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Preface + v

PREFACE

HE INVESTIGATION OF monadic second-order logic started
T around 1960 with the work of Biichi, Elgot, McNaughton, and Ra-
bin on the monadic theories of the natural numbers and the infinite
binary tree. This research revealed a close connection between MSO
and automata theory leading to automata-based decision procedures
for a wide range of monadic theories. A wealth of applications of
these results ensued in the fields of modal logic and automatic veri-
fication. Not only did many decidability results directly follow from
the decidability of the MSO-theory of the binary tree, but also the
automata-theoretic techniques employed by Biichi and Rabin could
be adopted to obtain efficient decision procedures for weaker logics.

As far as further development on monadic second-order logic itself
is concerned, Shelah gave new proofs of their results by purely model
theoretic means and, together with Gurevich, they investigated the
monadic theory of linear orders. In another article Baldwin and She-
lah computed Hanf and Lowenheim numbers for monadic theories.
Finally, a stronger version of Rabin’s theorem was given by Muchnik.

In a separate line of research which developed out of the study
of graph grammars, Engelfriet, Seese, and Courcelle investigated the
monadic second-order theory of certain classes of graphs and the
relationship between these theories and well-known complexity mea-
sures from graph theory.

Let us summarise the work on monadic second-order logic done
so far. There have been three main lines of research.

(a) The investigation of specific structures.

+ The natural numbers with successor (w, suc) and expansions
by certain unary predicates [11, 36, 14].

¢ The binary tree (25, suc,, suc,) [61].
¢ The real line (R, <) and other linear orderings [70, 43, 45].
+ Grids [53].

(b) Constructions on structures that preserve monadic properties.
+ Interpretations [60, 24].

+ The composition method [70].

*

Unravellings of transition systems [26].

*

Substitutions [31].
« Inverse rational substitutions [15].

+ The construction of Muchnik [69, 78].
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(c) Algebraic and model theoretic research.
¢ The computation of Hanf and Léwenheim numbers [2, 1].

¢ Algebraic classification of graphs with decidable GSO-theory
[68].

¢ The monadic theory of sparse graphs [28].

¢ Definability and axiomatisability for certain classes of graphs
[20, 22].

In the present thesis we will concentrate on this last topic by
investigating the question of which monadic theories are simple. In
particular, we are looking for theories that are decidable or at least
simple enough that we are able to derive structure theorems.

We propose to draw the line between simple and complicated
theories by defining that a structure has a simple monadic theory if
and only if it can be interpreted in some (possibly infinite) coloured
tree.

The class of structures obtained this way generalises the class of
graphs of bounded clique width which was originally defined by
Courcelle, Engelfriet, and Rozenberg [30] via graph grammars. Later
on Courcelle [24] proved that every class of finite graphs of bounded
clique width can be interpreted in a suitable class of finite trees. In the
same vein, we will introduce terms denoting arbitrary relational struc-
tures and we show that a structure can be denoted by a term if and
only if it is interpretable in some (possibly infinite) tree. Furthermore,
we obtain an equivalent characterisation via hierarchical decompo-
sitions of the structure which can be used to define a complexity
measure, called partition width, which provides our generalisation of
the notion of clique width.

The intuitive idea that structures interpretable in a tree have a sim-
ple monadic theory is supported by several model theoretic results
we obtain for this class. Finiteness of partition width is preserved
by elementary embeddings and we will prove a compactness theo-
rem for structures of finite partition width. Furthermore, no such
structure has the independence property or, equivalently, infinite
VC-dimension, that is, in no structure of finite partition width it is
possible to encode, in a first-order way, all subsets of some infinite
set by single elements.

After having obtained a class of simple structures the obvious next
question is whether this characterisation is precise. That is, we would
like to prove that all other structures have a complicated monadic
theory. We conjecture that every structure of infinite partition width
contains arbitrarily large finite MSO-definable grids. This would imply
that the full second-order theory of the class of finite sets can be
interpreted in the monadic second-order theory of every structure
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of infinite partition width. In particular, every such structure would
have an undecidable MSO-theory. Therefore, a proof of this conjecture
would settle the conjecture of Seese [68] which states that every graph
with decidable MSO-theory has finite clique width.

We try to obtain an answer to this question by developing a theory
of connectedness based on cuts and separations that is symmetric
with regard to edges and non-edges. After sufficient preparations of
this kind we are able to translate the core of the original proof of
Robertson and Seymour’s Excluded Grid Theorem from tree width
to partition width. Despite these encouraging results, both, a full
analogue of the Excluded Grid Theorem and the conjecture itself
remain open.

In the second part of the thesis we turn to the investigation of
subclasses consisting of structures with decidable monadic theory
that, furthermore, admit a finite representation. Mainly, we will con-
sider the class of structures that can be interpreted in the complete
binary tree without additional unary predicates. We will study alge-
braic properties of these structures including a characterisation of
all linear orders contained in this class. We will also show that every
such structure can be finitely axiomatised in guarded second-order
logic with cardinality quantifiers.

The organisation of this thesis is as follows. We start in Chapter 1 by
giving a survey on several variants of monadic second-order logic. We
will present operations on structures that preserve monadic proper-
ties and, after introducing the required automata-theoretic concepts,
we prove an extension of the theorem of Muchnik which is one of the
strongest decidability results in logic known today.

After these logical prerequisites we give an introduction to the
theory of graph grammars in Chapter 2. We present several classes of
graphs defined by such grammars, define the notion of clique width,
and compare the clique width and the tree width of a given graph.

In Chapter 3 we start to develop a model theory for monadic
second-order logic by generalising the concept of clique width from
countable graphs to relational structures of arbitrary cardinality. We
study how this new measure, which we call partition width, behaves
under certain operations on structures, and we give an existential con-
dition for large partition width. As far as model theoretic questions
are concerned, we show that a variant of partition width is invariant
under elementary extensions and compactness, and we prove that no
structure of finite partition width has the independence property.

The main open problem in the field of clique width is Seese’s
conjecture which states that a graph with decidable MSO-theory has
finite clique width. In Chapter 4 we make some progress in this
direction by developing a theory of cuts and connectedness suitable
for dealing with clique width. This allows us to transfer the main part
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of the proof of Robertson and Seymour’s Excluded Grid Theorem
from tree width to partition width. Nevertheless, both a full analogue
of the Excluded Grid Theorem and Seese’s conjecture remain open.

In the last part of the thesis we investigate structures of finite
partition width that can be encoded by a finite amount of informa-
tion. In Chapter 5 we define a hierarchy of classes of such structures
and present several algebraic characterisations of the class of tree-
interpretable structures, the lowest class in this hierarchy. In particu-
lar, we will study paths in tree-interpretable graphs and we derive a
characterisation of all tree-interpretable linear orders.

The final chapter is devoted to the proof that every tree-inter-
pretable structure is finitely GSO(3*)-axiomatisable. We show that
the cardinality quantifiers are really needed and we present some
simple applications to the automorphism group of a tree-interpretable
structure.
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1 FIRST- AND
SECoOND-ORDER LoOGIC

FTER FIXING OUR NOTATION we will present some variants
A of monadic second-order logic and give an overview over their
properties. We will investigate operations on structures and their
effect on monadic theories, and we will present decidability results
for monadic theories based on these operations and on automata-
theoretic techniques.

1.1 NOTATION AND CONVENTIONS

Let us recall some basic definitions and fix our notation. Let [n] :=
{o,...,n —1}. We tacitly identify tuples a = a,...a,_, € A" with
functions [n] - A and frequently we write a for the set {a,, . .., a,_, }.
This allows us to write @ € b or @ = b|; for I € [n]. The length of a
sequence a € A% is |a|] = a. The complement of a set X is denoted
by X. Recall that the a-fold iterated exponentiation J,(x) is defined

by
2o(k)=x and J,(x) = sup{z:“‘(") | B<a}.

We will use this notation also for finite x.

For the most part, we will only consider relational structures 9t =
(M,Ro, R,,...). The set of relation symbols {R,, R,,...} is called
the signature of 9. When speaking of the arity of a structure or
a signature we mean the supremum of the arities of its relations.
A transition system is a structure of arity at most 2. We reserve the
term (directed) graph for is a transition systems & = (V; E) with a
single edge relation. If E is irreflexive and symmetric then we call &
undirected.

Logic. MSO, monadic second-order logic, is the extension of first-
order logic FO by quantification over sets. In places where the exact
definition matters — say when considering the quantifier rank of a
formula — we will use a variant without first-order variables where
the atomic formulae are of the form Y = Z,Y ¢ Z,and RX,, ... X,,_,,
for set variables X;, Y, Z and relations R. Using slightly nonstandard

Ja(x)
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semantics we say that an atom of the form RX holds if there are
elements a; € X; such that a € R. Note that we do not require the X;
to be singletons. Obviously, each MSO-formula can be brought into
this form.

By FO and MSOy we denote the fragments of the respective logic
that consists of those formulae with quantifier rank at most k.

The(9N) is the £-theory of a structure M. We denote the fact
that 0 is an £-elementary extension of M1 by M <¢ 1, and we set
m =g N 1fTh,3(9ﬁ) = Thg(m)

If £ is a logic containing MSO then we denote by £(3“) the exten-
sion of £ by the predicate | X| > X, and the logic £ + C extends £ by
predicates of the form | X| = k (mod m) for all k, m < w. We adopt
the convention that |X| = k (mod m) is false for infinite sets X.
Hence £ + C subsumes £(3%). Finally, £(3") is the extension of £ by
first-order quantifiers 3 meaning “there exist at least A many?, for all
cardinals A.

We denote the relativisation of a formula ¢ to a set X by ¢*.
A formula ¢(%) where each free variable is first-order defines on a
given structure 9 the relation ¢™ = {a | M = ¢(a) }.

TrREEs. Let« be a cardinal and « an ordinal. By x** we denote the
set of all functions f — « for < a. The empty sequence is denoted
by €. For x, y € k<%, we write x < y if x is a prefix of y, and the longest
common prefix of x and y is denoted by xm y. If x = yz then y7'x := z.
By x/k we denote the prefix of x of length |x| — k.

Let <jex be thelexicographic order, and <j; the length-lexicographic
one, that is,

x<py ciff [x|<|y|, or |x|=|y|andx <ex y.

A (directed) tree is a partial order (7, <) whose universe T C <% is
closed under prefixes. Sometimes we also add the successor functions
suc(x) = xc for ¢ < k. Labelled trees are either represented as
structures (T, <, (P;)ien ) with additional unary predicates P; for each
label i € A, or as functions t : T — A.

An undirected tree is an undirected graph that is acyclic and con-
nected. An undirected tree is called fernary if all non-leaves have
degree 3.

Let Y be a signature. A Y-term is a labelled tree T — Y such that
the number of successors of a node w € T equals the arity of its label.
The tree T is called the domain of the term. Note that terms may be
infinite.

RAMSEY’S THEOREM. Letx, A, y, and y be cardinals. We denote
by x — (/,t)?( the fact that, given any colouring of the set

Pre) ={Xck||X| =1}
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using x colours, there exists a subset Z < « of size y such that all
sets X € £,(Z) have the same colour. In order to avoid clumsy
descriptions we further define

R(m)g =min{n|n-> (m)g}

Recall that Ramsey’s theorem states that R(m)g < W, for finite values
of m, d, and p.

1.2 GUARDED SECOND-ORDER LOGIC AND
TREE WIDTH

Guarded logics were introduced as generalisations of modal logics. In
the course of this programme Gridel, Hirsch, and Otto [41] defined
guarded second-order logic which, on sparse structures, i.e., structures
whose relations contain few tuples, can be considered as a generali-
sation of monadic second-order logic. Restricted to graphs this logic
coincides with the logic MS,, a variant of monadic second-order logic
defined by Courcelle where one can also quantify over sets of edges.

Definition 1.2.1. Let 91 be a relational structure.

(a) A tuple a € M is guarded if there exists a relation R of 9t and
some tuple ¢ € R such that a ¢ ¢. The relation R may be the equality
predicate =. If we want to specify the relation witnessing guardedness
we say that the tuple a is guarded by R.

(b) A relation S € M" is guarded if every tuple a € S is guarded.

Note that every singleton a € M is guarded by = and, consequently,
so is every unary relation A € M.

Definition 1.2.2. Guarded second-order logic, GSO, has the same syn-
tax as full second-order logic, but semantically all second-order quan-
tifiers are restricted to range only over guarded relations.

Remark. For finite signatures, there exists a formula y(X) that states
that the tuple X is guarded. Therefore, by requiring that every second-
order quantifier is of the form

(3R.Vx(Rx —» y(x))) or (VYRVx(Rx - y(%))),

we can replace the semantic restriction in the definition of GSO by a
purely syntactic one.

Lemma 1.2.3. MSO S GSO.

R(m);l

guarded tuple

guarded relation

guarded second-order logic
GSO
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Proof. Since every unary relation is guarded it follows that we can
use unrestricted set quantifiers in GSO. O

Example. For graphs guarded quantification amounts to quantifica-
tion over sets of vertices and sets of edges. Hence, we can, for instance,
express that a graph & = (V, E) contains a Hamiltonian cycle by the
GSO-sentence

3H[VxVy(Hxy — Exy) A Vx3 " yHxy A Vx3~'yHyx
AVX((3xXx A VxVy(Xx A Hxy - Xy)) - VxXx)]

To every relational structure we can associate two transition sys-
tems in a natural way.

Definition 1.2.4. Let 9t = (M, R, R, ... ) be a structure.

(a) The Gaifman graph of 9 is the graph G(9N) = (M, E) whose
edge relation E consists of all guarded pairs of 9.

(b) The incidence structure of 2 is the structure

ml— = (‘/) (ni)i: Ro; Rl; cee )

where

¢ the universe V consists of all guarded tuples of 9 (note that,
in particular, M c V),

¢ m;: V — M c V is the projection to the i-th coordinate, and

¢ the relations R; € V are considered as unary predicates.

Note that every guarded tuple in G(90) is also guarded in 9.
Therefore, we can translate GSO-formulae over G(90t) to formulae
over M.

Similarly, each guarded relation S € M" in 9t corresponds to a set
S ¢ VinM7Z and, conversely, everyset S € V can be written asa union
S =U; S; of guarded relations S; € M™. Using this correspondence
we can translate GSO-formulae over 9T to MSO-formulae over 9%
and vice versa. In that way, GSO can indeed be considered as a variant
of MSO.

Lemma 1.2.5. Let 9 be a structure of finite signature.
(a) For every formula ¢(x, Z) € GSO, there exists a GSO-formula
99 (%, Z) such that

GOM) = (@ S) iff Mee9(@aS)

for all tuples a € M and all guarded relations S; € M™.
(b) For every formula ¢(%, Z) € GSO, there exists an MSO-formula
@ (%, Z) (where each Z; is considered as set variable) such that

MeE (@S if Mee’as)
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for all tuples a € M and all guarded relations S; € M"™.
Conversely, every MSO-formula over 9T can be translated into a
corresponding GSO-formula over M.

There exists a strong link between guarded second-order logic and
the notion of tree width introduced by Robertson and Seymour [63].

Definition 1.2.6. Let 91 be a structure.

(a) A tree decomposition of M is a family (F, ),er of subsets F, € M
indexed by an undirected tree T that satisfies the following condi-
tions:

* UveT FV =M.
¢ Foreveryae M, theset{ve T | aeF,}isconnected.

¢ For every guarded tuple a € M, there exists a node v € T such
thata € F,.

(b) The width of a tree decomposition (F, )7 is the number
twd(F,), =sup{|F,|-1|veT}.

(The —1 has historical reasons. Its only effect is making notation
slightly more complex.) The tree width of 9 is the minimal width of
a tree decomposition of M.

Lemma 1.2.7. For every structure I, we have twd 9t = twd G(9N).

Proof. Every tree decomposition of 91 is also a tree decomposition
of G(9M). Conversely, one can show that, if (F,), is a tree decom-
position of G(9), then, for every clique X € M in the Gaifman
graph, there exists a component F, with X C F, (see, e.g., Diestel [33],
Lemma 12.3.5). Hence, (F,), is also a tree decomposition of M. ]

One important characterisation of tree width is the Excluded Grid
Theorem of Robertson and Seymour [64]. The following improve-
ment is by Robertson, Seymour, and Thomas [66].

Theorem 1.2.8 (Excluded Grid Theorem). Let 01 be a structure of tree
width twd M > 20> . Then G(IN) contains an n x n grid as minor.

It follows that the GSO-theory of every structure of infinite tree
width is undecidable.

Theorem 1.2.9 (Seese [68]). If M is a structure of infinite tree width
then its GSO-theory is undecidable.

tree decomposition

width

tree width
twd 9
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Proof. Let & = (V;, E) := G(M) be the Gaifman graph of 9. Every
minor §) of & can be encoded by three relations:

o the subset V, € V of those vertices that are not deleted,
¢ the subset E, C E of those edges which are not deleted, and
¢ the subset E, € E, of those edges that are contracted.

Given V,, E,, and E,, every sentence ¢ € MSO over ) can be translated
into an MSO-formula y(V,, E,, E,) over & such that

Hee iff BSey(V,, E,E).

Hence, the MSO-theory of the class M of minors of G(2) can be
interpreted into the GSO-theory of 9. By the Excluded Grid Theorem,
M contains the class C of all finite grids. Since K is finitely MSO-
axiomatisable, it follows that Thyo (KC) is interpretable in Thgse (997).
A simple encoding of domino problems shows that the former is
undecidable (see Seese [67]), and the result follows. |

Definition 1.2.10. A structure 9 is uniformly k-sparse if
|R|X| <k|X],
for every set X € M and all relations R.
Lemma 1.2.11. Planar transition systems are uniformly 7-sparse.

Proof. Consider a finite substructure 2 with n vertices and fix some
edge relation E). The {E, }-reduct (A, E,) of 2 is a directed graph
whose underlying undirected graph has at most 31— 6 edges (see, e.g.,
Diestel [33], Corollary 4.2.7, or Bollobas [9], Theorem I.16). Taking
possible self-loops into account (of which there are at most n) it
follows that (A, E) ) has at most 7n — 12 edges. O

Lemma 1.2.12. Let I be a transition system with m binary relations.
Iftwd 90t < k then 9 is uniformly (k> + k)-sparse.

Proof. Let M, € Mt and let (F,),er be a tree decomposition of M1,
of width at most k such that F,, ¢ F, for all nodes u = v. If |[M,| < k
then there is nothing to prove. Otherwise, fix an arbitrarynoder € T
and consider T as directed tree with root r. For every directed edge
(4, v) in this tree we can fix some element a € F, \ F,. That way
we obtain an injective function mapping the edges of T into M,. It
follows that |T| < |M,| + 1. Let E := U,er F, x F,. Then E is of size
|E| < k2( |M,| + 1) and every edge relation Ej of 91, is contained
in E. Consequently,

M, ,
|Ex | £k2(|MO|+1)sk2(|MO|+ | T |):(k +0)IMo|.
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Courcelle [28] has shown that GSO collapses to MSO on uniformly
k-sparse graphs.

Theorem 1.2.13. Let k < w. For every sentence ¢ € GSO there exists a
sentence € MSO such that

Mee iff Mey
for every uniformly k-sparse transition system 9.

Corollary 1.2.14. If the GSO-theory of a transition system 9N is decid-
able then GSO collapses to MSO on .

Proof. By Theorem 1.2.9, the decidability of Thgso (9F) implies that
k := twd 9t < N,. Hence, by Lemma 1.2.12, 9 is uniformly (k> + k)-
sparse, and the result follows from the preceding theorem. O

1.3 FUNCTORS

One approach to investigate the theory of a given structure 9t con-
sists in showing that 1 can be obtained from structures with known
theories by operations that are compatible with the logic under con-
sideration. In the present section we will introduce several operations
which allow us to compute the £,-theory of 9 from the £,-theory
of another structure for certain logics £, and £,.

Definition 1.3.1. Let £, and £, be logics. An (£,, £,)-functor is an
operation F on structures with the following properties:

(1) There exists an effective function mapping each £,-sentence ¢
to a sentence (pf € £, such that

FOMEee iff Meo” for every structure 9.

(2) F preserves elementary embeddings, i.e., M <g¢ I implies
FON) =g, F(N).

If £, = £, we will simply call F an £,-functor.
Remark. If F is an £-functor and 9t =¢ N, then F(M) = F(N).

Example. The following operations on structures fit into the frame-
work of functors.
(1) Reducts. If Misa r-structure and 7, < 7 then, for any reasonable
logic £, the 7,-reduct F(M) := M|, is an L-functor with ¢p7 = .
(2) Definable expansions. A sequence y;(%), i € I, of MSO-formulae
induces the MSO-functor F(9M) = (M, (y™);). We obtain ¢” by
replacing each new relation by the formula y; defining it.

(Lo, £1)-functor
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(3) Definable substructures. For every w(x) € MSO, we can define
the MSO-functor F(9) := M|, mapping a structure M to the
substructure defined by y. We can compute ¢” by relativising every
quantifier to y.

(4) Factorisation by definable equivalence relations. Each formula
y(x,y) € MSO defining an equivalence relation induces an MSO-
functor F(9) := M/y™ where ¢ is obtained from ¢ by replacing
every equation t = ¢’ by the formula y(# ¢) and by restricting set
quantifiers to sets closed under the equivalence relation defined by y.

(5) We have seen in the previous section that the operation which
associates to a structure its Gaifman graph is a GSO-functor, and the
mapping to the incidence structure is a (MSO, GSO)-functor.

(6) If all formulae in (2) - (4) are first-order then these operations
are FO-functors.

(7) The operations (1) - (3) are also (MSO + C)-functors.

1.3.1 INTERPRETATIONS

We combine the operations (1) - (4) of the previous example into a
single one.

Definition 1.3.2. Let £ be alogic, and 7 and o relational signatures.
(a) A (one-dimensional) L-interpretation is a sequence

T =(8(x), &(xy), (r(%))rer)

of £-formulae of signature 0. Given a g-structure 97 it defines the
T-structure

Z(M) = (87 (9 rer) /€™

To make this expression well-defined we require that ¢ is a congru-
ence of the structure (6™ (¢3")r).

(b) A structure 91 is L-interpretable in 9N if there exists an L-inter-
pretation Z such that 9t = Z(90N). In this case we write Z : 91 <¢ IN.
The epimorphism (6™ (¢7")r) — I induced by the isomorphism
Z(9M) = Nis called coordinate map and also denoted by .

(c) Aninterpretation 7 is injective if the coordinate map is injective,
ie,ife(x,y)=x=y.

Since every composition of £-functors is again an £-functor, it fol-
lows that MSO-interpretations are MSO-functors and FO-interpreta-
tions FO-functors. We even have the stronger result that the function
¢ = ¢” can be extended to formulae with free variables.
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Interpretation Lemma. If7 : A <50 B then
A= o(Z(b)) iff B ¢?(b) forallp e MSO andbc ™.

In particular, MSO-interpretations are MSO-functors. The same holds,
if we replace MSO with FO. Finally, if L is injective then we can also
translate (MSO + C)-formulae.

We illustrate interpretations by considering structures interpreta-
bleinatree (a«<f, <, P). These will play an important role in Chapter 3.

Lemma 1.3.3. Let « and f3 be ordinals.
(@) (a<P, <) <po (25%, <, P) for some unary predicate P.

(b) (<, =, (suc;)ices P) <so, (a<P, <, P, Q) for suitable unary pred-
icates Q;, i < a.

Proof. (a) Let h : a<P — 2<% be the function which replaces in
7 € a<P each y; by the sequence 1% 0. Then for x, y € «~F we have

x=<y iff  h(x)<h(y).

Setting P := rng h we obtain the desired interpretation.
(b) Let Q; := {wi | we a<P} for i < a. Then

suci(x,y) it x<yAPyn-z(x<z<y). O

1.3.2 PrRoDUCTS

In general, products only preserve first-order theories. To obtain
MSO-functors we consider the special case of products by a fixed
finite structure.

Definition 1.3.4. Let 971 be a o-structure and 91 a 7-structure. The
product of M and N is the structure

M x N = (M x N, (RO)REO') (Rl)Re-r’ o> =1)
with relations

R® = { ((am bo): s (ah br)) |
R' = { ((aw bo)» cees (ah br)) |
(a, by =, (a,b') :iff a=d,
(a, by =, (a, by :iff b=V

Aor...,a,) €R™},

(
(bos...,b,) € R™Y,

product
M x N
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Mostly, we will consider the special case that 91 = [m] is a
finite set. By m x 91 we will denote the product 9t x 91 where
M = ([m],0,...,m—1) is the set [m] enriched by constants for
every element.

If 901 is a finite structure then the operation F(N) := M x N is an
MSO-functor.

Lemma 1.3.5. Let 9 be a finite structure and Nt an arbitrary one. For
every formula (X, ..., Xn—,) € MSO an all sets Aq,..., Ay, S M
there exists a formula ¢ (X) € MSO such that

M xNE @B, - .., Buy)

lﬁr N = (Pno(Bo)...no(B,,ﬂ)(ﬂl (Bo)) ] ﬂl(Bﬂ—l)) >

where 1o : M x N = M and m, : M x N — N are the projections on
the respective coordinate.

Proof. We construct ¢;(X) by induction on ¢. For atomic formulae
we have

(R°X); = true ifAy x--xA,,NRM &,
A false otherwise,
(RX); =RX,
(X =0 Y); = true if A, nf41 +J,
false otherwise,

X=Y); =XnY=+0.
Boolean combinations remain unchanged

(pAv)a =9arya,
(-¢)a =,

and for quantifiers we have

AYp)a =37 V 9ap,

PecM

(YY9)i =YY A ¢ap. 0

PecM

Interpretations in trees are closed under products with finite struc-
tures.

Lemma 1.3.6. Let Z : M <y50 (2%, suc,, suc,, R) for arbitrary rela-
tions R. If M is a finite o-structure then

M x N <pso (259, suc,, suc,, R).
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Proof. Let Z = (8(x), €(x,¥), (¢r(X))rer)- W.lo.g. we assume that

M = [n]. We code the element (k, w) € [n] x 2<% by the word wioF.

Let yx(x, y) be the formula stating that x = y10*. We obtain an
interpretation

I {8, €, (Pro)reor (PR)rers PLr @L)
of M x M in (2°¢, suc,, suc, ) by defining

Mm=w®mAywmw)

(xy) = EIuEIv(s(u, V) AV (wi(x u) Ay (n, V))) ,

k<n
Pre(X) = V NAwi(xi 1),
keRM i
9 (@) =3(pr(G) A V Avi(x1),
ke[n] i

¢, (xy) = 3”3V]>/(Wk(x» u) Ay v)),

oL (%, y) = EIuEIv(s(u, V) A k\l/ (v (x, u) Ay (y, v))) . 0

1.3.3 ITERATIONS AND UNRAVELLINGS

The next operation, introduced by Muchnik, arranges disjoint copies
of a structure in a tree-like fashion.

Definition 1.3.7. Let 0t = (M, R,, ... ) be a 7-structure. The iteration
of M is the structure M* := (M=, suc, |, R%, ... ) of signature 7* :=
7 W {suc, cl} where

suc:={(wwa) | we M=, ae M },
cli={waa | we M~“, ae M},

R; == {(wao,...,wa,) | we M=*, a€R;}.

The fact that iterations are MSO-functors is one of the strongest

decidability results for monadic second-order logic currently known.

We will defer the proof until Section 1.6 since it requires techniques
we have not yet introduced.

Theorem 1.3.8 (Muchnik). For every sentence ¢ € MSO one can
effectively construct a sentence ¢* € MSO such that

M it M e  forall structures IMN.
Corollary 1.3.9. If 9 =50 N then IM* =y50 -

m*
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We give three examples of decidability results that immediately
follow from this theorem. The first one is Rabin’s tree theorem.

Theorem 1.3.10 (Rabin). The monadic second-order theory of the bi-
nary tree T, = (2°%, suc,, suc, ) is decidable.

Proof. Let 9 := ([2], P,, P;) be the structure with binary universe
and predicates P, := {c}. Its iteration is the tree

M* = (2%, suc, cl, P, PY)
into which we can interpret ¥, by defining
suc(x, y) = suc(x, y) APly.

Since the MSO-theory of the finite structure 9 is decidable so is the
one of ¥,. O

A generalisation is the theorem of Le Tourneau [77] and Shelah [70]
stating that the theory of all trees is decidable.

Theorem 1.3.11. The monadic second-order theory of the class T of all
trees (T, <) with T € k=%, for some cardinal x, is decidable.

Proof. Let ¢ € MSO. We have ¢ € Thyso(T) iff
(K9, <) £ YX(“X is prefix-closed” — ¢*) forall .

Hence, it is sufficient to show that the MSO-theory of the class of all
trees of the form (x<, <) is decidable. Actually, by the same reasoning
we only need to consider such trees with x > X,,.

We claim that (¢, <) =ys0 (N5, <) for infinite x. Let 9T, be the
structure of size k¥ with empty signature. By an Ehrenfeucht-Fraissé
game we can show that 91, =50 My, for all ¥ > N,. It follows that
I =wso My, - Since T = (k°¢, <) <yso My, for an interpretation 7
that does not depend on x we have (=%, <) =ys0 (N5, <) as desired.

We have seen that ¢ € Thyso (7)) iff

(RS9, <) & VX(“X is prefix-closed” — ¢*).

By Muchnik’s theorem, the decidability of Thyo (9, ) implies the
one of Thy;so (N5Y, <), . O

By contrast, the theory of trees x** with & > w is undecidable.

Theorem 1.3.12. The monadic second-order theory of any class K con-
taining some tree (k<%, <) with k > 1 and o > w is undecidable.
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Proof. Shelah [70] has shown that the first-order theory of arithmetic
is interpretable in the monadic theory of the real line (R, <). Since
(R, <) <pso (259*, %, Py, P,) where P, := {wc | w € 25 } it follows
that Thyso (25, 5, Po, P,) is undecidable. Let y(X, Y,, Y1) € MSO
be a formula stating that the substructure induced by X when ex-
panded by the unary predicates Y, and Y, is isomorphic to the tree
(259", <, Py, P,). It follows that, for ¢ € MSO,

(%", 2) = 9(Po, Py)
iff VXYY VY, (y(X Yo, Yy) = ¢ (Yo, V1)) € Thyso(K). O
The last applications concerns unravellings of transition systems.

Definition 1.3.13. Let 91 = (V, (Ey)), P) be a transition system. Its
unravelling is the forest

U = (V¥ () PY)

whose universe consists of all finite paths through 1. The relations
are

Ey = {(wa, wab) | wab e V", (a,b) € E, },
Pl :={waeV" |aecP;}.
Theorem 1.3.14. The operation of unravelling is an MSO-functor.

Proof. We construct an MSO-interpretation Z : U(9M) <yso IM*.
First, we define a formula y, (x, y) stating that x = wa and y = wab
for some edge (4, b) € E,. From wa we can define the element z = waa
with the help of the clone relation and then state that (waa, wab) € E}.

(%, y) = Fz(suc(x, z) Acl(z) AEjzy).

The reflexive and transitive closure < of the relation suc is also MSO-
definable. The set of all paths through 91 is given by the formula

8(x) = Vsz(suc(y, Z)nz=x->\/, v z)) ,
and the relations of ¢/ (901) can be defined by
95, (% y) = 8(y) Aya(xy),
¢p, (x) == 8(x) A Px. O

The next lemma shows that iterations and interpretations com-
mute.

Lemma 1.3.15. IfZ : MM <ys0 N is an injective interpretation then
there exists an injective interpretation T* : IM* <ys0 I*.

unravelling
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Proof. LetZ = (8(x), (pr(X))r). To construct

I* = (6"(x), Pluc(®% 1), @ (x)s (9R(%))r)
we set

0% (x) = VyVz(suc(y z) Az <x > & (2)),
Pouc (% y) = suc(x, y),
pa(x) = cl(x),

9r(®) = J(A\sucnxi) A 93(®)).

where < is the reflexive and transitive closure of suc in 91* and
y” denotes the relativisation of y to the set { z | suc(y z) }. O

1.3.4 GENERALISED SUMS

All operations presented so far construct one structure from another
one. Next we will describe a quite general and versatile way to com-
pose a structure out of many different parts. Transferring results of
Feferman and Vaught [39] from products and first-order theories to
unions and MSO-theories, Shelah [70] introduced the composition
method in order to prove in a uniform way all of the decidability
results for monadic second-order known at that time. For a readable
overview see [75, 44].

A generalised sum of a sequence (91;);; of structures consists of
their disjoint union where we add an equivalence relation ~ whose
classes are the components M;. Furthermore, the index set I may be
an arbitrary structure J whose relations are also added.

Definition 1.3.16. Let J be a g-structure and (901;) ;e a sequence of
7-structures indexed by elements of J.
The generalised sum of (9N;);es is the structure

Lg m; = (M ~, (R%)Reg> (RI)RET)

with universe N :=U{ (i, a) | i € I, a € M; } and relations
(h,a)~ (G b) :iff i=j,
R® == {((io» @0), .-, (ir, @r)) | (ioy...,ir) €R” },

R :={((i,a0),...,(ha)) | (ao,...,a,) eR™ }.
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Example. Let J = (I,<) and M; = (M;, <), i € I, be linear orders.
We can express the ordered sum 9 := ¥;; 9; by a generalised sum
followed by an interpretation. Since a < b holds in 9 iff either

a€M;and b e My fori<k,
or a, be M;anda < binI;,

we obtain an interpretation Z : Y;; M; <mso Uieg M; by setting

p<(x,y) =x<"yv(x~yrx<y).

Below we will state a theorem which shows that the monadic
theory of a generalised sum can be computed from the theories of
its components and the index structure. For the precise statement we
need a refinement of the quantifier hierarchy.

Definition 1.3.17. (2) Let k € w<“. We define the fragment MSO;, of
monadic second-order logic by induction on |k|.

MSO; consists of all formulae of the form Jy, -+ Iy, (X, ) where
¢ is quantifier free; and MSOy,, is the set of all formulae of the
form 3Y, -+ Y, 9(X, Y) were ¢ is a boolean combination of MSO-
formulae.

(b) Let 90 be a structure, P € (M), and k € w<. The k-type of P
in 91 is the set

tp (/M) = { p(X) € MSO; | M &= p(P) }.

We are able to reduce the MSOj-theory of U; 90; to the MSO;-
theory of a certain expansion of the index structure J.

Definition 1.3.18. Let J be a o-structure and (901;);¢; a sequence of
7-structures. For sets Py, ..., P,_, € iy M; and k € 0<%, we define
the k-expansion J;(P) = (J, Q) of P as the expansion of J by unary
predicates

Qi :={iel| tpp(Plp,/MM) =1t} for every k-type t.

Shelah [70] has proved the following theorem which shows that
generalised sums can be regarded as a kind of MSO-functor.

Theorem 1.3.19. Let 0 and 7 be finite signatures, J a o-structure, and
(9M)ier a sequence of T-structures. Let N := Uiey M.

For every k € w=® we can compute a sequence i1 € w= such that, for
every P < N, the k-type tpi (P/N) can be determined effectively from
the MSO;,-theory of J;(P).

MSO;

k-type

k-expansion
I(P)
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1.4 TREE AUTOMATA

The original proofs of the decidability of the monadic theories of
(w, suc) and T, := (2<%, suc,, suc, ) by, respectively, Biichi and Rabin
made use of finite automata (for an overview see [74, 76, 42]). Let us
briefly recall their results. When dealing with binary trees we will use
the following automaton model.

Definition1.4.1. A nondeterministic parity automaton for binary trees
is a tuple A = (Q 2, 4, g0, 2) where Q is a finite set of states, X is
a finite input alphabet, A € Q x X x Q x Q is the transition relation,
o is the initial state, and Q : Q — [n] assigns to every state g a
priority Q(q).

Arunof Aonatree T : 2% - Xisatreep: 2 — Q such that

p(€) = go and
(p(w), T(w), p(wo), p(w1)) € A forall w e 2.

p is accepting if, for every maximal chain C € 25, the number
min{c<w | (Qop)*(c)nCisinfinite } is even.

Finally, a labelled tree T : 2<“ — X is accepted by A if there exists
an accepting run of A on T.

In order to decide Thyso(T,, P), for unary predicates P, we have
to encode the P; by a labelling of 2<¢.

Definition 1.4.2. For sets P,, ..., P,_, € 2, let Tp be the {°[n]-la-
belled binary tree with

T(w):={i<n|weP;} for w € 2%,
If P; = {a;} is a singleton we also write Tj.
The theorem of Rabin can now be stated in the following way:

Theorem 1.4.3 (Rabin). For each MSO-formula ¢(X, x), we can effec-
tively construct a nondeterministic parity automaton A recognising the
language { Tp, | T, = ¢(P,a) }.

For the proof of Muchnik’s theorem we need a more general au-
tomaton model that runs on iterations of structures. In particular,
the inputs are arbitrarily branching trees and, because of the clone
relation cl, we need transition functions that depend on the current
position in the input tree. Walukiewicz [78] introduced a fairly power-
ful class of automata which satisfies our needs. Since these automata
are actually too general we have to restrict them to a suitable subclass
in the next section.
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Let B*(X) be the set of infinitary positive boolean formulae over X,
i.e., all formulae constructed from X with disjunction and conjunc-
tion. An interpretation of a formula ¢ € B*(X) isasetI € X of atoms
we consider true.

Definition 1.4.4. A tree automaton is a tuple
A = (Q} Z) M) 6; qo; W)

where the input is a tree M<¢ — X, Q is the set of states, ¢, is the
initial state, W € Q is the acceptance condition, and

8:Qx 2 - B (QxMM™

is the transition function which assigns to each state q and every
input symbol ¢ a function (g, ¢) : M<“ - B*(Q x M). Frequently
we will write 6(g, ¢, w) instead of §(g, ¢)(w).

Note that the transition function and acceptance condition of these
automata are not finite. To obtain finite automata we will represent
the transition function by an MSO-formula and consider only parity
acceptance conditions in the next section.

In order to define the language accepted by such an automaton we
introduce games.

Definition 1.4.5. A game G = (V,, V,, E, W) is a graph whose uni-
verse V := V, b V, is partitioned into positions for, respectively,
player o and player 1. W € V¢ is the winning condition. We assume
that every position has an outgoing edge.

The game G starts at a given position v,. In each turn that player
the current position v belongs to selects an outgoing edge (v, u) € E
and the game continues in position u. The resulting sequence 7 € V¢
is called a play. Player o wins a play 7 if m € W. Otherwise, player 1
wins.

A strategy for player i is a function o that assigns to every pre-
fix vo, ..., v, of a play with v, € V; a successor v4; = 0(Vo, ..., Vy)
such that (v,, vu4,) € E. 0 is positional if o(wv) = o(w'v) for all
sequences wv, w'v whose last position is the same. A winning strategy
is a strategy o such that, whenever player i plays according to o, then
the resulting play is winning for him, regardless of the moves of the
opponent.

Below the winning conditions will mostly have the following form:

Definition 1.4.6. A function Q : ¥ — [n] induces the parity condition
W < 2 which consists of all sequences (¢;)i<w € 2 such that the
least number appearing infinitely often in the sequence (Q(c¢;))i<w is
even.

tree automaton

game

play
strategy

positional strategy

winning strategy

parity condition
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A parity automaton is a tree automaton A = (Q 2, M, 8, qo, W)
where W is a parity condition. In this case we sometimes write
A=(Q 2 M3, qo, Q). Similarly, a parity game G = (V,,, V,, E, Q) is
a game with a parity winning condition.

The importance of parity winning conditions stems from the fact
that all games with a parity condition are determined and the corre-
sponding winning strategies are positional [37, 55].

