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1 INTRODUCTION

Over the last decades the beginnings of a model theory for monadic second-
order logic have emerged. After seminal papers by Biichi [12], Liuchli [33], Ra-
bin [36], and Shelah [41] a thorough investigation of the monadic theory of linear
orders was performed by Gurevich and Shelah [30, 31]. General monadic theories
and their model theory were studied by Baldwin and Shelah in [1, 42, 43].

A second development advancing the model theory for monadic second-order
logic consists in the work on graph grammars initiated by Courcelle. The main
subject of this line of work is the study of graph operations that are compatible
with monadic second-order theories [20, 22, 23, 26, 34] (see [9] for an overview).
Noteworthy recent developments include the Muchnik iteration [40, 46, 2,13, 11]
and set interpretations [17]. Such operations give rise to graph algebras and the
corresponding notions of recognisable sets and equational sets [29, 10]. Further-
more, one can use these operations to define hierarchical decompositions of
graphs and the corresponding complexity measures, like tree width, clique width,
and partition width [25, 21, 27, 4, 24, 6]. Finally, operations can also be used to
construct finite presentations of infinite graphs via regular terms [18, 19, 15, 16, 14,
5, 7). As monadic second-order logic is more expressive than first-order logic, it
is unsurprising that most structures possess an extremely complicated monadic
second-order theory. Fortunately, there remain structures where the theory is
simple enough for the existence of a structure theory.

The prime example of such a structure is the infinite binary tree which, ac-
cording to Rabin’s theorem, has a decidable monadic theory. Starting from this
result we can obtain further structures with a manageable theory by applying
operations that preserve decidability of the MSO-theory, like monadic second-
order interpretations or disjoint unions. We can also consider other trees than
the complete binary one. Although their monadic theories can become highly
undecidable there still exists a structure theory for structures interpretable in
them (see [6, 4]).

On the other extreme there are structures in which one can define arbitrarily
large grids or pairing functions. Their monadic theories are very complex since
they can encode arithmetic or even full second-order logic. In particular, there
is no hope for a structure theory for such structures.

According to a conjecture of Seese [39] these cases form a dichotomy: either a
structure is interpretable in some tree or we can define arbitrarily large grids. For
graphs (or structures with relations of arity at most 2) a variant of this conjecture
has been solved by Courcelle and Oum [28]. But the general case of arbitrary
structures is still open.

Building on techniques developed in [8, 3], we approached Seese’s conjecture
by considering a weaker statement about first-order theories and applying stan-
dard tools from first-order model theory. Instead of grids we consider first-order
definable pairing functions and we will prove that every structure where there is
no pairing function is tree-like (as defined below).

The article is organised as follows. We start in Section 2 by introducing the
notion of partition width which is used to define what we mean by ‘tree-like’
Section 3 summarises the results of [3] about indiscernible sequences.

In Section 4 we continue the investigation of indiscernible sequences in struc-
tures without definable pairing functions. Section 5 contains an overview over
the notion of finite satisfiability (without stability assumption). In Section 6 we fi-
nally show that every structure without definable pairing functions has bounded
partition width and, hence, is tree-like.

2 PARTITION WIDTH

Let us recall some basic definitions and fix our notation. We write [n] for the

set {0, ..., n —1}. We tacitly identify tuples a = 4, ...a,-, € A" with functions
[n] = A and frequently we do not distinguish between a tuple a and the set
{ao,...,an_,} of its components. This allows us to write a € A or a|; for I ¢ [n].



We use the words ‘tuple’ and ‘sequence’ synonymously. In particular, tuples may
be infinite.

2°%* denotes the set of all binary sequences of length less than « and < is the
prefix ordering on such sequences

x=<y :iff y=xzforsomez.

The empty sequence is denoted by ().

We start by defining what we consider as ‘tree-like’ In the literature several no-
tions have been proposed that measure how much a structure resembles a tree.
The most prominent one is tree width, which was first introduced by Halin [32]
and which plays an important role in the proof of the Graph Minor Theorem by
Robertson and Seymour [37]. This measure is closely related to guarded second-
order logic. For studying monadic second-order logic more appropriate complex-
ity measures are cliqgue width, introduced by Courcelle, Engelfriet, and Rozen-
bergin [25], and its variant rank width, defined by Oum and Seymour [35]. These
measures have only been defined for graphs, but there are generalisations of
clique width to arbitrary structures. The notion we will use is partition width
introduced in [6, 4]. Correspondingly we consider a structure to be tree-like if it
admits a hierarchical decomposition of the following kind.

Definition 2.1. A partition refinement of a structure 9 is a system (U, ),er of
subsets U, ¢ M indexed by a tree T € 2°* with the following properties:

L 4 U() =M,

o for every element a € M, there exists a vertex v € T with U, = {a},

e U,=U,,uwU,,forallv e T (where weset U, := @&, forw ¢ T),

* U, =Ny, Uy if|v] is a limit ordinal.
Example. (a) A natural partition refinement for a linear order (A, <) consists of
a recursive division into intervals.

(b) For a tree (2°%, <), we can take as components all sets of the form U, :=
{x €2*|v < x } and all singletons.

Clearly, every structure has partition refinements. In order to define when
a structure is tree-like we introduce a complexity measure for partition refine-
ments based on the number of types realised in each component.

Definition 2.2. (a) The atomic type of a tuple d over a set U is

atp(a/U) := {q)(ic,c') | cc U, ¢aliteral with M = ¢(a,¢) }

For a set A of formulae, we denote the A-type of a over U by tp,(@/U). Further-
more, we define its external type by

etp(a/U) = atp(a/U) \ atp(a).
(b) For a set A of formula we define the n-ary A-type index of a set A over U
by
tiz(A/U) = A" [~ul,
where ~y is the equivalence relation
asyb iff  tp,(a/U) =tp,(b/U).

If A is the set of all quantifier-free formulae then we write ati” (A/U) instead of
tiy (A/U).
Similarly, we define the external type index of A over U by

et (A/U) 1= |A" =y
where
a~yb :iff etp(a/U) =etp(b/U).
Definition 2.3. (a) Let (U, ),er be a partition refinement of 9. The n-ary parti-
tion width of (U,), is

pwd, (Uy)yer :=supeti”(U,/ M\ U,).
veT
(b) For an infinite cardinal ¥ we write pwd 90t < « if there exists a partition
refinement (U, ), of M with pwd, (U,), < «, forall n < w. If pwd M £ x we
write pwd 91 > k. We say that 91 has finite partition width if pwd 9 < R,.

We will consider a structure to be tree-like if it has finite partition width.

Example. The partition refinements for linear orders and trees given in the above
example have n-ary partition width 1, for every n. Hence, linear orders and trees
are tree-like. Grids are a prime example of structures that are not tree-like. We
will show in Lemma 3.2 below that every grid has a large partition width.

We can transfer bounds on the partition width from a structure 90 to its sub-
structures since each partition refinement of 9 induces partition refinements of
the substructures of )t whose width does not increase.



Lemma 2.4. If M € N and pwd N < « then pwd M < «.

