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ABSTRACT. We investigate the structure of graphs in the Caucal
hierarchy. We provide criteria concerning the degree of vertices or
the length of paths which can be used to show that a given graph
does not belong to a certain level of this hierarchy. Each graph in the
Caucal hierarchy corresponds to the configuration graph of some
higher-order pushdown automaton. The main part of the paper con-
sists of a study of such configuration graphs. We provide tools to de-
compose and reassemble their runs, and we prove a pumping lemma
for higher-order pushdown automata.
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1 INTRODUCTION

The Caucal hierarchy is the class of relational structures which one obtains by
alternated applications of monadic second-order interpretations and the Much-
nik iteration (see [10, 12, 1, 3]) starting with the class of all finite structures. Since
these operations preserve decidability of monadic second-order theories it fol-
lows that every structure in the Caucal hierarchy has a decidable monadic the-
ory. Originally, Caucal [5] defined the hierarchy only for graphs where the above
operations can be replaced by, respectively, inverse rational mappings and unrav-
ellings.

The lowest level of the Caucal hierarchy consists of the class of prefix-recog-
nisable (also called tree-interpretable) structures. Restricted to graphs this is the
class of all graphs that can be obtained from the configuration graph of some
pushdown automaton by contracting each e-transition. Recently, Carayol and
Wohrle [4] have extended this characterisation to the whole hierarchy: A graph
belongs to the n-th level of the Caucal hierarchy if and only if it can be obtained
by contracting e-transitions from the configuration graph of some higher-order
pushdown automaton of level n. This automaton model has been introduced by
Maslov in [9]. It was used by Damm and Goerdt [6] to characterise the so-called
OI-hierarchy which consists of the solutions of higher-order lambda schemes.
Due to the connection with the Muchnik iteration and the Caucal hierarchy this
work has recently received renewed attention in the study of hierarchies of trees
or graphs with decidable monadic theories (see, e.g., [8]).

Naturally, the question arises of which structures are contained in the Cau-
cal hierarchy and at what level they do appear. It is known that each structure
in the hierarchy has a finite partition width (see [2] for definitions and details).
Whereas the first level, the class of prefix-recognisable structures, is rather well
understood, there are few structural results concerning the higher levels of the
Caucal hierarchy.

This is the motivation of the results presented in this article. We study graphs
in the Caucal hierarchy and we try to derive bounds on their degree or on the
length of paths. Much of this work is based on a detailed investigation of con-
figuration graphs of higher-order pushdown automata. We study paths in these
graphs and we provide operations to decompose and reassemble them. Our main
technical result will be a pumping lemma for higher-order pushdown automata.
For indexed grammars (which correspond to pushdown automata of level 2), a
pumping lemma was already proved by Hayashi [7]. The present article owes
much to this paper.

The overview of this article is as follows. In Section 2 we fix notation and give
basic definitions. We introduce higher-order pushdown automata in Section 3.
Section 4 contains our first major result. We derive a bound on the outdegree of
graphs in a given level of the Caucal hierarchy.

Sections 5 to 8 contain an in-depth investigation of configuration graphs of
higher-order pushdown automata. In Section 5 we show how to replace, in all
configurations of a given run, the bottom of the stack by another stack content
without destroying the property of being a run. Usually this substitution opera-
tion can be applied only to parts of a run. Therefore, we introduce in Sections
6 and 7 two partial orders on runs, the so-called weak and strong domination



orders, that will be used to decompose a given run into such parts. Section 8 con-
tains a more detailed investigation of the strong domination order and a proof
that it contains arbitrary long chains. In the Section 9 we apply the tools devel-
oped in the second part of the article to prove a pumping lemma for higher-order
pushdown automata.

2 TREES AND THE CAUCAL HIERARCHY

Besides (directed) graphs & = (V, E) we will also consider relational structures
A = (A, R,, ..., R,) (with finitely many relations). Note that we do not assume
graphs and structures to be finite. In fact, we will mostly consider countably infi-
nite ones.

Definition 2.1. Let X be a set. The prefix ordering < on X* is defined by
x<y :iff y=xzforsomezeZX".
Definition 2.2. An unlabelled tree is a partial order (T,<) where T ¢ w*, <is
the prefix ordering, and T satisfies the following closure properties:
o fueTandv <uthenveT.
¢ IfukeTandi< kthenuieT,fori,k € w.
A A-labelled tree is a function t : T — A where the domain dom(t) := T ¢ w*

forms an unlabelled tree.

To define the Caucal hierarchy we use operations based on monadic second-
order logic (MSO), the extension of first-order logic by set variables and quantifi-
cation over sets.

Definition 2.3. (a) The Muchnik iteration of a structure A = (A, R,,...,R,) is
the structure A* := (A*,suc,cl,R%, ..., R}) where the universe A* consists of
all finite sequence of elements of A and we have

suc:={(w,wa)|weA*, acA},
cdi={waa|weA*, acA},

R} :={(wae,...,wa,,) |weA", aeR;}.
By 2*" we denote the n-fold iteration of 2

A* =9 and Ql*(nﬂ) - (m*n)x-'

(b) An MSO-interpretation is a sequence
Z=(8(x): 9o(%),....0:(x))

of MSO-formulae. It induces a function on structures that we also denote by Z.
This function maps a structure 2 to the structure

Z(A) = (6%, 93, 97)
where y® := {a |2 = y(a) } denotes the relation defined by .

Definition 2.4. The Caucal hierarchy C, € C, € ... is the hierarchy whose n-th
level consists of all structures of the form Z(2A*") where 2 is a finite structure.

Note that the Muchnik iteration of a structure is a tree. To investigate the ex-
pressive power of monadic second-order logic on iterations Walukiewicz [12]
introduced the following kind of tree automaton (see also [1] for an exposition).

Definition 2.5. An MSO-automaton is a tuple A = (Q, 2, 8, gin, 2) where Q is
a finite set of states, X is the input alphabet, gi, is the initial state, 2 : Q - w a
priority function, and § : Q x £ - MSQO is the transition function.

Such an automaton takes as input a structure 2 and a labelling A : A* - 2. A
run of A on 2l and A is a function p : A* — Q such that

* p(()) = gin and
o forall we A*, we have

(2, C,P) E 8(p(w), A(w))
where, for each g € Q, we have

{a} ifw=w'a,

Pyi={aeA|p(wa)=q} and C::{@ ifw=).

A run p is accepting if it satisfies the parity condition (, i.e., on every infinite
path the least priority seen infinitely often is even. We say that A accepts a pair
(2, 1) if there exists an accepting run of A on input 2 and A.

Theorem 2.6 (Walukiewicz [12]). For every MSO-formula ¢(X), we can con-
struct an MSO-automaton A such that

A Ep(P) iff  Aaccepts (A, 1p),
where Ap(w) :={i|weP;}.



3 HIGHER-ORDER PUSHDOWN AUTOMATA

We can also characterise the graphs in the Caucal hierarchy in terms of higher-
order pushdown automata. The stack of a higher-order pushdown automaton of
level n is a list of stacks of level n — 1. If the innermost stacks, i.e., those of level 1,
are words over an alphabet X, then we denote the set of level n stacks by Z*".

Definition 3.1. Let X be an alphabet. We define
sto .- 3 Z+(n+1) - (Z+n)+
¥ . 3 2*(n+1) - (Z+n)*

(Note that we use X*" instead of Z*" in the last definition.)
Each word & € Z*" is of the form & = &, (&, ,-+(&,&,)-+-) where &; € Z*, for
0 < i < n. We can write such words as

En:fn—l:'“:fl:EO)

where (¢) : % x £*(7) & 3+ with £ : a := &a is the right associative operation
that appends a single level i symbol a (i.e., a word of level i — 1) to a word & of
level i.

Given a word &, we denote by (&), for o < i < n, the unique words such that

§= (i (8o
Definition 3.2. A pushdown automaton of level n is a tuple
A: (Q)Z)F)A) qO:Z)F)

where Q is the set of states, X the input alphabet, I the stack alphabet, g, € Q the
initial state, z € I the initial stack element, F C Q the set of accepting states, and

AcQx(Zu{e})xI'xQx0p

the transition relation that consists of tuples (p, a, ¢, g, op) where op is one of
the following operations:

popi(&n i1 80) =& ity
puSha(Eﬂ Bt EO) = fﬂ st Ez : EIEO a,
cloneg (& &) =& i &gt (Ep iy i &) i & it

where §; eI and a e .
Further, we define the projections 7 : I x Q > I and p : """ x Q - Q
and a function top : I'*" x Q - I' x Q by

n(&q):=¢, p(&q):=q, and top(§q):=((£)oq).