Theorem 1.4.7 (Determinacy of parity games). For every parity game
G = (V,, Vi, E, Q) there exists a partition W, U W, of the universe such
that player i has a positional winning strategy o; for all plays starting
in a position v € W;.

Furthermore, Walukiewicz [78] has shown that the winning re-
gion W, of a parity game (V,, V,, E, Q) can be defined by a -calculus
formula. In monadic fixed point logic it takes the form (assuming an
even number of priorities)

LFPz, - GFPz, . \/ nk(x, Z)

k<n

with #7x == Qpx A [Vox = Fy(Exy A Zry)] A [Vix = Vy(Exy - Ziy)]

where Q) = Q7'(k) is the set of positions of priority k. For a detailed
definition of fixed point logic see [34]. The formula LFP ,¢(x, Z)
denotes the least set P such that we have a € P iff the formula ¢(a, P)
holds. Analogously, GFP defines the greatest such set. Both of these
operators can obviously be expressed in monadic second-order logic.

Definition 1.4.8. Let A = (Q %, M, §, 4o, W) be an automaton and
T : M= — X atree. The detailed game G (A, T) is defined as follows:
(a) The set of vertices is

(QUB*(QxM)) x M=“.

V, consists of all pairs (g, w) € Q x M<“ and all pairs of the form
(¢, w) where ¢ is either atomic or a disjunction, and V; consists of
all pairs where ¢ is a conjunction.

(b) The initial position is (qo, €).

(c) Each node (g, w) has the successor (8(q, T(w), w), w). The
successors of nodes (A @, w) and (V @, w) consist of all positions
(¢, w) with ¢ € . Finally, the successor of nodes ((g, a), w) with
atomic formulae is (g, wa).

(d) Let (&, wi)i<e be a play. Consider the subsequence (&;,, Wi, ) k<w
of positions where &, = gy is a state. The play is winning if the
sequence qoq, ... isin W.

The language L(.A) recognised by A is the set of all trees T such
that player o has a winning strategy for the game G(A, T).
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Sometimes it is more convenient to use a simpler game where
several moves of the same kind are replaced by a single one. Both
versions of the game are obviously equivalent.

Definition 1.4.9. Let A = (Q, 2, M, &, go, W) be an automaton and
T : M<® — Xatree. Assume that ¢ is in disjunctive normal form. The
abridged game G(A, T) is defined by replacing conditions (a) and (c)
in the above definition by:

(a’) The sets of verticesare V,, := QxM<“ and V, := P(QxM)x M=,

(c") Each node (g, w) € V, with 8(g, T(w), w) = V; A @; has the
successors (@;, w) for each i. The successors of a node (@, w) € V,
are the nodes (g, wa) for (g, a) € .

In the remainder of this section we will present results of Walukie-
wicz [78] showing that automata, as defined above, are closed under
union, complement, and projection. This property is needed in the
next section in order to translate formulae into automata. We start
with unions.

Definition 1.4.10. Let A; = (Q;, 2, M, 6, 99, Wi), i = 1, 2, be tree
automata. Their sum is the automaton

AO + Al = (Ql u Q2 o {qo}) Z; M} 8) qo) W)
where

8(q ¢, w) =08i(q ¢, w) forg e Q;,
8(q° ¢ w) = 85(qo, & W) v 8i(q7, 6 w)

and W consists of all sequences ¢,¢,4. ... such that g, = ¢° is the
initial state and q?¢,q, ... € W; for some i.

Lemma 1.4.11. L(A, +A,) = L(A,) UL(A,).

Proof. NotethatG(A,+A,, T) consists of disjoint copies of G (Ao, T)
and G(A,, T), and a new initial position from which player o has to
choose one of the two subgames. Obviously, each winning strategy
for player o in G(A,, T) or G(A,, T) is also a winning strategy in
G(A, + A,, T). On the other hand, if ¢ is a winning strategy for
player o in the compound game it is also winning in either G(A,, T)
or G(A,, T) depending on which subgame player o chooses in his
first move. O

Complementation is easy as well.

Definition 1.4.12. Let A = (Q,_Z, M, 8, 4o, W) be an automaton. Its
complement is the automaton A := (Q Z, M, 6, g,, W) with

8(q ¢, w) = 8(q, ¢, w) and W:=Q\W.

abridged game
GAT)
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Here g denotes the dual of ¢, i.e., the formula where each A is replaced
by v and vice versa.

Lemma1.4.13. TeL(A) iff T ¢L(A).

Proof. Let G(A, T) = (V,, Vi, E, W). Note that in G(A, T) the roles
of player o and 1 are exchanged. V, consists of all former V,-nodes,
and V, contains all V,-nodes except for the atomic ones. Since the
latter have exactly one successor it is irrelevant which player they are
assigned to. Thus, each choice of player o in the old game is made by
player 1in the new one and vice versa. Hence, a winning strategy o for
player o in G(A, T) is a strategy for player 1in G(A, T) which ensures
that the resulting play induces a sequence in W = Q“ ~ W. Thus, ¢ is
winning for 1. The other direction follows by symmetry. O

The closure under projections is the hardest part to prove. The
projection II(L) of a tree language L is the set of all trees T : M<“ — X
such that there exists a tree T’ : M= — X x [2] in L with

T'(w) = (T(w), c,y) for somec,, € [2] and all w € M<“.

The proof is divided into several steps. We prove closure under
projection for nondeterministic automata, and show that each alter-
nating automaton can be transformed into an equivalent nondeter-
ministic one.

Definition 1.4.14. An automaton A := (Q, 2, M, 8, q,, W) is nonde-
terministic if each formula 8(g, ¢, w) is in disjunctive normal-form
V; Ak (gik> aix) where, for each fixed i, all the a;; are different.

Definition 1.4.15. Let A = (Q X x [2], M, §, go, W) be a nondeter-
ministic automaton. Define Ap == (Q, X, M, 81, 4o, W) where

0n(g ¢, w) :=8(q (c,0), w) vd(q (¢ 1), w).
Lemma 1.4.16. L(Ap) = II(L(A))

Proof. (2) Let o be a winning strategy for player o in G(A, T).
G(Am, II(T)) contains additional vertices of the form (¢, Vv ¢;, w)
where ¢; = 6(q, (¢, i), w). By defining

(9o V @1, w) == ¢; for the i with T(w) = (¢, 1)

we obtain a strategy for player o in the new game. This strategy is
winning since, if one removes the additional vertices from a play
according to the extended strategy, a play according to ¢ in the
original game is obtained which is winning by assumption.
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() Let 0 be awinning strategy for player o in G( Ay, T). We have to
defineatree T" € L(A) with T = TI(T"). Since Ay is nondeterministic
the game has the following structure: Ateach position ((g, a), w) with

8(q T(w), w) = V; Ae(qik-> aik)

player o chooses some conjunction Ax(gi, aix) out of which player 1
picks a successor (gix, aix). Thus, for each word w € M<“ there
is at most one state g such that a play according to o reaches the
position (g, w). Suppose that 6(¢, V ¢,, w) = (¢;, w) where ¢, v ¢, =
8(q, T(w), w). We define T" by T’ (w) := (T(w), i). O

It remains to show how to translate alternating automata to nonde-
terministic ones. To do so we need to introduce some notation for
operations on transition relations.

Definition 1.4.17. Let ¢ € B*(Q x M).
(a) The collection of ¢ is defined as follows. Let \/; Ax(qik, aix) be
the disjunctive normal form of ¢.

collect(g) = \/ A\ (Qi(a), a) € B (R(Q) x M)
i aeM
where Q;(a) ={qi | ax =a}.

(b) Let q" € Q'. The shift of ¢ by the state g’ is the formula shy ¢ €
B*(Q" x Q x M) obtained from ¢ by replacing all atoms (g, a) by
(d g a).

(c)ForSc QxQlet

(S),:={q|(q,q) € Sforsomeq’}.

The translation is performed in two steps. First, the alternating au-
tomaton is transformed into a nondeterministic one with an obscure
non-parity acceptance condition. Then, the result is turned into a
normal nondeterministic parity automaton. The construction used
for the first step is the usual one. For each node of the input tree the au-
tomaton stores the set of states of the original automaton from which
the corresponding subtree must be accepted. That is, for universal
choices of the alternating automaton, all successors are remembered,
whereas for existential choices, only one successor is picked nonde-
terministically. What makes matters slightly more complicated is the
fact that, in order to define the acceptance condition, the new au-
tomaton has to remember not only the set of current states but their
predecessors as well, i.e., its states are of the form (g, q) where g is
the current state of the original automaton and ¢’ is the previous one.

Definition 1.4.18. Let A = (Q %, M, §, 4o, W) be an alternating au-
tomaton.

A, = (F(Q x Q), Z, M, 6n, {(qo> 90) }» Wn)

collection
collect(¢p)

shift
shg ¢

(9):
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is the automaton where

8a(S, ¢, w) = collect /\ sh,8(q c,w).
9(5)2

A sequence (g;)i<w € Q¥ is called a trace of (S;)i<, € £(Q x Q)¥ if
(9> gi+1) € Si for all i < w. W, consists of all sequences (S;)i<w €
£(Q x Q)* such that every trace of (S;)i<, is in W.

Lemma 1.4.19. A, is a nondeterministic automaton with L(A,) =

L(A).

Proof. The definition of collect ensures that A, is nondeterministic.

(2) Let T € L(.A) and let o be the corresponding winning strategy
for player o in G(A, T). To define a strategy o, in G(Ay, T) consider
a position (S, w) € G(A, T). Let a(g, w) = (g, w) for g € (S),. We
define 0, (S, w) = (collect A @, w) where

o= |J sh,@,.
q<(85)»

This is valid since (collect A @, w) is a successor of (g, w).

To show that o, is a winning strategy consider the result (S;);<, of
a play according to o,. If (@, w) € 0,(S;, w) and (Si1,, a) € @, then
for each (g, q") € Siy, it is the case that (¢, a) € @,. Thus, all traces
of (Si)i<w are plays according to o and therefore winning.

(€) Let 0, be a - not necessarily memoryless — winning strategy
for player o in G( Ay, T). We construct a winning strategy for player o
in G(A, T) as follows. Let 7, be the prefix of a play according to o,
in G( Ay, T) with last position (S, w), and let 7 be the play according
to . By induction we ensure that the last position in 7 is of the form
(g, w) for some q € (S),. Let (@, w) = 04 (71,) and define

®:={(q,a)| (S a)e ®,and ((q,q'),a) € S’ for some S’ }.

Then A @ is a conjunction in §(g, T(w), w), by definition of §,, and
we canset () := (@, w). The answer of player o to this move consists
of some position (g', wa) for (¢, a) € ®. Suppose that in G(A,, T)
player 1 chooses the position (S,, wa) where S, is the unique state
such that (S,, a) € @,. Since (¢, q") € S, the induction hypothesis is
satisfied for the extended plays (@, w)(q’, wa) and 7, (®n, w) (S, a).

It follows that each play 7 according to o in G(A, T) is a trace of
some play 7, according to 0, and therefore winning by construction

of A,. O

The automaton A, constructed above does not have a parity accep-
tance condition. Since we intend to consider only parity automata in
the next section, we have to construct a nondeterministic automaton
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with such an acceptance condition. It is easy to see that, provided that
the original automaton does have a parity acceptance condition, there
is some parity automaton on infinite words B = (B £(QxQ), §, p°, Q)
which recognises W, € £(QxQ)“. Let A, be the product automaton
of A, and B, that is,

-Ap = (P>< P(QxQ), Z, M, 5p> (po’ CI2)> Z:p)
where
3, ((p, S), ¢, w) = shy 6,(S, ¢, w) for p’ := 8(p, S)

and Q,(p, S) = Q(p).

Lemmaz1.4.20. A, is a nondeterministic parity automaton recognising
the language L(A,) = L(Ay).

Proof. Let o' beawinning strategy for player o in G(A,, T). We define
a corresponding strategy o’ in G(A,, T) by

o' ((p. S), w) = (shy @, w)

where (@, w) = (S, w) and p’ = §(p, S). That way every play
((Por So) wo ) (D5 o ) (P S1) Wi ) (@ ws) ...

in G(Ap, T) according to ¢’ is induced by a play
(So» Wo ) (@o, Wo ) (S1, i) (P wi) . ...

in G(An, T) according to o. Further, (p;)i<, is the run of B on
(Si)i<w- Since the second play is winning, the first one is so as well, by
definition of B. Hence, ¢’ is a winning condition. The other direction
is proved analogously. O

In the next section we will define a restricted class of automata
where we only allow transition functions that are MSO-definable. In
order to transfer the results of this section we need to extract the
required closure properties of the set of allowed transition functions
from the above proofs.

Theorem 1.4.21. Let T be a class of functions f : M<® — B*(Q x M)
where M and Q may be different for each f € T. If T is closed under
disjunction, conjunction, dual, shift, and collection then the class of
automata with transition functions § : Q x £ — T is closed under
union, complement, and projection, and every such automaton can be
transformed into a nondeterministic one.
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1.5 TRANSLATING FORMULAE INTO
AUTOMATA

The type of automata defined in the previous section is much too
powerful. For the proof of Muchnik’s theorem we have to find a
subclass whose expressive power corresponds exactly to the logic in
question. Actually, we will prove an extension of Muchnik’s theorem
for stronger logics. Since, in general, a version of this theorem for
one logic does not imply the corresponding version for another logic,
even if the latter is strictly weaker, we have to state the theorem for
each logic separately. To avoid duplicating the proofs we introduce
the following notions.

Definition 1.5.1. A logic £ extends MSO if it contains MSO and it is
closed under boolean operations and set quantification.

If £ is a logic extending MSO then we denote by £ + GSO the
extension of £ by guarded second-order quantification.

Definition 1.5.2. The following class of logics is considered below.
L = {MSO, GSO, MSO(3%), GSO(3*), MSO + C, GSO + C}.

For guarded relations on the iteration of a structure we define the
following notations.

Definition 1.5.3. Let 91 = (M, R), S € (M=), and w € M<“. Define
Slw={aeM|waeS}.

Siscalled local if S=U{wS,, | we M<“},ie.,ifeverytuplece S
is of the form (wa,, . .., wa,_, ) for some w € M<“,and g, ..., a,_, €
M.

Remark. Let 901 be a structure with iteration 90t*. If every tuple of
S © M=“ is guarded by a relation R* then § is local. In particular,
every guarded relation S € M= can be written as union § = S, U §,
where S, is local and every tuple of S, is guarded by suc.

Let £ be a logic extending MSO. In order to evaluate £-formulae
over the iteration of a structure we translate them into automata
where the transition function is defined by £-formulae. This can be
done in such a way that the resulting class of automata is expressively
equivalent to £.

Definition 1.5.4. Let £ be an extension of MSO, 9t a structure, S re-
lations over M=, (X, Y; Z) an £-formula, and # < w. The function

(g3 Shom = M= > B*([n] x M)
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is defined by

(os3)m(e) = V{ AL@b) [b€Q} | Qoo Qe M
such that M = ¢(2, Q; S].) },

(9 3)am(wa) = \/{ AL(@b) €Qy} | Qo.orsQuEM
such that MM = ¢({a}, Q; S|wa) }

Let 7, be the set of all functions of the form {¢; S)on.

We consider automata where the transition functions are of the
form {¢; Shom.

Definition 1.5.5. Let £ be an extension of MSO.

(a) An L-automaton is a tuple A = (Q, %, 6§, qo, Q) where Q = [n]
forsomen<wandd: Qx X — £.

(b) A Z-labelled structure (90t*, S) with local relations S is accepted
by Aifthe automaton Aoy := (Q, Z, M, San, qo, 2) accepts I, where
8:Qx X — Ty is defined by dan (g, ¢) = (8(g; ¢); Sham.

In order to translate formulae into automata, the latter must be
closed under all operations available in the respective logic.

Proposition 1.5.6. Let £ be an extension of MSO. L£-automata are
closed under boolean operations and projection.

Proof. By Theorem 1.4.21, it is sufficient to show closure under dis-
junction, conjunction, dual, shift, and collection. To do so we will
frequently need to convert between interpretations I € Q x M of
boolean formulae (¢; R)on(w) € B*(Q x M) and sets Q such that
M = ¢(C, Q). Given I € Q x M define

Qi) ={aeM| (gia)el}

for i < n,and given Qo, ..., Q,_, S M let
1(Q) ={(gra) |acQ; i<n}.

Note that I(Q(I)) = I and Q;(I1(Q)) = Q;. Then
I={g:;R)m(w) iff DM (C QU);RIW)

and vice versa. (Here and below C denotes the set consisting of the
last element of w.)

(disjunction) For the disjunction of two £-definable functions we
can simply take the disjunction of their definitions since

IE {@os Rhan (w) v {15 Rhon (w)

L-automaton
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iff  IE (@i R)on(w) for some i

ifft 9 & ¢:(C Q(I); R) for some i

if M E 9o(C QU);R) v ¢,(C, Q(I);R)
iff  TE(poV @i R)on(w).

(dual) The definition of the dual operation is slightly more involved.

1= (s R)an (w)
# Qx M~ (g3 Rhon(w)
iff ] (@ R)on(w) impliesJ N1 # &
iff 9= ¢(C, P;R) implies P; n Q;(I) # & for some i
iff  MEVP(p(C PR) > Ve, PinQ; # 2).
(conjunction) follows from (disjunction) and (dual).

(shift) For a shift we simply need to renumber the states. If the pair
(gi> qx) is encoded as number ni + k we obtain

(P(C, Qni+0’ e Qni+n—1; R) .

(collection) The collection of a formula can be defined the follow-
ing way:
I &= collect {@; R)om (w)
iff  there are Qg € Qs(I) such that Q' partitions M and
M = ¢(C, P; R) where
a € P; :iff i€ S for the unique S € [n] with a € Qg
ifft  there are Q' partitioning M such that 9t & ¢(C, P; R) where
Pi=U{Qs|ieS}
if M e ¢(C, P;R) for some P; cU{ Qs | i € S} with
PinQs =2 forall Swithi¢ S
iff M =3IP(p(C PR)A Niey PicU{ Qs | i€ S}
A Nsepn) Nigs Pi N Qs = @) O
For proper extensions £ of MSO, we further have to prove that

L-automata are closed under the addional operations available in £.

Proposition 1.5.7. Let £ be an extension of MSO. £ + GSO-automata
are closed under guarded quantification.

Proof. We have seen that every guarded relations can be written
as union T = T, U T, where T, is local and every tuple in T, is
guarded by suc. Consequently, we can replace every second-order
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quantifier 3T by two quantifiers 3T, 3'°° T, where the former ranges
over relations guarded by suc and the latter over local relations.

First, suppose that we existentially quantify a relation T where
every k-tuple a € T is contained in an edge (w,, w,) € suc. We can
encode a by the element w, and a function h : [k] — [2] such that
a; = wp(;y. Consequently, we can replace the quantifier by a sequence
of 2¥ monadic quantifiers 3X, where the index h ranges over [2][¥].

It remains to consider formulae 3°°T y(X; S, T) where we quantify
over a nonmonadic local relation T. Let 4 = (Q, 2, 5.4, g0, 2) be a
nondeterministic automaton equivalent to y. Since T ranges over
local relations we have IM* & 31°°T y(P;§, T) if and only if there
are sets T, € M such that 9* & y(P; S, T) where T := U,, wT,,. By
induction hypothesis, this is equivalent to .4 accepting the structure
(O, P, S, T).

We claim that this is the case if and only if (9%, P, S) is accepted
by the automaton B = (Q, %, 85, qo, 2) where

05(g,¢) ==3T84(q, c).

Before we prove that 3 is the desired automaton, we first show that it
is also nondeterministic.

Suppose otherwise. There exists a model I of {3T8(q, ¢); SHan (w)
which is minimal and contains pairs (qo, a), (g1, a) € I for some
qo * q.. Since

M &= 3T8(q, ¢)(C, Qs Sl T)
we find some T’ € M such that

M &= 8(q, )(C QU S, T').
Setting T := wT" it follows that

I (3(q )8, Tham(w) .

As A is nondeterministic there exists a model I, c I such that
Qi(I,) n Qx(I,) = @ for i + k. But

I, E(8(q ¢); S Thom(w).
implies that
I,  (3T3(g, ) S)am (w)

in contradiction to the minimality of I.
It remains to prove the above claim.
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(=) Let p : M - Q be the run of A on (9MM* P, S, T). Let
w e M<” and define I,, := { (p(wa), a) | a € M }. Forall w € M<“ we
have

Ly & (8(q, ©); S, ThHan(w)
= ME é\(q, C)(C, Q(Iw); S|w: TW)
= M E 3IT8(q, ¢)(C, Q(1,,); S|w, T)
= I,, £ (3T8(q c); SHom (w) .

Consequently, p is also a run of B on (90, P, S).
(<) Letp : M=“ — Q be the run of B on (IM*, P, S). For w € M=
define I, == { (p(wa), a) | a € M } and fix some T,, € M* such that

M E 8(q, C)(C, Q(Iw)> S|w’ TW) .

Define T := U,, wT,,. Then I,, & {8(q, ¢); S, T)on(w). Hence, p is a
run of Aon (9%, P, S, T). O

Lemma 1.5.8. Let £ be an extension of MSO. There exists an £(3“)-
automaton recognising the predicate | X| > N,.

Proof. By Konig’slemma, there are two possible scenarios for infinite
sets X;. The prefix closure | X; may contain an infinite path, or there is
some w € |X; such that wa € | X; for infinitely many elements a € M.
The automaton for the predicate |X;| > N, has states Q := {qo, ¢, }
and priority function Q(g,) = 0, 2(g,) = 1. In state g, it looks for
infinitely many elements x € X;, whereas in state g, it looks for at
least one such element. We define the transition function § such that

6971(QOrC’W)=\{4((610:“)/\(611’“))\/ V A @a),

M,SM aeM,
[Mo|>Ro
true ifiec,
1) LG W)=
m(q ) {VueM(ql, a) otherwise,
by setting
0(qo> €) = Ix(Qox A Qyx) V |Q,] = Ny,
true ifiec,
8(‘11) C) = .
IxQ,x otherwise, O

Lemma 1.5.9. Let £ be an extension of MSO. There exists an (£ + C)-
automaton recognising the predicate | X| = k (mod m).

Proof. Since there is an £(3“)-automaton for |X;| > N, we may
assume that X; is finite when constructing an automaton for the
predicate |X;| = k (mod m).



1.5 Translating formulae into automata  + 29

LetQ:={qx | k<m}, Q(qo) =0, and Q(gx) := 1 for k # 0. We
label an element w by gy if

[ X nwM<*| =k (mod m).

1
=

If ny is the number of successors wa such that | X N waM<?|
(mod m) then we have

[ XnwM=“| = > kni+ | Xn{w}| (mod m).

k<m

Obviously, we only need to know #; modulo m. Consequently, we
define

V A lQl=n (modm) ifiec,

8(gx, ¢) = €Nk, I<m
(@) V A Q| =mn (mod m) otherwise,

neNg I<m

where

Ny ::{ﬂe[m]k | > In; = k (mod m)}.

I<m

O

With these preparations we can state the equivalence result. We say
that an automaton A is equivalent to an £-formula ¢(Xo, ..., Xm—)
where all free variables are monadic if

L(A) = {9 | M & o(P) }

where 97 is the structure where every element w € M~ is labelled
bytheset{i<m | weP;}.

Theorem 1.5.10. Let £ € L. For every formula ¢ € £ there is an
equivalent £-automaton and vice versa.

Proof. (=) By induction on ¢(X) we construct an equivalent £-
automaton A := (Q, R[m], S, g, 2). We have already seen that £-
automata are closed under all operations of £. Hence, it only remains
to construct automata for atomic formulae.

(Xi € Xj) We have to check for every element w of the input tree T
that i ¢ T(w) or j € T(w). Thus, we set Q = {g,} with Q(q,) = o
and define the transition function such that

Naert (o, a) ifid¢corjec,
false otherwise.

5931(%, G W) = {

for each input structure 91*. This can be done by setting

VxQox ifi¢corjec,
8(4o €) = { !

false otherwise.
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(R*X;, ... X;,) SetQ = {qo, - - ., gk} and Q(g;) := 1. The automaton
guesses a node in the input tree while in state g, and checks whether
its children are in the relation R. That is,

5931(%> G W) = v (Qo» a)

aeM

v V{(qnal)A---A(Qk»ak) | &ERW},

true ifi ec,
69n(qi:c,w)={rue Tyee for1<j<k.

false otherwise,
The corresponding £-definition is
8(qo, €) = IxQox v IX(RX A Qyx; A+ A Qrxk),
(gj ¢) = {

true ifi;ec, .
S fori1<j<k.
false otherwise,

(8X;, ... X;, for arelation variable S) The automaton is identical to
the one for R*X. We set Q == {qo, ..., gk }> 2(g;) := 1, and define

0(qo» €) = IxQox v AX(Sx A Quxy A+ -+ A Qi)

(g, 0) = {

(suc(X;, Xj)) Let Q = {qo, q,} and Q(gq;) = 1. We guess some
element w € X; having a successor in X;.

true ifi; ec,
I for1<j<k.
false otherwise,

S ( c W)= VaeM(qo’a) ifi¢c,
e © Vaem (4o @) v (g1, a))  otherwise,
true ifjec,
o » 6 =
(4 & W) {false otherwise.
The corresponding £-definition is
IxQox ifiéc,
8(qos €) = .
Ix(Qox Vv Q,x) otherwise,

true ifjec,

false otherwise.

8(gu 0) = {

(cl(X;)) Let Q = {qo,q:} and Q(q;) = 1. We guess some ele-
ment wa such that its successor waa is in X;.

VaeM(Qo» a) ifw=e¢,

8 0 6 =
(o & W) {vaeM<qo,a>v<q1,b> ifw = wib,

true ifiec,
false otherwise.

o (gu ¢ w) = {



1.6 Muchnik’s theorem + 31

The corresponding £-definition is

6(go> €) = IxQox v Ix(Cx A Qux),

8(qu ) = {

true ifiec,
false otherwise.

Note that this is the only place where the transition function actually
depends on the current vertex.

(=) Let A = (Q %, 6,0, Q) be an L-automaton and fix an input
structure 9*. Wlo.g. assume that 4 is nondeterministic. 9t* is
accepted by A if there is an accepting run p : M<“ — Q of A on 27*.
This can be expressed by an £-formula ¢(X) in the following way:
we quantify existentially over tuples Q encoding p (i.e., Q; = p*(i)),
and then check that at each position w € M=<“ a valid transition is
used and that each path in p is accepting. O

Before proceeding to the proof of Muchnik’s theorem let us note
an immediate corollary to the equivalence result.

Theorem 1.5.11. If £,, £, € L then £, < £, on M implies £, < £,
on IM*.

Proof. Let ¢, € £, and A, be the corresponding £,-automaton. For
every formula 6, (g, ¢) € £, thereisan equivalent £,-formula. Hence,
we can translate A, into an £,-automaton A,. The £,-formula ¢,
equivalent to A4, is the desired translation of ¢, into £,. O

1.6 MUCHNIK'S THEOREM

With these preparations we are finally able to prove the theorem of
Muchnik. In fact, we will prove it not only for MSO but for every
logic in the class £ defined above. Again we follow the proof of
Walukiewicz [78].

Theorem 1.6.1. Let £ € L. For every sentence ¢ € £ one can effectively
construct a sentence ¢* € £ such that

Mee* it M =¢  forall structures M.

Corollary1.6.2. Let 9t be a structure. The £-theory of IN* is decidable
if and only if we can decide Thg (901).

The proof of Muchnik’s theorem is split into several steps. Let
A = (QZ6 g0, Q) be the £-automaton equivalent to ¢. W.Lo.g.
assume that Q = [n] for an even number n and that Q(k) = k for
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all k € Q. Note that the input alphabet X = {&} of A is unary since
¢ is a sentence. We construct a formula ¢* stating that player o has a
winning strategy in the game G (A, 9t*). It follows that

MEg* f M eLl(A) iff MEg.

1.6.1 THE GAME STRUCTURE.

We construct ¢* by modifying the formula of Walukiewicz so that
it can be evaluated in the structure 90t. To do so we embed the
game G (A, ) in 9. First, we reduce the second component of a
position (X, w) from a sequence w € M<“ to a single symbol a € M.
Let G’ (A, 90) be the game obtained from G (A, 9t*) by identifying
all nodes of the form (g, wa) and (g, w'a), i.e.:

(a) The positions of player o are V, U{(go, €)} where V,, := Qx M,
those of player 1 are V, := £(Q x M).

(b) The initial position is (go, €)-
(c) Let (8(g, @))m(a) = V;\ND; for a € M u {e}. The node

(g a) € V, has the successors @; for all i. Nodes @ € V, have
their elements (g, a) € @ as successors.

(d) A play (go» o), Do, (q1> 41), D, . .. is winning if the sequence
(gi)i<o satisfies the parity condition Q.

Lemma 1.6.3. Player o has a winning strategy from the vertex (g, wa)
in the game G (A, I*) if and only if he has one from the vertex (g, a)
in the game G'(A, ).

Proof. The unravellings of G(A, 9t*) and G’ (A, M) from the respec-
tive vertices are isomorphic. ]

In the second step we encode the game G’(.A, 90) as the structure
B(A M) = (VoUuVy, E eq,, Vo, Vi, (Sg)geq: Ros---)
where (V,, V,, E) is the game graph and
eq,(g a)(q’,a") (iff a=d’,
S;(q’, a) :iff ¢’ =q,
Ri(qo> a0) ... (qr> a,) :iff (ao,...,a,) € R?‘n .
Note that these relations only contain elements of V.
Let &(A, )|y, denote the restriction of & (A, M) to V,. We can

embed & (A, )|y, in P via an interpretation. Let MSO? be the set
of quantifier-free, positive MSO-formulae.
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Lemma 1.6.4. There exists an injective MSO¢-interpretation I such
that

T:6(AM)|y, <msoz nxIM  for every structure M.

Proof. The universe and the relation V, can be defined by true, and
the relations E and V, by false. For the remaining relations we have

goeqz(x,y) =X=Y,

Ps, (x) =x=4,
and or, (%) = Rix. O
In order to use this interpretation to calculate the winning positions

we have to show that we can translate £-formulae from &(.A, 9)|v,
to M.

Lemma 1.6.5. Products by finite structures and injective MSO} -inter-
pretations are £-functors for every logic £ € L.

It remains to devise a way to speak about the whole structure
& (A, M) in its restriction to V,. This can be done by encoding
elements @ € V, = P(V,) as sets ® € V,. All we have to do is to
define the edge relation. We split E into three parts

E,CVoxV, EcV,xV, and E,<{(qe)}xV
which we define separately by formulae &, (x, Y), &, (X, y), and &,(Y).

Lemma 1.6.6. There are L£-formulae ¢,(x, Y), & (X, y), and &,(Y)
defining the edge relations E,, E,, and E,, respectively.

Proof. Since (®, (g, a)) € E, iff (¢, a) € @ we set
& (Y x) = Yx.

The definition of &, is more involved. Let 8,(C, Q) = {8(g, @) )on.
We have

((ga), @) € E, iff Mk ;({a}, Q)

where Q; :== {b | (i,b) € @}. In order to evaluate §; we need to
define M inside (A, ). Since the latter consists of | Q| copies of M
with universes (S;)4eq, we pick one such copy and relativise §, to
it. For simplicity we choose S, corresponding to the first component

of (¢, a).

((¢a).®) €E, iff  B(AMy, F 6 ({(ga)} Q)
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where Q! == {(q, b) | (i, b) € @ }. This condition can be written as

S(A M)y, =3ICIQ8;"(C.Q A C={(g )}
A AQi={(ab) ] (ib) e d}).

i€eQ
Thus, we define

&% Y) = \/(Sqxned(x Y))
9€Q
where

el(x, Y) = acaQ(ajq(c, Q) AC={x}
AAQ={(gb)] (ib)eY}).

ieQ

The condition Q; = {(g,b) | (i,b) € Y} can be expressed by the
formula

Vz(Qiz < 32 (S4z A Siz’ Az =, 2)).

In the same way we define

(1) =387 (2. QA A Q=@ b) | (:b) 1))

1.6.2 THE WINNING SET.

It remains to evaluate the formula

LEPz, -+ GFPz . \/ k(% Z)

k<n

with 7 == Qrx A [Vox = Iy(Exy A Zyy)] A [Vix = Yy(Exy = Zyy)]

which defines the winning set in the original game graph G'(A, ).
Since in the given game the nodes of V,, and V;, are strictly alternating,
we remain in V, if we take two steps each time. Hence, we can
replace #; by

1; = Qix A Vox A3y(Vyy AExy AVz(Eyz — Z;z)).
Lemma 1.6.7. The formulae

GFPz . \/ni and GFPz . \/ 7}

i<n i<n

define the same subset of V, in &(A, M) for each assignment of the
free variables.
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Finally, interpreting elements of V; by subsets of V,, as explained
above, we obtain

I/I;, = Qix AN VO.X' AN ElY[Y c Vo A SO(X, Y)
AVz(e (Y, 2) - Zi2)]

Thus, we can express that player o has a winning strategy in G'(A, 9t)
from position (g,, €) by the formula

¢* = 3Y[e,(Y) A Vx(eo (Y, x) » LEPz - GFPz, . \/ 1/)].

i<n

This concludes the proof of Theorem 1.3.8.
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2 CLIQUE WIDTH

NITIALLY, RESEARCH ON simple monadic theories was focused
I on linear orders and trees culminating in the development of the
composition method by Shelah and Gurevich [70, 43, 45, 44]. Later
on, these results were used in the study of graph grammars (see e.g.
[21, 38, 30, 29]) where graphs can be associated with their derivation
trees. Since it is only a small step from graphs to arbitrary relational
structures we will try to develop a theory of structures with simple
monadic theory by generalising these results. In the present chapter
we start by giving a survey of known results about clique width and
related notions.

2.1 CLIQUE WIDTH AND NLC-WIDTH

The notion of clique width arose in the study of graph grammars.
In the following we will present three different kinds: hyperedge
replacement grammars and vertex replacement grammars, HR- and
VR-grammars for short, as considered by Courcelle [24], and NLC-
grammars (node-label-controlled grammars) studied by Wanke [79].
Let C be a set of colours. Consider the following operations on
undirected graphs whose vertices are labelled with colours from C:

+ a denotes the trivial graph whose single vertex is coloured a;

& a - bis the graph consisting of a single edge between vertices
of colour a and b, respectively;

¢ &, + &, is the disjoint union of &, and &,;

¢ The recolouring pg(&) with 8 : C — C changes each colour a
to f(a);

¢ a,;,(®)adds edges from all a-coloured vertices to every vertex
of colour b;

+ 9,(®) is the graph obtained from & by identifying all vertices
that have the colour a;

* &,@®36, with S € CxCdenotes the disjoint union of &, and &,
where a-coloured vertices of &, are connected by an edge to
b-coloured vertices of &, iff (a, b) € S.

37
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A term T € 2 is called an HR-term, if it is build up from the
operations a — b, pg, 94, and &, . T is a VR-term, if it consists of the
operations a, +, pg, and agp. If T is constructed from a, pg, and ®s,
then it is called an NLC-term.

The above operations can easily be generalised to arbitrary transi-
tion systems by adding to «,,; and &g information about the direction
and label of the new edges. For simplicity, we have refrained from
doing so, but we will, nevertheless, state some of the results below for
this more general case. In Chapter 3 we will present a generalisation
to arbitrary relational structures.

Example. Cliques K,, have clique width 2. We can define VR-terms ¢,,
with value val(t,) = K,, using the colours a and b by setting

tii=a, and . = ppoadpa(b+1t,).
Their NLC-width is 1. The corresponding terms are
t,'=a, and t,,=a D{(a,a)} tn-

The operators for HR-terms were chosen in such a way that they
correspond to a well-known complexity measure. Courcelle [23] has
shown that the number of colours one needs to construct a HR-term
for a given graph roughly corresponds to its tree width.

Theorem 2.1.1. A countable graph has finite tree width if and only if it
is the value of an HR-term.

In a similar way the other two kinds of terms give rise to com-
plexity measures of graphs which were first defined, respectively, by
Courcelle, Engelfriet, and Rozenberg [30], and by Wanke [79].

Definition 2.1.2. The clique width of a graph & is the minimal size
of a set C of colours such that there is a VR-term denoting & which
uses only colours from C. The NLC-width is defined analogously using
NLC-terms.

The following observation by Johansson [48] shows that these two
measures are nearly the same.

Lemma 2.1.3. Let k be the clique width of a graph & and m its NLC-
width. Then m < k < am.

The characterisation we aim to generalise is the following result of
Courcelle [24] relating clique width with interpretations in the binary
tree.

Theorem 2.1.4. A countable graph & = (V, E) has finite clique width
if and only if ® <yso (25%, <, P) for some unary predicate P < 2<%,

As a corollary we will obtain in Section 2.4 a similar characterisa-
tion for finite tree width.
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2.2 PREFIX-RECOGNISABLE GRAPHS

When studying algorithmic properties of graphs we have the require-
ment that every graph has to be encoded by a finite object. We can
use the fact that graphs of finite clique width are denoted by VR-terms
in order to find such finite representations. Obvious candidates for
terms with a finite encoding are the so called regular terms which can
be obtained as unravellings of finite graphs. Equivalently, we could
define them as those terms that are solutions of finite systems of
equations of the form

Xo =to(X), ..., Xpoy =ty (X)

where the t; are VR-terms with free variables X and we require that
none of them is of the form t; = x;, for some variable xy.

Definition 2.2.1. A graph is VR-equational if it is denoted by a regular
VR-term. Similarly, HR-equational graphs are the value of regular HR-
terms.

Example. If we colour the first element by a and the other ones by b
we can define (w, suc, <) by

Xo = “;b(xl ) X, = Pc—»b“?,lcc (a+x,), X2 = Pa—c (%) -

We conclude this section with a presentation of several equivalent
definitions of the class of VR-equational graphs.

Definition 2.2.2. A directed countable graph is prefix-recognisable
if it is isomorphic to a graph (S, (Ex))) where S € 2<“ is a regular
language over a finite alphabet X and each edge relation E) is a finite
union of relations of the form

WUxV)={(wu,wv) |uelU, veV, we W}
for regular languages U, V, and W.

Actually in the common definition the reverse order (U x V)W
is used. The above definition was chosen as it fits better to the usual
conventions regarding trees.

Example. The structure (w, suc, <) is prefix-recognisable. If we repre-
sent the universe by a<* the relations take the form

suc = a~“(e x a) and <=a"“(exa™®).

Proposition 2.2.3 (Barthelmann [3]). Let & be a graph. The following
statements are equivalent:

regular term

VR-equational
HR-equational

prefix-recognisable
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(1) & is prefix-recognisable.
(2) & is VR-equational.
(3) & <mso To.

Originally, Caucal defined prefix-recognisable graphs in a different
way. In order to obtain a class of graphs with decidable MSO-theory he
introduced two operations on graphs that preserve MSO-decidability
and applied them to the binary tree T,.

Definition 2.2.4. Let & = (V, (E))iea) be a graph with universe
V ca2<e,

(1) A rational restriction of & is a structure of the form
Blc=(VnC (ExnCxQC)y)

for some regular language C € 2<¢.

(2) Let A be a disjoint copy of A and expand & by the relations
E; = (E))™ for A € A. Given a set of labels 5 and a mapping h
associating to every & € = a regular language h(§) < (A U A)<“, the
inverse rational substitution h™(®) is the graph (V, (Eg)geg) where
E} consists of those pairs (u, v) such that in the expansion of & there
is a path from u to v labelled by some word in h(£).

