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A. We investigate the structure of graphs in the Caucal
hierarchy. We provide criteria concerning the degree of vertices or
the length of paths which can be used to show that a given graph
does not belong to a certain level of this hierarchy. Each graph in the
Caucal hierarchy corresponds to the configuration graph of some
higher-order pushdown automaton.¿emain part of the paper con-
sists of a study of such configuration graphs.We provide tools to de-
compose and reassemble their runs, andweprove a pumping lemma
for higher-order pushdown automata.
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 I

¿e Caucal hierarchy is the class of relational structures which one obtains by
alternated applications of monadic second-order interpretations and the Much-
nik iteration (see [, , , ]) starting with the class of all finite structures. Since
these operations preserve decidability of monadic second-order theories it fol-
lows that every structure in the Caucal hierarchy has a decidable monadic the-
ory. Originally, Caucal [] defined the hierarchy only for graphs where the above
operations can be replaced by, respectively, inverse rational mappings and unrav-
ellings.



¿e lowest level of the Caucal hierarchy consists of the class of prefix-recog-
nisable (also called tree-interpretable) structures. Restricted to graphs this is the
class of all graphs that can be obtained from the configuration graph of some
pushdown automaton by contracting each ε-transition. Recently, Carayol and
Wöhrle [] have extended this characterisation to the whole hierarchy: A graph
belongs to the n-th level of the Caucal hierarchy if and only if it can be obtained
by contracting ε-transitions from the configuration graph of some higher-order
pushdown automaton of level n. ¿is automaton model has been introduced by
Maslov in []. It was used by Damm and Goerdt [] to characterise the so-called
OI-hierarchy which consists of the solutions of higher-order lambda schemes.
Due to the connection with the Muchnik iteration and the Caucal hierarchy this
work has recently received renewed attention in the study of hierarchies of trees
or graphs with decidable monadic theories (see, e.g., []).
Naturally, the question arises of which structures are contained in the Cau-

cal hierarchy and at what level they do appear. It is known that each structure
in the hierarchy has a finite partition width (see [] for definitions and details).
Whereas the first level, the class of prefix-recognisable structures, is rather well
understood, there are few structural results concerning the higher levels of the
Caucal hierarchy.
¿is is the motivation of the results presented in this article. We study graphs

in the Caucal hierarchy and we try to derive bounds on their degree or on the
length of paths. Much of this work is based on a detailed investigation of con-
figuration graphs of higher-order pushdown automata. We study paths in these
graphs andwe provide operations to decompose and reassemble them.Ourmain
technical result will be a pumping lemma for higher-order pushdown automata.
For indexed grammars (which correspond to pushdown automata of level ), a
pumping lemma was already proved by Hayashi []. ¿e present article owes
much to this paper.
¿e overview of this article is as follows. In Section  we fix notation and give

basic definitions. We introduce higher-order pushdown automata in Section .
Section  contains our first major result. We derive a bound on the outdegree of
graphs in a given level of the Caucal hierarchy.
Sections  to  contain an in-depth investigation of configuration graphs of

higher-order pushdown automata. In Section  we show how to replace, in all
configurations of a given run, the bottom of the stack by another stack content
without destroying the property of being a run. Usually this substitution opera-
tion can be applied only to parts of a run. ¿erefore, we introduce in Sections
 and  two partial orders on runs, the so-called weak and strong domination





orders, that will be used to decompose a given run into such parts. Section  con-
tains a more detailed investigation of the strong domination order and a proof
that it contains arbitrary long chains. In the Section  we apply the tools devel-
oped in the second part of the article to prove a pumping lemma for higher-order
pushdown automata.
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Besides (directed) graphsG � �V , E� we will also consider relational structures
A � �A, R , . . . , Rr� (with finitely many relations). Note that we do not assume
graphs and structures to be finite. In fact, we will mostly consider countably infi-
nite ones.

Definition .. Let Σ be a set. ¿e prefix ordering j on Σ� is defined by
x j y : iff y � xz for some z > Σ� .

Definition .. An unlabelled tree is a partial order �T , j� where T b ω�, j is
the prefix ordering, and T satisfies the following closure properties:m If u > T and v j u then v > T .m If uk > T and i � k then ui > T , for i , k > ω.
A Λ-labelled tree is a function t � T � Λ where the domain dom�t� �� T b ω�

forms an unlabelled tree.

To define the Caucal hierarchy we use operations based on monadic second-
order logic (MSO), the extension of first-order logic by set variables and quantifi-
cation over sets.

Definition .. (a) ¿e Muchnik iteration of a structure A � �A, R , . . . , Rr� is
the structure A

� �� �A�, suc, cl, R� , . . . , R�r � where the universe A� consists of
all finite sequence of elements of A and we have

suc �� � �w ,wa� S w > A�, a > A� ,
cl �� �waa S w > A� , a > A� ,
R�i �� � �wa , . . . ,wan�� S w > A� , ā > R i � .

By A

�n we denote the n-fold iteration of A
A

� �� A and A

��n�� �� �A�n�� .


(b) An MSO-interpretation is a sequenceI � `δ�x�, φ�x̄�, . . . , φr�x̄�e

of MSO-formulae. It induces a function on structures that we also denote by I .
¿is function maps a structure A to the structureI�A� �� �δA, φA

 , . . . , φ
A

r � ,
where ψA �� � ā S A à ψ�ā� � denotes the relation defined by ψ.
Definition .. ¿e Caucal hierarchy C b C b . . . is the hierarchy whose n-th
level consists of all structures of the form I�A�n� where A is a finite structure.

Note that the Muchnik iteration of a structure is a tree. To investigate the ex-
pressive power of monadic second-order logic on iterations Walukiewicz []
introduced the following kind of tree automaton (see also [] for an exposition).

Definition .. An MSO-automaton is a tuple A � �Q , Σ, δ, qin ,Ω� where Q is
a finite set of states, Σ is the input alphabet, qin is the initial state, Ω � Q � ω a
priority function, and δ � Q � Σ �MSO is the transition function.
Such an automaton takes as input a structure A and a labelling λ � A� � Σ. A

run ofA on A and λ is a function ρ � A� � Q such thatm ρ�`e� � qin andm for all w > A�, we have�A,C , P̄� à δ�ρ�w�, λ�w�� ,
where, for each q > Q, we have

Pq �� � a > A S ρ�wa� � q � and C �� ¢¨¨�¨¨¤�a� if w � w�a ,g if w � `e .
A run ρ is accepting if it satisfies the parity condition Ω, i.e., on every infinite
path the least priority seen infinitely o en is even. We say that A accepts a pair�A, λ� if there exists an accepting run ofA on input A and λ.

¿eorem . (Walukiewicz []). For every MSO-formula φ�X̄�, we can con-
struct anMSO-automatonA such that

A

� à φ�P̄� iff A accepts �A, λP̄� ,
where λP̄�w� �� � i S w > Pi �.





 H-  

We can also characterise the graphs in the Caucal hierarchy in terms of higher-
order pushdown automata.¿e stack of a higher-order pushdown automaton of
level n is a list of stacks of level n � . If the innermost stacks, i.e., those of level ,
are words over an alphabet Σ, then we denote the set of level n stacks by Σ�n .
Definition .. Let Σ be an alphabet. We define

Σ� �� Σ , Σ��n�� �� �Σ�n��,
Σ� �� Σ , Σ��n�� �� �Σ�n��.

(Note that we use Σ�n instead of Σ�n in the last definition.)
Each word ξ > Σ�n is of the form ξ � ξn�ξn���ξξ��� where ξ i > Σ�i , for

 B i B n. We can write such words as

ξn � ξn� � � � ξ � ξ ,
where ��� � Σ�i � Σ��i�� � Σ�i with ξ � a �� ξa is the right associative operation
that appends a single level i symbol a (i.e., a word of level i � ) to a word ξ of
level i.
Given a word ξ, we denote by �ξ�i , for  B i B n, the unique words such that

ξ � �ξ�n � � � �ξ� .
Definition .. A pushdown automaton of level n is a tupleA � �Q , Σ, Γ , ∆, q , z, F�

whereQ is the set of states, Σ the input alphabet, Γ the stack alphabet, q > Q the
initial state, z > Γ the initial stack element, F b Q the set of accepting states, and

∆ b Q � �Σ 8 �ε�� � Γ �Q �Op
the transition relation that consists of tuples �p, a, c, q, op� where op is one of
the following operations:

popk�ξn � � � ξ� �� ξn � � � ξk ,
pusha�ξn � � � ξ� �� ξn � � � ξ � ξξ � a ,
clonek�ξn � � � ξ� �� ξn � � � ξk� � �ξk � ξk� � � � ξ� � ξk� � � � ξ ,



where ξ i > Γ�i and a > Γ.
Further, we define the projections π � Γ�n � Q � Γ�n and ρ � Γ�n � Q � Q

and a function top � Γ�n �Q � Γ � Q by

π�ξ, q� �� ξ , ρ�ξ, q� �� q , and top�ξ, q� �� ��ξ� , q� .
A configuration �ξ, q� of A consists of a stack content ξ > Γ�n and a state

q > Q. We write �ξ, q� Øa �ζ , p� if A enters configuration �ζ , p� when reading
the letter a > Σ 8 �ε� in configuration �ξ, q�, formally,�ξ, q� Øa �ζ , p� iff �q, a, �ξ� , p, op� > ∆ and ζ � op�ξ� .
A run ofA is a �Γ�n �Q�-labelled tree r such that �dom�r�, j� forms a linear

order and, for every vertex u > dom�r� with immediate j-successor v, we have
r�u� Ø r�v�.We do not require that r starts with the initial configuration �ε � � � � �

ε � z, q�. Instead, we only require that the first configuration of r is reachable,
that is, there exists a sequenceOP of stack operations such that the stack contents
of the first configuration is OP�ε � � � ε � z�. We will denote the successor
function on dom�r� by σ.
Example. For every n, there exists an automaton An of level n �  recognising
the language

Ln �� � a°n�k� T k � ω � ,
where °n�k� is the function defined by°�k� �� k and °n��k� � °n�k� .
Informally the automatonAn starts by guessing the number k and writing an

encoding of °n�k� onto its stack. ¿en it enters a loop where in each iteration it
decrements the number stored in the stack and reads one input letter.An stops
when the number on the stack becomes .
How can we encode such huge numbers into a stack of level n � ? For the

stack alphabet we choose Γ � �, . . . , n, a�. ¿e bottom of a stack of level i will
be marked by the level i �  word

ı �� ε � � � ε �  . . . i > Γ��i�� .