A configuration (&, q) of A consists of a stack content & € I'"" and a state
q € Q. We write (§,q) +* ({, p) if A enters configuration ({, p) when reading
the letter a € ¥ U {¢} in configuration (&, q), formally,

(&) =" (Gp) iff (g4, (8o, p,op) € Aand {'=op(8).

A runof Aisa (I'" x Q)-labelled tree r such that (dom(r), <) forms a linear
order and, for every vertex u € dom(r) with immediate <-successor v, we have
r(u) + r(v). We do not require that r starts with the initial configuration (e : - - :
€:2,q,). Instead, we only require that the first configuration of r is reachable,
that is, there exists a sequence OP of stack operations such that the stack contents
of the first configuration is OP(¢ : -+ : & : z). We will denote the successor
function on dom(r) by o.

Example. For every n, there exists an automaton A, of level n + 1 recognising
the language

Lnlz{a:"(k)|k<w},
where 1,,(k) is the function defined by
(k) =k and 2, (k) =22,

Informally the automaton A, starts by guessing the number k and writing an
encoding of 3, (k) onto its stack. Then it enters a loop where in each iteration it
decrements the number stored in the stack and reads one input letter. A,, stops
when the number on the stack becomes o.

How can we encode such huge numbers into a stack of level n + 1? For the
stack alphabet we choose I' = {1, ..., n, a}. The bottom of a stack of level i will
be marked by the level i —1 word

Timeteteiia...ielt()



By induction on n, we define a coding function x,, : w - I'*" based on the binary
encoding of integers.
%, (m) :=1a™
Kpp(m) = +1x,(i0) %, (i1),
where m =2 + .- +2" and iy > -+ > i;.
Instead of presenting the actual transition table of the automaton we specify it
by pseudo-code. We need a predicate zero; (&) that is true if the top-most level i

stack in & is empty, and we need a function dec; (&) that decrements the top-most
level i stack of &. zero; can be defined with the help of the markers 7.

zero; (&) :iff (&), =1i.

The decrementation procedure dec; (€) has to distinguish two cases. If the binary
encoding of the number ends with the digit 1 then we change it to o. Otherwise,
the number ends with a sequence of digits 10---0 that we have to replace by o1---1.

dec, (&) := pop, (£),

dec,4: (&) := if zero, (&) then ( last digitis1 )
return pop,, . ()
else (= last digitis o *)
& :=dec, (&) (* change 10 to 01 %)

while not zero, (£) do

&:= (dec, oclone,,) (&) (* change1oto11 *)
end
return &

end

The automaton A,, works as follows. First, it creates the stack content

n+1:---:1.

Then nondeterministically it performs k push -operations. The stack contents
now is

A1 10" = K00 (3,(K)) .

Finally, it enters a loop where in each iteration it calls dec,, and it reads one input
letter.

Our interest in higher-order pushdown automata stems from the following
result.

Theorem 3.3 (Carayol, Wohrle [4]). A graph & belongs to the n-th level C, of the
Caucal hierarchy if and only if it can be obtained from the configuration graph of
a pushdown automaton of level n by contracting all e-transitions.

The easy direction of this result is based on the following lemma which we will
need in Section 9.

Lemma 3.4. Let A = (Q,2,T,4,qo,2 F) be a pushdown automaton of level n
with configuration graph (C,+). Let A := (A, (P;)aca) be the structure with uni-
verse A := Q U T and unary predicates P, := {a}, for a € A.

There exist monadic second-order formulae ¢ .(x, y), for c € X, such that

A"Eo(E:pniq) HE (&p)-" (n.9),
forallé,n eI and p,q € Q.

4 GRAPHS OF FINITE OUTDEGREE

We start our investigation of the structure of graphs in the Caucal hierarchy by
computing a bound on their outdegree. Note that the universe of a structure
2 € C, in the n-th level of the hierarchy has the form A ¢ I'*", for some finite
set I'. We define the following norm on such sets.

Definition 4.1. Let I' be a finite set. For & = x,---x,_, € I'*" and k < n, we define,
by induction on k,

o ifr=o0,
[€|k == 1 |¢] ifk=n,
max{|x;x|i<r} ifk<mnandr>o.
Lemma 4.2. Let I' be a finite set with at least two elements and let k., ..., k, be

numbers. There are less than |[|%"*» words & € T*" such that |&|; < k;, for all
i<n.

Proof. The claim follows easily by induction on #n. For n = 1, we have
_ R

M= ———<|I
-1

i<k,

k,




words & € I'" with |&| < k,. For n > 1, we can employ the induction hypothesis to
obtain the bound

Z (|1—- k,~--kn_,)i < |1—~ k,~--kn'
i<ky O

If & = (V,E) is a graph in the n-th level of the Caucal hierarchy then, by
definition, there exists a finite structure 2 and two MSO-formulae § and ¢ such
that

V={fear | o(6)},
E={(&n) e A" x A" | A" = g(E,17) ).

Therefore, we will consider a structure of the form *" and an MSO-formula
¢(x, y) with two free first-order variables.

Definition 4.3. Let 2 be a structure and ¢(x, y) € MSO a formula. The ¢-
outdegree of a € A in 2 is the number of elements b € A such that 2 = ¢(a,b).

We obtain the following bound on the @-outdegree.

Theorem 4.4. For every formula ¢(x, y) € MSO and each n < w, there are con-
stants c,, ..., ¢, such that, whenever 2 is a finite structure with at least two ele-
ments and a € A*" an element of finite p-outdegree in A*" then

A" = @(a,b) implies |bl;<L;j(a) foralli<n,
where

Li(a) = |a|; + cifA]R (O Him (@),

Proof. Let A = (Q,R[2],0, qin, Q) be the nondeterministic MSO-automaton
corresponding to ¢. Since 2 is fixed we will simplify notation by saying that .4 ac-
ceptsa tree A : A*" — ©[2] if it accepts the pair (2A*("~1), 1).

W.lo.g. we may assume that the set of states Q = Qg U Q, U Q, U Qq, is
partitioned such that starting in a state g € Q¢ the automaton A accepts only
trees A where the set of occurring labels is exactly C. (If A is not of this form
then we can construct a new automaton with states Q x £[2].) Furthermore, we
assume that there exists a unique state g, € Q, from which A accepts the tree A

with
Ax) = {{1} ifx=¢,

7] otherwise.

Let p be an accepting run of A on the tree A : A*" — P[2]. If p(w) € Q, then
we either have A(w) = {1} and p(wa) € Qg, for all a € A*("~), or we have
A(w) = @ and there is some a € A*("") with p(wa) € Q, and p(wb) € Qg, for
all b # a. For p, q € Q,, we define

Vpq(x, ) = 3CIP(8(p, @) (C,P) AC = {x} AP, = {y}
A N P=9).

seQ (Qgu{q})

It follows that, whenever the automaton is in state p at some vertex wa € A*" with
A(wa) = @ then it can go to state q at the vertex wab if and only if A = 4 (a, b).

Similarly, there exists a formula 94, ,, (%, Yo, 1), for ¢ € Qoy, po € Qo, and
p1 € Qy, such that

A= 94pop, (b0, b,)

ifand only if, whenever the automaton A is in the state g at some vertex wa € A*"
then it can go into the state p, at wab,, and into the state p, at wab,.

Finally, there exists a formula x,(x, ) such that y,(a,b) holds if and only
if there exist a sequence of elements do, ..., d,, € A*("™) and a corresponding
sequence of states p, ..., pm € Q; such that

¢ d,=aandp, = p,

* dy = b, for some k < m,

¢ Pm =g

¢ A= 2V e, Ypoap, (do>2,d1), and
A= Ypip.,. (disdis,), forallo < i < m.