Example. The structure (w, suc, <) can be written as h7'(%,)| ¢ with
C ==1°" and h(suc) = 1, (<) =17%.

Proposition 2.2.5 (Caucal [15]). A graph & is prefix-recognisable if
and only if it is isomorphic to h™ (%, )| ¢ for some regular language C
and a mapping h such that h(§) c {o, 1,6, 1}~ is regular for all £.

In a similar way to the characterisation of context-free graphs as
configuration graphs of pushdown automata one can describe the
class of prefix-recognisable graphs via a suitable model of automa-
ton. To do so one considers pushdown automata with e-transitions
where each configuration has either no outgoing e-transitions or no
outgoing non-e-transitions. Then the e-transitions are “factored out”
in the following way: one takes only those vertices without outgoing
e-transitions and adds an a-transition between two vertices iff in &
there is a path between them consisting of one a-transition followed
by arbitrarily many e-transitions.

Definition 2.2.6. An e-pushdown graph is a graph & obtained from
the configuration graph of a pushdown automaton with e-transitions
by

¢ factoring out the e-transitions in the way described above and

¢ restricting the resulting graph to a regular subset of the vertices.
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Example. A pushdown automaton for (w, suc, <) has the configura-
tion on the right.

Proposition 2.2.7 (Stirling [73]). A graph & is prefix-recognisable if
and only if it is isomorphic to an e-pushdown graph.

The various equivalent definitions of the class of prefix-recognisa-
ble graphs are summarised in the next theorem.

Theorem 2.2.8. Let & be a countable graph. The following statements
are equivalent:

(1) & is prefix-recognisable.

(2) & <uso T

(3) & is VR-equational.

(4) & = h™'(%,)|¢ for some rational substitution h and a regular
language C.

(5) & is isomorphic to an e-pushdown graph.

2.3 FINITE SUBGRAPHS OF
PREFIX-RECOGNISABLE GRAPHS

Instead of a single countable graph we can also use VR-terms to define
a class of finite graphs. The graph operations mentioned above can
be applied to sets of graphs in a canonical way. If we add the union
of classes as new operation, we can define classes of finite graphs by
systems of equations

Xo = 12(X) U+ UL (%),

X =tE@ U Utk (2).

One can show [19, 3, 20] that each such system has a least solution,
called the canonical solution, provided there is no equation of the
form x; = x;. One way to obtain this solution consists in taking the
value of the infinite term which is the least solution of the system in
the corresponding term algebra.

Definition 2.3.1. A class of finite graphs is called VR-equational if it
is the canonical solution of a system of VR-equations.

Analogously to the corresponding theorem above one can charac-
terise VR-equational classes by interpretations.

suc €

canonical solution

VR-equational
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Theorem 2.3.2 (Engelfriet [38]). A class IC of finite graphs is VR-
equational if and only if there exists a regular class of finite binary
trees T such that KK <yso T.

A countable graph is of finite clique width iff the clique width of
its finite induced subgraphs is bounded. Below we will show that
there is no such characterisation for prefix-recognisable graphs. First
we show that one direction still holds. The class of finite induced
subgraphs of a prefix-recognisable graph can be interpreted in the
class of all finite binary trees. For the proof, we need some technical
lemmas.

Lemma 2.3.3. For all MSO-formulae ¢(x) there exists some formula
¢(x) € MSO which is equivalent modulo Thyso (,) to ¢ such that for
all subtrees © € T, and all elements a < S it holds that

GEp@a) iff T,Ep@).

Proof. Given ¢, consider the corresponding tree automaton 4. We
construct an automaton A’ which takes labelled subtrees of ¥, as
input and simulates the work of A on those. Whenever a node with
some missing successors is encountered .4’ makes sure that from the
state which would be assigned to these missing vertices the tree Ty
is accepted. Finally, let $(x) be the formula associated with A4’. It
follows that

& & p(a) iff TalseL(A) iff T;eL(A) iff T, = ¢a).
O

Lemma 2.3.4. Let & <yso %, be a prefix-recognisable graph. The class
of finite induced subgraphs of & can be obtained from the class of all
finite labelled binary trees via an MSO-interpretation.

Proof. Let = (8(x), &(x,y), (¢r(%))r) be the interpretation of &
in ¥,. By the preceding lemma, we can assume that

WG _ WT;|S

for all finite subtrees & € ¥, where y is one of 3, ¢, or pg. Let H € &
be a finite induced subgraph of &. Define the set P := Z(H) < 2<%
and let © € ¥, be a subtree of ¥, whose universe contains P. Then

T' = (8°(x), € (xy), (9r(¥))r)

is an interpretation of §) in (&, P). Conversely, each subtree of the
form (&, P) interprets a substructure of &. O
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Lemma 2.3.5. The class of finite labelled binary trees can be obtained
from some regular class of finite unlabelled binary trees via an MSO-
interpretation.

Proof. Let h : 2° — 25“ be the homomorphism defined by h(o) =
ooand k(1) = 11. Let (&, P) be alabelled tree. We encode each node x
of & by h(x). The unary predicate P is encoded by appending o1 to
those vertices that are in P. Thus, the universe of the corresponding
unlabelled tree is the prefix closure of h(S) together with h(P)o1.
Clearly, the class of all such trees is regular, and the desired interpre-
tation is given by

0(x) i=“x € (00 +11) 97,

e(xy) =x=y,

Psuc. (%, y) =y = xcc, for c € [2],

pp(x)  =3y(y =x01). O

Combining the preceding lemmas we have obtained the following
characterisation of the class of subgraphs of a prefix-recognisable
graph.

Proposition 2.3.6. For each prefix-recognisable graph, the class of its
finite induced subgraphs is generated by a VR-grammar.

Proof. By the two preceding lemmas, the class can be obtained from
a regular class of finite trees by an MSO-interpretation. According to
Theorem 2.3.2, this is equivalent to being generated by a VR-grammar.

O

The converse fails. There are classes generated by VR-grammars
that cannot be obtained as the class of subgraphs of a prefix-recognis-
able graph.

Lemma2.3.7. Thereexists a class K that is generated by a VR-grammar
and that is the class of finite induced subgraphs of some infinite graph
but which cannot be obtained from any prefix-recognisable graph in
this way.

Proof. Let KC be the set of all finite forests (T, <, P) where P € T
is an unary predicate that contains only leaves. IC is defined by the
grammar

X=0U1Ux+xUr(x)

where
+ o denotes a leaf which is not in P,

+ 1denotes a leaf which is in P,
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¢ x + y denotes the disjoint union of x and y, and

¢ r(x) denotes the tree obtained from the forest x by adding a
new least element.

All of these operations can be expressed by VR-terms.

To show that /C is the class of finite induced subgraphs of some
graph we have to verify the hereditary property and the joint embed-
ding property (see e.g. [47]). K is closed under substructures and, if
s, t € IC, then s and ¢ can be embedded in r(s + t) € K.

On the other hand, there is no prefix-recognisable graph such
that KC is the class of its finite induced subgraphs since every prefix-
recognisable forest has, up to isomorphism, only finitely many differ-
ent connected components each of which is a regular tree. O

2.4 CLIQUE WIDTH AND TREE WIDTH

We conclude this chapter with a survey of the relation between tree
width and clique width. The following results extend a theorem
of Courcelle [25] which lists conditions implying that a graph of
bounded clique width also has a bounded tree width. Most of them
have independently been obtained by Gurski and Wanke [46] using
nearly the same proofs.

For the proofs, we need a characterisation of clique width by de-
compositions of a structure in a way similar to tree decompositions
for tree width. If we ignore the colours for a moment, a VR-term con-
sist purely of disjoint unions. That is, when traversing a term T from
the root to its leaves we observe a progression of decompositions
of the structure denoted by T. The hierarchical decomposition thus
obtained can then be augmented by information about the colouring.

Definition 2.4.1. Let 91 = (M, (E,);, P) be a countable transition
system.

(a) A clique refinement of 9 of width nis a family (R"),er indexed
by a binary tree T S 2<“ where each component R* = (U", C")
consists of a nonempty set U € M and a partition C} u---wC;_, = U”
such that the following conditions are satisfied:

(1) U* =Mand |U"| =1forleavesv e T.
(2) U"=U"uwU™ifve Tisnotaleaf.
(3) Foreach C; and every u < v, there is some b such that C; ¢ Cj.

(4) Letx € C; and y € C} withx € U" and y € U for some
¢ <2.1f (x, y) € E) then C} x C}, C E).

(b) We call R = (R”)yer regular if, up to isomorphism, there are
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only finitely many different R". That is, there exists a congruence ~
on T of finite index such that u ~ v implies

o uxeT it wxeT for all words x € 2=,
e CL+@ it C,+o for all colours a,

e C2C) it C,2¢C) foralla, b, and x,

¢ CixCycE, if C/xCycE, forallg, b andA.

Proposition 2.4.2. Let M = (M, (Ey)a, P) be a countable transition
system.

(a) 9 has a clique width of at most n if and only if there is a clique
refinement of 9N of width n.

(b) 9 is prefix-recognisable if and only if there exists a regular clique
refinement of I of finite width.

Proof. (<) Let (U”, C"),er be a clique refinement of 901. We con-
struct VR-terms £,(x,, x;) with n colours such that, if we define
infinite terms Ty, w € 2<“, by Ty, = t,,(Tyo, T:), then the term T,
denotes .
In order to define t,, fix a mapping f3; : [n] — [#n], for ¢ < 2, such
that C}° ¢ CEt(i)' Let
ty (X0, X%1) 1= add(Pﬁo (x0) + pg, (xl))

where add is the composition of all oci « such that C7 x C} € E,.
Finally, note that, if the refinement is regular, then the resulting
term is also regular which implies that 9t <y;50 %,.
(=) Let T be a (possibly infinite) term denoting 9. We decom-
pose T into finite terms £,,, w € 2<%, of the form

tw (X0, X1) = To - T (%0 + X1) or by = To** Tra

where either 7; = pg or 7; = (xi) , for some a, b, B, and A. As above,
define T, by T,, = t,,(Two, Tw1). We construct a clique refinement
(U", C"), as follows. Let U" be the set of vertices of the graph denoted
by T,,. We set

Cl:={xeU" | xiscoloureda}.

Again, if T is a regular term, then the clique refinement we have
obtained is regular. O

Courcelle and Olariu [32] have shown that every graph of bounded
tree width also has bounded clique width. The slightly better bounds
below were obtained by Corneil and Rotics [18]. They also gave the
example with the exponential lower bound.
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Theorem 2.4.3. Let & = (V; E) be a finite undirected graph.
cwd(®) < 3 2ME

Theorem 2.4.4. For every k < w there exists a finite graph & with
twd(®) =k and cwd(®) > 22,

Of course, graphs of bounded clique width do not need to have
bounded tree width. For instance, the complete graph K, has clique
width cwd(K,) = 2 while its tree width is twd(K,) + 1 = «, for every
cardinal «. Below we will try to bound the tree width in terms of the
clique width and one additional parameter, say, the maximal degree.
In the following we denote by K., the directed graph (A wB, A x B)
where A and B are sets of cardinality, respectively, x and A.

Definition 2.4.5. Let MM = (M, (Ex)rea, P) be a transition system.
The maximal degree A(901) of 9 is the supremum of the cardinals «
such that some edge relation E) contains a subgraph of the form K; .
or K,

Theorem 2.4.6. Let 9 = (M, (Ej)jen, P) be a countable transition
system.

twd(9N) +1 < A(N) cwd ().

Proof. Let (U, C")yer be a clique refinement of 90 of minimal width.
C;, x C} < E, implies |C} [, [Cy| < A(9N). Let x € C;, be adjacent to
some y ¢ U”. By definition, there is some prefix v, < v such that
C;,cCpr,yeCle,and C° x Cl» € Ey or Cl» x C,° € E, for some
colours b, c. Hence, |C}| < |C°| < A(90). Thus, the number of
elements x € U which are adjacent to some vertex outside of U" is
bounded by A(DT) cwd(9).
We obtain a tree decomposition (F,),er of width less than

A(ON) cwd(IN)
by setting
E,=UJ{C, | ICI<A(M)}.

(F,)ver is a tree decomposition since, for any edge (x, y) € E), there
are some v € T and colours a, b such that x € C}, y € Cj, and
C,, x Cy € E). By assumption, |C; |, |C;| < A(9t) which implies that
ClClCF, 0

Lemma 2.4.7. For each k < X, there is a graph &, with

twd(B,) =x, A(®,) =1, and cwd(B,)=K+1.
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Proof. Let &, = (V, Ey, Ey) be the grid of size x x x where

Vi=xxx,
En ={({(Lk),{(i+1k)) |i+1Lk<xk},
E, ={((i, k), (i, k+1)) | ,k+1<x}.

Its tree width is k and Golumbic and Rotics [40] proved that cwd &, =
K+1. O

Remark. If there are only n vertices of degree more than § then one
can construct a tree decomposition of width

twd(®) +1 < Scwd(®) +n
in the same way as above by adding those n vertices to every compo-
nent of the decomposition.
The second parameter we consider is the maximal cardinal x such

that 91 contains K .

Definition 2.4.8. Let 91 = (M, (E;)jeca, P) be a transition system.
BEM) == sup{« | K S E) forsome A }.

Theorem 2.4.9. Let I = (M, (Ey)jen, P) be a countable transition
system.

() twd(9) +1 < 2B(O) cwd(IMN).
(b) If M is prefix-recognisable and B(ON) < R, then I is HR-

equational.

Proof. (a) To simplify notation we assume that, for each A € A, there
is some A~ € A with Ey- = E;". Fix a clique refinement (U", C")yer
of M of width k := cwd(9N) and let n := (). By assumption, if
C, x Cy S Ey then |C}| <nor |Cy| <n. ForveT define

I":=J{C, | IC| <nandC, x{x} c E, for some x € M },
O, ={xeM~\U" | {x} xC}° € E) for some C;° 2 C}, with

|Cel >n},
o' :=J0..

a<k

We have |I"| < nk. Since O}, x C;° € E; where v, < v is the greatest
prefix of v such that |C;°| > n for C;° 2 Cy, it follows that |O}| < n
and, hence, also |0"| < nk. We claim that the family

F,:=I"u0O", veT,

B(I)
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is a tree decomposition of M. For any edge (x, y) € E), there are some
colours a, b and a node v € T such that

(xy)eC, xC}CE.

If |Cy], |Cy| < nthenx, y € I' € F. Otherwise, w.l.o.g. assume that
|C;| < nand |Cy| > n. There is some w > v with U" = {y}. By
construction, x € O* € F,,and y € [ C F,,,.

It remains to prove that all components F, which contain some
given vertex x are connected. We consider the following cases.

Ifxelandx €I thenv, <v,andx € I" forall v, <w < v,, or
vice versa.

If x € O" there exists some v, < v with x € Cl and C}° x C;° € E)
for some colour b with |C;°| > nand C;° N U” # @. Let w € T be the
node with U" = {x}. It follows that x € O* forallwnv < u < v and
xel*forallw<u=<v,.

Suppose that x € OV for another node v/ € T. By the same ar-
gument as above we obtain a vertex v} such that x € O" for all
wnv' <u=<v andx € [* forall w < u < v.. Since v, < v} or v, < v,
the claim follows.

(b) Let (U", C¥), be a regular clique refinement of 9. In the same
way as in (a) we obtain a tree decomposition (F, ), that, furthermore,
is also regular. Hence, 91 is HR-equational. O

Corollary 2.4.10. Let & be a countable planar undirected graph.
twd(®) +1 < 4cwd(8).
Proof. Since & is planar it does not contain K ;. O

Since the tree width of the n x n grid is » it follows that its clique
width is greater than "4. In fact, Golumbic and Rotics [40] have
shown that the precise value is n + 1.

The next example shows that the above bounds are tight up to a
factor of 2.

Example. For each n € N,let &, = (V,, E,) be the graph with
Vi = [3] x [n],

and E, = {((i k), (i’ K)) |i+i}.

Then twd(®,) =2n, A(B,) =2n,

and cwd(®,) =2, B(B,)=n.

Another consequence of Theorem 2.4.9 is a charaterisation of tree
width via interpretations.

Theorem 2.4.11. A countable graph & = (V, E) has finite tree width if
and only if 8T <yso (29, <, P) for some unary predicate P € 2<.
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Proof. In one direction, we can construct an MSO-interpretation of
the incidence structure &7 in the HR-term denoting &. For the other
one, note that % does not contain the subgraph K ,. It follows that

twd(®) < twd(&T) < 4cwd(BT) < R, . O

Finally, we consider uniformly sparse graphs (see Definition 1.2.10).
The following result of Courcelle [28] characterises sparse graphs.

Lemma 2.4.12. A transition system N = (M, (Ey)y, P) is uniformly
k-sparse if and only if there exist functions fy : Ey — M, A € A, such
that fy(x, y) € {x, y} and |f*(x)| < k for all x, y € M.

Theorem 2.4.13. Every countable transition system I is k-sparse for

k= (B(9T) cwd(M)).

Proof. We have to construct functions f) : Ey - M with fy(x, ) €
{%, y} such that |f;*(x)| < B(IM) cwd(IM) for all x € M.

Let (U, C"),er be a clique refinement of 90t of width k := cwd(907)
and set n := B(9). By assumption, if C; x C} € E) then |C},| < nor
ICy| <n.

Ife:= (x,y) € C; x C) € E) with |C}| > n then we set fy(e) = x.
For each vertex x there can be at most n vertices y such that the edge
(x, y) satisfies this condition, since otherwise C}, x Y < E where Y is
the set of all such y and v € T is the longest word such that |CY| > n
forallw <.

Similarly, if [C}| > n we set fy(e) := y. For all other edges we
have e := (x,y) € C, x C € E, with |C}|, |C}| < n. Let v, < v be
the maximal prefix of v such that C; ¢ C}° or C; c C}° for some ¢
with |Cl°| > n. In the first case we set f1(e) := x, in the other one,
fi(e) := y. Let v, be the successor of v, with v, < v. For all such edges e
with fy(e) = x it follows that y € C}} for some d # ¢ with |[C}| < n.
Consequently, there are at most (k — 1)n such edges.

It follows that | i (x)| < n+ (k-1)n = kn as desired. O
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N THIS CHAPTER and the next one we develop a model theory
I of structures having a simple monadic second-order theory by
extending the concept of NLC-width from graphs to relational struc-
tures of arbitrary cardinality. The resulting complexity measure will
be called the partition width of a structure. Mirroring the develop-
ment of the notions of tree width, NLC-width, and clique width we
will proceed in three steps: (1) we define terms denoting structures;
(2) we introduce a notion of decomposition of a structure; and (3) we
give a characterisation via interpretations.

3.1 INFINITE TERMS

We start by generalising NLC-terms to infinite terms describing re-
lational structures of arbitrary cardinality. Moving from binary re-
lations to relations of higher arity requires that we colour not only
single elements but all tuples up to this arity.

Definition 3.1.1. A graded set of colours is a set C that is partitioned
into finite nonempty sets C,, #n < w. Colours ¢ € C, are said to be of
arity n.

A C-colouring of a structure 9 is a function y mapping every
n-tuple @ € M" to some colour y(a) € C,. The empty tuple is also
coloured. We call the pair (9, x) a C-coloured structure.

Analogously to the NLC-composition @5 we define two operators
59 and U° to compose a family of C-coloured structures (91, xi),
i < K, one for ordered families and one for unordered ones. In both
cases the resulting structure will consist of the union of the 9;.
Additionally, we will update the colouring and add new tuples to the
relations of M. If 4 is a tuple of I then the colours of its parts an M;,
for i < x, will determine both, its new colour and whether we add a
to a relation R. We record this information in an update instruction
(n,x,1,¢ d, S) where I, == { k | ar € M; } is the partition of a induced
by the union, ¢; := y;(aly,) is the colour of the tuple @ n M;, d is the
new colour of @, and S contains all relation symbols to which a is
added.

51
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Definition 3.1.2. Let 7 be a signature and C a graded set of colours.
(a) An update instruction is a tuple (n, a, I, ¢, d, S) where

¢ 1 < w is a natural number and « is an arbitrary ordinal;
o [ is a partition U, I; = [n] of [n] into a classes (of which all
but finitely many are empty);

¢ ¢ e C*isasequence of a colours such that the arity of ¢; is ||
(which implies that the sum of their arities is #);

¢ d e C,isacolour of arity n; and
¢ S c Tisasetof n-ary relation symbols.

The number # is called the arity of the instruction.

(b) An ordered x-update is a set © of update instructions that
contains exactly one instruction (n,, I, ¢ d, S), for all n, I, and ¢.
Each such set © induces a family of functions

0,(1;8) = (d,8) :iff (mxl&dS)eco.

(c) A symmetric update is a set © of update instructions with the
following properties:

¢ O contains exactly one instruction (1, s, I, ¢, d, ) for all n < w,
every s < n, all partitions I = I, w---wI,_, where each of the I;
is nonempty, and all appropriate ¢ € C°.

¢ For all permutations o € S; we have

(n, S, Igos e - s IJ(S_I)), (Coos -+ C0(5_1)>, d, S) €O
iff (n, S (Lo v o Isy), (CosvvnsCsr)s d, S) €0.

The family of functions induced by © is
O, (Le)=(4,8) :iff (nslcdS)eoO.

We use ordered updates to define a sum operation $© where the
ordering of the structures matters, whereas symmetric updates are
used to define an operation U® that is invariant under permutations
of its arguments. For every symmetric sum there exists an equivalent
ordered one, while the converse only holds if we are allowed to use
more colours. (Basically, we need to colour each structure with a
different copy of the colours.) Below we will use ordered sums only
for finitely many arguments.

Definition 3.1.3. Let (9M;, y;), i < «, be a sequence of C-coloured
structures.
(a) Let © be an ordered x-update. The ordered sum

(€]
> (M, xi)

i<m
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of (M, xi), i < «, with respect to O is the structure (91, #7) obtained
from the disjoint union of the 91; by the following operation:
For every n-tuple a € N, n < w, if

0,(L;¢) = (d, )
where
Li={k<n|areM;} and ¢ :=yi(al|,) fori<x,

then we add ato all relations R € Sand set the new colour to #(a) := d.
(b) Let © be a symmetric update. The symmetric sum

e
U QUSD)
i<k
of (M, xi), i < «, with respect to O is the structure (91, #7) obtained
from the disjoint union of the 91; by the following operation:
For every n-tuple @ € N", n < w, containing elements from

M, ..., M;_,if
0,(L¢) = (d,9)
where

Iir={k<n|axeM;} and ¢ :=y(al;) fori<s,

then weadd ato all relations R € Sand set the new colour to #(a) := d.
Note that this definition does not depend on the ordering of
Jos++»js— since @ is invariant under permutations.
(c) For every sequence of colours ¢, € C,, n < w, let ¢ denote
the C-coloured structure (D, {) with universe D := [1] and empty
relations R := & where the only n-tuple is coloured with c,.

Example. Consider three structures with universes {x, x'}, {3, y'},
and {z, '}, and colouring

x(x)=a, x(») =0, x(2) =c,
x(x')=0b, X0 =¢, x(Z)=a,
x(xx)=e, Ay =e, x(z2)=f,
x(x,x) =e, X0y =1, x(Z.2)=f.

(a) Let © be a symmetric update. The following examples show
how the new colour and relations of a tuple are determined.

(xy): 65({o}, {1}; a,b)
x): ©2({o}, {1}; b,a) = ©2({1}, {o}; a b)
0 6({o1kf)

(xy): ©2({1) {02} ae)

rzx): @;({1} {2},{o}; ¢ ab)

symmetric sum

U@
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(b) For an ordered 3-update © we have:

(%) 6,({o}, {1}, 2 a,b,1)
3x): 0,({1},{o}, & a,b1)
(yl: y): ®2(®; {0,1}, T 1,f, 1)
(rxy): 65({1h {02}, 25 ae1)
zx): 65({2}, {0}, {1} a. bc)

where 1 denotes the colour of the empty tuple.

Having decided on the operations we can start building terms.
Since we want to support uncountable structures we consider terms
as infinitely branching trees of ordinal height.

Definition 3.1.4. For a graded set of colours C and a signature T,
let Y, be the signature consisting of all operations of the form
¢ and X© with colours from C and relation symbols from 7. Similarly,
Y, consists of ¢ and U°®.

Example. Let C, = {a, b, c}, C, = {1}, for n # 1, and

©:={(1 1, ({o}), (a), b ©),
(1 1, ({o}), (b), b, @),
(1 1, ({o}), (¢}, a 2),
(2 2 (fo}, {1}), (¢ a), 1, {suc,<}),

—

—

(2 2, ({1}, {0}), (a,c), 1, {suc,<}),
(2 2, ({0}, {1}), (6 b), 1, {<}),
(2 2, ({1}, {o}), (bc) 1, {<}),

)

(where we left out the irrelevant entries). Let @ be the update obtained
from © by replacing the instruction (1, 1, {({o}), (¢}, a {<}) by
(1 1, ({o}), () b {<}).

For each ordinal «, we can define a term T, denoting the structure
(a, suc, <) where the colour of the first element is a and the other
elements are coloured by b. (A formal definition of the value of a
term can be found below.) For 8 < a, we set

if B is a successor,

d T,(0f1):=c.
if B is a limit, and (o) =

]

)
U
Ty (o) :={ o
For instance,

T, = cu® (cu® (cu® %)),
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When trying to evaluate an infinite term T € «** for &« > w in a
bottom-up fashion, we face the difficulty that, after having obtained
the value of a subterm whose root is at a limit depth, we have to
propagate this value to its predecessors. To do so, we start at the
predecessor in question and trace the value back until we reach the
already evaluated subterm.

Definition 3.1.5. Fix a relation < well-ordering each colour set C,
such that colours of different arities are incomparable.

(1) For sequences of colours (¢;)i<a> (d;)i<a We define the ordering
componentwise.

(cp)i<(d;); :iff ¢ <diforali<a,
and ()i <(d;);i :iff (¢)i < (di)iand (d;); £ (ci)i.

(2) Let Tbe aterm, v € T anode, and « := |v|. A colour trace to v
is a sequence (¢;)i<q+: Of colours of the same arity which satisfies the
following conditions:

(a) Ifa = B+1isasuccessor then (c;)i<p, is a colour trace to the
predecessor u of v and the operation at u changes the colour of
tuples from cgy, to cp.

(b) If « is a limit then each subsequence (c;)i<ps, for f < ais a
colour trace to the corresponding prefix of v, and ¢, is the min-
imal colour ¢ such that the set { f < a | ¢g = ¢} is unbounded
below a.

Example. For the terms T, in the previous example, the colour traces
are of the form bb. .. bbac, bb. .. bba, or bb. .. bb.

With these notions we can define a subclass of terms to which we
can assign a value. Basically, we call a term T well-formed if its value
val(T) (which we introduce below) is well-defined.

Definition 3.1.6. A term T is well-formed if the following conditions
are satisfied:

(1) Foreach v e T, the set of colour traces to v is linearly ordered
by <.

(2) For every leaf v labelled ¢ and all arities # there exists a colour
trace (d;)icqs: to v with dy = ;.

(3) For all finite sequences of vertices vk, k < m, and all colour
traces (cf? )i to v, there exists a colour trace (d;)icas, to U =
v° M --- 1 v"" such that d, is the result of the operation at u

: k
applied to the colours cg,,.

Lemma 3.1.7. Let T be a well-formed term. For every v € T and all
colours ¢ € C there is at most one colour trace (cg)p<as+s to v With ¢, = C.

colour trace

well-formed term
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Proof. Let (¢g)p<a+r and (dg)p<a+ be colour traces to v with ¢, = d,.
We prove by induction on « that (cg)s = (dg)g. The case & = o is
trivial.
If o = f+11s a successor ordinal then the operation at v maps ¢, =
dy to cg = dg and the claim follows by induction hypothesis.
Suppose that « is a limit and that (cg)s # (dg)g. By symmetry, we
may assume that (cg)g < (dg)p. By definition, the set

S={f<aldg=ds}

is unbounded below a. Let e be the minimal colour such that the
subset S’ := { € S | ¢g = e} is also unbounded. Such a colour exists
since there are only finitely many colours of the given arity.

By definition of a colour trace we have e > ¢,. Since ¢ < dj for all
B < ait follows that e = cg < dg = dy = ¢, for € §'. Consequently,
cg = dp forall B € §'. Since §’ is unbounded the induction hypothesis
implies that cg = dg for all < a. Contradiction. O

Definition 3.1.8. Let T € x¥<* be a well-formed term and L € T the
set of its leaves.

(a) To every tuple a € L" we associate a colour trace x(a) by
induction on |a|. If a, = --- = a,, and the node 4, is labelled by d
then y(@) = (cg)p<a+: is the (unique) colour trace to a, that ends
incy =d,.

Otherwise, let v := [ a. There is a partition I, u--- u I, = [n] of
the indices such that

¢ v <a;Nayifiand k belong to the same class I;, and
¢ v =a; Nay for i and k belonging to different classes.

The node v is labelled by either 39 or U® for some update ©. Let
x(aly) = (cé)l;, for i < s, and let & := |v|. We either have

(d’ S) = ®n(1,; (éfx)i<K)
or  (d,8)=05(5ce,....c"),

where (&)<, is the sequence of length x obtained from ¢5,..., ¢5*
by inserting the colour of the empty tuple at the appropriate places.
Welet y(@) = (cg)p<a+: be the (unique) colour trace to v with ¢, = d.

(b) The value val(T) of T is the structure whose universe M = L
consists of all leaves of T. A tuple a € M" with associated colour trace
x(@) = (¢g)p<a+ belongs to a relation R iff there is some node v < [a
labelled by an operation 39 or U® that adds tuples coloured ¢/, to R.

In the following we will tacitly assume that all terms are well-
formed.
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What structures can be the value of a Y¢ ,-term? If 901 is a finite
structure with |M"| < |C,|, for all n < w, then, by assigning dif-
ferent colours to each tuple a € M, we can easily construct a term
denoting .

But, if M is infinite, this does not need to be the case. In the next
lemma we prove that every structure denoted by an Y ,-term T can
be interpreted in some tree, namely, the term T itself. The converse
is shown in Section 3.4.

One remaining technicality we have to deal with is to fix an en-
coding of terms as structures. In order to allow infinite signatures
we encode a Y-term T € <% as a structure (T, <, P) with universe T,
prefix ordering <, and unary predicates P coding the functions in Y.
Each operator is encoded by several predicates:

P;:={veT| vislabelled by some cwithd e ¢},
Piuatzdar) ={veT | vislabelled by ¥ or U® for some ©
containing (n, &, I, &, d, S) with Re S }.

Proposition 3.1.9. For all signatures T and every set C of colours there
are MSO-interpretations V and Vg, k < R, such that

Vi val(T) <wso (T <, P, (suc;)ick) forall Y§ -terms T € k=°,
and V :val(T) <uso (T, %, P) forall Y¢ -terms T € k=%

If the arity of T is bounded then there even exist MSO,,-interpreta-
tions for some m.

Proof. The universe of val(T') consists of the set of leaves of T, which
is definable. The above definition of the relations of val(T) can be
translated immediately into MSO once we have shown how to encode
colour traces. If colour traces (c¢;)i<x € Ci to some node v € T are
represented by sets (X4)4ec, such that u < vbelongs to X, iff ¢|,| = d,
then there is an MSO-formula which expresses that the sequence of
colours encoded in some tuple X is indeed a colour trace.

The quantifier rank of these formulae depends only on |C, | and
the arity of the relations involved. OJ

3.2 PARTITION REFINEMENTS

Given some structure 9, how can we find out how large the set C
of colours needs to be in order that there is some Y, ,-term denot-
ing M2 We will derive a structural criterion answering this question
by using a suitable variant of clique refinements and showing that
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every structure denoted by an Y ,-term admits such a decomposi-
tion, called a partition refinement, and that, vice versa, every partition
refinement yields a term.

We have chosen the operations of our terms in such a way that we
do not need to explicitly store information about the colours and the
refinements become particularly simple.

Definition 3.2.1. (a) A partial x¥**-partition refinement of a struc-
ture M is a family (U, )yer of nonempty subsets U, € M indexed by
atree T C x** such that the following conditions are satisfied:

(1) U; = M and for every a € M there is some leaf v € T with

aceU,.

(2) Each U, is the disjoint union of its successors Uy, v € T,

B <«

(3) If |v| is a limit ordinal then U, = N,<, U,.

The granularity of a partial partition refinement (U, ), is the supre-
mum of the cardinalities |U, | of its leaves v.

(b) A k<%-partition refinement is a partial x**-partition refinement
of granularity 1.

We can retrieve the colouring from a given partition refinement
since the colour of a tuple corresponds to its type as explained below.
As the colours are only needed to connect tuples a € U, in some
component U, with tuples b € U, in the complement we define a
notion of type consisting only of formulae containing both, a free
variable and some parameter.

Definition 3.2.2. Let 9t be a structure, @ € M, and U € M. Let
A € FO. The A-type of a over U is the set
tp,(a/U) ={p(x¢) | ME 9(a;c), ped, cc U},
and the external A-type of a over U is defined by
etp,(a/U) = {¢(x;¢) e tp,(a/U) | every atom of ¢ contains
a variable and some parameter c € U }.

We denote the set of all A-types over U with n free variables by
$%(U) and its subset of external types by ES}(U). In case A = FOx
we simply write tp, (@/U) and S} (U).

For sets A € £(M) and monadic formulae A € MSO we also define
the monadic A-type of A over U and its external variant by

mtp,(A/U) = {p(: C) | M= p(A:C), g €4, CSP(U) ),
emtp,(A/U) :={ ¢(X;C) € mtp,(A/U) | every atom of ¢
contains a variable and some parameter
CcU}.
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The set of all monadic A-types over U with n free variables is
denoted by MS} (U).

Definition 3.2.3. Let9beastructureand U € M. For tuplesa,b € M
we define

ZZ

?] b :iff tp,(a/U) = tpA(E/U)’
a~f b ciff  etp,(a/U) = etp, (b/U).

I Z

For sets A, B € (M) we reuse the these symbols and write
A
A~

s

4B :iff  mtp,(A/U) = mtp,(B/U),
~0 B :iff emtp,(A/U) = emtp,(B/U).

The [external] [monadic] A-type index of a set X over U is

ti3 (X/U) = | X"/~ mtiy (X/U) := [P(X)" [~
etiy (X/U) = [X"/~p|,  emtiz(X/U) = |P(X)"/~ ]
Again, in case A = FO; we simply write ~%,, tif' (X/U), and so on.
Remark. Note that, for undirected graphs, the relations ~{, coincides
with the relation ~7; defined by Courcelle in [27].
For the most part we will concentrate on atomic external types

etp, (a/U) and the corresponding index etif, (X/U).

Example. Consider the binary tree ¥ = (2=, <) and fix a vertex
we2 Ifvetw:={ve2*® | w=<v}then

u<v foralluelw={ve2®’|v<w},

and ufv forall u € 25 \ (twulw).

Hence etil (tw/tw) = 1 since only one external atomic type over
25¢\twis realised in tw. On the other hand, eti; (tw/tw) = 2 because
there are two external atomic types over tw realised in 2S¢\ tw.

Below it will be shown that, when colouring a component U,
of a partition refinement, we can take as colours the classes of the
relation ~7—, i.e., the atomic external types over the complement of U,.
Therefore, the number of n-ary colours we need equals eti’ (U, /U, ).

Definition 3.2.4. (1) The n-ary partition width of a partition refine-
ment (U, ),er is the number

pwd, (U,), = sup{etig(Uv/E) | ve T},

and the n-ary symmetric partition width is

type index
ti% (X/U), mti} (X/U)
eti’t (X/U), emti} (X/U)

partition width

symmetric partition width
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spwd, (U,)y = sup{etig(U,-d Uvi/ Uler Uvi) | veTIC K}.

(2) The n-ary partition width pwd, (90, £=%) of a structure M is de-
fined inductively as follows: pwd, (901, ¥=%) is the minimal cardinal A
such that there exists a ¥“-partition refinement (U, ), with

pwd, (U,), =1 and pwd,(U,), = pwd,(9M, %) fori < n.

If k<% = 2<MI" we omit the second parameter and simply write
pwd, M. M is said to be of finite partition with if pwd, I is finite
foralln < w.

The n-ary symmetric partition width spwd, (9, k=) of M is de-
fined analogously. We set spwd,, 90 := spwd,, (9, | M|<IM |+).

(3) The monadic [symmetric] partition widths mpwd, and smpwd,,
of a partition refinement or a structure are defined similarly by re-
placing eti! by emtiy.

Remark. (1) Obviously, we have pwd, (I, x=%) < spwd,, (M, €=%).
(2) In each partition refinement (U, ),er We can remove all nodes
v € T with exactly one successor. In that way we can transform
any x~*-partition refinement of a structure of cardinality A into a
x<N-partition refinement.
(3) It is not clear whether there always exists a partition refine-
ment (U, ), such that pwd, I = pwd, (U,), for all .

Lemma 3.2.5. Every linear order M = (M, <) has a 25 "partition
refinement (U, )yer of monadic partition width mpwd, (U,), = 1
where every U, forms an interval of 9.

Proof. We define U, by induction on |v|. Let U, := M. Given an
interval U, containing at least two different elements, we pick some
a € U, that is not the least element of U, and set

Ueo:={beU, | b<a} and U, ={beU,|b>a}.
Finally, if |v| is a limit ordinal, we set U, = N,, U,. O
Lemma 3.2.6. For the tree ¥ := (<%, <) we have

smpwd, (%, %) =1 and smpwd, (T, 25F)%) =,

Proof. We define a 5<**-partition refinement (U, ), by induction on v.
Set U, := B=*. Suppose that U, is already defined and of the form
tw = {x € % | w =< x} for some w. We define

Up ={w}, U,=U~{w}, U,=1wi fori<p.

Then we have emti’’ (U, /U, ) = 1 for all v, as desired.
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The second claim is proved analogously. If U, = tw is already
defined, we set

Uy ={w}, U= U twi,  Upnro = 1wy for y< ﬁ
i>y D
We promised above that we will show how one can use types
to define a canonical colouring. For the symmetric case we first
need a technical lemma which relates infinite symmetric sums and
symmetric partition width.
We say that a union U; X; induces the equivalence relation

a~b :iff aeX, < beX;foralli.

When considering an n-tuple 4, this relation induces a partition
I, w---wl; = [n] of the indices such that a; ~ ay iff i,k € I; for
some [

We call a tuple a € U; X; U U fragmented if the induced partition
consists of at least two classes. Further, we say that a colouring y of a
set X is compatible with the equivalence relation ~9; if

y(@)=x(b) iff a=yb foralla, bc X.

Proposition 3.2.7. Let 9 be a structure of arity r < w, Y := Ui, X; S
M a disjoint union, and U S M disjoint from Y. For I C «, define
X1 =Ujg Xi and Uy := UU (Y N\ X;). Let ~ be the equivalence relation
induced by the union \J; X;. Consider the following statements:

(1) There is a bound w € w® with w, < Wy, such that
etin(X;/Uy) <w,  foralln<wandlCx.

(2) There exists a set of colours C and C-colourings n of Y and x; of X;
compatible with, respectively, ~0; and Ve such that

)
M|y, n) =J Mx, xi) for suitable ©.

The following implications hold.:
(2) = (1) withw, < n"(c,)" where ¢, = max;c, |C;|.
(1) = (2) with |Cy| < (Wn(r — n) +1)R(K,)2. where

Ky = wn(rw,)" + R(wy, +2(r —n) +2)3.