By induction on n, we define a coding function κn � ω � Γ�n based on the binary
encoding of integers.

κ�m� �� am ,

κn��m� �� n �  κn�i��κn�i l� ,
where m � i � � � � � i l and i A � � � A i l .

Instead of presenting the actual transition table of the automaton we specify it
by pseudo-code. We need a predicate zeroi�ξ� that is true if the top-most level i
stack in ξ is empty, andwe need a function deci�ξ� that decrements the top-most
level i stack of ξ. zeroi can be defined with the help of the markers ı.

zeroi�ξ� : iff �ξ� � i .
¿edecrementation procedure deci�ξ� has to distinguish two cases. If the binary
encoding of the number ends with the digit  then we change it to . Otherwise,
the number ends with a sequence of digits � that we have to replace by �.

dec�ξ� �� pop�ξ� ,
decn��ξ� �� �� last digit is  ��if zeron�ξ� then

return popn��ξ� �� last digit is  ��else �� change  to  ��ξ �� decn�ξ�

while not zeron�ξ� do �� change  to  ��ξ �� �decn X clonen���ξ�

end

return ξ

end

¿e automatonAn works as follows. First, it creates the stack content

n �  � � �  .
¿en nondeterministically it performs k pusha-operations. ¿e stack contents
now is

n �  � � � ak � κn��°n�k�� .
Finally, it enters a loop where in each iteration it calls decn and it reads one input
letter.



Our interest in higher-order pushdown automata stems from the following
result.

¿eorem . (Carayol, Wöhrle []). A graphG belongs to the n-th level Cn of the
Caucal hierarchy if and only if it can be obtained from the configuration graph of
a pushdown automaton of level n by contracting all ε-transitions.

¿e easy direction of this result is based on the following lemmawhich wewill
need in Section .

Lemma .. Let A � �Q , Σ, Γ , ∆, q , z, F� be a pushdown automaton of level n
with configuration graph �C ,Ø�. Let A �� �A, �Pa�a>A� be the structure with uni-
verse A �� Q < Γ and unary predicates Pa �� �a�, for a > A.
¿ere exist monadic second-order formulae φc�x , y�, for c > Σ, such that

A

�n à φc�ξ � p, η � q� iff �ξ, p� Øc �η, q� ,
for all ξ, η > Γ�n and p, q > Q.
 G   

We start our investigation of the structure of graphs in the Caucal hierarchy by
computing a bound on their outdegree. Note that the universe of a structure
A > Cn in the n-th level of the hierarchy has the form A b Γ�n , for some finite
set Γ. We define the following norm on such sets.

Definition .. Let Γ be a finite set. For ξ � x�xr� > Γ�n and k B n, we define,
by induction on k,

SξSk �� ¢¨¨¨¨�¨¨¨¨¤
 if r �  ,SξS if k � n ,
max� Sx i Sk S i � r � if k � n and r A  .

Lemma .. Let Γ be a finite set with at least two elements and let k , . . . , kn be
numbers. ¿ere are less than SΓSk�kn words ξ > Γ�n such that SξSi � k i , for all
i B n.
Proof. ¿e claim follows easily by induction on n. For n � , we haveQ

i�kSΓSi � SΓSk � SΓS �  � SΓSk




words ξ > Γ� with SξS � k. For n A , we can employ the induction hypothesis to
obtain the boundQ

i�kn�SΓSk�kn��i � SΓSk�kn .

If G � �V , E� is a graph in the n-th level of the Caucal hierarchy then, by
definition, there exists a finite structureA and twoMSO-formulae δ and φ such
that

V � � ξ > A�n T A�n à δ�ξ� � ,
E � � �ξ, η� > A�n � A�n T A�n à φ�ξ, η� � .

¿erefore, we will consider a structure of the form A

�n and an MSO-formula
φ�x , y� with two free first-order variables.
Definition .. Let A be a structure and φ�x , y� > MSO a formula. ¿e φ-
outdegree of a > A in A is the number of elements b > A such that A à φ�a, b�.
We obtain the following bound on the φ-outdegree.

¿eorem .. For every formula φ�x , y� > MSO and each n � ω, there are con-
stants c , . . . , cn such that, whenever A is a finite structure with at least two ele-
ments and a > A�n an element of finite φ-outdegree in A

�n then
A

�n à φ�a, b� implies SbSi B L i�a� for all i B n ,
where

L i�a� �� SaSi � c i SASL�a��L i��a� .
Proof. Let A � �Q ,´��, δ, qin ,Ω� be the nondeterministic MSO-automaton
corresponding to φ. SinceA is fixedwewill simplify notation by saying thatA ac-
cepts a tree λ � A�n � ´�� if it accepts the pair �A��n�� , λ�.
W.l.o.g. we may assume that the set of states Q � Qg < Q < Q < Q is

partitioned such that starting in a state q > QC the automaton A accepts only
trees λ where the set of occurring labels is exactly C. (If A is not of this form
then we can construct a new automaton with states Q �´��.) Furthermore, we
assume that there exists a unique state q > Q from which A accepts the tree λ
with

λ�x� �� ¢¨¨�¨¨¤�� if x � ε ,g otherwise .



Let ρ be an accepting run ofA on the tree λ � A�n � ´��. If ρ�w� > Q then
we either have λ�w� � �� and ρ�wa� > Qg, for all a > A��n��, or we have
λ�w� � g and there is some a > A��n�� with ρ�wa� > Q and ρ�wb� > Qg, for
all b x a. For p, q > Q , we define

ψpq�x , y� �� §C§P̄�δ�p,g��C , P̄� , C � �x� , Pq � �y�, �
s>Q��Qg8�q�� Ps � g� .

It follows that, whenever the automaton is in state p at some vertexwa > A�n with
λ�wa� � g then it can go to state q at the vertexwab if and only ifA à ψpq�a, b�.
Similarly, there exists a formula ϑqp p�x , y , y�, for q > Q , p > Q , and

p > Q , such that

A à ϑqp p�a, b , b�
if and only if, whenever the automatonA is in the state q at some vertexwa > A�n
then it can go into the state p at wab and into the state p at wab .
Finally, there exists a formula χp�x , y� such that χp�a, b� holds if and only

if there exist a sequence of elements d , . . . , dm > A��n�� and a corresponding
sequence of states p , . . . , pm > Q such thatm d � a and p � p,m dk � b, for some k B m,m pm � q ,m A à §z�q>Q

ϑpqp�d , z, d�, andm A à ψp i p i��d i , d i��, for all  � i � m.
Let π � A�n � A��n�� be the projection to the last symbol π�wa� �� a. Fix

an element u > A�n such that the set V �� � v > A�n S A

� à φ�u, v� , v â u � is
finite. To each v > V we associate the maximal sequence v , . . . , vm�v� such that
u A v � v h v h � � � h vm�v� � v. By assumption, the set

P ��� � π�v i� S v > V , i B m�v� �

is finite. For v > V , we denote the accepting run of A on the tree λ�u��v� by ρv
and we set pv �� ρv�v�. Note that� a > A��n�� T A à χpv �π�v�, a� � b P





is also finite. By induction hypothesis, there are numbers c , . . . , cn� such that
A à χpv �π�v�, a� implies SaSi B L i�π�v�� ,

where

L i�a� �� SaSi � c i SASL�a��L i��a� .
It follows that, for v > V and i B m�v�, we haveSπ�v i�Sl B max� L l�π�x�� T x j u � B L l�u� .
Finally, note that, for v > V ,

π�v i� � π�v l� , for i � l , implies ρ�v i� x ρ�v l� ,
since, otherwise, the path π�v i�, . . . , π�v l�� can be repeated an arbitrary num-
ber of times and χpv defines an infinite set. It follows that

m�v� B SQ S � SASL�u��Ln��u�.
Consequently, setting cn �� SQ S we haveSvSn B SuSn � cn � SASL�u��Ln��u� � Ln�u�,
and SvSi B L i�u� , for i � n .
Corollary .. Let A be a finite structure and φ�x , y� >MSO some formula that

defines a relation R �� φA

�n
of finite outdegree on A

�n . If u , u , � � � > A�n is an
R-path then we haveSuk Si B SuSi � °i��O�k � SuS � � � � � SuSi��� , for all i B n .
Proof. By the preceding theorem, we haveSuk S B Suk� S � c B SuS � ck B SuS � °�O�k�� ,
and, for i A , it follows by induction thatSuk Si B Suk� Si � c i SASL�uk���L i��uk�� B SuSi �Q

l�k c i SASL�u l ��L i��u l �.