We will consider a structure to be tree-like if it has finite partition width. The
following result shows that, for finite signatures, this notion coincides with the
interpretability in some tree.

Theorem 2.5 ([6, 4]). Let 9 be a structure with finite signature. N has finite
partition width if and only if there exist an ordinal o, a set P € 2~%, and a monadic
second-order interpretation T with

M=Z(2°%%,P).
We conclude this section with two technical results which will be used below.

Lemma 2.6. Let « := ti} (A/U). There exists a set U, € U of size |U,| < k + R,
such that, for all a,b € A",

tp,(a/Us) = tpy(b/Us)  implies tp,(a/U) = tp,(b/U).

Proof. Fix a sequence (4%)q<, of tuples a* € A" such that, for every b e A",
there exists a unique index « with

tp,(a"/U) = tp, (b/U).
By induction on «, we will define finite sets C,, € U such that, for all § < «,
tp,(a%/Cea) # tp4 (3 /Cea)

where C., := U<y C;i. Then the set U, := C., has the desired properties.
To define C,, we consider two cases. If there is no index 8 < « with

tp4(a/Cea) = 19 (0" /Cua)

then we can simply set C, := @. Otherwise, there is exactly one such index f.
Since

tp,(a*/U) # tpy(aF |U)
there are some formula ¢(%, 7) € A and parameters ¢ € U with
ME ¢(a,¢) < ~¢(b,¢).

We set C, = C. O

Lemma 2.7 ([3]). Let k be an infinite cardinal, A a set of formulae of size |A| < «,
and A,B © M sets. If tip(A/B) > 2" then there exist a formula (%, ) € A, a
number m < w, and tuples a” € A" and b* € B™, forv < x*, such that

ME g(a*,b*) < -p(a",b"), forallu<v.

3 CODING AND INDISCERNIBLES

In the presence of a definable pairing function the monadic second-order the-
ory of a structure is quite complicated. It is highly unlikely that we can develop
a structure theory covering such structures. In [1] Baldwin and Shelah started
an investigation of the monadic theories of structures without pairing function.
Continuing their work we studied indiscernible sequences in [3]. Let us briefly
summarise these results.

Definition 3.1. A structure 9t admits coding if there exist an elementary exten-
sion 91 > M, unary predicates P, and infinite sets A, B, C € N such that in the
structure (N, P) there exists a first-order definable bijection A x B — C.

It is not difficult to show that structures admitting coding have large partition
width. A weak version of the converse will be established in Theorem 6.3.

Lemma 3.2 ([6, 4, 8]). If 9 admits coding then
(a) pwdIN >R,
(b) for every cardinal x, there exists an elementary extension 2 > 9N with
pwd It > k.

A first simple criterion for coding is the independence property.

Lemma 3.3 (Baldwin, Shelah [1]). If 90 has the independence property then it
admits coding.

It turns out that in structures which do not admit coding indiscernible se-
quences are well-behaved.

Theorem 3.4 ([3]). Suppose that I does not admit coding. Let (a")yer be an in-
discernible sequence over U. For every element c, there exist a linear order ] 2 I
and an indiscernible sequence (b”c"),c; over U such that b = ", for v € I, and
c=c", for somev € J.



Corollary 3.5 ([3]). Suppose that 9 does not admit coding. Let (a*)ye1 be an indis-
cernible sequence over U. For every element ¢ such that (a"), is not indiscernible
over U u {c}, there exist a linear order ] 2 I, an indiscernible sequence (b") ey
with b" = @", for v € I, and a unique index s € J such that

M e (e, b[a]) < ¢(c, b[7]),
for all formulae ¢ over U and all tuples i1, v € J with ord(sit) = ord(sv).

Definition 3.6. Let ¢(x) be a formula and (a"),es a sequence. We define

[p(a)ver={vel| Mk g(a")}.

Corollary 3.7 ([3]). Suppose that 9t does not admit coding and let (a")yer be an
indiscernible sequence over U where the order I has no minimal and no maximal
element.

For each element ¢ and all formulae ¢(x, y) over U, one of the following cases
holds:

. |[¢(c, d”)}]v| <1
o |l=p(e.a)| <3
o [o(c,a")]y is an initial segment of 1.

o [o(c,a")]y is a final segment of I.

4 INDISCERNIBLES AND THE COMMUTATION
ORDER

In [3] we introduced an equivalence relation Xy S « x a on the components of
an indiscernible sequence of a-tuples. In the present section we define a linear
preorder <y refining this relation. Let us recall the results of [3] (see also [8]).

Definition 4.1. Let (a"),c; be a sequence of a-tuples indexed by a linear order I.

(a) We denote the order type of 7 € I"™ by ord(¥) and its equality type by equ(?).
Forsets C,D ¢ I, we write C < D if ¢ < d, forall c € C and d € D. Analogously,
we define i1 < v for tuples i1, v C I.

(b) The sequence (a"), is properif a“ na” = @, foru  v.

(c) For v € I'", we set

a[p] = (a*,...,a").

For J € I and s € I we define
a[Jl:==(a")yg and af[<s]:=(a")y<s-

The terms a[>s], a[<s], and so on, are defined analogously.
(d) For v € I, we set

a(v) = (a;")i<a-

Definition 4.2. (a) Let 9(%°, ..., %) be a formula where each %' is an a-tuple
of variables. A sequence (a"),¢; of a-tuples is g-indiscernible if, for all indices
@', v eI i < k, withord(a° ... ") = ord(¥°...7%"), we have

M= g(a(i),... (1)) < p((5°),..., a(V))

If A is a set of such formulae we call (a"),¢; A-indiscernible if it is ¢-indiscern-
ible, for every ¢ € A.

We adopt the usual convention of working in a sufficiently saturated monster
model M into which we can embed every model 9t under consideration. All ele-
ments and sets are tacitly assumed to be contained in M. By an U-automorphism,
we mean an automorphism 7 of M with 7|y = idy. We will frequently use the
following standard facts from model theory.

Lemma 4.3. Let (a") s be an infinite indiscernible sequence over U and let P be its
minimal U-partition. For every family (B, ) pep of strictly increasing maps B, : I —
I, there exists a U-automorphism m such that

n(a"],) = af ™,

Lemma 4.4. Let (3")yc be an indiscernible sequence over U. For every order em-
bedding o : I — ] there exists an indiscernible sequence (b"),e; over U such that
b*™) = &, forv el

The relation { @" | v € I} is usually not definable but we can define relations
{a"|, | vel} for certain subsets p C «.

Definition 4.5. (a) A partition of a set X is a set P € (X)) such that X = UP
and p N g = g, for distinct p, q € P.
(b) Every partition P on X induces the equivalence relation

xw~py :iff thereissome pe Pwithx,yep.



(c) We order partitions P and Q of X by
PcQ :iff w~pCwg.

Definition 4.6. Let (a"),¢; be a sequence of a-tuples and let ¢(x°,...,x%) be
a formula where each &' is an a-tuple of variables. A ¢-partition of (a"),s is a
partition P of & such that

M o(a(a°),...,a(d")) < o(a(@°),...,a( ")),
for all indices @', #' € I, i < k, such that
ord(it°|, ... ﬁk|p) =ord(v°], .. .0k|p), forevery pe P.

