA : T<kA → A<k. Note that A|<k is not a tree
algebra (an algebra for the functor T) as the product is not of the right form. Instead it
is an algebra for the functor T<k (a T<k-algebra is defined by the same two laws as a tree
algebra, except that we replace the functor T by T<k throughout). With this notation we
can say that A is a rank-limit of (Bn)n if

A|<k ∼= Bn
<k , for k ≤ n ≤ ω ,

where the isomorphism is understood as a T<k-algebra isomorphism.

Theorem 4.2. The class of regular tree algebras forms a pseudo-variety.

Proof. The proof is straightforward. We have to show that the class of regular tree algebras
is closed under

(a) finitely generated subalgebras of finite products,
(b) rank-limits,
(c) quotients.

(a) The empty product has exactly one element 1m for each aritym. Given a subalgebra A
generated by some finite set C and some element 1m ∈ A, we have

π−1(1m) ∩ TC = TmC ,
which is regular.

Hence, it remains to consider a finitely generated subalgebra A of a non-empty, finite
product

∏
i<nB

i. Let C ⊆ A and Di ⊆ Bi be finite sets of generators. Increasing the Di

if necessary, we may assume that C ⊆
∏
iD

i. Let pi :
∏
iB

i → Bi be the projections. For
t ∈ T

∏
iD

i and ā = (ai)i ∈ A ⊆
∏
iB

i, we have

π(t) = ā iff π(Tpi(t)) = ai for all i .

As the Bi are regular, it follows that

π−1(ā) ∩
∏
i

TDi =
⋂
i

(Tpi)−1(π−1(ai) ∩ TDi
)

is regular. Since regular languages are closed under intersection, the preimage

π−1(ā) ∩ TC = π−1(ā) ∩
∏
i

TDi ∩ TC

is also regular.
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(b) Let (Bn)n be a sequence of regular tree algebras with rank-limit A. To show that
A is regular, let C ⊆ A be a finite set of generators and a ∈ A. Fix a number k < ω, such
that

C ∪ {a} ⊆ A<k = Bn
<k , for n ≥ k .

As Bk is regular, the preimage π−1(a) ∩ TC is regular.
(c) Let ϕ : A → B be a surjective morphism of tree algebras and suppose that A is

regular. We have to show that B is also regular. Fix a finite set C ⊆ A of generators and
set D := ϕ[C]. Increasing C if necessary we may assume that C = ϕ−1[D].

First, note that B is finitely generated by D. Furthermore,

t = Tϕ(s) implies π(t) = π(Tϕ(s)) = ϕ(π(s)) , for s ∈ TC and t ∈ TD .

Hence, for b ∈ Bm,

π−1(b) ∩ TD = { t ∈ TD | π(t) = b }
=
{
Tϕ(s)

∣∣ s ∈ TC , ϕ(π(s)) = b
}

= Tϕ
[⋃{

π−1(a) ∩ TC
∣∣ a ∈ ϕ−1(b)

}]
Since ϕ−1(b) ⊆ Am is a finite set, the above union is finite and, therefore, regular. As regular
languages are closed under projections, so is its image under Tϕ.

As mentioned above, the definition of a regular tree algebra does not tell us what these
algebras look like. The next theorem sheds a bit more light on this question. A less abstract
characterisation will be given in Section 6. To state the theorem, we need the notion of
a finitary sub-quotient of a tree algebra A. By definition this is an algebra which can be
obtained from a finitary subalgebra of A by taking a quotient. Recall that we say that
a class C characterises the regular languages if a language is regular if, and only if, it is
recognised by some algebra from C.

Theorem 4.3. Let C be an arbitrary class of finitary tree algebras that characterises the
regular languages and that is closed under finite products. A finitary tree algebra A is regular
if, and only if, it is the rank-limit of a sequence of finitary sub-quotients of algebras in C.

Proof. (⇐) Let (Bn)n<ω be a sequence of algebras in C and let Dn be a sub-quotient of Bn

such that (Dn)n<ω converges to A. As C characterises the regular tree languages, every
algebra in C is regular. Since the regular tree algebras are closed under finitely generated
subalgebras and quotients, it follows that each Dn is regular. Finally, so is the limit A since
the class of regular algebras is closed under rank-limits.

(⇒) Suppose that A is regular. Let C ⊆ A be a finite set of generators and choose a
number k < ω such that C ⊆ A<k. We construct a sequence (Bn)n<ω of algebras in C and
sub-quotients Dn of Bn such that (Dn)n<ω converges to A.

Let n ≤ ω. For each a ∈ A<n, we choose an algebra Ba ∈ C and a morphism
ϕa : TC → Ba recognising π−1(a) ∩ TC. Set

Bn :=
∏

a∈A<n

Ba and ϕ := 〈ϕa〉a∈A<n : TC → Bn .

Let D′ ⊆ Bn be the subalgebra induced by the set D′ := rngϕ. Note that D′ is finitely
generated by ϕ[C]. We will show that

ϕ(s) = ϕ(t) implies π(s) = π(t) , for s, t ∈ T<nC .
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Then it follows by standard arguments that there exists a function ψ : D′<n → A<n satisfying
ψ ◦ ϕ � T<nC = π � T<nC. As ϕ and π are morphisms of T<n-algebras, so is ψ. And
since π � T<nC is surjective, so is ψ. Consequently, ψ : D|<n → A|<n is a morphism. Let
Dn := D′/kerψ where kerψ denotes the equivalence relation of ‘having the same image
under ψ’. Then Dn is a sub-quotient of Bn and Dn|<n ∼= A|<n. Consequently, (Dn)n<ω is a
sequence of finitary sub-quotients that converges (up to isomorphisms) to A.