Since

L�u l��L i��u l�B �SuS � °�O�l�����SuSi� � °i��O�l � SuS � � � � � SuSi����B �SuS � � � � � SuSi� � °i��O�l � SuS � � � � � SuSi����i�B �SuS � � � � � SuSi� � °i��O�k � SuS � � � � � SuSi����i�B �k � SuS � � � � � SuSi� � °i��O�k � SuS � � � � � SuSi� � SuSi����i�B °i��O�k � SuS � � � � � SuSi� � SuSi���i�B °i��O�k � SuS � � � � � SuSi� � SuSi���
it follows thatSuk Si B SuSi �Q

l�k c i°i��O�k�Su S�����SuSi��SuSi���B SuSi � c ik°i��O�k � SuS � � � � � SuSi� � SuSi���B SuSi � °i��O�k � SuS � � � � � SuSi� � SuSi��� .
Corollary .. Let A be a finite structure and φ�x , y� >MSO some formula that
defines a relation of finite outdegree on A

�n . ¿e k-neighbourhood

Nk�u� �� � v > A�n S d�u, v� B k �

of an element u > A�n is bounded bySNk�u�S B °n�O�k � SuS � � � � � SuSn�� .
Proof. If d�u, v� B k then we know by the preceding corollary thatSvSi B SuSi � °i��O�k � SuS � � � � � SuSi��� .
It therefore follows from Lemma . that there are less thanSAS�SuS�O�k����SuSn�°n��O�k�SuS�����SuSn����B SAS�SuS�����SuSn�°n��O�k�SuS�����SuSn����nB SAS°n��O�k�SuS�����SuSn��SuSn��nB SAS°n��O�k�SuS�����SuSn��SuSn��� °n�O�k � SuS � � � � � SuSn��

such words v.





Corollary .. Let A be a finite structure φ�x , y� > MSO, and u > A�n . If the
φ-outdegree of u in A

�n is finite then it is bounded by°n�O�SuS � � � � � SuSn�� .
Example. Let

Tk �� �n i > ω� S n � ω, i � °k�n� �

and let E b Tk � Tk be the immediate successor relation.¿e tree �Tk , E� is not
contained in the k-th level of the Caucal hierarchy since, if wn > A�k encodes
the element n > Tk thenSwn Si B °i��O�n��

and the outdegree of wn is bounded by °k��O�n��.
Similarly, if we define Tω �� �n i > ω� S i � °n�n� � then �Tω , E� is not

contained in any level of the hierarchy.

 S  

A er having studied the degree of vertices in a graph of the Caucal hierarchy we
now turn to the investigation of paths in such graphs. For the remainder of the ar-
ticle we fix a pushdown automatonA of level n. Let us introduce some additional
notation. If r is a run and x > dom�r� then the operation at x is the operation op
such that πr�σx� � op�πr�x��. We call pop and pusha a level  operation and,
for k A , popk and clonek a level k operation. A push��-operation is an operation
of the form pusha and, for k A , we call clonek a push�k�-operation.
We start by showing how to replace in a given run the bottom part of all stacks

by some other stack content such that the resulting sequence of configurations
still forms a run. To do so we define a variant of the prefix relation ξ Tk ζ saying
that some stack content ξ is contained in a larger stack ζ . In the constructions of
the following sections we will need to also consider operations and relations on
just the bottom levels of a stack. ¿erefore, we have to define all notions depend-
ing on a parameter k.

Definition .. For words ξ, η > Γ�n , we define the prefix relation ξ Tk η by
induction on n.



If n � k, in particular if n � , then ξ Tk η always holds. For n C k, suppose
that ξ � x�xr and η � y�ys where x i , y i > Γ��n��. We define ξ Tk η iff

r B s , x i � y i , for i � r , and xr Tk y i , for r B i B s .
For notational convenience, if r is a run and x , y > dom�r�, we define

x Tk y : iff πr�x� Tk πr�y� .
¿e following easy observations will frequently be used in the proofs below.

Lemma .. If we have ξn � � � ξ Tk ξnη � ζn� � � � ζ and η x ε then
ξn � � � ξ Tk ξnη.

Proof. Suppose that η � y . . . ym . ¿en

ξn � � � ξ Tk ξnη � ζn� � � � ζ
implies ξn� � � � ξ Tk y i , for all i B m. Hence,

ξn � � � ξ Tk ξn y . . . ym� � ym � ξnη .
Lemma .. If ξ, η, ζ > Γ�n are words such that

ξ Tk η Tk� ζ , ξ Tk ζ , and �ξ�k � �η�k
then we have η Tk ζ.

Proof. We prove the claim by induction on n � k. If k � n then we have �η�n ��ξ�n j �ζ�n which implies η Tn ζ . Suppose that k � n and let
ξ � x�xr , η � y�ys , ζ � z�zt , for x i , y i , z i > Γ��n��.

Let s B i B t. η Tk� ζ implies that
y�ys� � z�zs� and ys Tk� z i .

Since xr Tk ys , xr Tk z i , and �xr�k � �ξ�k � �η�k � �ys�k we can apply the
induction hypothesis and it follows that ys Tk z i , for all s B i B t. Hence, we have
η Tk z.

If ξ Tk η then we can replace ξ by some other value ζ without destroying the
structure of the stack.





Definition .. Let ξ, η, ζ > Γ�n where
ξ � x�xr , η � y�ys , ζ � z�zt , for x i , y i , z i > Γ��n��.

If ξ Tk η we define, by induction on n, the substitution

η�ξ~ζ�k �� ¢¨¨�¨¨¤η if k A n ,
z�zt� yr�xr~zt�k�ys�xr~zt�k if k B n .

We extend this operation to configurations �η, q� > Γ�n �Q by setting�η, q��ξ~ζ�k �� �η�ξ~ζ�k , q� .
¿e above definitions of Tk and η�ξ~ζ�k were chosen to be compatible with

the pushdown operations as stated in the following important lemma.

Lemma .. Let op > �pushb , clone j , pop j� be a pushdown operation,  B k B n,
and let ξ, η, ζ > Γ�n be words. If

ξ Tk η and S�op�η��i S C S�ξ�i S , for all i C k ,
then we have

ξ Tk op�η� and op�η�ξ~ζ�k� � �op�η���ξ~ζ�k .
Proof. We prove the claims by induction on n. Clearly, we only need to consider
the case that k B n. Let

ξ � x�xr , η � y�ys , ζ � z�zt , for x i , y i , z i > Γ��n��.
() First we consider the case that op � pushb . For n � k � , we have

pushb�η�ξ~ζ�� � pushb�z�zt� yr�ys�� z�zt� yr�ysb� �y�ysb��ξ~ζ�� �pushb�η���ξ~ζ� ,



and, for n A ,
pushb�η�ξ~ζ�k�� pushb�z�zt� yr�xr~zt�k�ys�xr~zt�k�� z�zt� yr�xr~zt�k�ys��xr~zt�k�pushb�ys�xr~zt�k��� z�zt� yr�xr~zt�k�ys��xr~zt�k�pushb�ys���xr~zt�k� �y�ys�pushb�ys���ξ~ζ�k� �pushb�η���ξ~ζ�k .

() Suppose that op � clone j. For n � j, we have

clone j�η�ξ~ζ�k� � clone j�z�zt� yr�xr~zt�k�ys�xr~zt�k�� z�zt� yr�xr~zt�k�ys�xr~zt�k ys�xr~zt�k� �y�ys ys��ξ~ζ�k� �clone j�η���ξ~ζ�k ,
and, for n A j,

clone j�η�ξ~ζ�k�� clone j�z�zt� yr�xr~zt�k�ys�xr~zt�k�� z�zt� yr�xr~zt�k�ys��xr~zt�k�clone j�ys�xr~zt�k��� z�zt� yr�xr~zt�k�ys��xr~zt�k�clone j�ys���xr~zt�k� �y�ys�clone j�ys���ξ~ζ�k� �clone j�η���ξ~ζ�k .
() Finally, consider the case that op � pop j. Since

r � S�ξ�n S B S�popn�η��n S � s �  ,
we have, for n � j,

popn�η�ξ~ζ�k� � popn�z�zt� yr�xr~zt�k�ys��xr~zt�k ys�xr~zt�k�� z�zt� yr�xr~zt�k�ys��xr~zt�k� �y�ys���ξ~ζ�k� �popn�η���ξ~ζ�k ,




and, for n A j,

pop j�η�ξ~ζ�k� � pop j�z�zt� yr�xr~zt�k�ys�xr~zt�k�� z�zt� yr�xr~zt�k�ys��xr~zt�k�pop j�ys�xr~zt�k��� z�zt� yr�xr~zt�k�ys��xr~zt�k�pop j�ys���xr~zt�k� �y�ys�pop j�ys���ξ~ζ�k� �pop j�η���ξ~ζ�k .
() In all cases we have ξ Tk op�η� since �op�η���ξ~ζ�k is defined.
By induction, it follows that each transition of a run can be li ed from η

to η�ξ~ζ�k as long as the word ξ is still contained in η.
Corollary .. Let ξ, ζ , η, η� > Γ�n be words such that S�η��i S C S�ξ�i S, for all i C k.
¿en

ξ Tk η and �η, q� Øa �η�, q��

implies

ξ Tk η

� and �η�ξ~ζ�k , q� Øa �η��ξ~ζ�k , q�� .
Proof. Let δ � �q, c, a, q�, op� > ∆ be the transition witnessing �η, q� Øa �η�, q��.
By definition, we have �η�ξ~ζ�k� � �η�. Hence

top�η�ξ~ζ�k , q� � top�η, q� � �a, q�

and we can apply δ to �η�ξ~ζ�k , q�. ¿e resulting configuration �µ, q�� has the
stack contents

µ � op�η�ξ~ζ�k� � �op�η���ξ~ζ�k � η��ξ~ζ�k .
¿e relation ξ Tk η� � op�η� follows immediately from the preceding lemma.