Let A be a set of formulae. A A-partition is a partition P that is a ¢-partition,
for every ¢ € A.

Theorem 4.7 ([3]). Forevery infinite A-indiscernible sequence (a") e, there exists
a unique minimal A-partition P.

Definition 4.8. Let (a"),cs be an infinite A-indiscernible sequence of a-tuples
and let P be the minimal A-partition of & corresponding to (a"),.

(a) The elements of P are called A-classes.

(b) We set <, := ~p. Two indices i and k are A-dependent if i <, k. Otherwise,
they are A-independent.

(c) If A is the set of all first-order formulae over U we also also speak of U-
partitions, U-classes, U-independent indices, etc. and we write X instead of x,.

Remark. Let (a")ye; be an infinite indiscernible sequence over U. For every U-
class p, the sequence (a"|,)er is indiscernible over U U |, [I].

Theorem 4.9 ([3]). Let (a"),e; be an infinite g-indiscernible sequence of a-tuples
and suppose that ¢ has r free variables. For each @-class p and every finite subset
q C p, there exists a formula x,(%; y, z, Z) with the following property.

If§, t € I" are strictly increasing r-tuples with § < t and

Ai:={al|lvel,s<v<i}, foriep,
then we have

M xq(Gals),a[t],A) iff ¢=a"|yforsomevelwiths<v<i.

In the absence of coding the relation of A-dependence is ‘local in the sense
that whether or not i X, k holds only depends on the sequence (a!a} )yes, not
onall of (a"),.

Proposition 4.10 ([3]). Suppose that 9 does not admit coding. Let (a"),c; be an
indiscernible sequence over U with |a"| = a, and let N C a. If P is the U-partition
of ("), then the U-partition of (a"|n),is{pn N |peP}.

The following criterion for coding will be used in Lemma 4.15 below.

Lemma 4.11 (Shelah [43]). Let (a") s be an infinite indiscernible sequence over U.
Suppose that there exists a U-class p, an element ¢ € M, a formula v over U, and
indices s < t such that

o Mevy(c,a’lpally),
o ME -y(c,a’ly,a’|,) for infinitely many v > t,
* Me -y(c,a’|p,a’l,) for infinitely many v <s.
Then M admits coding.
The results of [3] indicate that the relation Xy partitioning an indiscernible se-
quence into its U-classes is well-behaved for structures that do not admit coding.
In this section we introduce a refinement <y of Xy and we show that it linearly

preorders each U-class, provided that the structure in question does not admit
coding.

Definition 4.12. Suppose that (a"),c is an indiscernible sequence of a-tuples
over U. For sets p, q € « of indices, we define p 4y ¢ iff, for some/all s < t in I,
we have

tp(a’[,a’y /U ual<s]ual>t]) # tp(a'[,a’, /U ua[<s]ua[>t]).
For single indices i, k < a, we write i 4y k instead of {i} 9y {k}.

We start by showing that the U-classes are exactly the connected components
of this relation.

Lemma 4.13. Let (a"), be an indiscernible sequence of a-tuples over U. For i, k <
o, we have

ixpk iff idykorkdyi.

10



Proof. (<) follows immediately from the definition of Xy.
(=) Suppose that i gy k and k fiy i. We have to show that i %y k, i.e.,

tp(a;[i]ar[v]/U) = tp(ai[$]ak[t]/U),

for all 4,7,5,f ¢ I with ord(#) = ord($) and ord(v) = ord(#). As usual we
only need to consider the case that iz and ¥ differ at only one component. Hence,
consider indices

U < KUy KSKEL< Ve <o < V.
It is sufficient to show that

tp(a;[asv]ar[atv]/U) = tp(a;[asv]ax[asv]/U)

= tp(a;[atv]ax[usv]/U).

For the first equation, note that i #; k implies

tp(atay /U v a;[av])uar[av]) =tp(aia;/Uua;[av] ua[av]).
Similarly, k 4y i implies that

tp(aiay /U v a;[av]uar[av]) =tp(aja;/Uua;[av] uag[av]),
as desired. O

Lemma 4.14. Let (a"), be an indiscernible sequence over U.
(a) p Qu q implies that p, Qy q, forall p,. 2 pand q, 2 q.
(b) If pdy qurand q 4y rthen puq dy r.

(c) Ifpuqdyrandp fiy qthenp 4y qur.

Proof. (a) follows immediately from the definition.
(b) For s < v < t, we have

tp(a°|pa’|,a’|,/U v al<s]ual>t])
=tp(a'|pa’l,a’l,/Uva[<s]ua[>t]) (pdvqur)
:tp(ét|pdv|qas|,/UuEz[<s]ud[>t]) (qdur)
=tp(alpa’|sa’l, /Uva[<s]ual>t])  (pduq)
=tp(a'|,a'l,a’l,/Uva[<s]ua[>t]),

11

as desired.
(c) For s < v < t, we have

tp(a°[,a°|,a’|,/U v a[<s]ua[>t])
=tp(a’l,a’lga’l,/Uval<s]ual>t])  (puqdur)
=tp(a'lpa’lga’l,/Uval<s]ual>t])  (pduq)
=tp(a'|,a’lya’l,/Uva[<s]ual>t]),  (qdur)
as desired. O

Lemma 4.15. Suppose that M does not admit coding and let (a") 1 be an indis-
cernible sequence of a-tuples over U. Let p,q € aand i € o. If p fiy q then

pu{i} du qorp gu qu{i}.
Proof. Wlo.g. assume that I is dense. Fix s < t in I. Since p 4y q we have
tp(a'l,a’ly/Uual<s]ual>t]) =tp(a’|,a’l,/Uval<s]ua[>t]).
Hence, there exists an element ¢ such that
tp(a'|,a’|yc/Uual<s]ua[>t]) = tp(a’|pa’|yaj/U ua[<s]ua[>t]).

For a contradiction, suppose that p U {i} <y g and p 4y qU {i}. Then there are
formulae ¢(x, 7,z) and y(%, y,z) over Uu a[<s]ua[>t] such that, fors < v < f,

Me o(a@ly, &g a7),  MeEy(d|pa’lg,ai),
My o(a’pa’lg,ar), M y(a'lp,a’lg,a).

Let u, be the maximal index u < s such that an element of a* appears in ¢ or y,
and let 4, be the minimal index u, > t appearing in ¢ or y. Then

M g(a'lp,a’lg,af) implies M o(a’|,,a"lg,a}) foru,<v<s.
Setting y := ¢ A v it follows that

M e x(alp,a’lg a7),
M x(a’p, a’lgai), fors<v<u,,
M x(a'lp,a’gai), foru, <v<s.

12



By choice of ¢ this implies that

M e x(a'p. a’lg.c),
M x(a"lp,a'g-c) s fort<v<u,

M y(a'lp,a’lg.c),  forug<v<s.