It remains to prove the claim. Let s, t ∈ T<nC be trees with ϕ(s) = ϕ(t). By construction
there exist sets Pa ⊆ D′, for a ∈ A<n, such that

π−1(a) ∩ TC = ϕ−1[Pa] .

It follows that

π(s) = a iff ϕ(s) ∈ Pa iff ϕ(t) ∈ Pa iff π(t) = a .

Hence, π(s) = π(t), as desired.

It follows by Theorems 3.3 and 3.4 that the class of regular tree algebras is the largest
class that characterises the regular languages. From the preceding theorem we can now
conclude that it is in fact the only pseudo-variety with this property. This means that the
notion of a regular tree algebra is quite canonical, although we still would like to have a
more concrete definition.

Corollary 4.4. The class of regular tree algebras is the only pseudo-variety characterising
the class of regular tree languages.

Proof. We have already shown that the class of regular tree algebras forms a pseudo-variety.
For uniqueness, let C be any pseudo-variety characterising the regular tree languages. Then
every algebra in C is regular. Conversely, let A be a regular tree algebra. By Theorem 4.3,
there exist algebras Bn ∈ C and finitary sub-quotients Dn of Bn, for n < ω, such that A is
the rank-limit of (Dn)n. As C is a pseudo-variety, it follows that every Dn belongs to C and,
therefore, also the limit A.

Our definition of a pseudo-variety was complicated by the fact that the class of finitary
tree algebras is not closed under subalgebras and finite products. Here we present two
examples showing that a subalgebra or a finite product of regular tree algebras need not be
finitely generated.

(a) Let us start with subalgebras. We use a result by Yanov and Muchnik [18] about
so-called clones. A clone C is a set of functions (of various arities) over some fixed set X that
contains all projections and that is closed under composition, i.e., if C contains f : Xn → X
and g0, . . . , gn−1 : Xm → X, it also contains the m-ary function

x̄ 7→ f(g0(x̄), . . . , gn−1(x̄)) .

Note that this composition also makes sense if the functions g0, . . . , gn−1 have different
arities since we can make their arities equal by composing them by suitable projections
(which are in C by assumption).

Theorem 4.5 (Yanov, Muchnik). There are uncountably many clones on a three element
set.

As there are only countably many finitely generated clones, it follows in particular that
there exists some clone C that is not finitely generated. We will use it to construct the
desired tree algebra.
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Let [3] = {0, 1, 2} be a three element set and let An be the set of all functions [3]n → [3]
together with a special error value ⊥. We turn A = (An)n into a tree algebra by defining
the following multiplication π : TA → A. For a finite tree t ∈ TA that does not contain
the symbol ⊥, we compute the product π(t) by composing all the functions that label the
vertices of t. For all other trees, we set π(t) := ⊥. The resulting structure A = 〈A, π〉 forms
a tree algebra which is finitely generated. (To see the latter, one can, e.g., represent every
3-valued function in a similar way as boolean functions can be written in disjunctive normal
form.) Furthermore, A is even regular since, when evaluating a tree t an automaton is able
to first check that t is finite and does not contain ⊥, and then evaluate t bottom up by
remembering where each (of the bounded number) of the input arguments is mapped to.

To conclude the construction recall that we have seen above that there exists a clone
on [3] that is not finitely generated. Let C ⊆ A be the subalgebra of A consisting of the
elements of that clone. Then C is not finitely generated.

(b) Our counterexample for products looks as follows. We start with a tree algebra B
where the elements of arity n are all finite sequences in {x0, . . . , xn−1}∗ that contain every
variable at most once. We define the product as follows. Suppose we have sequences α ∈ Bm
and β0, . . . , βm−1 ∈ Bn where the βi are disjoint. If α = 〈xi0 , . . . , xik−1

〉, we set

α(β0, . . . , βm−1) := βi0 . . . βik−1
,

i.e., we substitute βi for xi in α. For a finite tree t ∈ TBn, we can now inductively define

π(t) = α(π(s0), . . . , π(sm−1)) ,

where α := t(〈〉) is the label at the root and s0, . . . , sm−1 are the attached subtrees. (With
the convention that π(si) = 〈xk〉 in case that si = xk is a single variable.)

We can extend this definition to infinite trees as follows. If t does not contain variables,
we set π(t) = 〈〉. Otherwise, we choose a finite prefix s of t that contains all the variables,
separately compute the products of s and of the attached subtrees, and then multiply the
results as above. Note that this definition ensures that π(t) is the sequence of all variables
appearing in t, but not necessarily in the order they appear in.

Again it is straightforward to check that B is a tree algebra. Furthermore, note that we
can write every sequence α ∈ Bm as the product of a tree t where all internal vertices are
labelled by 〈x0〉 or 〈x0, x1〉 by suitably choosing the ordering of the variables of t. Hence,
B is finitely generated by three elements 〈〉, 〈x0〉, 〈x0, x1〉.

Furthermore, B is regular since, given an element b ∈ Bn and a finite set of generators,
an automaton can determine whether an input tree evaluates to b since all intermediate
results are sequences of length at most n.