In particular, if we have a run such that the stack content ξ of the first config-
uration is never touched then we can replace ξ by an arbitrary other word ζ and
we obtain again a valid run.



Lemma .. Let r be a run and x > dom�r� its first vertex. Suppose that
ξ �� πr�x� Tk πr�y� , for all y > dom�r� .

If ζ > Γ�n is an arbitrary word then the function r� defined by
r��y� �� r�y��ξ~ζ�k , for y > dom�r� ,

forms a valid run.

Proof. We can use Corollary . to prove, by induction on j, that
ξ Tk πr�y� and r�y��ξ~ζ�k Ø r�σy��ξ~ζ�k .

 W 

In this section we introduce the weak domination order Z�k which will be our
main tool for decomposing runs.

Definition .. (a) For ξ, ζ > Γ�n and  B k B n, we say that ξ weakly k-
dominates ζ , written ξ Zk ζ , if there exists a sequence POP of pop-operations
such that

popk�ξ� � popk�POP�ζ�� .
(b) If r is a run and x, y > dom�r� then we define

x Zk y : iff πr�x� Zk πr�y� ,
and x Z�k y : iff x j y and x Zk z for all x j z j y .
¿e greatest lower Z�k -bound of x and y will be denoted by x Ak y.
(c) Let r be a run and x > dom�r�. Byωk�x�we denote the j-minimal element

y > dom�r� such that x j y and x Ò�k y. Note that ωk�x�might be undefined.
Lemma .. �dom�r�, Z�k� is a forest.
Remark. Note that the original ordering j of a run r coincides with the ordering
we obtain when traversing the forest �dom�r�, Z�k� in “prefix ordering” (which





is not related to the prefix order j). ¿is is the same as the lexicographic order-
ing Blex of �dom�r�, Z�k� which in this case is defined by

x Blex y iff x Z�k y or u h v where u and v are the immediateZ�k -successors of x Ak y with u Z�k x and v Z�k y .
In particular, if x Z�k y and x Ò�k z then z h x j y or x j y h z.
Example. Consider the run

ε � ε � a Ø ε � ε � ab Ø ε � ab � ab Ø ε � ab � a Ø �ab � a� � ab � aØ �ab � a� � ε � ab Ø �ab � a� � ε � a Ø ε � ab � a Ø ε � ε � abØ ε � ε � a
where we have le out the states for simplicity. ¿e weak domination orderingsZ� , Z� and Z� are shown in Figure .
Lemma .. Let ξ, η > Γ�n . If ξ Tk η then ξ Zk η.

Proof. Let ξ � x�xr and η � y�ys , for x i , y i > Γ��n��. We prove the claim by
induction on n. If n � k then

popk�ξ� � x�xr� � y�yr� � �popk�s�r��η� .
For n A k, we have, by definition of Tk ,

ξ � x�xr Tk y�yr � �popn�s�r�η� .
By induction hypothesis, there exists a sequence POPof pop-operations such that

popk�xr� � popk�POP�yr�� .
It follows that

popk�ξ� � �popk X POP X pops�rn ��η� .
In the following sequence of lemmas we relate the structure of the weak dom-

inance order to the stack contents of the underlying run. First, we consider j-
successors that are not Z�k -successors.
Lemma .. Let r be a run and x, y > dom�r� vertices such that x Zk y and
x Òk σy. ¿en πr�σy� � poplπr�x�, for some l C k.



Z� : ε � ε � a
ε � ε � ab
ε � ab � ab
ε � ab � a�ab � a� � ab � a�ab � a� � ε � ab�ab � a� � ε � a

ε � ab � a
ε � ε � ab
ε � ε � a

Z� : ε � ε � a
ε � ε � ab

ε � ab � ab ε � ε � ab
ε � ab � a ε � ε � a�ab � a� � ab � a�ab � a� � ε � abε � ab � a

�ab � a� � ε � a
Z� : ε � ε � a

ε � ε � ab ε � ε � a
ε � ab � ab

ε � ab � aε � ε � ab
�ab � a� � ab � a�ab � a� � ε � ab �ab � a� � ε � aε � ab � a

Figure : ¿e weak domination orders Z� , Z� and Z� .





Proof. Let πr�x� � ξn � � � ξ. Since x Zk y we have, for some i C k,
πr�y� � ξn � � � ξ i� � ξ iη i � η i� � � � η ,

where either ξ i � � � ξ Zk ξ iη i , or i � k and ηk � ε. Since x Òk σy there exist
some index l C i C k such that

πr�σy� � poplπr�y� � ξn � � � ξ l � poplπr�x� .
A configuration with several immediate Z�k -successors must perform a clonei-

operation and the stack contents of the successors have a certain format.

Lemma.. Let r be a run, k A , and x > dom�r� a vertex with several immediateZ�k -successors y , . . . , ym , m C . Set ξn � � � ξ � πr�x�.
¿ere exists an index i C k satisfying the following conditions.
(a) ¿ere is a push�i�-operation at x.
(b) ¿ere are indices

 � l�� B k B l�� B � B l�m� B i
and words ζ Z ξ l�� , . . . , ζm Z ξ l�m� such that, for all s � m, we have
πr�ys� � ξn � � � ξ i� � �ξ i � � � ξ� � ξ i� � � � ξ l�s�� � ζs

and πr�ys�� � poplπr�ys�, for some k B l � i.
(c) ys Z�i yt , for all s B t � m, and ys Z�i ym iff πr�ym� x πr�x�.
(d) x Z�l ys , for all s B m and every l B n. Furthermore, y , . . . , ym are imme-

diate Z�l -successors of x, for all l B k.
Proof. (a) If πr�σx� � popiπr�x�, for some i, then x Z�k z implies σx Z�k z.
Hence, x has at most one immediate Z�k -successor. ¿e same is the case for a
push�i�-operation with with i � k.
(b) We proceed by induction on s. For s � , the claim follows from (a) since

y � σx. Suppose that s A  and
πr�ys�� � ξn � � � ξ i� � �ξ i � � � ξ� � ξ i� � � � ξ l�s��� � ζs� ,

where l�s � � B i.


() If πr�σ� ys� � πr�ys�� then x Z�k ys and σ�ys Ò�k ys imply that,
πr�ys� � poplπr�σ�ys� � poplπr�ys�� ,

for some k B l � i. Hence, if l A l�s � � then
πr�ys� � ξn � � � ξ i� � �ξ i � � � ξ� � ξ i� � � � ξ l ,

and, for l B l�s � �, we have
πr�ys� � ξn � � � ξ i� � �ξ i � � � ξ� � ξ i� � � � ξ l�s��� � ζs ,

where ζs �� popl�ζs��.
() If πr�σ�ys� x πr�ys�� we fix the maximal index h such that�πr�σ�ys��h x �πr�ys���h .