Proof. (2) = (1) Define y(a) = yi(a) fora € X;, i < k. LetI C «
and a, @’ € (X;)". We claim that, if ~ induces the same partition
Jo -+ u]s = [n] of the indices of @ and &’ and if x(a|;,) = x(a'|},)

foralli<s,thena =0, a'.

induced partition

fragmented

compatible
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First suppose that MM & ¢(a; b) for some atomic formula ¢ and
parameters b € Y \ X;. Then U® adds all tuples of colour n(ab) =
1(a'b) to the corresponding relation. Hence, I & ¢(a’; b).

It remains to consider the case M = ¢(a; b, &) where b € Y \ X;
and ¢ € U. (ab) = n(a'b) implies ab ~% a'b. Thus, M k& ¢(a’; b, ¢).

Setting ¢, = max;<, |C;| it follows that

W”SZ{|C|10|| .... |C|]s_1|| |]0U"'U]571:[n], SSH}
<Y sM(en)t <™ (en)"
s<n

(1) = (2) We call a sequence ( f,, )<, of functions

fn:UXZ_’Cn

a<kK
a valid colouring iff

(€]
My, ) = J Mx, xa)

a<kK
for some © where y, is the colouring of X,, induced by ( f,),. This
condition is equivalent to the following one: ( f,;), is valid if and only
if, for all tuples @, b € Y” such that ~ induces the same partition
Jo U--- U], of their indices, fi5, (@l},) = i, (bly,), i < s, and for every
atomic formula ¢(X; d) with parameters d € U such that ad and bd
are fragmented, we have

M e o(a;d) < —o(b;d).
For a, € X" and b, € X%, we write @, ~ b, if there are tuples
4, CY\X,andb, CY \ Xp such that
¢ ~ induces the same partition J, U -+ U J; of their indices,

i f|]i|(a1|]i) :f|]i|(l-71|]i)’ fori<s, and

¢ for some atomic formula ¢(%, y; d) with parameters d € U such
that a,a,d and b, b, d are fragmented, we have

m ': (P(aO) al; ‘;l) - _'(P(BO’ 1_71; ‘_i) *

We will call such tuples a, and b, witnesses of the fact that a, ~ b,.
By the above remark, it follows that (f,), is a valid colouring if
and only if a — b implies f, (@) # f,(b) for all @ and b.
Let ( fu)» be a valid colouring such that C, := rngf, is of minimal
size. Suppose that

m = |Cn| > (Wn(r — I’l) + I)R(Kn)?.yﬂ .
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We fix an arbitrary ordering of each C, and we order colourings
pointwise:

(fidn < (gn)n  :iff fu(@) <gu(@) foralln<n acl JX).

W.lo.g. we may assume that ( f,), is minimal w.r.t. this ordering. It
follows that, for all @ € U, Xy and every colour ¢ € C, with ¢ < f,,(a),
there exists some tuple b € f,(c) with a — b since, otherwise, the
sequence (g, ), defined by
_ c ifx=a,
gn(X) =4 _ ,
fu(X) otherwise,
and g; = f; for i # n, would be a strictly smaller valid colouring.
Further, it follows that [rngf,[x:| < w, for all & < « since, if
a ﬁ‘[’]{a} b and f,(a) < f,(b), then we could change the colour of b
to f,(a) and the colouring would still be valid.
(a) Fix a decreasing enumeration ¢, > +++ > ¢y, of C,. We con-

struct a sequence (a'); such that @’ ~ a* for i # k. By induction on i,
we define

+ an increasing sequence of indices s; € [m];

¢ adecreasing sequence of sets H; C [m];

o sets[;; €k, fors; <t < mj;and

o tuplesa’ € f,* (¢ )N X}
such that

o b—~a'forallbef*(c;) NX7,si <t<m,and

¢ [ (ct)nX], # @ forallte H;

Let H_, = [m] and I, ; := «. For every i, we perform the following

steps. If H;_, = @ we stop. Otherwise, let s; :== max H;_, and choose
an arbitrary tuple @' € f,(¢;,) N XI"HS_, say a' € X} Since I;_, 5, € Ii,

for k < i and by induction hypothesis, we have a’ — a*, for every
k < i, as desired.

To define I, s; < t < m, fix some b, € f,*(¢;) such that by — @',
say, b, € X%. By definition, there exist an atomic formula ¢(X, j; d)
with parameters dc Uand tuples a, and b, such that a'a,d and b, b,d
are fragmented, ~ induces the same partition J, U- - -UJ, of the indices
of a, and by, fi;, (@, 15,) = fi5, (b.1},), for I < s, and we have

M e @@, a;d) <> —@(by, by;d).

Let ] € « be the minimal set such that b, € X;. If b’ € f;*(¢;) N Xiy
then

ME QD(Z),, 1-71; 6-1) A (P(Bo: Bﬁa)
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since (f,), is a valid colouring. This implies b’ ~ a'. Therefore, we
can set I;; := I, ; \ J. We conclude the construction by setting

His={teH  ~{si} | f,"(c)nX] #}.

The sequence (@'),<,,, obtained this way satisfies a’ —~ a* for i # k.
It remains to determine its length m,. We have

|Hi| > [Hiey | = wal|J| -1
> |Ho,| - (i+1)(wy(r—n)+1)

=m-(i+1)(w,(r—n)+1).

We can define @' provided H; , # @. This is the case if

> m
i< —.
wu(r—n) +1
Consequently,

m, > > R(Kn):yh .

wy(r—n)+1

(B) Denote the index a such that &' € X" by ;. For all i < k, we fix

tuples bik c Xifa;y and bki ¢ Xi{a,} Witnessing the fact that al — ak,

that is,
M = (@', b'*; d) < -¢(a", b*; d)

for some atomic _formula (/_)(5c, s d). Let J, w--- uJ be the partition
of the indices of b* (or of b¥) induced by ~. Set

nik ._ 1k rki . pki
bi* = 0"y, b = 0",

and let Bi¥, B < k be the indices such that b¥ ¢ Xgix and bl c X

Assume that we have chosen b* and b such that the set
N={1] b/ =b"}

is maximal.

It follows that, for each I ¢ N, we either have ﬁ;k = qay or there
exists some index o([) # I such that ﬁ?k = ’;i(l). Otherwise, we could
replace l;;“' by l_afk and the resulting pair of tuples would still witness
@' - a* in contradiction to the maximality of N.

Let oy : [s+1] NN = ([s +1] N\ N) w {*} be the function such that

P if oi (1) = *,
! I;jk(l) otherwise,
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and define oy; analogously. The maximality of N further implies that
there exists no sequence I, ..., I; of indices such that o (};) = [,
forj<t, and_a,-k(lt)_z I, since, otherwise, we could simultaneously
replace each bi’ by b;jk and again obtain witnesses for @' ~ a* with
strictly larger N.

It follows that Bi* € oy ki .., BN}, for every I ¢ N, and there is
ik
7' ()
For each pair i < k of indices we record

some number j such that o/, (I) = *, i.e., = o.
+ the partition J, U - - - u J; of the indices of b* induced by ~,
+ the size |N| of the set N defined above, and

« the functions oy, and oy;.

There exists a subset I € « of size
[I] > m, = max{k | m —> (k)% }
> K, = wp(rw,)" + R(wy, +2(r —n) +2);
such that all pairs i, k € I with i < k are coloured in the same way.
W.l.o.g. we may assume that I = [m,].

(c) First, consider the case that N = [s + 1] for all i,k € I. Let
Bix € x be the smallest set of indices such that b* = bk c XB,-
Clearly, B; = By;. Also note that, by definition of b’* and b*', we have
a;, ay ¢ Bix. For each set {i, k, I} of indices i < k < I, we record which
of the following conditions hold:

o € By, or€Bi, o €Bi.
There exists a subset I’ € [m,] of size
|I'| > m, == max{k | m, > (k)3 } > w, +2(r—n) +2

such that all triples i, k, I € I’ are coloured in the same way. W.l.o.g.
we may assume that I’ = [m,].

First we consider the case that a; € By, foralli < k <[ < m,. Then
a; € B,,, for 1 < i < m,. Furthermore, for o < i < k, we have «; ¢ B,;
and oy € By; \ Bok which implies that «; # k. Hence,

M, < |Boy| +221r—-n+2.

Contradiction. Analogously, if a; € By; or ax € Bjj, for i < k < I, then
we obtain, respectively,

m, < |Bm2—2,m2—1| +2 and m, < |Bo,m2—1| +2,

which lead to similar contradictions.
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The only remaining case is that none of the above conditions holds,
that is, we have a; ¢ By for all pairwise distinct sets of indices i, k, I.
Let H = {a; | i < m,}. b’* € Uy implies @’ ¥V a~, for all i # k.
Consequently, we have

etil (Xy/Uy) > m, > wy,.

Contradiction.

(p) Itremains to consider the case that [s+1]\N # @.Letl, € o2 (%),
ie., /35‘0’ = aj, for all i < k, and define [, := 0,,(};). Let L, ..., ; be

the sequence of indices obtained in this way where I; = *. Note that,

; ; ik _ gki  _ pki :
fori < kandj < t — 1, we have [31}_ = Bonap = ﬁl,-+,- For notational

convenience, we also set & := /3;:‘7 = .
By induction on j < t, we construct a decreasing sequence of
subsets I; < I of size

15| > (1] =1)/(rw,
such that

= ko and f|,,jﬂ|(l_;;j:)=f|,,jﬂ|(l_;§;i) forallikel.

lj

For all indices i, k € I; it follows that a; = B = BX° = ay. Since
each tuple &' has a different colour it further follows that |I;| < w,
which implies that

wa 2 [It] 2 (|I] =1)/(rw,)" > wy .

Contradiction.

(E) We still have to construct the sets I;. Let I, := I \ {o}. Since
=0 = ﬁfm our claim holds for j = o. Suppose that I, ..., I , are
already defined. Since pi° = Bf°, for i, k € I;_,, there exists a subset
-1 -1
I]-’ € I, of size

12 1Ll /w2 1l fwr

such that fi;, | (b}j‘i) = fin| (bif) for all i, k € I. It follows that

ci= fin, 1B = s 1B = fs 1B = fi 1 (BE),

.....

fore, there exists a subset I; € I ]' of size

5] > |I1/(s +2) > [T | /(rwy) > (1T] = 1)/ (rw, Y
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such that 821 = 5% for all i, k € I.. It follows that
hthat 2/ = 2% forall i, k . It follows th

io _ poi _ pok _ pko
I li—y liey i

as desired. O

After these somewhat lengthy preparations we are finally able to
prove that every structure denoted by a term has finite partition width
and, conversely, every structure with finite partition width is denoted
by a term.

Proposition 3.2.8. Let C be a graded set of colours, T a signature, and
n<aw.

(1) pwd, (val(T), k=) <R, for all Y§ -terms T € x=*.
(2) spwd, (val(T), %) < R, for every Y -term T S k=%

Proof. (1) Consider the subterm T, of T with root v € T and let U, be
the universe of val(T, ). We claim that (U, )er is the desired partition
refinement.

Suppose that @, b € U” are tuples such that, for all I € [n], the
subtuples a|; and b|; have the same colour at node v. Let ¢(X, ¢) be
an atomic formula with parameters ¢ € U,. If val(T) £ ¢(&, ¢) then
there exists a node u < v such that 4, ¢ € U, and the operation 5@
at u adds all tuples with the colour of (ac)|; to the relation in ¢ where
I is the set of those indices that actually appear in ¢. Since (b¢)|; has
the same colour it follows that also val(T) & ¢(b, ¢). Consequently,

we have a =2 b.
(2) Define (U, ), as above. By the preceding proposition, we have

etig (Uiel Ui /Uiel Uvi) < ”nﬂ(r?;}lx |Cn|)n' O

Remark. Note that, for the case n = 1, the proof above implies that
pwd, (val(T), «<%) < |C,].

Proposition 3.2.9. Let 9 be a T-structure.

(1) Let k < R, For every k*-partition refinement (U, )yes of M of
finite partition width, there exists a Y -term T C k= denoting I
where C is a set of colours with |C,| < pwd, (U,), for n < w.

(2) If the arity of 9 is finite and there exists a k~*-partition refine-
ment (U, )yes of M such that spwd, (U, ), < R, for all n, then there is
a Y -term T C k=% denoting I for some set of colours C.

Proof. (1) Let w, := pwd, (U,),. Let T := Su{wo | wleafof S} be
the tree obtained from S by adding to every leaf of S a new vertex
as successor. We construct a Y ,-term with domain T such that, for
every v € S, the subterm T, := {w e T | w = v} will evaluate to the
substructure 91|y, of M induced by U,.
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In a first step, each such component U, will be coloured by a
different set C” of colours with |C;,| < w,. To obtain a single set of
colours C we then define injective functions 4}, : C,, — [w,] and
identify colours ¢ € Ci and d € C}, iff y(c) = ) (d).

Colour each tuple a € U, by its external type etp (a/U,). If
a; € Uy, for i < k, then the type etp (... ax~/U,) is uniquely
determined by etp,_(;/U,;) for i < k. Hence, these colourings y,
enable us to express U, as ordered sum of the U,;

0,
My, xv) = 2 (M, xvi)

i<k

for a suitable set ©,.

For non-leaves v € S, we define the labelling of T by T(v) = ©.°".
Then we have T, = Zi“k Tyi.

For leaves v € S with U, = {a} we set T(v) := ¥° and T(vo) := ¢,
ie, T, = Y9¢ wherec, = etp, (a"/M ~ {a}) and

O:={(n1[ncncnSy) | n<w}

with S, :={R | a” e R}.

It remains to define the functions y}, : C,, — [w,] such that the
resulting term T := T, is well-formed. For v € T, we denote by vg < v
the prefix of v of length |vg| = 8 and, for each type p € C}, over U,,
we denote by pg its restriction to U,,.

For T to be well-formed it is sufficient to define y}, such that

¢ for each p € C}, the sequence (y:f (Pg))p<|v|+: forms a colour
trace to v;

o the colour traces to v are linearly ordered.

We define y, by induction on |v|. Let g, be an arbitrary injective
function C;, — [w,]. (Note that |C| = 1 since there is only one
external type over the empty set.) Suppose that % is already defined
forall |u| < aand let |v| = a.

First, consider the case that « = +1is a successor. Set u := vg and
let < be the ordering on Cj, induced by the function u};. We order C},
in the following way. If pg < pg, for p, p’ € Cj, then we set p < p’
and, if pg = p;;, then we choose an arbitrary ordering between them.
Finally, let 4}, be some injective order preserving function C}, — [w,].

It remains to consider limit ordinals a. Let p € C;, and let ¢ be
the minimal number such that the set {f < a | (pp) = c}is
unbounded. We set y) (p) :=c.

With these definitions, (u,/pg)s satisfies both conditions on a
colour trace, and we have ensured that all colour traces to some
node v are linearly ordered.
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(2) In the symmetric case the proof is analogous except that, ac-
cording to the above proposition, we have to use a suitable refinement
of the colouring given by the external types. This poses no problem
since the number of additional n-ary colours only depends on the ar-
ity of M and spwd. (U, ),, for i < w, so thebound sup { |C!| | v€ S}
remains finite. O

We claimed above that partition width generalises the notion of
clique-width or NLC-width. This is justified by the following lemma.

Lemma 3.2.10. Let & = (V, E) be a countable undirected graph of
NLC-width k.

pwd (8,25°) <k < ewd & < 2 - pwd, (8, 2<9).

Proof. One direction follows since VR- and NLC-operations can be
expressed by suitable Y -terms using the same set of colours. For
the other one, fixa Y _-term T denoting & with n := |C, | colours of
arity 1. We construct a VR-term using colours [2n].

For w € 2<%, let T,, be the subterm of T with root w and let U,, be
the universe of val(T,, ). For every injective mapping ¢ of the atomic
external 1-types over U, realised in U,, into the set [2n], we will
construct a VR-term t§, that denotes val(T,,) such that the colouring
of elements a € U, is the one induced by ¢.

If w is a leaf with U,, = {a} then we set

th = p(etp, (a/V ~ {a})).
Otherwise, Ty, = Tyyo +© Ty, and we set
{9 = ppadd(tls + )

where y, and y, are mappings with disjoint ranges, § maps the
colours induced by y, and y, to the ones required by ¢, and add is a
sequence of operations «, , adding all the necessary edges. O

3.3 THE TYPE EQUIVALENCE

Before proceeding we need to collect some basic properties of type
indices. In the following lemmas let 90t be a fixed relational structure.

Recall that, when speaking of the quantifier rank of monadic
second-order formulae, we consider the variant of MSO without first-
order variables where the atomic formulae are of the form X € Y and
RX, where the latter means that there exist some elements a; € X;
such that a € R.

The first lemma summarises some immediate relations between
the various kinds of type indices.
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Lemma 3.3.1. Let X, U< M and a, b € M".

(1) Ifm<nandT C Athentif (X/U) < ti}(X/U) and analogously
for the external and monadic case.

(2) etit(X/U) <tid(X/U) < |SH(@)]-etil(X/U),

emti) (X/U) < mti} (X/U) < |MS3(2)] - emtil (X/U).
(3) Go...n &Y bo .. by WM {ao} ... {an} &Y {bo}.. . {bua}.
(4) If the arity of M is bounded by r then

eti” (X/U) < (etil (X/U))" .

Proof. (1) a Nf] b implies a|; N{] b|; for all sets of indices I.

(2)a=S biffa~% band tp,(a) = tpo(l_a).

(3) For singletons X; = {a;} we have RX iff Ra.

(4) Let @, b € X" such that a|; =2 b|; for all I € [n] of size |I| < r.
If @ #2, b then there is some atomic formula ¢ (%; ¢) with ¢ € U such
that

M @(a;8) < -¢(b;c).

Let I ¢ [n] be the set of those indices i such that the variable x;
appears in ¢. Then |I| < r and a|; %Y, b|;. Contradiction.
Since there are

r—1 n n
< ="
2(i)=z(i)-
1=0 <n
subsets of [n] of size less than r the claim follows. O
Frequently, one would like to compute the type index of a boolean
combination of sets from their respective type indices. For arbitrary
structures this is only possible in special cases and even then quite

complicated. In the case of transition systems, the situation is much
simpler since, if all relations are at most binary, we have

a~%b iff a;~°b; foreveryiandallce U
Lemma 3.3.2. Let 9 be a transition system with r binary relations.
LetX, Y, U c M.
(1) etig (XU Y/U) < etiy (X/U) +etiy (Y/U).
(2) etil(XNY/XNY) < etil (X/X) - etil (Y/Y).
(3) etil (X \ Y/X N Y) < etil, (X/X) 4" etie(Y/T),
(4) etil (U/X) < 47 ¢tie(X/U),
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Proof. (1) Immediate.

(2) Leta,be XnY.Ifa :‘;_(bandaz%bthenaz;’_(ﬁ b.

(3) By (2) we have eti’ (X N Y/X U Y) < etil (X/X)eti: (Y/Y). The
claim follows by (4).

(4) Let m := etiy (X/U) and fix representatives ¢;, i < m, of the
classes in X/~?,. By the above remark we have, for a, b € U,

a~y b iff ax b foralli<m.

There are only 2r different atomic formulae ¢(x, y) containing both
variables. Therefore, there are only 2*" possible ~¢ -classes for each i
and the claim follows. OJ

Remark. If 91 is a transition system with » symmetric relations and
s asymmetric ones, then (d) can be improved to

etl;(U/X) < 2(r+2s)eti;(X/U)'

The general case is much more complicated. For instance, we can
construct a structure 97 such that pwd, M1 > X, for all #, but there
exists a single element v € M such that pwd,, 90| ., = 1foralln < w:

Let (Z x Z, E) be the infinite grid, and let v be a new vertex. We
can set 9 := (M, R) where

M:=ZxZu{v}
and R:={(abv)| (ab)eE}.

Nevertheless, some results can be obtained.

Lemma3.3.3. Let X, Y S Mandn < w.
) H(XUY/X0T) <Y (:l)tiiA (X/X) 2 (Y ~ X/T~X)
i<n
< 2"t (X/X) iR (Y N X/Y N X).

The same holds for eti};.

(2) eti’(XUY/XUY)
< Y R(etifet™(X/X), etile™™ (Y/Y)).
No+n,+n,=n

where R(m, n) := nR(3);, — 1.

Proof. (1) The second inequality holds by Lemma 3.3.1(1). To prove
the first one,leti < n,a, @’ € X',and b, b’ € (Y X)"".SetU := X U Y.
We claim that

~/ A A : 1A = A ST
;a4 and b~y b implies  ab sy ab’ &~y a'b’.
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Suppose for a contradiction that ab %2, a’b’. There exists some atomic
formula ¢(%, 75 ¢) € A with parameters ¢ € U such that

M & ¢(a, b;c) < —o(a', b';c).
But b ~4 . b’ implies that
M o(a b;e) < ¢(a b';e),

= A _7 . .
and a ~7, ;, @' implies that

M ¢(a,b';c) < o(@, b';c).

Contradiction. The result follows since there are (}) possible ways to
shuffle an i-tuple and an (n — i)-tuple.

(2) Letno+n,+n, = nand w, := eti’?*" (X/X), w, = etile™ (Y/Y).
It is sufficient to show that there is no sequence (a'¢'b’);<,, of length
m > R(wy, w,) witha' € (X\Y)™, b € (YN X)™,and ¢ € (XNY)"
such that

a'eb ¢ o a'e b foralli k< m.
Suppose that m > R(wy, w,), i.e., ["w.] — (3)}, . There is a subset

I ¢ [m] of indices of size |I| > "™/, such that
&b =2 kb foralli, kel.

If we colour pairs {i, k} € I of indices, i < k, by the ~2-class of a'ck,
then we can find a subsequence I, € I of size |I,| > 3 such that

@' foralli,j k€I, suchthati<kandj<L
W.lo.g. assume that o, 1, 2 € I,. It follows that
nY a'ch* = n

Contradiction. O

Lemma 3.3.4. Let 9N be a relational structure, X, U € M. Let m be the
number of relations of arity greater than 1 and let r be the supremum
of their arities.

etlg(U/X) < 2m(n+1)'eti{;‘(X/U) )
Proof. Leta, a’ € U". We have a ~% a” iff

M = o(a, b) < ¢(a@, b)
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for all b € X and for all atomic formulae ¢(%, 7) containing at least
one x; and one y;. Obviously, we only need to consider tuples b of
less than r elements. Also note that, if b ~; &', then M £ ¢(a, b) iff
M = ¢(a, b"). Hence, it is sufficient to take one representative of each
~9 -class. Finally, if ¢ (%, ¥) is obtained from ¢(%, ¥) by a permutation
of 7, then M & ¢(a, b) iff M & ¢’ (a, b’) where b’ is the corresponding
permutation of b. Thus, we can ignore the ordering of the variables .
The claim follows since there are at most m(#n +1)" atomic formulae
with variables Xy and the number ~9,-classes is etiy, ' (X/U). O

Lemma3.3.5. Let X, US M, ¢ € M*, and n < w.
ti"(X/U ue) < ti" (X ug/U).
Proof. Note that a #9, , Bimplies ac %y be. O

In the definition of partition width we only considered atomic
formulae. This is no restriction as the type indices of formulae of
higher quantifier rank are bounded by the quantifier-free ones.
Lemma 3.3.6. Let 901 be a structure, X € M, and n, k < w.

(1) etif (X/X) < Dy(eti"™(X/X)).

(2) ti¥(X/X) < DR(ti*(X/X)).

(3) mtif(X/X) < J(mti"*(X/X)).

(4) emti} (X/X) < Ty (emti"**(X/X)).

Proof. Since the proofs are very similar we only show a strong version
of (3). Let A(k) be the fragment of infinitary monadic second-order
logic consisting of all formulae of quantifier rank at most k. We prove

that mtiy ., ) (X/X) < MGy (X/X)
For A, A’ € (X)" we have

A mf_((k“) A’ iff for all B there is some B’ with AB m%(k) A'B

and vice versa.

Since AB 2 A'B'iff A(BnX) ~2® A'(B'nX)and B\ X = B'\ X,
we only need to consider sets B € X. Defining

e(A) = { [AB] € P(X)"' [~ | B X }
we obtain A %}A_((k“) Aliffe(A) = e(A"). It follows that

mtiy ., (X/X) = [P(X)" /z%(k+‘)|
< |6{)(6{)(X)n+1 / %%(k))| - thiza)(X/Y) ) 0
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The next result shows that having finite partition width is a finitary
condition. This is the reason for the various compactness properties
of Section 3.6.

Lemma 3.3.7. Let X, U S M, A € FO, and n < w.

(1) Leta,bc M. Ifa 4 b then there is a finite subset U, € U and
a single formula ¢ € A such that a #{}0 b. The same holds for ~%,.

(2) Iftip(X/U) is finite then there are finite subsets U, < U and
Ao € A such that X" [~4, = X”/Mé‘;. The same holds for eti};
and ~4,.

(3) Ifetiy(X/U) is finite then
eti} (X/U) = sup { eti} (X/U) | A, S A finite }.

(4) Iftih(X/U) is finite then the relation ~%, is B(A)-definable on
X". (B(A) is the boolean closure of A.)

Proof. (1)Ifa #% bthen thereis some formula ¢(%,¢) € Awithé € U
such that 9 = ¢(a, &) <> ~¢(b, ¢). Setting U, := ¢ we obtain a 4#({}0 b.

(2) According to (1) there are finite sets Uy;)(5; and formulae g5,
Prae
ULalta) b.
Setting Uo = Upajei) Upagpy and 4o = {9y | [@] # [b]} we
obtain

for each pair of distinct classes [a], [b] € X"/~4,, such that @ #

&ijl_ﬂ iff awé‘;i) foralla, be X".

(3) immediately follows_from (2).
(4) For each pair [a], [b] € X"/~%, of distinct classes we fix a A-
formula ¢(;);)(% 7) and parameters ¢[;;3) such that

M &= 9ay(51(@ Cayiiy) < ~Ppaggs) (B Eayiy) -

Then we have a m?] a’ iff

Me A (2@ cpp) < 9w (@ o)) -
J+[b']

[b 0

Lemma3.3.8. Letw € w®. Let (X, )yes be an increasing chain of sets X,
(ie,u<vw implies& € X,) indexed by an arbitrary linear order (I, <)
such that etiy (X,/X,) < wy, forall n < w.

etig(UXV / UXV) <w, and etig(ﬂXv / ﬂXV) <w,.
vel vel vel vel

Proof. For the first claim, let W := U,; X,. Suppose there are w,, +1
tuples a; € W", i < wy, such that g; OW ay for i # k. There exists
some v € I with @; € X, for all i < w,,. Hence,

eti? (X,/X,) > eti?(X,/W) > w, +1.
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Contradiction.
To prove the second bound, set W := M,¢; X,. Suppose there are
wy, + 1 tuples a; € W", i < w,, such that g; i°W ay for i # k. By the

preceding lemma, there exist finite sets Uy € W, i £ k, such that
ai #y, Ak for i # k. Since U := U Ujx is finite there is some v € I
with U € X,,. As a; € X, for all i < w,, it follows that

eti”(X,/X,) > eti®(X,/U) > w,, +1.

Contradiction. O

3.4 MSO-FUNCTORS

In this section we investigate the effect the MSO-functors of Section 1.3
have on partition width. First, note that adding unary predicates P
to a structure does not change the partition width since etp,(a/U)
does not contain formulae of the form Px;, and emtp,(A/U) no
formulae PX;.

Lemma 3.4.1. Let X, U € M. eti}(X/U) and emti} (X/U) do not
change if we add arbitrarily many unary predicates to .

Corollary 3.4.2. If M is a structure and P a sequence of unary predi-
cates then pwd, (O, k=) = pwd, ((OM, P), x=%).

We have already seen that every structure denoted by a Y ,-term
and, hence, every structure of finite partition width can be interpreted
in some tree. To prove the converse we need to compare the type
indices of one structures interpretable in another one.

Lemma 3.4.3. Let Z : M <ys0, N. Forall A, BS P(N), U € N, and
n < w, we have

AR B implies T(A) ~7uy Z(B).

Proof. Suppose Z(A) 1) Z(B). There exists an MSO,,-formula
¢(x, C) with parameters C € {°(Z(U)) such that

M e 9(Z(A), C) A-p(Z(B), C).
Choose D ¢ P(U) such that C = Z(D). Then
M e ¢ (A, D) A —¢T (B, D).

Since ¢T € MSO,..x we have A #* B. O
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Corollary 3.4.4. Let I and N be structures of finite signature and
Z : M <uso, N If mpwd,, (M, k%) is finite for all n < w then so is
mpwd,, (9, k<%). The same holds for smpwd,, (N, £=%).

Proof. Let (U, ), be a partition refinement of 9t of finite width. The
preceding lemma implies, together with Lemmas 3.3.1 (2) and 3.3.6,
that the partition refinement (Z(U,)), of Mt also has finite width. [

We are now ready to give a characterisation of the class of structures
of finite partition width in terms of interpretations in trees. One
direction was already presented in Proposition 3.1.9. The other one is
a direct consequence of Lemma 3.2.6 and the preceding corollary.

Proposition 3.4.5. If M <yiso, (k%% =<, P) for finitely many unary
predicates P and some k < w, then smpwd,, (9, k%) is finite for all
n<aw.

The following theorem summarises the various characterisations
we have obtained so far.

Theorem 3.4.6. Let 9 be a structure of finite signature.
(a) For each tree k= the following statements are equivalent:
(1) spwd, (I, k=%) is finite for all n < w.
(2) smpwd, (9N, k=%) is finite for all n < w.
(3) 9 =val(T) for some Y, .-term T € k=%
(4) M <yso0, (k=% <, P) for finitely many unary predicates P
and some n < w.
(b) Ifx < N, is finite then the following statements are equivalent to
those above:
(5) pwd, (O, k=%) is finite for all n < w.
(6) mpwd,, (M, k=) is finite for all n < w.
(7) 9 =val(T) for some Y -term T € x=*.
(8) M <yso, (K% =, (suc)ick, P) for finitely many unary
predicates P and some n < w.

Proof. (1) = (3) Since the arity of 91 is bounded Lemma 3.3.1 (4)
implies that there exists a partition refinement (U, ), of 9 such that
spwd, (U,), is finite for all n < w. Consequently, the claim follows
from Proposition 3.2.9.

(3) = (4) = (2) follows by Propositions 3.1.9 and 3.4.5.

(2) = (1) spwd,, (M, «=*) < smpwd,, (I, x=%).

Analogously, (5) = (7) = (8) = (6) follows from, respec-
tively, Propositions 3.2.9, 3.1.9, and 3.4.5, together with the fact that
pwd, (O, k%) < spwd,, (M, €=%).

(6) = (5) is trivial.
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(1) = (5) also follows from pwd, (90, «<%) < spwd, (I, £=*).
(8) = (4) follows from Lemma 1.3.3. O

We conclude this section by considering iterations and generalised
sums. It turns out that the partition width increases only slightly when
we take the iteration of a structure.

Proposition 3.4.7. For every structure 9 we have
pwd, " <2" pwd, M.

Proof. Let (U,)yer be a 2“-partition refinement of 9 of width
wy = pwd,(U,),. Let T, < T be the set of leaves. We construct a
partition refinement (V,),es of 9t* by recursively attaching copies
of the refinement (U, ), to each of its leaves. Formally, we define

S:=TuU(Te1)*“To(ou1T),

that is, a vertex v € T is either of the form v = vo1v,...v,_,1v, or
V=vo1v,...1v,_,0 wherev,,...,v,_, € T, and v, € T. We let
Vvo1...vn,11v,, = {(10 v paApW | a; € Uvi; weM=® };
Vietovpo =400...any | a; € Uy, }.
Note that the element a; is unique, for i < n, since U,, = {a;} is a leaf.

It remains to compute a bound on eti"(V,/V,).

For verticesv = vo1...v, ,0 we have | V,,| =1and eti"(V,/V,) = 1.
Otherwise, v is of the form vo1...1v, and V, = wU,, M<“ where
{w}=0U,, x---xU,,_.Let

X :=wU,, X' =w(M~U,),

Y = wU, M", Z = M<° ~ wM<.
ThenV,=XuYandV, =X UZ Fora,a’ € X" and b, b’ € Y" we
have

ab~%, . a'b iff a~a.

Considering the various ways an n-tuple can be distributed over
X and Y it follows that

et (XU Y/X UZ) < T (Z)eti’; (X/X")
k<n

< 2"etif(X/X") < 2"wy,. O

Lemma 3.4.8. Let J and M, i € I, be structures and w°, w' € w®. If
pwd, J < wy and pwd,, I; < w}, for n < w, then the partition width
of the generalised sum is

pwd,, [JM; < max {w,, n"w)(K,)"},
i€J
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where K,, is the maximal number of atomic m-types realised in some I,
form < n.

Proof. Let M := Ujey M; and fix partition refinements (U, ) ,es of J
and (V1),eri of M;.

Let S, c Sbe the set ofleavesof Sand /i : I — S, the mapping such
that Uy,(;y = {i}. Define

F:=Su{h(i)v|iel, veT},

Uiev, M; ifwes,
W, = A . .
V) ifw=h(i)v.

We claim that (W,,) ,er is a partition refinement of 91 of width
pwd,, (W), < max {n"(K,)" pwd,(Uy)u pwd,(V,),}.
For w = h(i)v, we have
etil (Wi(iy/N N Wigiyy) = etil (VI/N N V)
=eti"(VI/M; N V) < w,.

The case w € S is more involved. Let g : N — I be the function
defined by a € Mg, for a € N. We claim that a ~%. , b, for

a, b € W", if the following conditions are satisfied:
(1) ~induces the same partition J, - - -wJ of the indices of aand b.
() g(@) =2y, g(B).
() tp,(aly) =tp,(bl;,) forallk <s.

Then it follows that

etig(wu/N NW) <newy - (K"

We have a ~3 y, biff M = ¢(a;c) < o(bs¢) for all atomic
formulae ¢(%; ) and all parameters ¢ € N \ W,,.

Consider the possible relations occurring in ¢. If ¢ = z ~ 2/, for
z,Z' € XU, then this condition holds by (1). If ¢ = R°Z, then it
follows from (2) and, if ¢ = R'Z, then it holds by (3). O

3.5 PAIRING FUNCTIONS AND GRIDS

Baldwin and Shelah argue in [2] that monadic second-order theories
in which a pairing function can be defined are hopelessly complicated
and then proceed to classify the other ones. They show that the
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models of every stable theory without definable pairing function can
be decomposed in a tree-like fashion and that these theories can
be interpreted in the theory of a suitable class of trees. Extended
to include unstable theories a finitary version of their results would
answer the conjecture of Seese cited in the preface.

Note that, by (the proof of) Theorem 1.2.9, a corresponding result
for guarded second-order logic does hold. If the tree width of a
structure 91 is infinite, then arbitrarily large grids are GSO-definable
in 901 and, consequently, the GSO-theory of 91 is undecidable.

It is quite easy to show that the existence of a pairing function
implies an infinite partition width while a proof of the converse
seems to be quite involved requiring an adaptation of the Excluded
Grid Theorem of Robertson and Seymour [64]. So far, only partial
results have been obtained.

Definition 3.5.1. A structure 91 admits MSO-coding if there exists an
MSO-formula ¢(x, y, z; X) such that, for each natural number 1 < w,
there are sets A, B, C € M of size |A| = | B| = n such that, for suitable
monadic parameters P, ¢(x, y, z; P) defines a bijection A x B — C.

We say that 901 admits strong MSO-coding if there are infinite sets
A, B, and C and an MSO-formula ¢ as above.

Lemma 3.5.2. Let 9 be a structure and n < X,. The following state-
ments are equivalent:

(1) There exists an MSO-formula y(x, y, z) with monadic parameters
that defines a bijection A x B — C for sets of size |A| = |B| = n.

(2) There exists an MSO-formula 9(x, y) with monadic parameters
that defines an n x n grid.

(3) There exist MSO-formulae ¢(x, y) and y(x,y) each of which
defines an equivalence relation with n classes such that every
class of the first one intersects each class of the other one.

Proof. (1) = (3) Let f : A x B — C be the given bijection. We can
define two equivalence relations on C by setting

o(xy) =JuIvIz(f(u,z2) =x A f(1,2) =),

and  w(xp) = JuIvIz(f(z, u) =xAf(z,v) =y).
(2) = (1) Fixn<N,and C 2 nxnasabove. Let A:=nx{o} S C
and B := {0} x n € C. We claim that the function f : AxB - C

defined by f((3, 0), (0, k)) := (i, k) is MSO-definable.
With the help of the parameters

H, ={(,k)|izm (mod3)}cC
and V,,={(,k) | kzm (mod3)}cC,

admitting MSO-coding

admitting strong MSO-coding
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for m < 3, we can define the successor relations

So ={((i,k),(i+1k)) |i<n—1, k<n}
and S, ={((L k), (i, k+1)) |i<n k<n-1}.

Then the desired coding function can be defined by

flxy)=z iff (xz)e(S) and (2z) € (So)".

(3) = (2) Let ~, and ~, be the two equivalences. Fix elements
aik, i, k < n, such that

ik ~o Ay 1T i=m and Ak ~, Ay M k=1.
With the help of the parameters

P={a;li<n} and Q:={aj |i+1<n},
we define the relations

So = { (aik’ a(i+1)k) | ik<n }’
S ={(aix aigkr)) | Lk<n},

by setting

Soxy=x~ yATUIV(QUAPYAX ~g UNY ~o VAU~ V),

and  S;xy =X~ YATUIVPUAQVAX M UNY ~ VAU~ V). [

Remark. Note that the translation in the preceding lemma is uniform,
that is, given y(x, y, z; Z) we can construct a formula 9(x, y; Z) such
that, whenever P are parameters such that y(x, y, z; P) defines a bijec-
tion A x B — C with |A| = |B| = n, then we can find parameters Q
such that 9(x, y; Q) defines an n x n grid. Analogous statements hold
for the other directions.

It follows that structures admitting MSO-coding are complicated.
In particular, their MSO-theory is undecidable.

Theorem 3.5.3. If M is a structure that admits MSO-coding then the
MSO-theory of 9 is undecidable.

Proof. If 9t admits MSO-coding then there exists a formula 9(x, y; Z)
that, for suitable choice of the parameters Z, defines arbitrarily large
grids. The undecidability follows since these grids can be used to code
domino problems. |

We also give a characterisations of MSO-coding in terms of pairing
functions.
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Lemma 3.5.4. If9 admits strong MSO-coding then there is an infinite
set A € M and an MSO-formula ¢(x, y, z; P) defining a pairing function
on A for some unary predicates P ¢ £(M).

Proof. Let f : A x B — C be an MSO-definable bijection. Note that
every function g : A - B is MSO-definable with the help of the
parameter

P:={f(ag(a)) |acA}cC

since g(x) = yiff f(x, y) € P. By fixing a bijection g : A — B we obtain
a MSO-definable bijection i : A x A — C by setting

h(xy) =f(%g(»).

Finally, every pairing function k : A x A — A can be defined by
k(x,y) =z :ifft h(x,z) € P,and h(y, z) € P,

where

Py = {h(x.k(x) | xyeA}
and P, :={h(nk(xy))|xyecA}. O
Lemma 3.5.5 (Baldwin and Shelah [2]). Suppose that, for every n < w,

there exist an element ¢ € M, two sequences (a;)i<n and (b;)i<y, and a
formula ¢(x, y, z) € FO such that

o tp(a;iby) = tp(aob,) foralli, k < n,
* MEg(a, b o) iffi=k=o.
Then there exists an elementary extension N = I which admits strong

FO-coding.