We claim that the product B×B is not finitely generated. For a contradiction suppose
otherwise and fix a finite set C of generators. Choose a number m that is greater than the
arity of all elements in C. We consider the element 〈α, β〉 ∈ B2m ×B2m where

α := 〈x0, . . . , x2m−1〉
β := 〈xm, x0, xm+1, x1, . . . , xm+i, xi, . . . , x2m−1, xm−1〉 .

By assumption, there is a tree t with product 〈α, β〉. Let 〈γ, δ〉 be the label at the root of t
and let s0, . . . , sn−1 be the subtrees attached to it. (For simplicity, we assume that n > 1.
Otherwise our proof needs to be slightly modified.) By choice of m, there is some subtree si
that contains at least two variables. Let σ, τ : [n]→ [n] be the permutations such that

γ = 〈xσ(0), . . . , xσ(n−1)〉 and δ = 〈xτ(0), . . . , xτ(n−1)〉 ,
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and let p : B ×B → B be the projection to the first component. By looking at the first
components, we see that

π
(
Tp(sσ(0))

)
. . . π

(
Tp(sσ(n−1))

)
= γ

(
π(Tp(s0)), . . . , π(Tp(sn−1))

)
= α = 〈x0, . . . , x2m−1〉 .

Consequently, there exist numbers k < l such that the term si contains the variables
xk, xk+1, . . . , xl−1. By choice of i, we have l ≥ k + 2.

Looking at the second components, we see that β must have some segment of length
l − k ≥ 2 which contains the variables xk, xk+1, . . . , xl−1 (in any order). But the only
segments of β of this form are those of length 1 and the one of length 2m. A contradiction.

5. Syntactic algebras

Besides being a pseudo-variety we also need our class of recognisers to have what is called
syntactic algebras. These are algebras recognising a given language that are minimal in a
certain sense. Usually we can obtain such an algebra by taking a suitable quotient of the
free algebra. In this section we will show that for tree algebras the situation is exactly the
same. Let us start with some basic definitions.

A congruence for a tree algebra A is an equivalence relation ≈ on its universe A that is
compatible with the product in the sense that, if s, t ∈ TA are two trees of the same shape
such that s(v) ≈ t(v), for all v, then π(s) ≈ π(t). If ≈ is a congruence, we can define a tree
algebra structure on the quotient A/≈ in the natural way. We denote it by A/≈.

A tree with a hole, or a context, is a tree t ∈ T(A∪�) where the new symbol � is called
the hole. It works as a kind of variable, but with the difference that it can have an arbitrary
(but fixed) arity and that it can appear several times in t. Note that we allow � to have
positive arity, which means that it can occur in a non-leaf position in the tree. Given such a
context t and an element a of the right arity, we denote by t[a] the product π(t′) where t′ is
the tree obtained from t by replacing all labels � by a.

Definition 5.1. Let A be a tree algebra and P ⊆ An a set of elements of arity n. The
syntactic congruence for P is defined by

a ≈P b : iff t[a] ∈ P ⇔ t[b] ∈ P , for all contexts t ∈ Tn(A ∪�) .

The non-obvious part of this definition is the fact that the resulting equivalence relation
is indeed a congruence. In fact, the proof of the next result crucially relies on the fact that
the tree algebra in question is regular. For arbitrary tree algebras the statement is simply
false.

Theorem 5.2. The syntactic congruence on a regular tree algebra is a congruence.

For the proof, we need to set up a bit of technical machinery. Fix a finite ranked set Σ,
let ∼ be an equivalence relation on TΣ, and let A and B be two non-deterministic parity
automata. We will define a game G∼(A,B) where the first player wins if, and only if, there
exist two trees S, T ∈ TTΣ of the same shape such that

• S(v) ∼ T (v), for all vertices v,
• A accepts flat(S),
• B accepts flat(T ).
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The game is a variant of the well-known Automaton–Pathfinder Game. The only difference
is that we simulate two automata at the same time and that, instead of playing single letters,
we play larger trees in each step. The game has two players Automaton and Pathfinder.
Each round starts in a position of the form 〈p, q〉, where p is a state of A and q one of B.
We allow p and/or q to be undefined, which we denote by the special symbol ⊥. In the first
round of the game, p and q are the initial states of the respective automata. Given such a
position 〈p, q〉,
• Automaton chooses two trees s, t ∈ TmΣ with s ∼ t and m < ω,
• if p 6= ⊥, he also chooses a profile δ for some partial run of A on s that starts in state p,

and
• if q 6= ⊥, he chooses a profile ε for some partial run of B on t that starts in state q.

Pathfinder responds by selecting a number i < m. The outcome of this round is the pair
〈δ|i, ε|i〉 where |i denotes the restriction to the (i+ 1)-th successor, that is,

〈r, k0, p0, . . . , km−1, pm−1〉
∣∣
i

:= 〈r, ki, pi〉 .
If there is no δ, we set δ|i := 〈⊥,⊥,⊥〉 and similarly for ε. If this outcome is 〈p, k, p′〉, 〈q, l, q′〉,
the next round of the game will start in the position 〈p′, q′〉.

If at some point in the game one of the players cannot make his choice, that player
loses the game. Otherwise, the players produce an infinite sequence 〈δ0, ε0〉, 〈δ1, ε1〉, . . . of
outcomes. Let ki be the priority in δi and li the priority in εi. Player Automaton wins the
game if each of the sequences k0, k1, . . . and l0, l1, . . . either satisfies the parity condition or
if it contains the symbol ⊥. Otherwise, Pathfinder wins.