We claim that h � i. Suppose otherwise. Since ys� Z�k σ�ys we have
πr�σ�ys� � ξn � � � ξh� � ξhηh � ηh� � � � η

for some words ηh , . . . , η such that

ξh � � � ξ i� � �ξ i � � � ξ� � ξ i� � � � ξ l�s��� � ζs�Z�k ξhηh � ηh� � � � η .
Furthermore, by choice of h we have ηh x ε, and if h � i then

ηh � �ξ i� � � � ξ�η�h ,
for some η�h x ε. Hence,��� ξh � � � ξ i� � �ξ i � � � ξ� � ξ i� � � � ξ l�s��� � ζs� Z�k ξhηh .
Since x Z�k ys and σ�ys Ò�k ys it follows that

πr�ys� � pop jπr�σ� ys� � ξn � � � ξh� � ξhηh � ηh� � � � η j ,

for some k B j B h. But ��� implies
πr�ys�� � ξn � � � ξ i� � �ξ i � � � ξ� � ξ i� � � � ξ l�s��� � ζs�Z�k ξn � � � ξh� � ξhηh � ηh� � � � η j � πr�ys� ,





that is, ys� Z�k ys . Contradiction.
() Consequently, we have h � i. If h A l�s � � then ys� Z�k σ�ys implies

πr�σ�ys� � ξn � � � ξ i� � �ξ i � � � ξ� � ξ i� � � � ξh� �

ξhηh � ηh� � � � η .
Again, by x Z�k ys and σ�ys Ò�k ys it follows that

πr�ys� � poplπr�σ�ys�

for some k B l � i. If l B h then
πr�ys� � ξn � � � ξ i� � �ξ i � � � ξ� � ξ i� � � � ξh� �

ξhηh � ηh� � � � η l
and as above it follows that ys� Z�k ys . Contradiction.¿erefore, l A h and

πr�ys� � ξn � � � ξ i� � �ξ i � � � ξ� � ξ i� � � � ξ l � popl r�ys��

as desired.
It remains to consider the case that h B l�s � �. Let ζs � µ l�s�� � � � µ . Since

ys� Z�k σ�ys we have
πr�σ�ys� � ξn � � � ξ i� � �ξ i � � � ξ� � ξ i� � � � ξ l�s��� �

µ l�s�� � � � µh� � µhηh � ηh� � � � η ,
As above, there is some h � l B i such that πr�ys� � poplπr�σ�ys� which
implies

πr�ys� � ξn � � � ξ i� � �ξ i � � � ξ� � ξ i� � � � ξ l�s��� � µ l�s�� � � � µ l� poplπr�ys�� .
() Finally, if s � t then ys Ò�k yt implies that l�s� B l�t� and l�t� C k.
(c) By induction on t, we have ys Z�i yt� Z�k σ�yt which implies ys Z�i σ�yt .

By (b), we also have ys Zi yt . Together it follows that ys Z�i yt . If πr�ym� x πr�x�
then x Z�k ym implies

πr�ym� � ξn � � � ξ i� � �ξ i � � � ξ� � η i� � � � η ,
and the claim follows as above.
(d) By (a), we have x Z�l ys , for all s B m and every l B n. Furthermore, if there

were some element x X�l z X�l ys , for l B k, then this would imply x X�k z X�k ys
which is impossible.



Finally, we collect some basic facts about the function ωk .

Lemma .. Let r be a run, x > dom�r�, and y �� ωk�x�. ¿e element x Ak y is
the immediate Z�k -predecessor of y and

πr�y� � poplπr�x� for some l C k .
Proof. Suppose that there is some element z such that xAk y X�k z X�k y.¿en x h

z h y and, by choice of y, we have x Z�k z. Hence, x Z�k z Z�k y. A contradiction.
¿e second claim is a special case of Lemma ..

Lemma .. Let r be a run and x > dom�r�. If i � k then
ωk�x� � ω i�x� or ωk�x� � ωk�ω i�x�� .

Proof. Let y �� ω i�x� and z �� ωk�x�. If z h y then x Z�i z which implies x Z�k z.
A contradiction.
Suppose that y h z. By Lemma ., there exist indices l C i and m C k such

that

πr�y� � poplπr�x� and πr�z� � popmπr�x� .
If y h z then we have l � k. Consequently,

πr�z� � popmπr�x� � popmπr�y� ,
and it follows that y Ò�k z. Hence, ωk�y� j z. On the other hand, we have

πr�ωk�y�� � pophπr�y� � pophπr�x� , for some h C k .
¿erefore, we have x Ò�k ωk�y� which implies z j ωk�y�. Together, it follows
that z � ωk�y�.
 S   

Remember that we want to decompose a given run r into parts such that in each
subrun s we can apply a substitution, that is, if x is the first element of dom�s�

we would like to have x Tk y, for all y > dom�s�. ¿erefore, we define a second
domination order by combining the relations Tk and Z�k .





t : ε � ε � a
ε � ε � ab

ε � ab � ab
ε � ab � a�ab � a� � ab � a ε � ab � a

�ab � a� � ε � ab�ab � a� � ε � a ε � ε � ab
ε � ε � a

t : ε � ε � a
ε � ε � ab

ε � ab � ab �ab � a� � ε � ab
ε � ε � ab ε � ab � a�ab � a� � ab � a ε � ab � a �ab � a� � ε � a ε � ε � a

Figure : ¿e strong domination orders t and t .

Definition .. For a run r, elements x , y > dom�r�, and a number  B k B n, we
define the strong domination order tk by

x tk y : iff x Z�k y and x Ti z for all i C k and x Z�i z Z�i y .
¿e greatest lower tk-bound of x and y will be denoted by x Ek y.

Example. Figure  shows the strong domination orderingst and t correspond-
ing to the run whose weak domination order is depicted in Figure .

Let us collect some basic properties of the strong domination order.

Lemma .. Let x tk y. We have x tk σy iff x Zk σy and x Tk σy.

Proof. ��� follows immediately from the definition.�
� Suppose x ìk σy. By definition, we either have x Ò�k σy or there is some
x Z�i z Z�i σy, for i C k, with x Ìi z. In the first case, x Z�k y implies x Òk y.
For the second case, note that, if z X�i σy then z Z�i y, and x ti y implies x Ti z.
Consequently, z � σy and x Ìk σy.



Lemma .. Suppose that x tk� σx and x ìk σx.

(a) ¿ere is a popk-operation at x.

(b) ¿ere is a push�i�-operation at w �� x Ek σx, for some i C k.
(c) If u > dom�r� is some element with u tk x and u ìk σx then there are

words ξn , . . . , ξ and µn , . . . , µk� such that
πr�u� � ξn � � � ξ and πr�σx� � ξnµn � � � ξk�µk� � ξk .

Proof. (a) Since x tk� σx and x ìk σx we have

πr�σx� � popk�πr�x�� .
(b) If the operation at w were a push�i� or a popi with i � k then w tk x , σx

would imply σw tk x , σx and we would have w x x Ek σx. If there were a popi-
operation atw with i C k thenw would have no tk-successor. Consequently, the
operation at w is a push�i� with i C k.
(c) Let πr�u� � ξn � � � ξ. u tk x implies u Tk x. Hence, there are words

µn � � � µ such that
πr�x� � ξnµn � � � ξkµk � µk� � � � µ ,

and πr�σx� � popkπr�x� � ξnµn � � � ξkµk .
We claim that µk � ε. Suppose otherwise. ¿en u Tk σx and it follows that
u Ò�k σx. Since u Z�k x this implies u Òk σx. Consequently, µ i � ε, for all k B i B n.
Contradiction.

We will study decompositions of a run into parts of the following form.

Definition .. For a run r and a vertex x > dom�r� we define
Dk�x� �� � y > dom�r� S x tk y � ,
Ek�x� �� � y > dom�r� S x Z�k y � .

Remark. Note that Dk�x� is an initial segment of Ek�x�.
Lemma .. x tk y iff Dk�y� b Dk�x�.
Proof. �
� By definition, y > Dk�y� b Dk�x� implies x tk y.��� If z > Dk�y� then y tk z. Hence, x tk y tk z and z > Dk�x�.





µ � η � c
µ � η � ca

µ � η � caa µ � η � ca
µ � �η � ca� � ca µ � �η � ca� � c�µ � �η � ca� � c� � �η � ca� � c µ � �η � ca� � c

µ � η � ca

� �

v

x z

σ�y
y

Figure : A hole in D�v� between x and y.

It will turn out that a goodway to construct such a decomposition is by consid-
ering subruns whose domain is of the form Dk�v�. But in doing so we face the
problem that such subruns might contain holes, that is, there might be vertices
x , y > Dk�v�, x h y, such that all vertices x h z h y are not contained in Dk�v�.
In the remainder of this section we study the structure of such a hole.

Definition .. Let r be a run, v > dom�r�, and  B k B n.
(a) If z is the j-maximal element of Ek�v� we define

Ωk�v� �� ���, ρr�z��� 8 � �h, q� T r�z� Ø �pophπr�v�, q�, h C k � .
(b) Dk�v� has a hole at x if x > Dk�v� and σx > Ek�v� � Dk�v�. In this case

we define

H�x� �� � y > dom�r� S z > Ek�v� � Dk�v� for all x h z j y � .
We say that the hole is between x and y if

H�x� � � z S x h z h y � .
If such an element y exists thenwe call the hole properly terminated.¿emaximal
element y such that� z S x h z h y � b H�x�

is the end point of the hole. Note that the end point is contained in H�x� if and
only if the hole is not properly terminated.



(c) An exit point of Dk�v� is a tk-minimal element of Ek�v��Dk�v�. ¿e set
of all exit points of Dk�v� is denoted by Xk�v�.¿e order of an exit point x is the
number k such that

πr�x� � popk�πr�σ��x��� ,
and its type is the triple�k, ρr�x�,Ωk��x��

where k is the order of x.
(d) Suppose that there is a hole in Dk�v� at x with end point y. ¿e principal

sequence z , . . . , zm of this hole and the associated sequence l��, . . . , l�m� of
indices is defined inductively as follows. z �� σx and l�� is the index such
that πr�z� � popl��πr�x�. Suppose that z j and l� j� are already defined. If
z j Ò�l� j�� y then we define z j� �� ω l� j���z j�, and l� j � � is the index such
that πr�z j�� � popl� j��πr�z j�. We continue this construction until we reach a
vertex with z j Z�l� j�� y.
If z j x y then we call the element z j a principal exit point of Dk�v�. Its order is

the number l� j�. By Pk l�v�we denote the set of all principal exit points ofDk�v�

of order l .
(e) Suppose there is a hole at x with principal sequence z , . . . , zm and asso-

ciated sequence of indices l��, . . . , l�m�. Set h �� m �  if the hole is properly
terminated and h �� m, otherwise. ¿e type of the hole is the sequence�l��, ρr�z�,Ω l����z��, . . . , �l�h�, ρr�zh�,Ω l�h���zh�� ,
of the types of z , . . . , zh

Lemma .. Let r be a run, v > dom�r� and suppose that there is a hole in Dk�v�

at x.