*

Let 7 : A*" - A*("™1) be the projection to the last symbol 7z(wa) := a. Fix
an element u € A*" such that theset V := {v e A*" | A* & o(u,v),v £ u}is
finite. To each v € V we associate the maximal sequence v, ..., v (, such that
UMY =V, <V, <--- <V, = v. By assumption, the set

P:=J{n(vi)|veV,i<m(v)}

is finite. For v € V, we denote the accepting run of A on the tree A(,y¢,1 by p,
and we set p, := p,(v,). Note that

{ae A*(n=) |2 xp, (7(vo),a) } € P

10



is also finite. By induction hypothesis, there are numbers c;, .. ., ¢,—, such that
A& xp, (7(vo),a) implies |a|; < Li(n(vo)),
where

Li(a) :=|al; + ¢;|A| (@) Lin @),

It follows that, for v € V and i < m(v), we have
|n(vi)li <max{L;(n(x)) |x<u} <Li(u).
Finally, note that, for v € V,
n(v;)=mn(v;), fori<lI, implies p(vi) #p(vy),

since, otherwise, the path 7(v;), ..., m(v,_,) can be repeated an arbitrary num-
ber of times and y,, defines an infinite set. It follows that

m(v) <|Qu- ARt
Consequently, setting ¢, := |Q,| we have

|V|n < |u|n tCp |A Lau)-Lama () = Ln(”);

and |v|; <L;j(u), fori<n. O

Corollary 4.5. Let A be a finite structure and ¢(x, y) € MSO some formula that
defines a relation R := ™" of finite outdegree on A*". If ug, uy,--- € A*" is an
R-path then we have

[ukli < |uoli + i1 (O(k + |uo|y + -+ + |tho]in)),  foralli<n.
Proof. By the preceding theorem, we have

[k, € [ukoi + 1 < o)y + eik < Juol, + 26 (O(K)),
and, for i > 1, it follows by induction that

el e oA D gl T ),
I<k

11

Since

Ly(ur)-+Lioy (1)
< (Juoly + 26 (O(1)))-([tto]izs + iz (O(I + |y + -+ + |1i0]i=)))
< (Jo]y + -+ + [to]is + 2i 2 (O + |to|y + -+ + |o]i2)))
< (ol + -+ + [tolicy + 2isa (O(K + |toy + -+ + |toizs))) ™
< (k+ |to]y + -+ [toicy + 2ia (O(k + |tto]y + -+ + [tho|iza + |toi—1)))
<2, (O(k + o)y + -+ + |tho]ia + |tio iz )™
<2, (O(k + |uol + -+ |tois + |tho]i1))

it follows that
|uk|i < |Uo|i + ZCi23,»,,(O(k+\uo|,+---+|u°|,~,2+|uo|,-,,))
I<k
< uoli + ¢k, (O(k + |to|y + -+ + |to]i-a + |tho]i—1))
< uoli + i (O(k + |uoly + -+ + |toiza + [tho]i-1)) - O

Corollary 4.6. Let 2 be a finite structure and ¢(x, y) € MSO some formula that
defines a relation of finite outdegree on A*". The k-neighbourhood

Ni(u)={veA™ |d(u,v) <k}
of an element u € A*" is bounded by
INk(u)] < 2, (O(k + [u]y + -+ |uln)) -
Proof. 1f d(u,v) < k then we know by the preceding corollary that
|i < luli + 260 (O(k + uly + -+ + ulin))
It therefore follows from Lemma 4.2 that there are less than
| A| b+ O )Y+ (Jula+ 3n-1 (O ket -+uln-1))
< Aot + 200 (O Gl Hula )"
< | AP (O Uttt fuums 1)
< |A|:|,.7,(O(k+\u|1+---+|u|nﬂ+|u|n))
=2,(O(k+ul, + -+ |uln))

such words v. O

12



Corollary 4.7. Let 2 be a finite structure ¢(x, y) € MSO, and u € A*". If the
@-outdegree of u in A*" is finite then it is bounded by

3 (O(futly + -+ [uln)) -
Example. Let
Te:={o"iew" |n<w, i<d(n)}

and let E ¢ Ty x Ty be the immediate successor relation. The tree (T,y, E) is not
contained in the k-th level of the Caucal hierarchy since, if w, € A**f encodes
the element 0" € T,; then

|Wn|i < 31’—1(0(”))

and the outdegree of w,, is bounded by 2,;_,(O(n)).
Similarly, if we define T, := {0"i € w* | i < 2,,(n) } then (T,, E) is not
contained in any level of the hierarchy.

5 SUBSTITUTION OF STACKS

After having studied the degree of vertices in a graph of the Caucal hierarchy we
now turn to the investigation of paths in such graphs. For the remainder of the ar-
ticle we fix a pushdown automaton A of level n. Let us introduce some additional
notation. If 7 is a run and x € dom(r) then the operation at x is the operation op
such that 7r(ox) = op(nr(x)). We call pop, and push, a level 1 operation and,
for k > 1, pop, and cloney, a level k operation. A push(1)-operation is an operation
of the form push , and, for k > 1, we call cloney a push(k)-operation.

We start by showing how to replace in a given run the bottom part of all stacks
by some other stack content such that the resulting sequence of configurations
still forms a run. To do so we define a variant of the prefix relation & < { saying
that some stack content ¢ is contained in a larger stack (. In the constructions of
the following sections we will need to also consider operations and relations on
just the bottom levels of a stack. Therefore, we have to define all notions depend-
ing on a parameter k.

Definition 5.1. For words &, € I'*", we define the prefix relation & < # by
induction on n.

13

If n < k, in particular if n = o, then & < # always holds. For n > k, suppose
that & = x,---x, and = y,---ys where x;, y; € r+*("=1) We define & < n iff

r<s, xij=yi,fori<r, and x,<y;,forr<i<s.
For notational convenience, if 7 is a run and x, y € dom(r), we define
x<y ciff  wr(x) < ar(y).
The following easy observations will frequently be used in the proofs below.

Lemma 5.2. If we have &, : -+ : & < & 2 (g 2o 2 (o and i # € then
En D Eo N3 511’1

Proof. Suppose that# = y, ... y,,. Then

Enior i 8o e &l i Guma i o
implies &,_, : -+ : &, <k y;, for all i < m. Hence,

ni i 8o U &nYo o Ymoat Ym = & O
Lemmas.3. If &, 5,{ € I'™" are words such that

Eun<un (s EwC, and (Er=(n)k

then we have y <y (.

Proof. We prove the claim by induction on n — k. If k = n then we have (1), =
(&), = (), which implies # <,, {. Suppose that k < n and let

E=Xo Xy N=Yor¥ss (=22, for x;, yi,zi € =)
Lets < i< t. 4 <gy, ( implies that

Yo Yso1 = ZgZsmy and Y gy Zi
Since x, <k s, Xr <k zi, and (x,)x = (&) = (7)x = (¥s)x we can apply the
induction hypothesis and it follows that y, < z;, forall s < i < t. Hence, we have
1 <k z. O

If £ < # then we can replace & by some other value { without destroying the
structure of the stack.

14



Definition 5.4. Let &, 1, € I'"" where
E=XoXp, M=Yo¥s, (=Zowz,  forxiy,z el

If & < n we define, by induction on #, the substitution

ZoZia Vel %[zt |k ys[xe]ze e ifk<n.

nE/ e = {’7 k>,

We extend this operation to configurations (7, q) € I'*" x Q by setting

(n, @)[&/CTk = (n[&/¢1k>q) -

The above definitions of < and #[&/{] were chosen to be compatible with
the pushdown operations as stated in the following important lemma.

Lemma 5.5. Let op € {push,, clone;, pop;} be a pushdown operation, 1 < k < n,

and let &, n,{ € T'*" be words. If
§<xn and |(op(n))il 21(§)il, forallix>k,
then we have

§<rop(n) and op(n[&/Clx) = (op(n))[&/C]k-

Proof. We prove the claims by induction on #. Clearly, we only need to consider
the case that k < n. Let

E=XoXp, M=You¥s, (=Zowz,  forxi,y,zi el
(a) First we consider the case that op = push,. For n = k = 1, we have

push, (7[£/¢],) = push, (20" 21—y yr++¥s)
= ZO"'Zt—lyr"‘ysb
= (orys0)[§/C:
= (push,, (7)) [§/C1.

15

and, forn > 1,

push, (7[£/{]k)
= pushy, (2o 2e1yr [Xr /2 ]k s [%e [2¢]k)
= 2o Ze Vo[ Xr 2t |k Yo [ X0 [2e ]k (Pushy, (v [x: /2 ]k )
= 2o Zem Vo[ Xr [Ze |k Yo [ %0 [z ]k (Pushy, (1)) [x /24 ]
= (Yor+ys-1pushy, (5))[§/C]«
= (push,, (1)) [§/CTk -

(B) Suppose that op = clone;. For n = j, we have

clone;(n[§/C]x) = clone;(zo-+ze-1yr[xr /2] k¥ [xr /2 ]k)
= 2o ZeaYr[Xr[Ze ke ys [ [2e )k ys[xr [z )k
= (yoysys) [§/ Ik
= (clone;(n7)) [€/¢]k»

and, for n > j,

clone;(n[§/{]k)
= clone;(zo z—yyr[Xe )z )k ys[%r )2t 1)
= 2o 2t Yr[%r 2]k Y[ % [z ]k (clone; (ys [x: [z ]k )
= ZO"'thl}’r[xr/zt]k"'ysfl[xr/zt]k(Clonej()’S))[xr/zt]k
= (Yor-ys-aclone; (y)) [§/ {1k
= (clone;(n))[&/ k-

(c) Finally, consider the case that op = pop ;- Since

r=[(&)nl <|(pop, (1))nl = s =1,

we have, for n = j,

pop, (1[¢/¢1x) = pop, (zo+zt-1y:[
= Zo"’Zt—lyr[xr/Zt]
= ()’o"')’s—l)[f/dk
= (pop,,(1))[&/¢1k»

Kk Ys—1 [xr/zt]k
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and, for n > j,

Popj(ﬂ[f/(]k) = POPj(ZO"'Zt—l)’r[xr/zt]k"'}’S[xr/Zt]k)
=ZoZt—1)r [xr/zt]k"')’S—l[xr/zt]k(POPj (rslxr/zek)
= 2o ZiaYr[%r/Ze] iy [xr /20 (Pop; (y:)) [%r /22 )i
= (YO"')’S—lpopj()’S))[f/(]k
= (pop; (1)) [¢/{]k-
(D) In all cases we have & < op(7) since (op(%))[€/{] is defined. O

By induction, it follows that each transition of a run can be lifted from 7
to #[&/{]x as long as the word £ is still contained in #.