Clearly, if there are two trees S, T ∈ TTΣ of the same shape such that

• S(v) ∼ T (v), for all vertices v,
• A accepts flat(S), and
• B accepts flat(T ),

then Automaton has the following winning strategy in G∼(A,B). He fixes two accepting runs
% and σ on, respectively, flat(S) and flat(T ). During the game he descends through the trees
S and T . When the game reaches a vertex v, Automaton chooses the trees S(v) and T (v)
and the profiles of the subruns of % and σ that correspond to the trees S(v) and T (v),
respectively.

Conversely, if Automaton has a winning strategy in the game, we can use it to construct

• two trees S, T ∈ TTΣ such that S(v) ∼ T (v) for all v and
• accepting runs of A and B on, respectively, flat(S) and flat(T ).

Proof of Theorem 5.2. Let A be a regular tree algebra and let C ⊆ A be a finite set of
generators. For a contradiction, suppose that there exists a subset P ⊆ Am such that ≈P is
not a congruence. Then we can find two trees s, t ∈ TA (of the same shape) such that

s(v) ≈P t(v) , for all vertices v , but π(s) 6≈P π(t) .

For every vertex v, we can choose trees S(v), T (v) ∈ TC such that s(v) = π(S(v)) and
t(v) = π(T (v)). This defines two trees S, T ∈ TTC with s = Tπ(S) and t = Tπ(T ).

As the algebra A is regular and every ≈P -class [a] is finite (by definition, ≈P only relates
elements of the same arity), we can construct automata Aa, for a ∈ A, such that

L(Aa) =
{
t ∈ TC

∣∣ π(t) ≈P a
}

=
⋃

b≈P a

(π−1(b) ∩ TC) .
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Let a := π(s) and b := π(t). We consider the game G≈P (Aa,Ab). The trees S and T show
that Automaton has a winning strategy in this game. As the winning condition of the game
is regular, we can apply the Büchi–Landweber Theorem, which tells us that Automaton
even has a finite-memory winning strategy. Since the choice of S(v) and T (v) by Automaton
in the game only depends on the current position 〈p, q〉 and on the contents of the memory,
there are only finitely many different values for S(v) and T (v). This implies that there are
only finitely many different labels used by the trees s and t. Consequently, we can get from s
to t by a finite number of steps in each of which we replace several occurrences of a single
label of s by the corresponding label of t. Thus, there exists a sequence u0, . . . , un ∈ TA
such that s = u0, t = un, and each ui+1 is obtained from ui by replacing (several occurrences
of) a single label by an ≈P -equivalent one, i.e., ui = ri[ai] and ui+1 = ri[bi], for a suitable
context ri ∈ T(A + �) and elements ai ≈P bi in A. By induction on i, it now follows
that π(ui) ≈P π(s). For i = 0, this is trivial; and for i > 0 it is sufficient to note that
ai−1 ≈P bi−1 implies

p[π(ui−1)] = p[ri−1[ai−1]] ∈ L ⇔ p[π(ui)] = p[ri−1[bi−1]] ∈ L , for all contexts p.

Consequently, we have π(s) ≈P π(t). A contradiction.

As a consequence we obtain the same statement for free algebras, provided that the
given subset is a regular language.

Corollary 5.3. Let L ⊆ TnΣ be a regular language. Then the syntactic congruence for L
is a congruence on TΣ.

Proof. Let L ⊆ TnΣ be regular. Then there exists a regular tree algebra A and a morphism
ϕ : TΣ → A such that L = ϕ−1[P ] for some set P ⊆ An. By Theorem 5.2, the syntactic
congruence ≈P of P is a congruence. The claim now follows from two facts that are both
straightforward to prove:

(1) L = ϕ−1[P ] implies that

s ≈L t iff ϕ(s) ≈P ϕ(t) .

(2) If ∼ is a congruence of A then

a ∼ϕ b : iff ϕ(a) ∼ ϕ(b)

is a congruence of TΣ.

For a regular language L ⊆ TnΣ, we call the quotient TΣ/≈L the syntactic algebra of L.
An immediate consequence of the way we have defined ≈L is that the syntactic algebra is
minimal in the sense that the projection TΣ → TΣ/≈L factorises through every morphism
TΣ → A that recognises L.

Theorem 5.4. The syntactic algebra of a regular tree language L is regular and it is the
smallest tree algebra recognising L.

Proof. Let L ⊆ TnΣ be regular and let ϕ : TΣ → A be a morphism recognising it. Replacing
A by the image of ϕ we may assume that ϕ is surjective. We start by constructing a
morphism ψ : A → TΣ/≈L such that ψ ◦ ϕ = q, where q : TΣ → TΣ/≈L is the quotient
map.
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TΣ A

TΣ/≈L

ϕ

q ψ

To do so it is sufficient to prove that

ϕ(s) = ϕ(t) implies s ≈L t .

Then we can define ψ(a) := q(t), for some t ∈ ϕ−1(a). By the above implication, ψ is
well-defined. Furthermore, it is straightforward to check that this function is in fact a
morphism of tree algebras.

Hence, it remains to prove the claim. Suppose that ϕ(s) = ϕ(t). To show that s ≈L t
consider a context r with r[s] ∈ L. Then ϕ(r[s]) ∈ P := ϕ[L]. Let r′ := Tϕ(r). Then

ϕ(r[t]) = r′[ϕ(t)] = r′[ϕ(s)] = ϕ(r[s]) ∈ P ,
which implies that r[t] ∈ L, as desired.