Therefore, we can use Lemma 4.11 to conclude that 9t admits coding. Contradic-
tion. |

Corollary 4.16. Suppose that I does not admit coding and let (a"), be an indis-
cernible sequence of a-tuples over U.

(a) pduidy qimpliesp <y g, forp,qS aandieca.

(b) dy linearly preorders every U-class.

Proof. (a) Suppose that p 4y q. Then we have p U {i} gy q or p 4y qu {i}, by
Lemma 4.15. In the former case, it follows by monotonicity that i fiy g while in
the latter case we have p 4y i.

(b) 4y is clearly reflexive. In (a) we have shown that it is transitive. Hence,
dy is a preorder. To show that it is linear on each U-class note that i Xy k implies
idy korkdy i. O

Corollary 4.17. Suppose that I does not admit coding and let (a"), be an indis-
cernible sequence over U.

(@) pdy qifandonlyifi dy q, for some i € p.
(b) iy qifandonlyifi <y k, for some k € q.
(c) pu qifandonlyifi <y k, for some i€ pandk € q.

Proof. (a) By monotonicity it follows that p 4y g implies i 4y g forall i € p. We
prove the converse by induction on |p|. Suppose that pu{i} <y g. If p 9y g then
the claim follows by induction hypothesis. Hence, we may assume that p ¢y q.
Since p U {i} <y q it follows by Lemma 4.15 that p iy qu {i}. If i #y q then we
would have p u {i} 4y g, by Lemma 4.14 (b). Consequently, we have i 4y q.

(b) The proof is analogous to (a). By monotonicity, i fiy q implies i ¢y k for
all k € g. We prove the converse by induction on |g|. Suppose that i 4y g u {k}.
If i dy q then the claim follows by induction hypothesis. Hence, we may assume
that i 4y q. By Lemma 4.15, it follows that {i, k} gy gq. If i 4y k then we would
have i #iy q U {k}, by Lemma 4.14 (c). Consequently, we have i 4y k.

(c) follows immediately from (a) and (b). O
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Since 4y is a preorder on each xy-class it follows that we can divide each U-
class into the classes of this preorder which we call strong U-classes.

Definition 4.18. Let (a"),¢; be an indiscernible sequence of a-tuples over U.
A strong U-class is an equivalence class for the relation

{{i,k)eaxa|idykandkdyi}.

We have shown above that every U-class is partitioned into one or several
strong U-classes that are linearly ordered by <y. Sets of the form a"|,, for a U-
class p, will be the building blocks of the partition refinement we will construct
in Section 6. To compute the width of the resulting partition refinement we have
to bound the type index ti} (a”|,/U U a[#v]) of such sets. This will be done in
the next theorem. Let us start with two technical lemmas that are needed in its
proof.

Lemma 4.19. Suppose that there are formulae ¢, yi, and y;, monadic parame-
ters P, and sequences (a")yer, (b™)nens (6"")vernens (€Y% )ver, and d satisfying
the following conditions:

o The sequence (a"c"* (") ,)yer is indiscernible over (b™), u d.
¢ Iand N are infinite.

There is some 0 € {=,#,<,>, <, >} such that

*

Me (b, e, ¢*,d) iff iok.

*

There are relations py € {=, <, >} such that
Meyi(cd,a’,d) iff  wuppv.
e Meyi(ct*,a",d,P) iff u=v.
Then M admits coding.
Proof. Set

A={a"|vel}, Cr={c"|vel},
By:={bl|neN}, Ci={c"|neN},

and Cy = U, Cy. The formula
9%(x,2) = Ax A \[Cizi AYi (25, x,d, P)]
k

14



satisfies

ME9*(a,¢) iff a=a"andé=¢"", forsomevel.
We also construct a formula ;. such that

MEgr(a,c) ff a=a"andc=c;" forsomevelandneN.
If px equals = then we can simply set

Vi(x,2) = Ax A Crz A (2, x,d) .
Suppose that p;. € {<, >}. Defining

y(x,x") = Ax A AX" AVZ[Qz Ay (2, x,d) = yi(z,x',d)],
where Q := { ¢/° | v € I }, we obtain a formula such that

MeE y(a,a’) if a=a"anda’ =a" for someu pyv.
Hence, we can set

Vi(x,2) = Ax A Crz A VX' [Ax = [x(x', x) < v (2, %', d)]].

Let N* := Z + N + Z be the extension of the ordering N by two copies of Z.
By compactness, we can find extensions (b"),en+ and (&"")yernen+ of (b™),
and (¢""),,, that behave in the same way with respect to the formulae y; and ¢.
W.lo.g. assume that [b"| and |¢*"| are minimal. Then (b"¢*"), forms a single
¢-class and, by Theorem 4.9, there exists a formula

n(9,2 ¢, b[m], &'[m], B,C")

with parameters B, C", ¢"*, b™,...,b™, and ¢"™°,...,é"™, for m € N* \ N,
such that

M e n(b,é e, b[m],é"[m],B,C")
if b=b"andé=¢", forsomeneN.

Set P/" := {c;" |vel}and

Co(x,2%,01) = Ax A 9" (x,2") A /\[P]:”"uf< A (x,up)].
ki
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Then we have
Me(a,éce) it a=a’, ¢ =¢", andé=c"[m],

for somevel.

Let #(x, 7,2, &%, b[m], &[], B, C) be the formula obtained from # by replac-
ing the parameter C} by the formula v/ and set

Then it follows that

Me ((a,b,¢,¢¢) iff a=a’,b=b",c=8", ¢ =¢&", and

Consequently, we have
M = 3y'32'3z" Jal(a, by, cz', 2%, )
iff a=a", b=0b),andc=cl", forsomevelandneN,
and 21 admits coding. O

Lemma 4.20. Suppose that there are sequences d, (a*)yer, (b" ) n<w> and (¢"")ver n<ol
and a formula ¢ satisfying the following conditions:

o (@’ (c"™) ) yer is indiscernible over (b™), U d.

o [ is dense and it has no least element and no greatest one.

o There is some p € {=,<,>} such that
ME@(a®,b",c"",d) iff upwv.

o Therearerelations o, € {=,<,>} and o_, 0, € {@,IxI,=,#,<,>,<,>} such

that
Me g(a’, bk, d)  iff  koon,
Me g(a, b5, ¢, d) iff ko n, foru<v,
Me g(a*, b5, ¢, d) if ko,n, foru>v.
Then M admits coding.
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Proof. We start by constructing a formula y such that
MeEy(a’,b",c"") and Mey(a*, b, ") foru+v.

Let A:={a"|vel},C°:={C"|vel},andC:={c""|vel,n<w}.If
p equals = then we can set

Y5 ,2) = V' (Ax' > (p(x, 7oz d) o ¥ = x)).
Clearly, we have 9 = y(a”, b", ") and, by indiscernibility, it follows that D
v(a¥, bk, &), forall u # v.
For p € {<, >}, we define
x(x,x") = Ax A AX  AVZ[COzZ A @(x',0°,2,d) = (x,b°,2,d)].
This formula satisfies
MEI(a,a’) iff a=a"anda =a’forsomeupv.
Hence, we can obtain the desired formula y by setting
Y(x,5,2) = V' [Ax' > (p(+', 7oz, d) > 9(x',x))].