Corollary5.6. Let &, {,n,n’ € I'*" be words such that |(n"):| = [(&):, forall i > k.
Then

E<qn and  (n,9) v+ (1'.q")
implies
Eqn' and  (q[&/Ckq) F* (1'[€/¢1k.q") -

Proof. Letd =(q,c,a,q’,0p) € Abe the transition witnessing (1, q) +* (%', q").
By definition, we have (#[&/{]x)o = (#)o- Hence

top(7[§/C1x.q) = top(n,q) = (a.q)

and we can apply 8 to (n[£/{]x, q). The resulting configuration (¢, q") has the
stack contents

u=op(n[&/C1x) = (op(n))[&/{Tk = n'[&/C Tk -

The relation & < 4" = op(n) follows immediately from the preceding lemma.
|

In particular, if we have a run such that the stack content & of the first config-
uration is never touched then we can replace £ by an arbitrary other word { and
we obtain again a valid run.
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Lemma s5.7. Let r be a run and x € dom(r) its first vertex. Suppose that
E=nr(x) < nr(y),  forall y e dom(r).

If{ € I'*" is an arbitrary word then the function v’ defined by

r'(y) =r(E/Clk,  foryedom(r),

forms a valid run.

Proof. We can use Corollary 5.6 to prove, by induction on <, that

§awmr(y) and  r(y)[E/Ck = r(oy)[E/ ]k 0

6 WEAK DOMINATION

In this section we introduce the weak domination order £; which will be our
main tool for decomposing runs.

Definition 6.1. (a) For &, { € I'*" and 0 < k < n, we say that & weakly k-
dominates (, written & T, (, if there exists a sequence POP of pop-operations
such that

popy (&) = pop, (POP(()) .

(b) If ris a run and x, y € dom(r) then we define

xCry ciff  ar(x) cponr(y),

and xcpy :iff x=<y and xCpz forallx=<z=<y.

The greatest lower 7 -bound of x and y will be denoted by x 1 y.
(c) Let rbearunand x € dom(r). By wi (x) we denote the <-minimal element
y € dom(r) such that x < y and x %} y. Note that w; (x) might be undefined.

Lemma 6.2. (dom(r),c;) is a forest.

Remark. Note that the original ordering < of a run r coincides with the ordering
we obtain when traversing the forest (dom(r), &} ) in “prefix ordering” (which

18



is not related to the prefix order <). This is the same as the lexicographic order-
ing <jex of (dom(r), =;) which in this case is defined by

x<lex y Iff  xE; yoru<vwhereu and v are the immediate

£y -successors of x My y with u £; x and v £f y.
In particular, if x £} yand x £} zthenz<x <yorx<y~<z.
Example. Consider the run
eietare:e:abre:ab:abr¢e:ab:avr (ab:a):ab:a

F(ab:a):e:ab+ (ab:a):e:avr e:ab:ar+¢e:e:ab

=erela

where we have left out the states for simplicity. The weak domination orderings

E}, £, and &} are shown in Figure 1.

Lemma 6.3. Let &, ne ™" If & i 1 then & g 1.

Proof. Let & = xo--+x, and 5§ = yo-+-ys, for x;, y; € (") We prove the claim by
induction on n. If n = k then

Pop; (&) = Xo*++Xp—1 = Yorr-yra = (POPL) (1) -

For n > k, we have, by definition of <,
§ = %o %y <k yo--yr = (POP, )" (1) -

By induction hypothesis, there exists a sequence POP of pop-operations such that
popy (xr) = pop, (POP(yr)) .

It follows that

pop (€) = (popy o POP o pop; ") (7). 0

In the following sequence of lemmas we relate the structure of the weak dom-
inance order to the stack contents of the underlying run. First, we consider <-
successors that are not £} -successors.

Lemma 6.4. Let r be a run and x, y € dom(r) vertices such that x S y and
x %k 0y. Then ir(oy) = pop,nr(x), for some I > k.
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Figure 1: The weak domination orders £, € and ;.
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Proof. Letnr(x) =&, :--+: &,. Since x £ y we have, for some i > k,
mr(y)=&nter i G Eini i nicy i 0o,
where either &; : -+ : &, &4 &;5;, or i = k and 55 = €. Since x %, oy there exist
some index [ > i > k such that
nr(oy) =pop;r(y) = &u -2 & = popy7r(x) . O

A configuration with several immediate £} -successors must perform a clone;-
operation and the stack contents of the successors have a certain format.

Lemma 6.5. Letrbearun, k > 1, and x € dom(r) a vertex with several immediate
E -SUCCESSOTS Vo, ..., Ym» M 2 1. Set &, -2 & = mr(x).

There exists an index i > k satisfying the following conditions.

(a) There is a push(i)-operation at x.

(b) There are indices
1=1(0)<k<I(1)<--<Il(m)<i
and words (o So &1(0)> -+ > Cm o §1(m) such that, for all s < m, we have

7'[7’()/3) = fn P Ei+1 : (fz s fl) : fi—l st fl(s)+1 : (s

and nir(ys4,) = pop;mr(ys), for some k <1 < i.
(€) ysEF yo foralls <t <m, and ys EF Y iff nr(ym) # nr(x).
(d) x £} y, foralls < m and every | < n. Furthermore, y,, ..., ym are imme-

diate 7 -successors of x, for all | < k.

Proof. (a) If nr(ox) = pop,nr(x), for some i, then x £} z implies ox £} z.
Hence, x has at most one immediate =} -successor. The same is the case for a
push(i)-operation with with i < k.

(b) We proceed by induction on s. For s = o, the claim follows from (a) since
Yo = 0x. Suppose that s > o and

ﬂr(ys—l) = fn P Eiﬂ : (fz ERAA fl) : Ei*l Pl gl(s—l)+1 : (3*1 >

where I(s —1) < i.
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(a) If r(07'ys) = mr(ys—,) then x £ ys and 07"y, %} y, imply that,
nr(ys) = pop;7r(o7ys) = popyr(ys-1)
for some k < I < i. Hence, if [ > I(s — 1) then
Ar(ye) = En oo Bt (e £) By o
and, for I < I(s —1), we have
mr(ys) =&n i G (G &) s &ima o §iemnyn 1 s

where ; := pop; ({s-1).
(B) If mr(07"ys) # mr(ys—,) we fix the maximal index h such that

(mr(0™ ys))n # (2r(ys=))n -
We claim that & < i. Suppose otherwise. Since y,_, E; 0"y, we have
(0 ys) =&t Epa S

for some words 7y, . .., #, such that

Eprotipr (Gir &)t Ei 1 iy 1 G
EZ Entln * My 21 1y

Furthermore, by choice of h we have #;, # ¢, and if h = i then

Mn = (Gimy 2 &)1
for some 7}, # e. Hence,
(*) GG (G &) 8im s Gy omny e Goma S Snttn
Since x £} y; and 07y, ¥} y; it follows that

r(ys) = popr(07 ys) = &ut oot Spy t Eptn Aoy o 0
for some k < j < h. But (*) implies

nr(ys—1) = fn peeed £i+1 : (El feeed El) : Ei—l Pl fl(s—l)+1 : {5—1
e S X YRR I% RS MR nj= nr(ys) s
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that is, y,_, E; ys. Contradiction.
(c) Consequently, we have h < i. If h > I(s —1) then y,_, E; 07"y, implies

mr(o7ys) =&t i G (G 80) s Gy i 1
z;‘hr]h CHh—r il
Again, by x £y, and 07"y, £} y; it follows that
nr(ys) = pop;mr(7ys)
for some k <1 <i.If ] < hthen
ﬂr(ys) = fn peee €i+1 : (El Pl El) : Ei*l el £h+1 :
Entln : s 2o
and as above it follows that y;_, £} y,. Contradiction. Therefore, I > h and
ﬂr(ys) =&y (E: Pt 51) 2Eiy e fl = POPIV()’H)

as desired.
It remains to consider the case that i < I(s —1). Let {s = pj(s_y) = : p,. Since
Ys—1 Ef 0 'ys we have

mr(o " ys) = &ni i G (Gt 80) s G Gy
Bi(s—1) 27"  Bhar " Blh S -y 200 2 1
As above, there is some h < I < i such that nr(y;) = pop,nr(o7"ys) which
implies
mr(ys) =&t &t (Gt e 80) s Gimn it &y T () o
= popr(Ys—1) -
(D) Finally, if s < ¢ then y ¢} y, implies that [(s) < I(t) and I(t) > k.