Proof. We can choose a suitable elementary extension that contains
infinite sequences (4;)i<, and (b;)i<, with the above properties and
such that, for all i, k < w, there is an elementary map a; which
interchanges a, and a;, b, and by, and fixes all the other elements
aj and b;. Then,

M e ¢(aj, by, aix(c)) iff  j=iandl=k.
That is, ¢ defines a coding of a x binto C == { ax(c) | L k<w}. [

We conjecture that the property of admitting MSO-coding is equiv-
alent to an infinite partition width.

Conjecture. A structure I with finite signature has finite partition
width if and only if it does not admit MSO-coding.
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Note that this conjecture fails if we allow infinite signatures. Let
M = (w x w, (E;)n<w) Where

E,={ (k) D) | li-jl+|k=1l=1 ijkl<n}.

Then, pwd, 9 = X,. On the other hand, the MSO-theory of 91 is
decidable since each formula contains only finitely many relation
symbols and every finite reduct of 91 is the disjoint union of a finite
structure and an infinite set.

Since all structures admitting MSO-coding have an undecidable
MSO-theory a proof of this conjecture would settle the conjecture of
Seese that every class of finite graphs with decidable MSO-theory has
finite clique width. The following lemma deals with the easy direction.

We call a function f : A x B — C cancellative if f(a, b) = f(a', b)
implies a = a" and f(a, b) = f(a, b") implies b = b’

Proposition 3.5.6. Let M be a t-structure. If there are unary predi-
cates P and an MSOx-formula ¢(x, y, z; P) defining a cancellative func-
tionf : Ax B — Cthen |A| < K or |B| < K where

K =3 2k (Ngso mpwd,,, M) and N := |MS§(®)|

where MS¥ is taken with respect to the signature T U P.

Proof. Let f : A x B - C be the given function. Fix a partition
refinement (U, )yer of M such that mpwd,,, (U, ), is minimal and
define

wy = sup { mti} (U,/U,) | ve T}.
By Lemmas 3.3.1(2) and 3.3.6 we have

W, < k(N mpwd,,, ) = KA.

Suppose, for a contradiction, that m := |A| = |B| > 3w,.

We claim that there exists some vertex v € T such that

im<|U,NA|<im and [B\NU,|>w,,

or m<|UynB[<im and [ANU)|>w,.

Let v, be some vertex with 3m < |U,, nB| < im. If [ANU,, | <w,
then there exists some v > v, such that

im<|U,nA|l<im
and |B\NU,| > |B\U, | >2"5>w,.

Thus, by symmetry we may assume that there exists some v € T
satisfying the first condition.
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There are at most w, elements b € B \ U, such that f(a,b) = ¢
for some a € U, n A, ¢ € U, n C. Otherwise, there would be tuples
f(a,b) = cand f(a’,b") = ¢’ with b # b’ and {a}{c} N% {a’}{c'}.
Then, f(a’, V') = ¢’ would imply '

flab) =c=f(ab),

and by cancellation, we would have b = b’ in contradiction to our
assumption.

Since |B \ U,| > w, it follows that there exists some b € B\ U,
such that f(a, b) € U, foralla € U, n A.

Furthermore, since |U, N A| > ™5 > w, there are two different

elements a, a’ € U, N A such thata zkﬁ a'. This implies f(a, b) = ciff

f(a', b) = c for all ¢ € U,. Contradiction. O

Corollary 3.5.7. If 9 admits MSO-coding then pwd, MM > N, for
some n.

Corollary 3.5.8. A group has finite partition width if and only if it is
finite.

In Section 5.9 we will see that the Cayley graph of a group has finite
partition width if and only if the group is virtually free.

3.6 CODING AND COMPACTNESS

After having defined the partition width of a structure we can begin
to develop a model theory for structures of finite partition width. In
the present section we consider the first-order theory of a structure
of finite partition width. In particular, we prove that elementary
extensions preserve finiteness of partition width and we present a
compactness theorem for structures of finite partition width. We
start by considering substructures.

Definition 3.6.1. Let (U, ),er be a partition refinement of 9t and
C < M. The restriction of (U, ), to C is the partition refinement

(Uy)vlc = (Uy N C)ser,

where T, ={veT | U,nC+ I}

Lemma 3.6.2. If(U,), is a partition refinement of M and C € M then
pwd, (U,)y|c <pwd,(U,),  foralln< w.

Corollary 3.6.3. If M < N then pwd, (M, «=*) < pwd, (9T, k%) for
alln < w.

restriction
( Uv)v | C
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In order to compute the partition width of structures constructed
by model theoretic means we need to code partition refinements by
relations.

Definition 3.6.4. (a) Let (U,),er be a family of sets U, € M indexed
by a partial order (T, <). A pair (U, <) of relations U € M"*" and
E C M*" code (U, )er if there exists an isomorphism

fr(DE)= (1),
where D := {a e M" | ac a}, such that

U:={(a,l_7)eM><D|anf(;,)},

and ac bimpliesa, beD.

(b) We call a partition refinement (U, ),er of 9 reduced if all
non-leaves of T have at least two immediate successors. If (U, )er is
reduced we can define a canonical coding of (U, ), in the following
way. For each v € T choose leaves u,, u, € T with v = u, M, and set
h(v) := (ao, a,) where U, = {a;}, i < 2. Let D := rng h. We define

ach :iff abeDandh™(a)<h(b),
U:={(ca)|aeD, ce Uh—l(ﬁ)}.

Remark. Note that not every partition refinement (U, ),er of a struc-
ture 91 can be coded, since we might have |T| > |M"| for all n < w.
But we can always obtain a codable partition refinement by removing
some vertices v € T with exactly one immediate successor. The same
holds for non-standard partition refinements which will be defined
below.

The fact that a relation U codes some partition refinement can be
expressed in first-order logic, with the sole exception that it is not
possible to state that the components are arranged in a tree. Therefore,
we consider partition refinements indexed by non-standard trees.

Definition 3.6.5. Let T, be the theory of all trees (S, <) where
S € k¢ is prefix-closed.

Definition 3.6.6. A non-standard x*“-partition refinement of a struc-
ture M is a family (U, )yer of subsets U, € M indexed by a model T
of TE,. satisfying the following conditions:
(1) For all a € M there exists some v € T with U, = {a}.
(2) Ifu<wv,foru,veT, thenU, 2 U,.

(3) Ifu, v € T are incomparable then U, N U, = @.
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Note that we do not require the U, to be nonempty.

The widths pwd, (U, ), and spwd, (U,), of (U,), are defined in
the same way as for standard partition refinements.

For a structure 9t we define the non-standard [symmetric] partition
width pwd,’ 9 [spwd,,* ] of M as the minimal partition width of
a non-standard 2<¢-[R5“-]partition refinement of 1.

Lemma 3.6.7. If (U,)yer is a non-standard k=“-partition refinement
of M and C € M then (U, N C),er is a non-standard x~“-partition
refinement of M| ¢ of width

pwd, (U, N C)yer < pwd, (U,),  foralln< w.

Proof. The index structure of (U, N C)yer is T = T

free- It remains to
check conditions (1)-(3).

(1) If a € C € M then there is some v € T with U, = {a}. Hence,
U,nC={a}.

(2) Ifu < vthen U, 2 U, which implies U, nC2 U, nC.

(3) If u and v are incomparable then U, n U, = & which implies
(U,nC)n(U,nC) =2.

Hence, (U, N C)yer is a non-standard partition refinement of 90| .
The second claim is immediate. O

Corollary 3.6.8. If9t € N then pwd,* (M, k%) < pwd;,* (I, %) for
aln < w.

Lemma 3.6.9. Let 90 be a t-structure and (U, ) a pair of additional
relation symbols. For each x < No, there exists an FO-theory Tp, such

that (M, U, ) E Ty, if and only if (U, ) codes a non-standard x~*-

partition refinement of M.

Proof. Let ¥ be the theory obtained from T, by replacing every
occurrence of < by £ and relativising every formula to the set D :=
{a | a = a}. Further, let @ consist of the following formulae which
express the properties of a non-standard partition refinement:

Vx3pVz(Uzp <> z = x)

Vyvz(y € z - Vx(Uxz - Uxp))
VVz(3 £z AZ & y - =3x(Uxy A Uxz))
VAVP(XEy > XEXAJE )
VxVy(Uxy >y E )

Let T, == @ U ¥. We claim that (90, U 5) E T}, iff (U £) codes a
non-standard «<“-partition refinement of 1.

non-standard partition width
pwd)® O, spwd;* M

T3,
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(«=) is obvious. For (=), suppose that (M, U, ) & Ty,. We define

T:={aeM"|aca},

and U;={beM | (ba)eU}, foraeT.

Then (T,<) & TE,., a © b implies @, b € D, and (U )aer forms the

I
desired non-standard x<“-partition refinement coded by (U, ). [

Lemma 3.6.10. Let M be a t-structure and (U, E) a pair of additional
relation symbols.

(1) For every sequence w € w® there is a set of sentences II%, C FO
such that (MM, U,€) & IT;, if and only if (U, ) codes a non-standard
25“-partition refinement (U,), of M with pwd, (U, ), < w, for all
n<w.

(2) For every sequence w € w® there is a set of sentences II§ € FO
such that (M, U,€) & IIY if and only if (U, E) codes a non-standard
NS@-partition refinement (U, ), of M with spwd,,(U,), < w, for all
n< w.

Proof. (1) Since (M, U,E) E T}, iff (U £) codes a non-standard 2=~
partition refinement of 91, it remains to express that the partition
width is bounded.

According to Lemma 3.3.7 (3) it is sufficient to do so for all finite
subsets 7, S 7. We construct formulae ¢°,, expressing that the n-ary
partition width of the 7,-reduct is at most m. Then we can set

T, = Ty, U{ @y, | n<w 7, C7finite}.

Let r be the maximal arity of relations in 7,. For @, b € X, we have

a~2bh iff a=b forallceX.

o

Consequently, we can express that % ~2 y by the formula

y(% 35 X) = (V2. \-Xzi)[etp,, (/2) = etp,, (7/2)]

i<r

where Z is an r-tuple. Finally, we set

Orim = (V97 EF)(EE . F7 N\ Ux)

i<n,j<m
(v A\ Uxip) V (&', %5 U_)
i<n j<m

where the #, %', and jy are n-tuples, and U_j indicates that every atom
Xz in y should be replaced by Uzjy.
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(2) As above we construct formulae ¢°,, expressing that the n-ary
symmetric partition width of the 7,-reduct is at most m, and set

Iy == Tye u{ gy, | n<w 7, S 7finite }.

Let r be the maximal arity of relations in 7,. The formula
H(GorJ1) = Yo EJr A=32(Jo =25 J1)

defines the successor relation of the partial order =. For tuples

X°,...,x™ contained in U_j the formula

23,5, &) =7 (13 7)) A Uz ) >~ N\ Uy)

i<n,j<m

states that the element z is no member of any component U_j’
containing some of the /.

We have to express that there is no sequence a°, ..., a" of m+1tu-
ples of pairwise distinct types over all components that do not contain
any of the @'. This can be done by defining

ol = Vi-(35°. . & N\ Uxy)

i<n,j<m
NGz Nz 3, %5...,5™))
jEk i<r
[etp, (¥//2) + etp, (¥*/2)]. O

Having established our main tool we first apply it to show that
the non-standard partition width of a structure is determined by
the non-standard partition widths of its finite substructures. This
generalises the analogous result for the clique width of countable
graphs by Courcelle [27].

Proposition 3.6.11. Let M be a relational structure and w € w®.

(1) pwd,’ M < wy, foralln < w, ifand only if all finite substructures
of M have a non-standard 2~“-partition refinement of width at
most w.

(2) spwd;)* M < wy, for all n < w, if and only if all finite substruc-
tures of 9 have a non-standard N5 -partition refinement of
width at most w.

Proof. One direction immediately follows from Corollary 3.6.8. For
the other one, set @ := A u IT where A is the atomic diagram of I
and II is either IT;, or ITg.

If @ has a model (M, U, £) then there is a non-standard partition
refinement (U, ), of 9 of width w. The restriction (U, nM), of (U,),
to M yields the desired refinement of 1.
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To prove that @ is consistent let @, S @ be finite. Then there is
a finite set A € M such that @, € A, U IT where A, is the atomic
diagram of 01| 4. Let (U, ), be a reduced partition refinement of 91| 4
of width w, and let (U, £) be relations coding it. Then (90t 4, U,E) =
@,. Ol

Of course, we are interested in a standard partition refinement.
Unfortunately, the width of a non-standard partition refinement may
increase when we transform it into a standard one.

Example (Courcelle [27]). Let & be the graph with universe V :=
[2] x w and edge relation

E={({bk),{(Ln) | k<n b<2}.

Then pwd, &, = pwd* &, = pwd* & = 1 for every finite induced
subgraph &, ¢ & but pwd, & = 2.

To compute pwd, &, and pwd* &, it is sufficient to consider the
case that &, = &|,x[4]. A partition refinement of width 1 is given
by (U, )yer where T := 0°*"1* and

Uou = [2] x [n — k],

Uger, ={{0,n —k—1)},

Ugeko = [2] x [n—k—-1]u{(, n —k—-1)},
Ugeko, = {{Ln—k—-1)}.

For pwd;” & we use as index structure the tree T of all sequences
w: I - [2] whereI is a prefix of w+{. Then we can define analogously

U = [2] X w, forn < w,
U wtw*—2k = [2] X [k] >

o
Ugwrar—k, = {(0, k= 1)},
Ujorar—akg = [2] X [k=1] U {(1, k - 1)},
Ugorar-ako, = {(Lk-1)},
and U, =g, for all other indices v.

Suppose that there exists a partition refinement (U, ), of & of
width 1. By symmetry, we may assume that U, N [b] x w is infinite for
some b < 2.

If (b, n) € U, and k > n then (1 — b, k) ¢ U, since there exists some
n' > kwith (b, n') € U, and (b, n) bk (b, n). Similarly, (b, k) ¢ U,
for k > n since (b, n) k) (b,n') for all n’ > k. Hence, U, € [2] x [m]
for some m < w.

Fixsomeelement(c, k) € U,. Thereare elements (o, n,), (1, n,) € U,
with n,, n, > k. But (o, n,) e k) (1, n,) contradicts our assumption
that etip (U,/U,) =1.
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Proposition 3.6.12. Let M be a structure with m relations of arity
greater than 1 and let r be the maximum of their arities.

(1) If(U,), is a non-standard 2=“-partition refinement (U, ), of M
of width w,, = pwd, (U,), then

mr wp_y+r—1

de m < 2m(n+1)'w,.,,2
n <

(2) If(U,)y is a non-standard N5“-partition refinement (U, ), of M
of width w,, = pwd, (U,), then

mr" wy_y+r—1

spwd, 9 < (1) w2

(3) If M is a transition system then we can improve the bounds to
[s]lpwd, I < w, 4™, and for undirected graphs & = (V, E) we
have [s]pwd, & < w, 2™,

Proof. Since both cases are similar we only prove (1). Let (U, )yer be
a non-standard 2<“-partition refinement of 9. By induction on a,
we define

¢ astrictly decreasing sequence T, S T of subsets of T’
+ an increasing sequence of trees S, ; and
& apartial partition refinement (V,)yes,

such that u € T, and u < vimply v € T,, and we can partition T, into
sets Th satistying the following conditions:

* u,v e T, belong to the same component Tg iffunveT,.

¢ For every maximal path C ¢ S, such that W = N,c V, con-
tains at least 2 elements, there exists some fwithU s U, = W

and, vice versa, for every component Tg there exists such a
chain C ¢ S,,.

Intuitively, S, is the part of T we have already converted and T, is
the part that still has to be transformed into a standard refinement.
Let S, be the standard part of T, set T, := T\ Sy, and let V,, := U,
for v e S,. If ais a limit we set Sy = Up<q Sg and Ty := Mgy T
Suppose that « = f + 1. Fix a maximal chain C < Sg such that
W = N,ec V., contains at least 2 elements. If such a chain does
not exist then (V,)yes, is already a partition refinement of 21 (after
adding some singletons as leaves if necessary) and we are done.
If there is some v, € Tg such that U, = W then let T’ consists of all
u € Tg with v, < u. We add the standard part of T’ to Sg above C and
remove from Tj this part and all other elements v with vrv, € T (the
elements below v, ). Set V,, := U, for the new elements u € Sg,, \ Sg.
If such a vertex v, does not exist, let T’ © Ty be the set of all
v € Tg such that U, © W. Then, by assumption, U,er» U, = W. Fix
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a maximal chain I € T’. Note that, for every v € T' and all u € I
we have umv € I. Since I is a linear order there exists a partition
refinement (H,),er of (I, <) of width 1 where each component is
some interval H, < I. We add the tree F to Sg above C, define

Vo= J U,NUJ{Uy | wel, w>uforallueH,},

weH,

for v e F,and set Tg,, == Tg \ .

Since T, o Tg for a < f3, the construction must stop after at most
| T|* steps with some partition refinement (V) es.

The components V,, are of the form X or X \ Y where X and Y are
either components U,,, for some w € T, or of the form U,,cc Uy, for
some chain C € T. By Lemma 3.3.8, we have eti’ (X/X) < w, in both
cases. It follows, by Lemmas 3.3.3 and 3.3.4, that

eti’(Y UX/X N Y) < 2"eti? (Y/T)2m ()" etic™ (/%)

r
< 2nwnzm(nﬂ) w,,,)

where m is the number of relations of arity greater than 1, and r is the
maximum of their arities. Therefore,

mr" wy_y+r—1

etil (X \ Y/Y UX) < 2™ w2
If 91 is a transition system then Lemma 3.3.2 implies that

etip (X \ Y/Y uX) < eti, (U, /U, )etil, (U, /U,)
< wyig™n O
Corollary 3.6.13. (1) If there exists a sequence w € w® such that
pwd, & < wy, n < w, for every finite substructure A < 9N then
pwd, M <R, forn < w.

(2) If there exists a sequence w € w® such that spwd, A < wy, n < w,
for every finite substructure A € O then spwd, M < R, for n < w.

A direct consequence of Proposition 3.6.11 is the fact that having a
finite partition width is a property of first-order theories.

Theorem 3.6.14. If 9 is of finite non-standard partition width and
M =0 N then

pwd)” M = pwd,* N and spwd,’ M = spwd,’ N
foralln < w.

Proof. Letw; := pwd,; I, for i < w. W.l.o.g. assume that the signature
is finite. Since there are only finitely many structures of size # there
exists an FO-formula y7, (xo, ..., x,_,) stating that pwd; M|z < k.
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M & Viy!, (%) implies N = Viy], (%). By Proposition 3.6.11 it
follows that pwd,* 91 < pwd,’ 9 for n < w. The claim follows by
symmetry.

In the same way we can show that the non-standard symmetric
partition widths are equal. O

Corollary 3.6.15. If M =xo Mt and M is of finite [symmetric] partition
width then so is M.

Corollary 3.6.16. Let T be a finite signature. The class of T-structures
of finite [symmetric] partition width is L, ,,-definable.

Proof. There are only finitely many 7-structures 91 of cardinality »n
with pwd,; 91 < k, and we can construct an FO-formula (PZ « which de-
fines the class of these structures. Consequently, the class of structures
of finite partition width is axiomatised by

AV A Vxo - Va9 (%)

i<w k<w n<w
where y?, (%) is the relativisation of ¢, to the set x. O

For the non-standard partition width we are able to prove that
for every structure 9 such that pwd,,® 91 is finite there exists a non-
standard partition refinement of exactly this width.

Proposition 3.6.17. Let 9 be a structure.

(1) There exists a non-standard 2<° -partition refinement (U, ), with
pwd, (U,), = pwd,’ M for all n < w.

(2) There exists a non-standard NS®-partition refinement (U,),
with spwd, (U,), = spwd;,* M for all n < w.

Proof. Since the proofs are nearly identical, we prove only (1). Let
wy = pwd,,® 9, and let A be the atomic diagram of M. If (M, U, ) &
@ := AUIT then Mt € Y and (U, ©) codes a non-standard partition
refinement of Ot of width #w which induces one of 9t of the same
width.

To show that @ is consistent let @, € @ be finite. There exists some
k < w such that @, does not contain any formula of the form ¢}°,,
for n > k. Let (U, ) code a non-standard partition refinement (U,),
of M such that

pwd, (U,), =pwd,’ MM  foralln <k.
Then (O, U,E) E @,. O

Let 9t < 1. Every non-standard partition refinement (U, ),er of 91
induces a corresponding refinement (U, N M), of M, that is, each
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partition refinement of )T can be obtained by extending one of 1.
The following proposition states the converse: every non-standard
partition refinement of 91 can be extended to one of 9.

Proposition 3.6.18. Let (U, ),er be a non-standard 2<“-partition re-
finement of . For every 91 = 9 there exists an elementary extension
S = T and a non-standard 2~“-partition refinement (V,)yes of I of
the same width such that Vi) 2 U, forallv e T whereh : T — Sis
the corresponding elementary embedding.

Proof. Wlo.g. we may assume that |[M| > R,. Set w,, := pwd, (U, ),.
Let (U, £) be relations coding (U, ),. Let Ay be the elementary dia-
gram of N, = the elementary diagram of (M, £), and set

I''={Pa|aecN}u{Uab|abcM}.

By modifying IT;, we can obtain a set of formulae expressing that
(Un (P xM"),E) codes a non-standard partition refinement of P.
Let IT” be this set.

We have to show that ¥ := SuI'UIT’ UAs hasamodel (9, BV, £/).
Then there exists an elementary embedding & : (T,£) < (S, &) where

S={ae(N)"|aca},

and (V3)aes with V; := {b € N | (bya) € V} is a non-standard
partition refinement of 91 with U, € V(..

Let ¥, € ¥ be a finite subset. Then ¥, < 5, ul', UIT’ UA, for some
finite sets £, € £, I, € I', and A, € Ay. Let A € N be the finite set of
elements mentioned in 5, Ul UA,, and set M, := ANM, N, := A\M.
Let a be an enumeration of N,. There exists a tuple b € M such that
tp(b/M,) = tp(a/M,). Then (MM, M, U b, U,E) E ¥, 0

We conclude this section by considering two versions of a compact-
ness theorem for structures of finite non-standard partition width.
After proving a version where the non-standard partition width is
bounded by a given constant we show that compactness fails if we
only demand that the partition width is finite.

Theorem3.6.19 (Compactness). Letw € w®. A set @ C FO of sentences
has a model MM with pwd,* M < w, for n < w if and only if every finite
subset ®, C © has such a model. The same holds for spwd,’ 9.

Proof. ®hasamodel M of width pwd}® 91 < w, ifand only if GUIT,
is consistent. Since all finite subsets of @ U IT are consistent, so is the
whole set. O

Corollary 3.6.20. A set @ C FO of sentences has a model of finite
partition width if and only if there exists a sequence w € w® such that
every finite subset O, S ® has a model MM with pwd, M < w, for
n < w. The same holds for the symmetric partition width.
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We have seen that a group has a finite partition width if and only
if it is finite. Using this result we can show that certain theorems of
model theory fail if we restrict the class of structures to those of finite
partition width. Note that, by the preceding theorem, if, instead, we
consider only models of partition width less than some given finite
bound, then the situation is completely different.

Lemma 3.6.21. There is an FO-sentence gy such that, for each n < R,
@in has a model of cardinality n that is of finite partition width, but
@fin has no infinite model of finite partition width.

Proof. Let ¢4, be the conjunction of the group axioms in signature
7 := {-}. Since a group has a finite partition width if and only if it is
finite the claim follows. O

Theorem 3.6.22. When restricted to models of finite partition width,
first-order logic does not have any of the following properties:

(1) the compactness property;
(2) Beth's definability property;

(3) Craig’s interpolation property.

Proof. (1) A counterexample is

Q= {gin}U{pn | n<w}

where g, states that there are at least n different elements. @ has no
model of finite partition width but each finite subset of @ has one.

(2) Let a be a sentence stating that < is a discrete linear order with
minimal and maximal element and that s is the successor function
mapping the last element to the first one. Let 8 be the group axiom
for + and define

x=Vxy(x+o=xAx+sy=s(x+y)).
If9M == (M, +,<,5,0) is a model of ¥ := a A B A y of finite partition
width then |M| < X, and, hence, (M, +) = (Z,, +) for some n € N.
Thus, v is an implicit definition of + in (M, <, 5, 0). But there cannot

be an explicit one since, otherwise, the set of even positions were
definable by

p(x) =I(x=y+y).

(3) follows from (2). O
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3.7 THE INDEPENDENCE PROPERTY

Proposition 3.5.6 can be used to link the concept of partition width
with the model theoretic notion of VC-dimension or, equivalently,
the independence property.

Definition 3.7.1. Let T be a first-order theory. An FO-formula ¢(%, )
has the independence property (w.r.t. T) if there exists a model 9T of T
containing sequences (d;)c, and (b;)i<, such that

MEg(a, b)) iff iel.

We say that a structure 97 has the independence property if there
exists a formula ¢ that has the independence property w.r.t. Th(01).
If a; and b; are singletons we say that 90t has the independence property
on singletons.

Theorem 3.7.2 (1L, 4.11 of [71]). Let T be a first-order theory. The
following statements are equivalent:

(1) No formula ¢(x; ¥) has the independence property w.r.t. T.
(2) No formula ¢(x;y) has the independence property w.r.t. T.

(3) For all formulae ¢(x; ) and all n < w there is some k < w such
that |S,(A)| < 2K/ for all sets A of size k.

(4) For all p(x;7) there is some n < w such that |Sy(A)| < |A]"
for all finite sets A with at least two elements.

In [2] it is shown that the independence property and the in-
dependence property on singletons coincide if we allow monadic
parameters.

Lemma 3.7.3 (Baldwin and Shelah [2]). Let I be a structure and
0(%, Yo - . . Yn) a formula with the independence property w.r.t. Th(91).
Then there exists an elementary extension 91 = 9, a set P € N,
and a formula w(x, ¥, ...Yn—) that has the independence property
w.r.t. Th(MN, P).

Corollary 3.7.4. Let 0 have the independence property. There exists
an elementary extension M > 9N and unary predicates P such that
(M, P) has the independence property on singletons.

It immediately follows that the independence property implies
MSO-coding.

Lemma 3.7.5. Let 9 have the independence property on singletons.
There exists an elementary extension 2 = 9N that admits strong FO-
coding.
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Proof. Choose an elementary extension 9 that contains sequences
(ar)1ce and (b;) e, such that, for some formula ¢(x, y), we have

NE go(a;, bl) ifft iel.

Fix disjoint infinite sets X, Y € B := {b; | i < w}, and define a
function f : X x Y — M by f(b;, bj) = a(;j;. Forx € X, y € Y, and
zeZ:=f(X,Y) wehave

feoy)=z iff  Mee(zx)nezy).
Hence, f is an FO-definable bijection X x Y — Z. O

Together with the results above it follows that no structure with
the independence property has finite partition width. This slightly
extends a result of Parigot [58] who showed that trees do not have
the independence property.

Proposition 3.7.6. If M is a structure with the independence property
then pwd,, M > R, for some n.

Proof. If 90t has the independence property then there exists an ele-
mentary extension 91 > 901 and unary predicates P such that (91, P)
has the independence property on singletons. Hence, there exists
an elementary extension (9, P") which admits strong FO-coding. If
9 where of finite partition width, then so would be 0, (N, P), and
(9, P). The latter contradicts Corollary 3.5.7. O

3.8 INDISCERNIBLE SEQUENCES

In the present section we consider sets A and B such that ti{ (A/B) is
large. We will construct sequences a; € A and b; € B, i € I, such that
the bijection b; + a; is FO-definable. This property might by useful
when defining grids. Once we have managed to define the rows (a;);
of a grid, we can obtain the columns by connecting each pair of rows
by such a bijection.

In the following let A be a finite set of formulae ¢(%; y) where we
distinguish between free variables X and parameters y. Accordingly
we write

a%?][, -iff 9)’{|:(P(a;z)<—>gp(!_);é) forallp e A, ce U".
W.lo.g. we assume that || = m and |y| = n for all p(X;7) € A.

Definition 3.8.1. Let ¢(%;7) € A and 0 € {=# < > < 2}. Two se-
quences a° € M™,s € I, and b° € M", s € I, are of p-type o if

MEasb') iff sot.

p-type o
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Mirroring the proof of Ramsey’s theorem we first construct two
sequences of ¢-type 0.

Lemma 3.8.2. Let ~ an equivalence relation with k > 1 classes on the
set of subsets X C [m] of size | X| = 2. There exists a subset I € [m] of
size

[I| > log, (m(k —1) +1) >log, m
such that {i, k} ~ {i, I} forall i, k, [ e I withi < k, L

Proof. We construct two sequences (I); and (J;); of subsets of [m]
such that every element of J; is greater than all elements of I; and

{aj, ar} ~{a;, a;} foralliel, kle];.

Let I, := @ and ], = [m]. Suppose that I; and J; are already defined.
If J; = @ then we stop and set I := I;. Otherwise, let i be the minimal
element of J; and set I, := I, U {i}. Let ~ be the equivalence relation
on J; \ {i} defined by

ka1 ciff {ikb~ {01},

By the Pigeon Hole Principle, J; \ {i} contains a ~-class J,, of size at
least (|Js| —1)/k. This concludes the construction.

The set I we have obtained has the size |I| = max{s+1]| J; #+ & }.
The claim follows if we prove that

s k-1
IJs| 2 k (m— k—1)

k_s(m—%)>o it kK <m(k-1)+1

since

iff s <[log (m(k-1) +1)].
We have |],| = m and, by induction,
sl 2 k7 (s | = 1)
K -1 1
—17.—(s-1) _ -
>kTk (m 2 ) 3

-1

=k5(m— e —k“)

k-1

L K o1k -k
=k (’”‘ T)

s k-1
=k (m— k—1)

as desired. |
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Lemma 3.8.3. Let A be a finite set of formulae and let a' € A™, i €1,
be a sequence such that a* #4 a* for i # k. There exist a formula
o(x;7) € A, a subset ] < I of size |J| > |A|7(log, |I| + 1), and a
sequence b' € B", i € ], such that

M e o(a b)) o —pab')  forallile], 1<i.

Proof. By induction on s, we construct a decreasing sequence of sets
I, € I, an index is € I;,, a formula ¢;, € A, and tuples b € B" such
that the above condition is satisfied for ¢ := ¢; , I := i;,and i € I;. Then
the set J' := {io, i,,... } contains a subset ] € J' of size |J| > |J'|/|A|
such that ¢; = gy forallj, k € J.

Let I_, := I. Assume that I is already defined. To choose I,, s,
i...»and b+ we consider the following cases.

If I, = & then we stop. If I, = {i} then we set iy, = i, choose
arbitrary b’ € B" and ¢; € A, and set I, := & thereby stopping in
the next step. Otherwise, I; contains at least two different elements
i,k € I,. Since @' #4 a* there is some b € B" and some ¢ € A such that

M E (a'; b) < —g(a*; b).
Hence, the sets

IM={iel, | ME g(a’sb)}
and I :={iel, | M ¢(a’sb)}

are both nonempty. If |I]| > |I| we set Iy, := I} and choose some
isy; € I7. Otherwise, Iy, == I, and iy, € I,

Since | Iy, | > %|I] it follows that |I, ,| > 27}|I|,i.e., I, , # @ for
i <log, |I|. Hence, the above procedure can be carried out for at least
log, |I| + 1 steps. 0

Lemma 3.8.4. Let (@');c; and (b") e be sequences such that
M e o b) o —pasb')  forallile), I<i.

There exists a set ] I of indices of size |J| > log, |I| such that
M @@ b)) « (@b forallijle] ij<l.

Proof. We obtain the desired subset J if we reverse the ordering of I
and apply Lemma 3.8.2 to the relation

(i, ky~ {1} iff  Me @bk < o@;b). O

Proposition 3.8.5. Let A be afinite set of formulaeandleta® € A™,s € I,
be a sequence such that a* #3 a' fors + t.
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There exist a formula ¢(X; y) € A, arelation o € {=, #, <, >}, a subset
J €1 of size
1 log |I]| +1
> — 1 o271 B
JI'> 7 log, ]

and a sequence b° € B", s € ], such that (a°)s; and (b%)«; are of
@-type o.
Proof. Combining the preceding lemmas we find a sequence b° € B",
s € J, such that

M E p(a’;b') < —p(a';b") foralls,te], t<s,
and Mk ¢(a’;b') < g(a’;b") foralls,nte], s,v<t.

Hence, we can partition J = J- U J. U Jc U [, into sets such that the
restriction of (@°); and (b*); to ], is of ¢-type 0. At least one of these
sets J, has the required size. O

Having constructed sequences (a*); and (b°), of p-type o we show
how to define a bijection b;, ~ a; for some i and k. First, we consider
the simpler case of sequences of singletons.

Lemma 3.8.6. Let (a°)se; and (b%)ser be sequences of ¢-type o. There
exists a formula x(x, y) with monadic parameters A .= {a’ | se I}
and B == { b* | s € I } such that

Mey(a’,b') iff s=t.

Proof. If 0 € {= #} we can set y := ¢ and y = —¢, respectively.
Suppose that 0 = <. Since we can reverse the order of I and replace ¢
by —¢ the other cases follow by symmetry.

We can define the ordering on A by the formula

Ixy) = (Vze B)(9(1 2) = ¢(x,2)).

Hence, we obtain the desired formula y by saying that x is the maximal
element in A such that ¢(x, y) holds.

X y) =9(ey)A-(3z€ A)(x +zA9(x 2) A o(z y)) . O

For the general case we need some technical preparations that are
finitary versions of results of Shelah [72].

Definition 3.8.7. (a) We say that sequences § and f have the same
order type if s; < sp < t; <ty for all i and k.
(b) Let ¢(x) be an FO-formula with n := |X|. A sequence (a*)ss of
n-tuples is g-indiscernible ift
MEad,...,ap) < oal, ... am

for all sequences 3, f € I" of the same order type.
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Lemma 3.8.8. Let ¢(X) be a formula with |x| = n. Any sequence
a’ € M", s € I, of length |I| — (m)”,. contains a g-indiscernible
subsequence of length m.

Proof. For each sequence s, < -+ < s,,_, of n distinct elements s; € I
and every function g : [n] — [n], we record whether
Se(o Sg(n
ME o(ad,...a™
holds or not. Since |I| — (m),. there exists a subset J € I of size

|J| > m such that all increasing sequences s € J" have the same colour.
Consequently, (a°)s is ¢-indiscernible. O

Definition 3.8.9. Let (a°). be a finite ¢p-indiscernible sequence. Let
_ € I consists of the first n elements of I and I, € I of the last n. Set
I,=I~({_uUl).

(a) Let < c [n] x [n] be the equivalence relation defined by i < k
iff there exists an FO-formula y(x, y) with first-order parameters a°,
for s € I_ U 1,, and monadic parameters A; == {a; | s}, fori<n,
such that

M e x(aj,a,) iff s=t foralls, tel,.

(b) x partitions [n] into classes Ny W - -+ U Ny,,_,. We set a; = a°|n;,

le,a*=al...a, .

(c) To simplify notation we set @[so, ..., Sm—y | = (@5, ..., aymt).
Remark. = is obviously an equivalence relation.

Lemma 3.8.10. For each =-class N = {ko, ..., k,} there exists a for-
mula y(x) with first-order parameters a°, s € I_ U I,, and monadic
parameters A; :={aj | sel}, i <mn,such that

Meyb) iff b=a‘|y forsomesel.

Proof. By definition, there exist formulae y;(x, y), for i < r, such that
M e yiay,a, ) iff  s=t.

We define

w(%) = N\ Agxi A N\ (i x7) .
i<r i<r O
We construct the bijection b; ~ a; by showing that, when con-

sidering an g-indiscernible subsequence of (ab*);, there are indices
j<mandk < nsuch thatj < m+k.

Iﬂ Io» I+

ixk
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Proposition 3.8.11. Let (a°)1 be a g-indiscernible sequence. For all
5,1 € I'", we have that

M= Q[0+ or Smaa] < Qltos- s tmer] -

The proof is split into the following two lemmas. Let y;(X) be the
formula from Lemma 3.8.10 defining equality for N;.

Lemma 3.8.12. M = @[so, ..., Smo1] <> @ltos ..., tmy| foralls, t eI
such that |{so, ..., Smor}| = |{tor-- > tms}| = m.

Proof. It is sufficient to prove the claim for transpositions. Suppose
otherwise. Then, by symmetry, we have

M e §0[50; cees Siy Sigs e -:Sm—l] A _‘(P[So: e Sivn Sis e -)Smfl]

for some 5 € I" such that no s; lies in the interval (s, si;,). By
indiscernibility, we further may assume thats; € I_ U I, forj < ior
j>i+1 Define

¢’ (6 y) =3I (vi(xx") A i ()

_s “Sice ol o) =Sid S
ANp(aP, ... ai7, xx, yy, aie, ..., an))

Let j € N; and k € N;y, be the minimal elements of their respective
<-class. For s, t € I, s # t, it follows that

ME¢'(a,a) iff s<t.

Hence, the sequences (a;)S and (ay ), are of ¢'-type o, for o € {<, <},
and, by Lemma 3.8.6, we have j < k. Contradiction. O

Lemma 3.8.13. Lets, t € I"™ be sequences such that, for some permuta-
tion o,

Sgo <+ S Sg(i-1) < Sgi = 0 = Sok < So(k+1) £ 777 S Sg(m+1)
and s < tor < Sg(k+r) and top = Sqj for j # k. Then
M E @Sos - » Sm] <> Qltor .. os tma].

Proof. We prove the claim by induction on k — i. Suppose otherwise.
By permuting [n] we may assume that

50S"'Ssi—l<Si="'=5k<5k+1s"'gsm—1
and s < f < Sg4q. Let

e =\ . _ ~Si = — ~ Sm—
Q' Xis o X)) = @(@0, . @ Xy Ko G A )



3.8 Indiscernible sequences + 101

By symmetry, we may assume that
ME (P,[Si) cees Skt Sk] A _'(P,[Si) cees Sk—1s tk] .

By indiscernibility, the first part implies that 0t = ¢'[, ..., v] for all
Sizy < ¥ < Sk41, while the second part implies, by induction hypothesis
and the preceding lemma, that 0T = —¢'[v;, ..., v forallv;, ..., vk €
(Si—1» Sk4r) such that |[{v;, ..., v }| > 1.

Again we may assume that s,, ..., si; € I_ and Sg4q, .« - Smoy € Ly
It follows that
ME@ vy, w] it vi=-=w

forallv;, ..., vi € I,. Define

x(% y) = 3% Iz, Iz (i (&) Ay 7)) AN\ (%)
i<j<k

~Sm1

_s, = Si_ I = = ~1 =Sk
ANQ(agy, ..., @ XX Zis o Zken Y B o Gnn)

Let j, € N; and j, € N be the minimal elements of their respective
x-class. It follows that 9t & X(ajo, a]?l) iff s =t fors, t € I,. Hence,
jo X j,. Contradiction. O

With all these preparations we are finally able to construct a for-
mula that defines a bijection b* ~ a°.

Proposition 3.8.14. Let A, B C M be disjoint sets. If
3 (A/B) 2 L=2" 141 for K:=R(I+2m+2n)"0 e,

then there exist sequences a* € A, s < I, and b° € B, s < I, and some
FO-formula ¢(x, y; Z) such that, for some P € (A U B),

MeEo(a’,b'sP) iff s=t.