Again, by indiscernibility, we have 90t # y(a*, b*, &™), forall u # v.
If we can show that the constructed formula y satisfies

M y(a’, b5, ") forallk + n,
then it follows that

M e y(a®, b5 ¢"") iff u=vandk=n,
and 2N admits coding. Hence, suppose that

M= y(a’, bk, ") forsomek <n.

Then o, = <. Fix some s € I. W.L.o.g. assume that |b"| is minimal. Then we can
use Theorem 4.9 to find a formula #( 7, z) (with monadic parameters) such that

Men(b,c) iff b=>b"andc=c", forsomen.
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Defining

9(9,§") = 3zn(y,2) A 3zn(y',2) A Vz(n(3',2) = 1(5,2))
we obtain a formula such that
Me9(b,b') iff b=b"andb' =b", forsomek<n.
If we define
(o(x,9,2) = Ax ACz A 32 (3, 2) ny(x, 3, 2),
{(x,7,2) = (o (%, 3, 2) AVF [ (%, 5 2) = 97, )],
then we have

M e ((a,l_v,c) if a=a",b=b",andc=c"",

forsomevelandn<w.

Again, I admits coding. i
The remaining case that M & y(a¥, b*, c'"), for some k > n, is handled sym-
metrically. O

Theorem 4.21. Suppose that (a"),¢; is a proper infinite indiscernible sequence
over U and let A be a set of formulae (over @) such that 211 < i where ik := || + 8,
is the number of first-order formulae over the signature X. If there exist a U-class p,
an index v € I, and a number n < w such that

tiy (a'],/Uval#v]) >«
then N admits coding.

Proof. By compactness, we may assume that I is dense without endpoints. Fix
n-tuples ¢"' € a”|,, for i < k™ such that

tp, (&' /Uua[zv]) tp,(c"F /U v a[#v]), forizk.

Choose some element d” € @"|, and indices s < v < t in I. To simplify notation
we set W := U U a[<s] U a[>t]. By indiscernibility, we have

tp, (&' /W) #tp,(&*/W), fori#k.
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For everys < u < t,let a, : I - I be an order isomorphism such that «,, (v) =
uand a,(x) = x, for x < s or x > t. Let m, be a U-automorphism such that
m,(a*) = a®™), forall x € I. For s < u < t, set ¢ := 7, (¢"") and d* := 7, (d").

By Lemma 4.13, all indices in the U-class p are related via 4. Hence, we can
find, for every i < x* and all k < n, a formula y (x, y,2), a tuple é, ¢ W,and a
relation p} € {=,<,>} such that

Dﬁt:y/};(czi,dv,é,i) iff up;;v.

By choice of x there exists a subset ] € x* of size |J| = * such that ! =y} and
pi = pi, forall i, € J. We denote this formula by y; and the corresponding
relation by py.

We can use Lemma 2.7 to find an infinite subset ], C J, a formula ¢ € A, and
parameters bi e W™, fori € J,, such that

Me (b, &) o ~(b', &%), fori<kin],.

By Ramsey’s theorem, there exists an infinite subset J, € ], and a relation o ¢
{=,#,<,>} such that

Me (b, %) iff iok,

for i, k € J,. There is a p-class H € [m + n] of the sequence (b'¢""); containing
indices j, ! with j < mand m < I < m+n.If we replace in b’ every component b
with [ € [m] \ H by by and we replace in ¢"' every component ¢}’ with m + [ €
[m + n] \ Hby c]° then we obtain two sequences that still satisfy

Me b, &%) iff iok.

Therefore, we may assume that there are sequences (b') e, and (¢"")ej, and
tuples b, € W and ¢} ¢ a*|, such that

Me o(b',b,, "%, e) if iok

and the sequence (b'¢""); has a single g-class. To show that 90t admits coding
we distinguish two cases.

First assume that, for every k, we can choose yy and é! such that é! = ¢,
for all i,/ < w. Then the sequences (b')ics,, (¢*")veries,> (¢%)ver, and (d¥)yer,
and the tuple b, é’ ... & _ satisfy the conditions of Lemma 4.19. Consequently,
M admits coding.
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It remains to consider the case that there is some k such that we cannot choose
the é; to be equal. Then we can find an infinite subset J, € J, and a relation
p €{=,#,<>,<,>} such that, for all i, ] € J,, we have

Meye(cl,d’,e) iff ipl.

The sequences (c}')ver,ies,» (€4 )ver> (€} )ies,» and (d")yer satisfy the conditions
of Lemma 4.20. Hence, 1 admits coding. O

5 FINITE SATISFIABILITY

One way to extend the notion of a non-forking type to arbitrary theories consists
in considering finitely satisfiable types. Of course, many properties of forking -
like symmetry and locality - are lost in this transition. Fortunately, sufficiently
many basic properties remain to make the notion useful. Except for a few minor
lemmas and changes of presentation all of the definitions and results in this sec-
tion are taken from [43, 44, 45]. We include some of the proofs for convenience.

Definition 5.1. (a) A type p is finitely satisfiable in a set A if, for every finite subset
Do S p, there exists a tuple a C A satistying p,.

(b) Let u be an ultrafilter over A* and let U € M be a set of parameters. The
average type of u over U is

Av(u/U) :={p(x,8) | ec U, [9(d,&)]aea €u}.

Example. (a) Suppose that 0t = (M, E) is a structure where E is an equivalence
relation with infinitely many classes all of which are infinite. Let U ¢ V ¢ M
be setsand a € M \ V an element with E-class [a]. The type tp(a/V) is finitely
satisfiable in U if and only if
¢ [a]nV =@ and U/E is infinite, or
¢ [a]nV £gand [a] n U is infinite.
(b) Let 90t = (M, <) be a dense linear order, U € V ¢ M sets,anda e M\ V.

The type tp(a/V) is finitely satisfiable in U if and only if, for all v,v' € V with
v <a <V, thereis someu € U withv <u<v'

The connection between average types and types that are finitely satisfiable is
given by the following lemma.
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Lemma s5.2. (a) U ¢ V implies Av(u/U) € Av(u/V).

(b) Let u be an ultrafilter over A* and U € M a set of parameters. Then Av(u/U)
is a complete a-type over U which is finitely satisfiable in A.

(c) For every partial a-type p over U which is finitely satisfiable in A, there exists
some ultrafilter u over A* such that p € Av(u/U).

The next two lemmas summarise the basic properties of finitely satisfiable
types that hold without any stability assumption.

Lemma 5.3. (a) Every a-type p over B which is finitely satisfiable in A can be
extended to a complete type q € S*(B) which is also finitely satisfiable in A.

(b) If tp,(Co/AUB) is finitely satisfiable in A and tp , (C,/AUBUC,) is finitely
satisfiable in AU C, then tp,(C, U C,/A U B) is finitely satisfiable in A.