(c) By induction on t, we have y, €} y;, £ ¢ 'y, which implies y, =} 07" y;.

By (b), we also have y, &; y,. Together it follows that y; €5 y,. If nr(yp, ) # nr(x)
then x £ y,, implies

mr(ym) =&t i &t (Gt &) i iy,

and the claim follows as above.

(d) By (a), wehave x £} y,, forall s < m and every I < n. Furthermore, if there
were some element x =} z =} y,, for | < k, then this would imply x =} z = y;
which is impossible. O

23

Finally, we collect some basic facts about the function wy.

Lemma 6.6. Let r be a run, x € dom(r), and y := wi(x). The element x My y is
the immediate £} -predecessor of y and

nr(y) =pop,nr(x)  forsomel > k.

Proof. Suppose that there is some element z such that x M, y = z =} y. Then x <
z < y and, by choice of y, we have x £} z. Hence, x £} z £} y. A contradiction.
The second claim is a special case of Lemma 6.4. O

Lemma 6.7. Let r be a run and x € dom(r). If i < k then

wr(x)=wi(x) or wr(x)=wi(wi(x)).
Proof. Let y = w;(x) and z := wi(x).If z < y then x €} z which implies x £ z.
A contradiction.

Suppose that y < z. By Lemma 6.6, there exist indices I > i and m > k such
that

nr(y) = pop;mr(x) and nr(z) = pop,,nr(x).
If y < z then we have [ < k. Consequently,
nr(z) = pop,,nr(x) = pop,,r(y)
and it follows that y ¢; z. Hence, wi(y) < z. On the other hand, we have
nr(wk(y)) = pop,nr(y) = pop,nr(x), for some h > k.
Therefore, we have x % wy(y) which implies z < wy(y). Together, it follows
that z = wr(y). O
7 STRONG DOMINATION AND HOLES

Remember that we want to decompose a given run r into parts such that in each
subrun s we can apply a substitution, that is, if x is the first element of dom(s)
we would like to have x < y, for all y € dom(s). Therefore, we define a second
domination order by combining the relations < and Ej.
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Figure 2: The strong domination orders <, and <,.

Definition 7.1. For a run r, elements x, y € dom(r), and a number 1 < k < 1, we
define the strong domination order < by

x<py :iff xciy and x<;z foralli>kandxc}zc! y.
The greatest lower <;-bound of x and y will be denoted by x ri y.

Example. Figure 2 shows the strong domination orderings <, and <, correspond-
ing to the run whose weak domination order is depicted in Figure 1.

Let us collect some basic properties of the strong domination order.
Lemma 7.2. Letx < y. We have x <, oy iff x 5, oy and x < 0.

Proof. (=) follows immediately from the definition.

(<) Suppose x £ oy. By definition, we either have x #; oy or there is some
x €f z €] oy, fori > k, with x 4; z. In the first case, x =} y implies x % y.
For the second case, note that, if z =} oy then z E] y,and x <; y implies x <; z.
Consequently, z = oy and x 4 0y. O
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Lemma 7.3. Suppose that x <x,, ox and x ¢x ox.
(a) There is a pop-operation at x.
(b) There is a push(i)-operation at w := x My ox, for some i > k.
(¢) If u € dom(r) is some element with u < x and u ¥y ox then there are
words &,,..., & and py, ..., s, such that
mr(u) =&, 8 and  mr(ox) = Eupn o i * &k -

Proof. (a) Since x <k, ox and x ¢, ox we have

nr(ox) = pop, (nr(x)) .

(b) If the operation at w were a push(i) or a pop; with i < k then w < x, ox
would imply ow < x, ox and we would have w # x My ox. If there were a pop;-
operation at w with i > k then w would have no <,-successor. Consequently, the
operation at w is a push(i) with i > k.

(c) Let mr(u) = &, : -+ : &. u < x implies u < x. Hence, there are words
Pn t -t o such that

mr(x) = Euttn i Epphic T ey Pt o s
and 7r(ox) = pop,mr(x) = &Eupy oot Eppy .

We claim that y; = e. Suppose otherwise. Then u < ox and it follows that
u %7 ox.Sinceu &} x thisimplies u #; ox. Consequently, y; = ¢, forallk < i < n.
Contradiction. O

We will study decompositions of a run into parts of the following form.

Definition 7.4. For a run r and a vertex x € dom(r) we define

Di(x)={yedom(r)|x <y},
Ex(x):={yedom(r)|xc; y}.

Remark. Note that Dy (x) is an initial segment of E; (x).
Lemma 7.5. x <x v iff Dx(y) € D (x).

Proof. (<=) By definition, y € Dy (y) € Di(x) implies x < y.
(=) Ifz € Di(y) then y < z. Hence, x <x y <x zand z € Di(x). O
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Figure 3: A hole in D,(v) between x and y.

It will turn out that a good way to construct such a decomposition is by consid-
ering subruns whose domain is of the form Dy (v). But in doing so we face the
problem that such subruns might contain holes, that is, there might be vertices
X,y € Di(v), x < y, such that all vertices x < z < y are not contained in D (v).
In the remainder of this section we study the structure of such a hole.

Definition 7.6. Let r be arun, v € dom(r),and1< k < n.
(a) If z is the <-maximal element of E; (v) we define

Qu(v) = {(x,pr(2)) }u{ (h,q) | r(2) = (pop,,nr(v),q), h >k }.

(b) Di(v) has a hole at x if x € Dy (v) and 0x € Ex(v) \ Dg(v). In this case
we define

H(x):={yedom(r)|zeEx(v)\ Dg(v) forallx <z=<y}.
We say that the hole is between x and y if
H(x)={z|x<z<y}.

If such an element y exists then we call the hole properly terminated. The maximal
element y such that

{z|x<z<y}cH(x)

is the end point of the hole. Note that the end point is contained in H(x) if and
only if the hole is not properly terminated.
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(c) An exit point of Di(v) is a <x-minimal element of Ex (v) \ Di(v). The set
of all exit points of D¢ (v) is denoted by X (v). The order of an exit point x is the
number k such that

nr(x) = pop(7r(a7 (%)),

and its type is the triple

(k, pr(x), Qxsa (%))

where k is the order of x.

(d) Suppose that there is a hole in Dy (v) at x with end point y. The principal
sequence zo, . ..,z of this hole and the associated sequence 1(0),...,1(m) of
indices is defined inductively as follows. z, := ox and I(0) is the index such
that 77(z,) = pop;,)7r(x). Suppose that z; and I(j) are already defined. If
Zj £](j)+ ¥ then we define z;,, := Wi(j)+1(2;), and I(j + 1) is the index such
that 77(241) = pop;j,,)7r(z;). We continue this construction until we reach a
vertex with z; £7 .y y.

Ifz; # y then we call the element z; a principal exit point of Dy (v). Its order is
the number I( ). By Py, (v) we denote the set of all principal exit points of Dy (v)
of order I.

(e) Suppose there is a hole at x with principal sequence z,, ...,z and asso-
ciated sequence of indices 1(0), ..., I(m). Set h := m —1if the hole is properly
terminated and /4 := m, otherwise. The type of the hole is the sequence

(1(0), pr(20), Qi(0)+1(20))s - - (1(h), pr(zn)s Qugiysa (21))
of the types of z,, . .., 2,

Lemma 7.7. Let r be a run, v € dom(r) and suppose that there is a hole in Dy (v)
at x.