Proof. Fix a set of representatives a° € A™, s < L, of the ~4-classes
of A™. By Proposition 3.8.5 there exists a subset ]  [L] and a sequence
b* € B", s € ], of length
1 log L+1
> —log 22— >K,

some formula 9(%; ) € A, and a relation o € {=, # <, >} such that

MeNa, b)) iff iok.

Since |J| > K — (I+2m+2n)"0% ..., Lemma 3.8.8 implies that there

exists a subset I < J of size |I| > I+ 2(m + n) such that the sequences
(@ib;)ic1 is 9-indiscernible. Since

M e 9@ b)) < -9@a% b)) fort>s,
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Proposition 3.8.11 implies that there are indices j < m and k < n with
jxm+k Forsel ul,letP;:={aj} and Q; := {b;}. Further, set
Aj:={a} | sel}and B; := {b] | s € I}. There exists a formula
x(x, y) with monadic parameters P, Q, A, and B such that

Mex(a,by) iff s=t  foralls tel,.

Hence, the (aj)ser, and (b} )se;, are the desired sequences of length
|I| = |I| —2(m+mn) > 1 O

We have constructed an FO-definable bijection b° ~ a’. The next
result shows that, if the set of parameters B is well-ordered by some
formula, then so is the sequence (a°);.

Lemma 3.8.15. Let A € FO be finite, A € M", and B € M such that
a#g b  foralla,beA a+b.

If there is an FO-formula ¢(x, y, P) well-ordering B with monadic pa-
rameters P then there is such a formula with parameters P and B which
well-orders A.

Proof. Fix an enumeration 9;(%; ), i < m, of A where we assume
w.lo.g. that r := |y| is the same for all i. We order B" x [m] lexico-
graphically. For a, b € A let (G, i) be the minimal element in B x []
such that

M = 9i(a;8) < -9i(b;¢).
We define a < b iff
M = -9(a;¢) A 9(b;T).

Clearly, this relation is definable from ¢ and B. It also is obviously
irreflexive and and antisymmetric. Suppose that A contains elements
witha, < a, < a;and a, < a,,andlet (¢,, i,), (¢, i), (G5, i3) € B" x[m]
witness these facts.

We consider the following cases. If (¢;, ;) < (¢, i;) then

M E I, (a156;) < 9:,(a:38),
and, since a, < a,, we have
M =9y, (82583) A=9;,(as3C5) .
Since a, < a, it follows that (,, i,) < (¢;, i;). Hence,

M e 9, (as8,) < 9;,(a58,).
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Since a, < a, we have
ME 9, (a38,) A9, (a,5C,) .

But because of (&,, i,) < (¢, i;) this implies a, < a,. Contradiction.
If (¢, 4;) = (&, i) then @, < a, implies

M= —-91‘3 (a;¢5) A 9,’3 (325¢5) .

Thus, (¢,, 1;) does not witness the fact that a, < a,. Contradiction.
If (¢5, i3) > (&, 4,) then

M9, (a;6) < 9, (a55¢,),
and from a, < a, it follows that
M= -9, (a536) A 95, (ax36,) .
Therefore, a, < a, implies (¢,, i,) < (&, ;). Hence,
M E i, (a138,) < 9;,(a,5¢,) .
Since a, < a, we have
M = =9;, (a,;¢,) A9, (as3¢,) -

But because of (¢,,1,) < (¢, 1;) this implies 4, < a,. Contradiction.

d

3.9 TANGLES

To show that a given structure has a certain partition width it suffices
to construct a suitable partition refinement. The proof of the opposite
statement seems much more difficult since it is defined by an universal
condition. In this section we will derive an equivalent existential one.

By the compactness results established above it is sufficient to only
consider finite structures. In the remainder of this section we fix a
finite structure 9.

The following observation yields a necessary condition for large
partition width, but not a sufficient one.

Lemma 3.9.1. If pwd, 9 > k then M contains some subset C € M
such that, for all X c C,

etil (X/M\X) >k or etigf(CNX/M~(C\X))>k.
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Proof. Suppose that, for every C € M, there is some X c C with
eti?(X/M~X)<k and etil(C~X/M~(C\X))<k.

We construct a partition refinement (U, ),er of M by induction
on v such that etil (U,/U,) < k for all v € T. Set U, := M. Assume
that U, is already defined. By assumption there is some X c U, with

etif(X/MNX)<k and etii(U,\NX/M\ (U,\X))<k.
We set U,, = X and U,, := U, \ X. O

A partition refinement (U, ),er induces a system (U, u U, ),er of
partitions of M. This observation motivates the following definition.

Definition 3.9.2. A cut of X € M of n-order k is a pair (A, B) of
subsets with A u B = X such that

etil(A/B) <k and eti)(B/A)<k.
Let C}(X) be the set of all cuts of X of n-order k. We abbreviate
Cy(M) as C}. A cut (A, B) is called trivial if A = @ or B = @.

Transferring results of Robertson and Seymour [65], we will prove
that a finite structure 901 has large partition width if and only if there
exists a tangle. Intuitively, a tangle is a system of cuts (A, B) where
the set B is ‘complicated’ The axioms listed below read as follows:

¢ If we can cut M into two parts, then at least one of them should
be complicated.

¢ Small sets are simple.

¢ The union of disjoint simple sets is simple.

Definition 3.9.3. A subset T' C Cy is called a tangle if it satisfies the
following conditions:

(1) (A,B) e Tiff (B,A) ¢ T forall (A, B) € C.
(r2) |B| >1forall (A,B) eT.

(13) If (Ao, Bo), (Ay, B,) € Cf \ T are cuts with B, N B, = & then
(Ao nA,B,UB,)) ¢T.

T < Cj. is called a pre-tangle if it satisfies (T2), (T3), and
(t1") (A,B) € Tor(B,A) e Tforall (A, B) € Cy}.

Note that @ is a tangle if and only if C (M) is empty.
Example. Consider the cycle C,. The set T € C, defined by
T={(AB)eC, | |Al <1}

is a tangle since, if (A, B) isa cut of order at most 2, then either |[A| <1
or |B| <1
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The order of a cut (A, B) was defined symmetrically in A and B.
On the other hand, the width of a partition refinement (U, ), only
depends on eti” (U, /U, ) and not on eti’ (U, /U, ). In order to compare
these notions we define a variant of partition width where both type
indices are bounded.

Definition 3.9.4. (a) The bidirectional partition width bpwd,, (U, ),
of a partition refinement (U, ), is the least number k such that each
cut (U,, U,) is of n-order at most k. bpwd, 901 is defined in the usual
way using bpwd,, (U, ), instead of pwd, (U,),.

(b) LetA ¢ M, W < M, and (U, ), be a partition refinement of 2.

The bidirectional width of (U, ), over W is the minimal sequence w €
w® such that

etig(U, [ (AUW)\U,), etit(ANU, [ U,u W) <w,

forallve Tand n < w.
The bidirectional partition width bpwd, (A/W) of a subset A € M
over W € M is defined the usual way.

The relation between the usual and the bidirectional version of
partition width follows from Lemmas 3.3.2 and 3.3.4.

Lemma 3.9.5. Let 9 be a structure with m relations of arity greater
than 1 and no relations of arity greater than r. For every partition
refinement (U, ), of M we have

pwd, (U,), < bpwd, (U,), < 2" pwd(U)y,
If M is a transition system then
pwd, (U,), < bpwd, (U,), < 4™PW(U)r,

We are going to prove that C}!(M) contains a tangle of n-order k
if and only if bpwd, 9 > k. The following observation shows that
tangles are indeed an obstruction to a small partition width. It is also
helpful in constructing tangles.

Lemma 3.9.6. Let I be a finite structure. If T is a tangle of n-order k
then (A, B) ¢ T for every cut (A, B) with bpwd, (B/A) < k.

Proof. We prove the claim by induction on |B|. If |B| < 1 then
(A, B) ¢ T'by (12). For |B| > 1, consider a partition refinement (U, ),
of Bwithbpwd,, ((U,),/A) < k. Byinduction (U,, Uyo), (Uy, Uyy) ¢
T. Hence, (13) implies (A, B) ¢ T. O

Below it will be shown that every pre-tangle contains a tangle.
Therefore, it is sufficient to prove the above claim for pre-tangles.

bidirectional partition width
bpwd,, (Uy )y

partition width over W
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Proposition 3.9.7. Let 0 be a finite structure and k > o. C}; contains
a pre-tangle if and only if bpwd,, 9t > k.

Proof. (=) Let T  C} be a pre-tangle. Suppose that there exists a
partition refinement (U, ), withbpwd, (U, ), < k. (M, @) ¢ T implies
(2, U,) € T. Furthermore, if (U,, U,) € T then (U, Uyo) € T or
(U,,, U,,) € T since both belong to C{ and U, = U,, U U,,. By
induction on v, it follows that there is a leaf v with (U,, U,) € T. But
|U, | = 1. Contradiction.

(<) Let T == {(A,B) € C} | bpwd, (B/A) > k}. We claim that
T is a pre-tangle.

(11") If (A, B) ¢ T and (B, A) ¢ T for some cut (A, B) € C}! then
bpwd, (B/A) < k and bpwd,, (A/B) < k and, hence, bpwd, 1 < k.
Contradiction.

(t2) If |B| < 1thenbpwd, (B/A) =1 < k. Hence, (A4, B) ¢ T.

(13) If there are cuts (Ao, B, ), (A, B,) € C} with B, n B, = @ and
bpwd,, (Bi/A;) <k, i < 2, thenbpwd,, (B, UB,/A, N A,) < k. O

In order to transform a pre-tangle T into a tangle we have to
remove cuts (A, B) from T where both, (A, B), (B, A) € T. We split
the proof into two parts. First, we show that certain subsets S € T can
be removed from T. The second step consists in proving that, for all
cuts (A, B) such that (A, B), (B, A) € T, we find such a subset S€ T
with (A, B) €S.

Lemma 3.9.8. Let T be a pre-tangle of n-order k, and let S C T be a
set of cuts satisfying the following conditions:

(a) If(A,B) e Sthen (B,A) e T\ S.

(b) If there are cuts (A, B) € S and (C,D) ¢ T \ Swith D C A then
(ANCBUD) ¢ TS,

Then T \ S is a pre-tangle of n-order k.

Proof. If T satisfies (T1") then so does T \ S by (a). Clearly, (12) also
holds for T\ S.If (13) fails then there are cuts (A, B), (C, D) € C} with
BnD = @suchthat (A, B), (C,D) ¢ T\Sbut (AnC,BuD) e T\S.
Since T satisfies (T3) we have (4, B) € T or (C, D) € T. By symmetry
we may assume the former. (b) implies that (An C,BuD) ¢ T\ S.
Contradiction. O

Lemma 3.9.9. Let T be a pre-tangle of n-order k. If there is a cut such
that (A, B), (B, A) € T then thereis aset S € T satisfying the conditions
of the previous lemma such that (A, B) € S.

Proof. We define an increasing sequence S, € S, € ---of sets S; € T
such that

* each §; satisfies condition (a);
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o the limit S := |J; S; satisfies (a) and (b);
+ if (C, D) € S;then BS D.

Let S, := {(A, B)}. Suppose that §; is already defined. If condi-
tion (b) is satisfied then set S;, := S;. Otherwise, there are cuts
(CD)eS;and (E,F) ¢ T~S;with Fc Cand (CNnE,DUF) € T\ S;.
Since BC D, i.e., B¢ E C, we have (E, F),(DUE CnE) ¢8S;.

(C, D) € S, implies

(D,C)=((DUF)NE, (CNE)UF)eT\S;

by (a). Hence, if (DUE CNE) ¢ T, then (E, F) € T by (13). Together
with (E, F) ¢ T \ S; this implies (E, F) € S;. Contradiction.
Consequently, (DUE CnE) € T\ S; and we can set

Sin :=S;U{(CNE DUF)}. O

Proposition 3.9.10. Every pre-tangle of n-order k contains a tangle of
n-order k.

Proof. Let T be a pre-tangle of n-order k. If there is no cut with (4, B),
(B, A) € T then T is a tangle. Otherwise, there is some subset S € T
with (A, B) € S such that T' \ § is a pre-tangle of n-order k. Iterating
this step we obtain a tangle T’ € T of n-order k. O

Theorem 3.9.11. Let 9N be a finite structure. Cj contains a tangle if
and only if bpwd, M > k.

Let us mention two alternate versions of the axiom (T3).

Lemma 3.9.12. A subset T ¢ C}, is a tangle of n-order k iff it satisfies
(T1), (T2), and

(13") If (Ao, By), (A, B,) € T are cuts with A, N A, = & and
(Ao UA,,B,nB,) € C} then (A, UA,,BonNB,) eT.

Proof. This is just the dual version of (13): If (A;, B;) € T then
(B, A;) ¢ T and hence (B, N B, A, U A,) ¢ T. The converse is
analogous. O

Lemma 3.9.13. A subset T ¢ C}, is a tangle of n-order k iff it satisfies
(t1), (T2), and

(13") Thereis no partition A, WA, WA, = M of M such that (A;, A;) €
T foralli< 3.

Proof. Both (13) and (13") state that if the cuts (Ao, A, UA,) and
(A, Ay UA,) are contained in T then also (A, UA,,A,) € T or
(Ao UA, A,) ¢ C. This is equivalent to (A,, A, UA,) ¢ T. O
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We conclude this section by investigating how to find tangles for
substructures and extensions.

Definition 3.9.14. For X € M and T ¢ C}(M). The restriction T|x
of T to X is the set

{(AB)eCi(X) | (AuX,B)eTor (A, BuX)eT}.

From the definition, it is not obvious that the restriction of a
tangle is again a tangle. For transition systems, will show that the
restriction T'| ¢ contains a tangle of a somewhat smaller order. Again,
it is sufficient to prove the claim for pre-tangles.

Lemma 3.9.15. Let 9N be a finite transition system. If (A, B) € C, and
(C, D) € C,, are cuts where k, m > 1then (AnC,BuD) € C,,.

Proof. By Lemma 3.3.2 we have

eti; (BuD/ANC) < etit (B/ANC) +etiy (D/ANC)
< eti} (B/A) + eti, (D/C) < k+m
and eti, (AN C/BuD) < etil (A/B) - etil (C/D) < km.

Since km > k + m, for k, m > 1, the result follows. O

Lemma 3.9.16. Let M be a finite transition system. If T < C}, (M) is
a pre-tangle with k,m > 1 and (C,D) is a cut in C,, (M) \ T then
T" := T|c n C,(C) is a pre-tangle of M| ¢ of 1-order k.

Proof. If (A, B) € C,(C) then (AuD, B) € C},, (M), by the preceding
lemma. It follows that, for all (A, B) € C;.(C),

(AuD,B)eT or (B AuD)eT.

(t1")If (A,B) ¢ T|c then (AuD,B) ¢ T. Hence, (B,AUD) € T
which implies (B, A) € T|¢.

(t2) Let (A,B) € C,(C) with |B| < 1. Then (AuD,B) ¢ T.
Since (C, D) ¢ T it follows from (T3) that (A, Bu D) ¢ T. Hence,
(AB) ¢ Tlc.

(13) If (Ao, Bo), (Ay, B,) ¢ T|c then (A; UD,B;) ¢ T, i < 2. By
(t3) we have ((A, uD)N (A, UuD),B,UB,) ¢ T.Since (C,D) ¢ T
it follows that (A, N A,, B, U B, u D) ¢ T. Together, this implies that
(AomAvBoUBl)¢T|C~ |

Finally, we show that every tangle of a substructure can be extended
to a tangle of the entire structure.

Lemma 3.9.17. Let X € M. If T < C}(X) is a tangle of n-order k then
so is the set
T":={(AuD,,BuD,) e Cl(M) | (A,B) € T and
DouD,=M~X}.
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Proof. (11) Let (A, B) € C}/(M). We have

(AB)eT iff (AnX,BnX)eT
if (BNX,AnX)¢T iff (BA)¢T.
(T2) If there is a cut (A, B) € T' then (An X, Bn X) € T which
implies1 < |[BnX]| < |B|.

(13) If (Ao, Bo), (Ay, B,) € C{(M) ~\ T' with B, N B, = @ then
(AinX,B;nX) e Cl(X) T, i< 2. Hence,

(Ao nX)N (A NX), BonX)U(B,nX))¢T
which implies (A, N A,, B, UB,) ¢ T'. O
Corollary 3.9.18. If M, € M, and T, S C}(M,) is a tangle of

n-order k then there is some tangle T, < C}(M,) of n-order k with
To c T1 |M0~
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4 TRANSITION SYSTEMS AND
GRAPHS

E HAVE SEEN in Section 3.3 that the type equivalences =Y,
W behave much more nicely if the structure in question is of arity
at most two. Therefore, we turn to a detailed investigation of the
special case of transition systems. Furthermore, it seems prudent
to first tackle difficult questions in this simpler setting. The main
part of the following sections is dedicated to the development of
technical tools which ease the transfer of proofs concerning tree
width to partition width. In particular, we hope to obtain in this
way an analogue to the Excluded Grid Theorem of Robertson and
Seymour. Unfortunately, the version we will actually be able to prove
in Section 4.5 is rather weak.

4.1 SEPARATIONS AND SUNFLOWERS

In this and the following sections we fix a finite transition system
M = (M, (Ex)ses, P), and we set & := 441, Note that, according to
Lemma 3.3.2, we have etil (A4/B) < aie(¥/4) for all A, BC M.

Every component F, of a tree decomposition (F, ), (except for the
leaves) constitutes a separator of the underlying graph (V, E). That is,
there exist sets A and Bwith Au B = V and A n B = F, such that no
element of A \ B is adjacent to one of B \ A.

We are looking for a variant of the notion of a cut that exposes
similar behaviour. That is, to each cut (A, B) we want to associate a
set C that is responsible for the complexity of (A, B). Since, in our
case, this complexity is caused not by edges but by the number of
types, we choose a set C containing representatives of each realised
external type.

Definition 4.1.1. A separation of a set X € M is a pair (A, B) of sets
such that X = AuBand

¢ foreverya € A \ Bthereissomece AnBwitha =~} , cand
¢ forevery b € B\ A thereis some c € AnBwith b~ ;¢

The order of a separation (A, B) is the cardinality of the intersection
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|A N B|. By Sk(X) we denote the set of all separations of X of order at
most k. A separation (A, B) is called trivial if A € Bor B C A.

Each cut can be transformed into a separation and, conversely,
every separation induces a cut.

Lemma 4.1.2. Let 9 be a structure and X S M a subset. For every
cut (A, B) € C}(X) there exists a separation (A’, B') € S, (X) with
AcA"and BC B'.

Proof. Fix representatives @', i < r, of the ~3-classes [a'] € A"/~S,
and representatives b’, i < s, of B"/~. Setting C := U, @' U U, b’
we obtain a separation (A U C, Bu C) of order |C| < 2kn. O

Lemma 4.1.3. Let 9 be a transition system. For every separation
(A, B) € Sk(X) there exists a cut (A", B") € C,(X) with A’ ¢ A and
B'cB.

Proof. Let B’ := B\ A. Then etil (A/B’) < |AnB| < kand
etil (B'/A) < atie(4/B) < gk
Thus, (B, A) € C},(X) is the desired cut. O

If X is a separator of a graph & then & \ X splits up into at least two
connected components. Sometimes, it is important to distinguish
between all of them. Hence, we need a variant of a separation that
splits the structure into more than two sets.

Definition 4.1.4. (a) A family (A;);<, of sets A; € V formsa sunflower
with core C if

e A;nA;=C, foralli+k,and
¢ (Uier Ai» Uggr A;) is a separation for every I < [n].

The domain of (A;); is the set U;, A;. Sets of the form A; \ C are
called petals.

(b) A sunflower (A;); refines the sunflower (B;); if it has the same
core and domain and, for every A;, there is some set By such that
A; S By. A sunflower (4;); is called maximal if it has no proper
refinement.

A tree decomposition of a graph & consists of a family of separators
of ® arranged in a tree-like fashion. We would like to define a similar
decomposition using sunflowers. First we show how to extend a
sunflower (B;); contained in a petal of another sunflower (A;); to the
whole structure in such a way that (A;); is contained in a petal of the
new sunflower.
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Lemma 4.1.5. Let (A;)icm and (B;) i<, be sunflowers with core C and D,
respectively, such that the domain of (B;); is Ao. If C € B, \ D, then
the sequence (B})<, defined by

B e B,UA,u---UA,_, ifi=o,
! B; otherwise .

is a sunflower with core D and domain U, A;.

Proof. LetA,:=A,U---UA,_, and B, := B, U---U B,,_,. We have to
show that, for every a € A,, there is some ¢ € D such thata ~} _, ¢
and, conversely, that, for every b € B,, there is some ¢ € D such that

b zl()BoUA*)\D c.
Let a € A,. There is some b € C such that a EZO\C b, and there is

some ¢ € D with b ~3 _}, ¢. Since B, N C = & and, hence, B, ~ D <
Ao \ Cit follows thata ~3 p, c.

Now, let b € B,. Then b EEO\D ¢ for some ¢ € D. Suppose that
b i‘(’BouA*)\D c. Then there is some a € A, such that etp (b/a) #
etp,(c/a). But there is some a’ € C € B, N\ Dwitha =} . a". Since
beB, <A, CandceDCcC A, C it follows that etp (b/a’) #
etp, (¢/a’) which implies that b #3 _, c. Contradiction. O

Lemma 4.1.6. Let (A, B) be a separation and (A;) i<, a sunflower with
domain A and core C. Let D := A n B. There exists a set Z2 Cu D of
size |Z| < (n|C| +1)|D| such that the sequence

(AguZ,...,A, ,UZ BUZ)

forms a sunflower with core Z.

Proof. For every i < n, fix a set Z; S A; of representatives of the
z?A\Ai)U(B\D)-classes realised in A; \ C. Set Z = U, Z; U D. Since

etit (Ai~ C/ (AN A;) u (BN D))
<eti  (A; N C/AN A;) - etig (A; N C/B\ D)
<|C|-|D|

it follows that |Z| < (n|C| +1)|D|. Hence, it remains to show that
the sequence (F;) i<p+, With

_JAuZ ifi<n,
" |\Buz ifi=n,
forms a sunflower with core Z. Let I € [n +1] and a € Uj¢ F;. We

have to find some element c € Zwitha =), c.
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First, suppose that n ¢ I. If a € A then there is some ¢ € C € Z such
that a 20, An~c € since (A;); is a sunflower. For a € B there exists
someceDc Zwitha =~ , c

Now, suppose that n € I. Let a € A;. If a € Z then we are done.
Otherwise, there is some ¢ € Z; € Z such that a :‘(’A\Ai)U(B\D) ¢ [

If we already have a sunflower (B;);, how can we construct a
sunflower (A;); of some petal of (B;); such that the situation of
Lemma 4.1.5 is realised? We have to ensure that the core of (B;); is
contained in either the core of (A;); or in some of its petals.

Lemma 4.1.7. Let M = (M, (E))jea, P) be a finite transition system,
Z S M, and n < w. There exists an extension M* = (M*, (E})rea, P*)
of M of size

M M| < (n+1)(|f|)

such that every sunflower (A;); with domain M* and core C of size
|C| < n satisfies Z € A; for some i.

Proof. Fix an edge relation E). For every pair of distinct elements
u, v € Z, let X(u, v) be a set of n + 1 new elements. We obtain 9* by
addingall elements of these sets X (u, v) to Mand by creating E, -edges
(x, u) and (x, v) for every x € X(u, v). Then |M* <\ M| = (n+ 1)('%')
is of the right size.

Let (A;); beasunflower with domain M* and core C of size | C| < n.
Suppose there are two vertices u, v € Z such that u € A; N\ C and
v € Ag \ C for i # k. There is at least one vertex w € X(u, v) \ C.
By symmetry we may assume that w ¢ A. There exists some vertex
v € Csuchthatyv’ ~° v. Thus,v' € {u, v}nC = &. Contradiction. []

DIGRESSION: SEPARATION-FREE SETS

In the remainder of this section we will investigate sets without non-
trivial separations. This absence of separations can be considered as a
notion of connectedness. Instead of separations we could also study
sets without cuts. This latter notion, investigated in Section 4.3, will
turn out to be more useful for our purposes. Therefore, the results
below will not be used in other parts of the thesis. For simplicity, we
only consider finite undirected graphs.

Definition 4.1.8. A set X € M is called separation free if S, (X) con-
tains no non-trivial separation.

Lemma4.1.9. Let® = (V, E) be an undirected graph. If (A, B) € S,(X)
with A N B = {c} then either (a,c) € E foralla e X \{c} or (a,¢) ¢ E
for all such a.
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Proof. By symmetry we may assume that there exists some element
a € A~ Bwith (a,¢) € E. Since b ~§_; cfor all b € B it follows that
(a,b) € Eforall b € B. Hence, a ~3_, cimplies (¢, b) € Eforallb € B.
Furthermore, because of a’ ~§_, cforall a’ € A we have (a’,b) € E
for all a" € A. Together with b ~3 ; ¢ for all b € B it follows that
(a',c) e Eforalla’ € A. O

Lemma 4.1.10. Let X be a set and v some element with etiy (X/v) > 1.
If X is separation free so is X U {v}.

Proof. Suppose that there exists a non-trivial separation (A, B) of
X u{v} of order |A n B| = 1. Wl.o.g. assume that v € B.

If v ¢ A then (A, B~ {v}) is a separation of X of order 1. By
assumption it has to be trivial, i.e., B = {u, v} for some u € X. We can
interchange u and v and the result

((A~{u})u{v}, B)

is still a separation of order 1.

Hence, we may assume that A n B = {v}. It follows that either
(w,v) € Eforallw € X, or (w, v) ¢ E for all w € X in contradiction to
etig (X/v) > 1. O

We can also improve Lemma 4.1.5 for separations of order 1.

Lemma 4.1.11. Let (A, B) be a separation of order 1 and (Ao, A,) a
separation of A of order 1. Then

(Ao N (BNA,), A, UB)
is also a separation of order 1.

Proof. Let AnB = {u} and A, n A, = {v}. Either (x, u) € E for all
x # uor (x,u) ¢ E for all such x. Wl.o.g. assume the former. Then
(x,y) e Eforallx € B\ {u} and y € A \ {u}. In particular, (x,v) € E
for all x € B. Furthermore, since (v, u) € E and u € A, it follows that
(x,v) € Eforall x € A\ {v}. Thus, we have (x, v) € E for all x # v as
desired. OJ

After having defined a notion of connectedness we can study de-
compositions into connected components. In our context such a
decomposition corresponds to a maximal sunflower with a core of
size 1.

Lemma 4.1.12. Let (A;); be a sunflower with core C and domain X. If
(Bo, B,) is a separation of A, with B, N B, = {c} and c ¢ C, then either
(a,c) € Eforallae X {c}or (a,c) ¢ E for all such a.
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Proof. Wehavea ~2 bforalla,b € By\{c}. Furthermore,ifa € X\ A,
and b € A, ~ {c} then there is some a’ € C with a ~} . a’. Since
¢ ¢ C this implies that a ~2 a’ ~2 b. O

Lemma 4.1.13. Let (A;)i<y be a sunflower with core C of size |C| = 1.
If (Bo, B,) is a non-trivial separation of A, of order 1 then

((BoNB,)UC, B,UGC, A,,..., Apsy)

is a refinement of (A;)i<n.

Proof. Let X be the domain of (4;);, C = {c} and B, n B, = {d}. If
¢ = d then we are done. Otherwise, by Lemma 4.1.12, we have a ~0 b
forall a, b € X~ {c} and a ~§ b for all a, b € X \ {d}. Wlog.
assume that (g, ¢) € Eforall a # ¢. Then (d, ¢) € E which implies that
(d, a) € E for all a + d. The result follows. O

Corollary 4.1.14. If (A;); is a maximal sunflower with a core of size 1
then every set Ay is separation free.

We can improve this result to allow larger cores if we require them
to be 1-cut free (see Definition 4.3.1).

Lemma 4.1.15. If (A;); is a sunflower with 1-cut-free core C and
separation-free domain X, then every set A; is separation free.

Proof. Suppose there is a non-trivial separation (B,, B,) of A; of
order 1. If C ¢ B, and C ¢ B, then (B0 NG, (B,~B,)n C) would be
a cut of C of order 1. Hence, we may assume that C € B,. But then
Lemma 4.1.5 implies that (B,U(X\ A;), B,) is a non-trivial separation
of X of order 1. Contradiction. O

The next lemma provides another way to obtain something like a
decomposition into connected components.

Lemma 4.1.16. Let & be an undirected graph such that S, (V') does not
contain a non-trivial separation, and let X;, i < n, be a family of disjoint
separation-free sets such that there is no separation-free set Y > Xy, for
some k < n, disjoint from X, for i # k. Then the set Z := V \ U, Xj is
separation free.

Proof. Since X; is maximal Lemma 4.1.10 implies that eti (X;/v) =1
foreveryv € Z.1f| Z| < 1weare done. Otherwise, fix distinct elements
v, v/ € Z. Wl.o.g. we may assume that (u, v) € E for all u € X;.

There is a non-trivial separation (A, B) of X; u {v,v'} of order 1.
By possibly interchanging v with ' and A with B we may assume
that v/ €e BN A.Let AnB = {c}.If v € A\ Bthen (v, ¢) € E implies
(v, v") € E which in turn implies (¢, v') € E. Similarly, if v = ¢ then
(a,c) € E, for a € A\ B, implies (4,v') € E and (¢, V') € E. Since
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etif (X;/v') = 1it follows that (v/, u) € E, for all u € X;, and, therefore,
v v

It remains to consider the case that v € B\ A. Let a € A \ B.
(a,v) € Eand v ~§_ 5 V' imply that (a,v") € E. As above it follows
that (v, u) € E, for all u € X;, and, therefore, v =% .

We have show that v ~§_, x, v/ for all v, v/ € Z. Suppose that
there exists a non-trivial separation (4, B) of Z of order 1. W.l.o.g.
assume that (a,b) € E, for alla € AN Band b € B\ A. If there
exists no component X; with (u, v) ¢ E, for u € X; and v € Z, then
(A ulU; X, B) would form a non-trivial separation of & of order 1.
Contradiction. Hence, there exists such a component X; and we can
choose some element ¢ € X;. But then (A ulU; X;, Bu {c}) forms a
non-trivial separation of & of order 2. Again a contradiction. O

Lemma 4.1.17. For every set X that is not separation free, there exists
a separation (A, B) of order 1 with |A| > |B| such that A is separation
freeor |A| < 2|B| +1.

Proof. Let (A, B) be a separation of X of order 1 with |A| > |B| such
that |A| — |B| > o is minimal. Suppose that A is not separation free
and |A| > 2|B| +1. Then there is a separation (A,, A,) of A of order 1
with |A,| > |A,|. By Lemma 4.1.11, (A, ~ (BN A,), A, UB)isalsoa
separation of order 1. Since

Ao\ (BNA)| = 4, UB| < |A] - |B]
and |A1UB|_|A0\(B\A1)|

1 1 1
S(Al+1) + (1Al =2) = (1Al +1) -1)

1
|Al =S |Al < |A] - B

IN

this contradicts the minimality of |A| — | B|. O

4.2 TREE COVERS

The notion of a sunflower can be used to define a decomposition of
a structure that has similar properties as a tree decomposition. Since
every component F, of a tree decomposition (F, ), is a separator of
the graph in question, we define a tree cover to be a family (F,),
where every component F, is the core of a sunflower.

As in the previous section we assume that 90t = (M, (Ej )req, P) is
a finite transition system, and we set o := 441,

Definition 4.2.1. A tree cover of 9 is a family (F,),e; of subsets

tree cover
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F, € M indexed by an undirected ternary tree I such that, if v € I and
I, ..., I are the connected components of I \ v, then the sequence

(FVUUL{GIOFM)"')FVUUMEISFM)

forms a sunflower with core F, and domain M.
The number sup { |F,| | v € I } is called the width of the tree cover

(FV)VEI'

The following easy observation suggests that tree covers have prop-
erties quite similar to tree decompositions. This eases the transfer of
proofs concerning tree width to ones about partition width.

Lemma 4.2.2. If (F,), is a tree cover then the set {vel | a€F,}is
connected for every a € M.

Proof. Otherwise, there would be vertices u, v € I witha € F,nF, and
some vertex w € I on the path from u to vsuch thata ¢ F,,. If (4;); is
the sunflower with core F,, witnessing that (F,), is a tree cover then
there are two distinct petals with a € A; \ F,, and a € A; \ F,,. But
this is impossible. Ol

Of course, in order to use tree covers to prove statements about
partition width we have to show that partition refinements and tree
covers are related.

Lemma 4.2.3. Let 9 be a finite transition system.

(a) If9N has a tree cover of width k then it has a partition refinement
( Uv)veT OfWidt]’l de1 ( Uv)v < ok,

(b) If there exists a partition refinement (U, ),er of I of width
k := pwd, (U,), then 90 has a tree cover of width at most a* + k.

Proof. (a) Let (F,),er be a tree cover of 91. Fix some leaf of I and let
T < 2<% be the directed tree obtained from I if we take this leaf as
root. By induction on |v|, we define a partition refinement (U, )yer
of M of width pwd, (U, ), < a** such that

( U FW)\FV € Uny € |J Fu forveT,

wx=y wx=vy

where h : 2 — 2°¢ is the homomorphism defined by h(c) := 1c for
ce[2].

We start with U, := M. Suppose that U, is already defined, set
u =h"*(v), and let

Uy =U,NF,, Upo = UFW\FMJ

w=Uo

U, =U\F,, Uvn::UFW\Fu-

wx=u1
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Then, for ¢ < 2, it follows that

etiy (Unne/Unc)

<etiy (Fy/Un) +etis( U Fwu U Fu/ Unc)
< |Fu| i |Fu| < Zk, wxu(1—c) W#u

and etiy (U,,/U,)

< etil (F,/Uy,) +etit (U Fu [ Un)
< |Fy| + |Fu| < 2k, "**

which implies etil (U,1,/Uy.x) < a2* for x € {g, 0,1}.
(b) Let (U, )yer be a partition refinement of width p_wdl(Uv)v =k
By induction on |v| we define sets A, € U, and B, € U, such that

etil (U,/U,) = etil (A,/U,)
and et} (U,/U,) = eti}, (B,/U,).

Let A, := B, := @. Suppose that A, and B, are already defined.
For ¢ € [2], choose a set A,. of representatives of UVC/:‘I’T such

that A, n U,. € A,.. Further, choose sets B,, € B, U AV(V;_C) of
representatives of ch/ﬁ?]w-
The tree cover (F,),er obtained by setting

F.:=A,UA, and F,=A,,UA, UB, forv+d,
has a width of |F,| = |Ayo| + |Ay]| + |By| < 2k + aF. O

To give an example that shows how proofs about tree width can be
transformed into ones for partition width, we develop criteria for a
transition system to have a tree cover of a certain width. The proofs
are mere translations of results of Robertson and Seymour [64].

Definition 4.2.4. Let 91 be a finite transition system.
(a) M is said to admit (k, n)-separations if M has a separation
(A, B) € Sk (M) such that

|[ANB|, [ BNA[<(-nt)|M]|.

(b) M strongly admits (k, n)-separations if for every X c M, there
is a separation (A, B) € Sg(M) such that

l(A~B)nX|, [(BxA)nX| <(-n)|X].

The following conditions are sufficient for a class of transition sys-
tems to only contain structures strongly admitting (k, n)-separations.

Lemma 4.2.5. Let IC be a class of finite transition systems such that

admitting (k, n)-separations

strongly admitting (k, n)-separations
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(1) every structure in IC admits (k, n)-separations;

(2) K is closed under (induced) substructures and addition of new
elements which are connected to exactly one other vertex.

Then every structure I € K strongly admits (2k, n)-separations.

Proof. Fix an edge relation Ej of 9t and a number m € N such that
there is no integer z with

1-nY)|X|<z<(-n)|[X] +m_1((1—n_1)|M| +k).

Let X € M. For each vertex v € X, let N, be a set of m new vertices.
We add all the vertices in N,, to T and connect them by an E)-edge
to v. The structure 9" obtained in this way is in K and, hence, there
is a separation (A’, B) € Sx(M") of 9’ with

[A"NB'|, |[B~NA|<(-n")|M|.

LetA:=A'nMandB:=B'nM.Ifve Xn(A~B)then N, c A"
Hence,

m-[(ANB)nX[ < [A'| < (1-nT) M| +k
<(a-nY)Y(m|X|+M)+k.
= [(ANB)nX| < (1-n)IX|+m™ (1 -n)|M] +k).

By choice of m it follows that |[(A N~ B)nX| < (1 —n")|X].

The bound |[(B\ A) nX| < (1 —n7")|X] is obtained in the same
way.

For each ¢ € (A’'nB’)\ M choose elementsa € ANBand b € B\ A,
if such elements exist, such that a ~3_, cand b ~§_; c. Let D be the
set of these elements. Then |D| < 2|(A'nB’)\ M| and (AuD, BuD)
is the desired separation of order

[(AnB)uD| < |A'nB' nM|+2](A"nB")\ M|
<2|A'nB'| < 2k. O

For structures strongly admitting (k, n)-separations we can con-
struct a tree cover of bounded width.

Proposition 4.2.6. Let K be a class of finite transition systems that is
closed under (induced) substructures such that each M € IC strongly
admits (k, n)-separations. Then every 9 € K has a tree cover of width
K:=k(n+1)+1.

Proof. By induction on |M| we show that, for each X € M of size
| X| < kn +1, 90 has a tree cover (F, ), of width K such that X € F,
for someve T.
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If [M| < K the result is immediate. Thus, we may assume that
|M| > K and |X| = kn + 1. By definition, there is a separation
(A, B) € Sk of M such that

[(ANB)nX]|, |(BNA)YNX| < (1-n")|X].
Since |[AnBn X| < |AnB| < kit follows that
[AnX|=|(ANB)nX|+|AnBnX|
<(-n)|X|+k< |X].
In particular this implies that A # M. Let 9, := M| 4 and
X,=((ANB)nX)U(ANnB).

Then M, € K, [M,| < [M|,and |X,| < G -n")|X|+k < kn+1.
Hence, by induction hypothesis, 9, has a tree cover (F}) e, of width
atmost K where X; € F;, for some v, € T;. Analogously, we can define
M, = M|p and X,, and obtain a tree cover (F2),er, and a vertex
v, € T, with X, € F2..

Let r be a new vertex not in T, or T, and let T be the tree ob-
tained from the disjoint union of T, T,, and r by adding the edges
(r,v,) and (1, v,). For v € T, we define

XU(AnB) ifv=r,

F,=={F ifveT,,
F2 ifveT,.
Then |F,| < K and (F, )7 is the desired tree cover of 91. O

43 CUT-FREE COMPONENTS

In this section we try to develop a suitable notion of connectedness.
Recall that a graph is k-connected if every separator is of size at
least k. Hence, we can try to investigate transition systems without
non-trivial separations of size k. This was done at the end of Section 4.1.
Another, perhapsless obvious, approach consists in using cuts instead
of separations. It turns out that the concept of cut freeness provides
a natural analogue to the notion of connectedness.

We continue to assume that 901 = (M, (E))eq, P) is a finite transi-
tion system and o := 4/41,

4.31 CUT-FREE SETS

Definition 4.3.1. A nonempty set X € M is k-cut free if every cut

k-cut free
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The cut free graph P,.
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(A, B) € C(X) satisfies |A| < kor |B| < k.For k = 1we simply call X
cut free.

Remark. The property of being k-cut free is obviously MSO-definable.

Example. There are no 1-cut-free undirected graphs with 2 or 3 ver-
tices, and P, is the only one with 4 vertices.