To conclude the proof, we have to show that the syntactic algebra TΣ/≈L is regular.
Fix a morphism ϕ : TΣ → A into a regular algebra recognising L. We have just shown that
there exists a morphism ψ : A→ TΣ/≈L with ψ ◦ϕ = q. As the quotient map q is surjective,
so is ψ. Hence, TΣ/≈L is a quotient of A and, therefore, regular by Theorem 4.2.

We have just proved the existence of syntactic algebras in our framework. If we want to
use our theory to develop decidable characterisations of logical fragments, we further require
an algorithm to actually compute these algebras. Before presenting one we need to explain
how to represent a regular tree algebra to an algorithm. The problem is that, while finitary,
a regular tree algebra still has infinitely many elements. So we cannot simply write down
its multiplication table. What we do instead is to use an algorithm that, given an arity
n < ω, produces a (finite) list of automata, one for each language of the form π−1(a) ∩ TC
for a ∈ An. Using this representation, we can then algorithmically construct and process
regular tree algebras.

Theorem 5.5. Given a regular language L ⊆ TnΣ, we can compute the syntactic algebra
TΣ/≈L.

Proof. Let L ⊆ TnΣ be regular and A an automaton for L. Using the construction from the
proof of Theorem 3.4, we can compute a regular tree algebra A, a morphism ϕ : TΣ → A,
and a set P ⊆ An such that L = ϕ−1[P ]. By Theorem 5.4, it follows that

TΣ/≈L ∼= A/≈P .
Hence, it is sufficient to prove that the relation ≈P is decidable. Note that

a 6≈L b iff there exists some context t with (t[a] ∈ L⇔ t[b] /∈ L) .

We will prove the decidability of the latter condition.
Let C ⊆ A be a finite set of generators of A. W.l.o.g. we may assume that all labels of

the term t we are looking for (except for the hole �) are in C. As π−1(a) ∩ TC is regular,
there exists a regular tree u ∈ TC with π(u) = a. Similarly, we can find a regular tree
v ∈ TC with π(v) = b. Let m be the arity of a and b and fix finite graphs G and H whose
unravellings are, respectively, u and v. Given G we can compute the set U of all tuples
〈p, q0, . . . , qm−1〉 such that there exists a partial run % of A on the tree u such that

• % starts in state p,
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• the leaf with the variable xi has state qi, and
• every infinite branch satisfies the parity condition.

Similarly, we can compute an analogous set V for the tree v. Given these two sets we can
then construct an automaton B that reads a context s and checks whether the original
automaton A accepts the tree s[u], but does not accept s[v], or vice versa. It follows that

a 6≈P b iff L(B) 6= ∅ ,
a condition that is decidable.

As an example of how to use syntactic algebras let us derive a characterisation of
the class of commutative tree languages. For space reasons, we defer more substantial
applications to a forthcoming article [3]. We say that a tree s is a permutation of the
tree t if s is obtained from t by rearranging the successors of every vertex. Formally, we
call a function σ : dom(s) → dom(t) a permutation if it is bijective and it preserves the
successor and sibling relations. Then s is a permutation of t if there exists some permutation
dom(s)→ dom(t). A language L ⊆ TΣ is commutative if it is closed under permutations.
Note that this is not the same as saying that L is closed under rearranging the successors of
a single vertex (or finitely many of them).

Theorem 5.6. A regular tree language L ⊆ TnΣ is commutative if, and only if, its syntactic
algebra A satisfies the equations

a(x0, . . . , xm−1) = a(xσ(0), . . . , xσ(m−1)) ,

for all a ∈ Am, m < ω, and all permutations σ : [m]→ [m].

Proof. (⇐) Note that the quotient morphism ϕ : TΣ → A recognises L. If s is a permutation
of t, we have ϕ(s) = ϕ(t). Hence, s ∈ L⇔ t ∈ L and L is commutative.

(⇒) Fix an element a ∈ Am and a permutation σ : [m]→ [m]. We have to show that

a(x0, . . . , xm−1) ≈L a(xσ(0), . . . , xσ(m−1)) .

Hence, let r be a context. Note that the two trees obtained from r by replacing the hole �
by, respectively, a(x0, . . . , xm−1) and a(xσ(0), . . . , xσ(m−1)) are permutations of each other.
As L is commutative we therefore have

r[a(x0, . . . , xm−1)] ∈ L⇔ r[a(xσ(0), . . . , xσ(m−1))] ∈ L .

Note that it follows in particular that commutativity is decidable. Given a regular
language L, we can compute its syntactic algebra and check whether it satisfies the above
equations. (We only need to check them for elements a in a finite set of generators.)

6. Deterministic tree algebras

In Theorem 4.3 we have provided a characterisation of regular tree algebras in terms of
an unspecified second class C of algebras that characterises the regular languages. We can
obtain a more informative result by making a concrete choice for C. In this section we
will consider one such class. In order to make this second class as simple as possible, we
allow the relationship between the two classes to be more complicated that what we had in
Theorem 4.3.

In addition, the characterisation we obtain in Theorem 6.11 below can also serve as an
alternative definition of the notion of a regular tree algebra. It has the advantage that it is
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purely algebraic and does not refer to automata, avoiding the apparent circularity of the
original definition. Its main disadvantage is that it is more complicated and abstract, which
is why we did not adopt it as the official definition.