Hx) = W{Dy(2) |2 € HE) n (1))
and  Ex(2) = Di(2) v J{ Dk(2) | z € Xk (v) }.
Proof. Since the second equation follows from the first one we only need to prove
the first equation.
(¢) If y € H(x) then z < y, for some exit point z. If z ¢ H(x) then we have

z < x < yand z €f y, and it follows that z £} x. Hence, x € Dy(v) implies
z € Di(v). A contradiction.
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(2) Let y € Dy(z) for some exit point z € H(x). Then z £; y and z ¢
Ex(v) N Di(v) implies y € Ex(v) \ Dg(v). It remains to show that there is no
element w € Dy (v) with x < w < y. Suppose otherwise. Since z € H(x) we have
z <w < y.Hence, z £ y implies z €] w. Butv £ z £ w and v < w implies
v €k z. A contradiction. O

The following lemma investigates the structure of a hole and it clarifies the role
of the principal sequence.

Lemma 7.8. Let r be a run, v € dom(r), 1 < k < n. Suppose that there is a
hole in Dy (v) at x with end point y, let z,, .. ., z,, be its principal sequence, and
1(0),...,1(m) the sequence of indices such that

nr(zj) = pop;(jymr(zj-1) -

Suppose that nr(v) = &, : - & and wr(x) = Euny oo Exfig  Mrer 17 2 W
(@) Ifzj # y then zj € Ex(v) \ Di(v).
(b) k<l1(o) << I(m), in particular m < n.
(c) Ifuj is the immediate C} -predecessor of zj then uj € Di(v).
(d) We have

mr(z;) = popyyr(x) = Eutpn 2 §1(jy iy * §1G) M) -

Furthermore, if z; # y then () = e.
(e) Ifthe hole is properly terminated then z,,, = y.

Proof. (a) x < zj < y implies, by definition of y, that z; € H(x) € Ex(v) \ Di(v).
(b) Since v <} x and v 4 ox we have, by Lemma 7.3 (a),

nr(zo) = mr(0x) = pop; ()7t (x) with I(0) > k.

Furthermore, Lemma 6.6 implies that I (j +1) > I(j) +1, for j < m.

(c) We claim that v £ uj,, Ef uj, for all j < m. Then the result follows by
induction on j since v £} u, S x € D (v) implies u, € Di(v) and v Ef uj4, €
uj € Di(v) implies uj,, € Di(v).

Note that v < x < z;,, and v £} zj,, implies v =} zj,, and, hence, v £} u,,.

Therefore, we only need to prove that u,, £} u;.
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By Lemma 6.6, the immediate E;*(].) +,-predecessor of zj,, is

Witr 7= Zj ()1 Zja -

As wj,, has at least two immediate Ef( j)+a-SUCCEsSOrS it follows by Lemma 6.5 (d)
that z;,, is an immediate S} -successor of w;,,, for all I < I(j) + 1. Because k <
1(j) + 1 we therefore have Ujr = Wiy = Zj D(j)1 Zjr- Consequently, we have
Ujy, < Zj < Zj4, and, together with uj,, €} z;.,, it follows that u;,, =} z;. Hence,
by definition of u, we have u,, €} u;.

(d) First, consider the case that I(j) = 1. By (b), this implies k = 1and j = o.
Since z, = ox we have 717(2, ) = pop; ()77 (x), by definition of /(o). Finally, we
have #, = ¢, by Lemma 7.3 ().

For I1(j) > 1, we prove the claim by induction on j. For j = o, we have, by
definition,

nr(z,) = nr(ox) = POPI(O)W(X) =&ttt 51(0)771(0) >

and, for j > o, the induction hypothesis implies that

mr(z;j) = popy;ymr(zj-1)
= P0P1(])(fn71n B El(j—l)r]l(j—l))
= &nlln L SI(GYMIG) -

Suppose that 77, # €. We claim that z; = y.

Eniot &g mr(x) =Eump i &t imy 2o o

implies, by Lemma 5.2, that

‘En Pt fo L fnﬂn Pt ‘El(j)ﬂl(j) = 7'[7’(Zj) :

Furthermore, by (c), we have u; € Dy (v) for the immediate c} -predecessor u;
of z;. Together with z; € Ex(v) it therefore follows that z; € D (v). This implies
zZj=Y.

(e) Suppose that z,, # y. We define a sequence w,, . . ., w; of vertices as follows.
Set w, := z,,. For j > o, fix the maximal index h such that w;_, %, y and let
w; = wy(wj_,). The construction stops when we reach a vertex wg £ . Since
the hole is properly terminated we have y € Dy (v). Hence, v E; w £} y implies
ws € Dg(v) and it follows that w, = y.

30



Let I := I(m). We prove by induction on j that
ar(wi) =&t ot &t s for some p; £, & with p; # €.

For j = o, we have nir(w, ) = nr(zp ) and po = &) as desired. By Lemma 6.6,
for every j > o, there is some index h such that

nr(wj) = pop,mr(wj—,).
If h > I then
mr(w;) = popy, (Enttn t -t Eraisn t fjmr) = Eutpn t - &
which implies z,, & w;. Hence, z, &;,, w; and, therefore, z,, &/,,,,, y. Con-

tradiction. Thus, we have h < [ and

r(w;) = popy, (&nttn - Eralinn * jmr)
=&utn it €

with yj = popy, (#-1).
Since p; S, & implies & @+ &, 4 ps, it follows that

gn peeed fo Ak fnﬂn peeed £l+1771+1 tUs = 7'[1’()/)
in contradiction to y € Dg(v). O
Lemma 7.9. Every principal exit point is an exit point.

Proof. Let z € Py;(v). Clearly, z € Ex(v) \ Di(v). Suppose there is some y €
Ei(v) N Di(v) with y < z. By Lemma 7.8 (c), y =} z implies y € D (v). Contra-
diction. O

8 EXPANSION SEQUENCES

In order to perform the pumping construction in the next section we need to
find a pair of vertices u <, v with certain properties. As an intermediate step to
prove the existence of such pairs we show in the current section that, if the run
is long enough then we can find arbitrary long chains u, <, --- < Up.

In order to prove the existence of long chains u, <, --- < uy, it is sufficient to
bound the branching factor of the forest (dom(r), <,). To do so we employ the
following device.
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Definition 8.1. Let r be a run. An expansion sequence of r is a sequence of in-
jections t — --- — t, between forests where t, := r and, for i < n, we have
t; := (C, €4, ) where C € dom(#;4,) is a maximal chain in .

We want to prove that each forest in an expansion sequence is binary. The
following lemmas collect basic properties about the vertices in such a forest.

Lemma 8.2. Let t; — --- — t, be an expansion sequence of r and let x € dom(#y).
If y is an immediate successor of x with (mt(¥) ) k4, = (7tk (X)) k4. then there exist
no immediate successors z of x with y < z.

Proof. Denote the first embedding by ¢ : t; — t4.,. We show that, for all z €
dom(¢t;) with x <., z, we have y <., z. The proof proceeds by induction on
the number of elements w such that 1y < w < iz.

Since

X 1 Y U225 X Y 25 and (ﬂtk(x))k+1 = (ﬂtk(y))k+1 >

it follows by Lemma 5.3 that y <., z. Consequently, y Ex., z and, by induction
hypothesis, we have y £} z.

Let w be some element such that y ¢, w £} z. We have to show that
¥ Qg4 w.Since x £ w £f . zand x <, z we have x <, w. Similarly,
Y Er., W Ef,, z implies y <y, w. Since (mtx(x)) ks = (mtx(y))rs We can

“k+2
again apply Lemma 5.3 to infer that y <, w. Together with y <, z it therefore
follows that y <., z. O

Lemma 8.3. Let t, — -+ — t, be an expansion sequence of r. Denote the embed-
ding ty — t, by 1 and let x € dom(#y).

(a) Ifthe operation at x is a level i operation with i < k and x has an immediate
successor y then 1y = oix. In particular, y is the only immediate successor

of x.

(b) If there is a pop;-operation at x with i > k then x is a leaf.

Proof. (a) follows from Lemma 8.2 by induction on k, and (b) follows immedi-
ately from the definition. O

Lemma 8.4. Let ty — -+ — t, be an expansion sequence of r and x € dom(ty) a
vertex with several immediate successors yo,. .., Ym-1, M 2 2.

(a) The operation at x is a push(k + 1)-operation.
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(b) Thereare words &,,...,& and py, ..., gy, such that
mtp(x) = 0o o
09 sy e
i (31) = Enhn ¢ Ekaafhinn Gk 10 &o
(¢c) x has exactly two immediate successors.