We start by deriving simple properties of cut-free sets showing
that these sets have a similar behaviour as connected ones. First,
we consider the question whether the union of cut-free sets is also
cut free.

Lemma 4.3.2. Let X be a set and v some element with eti, (X/v) > 1.
If X is 1-cut-free set then so is X U {v}.

Proof. Let (A, B) € C}(X u{v}). Since X is 1-cut free one of the sets
A nX and Bn X is empty. By symmetry, we may assume that X C A.
If v € B then etif (A/B) > eti, (X/v) > 1. Contradiction. Thus, v € A
and B = @. O

Lemma 4.3.3. Let (Ao, B,) and (A,, B,) be cuts of order 1. If A, N A, #
& then (Ao U A,, Bo N B,) is also a cut of order 1.

Proof. Letb, b’ € B, N B,. Thenb ~; b"and b~ b’ which implies
b =5 4, ' Onthe other hand, if b € A;, b’ € Ay, and c € A, N A,

~0 ~0 /5 : ~0 ~0 /
then b ~p € and ¢ ~B b’ implies b ~3 B, € ~B.nB, b, |

Lemma 4.3.4. Let X and Y be 1-cut-free sets.
(@) If XNY + @ then X UY is 1-cut free.
(b) If XnY =@ thenXUY isi-cut freeiff (X, Y) ¢ C/(XUY).

Proof. (a) Let (A, B) € C}(XuY). Since X is 1-cut free, one of the sets
AnXand BnX is empty. By symmetry, assume X € A. Analogously,
one of thesets AnY and BnY is empty. Since XNnY # and X C A
it follows that Y € A, ie, B = @.

(b) Trivially, if (X,Y) € C}(X U Y) then X U Y is not 1-cut free.
To show the other direction we may, by symmetry, assume that
etiy (X/Y) > 1. Then there is some element v € Y with etif (X/v) > 1.
Thus X u {v}is1-cutfreeandsois (Xu{v})uY =XuYby(a). O

In a similar way to connected components, every structure admits
a unique partition into maximal cut-free sets.

Lemma 4.3.5. If X and Y are maximal 1-cut-free sets with X # Y then
XnY=gand (X, Y)eCi(XUY).

Proof. Otherwise, X U Y would be 1-cut free, by Lemma 4.3.4, in
contradiction to the maximality of X and Y. |
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It follows that we have a well-defined notion of a cut-free compo-
nent.

Definition 4.3.6. Let 91 be a transition system and X € M. A cut-
free component of X is a maximal 1-cut-free subset of X. A cut-free
component of size 1is called trivial.

Once we have decomposed a transition system into its cut-free
components we can construct a new structure whose elements are
the components of the first one. If our notion of connectedness is well-
behaved then the cut-free components of this new structure should
be trivial.

Definition 4.3.7. For every transition system 91 = (M, (Ej)jea, P)
with cut-free components X;, i € I, we define the structure

Mee = (M, (ES)ren, PT)
with M€ :={X;|iel},
Ef = { (X Xx) | Xix Xk S Ey },
and P :={X;|X;nP,+2}.

Lemma 4.3.8. Let I be a transition system. The structure Mg has
only trivial cut-free components.

Proof. Let Y be a cut-free component of M¢.. We claim that UY
is 1-cut free. Otherwise, there is a non-trivial cut (4, B) € C*(UY).
Since (ANnX;, BnX;) € C/(X;) it follows that X; € A or X; € B for
all X; € Y. Thus,

({Xi | XicA}, {X; | XicB}) e Ci(Y).
Contradiction. O

Recall that a partial partition refinement is a partition refinement
where we drop the condition that the leaves are singletons. The next
result shows that, when constructing a partition refinement of a
transition system, it is sufficient to construct separate refinements for
each cut-free component.

Lemma 4.3.9. Every (not necessarily finite) transition system 90 has
a partial partition refinement (U, ), of width 1 such that every leaf
of (U,)y is a cut-free component of .

Proof. We define (U, ), by induction on |v|. Let U, :== M. Suppose
that U, is already defined. If U, is 1-cut free then we are done. Oth-
erwise, there exists a cut (U,,, U,y) € Ci(U,) with U,,, U,, # @.
Finally, if |v| is a limit, we can set U, := ,<, U,,. O

Corollary 4.3.10. Let 9 be a transition system. If IN has only trivial
cut-free components then pwd, MM = 1.

cut-free component

trivial

M
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4.3.2 THE INTERNAL STRUCTURE
OF A CUT-FREE SET

After having shown that the notion of a cut-free component is well-
behaved, we now turn to an investigation of the internal structure of
a cut-free set. In particular, we are interested in finding something
akin to a spanning tree. As a first step, we show that every pair of
vertices in a cut-free set is connected by a path where edges of a given
type do not appear.

Definition 4.3.11. Let 9 = (M, (Ex)ea, P) be a transition system.
The type of an edge (u, v) € M x M is the set

T(u,v) ={Ewxy | (u,v) €eE, }U{Ewx | (vu)€E,}.

Lemma 4.3.12. Let 9N be a finite transition system and X € M a 1-cut
[ree set. For every pair x, y € X of distinct vertices and each edge type o
there exists a path from x to y every edge of which is not of type o.

Proof. LetF := {(u,v) € X*> | 7(u, v) # 0 }. If there is no path from x
to y in F then there exists a partition X = AuBwithAxBnF = @.
Hence, every edge between A and B is of type ¢ and, consequently,
(A, B) € CI(X). Since x € A and y € B this cut is non-trivial. Contra-
diction. |

In the general case with several directed edge relations we obtain
a configuration that only vaguely resembles a spanning tree. We
prove that we can enumerate each cut-free component such that all
intermediate sets remain cut free. For undirected graphs with only
one edge relation the situation is much simpler and we will really
obtain a pair of trees.

Lemma 4.3.13. Let 9 be a 1-cut-free transition system. For every
1-cut-free set X € M there exists a strictly increasing sequence (Ag)p<a
of 1-cut-free sets starting with A, = X and ending in A, = M such that

o |Ag N Ag| <3, forall < a,
* Ap=Upes Ap if 6 < ais a limit.

Proof. We define the sets Ag by induction on . If § is a limit and
Apg is1-cut free for f < §, then As = Up<s Ag is also 1-cut free. Hence,
it remains to consider the successor step.

Suppose that Ag is already defined. If etiy (Ag/x) > 1 for some
element x € M \ Ag, then we can set Ag,, = Ag U {x}. Otherwise,
(Ap, M ~ Ag) ¢ Ci(V) implies that etig(M \ Ag/Ag) > 1. Fix an
arbitrary element v € Ag. We will construct some set C € M \ Ag
of size |C| < 3 such that C u {v} is 1-cut free. Then we can set
Aﬁ*'l = Aﬁ uC.
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For every edge type o, set
Wo={xeM~Ag|t(vx)=0},

and let X7, i € I, be the family of cut-free components of W.

I, for some types ¢ # T, there are components X{ and X} with
etiy (X;/Yx) > 1, then we can find elements x,, x, € X7 and y € X}
such that 7(y, x,) # 7() x,). By Lemma 4.3.12 there exists a path
from x, to x, where every edge is not of type 0. Following that path
we find an edge (x), x]) with

T(xgx)) #0 and  7(yx,) = 7() %) # T( X]) .

It follows that the set {v, x, x/, y} is 1-cut free.

Now, consider the case that (X7, X;) € C}(X{ u X}) for all com-
ponents X7 and X;. Then, every set X{ is also a cut-free compo-
nent of M \ Ag. By Lemma 4.3.9, there exists a partial partition
refinement (U, ), of M \ Ag where every leaf is one of the X7.
Let o be the type of edges (x,y) with x € U, and y € U,. Since
(U uAp, Up) ¢ C{(M), for c < 2, it follows that there are x € U,
and y € U, such that (v, y) # o and 7(x, v) # 0. If (v, x) # 7(v, »)
then we can set C := {x, y}.

Hence, we may assume that there is some edge type p # ¢ such
that 7(v;, x) = p and 7(v, y) = p for all x € U, with 7(x, v) # o and all
y € U, with 7(v, y) # 0. Since eti, (M \ Ag/v) > 1 we can find some
z € M\ Ag with 7(v, z) # p. By symmetry, we may assume that z € U,.
Hence, 7(v, z) = 0. Since M is 1-cut free there exists a path y,, . .., Ym
from v = y, to z = y,, all edges of which are not of type 0. Wlo.g.
we may assume that y; ¢ Ag for i > o. This implies that y; € U, for
i > o since the path cannot cross the cut between U, and U, as all
edges from U, to U, are of type ¢. By assumption, 7(v, y,) # o implies
(v, y1) = p. Therefore, we find some edge (y;, ¥i1,) of the path such
that 7(v, y;) = p and 7(v, yi1,) = o. Finally, fix some element x € U,
with 7(v, x) = p. The desired set is C := {X, ¥;, Vis1 }- O

The following immediate corollary again underlines the similarity
between the notions of cut freeness and connectedness.

Corollary 4.3.14. For all 1-cut-free sets X € Z and each cardinal
k < |Z N\ X| there there exists a cut-free set X € Y S Z of size
k< |YNX|<Kk+3.

We also obtain a relationship between cut freeness and the notion
of cographs. These are graphs that do not contain P, as induced
subgraph.

Corollary 4.3.15. Let & = (V, E) be a 1-cut-free undirected graph and
x € V. There exists a set C C V containing x of size |C| = 4 such that
& | c= P4.
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Proof. By the preceding lemma we can construct an increasing se-
quence (A;); of 1-cut-free sets with A, = {x} and |A, N\ A, | < 3. Since
there are no 1-cut-free undirected graphs of size 2 or 3 it follows that
|A,| = 4and, hence, &[4, = P,. O

Corollary 4.3.16. An undirected graph & = (V, E) has a non-trivial
cut-free component if and only if it contains P, as induced subgraph.

For undirected graphs with only one edge relation, we can improve
the above lemma by constructing some kind of a spanning tree.

Definition 4.3.17. Let & = (V, E) be a finite undirected graph and
XcV.

(a) A spanning tree for X is a pair (T,, T,) of undirected trees with
set of vertices X such that (u, v) ¢ E for all edges (u, v) of T,
and (u, v) € E for all edges (u, v) of T;.

(b) A spanning forest of X is a pair (F,, F,) of forests consisting of
one spanning tree for each cut-free component of X.

(c) The girth of a spanning forest (F,, F,) is the maximal distance
in F, of two vertices that are adjacent in F,.

Lemma 4.3.18. Let & = (V; E) be a finite undirected graph and X c V.
There exists a spanning forest (F,, F,) of girth 3 for X.

Proof. Wl.o.g. we may assume that X is 1-cut free. Let X, € X be a
maximal set such that there exists a spanning tree (F,, F,) of girth 3
for X,. We have to show that X, = X.

Suppose otherwise. First, we consider the case that there exists
some v € X \ X, with etig (X,/v) > 1. There are elements y,, y, € X,
with (x, y,) ¢ Eand (x, y,) € E. Following the unique F,-path from y,
to y, we find some edge (zo,z,) with (x,z,) ¢ E and (x,z,) € E.
Consequently, we can extend (F,, F,) to a spanning tree for X, u {v}
by adding the edge (x, z,) to F, and the edges (x, z,) and (zo, z,)
to F,. Contradiction.

It follows that eti (X,/v) = 1forall v € X\ X,,. Since X is 1-cut free,
Lemma 4.3.13 implies that there exists a set C € X\ X,, of size |C| < 3
such that X, uCis1-cut free. By the above arguments, we have |C| > 1
and, since there are no 1-cut-free undirected graphs of size 2 or 3, it
follows that |C| = 3. Therefore, fixing an arbitrary vertex w € X,
we obtain a set C U {w} that induces an subgraph isomorphic to P,.
Adding the edges of this subgraph to F, and F, yields a spanning tree
for X, u C. Again a contradiction. O

A tree is a connected graph that becomes unconnected if we re-
move any vertex that is not a leaf. A similar result holds for cut-free
transition systems.
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Lemma 4.3.19. Let 9 be 1-cut free, and let C, W € M be disjoint
nonempty sets such that, for every a € W, there is a cut (A(a), B(a)) €
Ci(M ~ {a}) with C < A(a). Suppose that the cut (A(a), B(a)) is
chosen such that B(a) is minimal.

(a) If we define the order = on W by
acb :iff B(a)2B(b),

then (W, E) forms a tree.
(b) There is some element a € W such that |B(a) n W| < 1.

Proof. (a) Let a, b € W. By definition, E is reflexive and transi-
tive. Since A(a) N A(b) 2 C # &, Lemma 4.3.3 implies that the cut
(A(a) U A(b), B(a) n B(b)) is of order 1. To show that £ is antisym-
metric we prove that B(a) = B(b) implies a = b. Since B(a) = B(b)
implies a € A(b) and b € B(a) we otherwise would have

(A(a) UA(b), B(a)nB(b)) € C:(M),

which contradicts the 1-cut freeness of 1.

Thus, E is a partial order. To prove that it is also a tree we consider
three cases.

(b e A(a)) From

((A(a) UA(D)) ~{a}, B(a) nB(b)) € C;(M ~ {a})

and the minimality of B(a) it follows that B(a) nB(b) = B(a). Hence,
B(a) € B(b),ie,bca.

(a € A(b)) By symmetry, we have a E b.

(a € B(b) and b € B(a)) In this case we have B(a) n B(b) = &
since, otherwise,

(B(a) U B(b), A(a) nA(b)) e C:(M),

would contradict the 1-cut freeness of 1.

If a = cand b = ¢ then B(c) € B(a) and B(c) € B(b). Hence,
B(a) n B(b) # @ and the above results imply that a € A(b) or
b € A(a). It follows that a © b or b  a as desired.

(b) Choose some a € W such that B(a) is minimal. We claim that
|Bla)n W] <1.

By (a) it follows that a ¢ A(b) for all b € W. Thus, a € B(b) for
allb e W {a}.If b, b’ € B(a) n W then B(b) € A(a) u{a}, and
b" ¢ B(b) c A(a) u{a} implies b’ € A(b). Finally, it follows that
B(b) c B(b'). By symmetry we obtain that B(b") € B(b). Therefore,
it follows that b = b’. O
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4.3.3 SYSTEMS OF DISJOINT COMPONENTS

In the remainder of this section we show that in a transition system
either there exists a family of large disjoint cut-free sets or we can
construct a partial partition refinement of small width. A similar
theorem was used by Robertson and Seymour in [64] to construct a
grid in a graph of large tree width: If the tree width is large then there
exists a family of large disjoint connected sets which can be used as
rows (or columns) of the desired grid.

Definition 4.3.20. For every family A = {A,,...,A,} of disjoint
1-cut-free sets with |A,| < --- < |A, | we define

A(A) = (|Ao),..., |Aul).

Such a family is called maximal if there is no B with |B| = | A| and
d(A) <lex d(B)

Note that by maximality we refer not to the size of the family but
to the cardinality of its components. If 4 is a maximal family then
all connected components in the complement (J A are small, and the
following lemma shows that the type index is bounded by

etiy(JA/UA) < AL

Lemma 4.3.21. Let 9 be a transition system. If A is a maximal
family of 1-cut-free sets and B a cut-free component of M \ U A, then
(A,B) € C}(AUB) forall A e A

Proof. Otherwise, by Lemma 4.3.4, the set A u B would be 1-cut free
and the family

(AN{A})u{AuUB}
would contradict the maximality of d(.A). O

Suppose that A is a maximal family of cut-free sets and there are
sets A, B € Awith |A| < |B| such that, for some X € Btheset AuX
is 1-cut free. Then, by maximality, all cut-free components of B \ X
are of size at most |A|. We will show that in this situation there exists
a small set X, such that X, N X # &, for all sets X with the above
properties. The main argument in the proof below consists of the
following technical lemma.

Lemma 4.3.22. Let 9 be a 1-cut-free transition system and A a family
of disjoint nonempty subsets A € M. If there exists a set X € M such
that X is a cut-free component of M\ A for every A € A, then | A| < 3.
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Proof. By Lemma 4.3.13, we can construct an increasing sequence
of 1-cut-free sets X = U, ¢ U, c --- ¢ M with |U, \ Uy| < 3. If
| A| > 3 then there is some A € A with An (U, \ U,) = &. Therefore,
U, € M\ A and X c U, is no maximal 1-cut-free set of M \ A.
Contradiction. O

Lemma 4.3.23. Let 9 be a 1-cut-free transition system and k, m
numbers with 6km < |M|. If A is a nonempty family of nonempty
subsets A € M of size |A| < m such that, for all A € A, every cut-free
component of M \ A is of size at most k, then there exists a set X € M
of size |X| < 3msuchthat AnX # & forall A e A.

Proof. Suppose that such a set X does not exist. Let B ¢ A be a
maximal family of pairwise disjoint sets. Since X := [J B is a set with
AnX # @ forall A e A it follows that |B| > 3. Fix four distinct
sets A, B,, B;, B, € B, and let Y;, i € I, be the family of cut-free
components of M \ A.

Suppose that Z is a cut-free component of M \ B for Be A~ {A}.
IfZnY; # @ for some component with BNnY; = & then Y; € Z since
Y; is 1-cut free in M \ B. On the other hand,if AnZ = @ thenZ C Y;,
for some i € I, as Z is 1-cut free in M \ A. Since |Z| < k it further
follows that, if AnZ #+ &, then Z \ A is the union of at most k — 1
components Y;.

For every Be A\ {A} let

+ C,(B) be the union of those components Z of M \ B with
ZNA+ I,

+ C,(B) contain the components Z of M \ B contained in some
set Y; withBnY; + @;

+ C,(B) be the union of those Y; which are cut-free components
of both M \ A and M \ B.

Then C,(B) U C,(B) u C,(B) = M \ Band

|Co(B)| < k|A| < km,
|G(B)| < (k-1)|B| < (k-1)m,
M~ G (B)| < [B] +|Co(B)| + [Ci(B)| < 2km,

which implies that

|C,(Bo) N Cy(B,) N Cy(B,)| > M| —3-2km>o0.
Consequently, there exists a component

Yi € C,(Bo) NG, (B,) N Cy(B,).

But, according to the preceding lemma, Y; cannot be a cut-free com-
ponent of M \ C for every C € {4, B,, B,, B, }. Contradiction. O



130 + 4 Transition systems and Graphs

With these preparations we are able to prove the main theorem
of this sections. Either a transition system contains a family of large
disjoint cut-free sets, or its partition width is bounded.

Theorem 4.3.24. Let I be a transition system and k < w. If there is
no family A;, i < k, of disjoint 1-cut-free sets of size |A;| > m then
there exists a partial partition refinement of I of width oa*<+9)/> gnd
granularity 1(6% —1)(m + 1) - %4,

Proof. By Lemma 4.3.9, it is sufficient to prove the result for each
cut-free component of 9. Thus, w.l.o.g. we can assume that 90 is
1-cut free.

We construct the partial partition refinement by induction on k. If
k = 1then 9 does not contain a cut-free component of size at least m.
Consequently, there exists a partial partition refinement of 91 of
width 1 and granularity m.

Now suppose that k > 1. Let A;, i < k, be a maximal family of
disjoint 1-cut-free sets with |A,| < --- < |Ax,|. By assumption,
|Ao| < m.

(a) If there is no index n > o such that 6|A,_, | +1 < |A,| then, by
induction, it follows that

|Ain| < 6|A;| +1<6-(6'(m+%5)—Y%) +1
= 6" (m+%) - %,

which implies that

|[Ao| + -+ [Ag | < Z(6i(m+1/s)—1/5)

i<k

=165 ~1) - (m+%5) - %.

Define B, := A, U+ U Ay, and B, := M \ B,. Since every cut-free
component of B, is of size less than m there exists a partial partition
refinement of B, of width 1 and granularity m. By Lemma 4.3.21, we
have etif (B,/B;) < k. Thus, attaching the partial partition refinement
of B, to the cut (B,, B,) we obtain a refinement of width at most a*
and the desired granularity.

(B) Now consider the case that there is such an index n. Let B, =
Uicn Ais B, = Ujs, Aj, and, for | > n, define

Cri={veA;| etig(A;/v) >1forsomei<n}.

The maximality of A;, i < k, implies that, for every v € Cj, the set
A~ {v} does not contain a 1-cut-free set of size greater than |A,_, |.
Since |A;| > 6|A,_,| we can apply Lemma 4.3.23 and it follows that
|C;] < 3.Consequently, theset C := |, C;isof size |C| < 3(k-n) < 3k.
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Since etig (A;/A; \ Cp) = 1 it follows that

etio (Ai/ U (A1~ C)) =1
= etiy (Bo/B, N C) < n
= etiy (B, \ C/B,) < o
= etil (B,/B,) < a" + |C| < & + 3k.

Furthermore, we have
etil (Bo/B,) < etil (Bo/B, \ C) - eti’ (B,/C) < n - al €l < ka?*.

If B, contains k — n + 1 disjoint 1-cut-free sets of size at least m
then the family consisting of these sets together with A,,..., A,
contradicts the maximality of A;, i < k.Ifn >1thenk—-n+1<kand
we can apply the induction hypothesis to obtain a partial partition
refinement (U, ) er of B, of width at most a1 (k+8)/2 g granularity

k_
%(ek-l “)(m+ %) — Tl < %(sk ) (m ) = 5.

Since  etii (U,/M \U,)
< etiy (U,/B, \ U,) - etit (U,/B,)
< qEDED (g 45k
< akDED2 gk 4 ok
< a(k—l)(k+8)/2+k+1

= oKkr9)/23

it follows that the partial partition refinement of 91 obtained by
attaching (U, ), to the cut (B, B,) is of width at most

max{ka?¥, ak(k+9)/2=3y < gk(k+9)/2.

(c) It remains to consider the case that n = 1. Since I is 1-cut free
there exists a set D € B, of size | D| < 3 such that A, U D is 1-cut free.
If B, \ D contains k—1 disjoint 1-cut-free sets of size at least 1 then the
family of these together with A, uD would contradict the maximality
of A;, i < k. Hence, by induction hypothesis, there exists a partial
partition refinement (U, ), of B, \ D of width at most a(k-1)(k+8)/>
and granularity

é(sk—l ) (m+ %) - ?
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Since  etiy (U,/M \ U,)
< etil (U,/(B, ~ D)\ U,) - eti’. (U,/Ao ) - etit, (U,/D)
< o) (k+8)/2 (a+3k) - a3
< a(k—l)(k+8)/2 A 0(1+k cod

— (Xk(k+9)/2

it follows that the partial partition refinement of 91 obtain by attach-
ing (U, ), to the cut (B,, B,) is of width at most

max{k(x3k, ak(k+9)/2} < (Xk(k+9)/2. 0

Corollary 4.3.25. Let 9 be a finite transition system and k < w. If
there is no family A;, i < k, of disjoint 1-cut-free sets of size |A;| > m
then

pwd, M < max{a *)/2, %(6" 1) (m+ %) - b5}

Corollary 4.3.26. Let I be a finite transition system and k < w. If
there is no family A;, i < k, of disjoint 1-cut-free sets of size
TIMl+k 1

Al >-2—— —
| 1| 6k_1 5

k(k+9)/2

then there is a cut (Bo, B,) of MM of order a®
2
3 |MJ.

with |Bo|, |B,| <

Proof. By the preceding theorem there exists a partial partition re-
finement (U, ),er of M of width a*(k+9)/2 and granularity

LIM|+k k
1(6"—1) Q_EJFE ——=E|M|.
5 6k —1 5 5) 5
Fix some v € T such that |U,| > |M| and |U,,|, |Us. | < |M|. By
symmetry we may assume that |U,,| > |U,,|. Define B, := U,, and
B, := U,, u (M \ U,). The cut (B,, B,) is of the desired order and

1
|B.| = |M]| = |Bo| < [M] - S|Uy|
1

< M| - 2M| =2 M|
- 2 3 _3 ° D
4.4 RIBBONS

A theorem of Menger states that, if & = (V; E) isagraphand X, Y € V
sets such that no set of size less than k separates X from Y, then there
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are k disjoint paths connecting X and Y. In the present section we
try to derive an analogue to this result. In the proof of their Excluded
Grid Theorem Robertson and Seymour [64] use such paths for the
columns of the grid whose rows were obtained as described in in the
previous section.

Definition 4.4.1. LetX, Y, Z € M be disjoint. X is k-separated from Y
over Z if there is a partition Z = A u B with

etit(YUB/XUA) <k.

We will repeatedly make use of the following observation which
immediately follows from the definition.

Lemma 4.4.2. If X is not k-separated from Y over Zand Z = AuBuC
then X U A is not k-separated from Y u B over C.

Alternatively, we can express k-separatedness also in terms of cuts
or separations.

Lemma 4.4.3. If X is k-separated from Y over Z then there exist
(1) acut(A,B)eC,  (Z)withXc AandY € B, and
(2) a separation (A, B) € Syx(Z) with X CANBand Y C B\ A.

Proof. (1) Let (A, B) be a cut of Z such that eti, (Y UB/X U A) < k.
Then eti}, (X UA/Y UB) < a*™ and, hence, (XUA, YUB) € C.,_(2).
(2) Follows from (1) and Lemma 4.1.2. ]

We will show that, if X is not k-separated from Y over Z, then we
can find something like a system of k disjoint paths from X to Y. The
first step consists in defining an ordering of Z that induces a notion
of distance of an element from X.

In the remainder of this section we will make frequent use of the
following notation. If (A;); is a seqeuence of sets then we denote
the union U, A; by As,,. The sets Ay,, A, and A, are defined
analogously.

Definition 4.4.4. Let X, Y, Z c M.
(a) A stratification of Z from X to Y is a finite sequence (A;);«; of
disjoint nonempty sets such that

(1) Z=UiqAi
(2) foralli<landeveryb e Y uA,; there exists some c € Y such
thatb ~% , ¢

(b) A stratification (A; )i« refines (B;)i<m iff there is a non-decreas-
ing surjective function y : [I] — [m] such that A; S B, for all
i<l

k-separated

stratification
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Dy (X)

1:Y—>Y,

S(a)
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We will construct a stratification (A;); by induction on i. If A; is al-
ready defined then we consider all external types over XUA; realised
in YU (Z~ Ag;). We say that A.; distinguishes those elements whose
type is not realised in Y. These elements form the next stage A;,,.

Definition 4.4.5. Let 91 be a transition system. For X, Y, Z € M the
set of elements of Z distinguished by X is

DY(X)=Xu{aeZ|a#$cforallceY}.

Note that the operator DY (X) is monotone in X and Z. We use

the stages of the fixed-point induction of D}, to define a stratification
of Z.

Lemma 4.4.6. IfX is not k-separated from Y over Z then there is some
W < Z such that

(1) X is not k-separated form Y over W;

(2) W admits a stratification (A;)i< with etit (YU A;/XUAL) > k
foralli<lI;

(3) W =Upeo (D) (X).

Proof. Let W := U<, (D})"(X). Then the third condition is satisfied
since DY, (V) =D (V) n W for V € M.

For the first one, suppose that there is a partition W = A u B such
thatetil (YUB/XUA) < k. Since etil, (YUBU(Z\ W)/XUA) > kthere
issome b € Z\ Wsuchthatb 5 , cforallc € YUB.Hence, b ¢% ,, ¢
for all ¢ € Y which implies that b € DY (W) = W. Contradiction.

Finally, note that the sequence (A;);« with

A; = (Dy,)™ (X))~ (Dyy) (X)
forms a stratification of W. |

Our analogue of a system of disjoint paths consists of a stratifica-
tion (A;); together with a bijection between consecutive stages of the
stratification. These bijections map elements a € A; to some b € A;4,
such that a distinguishes b from Y. This behaviour is formalised in
the following definition.

Definition 4.4.7. Let X, Y, Z € M be disjoint. Fix a set Y, € Y of
representatives of Y/~%, i.e., a set such that

Yo | = etil (Yo/X) = etil (Y/X),

and let 1 : Y — Y, be the function mapping elements b € Y to the
unique b, € Y, with b, ~% b.
(a) The set of elements distinguished by a € Z is
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S(a) ={beY\Y, | bai iy b},
and, for A € Z, we define
o(A) = U S@].

acA

(b) A set A € Zis called independent to Y over X if there exists an
injective function 4 : A - Y \ Y, such that

u(a) € S(a) forallacA.
(c)AsetAc Zisfreeto Y over X if 0(A,) > |Ao| forall A, € A.
Remark. Note that ¢ can be equivalently defined by
o(A) =etiy (Y/X UA) —eti, (Y/X).

Lemma 4.4.8. Let X, Y, Z € M be disjoint finite sets. Every set A C Z
that is free to Y over X is also independent to Y over X.

Proof. If A € Zis free then, by Hall's theorem, there exists a system of
distinct representatives b, € S(a), a € A, for the family (5(a)) zea. We
obtain the desired function y : A - Y \Y, by setting p(a) :=b,. [

Lemma 4.4.9. Let X, Y, Z € M be disjoint. The family of subsets A € Z
that are independent to Y over X forms a matroid.

Proof. This statement is just a reformulation of Theorem 7.3.1 of
Welsh [80]. The original proofs are due to Edmonds and Fulker-
son [35] and Mirsky and Perfect [54]. O

To obtain an injection y : A - Y \ Y, it is therefore sufficient to
prove the existence of large free sets.

Lemma 4.4.10. Let X, Y, Z € M be disjoint finite sets and let A € Z be
a maximal set free to Y over X. Then etii (Y/X U A) = etil (Y/X U Z).

Proof. Suppose otherwise. Then there is some b € Z \ A with
etic (Y/XUA U {b}) >etii (Y/XUA).

Fix o, ¢, € Ysuchthatc, =, ¢;and ¢o 5,41 €1 Obviously, this
implies ¢, ~5,,, ¢ and ¢o %3, by C for all A, c A. It follows that

0(A, U {b}) = etil (Y/X UA, U {b}) —etil, (Y/X)
> etil (Y/X UA,) +1—etil (Y/X)
=0(A,) +1

|Ao| +1=[Ao U{b}],

[\

for all A, € A, which implies that the set A U {b} is also free. Contra-
diction. O

o(4)

independent
UuA->Y\Y,

free
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After all these preparations we are finally able to define what exactly
we mean by a system of disjoint paths.

Definition 4.4.11. Let X, Y, Z € M be disjoint finite sets and k < w.
k-ribbon A k-ribbon from X to Y in Z is a sequence p = (a" )« of k-tuples
a" ¢ Y u Z satistying the following conditions:

(1) (A,)n< is a stratification of A.; where A, :=a" \ Y.

(2) @' cY.
n

(3) Ifa} € Y then a" = af for all m > n. Conversely, if a" = a}
then i = j and, by (1), necessarily a" € Y.

(4) A,isfreeto YUA,, over XUAL,. In particular, foralln < [-1

andalli < kwithaj € Z, thereis some j < kwitha = a/™ € Y

n+1 0 n+1 n+1 (o] n+1
such that a™ ~§ , 4" and q; Foagufay 4 - We
denote the mapping taking a}** to a/'™* by 1.

thread The sequences (a}') i, for i < k, are called the threads of p.

Example. In the graph on the left there exists a 5-ribbon (a"),<s
from X to Y where

A% = Y0202 2, 24
a' = Yo Y1 24 25 26
=Yoo Y2)3%;
@ =Y )1 Y2 Y3 2
at = Yo Y1 Y213 Vs

The desired analogue of Menger’s theorem can now be stated in
the following way.

Theorem 4.4.12. If X is not k-separated from Y over Z then there
exists a k-ribbon from X to Y, in Z, for every subset Y, € Y with
etig(Yo/XUZ) > k.

Proof. We prove the claim by induction on |Z|. W.l.o.g. we may
assume that |Y,| = k.

By Lemma 4.4.6, we may assume that Z = U, (D} )*(X) and that
D, = (D))" (X) ~ (D))™(X) is a stratification of Z. As usual, we
denote the union UU,., D; by D.,. Let [ be the minimal index such
that eti, (Yo/X U D) = k.

By reverse induction, we define an increasing sequence of sets

A, CA =Y,
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and a sequence of sets B, € D, n < [, such that
* etii (A, UB,/XUD.,) =|A,UB,| =k;
¢ etig(A,/XUD.,) = |A,] =etig(Yo/X UDg,).

We start with A; := Y, and B; := &. Suppose that A,, and B,
are already defined. Let

My = etil (Ayss UBpn/X UD,) = etil (Apn/X UD.,)

where the second equality holds since (D,,), is a stratification of Z.
Fix some A, C A,,, with etig (A,/X UD.,) = m,, andlet B, € D,
be a set of maximal size free to A,,,, U B,,;, over X U D_,,.
First we show that eti (B,/X U D<) > k — m,. By Lemma 4.4.10,
we know that

ety (A4, UByi/XU Do, UB)) = k.

Suppose that etig (B,,/X U D,) < k —m,. Then B c D, is a proper
subset of D, and, hence, |B},| < |Z|. Since the set X U D, is not
k-separated from (Y u Z) \ (X U D, U B),) over B;, we can apply
the induction hypothesis and there exists a k-ribbon p = (a'); from
X UD,y to Ayyy U By, in B But a® € Ay, U By, U Bf implies that

k = etil (2°/X U D<y)
< etil (A4, UByy, UB, /X UD,)
< etit (Apyy UBpiy/X U D.,) +etil (B, /X UD.,)

<my + (k—my)

which is a contradiction.

Hence, eti, (B,/X U D.,) > k — m, and we can fix a free subset
B, < B, of size k — m,. By Lemma 4.4.8, there exists an injective
function py, : B, = (Ay4y UBpyy) N A, such that

#n(b) #30p_,0(p) #in(b) forallbeB,.

Since |Apsy U Bpia| = |Au| + | By| any such function is bijective.

Having defined A, and B, for n < [, it remains to construct the
desired k-ribbon p = (a") <. Again we proceed by inverse induction
on 7. Let @' be an enumeration of Y,. Suppose that a"** € A,,,, UB,.,,
isalready defined. Consider the function g, : B, = (Ay41UBy11 )N Ay
from above and set

g | (@) ifa e xngp,
' art otherwise. O

The above theorem can slightly be improved by considering a
family of sets Y}, i € I, instead of a single one. To shorten our notation
weset Yy == U YiforJC L
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Proposition 4.4.13. Let 9 be a finite transition system, X € M, and
r < w. LetY;, i€ I, beafamily of disjoint sets and set Z := M~ (XuY7y).

If there exists no set | € I of size |J| < r such that Yr is (r +1)-
separated from X over Z, then we can find

e aset] cIofsize|]| =,

*

an (r +1)-ribbon p = (a'); to X over Y; in Z,

an element ¢ € X, and

*

>

an injective function y : | - a°
such that ¢ %5 (i) for everyie€ J.

Proof. In order to apply the previous theorem we fix a binary rela-
tion E) of 9. For every i € I, we add a new element a; to 91 that is
connected by an Ej -edge (a;, b) to each b € Y;. Then we have

by ~°

ai

b, ifft bo,bieYiorb, b ¢Y;.

Let A :={a; | i € I }. We claim that A is not (r + 1)-separated from X
over ZU Yj.

Let (By, By) beacutof AuZu Y;uX with A € B, and X < B,. Set
K:={iel|Y;nB, # @ }.If|K| > r then

etig (B,/B,) > etit (XU (B, nYy)/A) 21+ |K| >r+1.

Otherwise, since Y.k € B, is not (r + 1)-separated from X over Z it
also follows that

etig (B,/B,) > etit (B, N\ (Yxk UA)/Bo N (Yxk UA)) >r+1.

Hence, there exists an (r + 1)-ribbon (@');.; to X over Ain Z U Y7.
Since

(Dyuy,)"(A) = (D7) (Y1) U A
it follows that
a°cXuDj},y (A)NAcSXuUY.

Consequently, etig (a°/A) = r + 1 implies that a° n X = {c} for some
¢ € X, and there exists an injective function g : a° \ X — I such that

aj e V(a2 forallay ¢ X.
Since a} #J, ¢ for all a? ¢ X we obtain the desired ribbon by setting
p = (a")ocici and ] := rngp. O

Since we are interested in proving that some structure admits MSO-
coding it would be handy if the threads of a ribbon were (uniformly)
definable. Unfortunately, this does not seem to be the case. The most
we can do so far is to define an ordering of each thread.
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Lemma 4.4.14. There exists an MSO-formula ¢(x, y; X, Y, Z) such that,
if p = (a@")n< is a k-ribbon from X to Y, then

MEal”, a5 X, L A;) iff m<n,
where A; :={al' | n<1}.

Proof. Note that

U@} ) X) =X u{al" [m<n}.

i
s<w

is the least fixed point of an MSO-definable monotonous operator.
Hence, there is an MSO-formula ¢(x, y; X, Y, Z) stating that

Y
xegu(DZ\{y})s(X)' 0
Above we proposed ribbons as suitable analogues for systems of
disjoint paths. The next lemma shows that each thread of a ribbon
can indeed be viewed as a path.

Lemma 4.4.15. Let p = (8")n< be a k-ribbon from X to Y, and let
Aj={al | n<l}fori<k
(a) IfY is1-cut free then so is Y U A, for every i < k.

(b) If X and Y are 1-cut free then so is X UY U A; for every i < k
with A;\Y + @.

Proof. (a) By reverse induction on #, it follows from Lemma 4.3.2
that the sets Y U {a”, ..., al '} are 1-cut free for every i < k.
(b) a? #% b forall b e Y implies that

etig (YUA;/X) > etit (Yu{a?}/X) >1.
Hence, the claim follows from (a). OJ

In the remainder of this section we try to strengthen this connec-
tion between threads and cut freeness. In particular, we construct
minimal subsets of a thread still exhibiting the above behaviour.

Definition 4.4.16. Let 9 be a transition system and X, Y € M.

(a) A pseudopod of X is a nonempty sequence (a;);<, of elements
such that etii (X U A,x/ax) > 1, for every k < n, where as usual
Asg :={a; | i>k}. The element a, is called the end of (a;);.

(b) A pseudopod connection of X to Y is a pseudopod (a;); of X
such that either a, € Y or etif (Y/a,) > 1.

(c) A pseudopod (a;); of X is minimal if there is no proper subse-
quence with the same end that forms a pseudopod of X.

(d) The union of two pseudopods @ and b of X is the sequence
(b~ a)a.

pseudopod

end

pseudopod connection

minimal

union
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The following properties immediately follow from the respective
definitions.

Lemma 4.4.17. Let X be a 1-cut-free set.
(a) Ifpis a k-ribbon to X then every thread of p is a pseudopod.

(b) If X is 1-cut free and (a;)i<n a pseudopod of X, then X U Ay is
1-cut free for all k.

(c) If X and Y are 1-cut free and (a;); is a pseudopod connection
of XtoY, then X uau isi-cut free.

(d) The union of two pseudopods is again a pseudopod.
The structure of a minimal pseudopod is especially simple.

Lemma 4.4.18. Let O be a transition system and (a;)i<n, a minimal
pseudopod of X € M.

(a) etify(Asksr/ax) =1forallk <n-—1.
(b) etiy (Akrrars/ak) > 1 for every k < n — 2.

Proof. (a) Suppose there is some index k such that etif (Asksi/ax) > 1
and assume that k is minimal with this property. Then a., ~4 . Okea
which implies that

etip (X U (Asi N A{akn}) [ai) >1 fori<k.

Consequently, the subsequence obtained by omitting aj., is still a
pseudopod in contradiction to the minimality of a.