H�x� �# �Dk�z� S z > H�x� 9 Xk�v� �

and Ek�z� � Dk�z� <# �Dk�z� S z > Xk�v� � .
Proof. Since the second equation follows from the first onewe only need to prove
the first equation.�b� If y > H�x� then z tk y, for some exit point z. If z ¶ H�x� then we have
z h x h y and z Z�k y, and it follows that z Z�k x. Hence, x > Dk�v� implies
z > Dk�v�. A contradiction.





�� Let y > Dk�z� for some exit point z > H�x�. ¿en z Z�k y and z >

Ek�v� � Dk�v� implies y > Ek�v� � Dk�v�. It remains to show that there is no
element w > Dk�v� with x h w j y. Suppose otherwise. Since z > H�x� we have
z h w j y. Hence, z Z�k y implies z Z�k w. But v Z�k z Z�k w and v tk w implies
v tk z. A contradiction.

¿e following lemma investigates the structure of a hole and it clarifies the role
of the principal sequence.

Lemma .. Let r be a run, v > dom�r�,  B k B n. Suppose that there is a
hole in Dk�v� at x with end point y, let z , . . . , zm be its principal sequence, and
l��, . . . , l�m� the sequence of indices such that

πr�z j� � popl� j�πr�z j�� .
Suppose that πr�v� � ξn � � � ξ and πr�x� � ξnηn � � � ξkηk � ηk� � � � η .
(a) If z j x y then z j > Ek�v� � Dk�v�.
(b) k B l�� � � � l�m�, in particular m � n.
(c) If u j is the immediate Z�k -predecessor of z j then u j > Dk�v�.
(d) We have

πr�z j� � popl� j�πr�x� � ξnηn � � � ξ l� j��η l� j�� � ξ l� j�η l� j� .
Furthermore, if z j x y then η l� j� � ε.

(e) If the hole is properly terminated then zm � y.
Proof. (a) x h z j h y implies, by definition of y, that z j > H�x� b Ek�v��Dk�v�.
(b) Since v Tk x and v Ìk σx we have, by Lemma . (a),

πr�z� � πr�σx� � popl��πr�x� with l�� C k .
Furthermore, Lemma . implies that l� j � � C l� j� � , for j � m.
(c) We claim that v Z�k u j� Z�k u j, for all j � m. ¿en the result follows by

induction on j since v Z�k u Z�k x > Dk�v� implies u > Dk�v� and v Z�k u j� Z�k
u j > Dk�v� implies u j� > Dk�v�.
Note that v j x h z j� and v Z�k z j� implies v X�k z j� and, hence, v Z�k u j�.

¿erefore, we only need to prove that u j� Z�k u j.



By Lemma ., the immediate Z�l� j��-predecessor of z j� is
w j� �� z j Al� j�� z j� .

Asw j� has at least two immediate Z�l� j��-successors it follows by Lemma . (d)
that z j� is an immediate Z�l -successor of w j�, for all l B l� j� � . Because k B
l� j� �  we therefore have u j� � w j� � z j Al� j�� z j� . Consequently, we have
u j� h z j h z j� and, together with u j� Z�k z j� , it follows that u j� X�k z j . Hence,
by definition of u j, we have u j� Z�k u j.
(d) First, consider the case that l� j� � . By (b), this implies k �  and j � .

Since z � σx we have πr�z� � popl��πr�x�, by definition of l��. Finally, we
have η � ε, by Lemma . (c).
For l� j� A , we prove the claim by induction on j. For j � , we have, by

definition,

πr�z� � πr�σx� � popl��πr�x� � ξnηn � � � ξ l��η l�� ,
and, for j A , the induction hypothesis implies that

πr�z j� � popl� j�πr�z j��� popl� j��ξnηn � � � ξ l� j��η l� j���� ξnηn � � � ξ l� j�η l� j� .
Suppose that η l� j� x ε. We claim that z j � y.

ξn � � � ξ Tk πr�x� � ξnηn � � � ξkηk � ηk� � � � η
implies, by Lemma ., that

ξn � � � ξ Tk ξnηn � � � ξ l� j�η l� j� � πr�z j� .
Furthermore, by (c), we have u j > Dk�v� for the immediate Z�k -predecessor u j

of z j. Together with z j > Ek�v� it therefore follows that z j > Dk�v�. ¿is implies
z j � y.
(e) Suppose that zm x y.We define a sequencew , . . . ,ws of vertices as follows.

Set w �� zm . For j A , fix the maximal index h such that w j� Ò�h y and let
w j �� ωh�w j��. ¿e construction stops when we reach a vertex ws Z�k y. Since
the hole is properly terminated we have y > Dk�v�. Hence, v Z�k ws Z�k y implies
ws > Dk�v� and it follows that ws � y.





Let l �� l�m�. We prove by induction on j that

πr�w j� � ξnηn � � � ξ l�η l� � µ j , for some µ j Z ξ l with µ j x ε .
For j � , we have πr�w� � πr�zm� and µ � ξ l as desired. By Lemma .,

for every j A , there is some index h such that
πr�w j� � pophπr�w j�� .

If h A l then
πr�w j� � poph�ξnηn � � � ξ l�η l� � µ j�� � ξnηn � � � ξhηh ,

which implies zm Ò�h w j. Hence, zm Ò�l� w j and, therefore, zm Ò�l�m�� y. Con-
tradiction. ¿us, we have h B l and

πr�w j� � poph�ξnηn � � � ξ l�η l� � µ j��� ξnηn � � � ξ l�η l� � µ j

with µ j � poph�µ j��.
Since µs Z ξ l implies ξ l � � � ξ Ìk µs , it follows that

ξn � � � ξ Ìk ξnηn � � � ξ l�η l� � µs � πr�y�

in contradiction to y > Dk�v�.
Lemma .. Every principal exit point is an exit point.

Proof. Let z > Pk l�v�. Clearly, z > Ek�v� � Dk�v�. Suppose there is some y >

Ek�v��Dk�v�with y rk z. By Lemma . (c), y X�k z implies y > Dk�v�. Contra-
diction.

 E 

In order to perform the pumping construction in the next section we need to
find a pair of vertices u r v with certain properties. As an intermediate step to
prove the existence of such pairs we show in the current section that, if the run
is long enough then we can find arbitrary long chains u r � r um .
In order to prove the existence of long chains u r � r um it is sufficient to

bound the branching factor of the forest �dom�r�, t�. To do so we employ the
following device.



Definition .. Let r be a run. An expansion sequence of r is a sequence of in-
jections tk � � � tn between forests where tn �� r and, for i � n, we have
t i �� �C , ti�� where C b dom�t i�� is a maximal chain in t i� .
We want to prove that each forest in an expansion sequence is binary. ¿e

following lemmas collect basic properties about the vertices in such a forest.

Lemma .. Let tk � � � �� tn be an expansion sequence of r and let x > dom�tk�.
If y is an immediate successor of x with �πtk�y��k� � �πtk�x��k� then there exist
no immediate successors z of x with y h z.
Proof. Denote the first embedding by ι � tk � tk� . We show that, for all z >

dom�tk� with x tk� z, we have y tk� z. ¿e proof proceeds by induction on
the number of elements w such that ι y B w B ιz.
Since

x Tk� y Tk� z , x Tk� z , and �πtk�x��k� � �πtk�y��k� ,
it follows by Lemma . that y Tk� z. Consequently, y Zk� z and, by induction
hypothesis, we have y Z�k� z.
Let w be some element such that y Z�k� w Z�k� z. We have to show that

y Tk� w. Since x Z�k� w Z�k� z and x tk� z we have x Tk� w. Similarly,
y Z�k� w Z�k� z implies y Tk� w. Since �πtk�x��k� � �πtk�y��k� we can
again apply Lemma . to infer that y Tk� w. Together with y tk� z it therefore
follows that y tk� z.
Lemma .. Let tk � � � � � tn be an expansion sequence of r. Denote the embed-
ding tk � tn by ι and let x > dom�tk�.
(a) If the operation at x is a level i operation with i B k and x has an immediate

successor y then ι y � σιx. In particular, y is the only immediate successor
of x.

(b) If there is a popi-operation at x with i A k then x is a leaf.
Proof. (a) follows from Lemma . by induction on k, and (b) follows immedi-
ately from the definition.

Lemma .. Let tk � � � �� tn be an expansion sequence of r and x > dom�tk� a
vertex with several immediate successors y , . . . , ym�, m C .
(a) ¿e operation at x is a push�k � �-operation.