Proof. We prove the claims by induction on k. Denote the embedding t; — ¢;
by 1; and set C := rng(tx4,)-

(a) Lemma 8.3 (a) and (b) imply that there is a push(i)-operation at x with
i > k. Suppose that i > k +1. Let z be the element such that 1;_, z is the immediate
successor of 1;_, x. By construction of , z is the first immediate successor of x. By
induction hypothesis we have (7t (2) )y, = (7t (x)) k4. Therefore, it follows
from Lemma 8.2 that z is also the last immediate successor of x. Hence, x has
only one immediate successor. Contradiction.

(b) By Lemma 8.3 (a), we know that 1, y, = 01,x. Hence, (a) implies that

cloney,, (mtx(x)) ifk>o,

m(yo) = {pusha(ntk(x)) ifk=o.

By construction of f, x4, ¥, is the minimal element of C \ {14,,x} such that

Yo £k+1 Y1

Let z be the element such that 14,z is the immediate predecessor of ¢4, y, in C.
Since 14,7 is not a leaf of #;,,, Lemma 8.3 (b) implies that the operation at z is
not a pop; with i > k +1. Since

Yo Sk 25

the operation at z must therefore be a pop,,, and, by Lemma 8.3 (a), we have
1Yy = 01,z. Furthermore, it follows that there are words py,, . . ., 4o such that

mti(2) = Enhn ot Eperatbirn * Ern (St 1 &0 fhien T i oo T fho -

Consequently, y, 4, ¥, implies that yy,, = € and

it (y1) = poPy,, (i (2)) = Enptn + ¢ Epsabhionn # Eprn 201 &
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(c) By (b) and Lemma 8.2 it follows that y, is the last immediate successor
of x. O

Corollary 8.5. Every forest in an expansion sequence is binary.

Using this corollary we can prove that every sufficiently long run contains a
sequence U, &, -+ & Upy,.

Lemma 8.6. Let t be a binary tree with [dom(t)| > 2™ vertices. Then there exists
a chain C € dom(t) of size |C| > m.

Proof. If every chain is of size at most m then dom(t) ¢ {o0,1}™ which implies

ldom(#)[< Y 2" =2" —1.
i<m
Contradiction. O

We only consider the case of runs starting at the initial configuration. This
ensures that the expansion sequence constructed below consists of trees instead
of forests. The restriction will be lifted below.

Lemma 8.7. Let r be a run that starts at the initial configuration. For every set
M ¢ dom(r) of size |[M| > 2,(m) there exists a sequence U, <, -+ <, Uy of
vertices of length strictly greater than m such that,

M (Dy(u;) N Dy(ui1)) # @, foralli<m.

Proof. We construct an expansion sequence t, — -+ — t, and two sequences
Cos...,Cpand Mg, ..., M, of sets as follows. We start with t,, :== rand M,, := M.
To construct ¢ suppose that we have already defined ¢4, = (dom(#x4,), <) and
a subset My, € dom(ty,). Choose a chain C},, € My, of maximal length in
the tree (M4, <), and let Cy,, € dom(#;,,) be a maximal chain in #;,, with

tir € Crar. We set

te = (Cryr> Skqn) and My = Crpun{uAv]|u,ve My, },

where A denotes the greatest lower bound in ;. Finally, we also choose some
chain C/ € M, of maximal length and a corresponding maximal chain C, ¢
dom(t,) with C ¢ C,.

Let x be the first element of dom(r). Since x is initial we have nr(x) = ¢ :
-+ 1 £ : g, for some letter a, which implies, by Corollary 5.6, that x <, y, for all
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y € dom(r). Therefore, x is the unique minimal element of each #; and all #; are
binary trees. Since the sets My are closed under greatest lower bounds it follows
that the subforests induced by them also form binary trees. Consequently, we
can apply the preceding lemma. By induction on k, it follows that |C}| > 2x(m),
for k < n. Let u, < -+ < u,, be an enumeration of (a subset of) C.. The sequence
LyUos . .. Iyt has the desired property. O

By an automaton construction we can generalise this result to arbitrary runs.
Unfortunately, this introduces a dependence on the size of the stack contents of
the first configuration.

Definition 8.8. For & = x, ... x,, € I'*" we define, by induction on n,

ifn=1,
1] = {'5' "

Yiemlxi] ifn>1.

Corollary 8.9. Letr be a run with first element w and set k := 2| wr(w)||. For every
set M ¢ dom(r) of size |M| > 2, (m + k) there exists a sequence u, <, - <, Up,
of vertices of length strictly greater than m such that,

Mn(D,(u;) N D,(tisy)) D, foralli<m.

Proof. Let & := nr(w). There exists a sequence op of at most k := 2| &] stack
operations such that & := op(e : --- : € : a). We construct an automaton B
by modifying the given automaton A such that, starting at the initial configura-
tion B executes the operations op until it reaches the configuration r(w). Then
it continues in exactly the same way as A would. Let ' = sr be the run of B
starting at the initial configuration. The preceding lemma implies that there ex-
ists a sequence u, < - < Uy, with the desired properties in dom(r’). Since
|dom(s)| = k it follows that u; € dom(r), for i > k. Hence, uy <, =+ €, Upyyp is
the desired sequence. O

9 A PUMPING LEMMA

Using the structure theory developed in Sections 5 to 8 we prove a pumping
lemma for higher-order pushdown automata. For the construction below we
need to find two vertices u <, v such that the same types of holes appear in D, (1)
and in D, (v). Such vertices u, v will be called a pumping pair. The formal defini-
tion is based on the equivalence relation ~,.
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Definition 9.1. (a) Let £ = &, : -+ : €. We define the set
k(O T x oo x T*F) 5 Q x (s, k +1,...,n} x Q
by the following conditions. For I € {k +1,...,n}, we have

(b i P 1,9) € 1 (8),
iff  thereisarun rand an element x € dom(r) such that
r(x) = (Guptn =+ Skt : €5 P)
and r(@e (x)) = (Enptn 2 &> )

and we have

(bns s i P2 %5 q) € R (8)
iff  thereisarunrand elements x, y € dom(r) with y € Ex,,(x) such that

r(x) = (§npn = ki : &> p)», and  pr(y)=gq.
(b) For &,{ € I'*" and k, m < n, we define an equivalence relation ~,, by
Emim ¢ :iff  forally; eI, p,ge Qand I € {*,k+1,...,n},

(Uss ..o pg o 2 1,9) € T (popy (§))
< (Ul 0o 1q) € Tk (popg (0))

where, for A = A, :---: A,, we set

A )€ itu; =¢,
i piles-re: (pi)ofe: Aiy 11 Ao]m  otherwise.

(c) Let r be a run. Two vertices u, v € dom(r) form a pumping pair if
u<sv, pr(u)=pr(v), and #ar(u)~ ar(v), foralk<n.

Given a pumping pair u <, v we can perform the following pumping construc-
tion.
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Lemma 9.2. Let r be a run with a pumping pair u <, v and suppose
ar(u)=&=&,::& and mr(v)={={,::(.

There exists a run s whose first configuration is the same as that of r and there are
vertices u’,v',w' € dom(s) such that

ns(u')y=§&, as(v')=(, ns(w')=C[¢/C],,
u' <, v' form a pumping pair, and |D,(v")| = | D, (u)|.
Proof. Define

So = rldom(r)\E,(v) > and § = (T|D1(u))[f/(]1 .

Let u’ be the copy of u in dom(s, ) and denote the copies of u and v in dom(s, )
by v' and w’, respectively. For each principal exit x of some hole in dom(s,) =
D, (u) we construct a run s, of the same type as x. We obtain the desired run s
by inserting s, into s, and each s, into the corresponding hole of s,.

It remains to find s,. If x is of order k then, by Lemma 7.8 (d), there are words
Uns- - > Hksr sSUuch that

mr(x) = Enpin =+ Sk fhienn * Sk -
Since & ~, { we can find a run s, of the same type as x such that
75 (¥) = Cuflin 2+t Chaafliesn G
where y is the first element of dom(s, ) and
. e ifui=e¢,
#ie {#i[s 2y i & e iy i1 (o], otherwise. O

It remains to prove the existence of a pumping pair. We start by showing that
Kk (&) is closed under ~; .

Lemmag.3. Let{ =&, i & el and pj, ;eI fork<i<n. If

fn.un Pt £k+1!’lk+1 2 & ~ik+1 fnﬂn Pt fk+171k+1 &,

forall k < i < n, then we have

(pns st s L@) € 4 (&) i (Moo s ksns P2 1,.q) € fi(8)
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Proof. Let r be a run of minimal length witnessing the fact that

(,Un)- <o kv Ps l) Q) € Xk(g) .