According to the preceding lemma the extension and transitivity properties of
non-forking types generalise to finitely satisfiable types. In general, finitely satis-
fiable extensions are not unique. In order to have a unique extension we need the
additional requirement that in the set of parameters every type is realised. This is
statement (a) of the following lemma in the special case that B = &. Statement (b)
contains the dual transitivity property which, the notion of a finitely satisfiable
type being non-symmetric, also only holds under additional assumptions.

Lemma 5.4. Suppose that every type q € S3“(U) that is realised in V U A is also
realised in V U B.

(a) If the types p; :=tp,(B U ¢;/V U A), for i < 2, are finitely satisfiable in U
and tp(¢,/V UB) =tp(¢,/V U B), then p, = p,.

(b) If tp,(CuB/V UA)andtp,(C/V U B) are finitely satisfiable in U then so
istp,(C/VUAUB).
The following theorem is one of the main tools to construct finitely satisfiable

types.

Theorem 5.5 (Shelah). Let U € V be sets such that every type over U is realised
in V.Ifa € M and b € MP are tuples such that tp(a/U) is finitely satisfiable in U
and tp(b/ V) is finitely satisfiable in V then there are @', b’ ¢ M such that

* tp,(a'/U) = tp,(a/U),
* tp,(b/V) = tp,y (b/V),
o tp,(a'/V ub') is finitely satisfiable in U, and
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o tp,(b'/V ua') is finitely satisfiable in V.

The main focus of this section is on indiscernible sequences (a"), such that,
for every index v, the type tp(a”/U u a[<v]) is finitely satisfiable in U. Such
sequences can be thought of as an analogue of Morley sequences in the unstable
context. Some of the following results are only implicit in [43] so we include their
proofs.

Definition 5.6. Let U C V be sets. A fan over U and V is an indiscernible se-
quence (a"),e; over V such that, for all v € I, the type

tp(a®/V ual<v])

is finitely satisfiable in U.

Example. Consider the set Z x R with two binary relations
E:={((i,x),(i,y)) |i€Z, x,yeR},
<= { (), (6 9) [ x <y, ik e Z, 5,y € R).

Set U :=Z x (0,1) and V := Z x (—00,1). For v € I := (1,00) C R, let a” be an
enumeration of Z x {v}. The sequence (a" ), is a fan over U/ V.

Lemma 5.7 (Shelah [43]). Let (a")ye1 be a sequence of a-tuples and V a set. If
there exists an ultrafilter u over U% such that

tp(a"/Vual[<v]) = Av(u/V ual<v]), forallvel,
then (a"), is indiscernible over V.
Proof. We prove by induction on # that

tp(afs]/V) = tp(alt]/V),

for all strictly increasing sequences §, f € I". Let § = §'s,,_,, = #'t,_,and c C V.
By induction hypotheses it follows that

s1/V)

0(Zo, ..., Xy-13C) €tp(a

(afs
iff  {beU*|MEp(a[s'],b;é) }eu
iff  {beU*|MEega[f'],b;é)}eu
it  o(%o,...,%Xn-3¢) €tp(alt]/V). O
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A kind of converse to this lemma is given by the next result.

Lemma 5.8 (Shelah [43]). Let (a@"),e; be an infinite indiscernible sequence of a-
tuples. We can find a model N of size [N| = |Z| + |a| + R,, where X is the signa-
ture in question, such that N is disjoint from a[I] and, for every v € I, the type
tp(a”/N u a[<v]) is finitely satisfiable in N.

Proof. LetJ:=Iu{u,|n < w} bealinear order extending I such that
V< oo <Uy<-<U,<U <u,, forallvel.

Extend (@"),¢; to an indiscernible sequence (a"),¢;. Let 91 be a model contain-
ing (a@"),¢y and let 9" be an expansion of 9t by Skolem functions. Since (a") ¢
is an infinite indiscernible sequence over N, := U, <, @"“* we can choose the
Skolem functions such that the Skolem hull of N, is disjoint from a[I]. We claim
that this Skolem hull induces the desired model N.

To show that tp(a°®/N U a[<s]) is finitely satisfiable in N, let us suppose that

M* = p(a’,a[v], ¢)

where v, < -+ < v,_, < sareindicesin I and ¢ € N. Fix Skolem terms f such that
¢ =t(a%,...,a"), for some k. Since (a"),¢; is indiscernible it follows that

M* = g(a’,alv], #(a",...,a"))
implies
M* & p(as, afv], 1(a*,...,a")).
Since a**+ € N we are done. O

For every tuple a we can create a fan ("), containing 4.

Lemma 5.9 (Shelah [45]). Let U € V be sets and suppose that tp(a/U) is finitely
satisfiable in U. For every linear order I, there exists a fan (a")yer over U/ V such
that tp(a¥/U) = tp(a/U), for all v.

Proof. By compactness, it is sufficient to consider the case that I = w. Let u be the
ultrafilter such that tp(a/U) = Av(u/U). By induction on 1, we choose tuples a"
such that

tp(a"/Vua...a" ) = Av(u/Vua°...a"?).

By Lemma 5.7 it follows that (a") <, is a fan over U/ V. O
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The following two observations seem to be new.

Lemma s.10. For all disjoint sets A, U € M of size |U| = « and |A| > 2%, there
exists a set U, of size |U.| = x and elements a, b € ANU, such that tp(a/U,u{b})
is finitely satisfiable in U.,.

Proof. Fix an enumeration (a');.; of A. By the Theorem of Erdés and Rado we
have (2> ) - ((2¥)")%. Since A > (2> )* and there are at most 2* 2-types over U,
we can therefore find a subset I € A of size |I| = (2*)* such that,

tp(a'a*/U) =tp(a’a'JU), foralli<kandj<linI.

Fix indices s < t in I. By compactness there exists an indiscernible sequence
(b")i<w over U such that

tp(b'b*/U) = tp(a*a’/U), foralli<k<w.

Using a suitable U-automorphism we may assume that b° = a® and b* = a’. By
Lemma 5.8 there exists a set U, € U of size |U,| = |U]| that is disjoint from b[w]
and such that tp(b*/U, U {b°}) is finitely satisfiable in U,. O

Lemma 5.11. Let (a"),e; be a sequence of a-tuples and U C V sets such that, for
everyvel,

tp(a”/V ual<v])
is finitely satisfiable in U. If |I| > 2" then there exists a subset J € I of size |J| = |I|
such that the subsequence (") is indiscernible over V.

Proof. By Lemma 5.2 (¢), there exist ultrafilters u,, for v € I, such that

tp(a’/V ual<v]) = Av(u,/V ua[<v]).

Since there are only 22" ultrafilters on U® it follows that there is a subset J € I
of size |J| = |I] such that u, = u,, for all u,v € J. By Lemma 5.7 it follows that
(a@")yey is indiscernible over V. O

An important property of fans (a"),e; over U/V is the fact that, for every
tuple b < a[I], the type tp(b/V') is determined by the types tp(b n a*/V), for
vel
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Lemma 5.12 (Shelah [43]). Let (a"),e; be a fan over U/ V. Suppose that every type
over U is realised in V. Let i1, v € I" be finite strictly increasing tuples and s, t € I
indices with s < iV < t.