(b) ¿ere are words ξn , . . . , ξ and µn , . . . , µk� such that
πtk�x� � ξn � � � ξ ,
πtk�y� � ¢¨¨�¨¨¤clonek��πtk�x�� if k A  ,

pusha�πtk�x�� if k �  ,
πtk�y� � ξnµn � � � ξk�µk� � ξk� � � � ξ .

(c) x has exactly two immediate successors.

Proof. We prove the claims by induction on k. Denote the embedding tk � t i
by ι i and set C �� rng�ιk��.
(a) Lemma . (a) and (b) imply that there is a push�i�-operation at x with

i A k. Suppose that i A k� . Let z be the element such that ι i�z is the immediate
successor of ι i�x. By construction of tk , z is the first immediate successor of x. By
induction hypothesis we have �πtk�z��k� � �πtk�x��k� . ¿erefore, it follows
from Lemma . that z is also the last immediate successor of x. Hence, x has
only one immediate successor. Contradiction.
(b) By Lemma . (a), we know that ιn y � σιnx. Hence, (a) implies that

πtk�y� � ¢¨¨�¨¨¤clonek��πtk�x�� if k A  ,
pusha�πtk�x�� if k �  .

By construction of tk , ιk� y is the minimal element of C � �ιk�x� such that
y ìk� y .

Let z be the element such that ιk�z is the immediate predecessor of ιk� y in C.
Since ιk�z is not a leaf of tk� , Lemma . (b) implies that the operation at z is
not a popi with i A k � . Since

y tk� z ,
the operation at z must therefore be a popk� and, by Lemma . (a), we have
ιn y � σιnz. Furthermore, it follows that there are words µn , . . . , µ such that

πtk�z� � ξnµn � � � ξk�µk� � ξk��ξk � � � ξ�µk� � µk � � � µ .
Consequently, y ìk� y implies that µk� � ε and

πtk�y� � popk��πtk�z�� � ξnµn � � � ξk�µk� � ξk� � � � ξ .


(c) By (b) and Lemma . it follows that y is the last immediate successor
of x.

Corollary .. Every forest in an expansion sequence is binary.

Using this corollary we can prove that every sufficiently long run contains a
sequence u t � t um .
Lemma .. Let t be a binary tree with Sdom�t�S C m vertices. ¿en there exists
a chain C b dom�t� of size SCS A m.

Proof. If every chain is of size at most m then dom�t� b �, ��m which impliesSdom�t�S B Q

i�m i � m �  .
Contradiction.

We only consider the case of runs starting at the initial configuration. ¿is
ensures that the expansion sequence constructed below consists of trees instead
of forests. ¿e restriction will be li ed below.

Lemma .. Let r be a run that starts at the initial configuration. For every set
M b dom�r� of size SMS C °n�m� there exists a sequence u t � t um of
vertices of length strictly greater than m such that,

M 9 �D�u i� � D�u i��� x g , for all i � m .

Proof. We construct an expansion sequence t � � � tn and two sequences
C , . . . ,Cn andM , . . . ,Mn of sets as follows.We start with tn �� r andMn �� M.
To construct tk suppose that we have already defined tk� � �dom�tk��, B� and
a subset Mk� b dom�tk��. Choose a chain C�

k� b Mk� of maximal length in
the tree �Mk� , B�, and let Ck� b dom�tk�� be a maximal chain in tk� with
C�
k� b Ck� . We set

tk �� �Ck� , tk�� and Mk �� Ck� 9 �u , v S u, v > Mk� � ,
where , denotes the greatest lower bound in tk . Finally, we also choose some
chain C�

 b M of maximal length and a corresponding maximal chain C b

dom�t� with C�

 b C .
Let x be the first element of dom�r�. Since x is initial we have πr�x� � ε �� � ε � a, for some letter a, which implies, by Corollary ., that x T y, for all





y > dom�r�. ¿erefore, x is the unique minimal element of each tk and all tk are
binary trees. Since the setsMk are closed under greatest lower bounds it follows
that the subforests induced by them also form binary trees. Consequently, we
can apply the preceding lemma. By induction on k, it follows that SC�

k S A °k�m�,
for k � n. Let u h � h um be an enumeration of (a subset of) C�

 . ¿e sequence
ιnu , . . . , ιnum has the desired property.

By an automaton construction we can generalise this result to arbitrary runs.
Unfortunately, this introduces a dependence on the size of the stack contents of
the first configuration.

Definition .. For ξ � x . . . xm > Γ�n we define, by induction on n,YξY �� ¢¨¨�¨¨¤SξS if n �  ,PiBmYx iY if n A  .
Corollary .. Let r be a runwith first elementw and set k �� Yπr�w�Y. For every
set M b dom�r� of size SMS C °n�m � k� there exists a sequence u t � t um
of vertices of length strictly greater than m such that,

M 9 �D�u i� � D�u i��� x g , for all i � m .

Proof. Let ξ �� πr�w�. ¿ere exists a sequence op of at most k �� YξY stack
operations such that ξ �� op�ε � � � ε � a�. We construct an automaton B

by modifying the given automatonA such that, starting at the initial configura-
tion B executes the operations op until it reaches the configuration r�w�. ¿en
it continues in exactly the same way as A would. Let r� � sr be the run of B

starting at the initial configuration. ¿e preceding lemma implies that there ex-
ists a sequence u t � t um�k with the desired properties in dom�r��. SinceSdom�s�S � k it follows that u i > dom�r�, for i C k. Hence, uk t � t um�k is
the desired sequence.

 A  

Using the structure theory developed in Sections  to  we prove a pumping
lemma for higher-order pushdown automata. For the construction below we
need to find two verticesu r v such that the same types of holes appear inD�u�
and in D�v�. Such vertices u, v will be called a pumping pair. ¿e formal defini-
tion is based on the equivalence relation �km .



Definition .. (a) Let ξ � ξn � � � ξk . We define the set

χ̃k�ξ� b Γ�n ��� Γ��k�� � Q � ��, k � , . . . , n� �Q
by the following conditions. For l > �k � , . . . , n�, we have�µn , . . . , µk� , p, l , q� > χ̃k�ξ� ,
iff there is a run r and an element x > dom�r� such that

r�x� � �ξnµn � � � ξk�µk� � ξk , p� ,
and r�ωk��x�� � �ξnµn � � � ξ l µ l , q� ,

and we have�µn , . . . , µk� , p, �, q� > χ̃k�ξ�
iff there is a run r and elements x , y > dom�r� with y > Ek��x� such that

r�x� � �ξnµn � � � ξk�µk� � ξk , p� , and ρr�y� � q .
(b) For ξ, ζ > Γ�n and k,m B n, we define an equivalence relation �km by

ξ �km ζ : iff for all µ i > Γ�i , p, q > Q, and l > ��, k � , . . . , n�,�µξ
n , . . . , µ

ξ
k� , p, l , q� > χ̃k�popk�ξ��� �µζn , . . . , µζk� , p, l , q� > χ̃k�popk�ζ�� ,

where, for λ � λn � � � λ, we set
µλi �� ¢¨¨�¨¨¤ε if µ i � ε ,

µ i�ε � � � ε � �µ i�~ε � λ i� � � � λ�m otherwise .

(c) Let r be a run. Two vertices u, v > dom�r� form a pumping pair if

u r v , ρr�u� � ρr�v� , and πr�u� �k πr�v� , for all k B n .
Given a pumping pair u r v we can perform the following pumping construc-

tion.





Lemma .. Let r be a run with a pumping pair u r v and suppose
πr�u� � ξ � ξn � � � ξ and πr�v� � ζ � ζn � � � ζ .

¿ere exists a run s whose first configuration is the same as that of r and there are
vertices u�, v� ,w� > dom�s� such that

πs�u�� � ξ , πs�v�� � ζ , πs�w�� � ζ�ξ~ζ� ,
u� r v� form a pumping pair, and SD�v��S � SD�u�S.
Proof. Define

s �� rSdom�r��E�v� , and s �� �rSD�u���ξ~ζ� .
Let u� be the copy of u in dom�s� and denote the copies of u and v in dom�s�

by v� and w�, respectively. For each principal exit x of some hole in dom�s� �

D�u� we construct a run sx of the same type as x. We obtain the desired run s
by inserting s into s and each sx into the corresponding hole of s.
It remains to find sx . If x is of order k then, by Lemma . (d), there are words

µn , . . . , µk� such that
πr�x� � ξnµn � � � ξk�µk� � ξk .

Since ξ �k ζ we can find a run sx of the same type as x such that

πsx�y� � ζn µ̃n � � � ζk� µ̃k� � ζk ,
where y is the first element of dom�sx� and

µ̃ i �� ¢¨¨�¨¨¤ε if µ i � ε ,
µ i�ε � ξ i� � � � ξ~ε � ζ i� � � � ζ� otherwise .

It remains to prove the existence of a pumping pair. We start by showing that
χ̃k�ξ� is closed under �i ,k� .
Lemma .. Let ξ � ξn � � � ξk > Γ�n and µ i , η i > Γ�i , for k � i B n. If

ξnµn � � � ξk�µk� � ξk �i ,k� ξnηn � � � ξk�ηk� � ξk ,
for all k � i B n, then we have�µn , . . . , µk� , p, l , q� > χ̃k�ξ� iff �ηn , . . . , ηk� , p, l , q� > χ̃k�ξ� .