For the definition, we need to work with ordered algebras. An ordered tree algebra
A = 〈A, π,≤〉 consists of a tree algebra 〈A, π〉 that is expanded by a partial order ≤ on A
such that the product π is monotone. (We order TA componentwise: s ≤ t if the trees
s and t have the same shape and each label of s is less than or equal to the corresponding
label of t.) Such an ordering is complete if it has arbitrary joins and meets (i.e., suprema
and infima). Morphisms of ordered tree algebras are assumed to preserve the ordering and
morphisms of completely ordered algebras are assumed to also preserve joins and meets.
The class of algebras we are considering in this section is the following one.

Definition 6.1. Let A be a completely ordered tree algebra.
(a) A is meet-continuous if products commute with meets, that is, given a tree T ∈ TP(A)

labelled by subsets of A, we have

π(T inf(T )) = inf {π(t) | t(v) ∈ T (v) for all vertices v } .
(b) An element a ∈ An is rectangular if it can be written as a meet of elements of arity 0

and elements of the form b(xi), for b ∈ A1 and i < n.
(c) A is deterministic if it is meet-continuous and all elements are rectangular.

The motivating example for a deterministic algebra is one arising from an automaton in the
following way.

Definition 6.2. Let A be a tree automaton and let A be the tree algebra constructed
at the end of Section 3. The transition algebra T(A) of A is the subalgebra of A whose
elements are conjunctions of semigroup elements plus the empty disjunction ⊥, i.e., we omit
all disjunctions with more than one term. We consider T(A) an ordered algebra where the
ordering is the one induced by the conjunctions and disjunctions.

Lemma 6.3. The transition algebra T(A) is deterministic.

Proof. By definition, every element is a meet (conjunction) of elements of arity 0 or elements
of the form a(xi) where a has arity 1. Thus, all elements are rectangular. For meet-continuity
it is sufficient to note that, in every tree algebra constructed from an ω-semigroup as in
the proof of Theorem 3.4, the subalgebra consisting of the one-element disjunctions is
meet-continuous (see Proposition 4.12 (a) of [2]).

Deterministic algebras are a very special case of regular tree algebras. One can show
that their expressive power corresponds to a certain form of deterministic tree automata.
For our purposes, it is sufficient to know that they are regular.

Proposition 6.4. Every finitary subalgebra of a deterministic tree algebra is regular.

Proof. Let t be a tree we want to multiply. As every label of t is rectangular, we can use
meet-continuity to transform the product of t into a meet of products where every label has
arity at most one. Such products correspond to ω-semigroup products along a single branch
of t (see Lemma 4.23 (b) of [2]). This is something an automaton can evaluate. Consequently,
in order to check whether t evaluates to a given element a an automaton can compute all
the products along the branches of t, take their infimum, and compare it to a.
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Let us use deterministic algebras to give a second characterisation of the regular algebras.
We start with an observation that simplifies proofs of regularity: we only need to check
elements of arity at most one.

Proposition 6.5. A finitary tree algebra A is regular if, and only if, it has a finite set
C ⊆ A of generators such that

π−1(a) ∩ TC is regular , for every a ∈ A of arity at most 1 .

Before giving the proof, we need to collect a few results about factorisations. A
factorisation of a tree t ∈ TA is a tree T ∈ TTA such that flat(T ) = t. We denote by F(t)
the set of all factorisations T of t such that the trees T (v) are singletons for all vertices v
of T with more than one successor. The height of a factorisation T is the height of the
tree T .

We call a tree t ∈ TA reduced if it has no non-trivial factor of arity at most one, that is,
for every factorisation T of t and every vertex v ∈ dom(T ) of arity at most one, we have
T (v) = sing(a), for some a ∈ A. The important fact about reduced trees is that they are
small.

Lemma 6.6. Let A be a tree algebra and m < ω. Every reduced tree t ∈ TmA has height at
most 2m.

Proof. We prove the claim by induction on m. For m = 0, note that every reduced tree of
arity m is of the form sing(a), for some a ∈ A. Hence, the height is 0. For the inductive
step, suppose that m > 0 and consider a reduced tree t ∈ TmA. We distinguish two cases.

First, suppose that the root has an arity greater than 1. As t is reduced, every subtree
attached to the root must have fewer variables than t. By inductive hypothesis, their height
is at most 2(m− 1). Hence, the height of t is at most 2(m− 1) + 1.

It remains to consider the case where the root has arity 1. As t is reduced, the successor
must then have arity greater than 1. Hence, the attached subtree satisfies the above case,
which means that its height is bounded by 2(m− 1) + 1. Consequently, the height of t is at
most 2(m− 1) + 2 = 2m.

Next we will show that the set F(t) of factorisations of t contains reduced trees. For
the proof we will employ the following ordering on F(t). For S, T ∈ F(t), we set

S v T : iff there is some U ∈ TTTA such that S = flat(U) and

every U(v) is a factorisation of T (v) , for v ∈ dom(U) .

Lemma 6.7. The set F(t) is inductively ordered by v, i.e., every chain as an upper bound.

Proof. Let (Ti)i∈I be an increasing sequence in F(t). We have to find an upper bound. Note
that every factorisation T of t induces an equivalence relation ≈T on dom(t) by

u ≈T v : iff u and v are vertices belonging to the same factor T (w) .