Ifb' € a% and ¢' € a", for i < n, are tuples with

,(B/V) = tp,(/V)  foralli,
then
tp,(b°...b" "V ua[<s]ua[>t])
=tp,(e°...¢" "V ual<s]ual[>t]).
Proof. First, we prove by induction on k that
tp,(b°... 6" V) =tp,(&°...c V).

By assumption, we have tp ,(b°/V) = tp,,(¢°/ V). Suppose that we have already
shown that tp, (b°... b5 /V) = tp,(é°...E51/V). By symmetry, we may as-
sume that vi_, < ux_,. Hence, u;,v; < uy, foralli < k. Since b’ € a% and &' c g%

it follows by indiscernibility that

tp, (BB° .55/ V) = tp, (B*e° ... ek V).

Furthermore, by Lemma 5.4 (a), the assumption tp,(b¥/V) = tp,(¢*/V) im-
plies that

tpA(Bk/V U C-O e L:k_l) = tpA(C'k/V U C—o L C_k_l) )
Combining these two equations we have
tpA(l_7° . ..l;k“/V) = tp,, (&° '”C-k_l/V)‘

Having shown that tp,(b°...5"/V) = tp,(¢°...c"*/V) we can apply
Lemma 5.4 (a) one more time to conclude that

tp,(b°...b" "V ua[<s]ua[>t])
—tp, (... V Ua[<s]ual>t]). 0

Corollary 5.13. Let (a"),er be a fan over U/ V. Suppose that every type over U is
realised in V. For every partition I = I, + I, + I, of I into three segments, we have

tip, (a[L,]/V uall,ulL,]) < HIVIHZ]
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Proof. If a,b c a[I,] then tp(a/V) = tp(b/ V) implies
tp(a/Vuall,ul,]) =tp(b/Vuall,ul,]).
Since there are at most 2! V1%l n-types over V the claim follows. O

The next lemma provides the connection between finite satisfiability and the
relation <y introduced in the previous section.

Lemma 5.14 (Shelah [43]). Let (a")yer be fan over U/ V with a := |a*|. Suppose
that every type over U is realised in V and let p, q € « be sets of indices.
Then tp(a"|,/V v a”|y) is finitely satisfiable in U if and only if p 4y q.

Proof. (<) Suppose that s < ¢ are indices with
tp(a’lpa’ly/V) = tp(a'lpa’ly/V)

and let ¢(%,a"|y) € tp(a’|,/V u a’ly). Then ¢(%,a’|;) € tp(a‘|,/V ua’ly).
Since this type is finitely satisfiable in U we can find some tuple b ¢ U such that
M = (b, a’|,;). Hence, tp(a°|,/U) = tp(a*|,/U) implies that MM & ¢(b, a"*|,).

(=) Iftp(a*],/V u a”|y) is finitely satisfiable in U then, by indiscernibility,
so is tp(a‘|,/V U a°|,). By definition of a fan tp(a*|,d°|,/V u a[<s]) is finitely
satisfiable in U. It follows by Lemma 5.4 (b) that so is the type

tp(ds\P/V ua'lyu d[<s]).

Since, for t > s, tp(a[>t]/V ua*|,a‘|, U a[<s]) is also finitely satisfiable in U we
can use Lemma 5.4 (b) again to show that so is

tp(a’l, ual>t]/Vua‘,ual<s]).

On the other hand, we know that the type tp(a'|, U a[>t]/V U a°|, U d[<s])
is finitely satisfiable in U, for all t > s. Therefore, Lemma 5.12 implies that

tp(a’l, ua[>t]/Vual<s]) =tp(a'[, ua[>t]/V ua[<s]).
Hence, it follows from Lemma 5.4 (a) that

tp(a’l, ua[>t]/Vua’l,ual<s]) =tp(a'|, va[>t]/Vual,ual<s]).
Consequently, we have

tp(a’|,a@’y/V ual<s]ual>t]) = tp(a'|,a’|y/V ual<s]ual>t]). O
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We use fans as a technical tool to investigate the properties of finitely satisfiable
types. The basic idea is as follows. Given some tuple a we construct a fan (¢"),¢;
over U/V with ¢° = 4. By the preceding lemma, tp(a|,/V U a|,) is finitely satis-
fiable in U if and only if p 4y g. In this way we can apply the results of Section 4
to study finitely satisfiable types.

Definition 5.15. For sets A, B, U € M, we write
Acy B :iff  tp(A/U U B) is not finitely satisfiable in U .

Theorem 5.16 (Shelah [43]). If 9 does not admit coding and A,B € M, c e M
then A ¢y Bimplies AU {c} %y Bor Ay Bu{c}.

Proof. Fix enumerations a of A and b of B.Let M, > M bean elementary exten-
sion such that every type over M is realised in M,. Since 91 is a model the type
tp(b/M) is finitely satisfiable in M. Hence, we can use Lemma 5.3 (a) to choose
a tuple b’ realising tp(b/M) such that tp(b’/ M, ) is finitely satisfiable in M. Let
a' be a tuple such that tp(a’b’ /M) = tp(ab/M). We apply Lemma 5.3 (a) again to
choose a tuple " realising tp(a’'/M ub’) such that tp(a” /M, ub’) is finitely sat-
isfiable in M. By Lemma 5.3 (b), it follows that tp(a”’b’ /M, ) is finitely satisfiable
in M. Finally, select an element ¢ such that tp(a”b’c’ /M) = tp(abc/M).

Let (d"),e; be a fan over M/M, with d° = a@"b'c’. By Lemma 5.14, we have
a" 4y b'. Hence, it follows by Lemma 4.15 that a”c i b or @” fiy b'c. By
Lemma 5.14, this means that at least one of

tp(a”c’/M,ub’) and tp(a’/M,ub'c)
is finitely satisfiable in M. Consequently, so is one of
tp(a”c'/Mub’) and tp(a”"/Mub’c).

Since tp(tif)c/M) = tp(a"b'c'/M) it follows that one of tp(ac/M U b) and
tp(a/M U bc) is finitely satisfiable in M. O

Lemmas.y. a %y {b} and ab ¢y ¢ implies a ¢y bé.

Proof. Fixaset V 2 U in which every type over U is realised. By Lemma 5.3 (a),
we can find a tuple @’ realising tp(a/U u {b}) such that the type tp(a’/V u {b})
is finitely satisfiable in U. In the same way we obtain a tuple a”b" realising
tp(a’b/ V) such that tp(a”b” [V u¢) is finitely satisfiable in U. By Lemma 5.4 (b),
it follows that tp(a”'/V u b"¢) is finitely satisfiable in U. Since tp(abé/U) ¢
tp(a”b" ¢/ V) the result follows. O
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Corollary 5.18. Suppose that I does not admit coding.
(a) IdeMbEMC-ﬂ’lel’ldEMC-.
(b) Ifacm b then a; Sy l_a,forsome i.

(c) Ifacy b then a b, for some i.