Denote the first and last elements of dom(r) by x and y, respectively. By mini-
mality of 7, we have

r(x) = (fn#n Pt fk+1!4k+1 &k, P)
and either
L#x, y=wpa(x), and  r(y) = (Saptn s &pas q)
or I=%, yeEr,(x), and pr(y)=gq.
We construct a witness s for
(f1ns -5 ks> P> 1> ) € 1 (€)
as follows. Let
ti= (f|Dk+,(x))[fn.Hn ERAAE fk+1[4k+1 : fk/fnﬂn st fk+1’1k+1 : fk]lm-
If I # » then we add the element y as last element to ¢ by setting
t(y) = (Eutpn s &iminq) -
Clearly, t is a partial run of the right type with
t(x) = (&attn : Eknalinn + Eo P) -

If t does not contain holes then we have already found the desired witness.
Suppose that there is a hole in dom(t) = Dg4,(x) and let w be one of its
principal exits. If w is of order i then

ﬂf(w) = En[lnﬁn P Ei+1l’4i+1ﬁi+1 : fi[li >

for some words S, . .., Bit+.. We construct a run t,, of the same type as w that be
inserted into ¢ to fill the hole. Since

En.“n Pt 5k+1[lk+1 2 & ~ik+1 fnﬂn st Ek+1’1k+1 &
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there exists a run t,, with first and last element u and v, respectively, such that

ﬂtw(”) = gn”lnﬂn peeed ‘fi+17’li+1ﬁi+1 : Eiﬂi >

where
£ if 3j = ¢,
Bi=Bjle: Eimaptjo s Ehmnphiens  Eife Ejanjmn o Ea ke + Ek ik
otherwise.

Furthermore, if [ # * then
tw(v) = EntnPu - EntinBn
and, otherwise, we have pt,, (v) = pr(v). O
We can use the preceding result to compute a bound on the index of ~,,.

Lemma 9.4. The index of ~y,, is bounded by
T [~k € B0ka 3" FIQP(n =k + 1))

Proof. Lets :=|Q|. We prove the claim by induction on k. For k = n, we have
In(§) cQx{+}xQ

which implies & ~,,, Ciff 7,(&) = §.({). Hence, there are at most 25 ~pm-
classes.
Suppose that k < n. For A = A, : ---: A, e I*" and y;, 11; € I'*', we define

(Hn>--~>ﬂk+1) =) (71n>--->77k+1)
it Aupn o Ak fben P Ak ik Anfln 2ot Ak i P A, foralli> k.

By Lemma 9.3, (s« > fhks1) =2 (s - -+ > Mke1) implies

(s> ke s 1,q) € Te(A)  ifE (s -5 Mkgs P2 1,.q) € T (A) -

By induction hypothesis, there are at most

n—k
[12:G7's%i!) < Jn_k((n —k)3" 2 (n - k)!)

< jn_k(3”_k_152(n —k+1)!)
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=, -classes. Set

(oo ttin) = (Han oo oa M)
i (s ) Zpope() (T i)
and (‘ufl,...,y,iﬂ) Zpopi({) (’7iv-w’7i+1)’
where, as above,
o e ifu;=e,
Y} = {#i[e crer (Ui)ofer &yt &gl otherwise.

By Lemma 9.3, we have & ~,, ( if and only if, for every =-class [pn, . -, prs1]
we have

(#io- > o P21 0) € T (POPL(E)
i (s o P 1) € R(POPL(0))
Hence, there are at most
2:!,,,;‘(3”_k_132(n7k+1)!)2-52-(n7k+1) < jn_k+l(3.3n7k7152(n k4 1)!)
= jn_k+1(3”_k52(n —k+ 1)!)
~m-classes. O

The existence of a pumping pair immediately follows from the previous lemma
and Corollary 8.9.

Lemma 9.5. Let r be a run with first element w and set k := 2| wr(w)|. For every
set M ¢ dom(r) of size

|M| > 2,,(n3"|QPn! + k)
there exists a pumping pair u <, v such that
Mn(D,(u)~D,(v)) #@.

Proof. By Corollary 8.9, there exists a sequence u, <, - <, U, of length strictly
greater than

m :=2,(n3"7|QPn!) 2|Q|- [ 2min(3"|QP(n—i+1)!)

1<i<n
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such that
Mn (D,(u;) N Dy(uiy,)) @, foralli<m.

By Lemma 9.4, it therefore follows that there are two indices i < j such that
u; and u; form a pumping pair. O

We apply the technical Lemma 9.2 to show that, if there exists a run of a certain
length then there are infinitely many different runs.

Theorem 9.6 (Pumping Lemma). Let A be a pushdown automaton of level n and
let r be a run of A with first element w.

(@) If
|[dom(r)| > jzn(n3"’1|Q|3n! + 2Hnr(w)||)

then there exists a sequence 1o, 1y, ... of runs, each starting with w, where ro = r
and

|[dom(r;)| < [dom(r;s,)], foralli<w.
(b) Similarly, if r contains at least
a(n3" QP AL + 2 7r(w)|)

non-e-transitions then there exists a sequence ro, 11, . .. of runs, each starting at w,
where r, = r and r;,, contains more non-e-transitions than r;.

Proof. (a) Let M := dom(r). By Lemma 9.5, there exists a pumping pair u <, v
in r. We define a sequence of runs r¢, 7, ... inductively. For each run r;, we will
also choose a pumping pair u; <, v;. We start with ) := r, u, := u, and v, = v.
Suppose that r! is already defined. By Lemma 9.2, we can constructanew run r} |
that contains elements u;., and v;,, such that u;,, < v;,, forms a pumping pair
and |D, (viy,)| = |Dy(u;)| > |D,(vi)]- To obtain the desired sequence 7o, 1;, . ..
we delete from rg,r;,... all runs r} such that [dom(r})| > |[dom(r})|, for some
I < i. The condition |D,(v;)| < |D,(vi4+,)| ensures that the resulting sequence is
still infinite.

(b) Let M < dom(r) be the set of all configurations with an outgoing non-¢-
transition. If we perform the same construction as in the proof of (a) we obtain
a sequence of runs r;, i < w, such that the number of non-¢-transitions in each
run is strictly increasing. |
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Corollary 9.7. Let A be a pushdown automaton of level n. If A accepts a word of
length at least

jzn(n3”_1|Q|3n!)
then the language recognised by A is infinite.

One immediate consequence of this theorem is the fact that finiteness is decid-
able for languages recognised by a higher-order pushdown automaton.

Corollary 9.8. The problem whether the language recognised by a given higher-
order pushdown automaton is finite is decidable.

We apply the theorem to prove that a given graph does not belong to a certain
level of the Caucal hierarchy.

Example. Let Ty = (Ty, <) where Ty := {01 | i < w, I < 3;(i) }. We claim
that ¥,, ¢ C,. For a contradiction, suppose otherwise. By Theorem 3.3, there
exists a pushdown automaton 4 of level n whose configuration graph becomes
isomorphic to T;, when we contract all e-transitions. Furthermore, we can use
Lemma 3.4 to find a finite structure 2 with universe Q w I' such that the config-
uration graph of A is definable in 2*".

Let wy € A*" be the word encoding the element 0*1 € T},,. In the same way as
in the example on page 13 it follows that

Iwili <22, (O(k)) .

Hence, |wi| < 3,-,(O(k)). The unique path starting at wy haslength 3, (k) —1.
Thus, the run of A corresponding to this path has at least that much non-e-
transitions. Since

2 (n3"7|QP ! + 2wk ) € 25 (13" |QPAL + 23,-,(O(k)))
< 3502 (O(K))
< 2(k) -1
it follows from part (b) of the theorem that, for large enough k, there are runs

starting at wy with arbitrarily many non-e-transitions. But this implies that T,
contains arbitrarily long paths starting at wy. Contradiction.
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10 CONCLUSION

In the present article we have started to develop a structure theory for structures
in the Caucal hierarchy and for configuration graphs of higher-order pushdown
automata. Our main technical results were Theorem 4.4 bounding the outde-
gree of definable relations and Theorem 9.6 containing a pumping lemma for
higher-order pushdown automata. We have used these results to prove that cer-
tain graphs are not contained in a given level of the Caucal hierarchy. There are
several directions in which this work can be continued.

(a) Theorem 9.6 makes no statements about the length of the runs r;. We con-
jecture that the optimal bound is |dom(r;)| < 3,-,(O(i)). At least it should be
possible to prove the weaker statement that [dom(r;, )| < 2/9°™()l Note that a
lower bound of 3,,_, (i) is provided by the languages L, defined in Section 2.

(b) After the proof of Sénizergues [11] that language equivalence is decidable
for deterministic pushdown automata there have been attempts to extend this
result to higher-order automata. The proof is based on a rewriting system for
configurations. For the higher-order case, one can try to base the rewriting rules
on the substitution operation defined in Section 5.
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