Hence, the sequence T0 v T1 v T2 v . . . induces a corresponding sequence ≈T0 ⊆ ≈T1 ⊆
≈T2 ⊆ . . . of equivalence relations. The limit

≈ :=
⋃
i∈I
≈i

is an equivalence relation on dom(t) that corresponds to some factorisation T of t. We will
show that T ∈ F(t). Then T is the desired upper bound for (Ti)i∈I .
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To prove the claim, note that every ≈-class E is the union of an increasing sequence
(Ei)i∈I of ≈Ti-classes. Since each Ti belongs to F(t), every Ei is of one of the following two
types.

(I) The class is a singleton.
(II) The class corresponds to a factor of arity at most one.

If there are arbitrarily large i such that Ei is of type (I), the sequence is constant and the
limit E is also of type (I). Otherwise, the limit E is a union of classes of type (II) and, hence,
is also of type (II). As this holds for all classes of ≈, it follows that T ∈ F(t).

Lemma 6.8. Let A be a tree algebra and C ⊆ A a set with A0 ∪A1 ⊆ C. Every t ∈ TmC
has a factorisation T ∈ F(t) such that

(1) T is reduced,
(2) the height of T is at most 2m, and
(3) Tπ(T ) ∈ TC.

Proof. By Lemma 6.7, we can use Zorn’s Lemma to find a maximal element T ∈ F(t). We
claim that T is the desired factorisation.

(1) For a contradiction, suppose otherwise. Then there exists a factorisation U of T and
a vertex u ∈ dom(U) of arity at most one such that U(u) is not a singleton. Let T ′ be the
tree obtained from T by replacing the factor U(u) by its product. Then, T @ T ′ and T is
not maximal.

(2) follows from (1) by Lemma 6.6.
(3) Note that every factor T (v) is either a singleton or of arity at most one. Since

A0 ∪A1 ⊆ C, it follows that π(T (v)) ∈ C. Hence, Tπ(T ) ∈ TC.

Proof of Proposition 6.5. For the nontrivial direction, suppose that A is an algebra as in
the proposition and let C ⊆ A be the corresponding set of generators. To prove that A is
regular, we fix an element a ∈ Am. We have to show that π−1(a) ∩ TC is regular. Set
C ′ := C ∪A0 ∪A1 and let t ∈ TC. By Lemma 6.8, t has a factorisation T ∈ F(t) such that
T is reduced, its height is at most 2m, and Tπ(T ) ∈ TC ′. It follows that Tπ(T ) ∈ H(a)
where

H(a) := { s ∈ TC ′ | s has height at most 2m and π(s) = a } .
Consequently, we have

π(t) = a iff π(flat(T )) = a iff π(Tπ(T )) = a iff Tπ(T ) ∈ H(a) .

For every finite tree s, we will construct an MSO-formula ϑs such that

t |= ϑs iff t has a factorisation T ∈ F(t) such that Tπ(T ) = s .

Then it follows that

π(t) = a iff Tπ(T ) ∈ H(a) iff t |=
∨

s∈H(a)

ϑs ,

as desired. Hence, it remains to construct the formulae ϑs.
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First, note that we can encode a factorisation T of t by a set Z that contains the root
of each factor T (v). Using this encoding, we can set

ϑs := ∃Z
[
‘Z encodes a factorisation T in F(t)’

∧
∧

v∈dom(s)

‘the factor T (v) evaluates to s(v)’
]
.

The first part of this formula is clearly expressible in MSO. For the second part, note that
s is finite and each factor T (v) is either a singleton or a term of arity at most one. In the
first case it is trivial to compute the product. In the second case, we can use the formulae
defining the sets π−1(a) ∩ TC, for a ∈ A0 ∪A1.

The price we pay for using deterministic algebras in our characterisation theorem below
is that we need a slightly more general notion of recognition. A span 〈ϕ,ψ〉 : A → B
from a tree algebra A to another tree algebra B consists of two morphisms ϕ : C→ A and
ψ : C→ B where C is a third tree algebra. A subset L ⊆ An is recognised by a span 〈ϕ,ψ〉
if there exists a set P ⊆ Bn such that

L = ϕ[ψ−1[P ]] .

Below we will use a span 〈p, q〉 : A→ T(A) where the middle algebra is a subalgebra of the
product A× T(A) and the morphisms p and q are the corresponding projections.

Definition 6.9. Let A be a tree algebra and A an automaton. We denote by Â the
subalgebra of the product A× T(A) with domains

Ân :=
{
〈π(t), δ〉

∣∣ t ∈ TnA and δ the profile of some partial run of A on t
}
.

Let p : Â→ A and q : Â→ T(A) be the corresponding projections.

(Note that Â is well defined as its domains are closed under products.) We start with a

technical result showing that the projection Â→ A is surjective. At least this is the case if
the algebra A is regular and A the corresponding automaton, i.e., a tree automaton such
that, for every element a ∈ A0 ∪ A1, we can choose a starting state for A from which it
recognises the set π−1(a) ∩ TC.

Lemma 6.10. Let A be a regular tree algebra and A an automaton for A. The projection

p : Â→ A is surjective and every fibre p−1(a) is finite.

Proof. Consider an element a ∈ Am. Let % be the run of A on the tree sing(a) and δ the

(profile corresponding to the) transition at the root of %. Then 〈a, δ〉 ∈ Â and p(〈a, δ〉) = a.

Hence, a ∈ rng p. For the second statement, note that every domain Âm ⊆ Am × Tm(A) is

finite. Hence, so is p−1(a) ⊆ Âm, for a ∈ Am.

Combining the notions and results of this section, we obtain the following characterisation
of when a tree algebra is regular.