Proof. (a) Suppose that @ ¢, ¢. By Theorem 5.16, we have ab %) ¢ or a % bé.
It follows that b %), ¢ or @ %, b.

(b) Wl.o.g. we may assume that a and b are finite tuples. We prove the claim
by induction on |a|. Suppose that ac Sy b. As @ ¢ be and ¢ &5 b would imply
that ac % b it follows that we have @ S5 bc or ¢ y b. In the latter case we are
done. Assume that a =, be. Together with dc &y b it follows from Theorem 5.16
that a ¢, b. By induction hypothesis, there is some a; S b.

(c) Wlo.g. we may assume that @ and b are finite tuples. We prove the claim
by induction on |b|. Suppose that @ €y be. If @ Sy ¢ then we are done. If
dc Sy b then Theorem s5.16 implies a £ b and, by induction hypothesis, there
is some i with @ 5 b;. Hence, we may assume that dac %y band a 2, c. But,
by Lemma 5.17, this implies that a %, be. Contradiction. O

Corollary 5.19. If 9 does not admit coding then Sy forms a preorder on M\ M.

Proof. The reflexivity of £) follows immediately form the definition, and we
have seen in Corollary 5.18 that it is transitive. O

6 LINEAR DECOMPOSITIONS

In this final section we prove our main result. We show that the partition width
of any structure 91 that does not admit coding is bounded by 2> If we could
improve the bound to a finite partition width then this would solve Seese’s conjec-
ture. We will construct the desired partition refinement of 91 inductively from
partial partition refinements.

Definition 6.1. Let 9 be a structure and A, C € M.
(a) A partial partition refinement of A is a system (U, ),cr of subsets U, € A
indexed by a tree T € 2% with the following properties:

* U() = A,
e U,=U,,uwU,,forallv e T (where weset U, := @&, forw ¢ T),

e U, =Ny, U, if |v| is a limit ordinal.

28



(b) Let (U, )yer be a partial partition refinement of A. The n-width of (U,),
over C is the cardinal

w,((U,),/C) := sugeti"(Uv/CU (ANTY)).

Lemma 6.2. Suppose that I is a structure with a finite signature that does not
admit coding. Let k be an infinite cardinal and A € M a set of size |A| > 2> such
that

tix (A/M N A) <k, forallfinitesets Aandalln < w.

There exists a partial partition refinement (U, )yer of A such that
o w,((Uy)y/M~ A) <27, forall n,

o ifvisaleafof T then U, c Aandti} (U,/M\ U,) < R, for all finite sets A
of formulae and every n < w.

Proof. Fix an increasing sequence (A;);<, of finite sets A; € FO with union
Uicw 4i = FO. By Lemma 2.6, we can fix sets C; € M \ A, for i < w, of size
|Ci| = « such that, for a,b € A,

tpy,(a/Ci) = tPAi(B/Ci) implies tp, (a/M~ A) = tPA,-(l;/M NA).
Let C,, := Ui, C;i and choose a model C,. 2 C,, of size |C,| = . It follows that
tp(a/C.) = tp(b/C.) implies tp(a/M\ A) =tp(b/M \ A).

By Lemma 5.10 we can find a set C 2 C, of size |C| = « and elements a,b «
A~ C such that tp(a/C u {b}) is finitely satisfiable in C. Let D, 2 C be a set
such that every type over C is realised in D,. We can choose D, of size [D,| <
2%, By Lemma 5.3 (a) there is an element a’ realising tp(a/C u {b}) such that
tp(a’/D, U {b}) is finitely satisfiable in C. Let 7 be a (U u {b})-automorphism
with 7(a’) = a and set D := n[D,]. Then tp(a/D u {b}) is finitely satisfiable
in C and every type over C is realised in D.

Fix an enumeration a of A and an |A|-dense linear order I, i.e., a linear order I
such that, for all subsets X < Y of I of size |X|,|Y]| < |A|, there is some element
i € Iwith X < i < Y. We can use Lemma 5.9 to find a fan (a"),¢; over C/D with
tp(a”/C) = tp(a/C). By applying suitable automorphisms we may assume that
Ac a[l]and, forallv € I, the set A, := " n (A C) is either empty or it consists
of a single strong C-class. By Corollary 5.13, we have

tin(UveHAv/D u UvsI\HAv) < 2|D| < 22“;
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for every convex subset H C I. Furthermore, the fact that tp(a/Du{b} ) is finitely
satisfiable in C implies that a € A, and b € A,, for some u # v. Hence A, c A,
forallvel

Let o := |I|* and fix an antichain J € 2°% such that (I,<) 2 (], <jex). Let
n : I - ] be the corresponding bijection and let T € 2% be the prefix closure
of J.Forv € T, we set

Uy = U{ Ay [v=n(u)}.

Then (U, ),er is a partial partition refinement of A such that

ti"(U, /M U,) =ti"(|J A,/Cu | Au) <27,
ueH uelNH
where H := {u e I|v < n(u) }. Furthermore, if v € T is a leaf then v = 5 (u), for
some u € I, and Theorem 4.21 implies that

tih (U,/ M\ U,) =tiy (A, / MNA,) <Ry,
for all finite sets A of formulae and every n < w. 0

Theorem 6.3. Let M be a structure with a finite signature. If 9N does not admit
coding then pwd 9 < 2>°.

Proof. We construct a partition refinement (U, ), of 9 with pwd,, (U, ), < 22",
for every n. If M| < 22" the claim is trivial. Therefore, we may assume that
M| > 22", By Lemma 6.2, there exists a partial partition refinement (U, )yer,

of M of the desired width. If v € T, is a leaf then we have ti} (U,/M \ U,) < R,
for all finite A and #, and we can use the lemma again to find a partial parti-
tion refinement of U, of the desired width. This partial partition refinement can
be inserted into the first one. We repeat this procedure until we obtain a partial
partition refinement (U, ), with |U,| < 2>, for all leaves v. Then we can use

arbitrary partition refinements of the leaves U, to complete it to a partition re-
finement of 9. U

In conjunction with Lemma 3.2 it follows that there exists a dichotomy be-
tween axiomatisable classes with a bounded partition width and those with an
unbounded one.

Corollary 6.4. Let T be a complete first-order theory over a finite signature. If
T has a model 9 with pwd 90T > 2> then pwd N is unbounded when I ranges
over all models of T.
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7 CONCLUSION

We have shown that there exists a dichotomy between structures with a definable
pairing function and structures with small partition width. This can be seen as a
weak form of Seese’s conjecture. Unfortunately, the bound on the partition width
we obtained in rather high.

Open Problem. Try to improve the bound of Theorem 6.3 to pwd T < R,,.

Note that a lower bound is given by the grid & := (Z x Z, E) where

E={{{i.k), (D) | |i=jl+|k=1[=1}.

The graph & does not admit coding and its partition width is X,.

This example shows that our methods are not sufficiently strong to prove the
original form of Seese’s conjecture. Note that in the above example there are no
first-order definable pairing functions, but there is an MSO-definable one. Hence,
to resolve the conjecture it seems to be necessary to modify the definition of
admitting coding to include MSO-definable functions.
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