Proof. Let r be a run of minimal length witnessing the fact that�µn , . . . , µk� , p, l , q� > χ̃k�ξ� .
Denote the first and last elements of dom�r� by x and y, respectively. By mini-
mality of r, we have

r�x� � �ξnµn � � � ξk�µk� � ξk , p�
and either

l x � , y � ωk��x� , and r�y� � �ξnµn � � � ξ l µ l , q� ,
or l � � , y > Ek��x� , and ρr�y� � q .
We construct a witness s for�ηn , . . . , ηk� , p, l , q� > χ̃k�ξ�
as follows. Let

t �� �rSDk��x���ξnµn � � � ξk�µk� � ξk~ξnηn � � � ξk�ηk� � ξk�k� .
If l x � then we add the element y as last element to t by setting

t�y� �� �ξnηn � � � ξ lη l , q� .
Clearly, t is a partial run of the right type with

t�x� � �ξnηn � � � ξk�ηk� � ξk , p� .
If t does not contain holes then we have already found the desired witness.
Suppose that there is a hole in dom�t� � Dk��x� and let w be one of its

principal exits. If w is of order i then

πr�w� � ξnµnβn � � � ξ i�µ i�β i� � ξ iµ i ,
for some words βn , . . . , β i� . We construct a run tw of the same type asw that be
inserted into t to fill the hole. Since

ξnµn � � � ξk�µk� � ξk �i ,k� ξnηn � � � ξk�ηk� � ξk




there exists a run tw with first and last element u and v, respectively, such that

πtw�u� � ξnηn β̃n � � � ξ i�η i� β̃ i� � ξ iη i ,
where

β̃ j �� ¢¨¨¨¨�¨¨¨¨¤

ε if β j � ε ,
β j�ε � ξ j�µ j� � � � ξk�µk� � ξk~ε � ξ j�η j� � � � ξk�ηk� � ξk�k�

otherwise .

Furthermore, if l x � then
πtw�v� � ξnηn β̃n � � � ξhηh β̃h ,

and, otherwise, we have ρtw�v� � ρr�v�.
We can use the preceding result to compute a bound on the index of �km .

Lemma .. ¿e index of �km is bounded bySΓ�n~�km S B °n�k��n�k SQS�n � k � �!� .
Proof. Let s �� SQS. We prove the claim by induction on k. For k � n, we have

χ̃n�ξ� b Q � ��� � Q
which implies ξ �nm ζ iff χ̃n�ξ� � χ̃n�ζ�. Hence, there are at most s �nm-
classes.
Suppose that k � n. For λ � λn � � � λk > Γ�n and µ i , η i > Γ�i , we define�µn , . . . , µk�� �λ �ηn , . . . , ηk��

iff λnµn � � � λk�µk� � λk �i ,k� λnηn � � � λk�ηk� � λk , for all i A k .
By Lemma ., �µn , . . . , µk�� �λ �ηn , . . . , ηk�� implies�µn , . . . , µk� , p, l , q� > χ̃k�λ� iff �ηn , . . . , ηk� , p, l , q� > χ̃k�λ� .
By induction hypothesis, there are at most

n�kM

i� °i�i�s i!� B °n�k��n � k�n�k�s�n � k�!�B °n�k�n�k�s�n � k � �!�


�λ-classes. Set�µn , . . . , µk�� � �ηn , . . . , ηk��

iff �µξ
n , . . . , µ

ξ
k�� �popk

�ξ� �ηξn , . . . , ηξk��

and �µζn , . . . , µζk�� �popk

�ζ� �ηζn , . . . , ηζk�� ,
where, as above,

µξ
i �� ¢¨¨�¨¨¤ε if µ i � ε ,

µ i�ε � � � ε � �µ i�~ε � ξ i� � � � ξ�m otherwise .

By Lemma ., we have ξ �km ζ if and only if, for every �-class �µn , . . . , µk��

we have�µξ
n , . . . , µ

ξ
k� , p, l , q� > χ̃k�popk�ξ��

iff �µζn , . . . , µζk� , p, l , q� > χ̃k�popk�ζ�� .
Hence, there are at most

°n�k�n�k� s�n�k��!� �s ��n�k�� B °n�k�� � n�k�s�n � k � �!�� °n�k��n�ks�n � k � �!��km-classes.

¿e existence of a pumping pair immediately follows from the previous lemma
and Corollary ..

Lemma .. Let r be a run with first element w and set k �� Yπr�w�Y. For every
set M b dom�r� of sizeSMS C °n�nn�SQSn! � k�

there exists a pumping pair u r v such that
M 9 �D�u� � D�v�� x g .

Proof. By Corollary ., there exists a sequence u r � r um of length strictly
greater than

m �� °n�nn�SQSn!� C SQS � M

BiBn°n�i��n�i SQS�n � i � �!�





such that

M 9 �D�u i� � D�u i��� x g , for all i � m .

By Lemma ., it therefore follows that there are two indices i � j such that
u i and u j form a pumping pair.

We apply the technical Lemma . to show that, if there exists a run of a certain
length then there are infinitely many different runs.

¿eorem . (Pumping Lemma). LetA be a pushdown automaton of level n and
let r be a run ofA with first element w.
(a) IfSdom�r�S C °n�nn�SQSn! � Yπr�w�Y�

then there exists a sequence r , r , . . . of runs, each starting with w, where r � r
and Sdom�r i�S � Sdom�r i��S , for all i � ω .

(b) Similarly, if r contains at least°n�nn�SQSn! � Yπr�w�Y�

non-ε-transitions then there exists a sequence r , r , . . . of runs, each starting atw,
where r � r and r i� contains more non-ε-transitions than r i .

Proof. (a) Let M �� dom�r�. By Lemma ., there exists a pumping pair u r v
in r. We define a sequence of runs r� , r� , . . . inductively. For each run r i , we will
also choose a pumping pair u i r v i . We start with r� �� r, u �� u, and v �� v.
Suppose that r�i is already defined. By Lemma ., we can construct a new run r�i�
that contains elements u i� and v i� such that u i� r v i� forms a pumping pair
and SD�v i��S � SD�u i�S A SD�v i�S. To obtain the desired sequence r , r , . . .
we delete from r� , r� , . . . all runs r�i such that Sdom�r�l�S C Sdom�r�i�S, for some
l � i. ¿e condition SD�v i�S � SD�v i��S ensures that the resulting sequence is
still infinite.
(b) Let M b dom�r� be the set of all configurations with an outgoing non-ε-

transition. If we perform the same construction as in the proof of (a) we obtain
a sequence of runs r i , i � ω, such that the number of non-ε-transitions in each
run is strictly increasing.



Corollary .. LetA be a pushdown automaton of level n. IfA accepts a word of
length at least°n�nn�SQSn!�

then the language recognised byA is infinite.

One immediate consequence of this theorem is the fact that finiteness is decid-
able for languages recognised by a higher-order pushdown automaton.

Corollary .. ¿e problem whether the language recognised by a given higher-
order pushdown automaton is finite is decidable.

We apply the theorem to prove that a given graph does not belong to a certain
level of the Caucal hierarchy.

Example. Let Tk �� �Tk , j� where Tk �� �il S i � ω, l � °k�i� �. We claim
that Tn ¶ Cn . For a contradiction, suppose otherwise. By ¿eorem ., there
exists a pushdown automatonA of level n whose configuration graph becomes
isomorphic to Tn when we contract all ε-transitions. Furthermore, we can use
Lemma . to find a finite structure A with universe Q < Γ such that the config-
uration graph ofA is definable in A

�n .
Let wk > A�n be the word encoding the element k > Tn . In the same way as

in the example on page  it follows thatSwk Si B °i��O�k�� .
Hence, YwkY B °n��O�k��.¿e unique path starting atwk has length°n�k��.
¿us, the run of A corresponding to this path has at least that much non-ε-
transitions. Since°n�nn�SQSn! � YwkY� B °n�nn�SQSn! � °n��O�k���B °n��O�k��B °n�k� � 
it follows from part (b) of the theorem that, for large enough k, there are runs
starting at wk with arbitrarily many non-ε-transitions. But this implies that Tn

contains arbitrarily long paths starting at wk . Contradiction.





 C

In the present article we have started to develop a structure theory for structures
in the Caucal hierarchy and for configuration graphs of higher-order pushdown
automata. Our main technical results were ¿eorem . bounding the outde-
gree of definable relations and ¿eorem . containing a pumping lemma for
higher-order pushdown automata. We have used these results to prove that cer-
tain graphs are not contained in a given level of the Caucal hierarchy. ¿ere are
several directions in which this work can be continued.
(a) ¿eorem . makes no statements about the length of the runs r i . We con-

jecture that the optimal bound is Sdom�r i�S B °n��O�i��. At least it should be
possible to prove the weaker statement that Sdom�r i��S B Sdom�r i�S. Note that a
lower bound of °n��i� is provided by the languages Ln defined in Section .
(b) A er the proof of Sénizergues [] that language equivalence is decidable

for deterministic pushdown automata there have been attempts to extend this
result to higher-order automata. ¿e proof is based on a rewriting system for
configurations. For the higher-order case, one can try to base the rewriting rules
on the substitution operation defined in Section .
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