Theorem 6.11. Let A be a finitary tree algebra and C ⊆ A a finite set of generators. A is

regular if, and only if, there exists a deterministic algebra D and a subalgebra Â ⊆ A×D
such that
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• the first projection p : Â→ A is surjective,
• every fibre p−1(a) is finite, and
• the span 〈Tp, π ◦ Tq〉 : TA→ D recognises every preimage

π−1(a) ∩ T , for a ∈ A0 ∪A1 . Â

TÂ

A

TA

D

TD
π

π π

p q

Tp Tq

Proof. (⇒) Fix an automaton A for A, set D := T(A), and let Â be the algebra from

Definition 6.9. We have seen above that D is deterministic, the projection p : Â → A
is surjective, and all fibres p−1(a) are finite. To conclude the proof, consider an element
a ∈ A0 ∪A1. Let qa be the starting state that A uses to recognise the preimgae π−1(a)∩TC
and let P ⊆ D be the set of all profiles

∧
i<m〈q, ki, pi〉 such that q = qa and, from the

state pi, A accepts the singleton tree with label xi, for i < m. For t ∈ TC, it follows that

π(t) = a iff there exists an accepting run on t starting in the state qa

iff there exists s ∈ (Tp)−1(t) such that Tq(s) is such a run

iff there exists s ∈ (Tp)−1(t) such that π(Tq(s)) ∈ P .

(⇐) By Proposition 6.5, it is sufficient to show that the preimages π−1(a) ∩ TC are
regular for elements a of arity at most 1. Hence, let a ∈ A0 ∪ A1 and set C ′ := q[p−1[C]].
Note that C ′ is a finite set since, by assumption, all fibres of p are finite. Furthermore, we
know that there exists a (finite) set P ⊆ D such that

π−1(a) ∩ TC = (Tp)[(π ◦ Tq)−1[P ]
]

=
⋃
d∈P

(Tp)
[
(Tq)−1[π−1(d)]

]
=
⋃
d∈P

(Tp)
[
(Tq)−1[π−1(d) ∩ C ′]

]
,

where the last equality holds as every tree in TC is mapped by Tq ◦ (Tp)−1 to a tree in TC ′.
As finitary subalgebras of deterministic algebras are regular, each preimage π−1(d) ∩ C ′
forms a regular language. Furthermore, regular tree languages are closed under projections
and inverse projections. Hence, each term in the above union is regular and, therefore, so is
the union itself.

7. Conclusion

In this article we have developed a framework for recognisability of tree languages. We
have isolated a class of algebras that recognise exactly the regular tree languages and we
have shown that this class meets our main requirements: it forms a pseudo-variety and it
has syntactic algebras. Furthermore, we have proved that it is the only class with these
properties. Finally, we have included a simple example of how to use our framework to
obtain characterisation results. More substantial applications are deferred to a forthcoming
article [3].

The basic concept our framework is built around is the notion of a regular tree algebra.
We have given two different definitions of these algebras: the first one is simple and easy
to use, but it requires automata theory; the second one is more complicated and abstract,
but it has the advantage that it is purely algebraic and does not require automata. It is
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currently open whether one can also define regularity of a tree algebra in terms of a set of
equations. The work of Milius and Urbat [11] suggests that this might be possible, but no
explicit description of the equations involved is known at this point. It is also unclear how
large and complicated such a set of equations would be. Our current conjecture is that, for
every finite set X of variables and every tree t ∈ TX, we need to have an equation of the
form t = t′, where t′ ∈ TX is some regular tree depending on t. But it is not obvious why
this should be equivalent to the tree algebra being regular. In fact, both directions of this
equivalence seem to require non-trivial arguments.

Appendix A. Closure properties of regular tree languages

The closure properties of the class of all regular languages of infinite trees is well-understood.
In particular, the class is closed under boolean operations and projections (see, e.g., [16, 17,
12]). Another well-known closure property is that under inverse morphisms. As I have not
been able to find a published proof of this fact, I include one here.

Lemma A.1. Let ϕ : TΣ → TΓ be a morphism of tree algebras. If L ⊆ TmΓ is regular, so
is ϕ−1[L] ⊆ TmΣ.

Proof. Set Σ̂ := Σ ∪ {x0, . . . , xm−1} and Γ̂ := Γ ∪ {x0, . . . , xm−1}. Fix an automaton

A = 〈Q, Γ̂ ,∆, q0, Ω〉 recognising L. For c ∈ Σ, let Π(c) be the set of all profiles of partial
runs of A on ϕ(sing(c)) and, for i < m, let Π(xi) be the set of all states from which A
accepts the singleton tree with label xi. We construct an automaton B for ϕ−1[L] as follows.
The set of states is Q×D ∪ {〈⊥,⊥〉}, where D is the set of priorities used by A. The initial
state is 〈q0, k〉, for an arbitrary k ∈ D, and the priority function is given by Ω(〈p, k〉) := k
and Ω(〈⊥,⊥〉) = 0. The transitions of B are as follows.〈
〈p, l〉, c, 〈q0, k0〉, . . . , 〈qn−1, kn−1〉

〉
for c ∈ Σ̂ , 〈p, k0, q0, . . . , kn−1, qn−1〉 ∈ Π(c) ,〈

〈⊥,⊥〉, c, 〈⊥,⊥〉, . . . , 〈⊥,⊥〉
〉

for c ∈ Σ̂ .

It is straightforward to check that B accepts a tree t ∈ TmΣ if, and only if, A accepts ϕ(t).
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