(b) Ifeti, (X/ay) > 1then, by (a), the subsequence a,, . . ., dx, a,—, is
apseudopod and ais not minimal. If ety (aks,ak+./ax) = 1then, by (a),
etiy (Ask/ax) = 1, which implies that etiy (X U {a,_, }/ax) > 1. Hence,
the subsequence a,, ..., ak, a,-, is a pseudopod in contradiction to
the minimality of a. O

4.5 MESHES AND WEAVES

With the technical results of the previous sections it is possible to
translate the core of the original proof of the Excluded Grid Theo-
rem (see [64]). We still assume that 9t = (M, (Ej)ea, P) is a finite
transition system and a := 4!41.

We start by specifying what we mean by a ‘grid. We will consider
two grid-like configurations. The first one, called a mesh, is a trans-
lation of the concept of two families of disjoint connected sets such
that each set of one family intersects every set of the other one. When
defining the other configuration, called a preweave, we have a system
of disjoint paths and a family of connected sets in mind where every
set intersects each path.
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Definition 4.5.1. Let X and Y}, i < n, be disjoint sets. X connects the
family (Y;); if, for every family (Y7); of disjoint 1-cut-free sets with
Y/ 2 Y;, theset X ulJ; Y/ is 1-cut free.

We call a set X connecting if there exists a family (Y;); of disjoint
sets, disjoint from X, such that X connects (Y;);.

Definition 4.5.2. An (m, n)-mesh consists of a family A;, i < m, of
disjoint 1-cut-free sets and a family B;, i < n, of disjoint nonempty
sets such that every By connects the A;, i < m.

Definition 4.5.3. Let X, Y, Z € M be disjoint.

(a) A set C € Z separates X from Y over Z if there is a separation
(A,B)of XUZUY withX CA,YCB,and AnBCC.

(b) C separates X from Y modulo D over Z if C u D separates X
from Y over Z.

Lemma 4.5.4. Ifthere is no set of size n separating X from Y modulo D
over Z then there exists a |log,, n|-ribbon from X to Y in Z \ D.

Proof. Letr = |log, n. There exists no separation (A, B) of XUZUY
with X € A, YuD C B,and |A nB| < n. By Lemma 4.4.3, it follows
that X is not r-separated from Y u D over Z \ D. Hence, there exists
an r-ribbon p = (a@');¢; from X to YuDin Z \ D.

In the same way as above it follows that X U D is not r-separated
from Y over Z \ D. This implies that eti; (Y/X UZ) > r. Consequently,
we can choose p such that @ c Y. O

Definition 4.5.5. Let 91 be a transition system and X, Y, Z ¢ M
disjoint finite sets. An (m, n; r)-preweave consists of an m-ribbon p
from X to Y in M \ Z and a family of disjoint sets B;, i < n, each
of which is the union of at most r connecting sets, such that each B;
separates X from Y modulo Z.

Below we will show that a transition system which does not admit
(k, n)-separations contains a large mesh or a large preweave. But what
we are actually looking for is an MSO-definable pairing function. The
notions of a mesh and a preweave are but a first approximation that
does not seem to suffice for defining such functions in monadic
second-order logic.

In particular the notion of a (m, n; r)-preweave is unsatisfactory.
It would be much better if we could demand r = 1. The problem we
are facing is that there does not seem to be a notion of where a thread
intersects one of the sets B;. If such a concept were available then we
could take a subset of the threads and a subfamily of the B; such that
all the threads intersect each B; in the same connected component.

The first step in the proof consists in deriving a condition for the
existence of a preweave. We need one technical lemma that applies
Proposition 4.4.13 to obtain a family of paths.

X connects (Y;);

connecting set

(m, n)-mesh

C separates X from Y

C separates modulo D

(m, n; r)-preweave
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Lemma 4.5.6. Let X and Y}, i < k, be disjoint sets. If there is no set
J C [k] of size || < rsuch that there exists a set of size ™" separating X
Sfrom U, Yi over M\Ug; Yi, then there exist aset1 C [k] of size |I| = r
and a family of disjoint sets P;, i € 1, disjoint from X uU,¢; Y; such that
P; connects X and Y;.

Proof. ByLemma 4.4.3 and Proposition 4.4.13, there existsaset ] C [k]
of size |I| = rand an (r +1)-ribbon p to X over U Y; in M \ U V3.
The threads of p are the desired sets P; connecting Y; with X. O

Lemma 4.5.7. Let I be a finite transition system. Let X and Y;, i < n,
be disjoint connecting sets and r < w a number such that
(1) there is no set I < [n] of size |I| = r and no family of disjoint
sets P;, i € I, disjoint from X U Ui Y; such that P; connects
X and Y, foralli € I, and

(2) thereis no set I C [n] of size |I| < m such that there exists a set
of size m — |I| separating X from U Y; over M.
Then 9N contains a

(|log, (m — I(a™/r + 1)), |Yrl; r—1)-preweave
for every I < n.

Proof. Mirroring the proof of (2.9) in [62] we construct sets Cx S M
and disjoint sets Iy € [n] by induction on k. Suppose that C; and J; are
already defined for i < k. Let ] := [n]\U,« I;. By (1) and Lemma 4.5.6,
there exists a set Iy < J of size |Ix| < r and a separation (A, B) of
M\ Uier, Ye with X € A, Y; € Bfori e JNI, and An B = C for
some set Cy of size |Cx| < o'** disjoint from Y;, i € I.

Fix I < n. We can perform the above construction for at least
|| > | %] steps. Let

C:= U Ck’ Zk::UYix

k<|l/r] i€l
I'= U L U:=JY:.
k<ll/r| i¢l

If there were a separation (A, B) of M with X ¢ A, U ¢ B, and
AnB=CuD forsomeset D of size | D| < ff := m—I(a"*/r +1), then

[ +[Cl+[Dl< > (Il +[Cil) + D]
k<[l/r]
<I+lr+m-1a™Yr+1)=m
would contradict (2). Therefore, there is no set of size 8 separating X
from U modulo C over M. By Lemma 4.5.4, there exists a |log, f3]-

ribbon p from X to U in M \ C. Since Z; U C separates X and U for
every k it follows that 901 contains an

(llog, B, i/rl; r—1)-preweave. .
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Corollary 4.5.8. Let 9 be a finite transition system that does not
contain a (6., 0,;r — 1)-preweave. Let X and Y;, i < n, be disjoint
connecting sets and set

B=ar+1, m=r0,+a%, and 1:=10,.

At least one of the following two conditions is satisfied:
(1) Thereisaset < [n] of size |I| = r and a family of disjoint sets P;,
i € I, disjoint from X U, Y; such that P; connects X and Y;
foralliel

(2) There aresets C < M and I < [n] of size |C| + |I| < m such that
C separates X from U;gs Yi.

Proof. Ifn < Ithen (2) holds forI := [n]. Otherwise, the result follows
from the preceding lemma since

[l/r] = [r6,/r] = 6,
and |log, (m - Bl)| = |log, (rB6, + a® —136,)| = 6, . O

It remains to show that, if a transition system 97 does not contain
a preweave, then it contains a mesh or there exists a sunflower split-
ting 901 into several parts of bounded size. The following function is
used as bound of the size of the core of this sunflower.

Definition 4.5.9. Let {p 0,(2, 1) := a” and

Co,0,(k +1,n) ::f(n)[l + k0, (k f(n) + 1)]

where f(n) = 0,(a" +n) +ad +n.

Lemma 4.5.10. Let N be afinite transition system that does not contain
a (6,, 0,;n — 1)-preweave, and let k > 2. For every family of disjoint
1-cut-free sets Y; € M, i < k, and all numbers n < w at least one of the
following statements is true:

(1) There are disjoint nonempty sets Z;, i < n, such that (Y;)i<x and
(Z:)i<n form a (k, n)-mesh.

(2) For some I < k, there exists a sunflower (A;);«; with domain M
and core X of size |X| < (g0, (k, n) such that no petal A; ~ X
contains elements from every Y;.

Proof. (k =2)1f(2) does nothold then there is no separation (Ao, A,)
of order |A, N A,| < a" with Y, € A, and Y; € A,. Hence, Y, is
not n-separated from Y; and, by Theorem 4.4.12, there exists an n-
ribbon p to Y; over Y,. The threads of p satisfy (1).

(k > 2) Let C;, i < N, be a maximal family of disjoint sets such
that each C; connects all the Y; except possibly Yi_,. If N < n then

Go,0, (k)
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(1) fails for Y,,..., Yi_,, and by induction hypothesis there exists
a sunflower as in (2). This sunflower shows that (2) also holds for
Yo, ..., Yio,. Thus, we may assume that N > n and that C,, . .., Cy—y
do not connect Yy, ..., Yx_,. By Corollary 4.5.8, one of the following
cases occurs:

(a) There is a set I € [N — n + 1] of size |I| = n and a family of
disjoint sets P;, i € I, disjoint from Yy, UUj¢; Cj such that P; connects
Yi_, and C; for all i € I. In this case (1) holds with Z; := C; u P; since,
if Y/ 2 Y; is 1-cut free, for i < k, then sois C;u Y, u---u Y[_, and,
thus, also ;U C;U Y  U-- U Y] .

(b) There are sets D € M and I € [N — n +1] of size

|D| + |I]| <m = 6,(a""+ n) + a¥

such that D separates Yy, from every C;,i € [N-n+1]x\I.Let (A, B) be
aseparationwith AnB =D, Y, € A,and C; € Bfori € [N-n+1]\ 1.
Set Y] := Y;n A. If there were more than |D| + |I| +# < m+n disjoint
1-cut-free subsets of A that connect Y,...,Y, ,, then more than
|I| + n of these would be disjoint from D, and those together with C;,
i € [N-n] NI, would form a family of more than N disjoint 1-cut-free
components in contradiction to the maximality of N. Hence, there
areno sets Z; € A, i < m + n +1, that form an (k —1, m + n + 1)-mesh
together with Y{,..., Y] .

Applying the induction hypothesis to the structure 91| 4 we obtain
asunflower (A!);; with core X’ € A of size | X'| < (4,0, (k—1, m+n+1)
and ] < k—1such that no petal A} \ X’ contains elements from all sets
Yo, ..., Yi—,. By Lemma 4.1.6, there exists a set X 2 X’ u D of size

1X] < ((k=1)p,0,(k—1,m+n+1) +1)(m+n) = {g6,(k n)
such that the sequence (A;) <y, with

_JAjuX fori<l,
" lBux fori=1,
forms a sunflower with core X.

It remains to prove that no petal A; \ X contains elements from

every Y;, j < k. For i = I, we have (B \ D) n Yy, = @. Suppose that,
for some i < I, we have ((A]uX) \ X)nY; # & for every j < k. Then

AINX)NY;=(AINX)NY #0
for all j < k in contradiction to the choice of (A});. O

Combining the preceding lemmas we obtain the following result
which can be regarded as a very weak form of an Excluded Grid
Theorem.
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Theorem 4.5.11. Let 6,, 0,, 6,, 0, > 1 be numbers such that

B =2« < {o,6,(65,6,),
and define

of3(63+9)/2

0, i= (0,0, 0,) and 0= (8, +1)(6> —1).

Every finite transition systems 90 that does not contain a (0,, 0,))-mesh
ora (0, 0,;0, —1)-preweave admits (05, 0 )-separations.

Proof. If there is a separation (A, B) € Sg(M) with [ANBJ, [BNA| <
7|M| then we are done, since § < 0; and § < 1 - 65, Otherwise, by
Corollary 4.3.26, there exists a family of 6, disjoint 1-cut-free sets C;,
i < 0, of size

PN JLVIET/
R
1

i §>(63+1)0g1|M|—%293651|M|.
By Lemma 4.5.10, there is some sunflower (A;); with core X of size
|X| < p,0,(05,0,) = 05 such that no petal A; \ X contains elements
from every Cg.
Foreachv € C, fixindicesj(v) and o < i(v) < 0; suchthatv € A;(,,
and (Aj) N X) N Cj(yy = @. There is a subset D € C, of size

ID| 2 6;|Co| 2 65" [M]

such that i(u) = i(v) for all u, v € D. Wl.o.g. assume that i(v) =1 for
v € D. Define

By ={J{Ai | Dn(Ai\X)+ o}
and B,:={J{A/|Dn(Ai\X)=0}.

Then (B,, B,) is a separation of order |B, N B,| = |X| < 6;. Further-
more, it follows that

|Bo N Bi| < [M] - |G| < (1-65")|M],
and |B,\B,| < |M|-|D| <(1-6.")|M|,

since C, "B, = @ and D C B,. O

Remark. Makowsky and Rotics introduce in [52] the 2-colour width
of a transition system 91 as the least number k such that there exists
some set X € M of size 3| M| < |X| < 2| M| with etil (X/X) < k.
Using this notion we obtain the following corollary to the above
theorem:

Given 60,, 0,, 0,, and 6, we can compute a number k such that,
if 91 is a finite transition systems that does not contain a (6, 6,)-
mesh or a (6,, 8,; 8, — 1)-preweave, then the 2-colour width of every
substructure of 1 is at most k.
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If we could prove that, in addition, 9t strongly admits (6;, 05)-
separations then we could use Proposition 4.2.6 to bound the par-
tition width of 91. The next theorem shows that it is possible to
improve the above result by constructing separations that split large
sets Z € M. Unfortunately, in the proof of Proposition 4.2.6 we need
such separations for small Z.

Theorem 4.5.12. Let I be a finite transition system without (0,, 8,)-
meshes and (0,, 0,; 0, — 1)-preweaves, and let Z < M be a set which
has no partial partition refinement of width a5+ and granularity
%(693 -1)(0,65*|Z| +1) - % There exists a separation (A, B) € Sg (M)
such that

|(A\B)r1Z

(B~A)nZ|<(-6)]zl,

>

where
6, 1= (00,(0,6,) and 0= > (6, +1)(6% ~1).

Proof. By Theorem 4.3.24, there exists a family of 8, disjoint 1-cut-free
sets C; € Z,i < 0y, of size |C;| > 0,605 |Z].

Hence, Lemma 4.5.10 implies that there is some sunflower (A;);
with domain M and core X of size |X| < {p, o, (05, 6,) = 6, such that
no petal A; \ X contains elements from every Cg.

Foreachv € C, fixindices j(v) and o < i(v) < 0, suchthatv € Aj(,)
and (Aj¢y N X) N Ci(y) = 2. As above we can find a subset D € C, of
size

|D| 267G, | 2 6| Z]

such that i(u) = i(v) for all u, v € D. Wl.o.g. assume that i(v) = 1 for
all v € D. Define

By :=|J{Ai | Dn(Ai X) 2}
and B, :=|J{A/ | Dn(Ai\X)=0}.
Then (B,, B,) is a separation of order |B, N B, | = | X| < 6. Further-
more, C, N B, = &, D € By, and D, C, € Z implies that
|(Bo B nZ| < |Z] - |G| < (1-05)1Z],
and |(B,\B,)nZ|<|Z|-|D| <(1-65")|Z|. O



5 TREE-INTERPRETABLE
STRUCTURES

AVING DEFINED a class of structures with a simple monadic
H theory we now try to find suitable subclasses where the monadic
theory of each structure is decidable. We cannot hope to obtain a
precise characterisation of when the MSO-theory of a structure is
decidable. For instance, by coding a suitable nonrecursive set, we can
easily construct even trees whose first-order theory has an arbitrary
high Turing degree. Therefore, we aim at finding a subclass as large
as possible such that we can still give a meaningful characterisation.

Throughout this and the following two chapters all structures are
assumed to be of finite signature.

51 THE CAUCAL HIERARCHY

A general method to obtain classes of structures with certain desir-
able properties consists in fixing one or several such structures and
considering the closure of this set under operations preserving said
properties. If, furthermore, the class K is obtained from finitely many
base structures by operations each of which can be encoded by a fi-
nite object, then every structure in 91 € I has a finite representation,
namely, the sequence of the operations one has to apply to the base
structures to obtain 1.

If one is interested in monadic second-order logic the canonical
structure to start with is the binary tree ¥, = (2<%, 5, suc,, suc,).
As operations we can use MSO-functors. Since 2 x ¥, <ys0 ¥, for
any finite structure 2 we can restrict ourselves to interpretations and
iterations.

Definition 5.1.1. Let C = U, C,, where C, is the class of all finite
structures and C,,, for n > o, is the class of all structures 9 such
that there exists an injective interpretation Z : 97 <ys0 iﬁ”“’ where
Tg”) is the n-th iteration of ¥,. The sequence C, c C, c --- is called
the Caucal hierarchy.

Note that, by Lemma 1.3.15, we can equivalently define C,, to be
the class of all structures obtained from ¥, by a finite number of

147
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injective MSO-interpretations and at most # iterations.
We list some basic properties which immediately follow from the
definition.

Proposition 5.1.2. Each level C,, of the Caucal hierarchy is closed under
injective MSO-interpretations. In particular, it is closed under

(1) isomorphisms,

(2) finite unions,

(3) definable expansions,

(4) expansion by finitely many constants, and

(5) substructures with definable universe.
Lemma 5.1.3. Every structure M € C is of finite partition width.

We have chosen the definition of C with the decidability of MSO in
mind. Actually, a slightly stronger result holds.

Theorem 5.1.4. There exists an algorithm which, given a formula
(%) € MSO + C, an injective interpretation T : M <yso SE"), the
number n, and a tuple w € T, decides whether M = o(Z(w)).

In particular, the (MSO + C)-theory of every structure M € C is
decidable.

Proof. By the Interpretation Lemma, we can decide M = ¢(Z(w))
by checking whether T e @T (). Note that every word v € 2“ is
definablein ¥, and, hence, soiseveryelement u € T, Consequently,
we can replace ¢ () by a sentence y. By MuchnikK’s theorem, it
follows that we can construct another sentence ¢ such that

ey if TWey
iff T EeI(w) iff Meoe@(w). O

Theorem 5.1.5. Let 9 € C. The GSO-theory of M is decidable if and
only if M is of finite tree width. The same holds for GSO + C.

Proof. According to Lemma 1.2.12 and Theorem 1.2.13, if 9 is of
finite tree width then it is uniformly sparse and GSO + C collapses to
MSO + C which is decidable. Conversely, if 91 is of infinite tree width
then its GSO-theory is undecidable by Theorem 1.2.9. O

Originally, Caucal [16] defined his hierarchy for transition systems
only. At the lowest level he started with the class of all finite transition
systems and, to obtain the next level, he constructed the unfoldings
of the systems in the current one and then applied an inverse rational
substitution.
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Carayol and Wohrle [13] (see also Carayol and Colcombet [12])
have shown that the hierarchy constructed in this way is strict and that
each level is closed under injective MSO-interpretations. Moreover,
the n-th level contains the (n — 1)-th iteration of the binary tree
and that every transition systems in level # can be obtained from
this iteration by an injective MSO-interpretation. It follows that the
hierarchy obtained in this way equals the one we get when we restrict
Cy, n < w, to transition systems.

Recent results of Caucal et. al. indicate that, analogous to the class
of prefix-recognisable graphs, one can characterise the levels of the
Caucal hierarchy by suitable models of pushdown automata, term
rewriting systems, or systems of equations. For example, one can
encode a system S of VR-equations x, = t,,...,X, = t, as a graph
by taking the disjoint union of the terms ¢; and replacing every leaf
labelled by an unknown x; by an edge to the root of the term ¢;. That
way, the least solution of S is the term T obtained by unravelling S. In
particular, if S € C,, then T € C,4, and, by the result of Carayol and
Wohrle, val(T) € C,4,. In fact, also the converse is true. Carayol and
Colcombet [12] have shown that each transition system in C,4, can
be described by a VR-term which is the least solution of a system of
equations in C,.

Finally, let us mention that the Caucal hierarchy does not contain
all structures with decidable MSO-theory.

Example (Carayol and Wohlre [13]). Let T = (T, <) be the tree with
universe

T:={o"" | k<3,01)}.

The decidability of the MSO-theory of ¥ can be obtained by a simple
application of the composition method or by automata-theoretic
arguments. On the other hand, one can show that T ¢ C.

5.2 TREE-INTERPRETABLE STRUCTURES

We turn to an investigation of C,, the lowest level of the Caucal
hierarchy. This is a very natural class which can be defined in several
different ways.

Definition 5.2.1. A structure 91 of finite signature is called tree inter-
pretable if M <50 %,

We will show in Proposition 5.2.6 that the class of tree-interpretable
structures coincides with C,.

tree interpretable



branching structure

branching points

101011 1011

101 1111

N

150 ¢ 5 Tree-Interpretable Structures

All tree-interpretable graphs are of finite clique width. On the
other hand, their tree width can be unbounded as the example of the
infinite clique Ky, shows.

A result of Courcelle [25] which was extended to tree-interpretable
graphs by Barthelmann [4] shows that being of finite tree width
imposes a strong restriction on the structure of a tree-interpretable
graph. It directly follows from the results of Section 2.4.

Proposition 5.2.2. Let I be a tree-interpretable structure. The follow-
ing statements are equivalent:

(1) 9 is HR-equational.

(2) 9N has finite tree width.

(3) The Gaifman graph G(ON) is uniformly sparse.

(4) G(ON) does not contain the subgraph K,, , for some n < X,

Recently, this result has been extended to all levels of the Caucal
hierarchy by Colcombet [17].

Although the definition of tree-interpretable structures by interpre-
tations is quite elegant, in actual proofs it is most of the time easier
to work with a more concrete characterisation in terms of languages.

Employing the correspondence between MSO-formulae and tree
automata we can generalise the characterisation of the class of prefix-
recognisable graphs by relations of the form W(U x V) to arbitrary
relational structures.

Definition 5.2.3. The branching structure of words x,, ..., x,—, € 2<%
is the partial order (X, <, xo, . . ., X,—, ) with universe

Xe={efu{xinx |ij<n}.
The elements of X are called branching points.

Example. The branching structure of 1111, 1011, 101011 is depicted
to the left.

Note that for a fixed number of words there are only finitely many
non-isomorphic branching structures.

Proposition 5.2.4. An n-ary relation R € (2*)" is MSO-definable
in ¥, if and only if R is a finite union of relations R; of the following
form:
(1) All tuples x € R; have the same branching structure (up to
isomorphism).

(2) For all pairs of adjacent branching points u, v, there exist regular
languages W, ,, such that x € R; if and only if, for each such pair
u, v, the word u™v belongs to W,,,,.
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Proof. (<«=) Clearly, every relation of this form is MSO-definable.

(=) We show that, if R is MSO-definable, then the labels of paths
between branching points are regular. For simplicity we assume that
the relation R € 2<% x 2<¢ is binary. Let A = (Q, £[2], 4, g,, Q) be
the tree automaton associated to the MSO-definition of R in T,.

For g € Q,let §; € 259 x 2% x 25 be the set of all triples (w, u, v)
with u M v = ¢ such that there exists an accepting run p of A for the
tree Tpyuy, {wuy With p(w) = q (recall Definition 1.4.2). Let

Sg =S n{(mee)},
Sg={(wue)eS; luxe},
Sy ={(mev)eS;|v+e},

Sot={(wuv)eS, |uv*e}.

Let Wg, Ug, and Vg be the projections of S7 onto the respective
coordinates. Then

R= U $;= U wg(Ug x vy).
q<Q 9<Q

cc[2] cc[2]

It remains to prove that Wy, Uy, and V; are regular. Let occ(t)
denote the set of labels which occur at some vertex of the tree t. We
classify the states of A according to the set of labels which can appear
in trees that are accepted from this state.

Qo ={q € Q| occ(t) = {@} for all trees t accepted from q}
Qo =={q € Q| occ(t) = {2, {o}} for all ¢ accepted from g}
Q. ={q € Q| occ(t) = {@, {1}} for all t accepted from g}
Qo ={q€ Q| occ(t) = {@,{0,1}} or {@, {0}, {1}}

for all trees f accepted from q}

If Wi = & then we are done. Otherwise, W{ is recognised by the
automaton (Q, [2], A(WQ), 4o, {q}) with transition relation

{(Pop) | (p@.ppo) €A, pp' €Qons Po€Qo }
U{(@®Lp) | (0.2, posp’) €A pp' €Qopns Po€Qo }-

We may assume that U # @ and Uy # {e}. Hence, 0 € c. Letg; bea
new state. The automaton (Qu{gs}, [2], A( Ug)s s F) recognises Uy
where

F:={peQ] (p {0} poP)) €4, po P € Qz}
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and the transition relation is

{(@s0p) | (gc~{ohpp)ed peQo p'eQc}
U{(@s1p) | (gc~{ohp'p)eA peQo p'€Qc}
u{@op) | (p2.p'po) €l pp €Qo po€Qu}
u{@1p) | (02 pop’) €A pp €Qo Po€Qa ),

where ¢ := {°[2] \ c. The automaton for V¢ can be defined analogously.

O

Example. For the branching structure in the previous example, a re-
lation would be defined by five regular languages U, V, W, X, and Y
with R=U(V x W(X x Y)).

Definition 5.2.5. Let 901 be a tree-interpretable structure. Fixing an
interpretation we can assume that the universe M c X< is regu-
lar and each relation R is specified by regular languages as in the
preceding proposition. The syntactic congruence ~ of 9 (w.r.t. this
interpretation) is the intersection of the syntactic congruences of all
these languages. We denote the index of ~ by I.

If some elements of a tree-interpretable structure are encoded
by several words it becomes difficult to apply pumping arguments
since the words obtained by pumping may encode the same element.
Fortunately, for each tree-interpretable structure 91, we can choose
an interpretation where this does not happen.

Proposition 5.2.6. If 9 <yis0 T, then there is an injective interpreta-
tion T : M <Mso 3:2.

Proof. We prove that, for all regular languages M < 2<“ and every
MSO-definable equivalence relation E € M x M, there is a regular
language M, © M which contains exactly one element of each E-class.
Then the desired interpretation is obtained by replacing the formula
defining the universe M of 91 by the one defining M.

Denote the E-class of x by [x], define pp,j = [1[x], and set s, :=
(P[x)"'x. Finally, let I be the number of states of the automaton
associated with E. We claim that each class [x] contains an element
of length less than |p[,j| + I. Thus, one can define

Mo :={xeM|s,<ys,forallye[x]}

where the length lexicographic ordering <j is definable since the
length of the words is bounded so that we only need to consider
finitely many cases.

To prove the claim choose x,, X, € [x] such that x, M x, = ppy.
Since (X, x,) € E there are regular languages U, V, and W such that



5.2 Tree-interpretable structures + 153

W(U x V) € E and x, = wu, x, = wv for words u € U, v € V, and
w € Wwithw < pr. If [wu| > |pp | +I then, by a pumping argument,
there exists some #’ € U such that |pp,| < |[wu'| < |pp| +1. Hence,
(wu/, x,) € E is an element of the desired length. O

This result allows us to identify the elements a of a tree-interpreta-
ble structure Z : M <ys0 T, with the unique word Z7*(a) encoding
them. We will do so tacitly in the remainder of the thesis.

We conclude this section by comparing the class of tree-interpret-
able structures to the class of automatic structures which was intro-
duced by Khoussainov and Nerode in [49]. In the following proofs
we will use the characterisation of automatic and unary-automatic
structures in terms of FO-interpretations given in Blumensath [6].

Proposition 5.2.7. The class of tree-interpretable structures is strictly
contained in the class of automatic structures.

Proof. Strictness follows from the fact that model checking for MSO
is decidable for tree-interpretable structures but not for all automatic
ones.

We have to show that 9 <ys0 ¥, implies M <po (T, < el)
where el is the equal-length predicate. Using the characterisation
from Proposition 5.2.4 it is sufficient to construct an FO-definition
of a relation R that is defined by a certain branching structure and
regular languages W; as described above. By a simple modification
of the usual translation of automata to FO-formulae on (%T,, <, el)
(see e.g. [10, 6]) one obtains, for each W, a formula @, (x, y) which
states that x < y and the path from x to y is labelled by a word in W;.
Obviously, there also is a formula (%, ) which holds iff x has a given
branching structure with universe x U . Thus, one can define R by

y(3) = (P& 7) A N\ w2 2)

where z;, z] € {Xo, ..., ¥o,... } are the branching points correspond-
ing to W;. O

Proposition 5.2.8. The class of unary-automatic structures is strictly
contained in the class of tree-interpretable structures.

Proof. Since (w, s, <) <mso ¥,, by Corollary 7.5 of [6], it is sufficient
to construct an interpretation (N, <, (n | x),) <mso (w, s, <). To do
so we only need to define the divisibility predicates.

Pn)x(x) = VX (Xe A Vy(Xy - Xs"y) — Xx).

For strictness, note that ¥, is tree interpretable but not unary auto-
matic. O
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5.3 MSO-FUNCTORS

In this section we will investigate under which MSO-functors the class
of tree-interpretable structures is closed. Obviously, it is closed under
MSO-interpretations and, by Lemma 1.3.6, also under products by
finite structures. Further, one can show by pumping arguments that
it is not closed under iterations, i.e., the Caucal hierarchy does not
collapse to its first level. In the following we will show that the class
of tree-interpretable structures is also closed under a special case of
generalised sums which we call a substitution.

Definitions.3.1. Let91,, ..., 901,_, be r-structures, and J a structure
of signature 0. Let A : I — [n] be a function partitioning J into sets
Py := A7'(k) for k < n. The substitution J[A : Mo, ..., M,_,] is the
structure 91 with universe

N = UM,\(I) X {l}

iel
and the following relations:
eq:={((ai),(bj))eNxN|i=j},
Pr:={(a,i)eN | A(i) =k} fork<n.
For each relation R € 7 of arity r, 0 has a relation
R :={((ao, i), ..., (a,,i)) €eN" | ae R™o },
and for each relation R € o of arity r, there is a relation

R* :={((ao,i0)s--» (Grorr iry)) €N" | 1€ R7 }.

Theorem 5.3.2. Let Mo, ..., M,_,, and (3,5, P, ..., P,_,) be tree-in-
terpretable structures. Then so is J[A : M, ..., M,_,] where A is the
function which induces the partition P, ..., P,_,.

Proof. Let # be a new symbol. We encode the element (x, i) by the
word i#x. Then the universe of the substitution becomes

M = U P,’#M,‘

i<n
and the relations are
eq = { (whu, wv) | wel, u,ve M; forsomei<n},
Pi = Pi#Mi N
R = { (Whuo, ..., whu,) | we P, ue R™, i<n},

R := { (Wokto, ..., wetus) | W € R, to,...,us € U; M; }. O
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5.4 COMBINATORIAL LEMMAS

In the remainder of this chapter we turn to the investigation of
algebraic properties of tree-interpretable structures. Throughout we
will use the following notation. ~ is the syntactic congruence of the
given structure (w.r.t. a fixed interpretation), and I is its index. Recall
that x/k is the prefix of x of length |x| — k.

We start with two combinatorial lemmas. The first one allows us
to obtain information about the words encoding an element.

Lemma 5.4.1. Let 9 be a tree-interpretable structure and ¢(x, y) an
MSO(F*)-formula such that, for every a € M, there are only finitely
many elements b € M with M & ¢(a, b). There exists a constant k < w
such that ¢(a, b) implies blk < a. In particular, |p(a, M)| € O(]al).

Proof. Let ~ be the syntactic congruence of the expansion (9, ™)
and let k := I be its index. Suppose, for a contradiction, that there are
element g, b € M such that 9 = ¢(a, b) and |b| > [anb| + I. Then
we can find words b/k < x < y < b such that x ~ y. Let u := x'y and
z:= y7'b. Then (a, b) € ¢”" implies that (a, xu'z) € ¢™ foralli < w.
Contradiction. O

The other lemma states that the class of tree-interpretable struc-
tures is closed under expansion by Skolem functions.

Lemma s5.4.2. Let 91 be tree interpretable and ¢(x, y) € MSO. There
exists a function f : M" — M satisfying

M = Ixp(x, a) - o(f(a), a) foralla e M"

such that (M, f) is tree interpretable.
Furthermore, we can choose f such that, for all sequences (a')i<y

satisfying
M = Vx(p(x a') - o(x,a™)),
there is some k < w such that f(a') = f(a*) forall i > k.

Proof. Wlo.g. assume that ¢(x, 7) := Rxy for some relation R. Let
a € M". If there is some element b € M with (b, a) € R, then we can
find such an element of length

|b] < |brna;| +1

for some i < n since, otherwise, fixing some b of minimal length there
would be words b/k < x < y < b with x ~ y and we could remove the
factor between x and y to obtain a shorter word b" with (¥', a) € R.
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Leta € M" and b € M. We define a linear order 5, on a by
a; Sp ay :iff bra; < bnay or both are equal and a; <jex ak .

Let h(b, a) be the =,-maximal element of {a,, ..., a,_, }.
For a € M", let f(a) be the element b such that, in the following
order,

(1) h(b, a) is <jex-maximal,
(2) brh(b, a) is <-minimal,
(3) (b h(b,a))™b is <p-minimal.

Since this function is MSO-definable in ¥, it follows that (901, f) is
tree interpretable.

Suppose that there exists a sequence (@');<, of parameters such
that (b, @') € Rimplies (b, @"*') € Rand the sequence b’ := f(a') is not
eventually constant. Note that b’ = b* implies b’ = b* for all i < I < k.
Hence, by considering an appropriate subsequence of (&), we may
assume that all the b’ are different and, since for each b there are only
finitely many b’ with b’/I < b/I, that

VIV  forallj<i<w.
Since b'/I < h(b', ') it follows that h(¥/, &) # h(b', a') and, hence,
WY, @) kb, a) <V forj<i<w.

By induction on [ we construct infinite sets J; € w, indices j; € Jj,
words w; € <, and symbols ¢; # d; satisfying

Ji 2 Jiss Ji <ji Wi < Wiy,
such that
wicg <h(b,a') and wid, <h(V',a') forallie], i > .

These conditions imply that h(b/k, a') # h(b¥,a') for all k, k' < n,
k # k" and every i € J, such that i > j,. As h can take only n different
values this yields the desired contradiction. We start the construction
by setting J, := w, j, = 0, and ¢, is the first letter of b° while d,, # ¢,
is arbitrary.

Given Jj, ji, ¢, and dj, we construct the next stage as follows. Since

h(b', @) nh(b, a') < b’
for all i € J;, i > ji, there is some word wy,, with

Wb, @'y nh(Y, @) = i,
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for infinitely many i € Jj, i > j;. Thus, we can find symbols ¢y, di,
such that

Wi Cia < h(b', @") and  widi, < h(V',a")

for infinitely many i € J;, i > j;. Finally, let Ji,, be the set of these
indices and ji,, the first element of Ji,,. O

5.5 PATHS IN TREE-INTERPRETABLE
TRANSITION SYSTEMS

In this section we investigate the set of paths in a fixed tree-interpret-
able transition system 9t = (M, (E;)jea, P). By replacing each edge
relation Ey = U; Wi(U; x V;) by several relations E} := W;(U; x V;)
we may assume that Ey = W), (U, x V) for regular languages U,, V),
W) € X<“. We also add the relation Ej- = (E;)™" for each edge
relation E,. Note that these operations do not affect the syntactic
congruence ~.

Remark. By Proposition 5.2.4, we could choose Uy, V), and W, such
that

(xy) € Wa(Ur x V)

iff xnyeW, (xny)'xelU, and (xny) 'ye V).
Definition 5.5.1. The base point of an edge (a, b) € W(U x V) is the
longest word w contained in W such that w'a € Uand w™'b e V.
The spine of a path is the sequence of the base points of its edges.
Definition 5.5.2.

(a) A path above cis a path g, ..., a, such that ¢ < g, for all i.

(b) A patha,,...,a, is bounded by 1 if |a;| < I for all i.

(c) A sequence a,...,a, is k-increasing if |a;| > |a;| — k for
all i <.
(d) A patha,,...,a, with spine w,, ..., w,_, is called k-normal if

the path and its spine are k-increasing and a;/k < a; foralli <.

The aim of this section is to show that every vertex can be reached
by a k-normal path. The importance of such paths stems from the
fact that, by following a k-normal path to a vertex x, one can com-
pute certain information about x like its ~-class. We start with some
immediate observations.

Lemma 5.5.3. Let ao, ..., a, be a path with spine wo, ..., Wy_,.

base point

spine

path above ¢
bounded path

k-increasing path

k-normal path
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(a) Foralli< n—1,either w; < Wiy, O W; = Wiy,.
(b) Ifwo, ..., w,_, is k-increasing then w;/k < w; for all i < j.

The next two lemmas can be used to find a k-normal path once we
have shown how to obtain a path with k-increasing spine.

Lemma 5.5.4. Let a,, a,, a, be a path with spine w,, w,. There exists a
vertex a. of length

la!] < max {|w,|, |w.|}+1
such that a,, a., a, is a path with spine w,, w,.

Proof. Wlo.g. we may assume that w, < w,. Suppose that |a,| >
|wo| + I. Since a, > w, there are prefixes w, < x < y < a, such that
(Wo)™'x ~ (W) ™y. Setting a. := x(y™"a,) we obtain a path a,, a/, a,
with |a]| < |a,]. Iterating this step sufficiently many times we obtain

a vertex of the desired length. O
Lemma 5.5.5. Let wo, ..., W,—, be a k-increasing spine of some path
from x to y. There exists a path a, . .., a, with the same spine from x

to y such that
aif(k+I1-1)<w;j  forallo<i<j<n.

Proof. By the preceding lemma we can replace each g; foro <i < n
by some a} with |a}| < max {|w;|, |w;|} + L. Since w;_,/k < w; it
follows that aj/(k + 1 —1) < w; < w; forall j > i. O

In the proofs below we frequently need to remove parts of a path
and glue the remaining pieces together. The following construction
is the main tool in this process.

Definition 5.5.6. Leta,, ..., a, be a path with spine w,, ..., w,_,. Let
x and y be words such that x < w; for all i < n, that is, there are words
Uos -+ > Uny Vo - - . » Vuy such that

a; =xu; and w; =xv;.

Shifting the path from x to y yields the sequences al,...,a, and
we, ..., w,_, where
a;:=yu; and w):=yvy;.

Lemma 5.5.7. Using the same notation as in the preceding definition,
x ~ y implies that al, . .., a., is a path with spine w,,, ..., w,

n—1*
Proof. Since
! \N—1 1 —1 /N\N—1 1 —1
wi~wi (W) 7ap =wila;, and (W) 7ay, = w;'ain

it follows that (al, a},,) € Ey iff (a;, aiv,) € Ey. O

i+1
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Now we are ready to prove the main result needed to obtain k-
normal paths.

Proposition 5.5.8. Let I be a tree-interpretable transition system
with r binary relations. There is a constant K, such that, for all paths
Ao, - . .» Ay With spine w,, ..., Wy_,, there exists a path of length m < n
from a, to a, with spine wi,, ..., w,, where

|wi| < max {|wo|, |y [} + Ko foralli<m.
Proof. We proceed in several steps.

Claim 1. If |w;| > max{|w,|, |Wy|} + I foreveryo <i<n-u,
then there exists a path al, . .., a,, from a, to a, such that |a}| < |a;|
forallo <i<n.

Since w;_,, w; < a; the prerequisites imply that w,, w,_, < w; for
all 0 < i < n - 1. Hence, either w, < w,_, or w,_, < w,. Wlo.g.
assume the latter. There exists a word x of length I such that wox < w;
forall o < i < n—1. Since |x| = I there are prefixes y < z < x with
y ~ z. The desired path is obtained by shifting the subpath a,, ..., a,,
from woz to woy.

By Claim 1 we may assume that for each subpath ay, ..., 4; there
exists some index k < i < [ with |w;| < max {|wg|, |[wi|}+ L

Claim 2. If |w,| > |wo| + rI*, then there exists a path al,...,a,,
from a, to a, with m < n.

Let w; , ..., w;, be the subsequence of base points w; such that
[wi| > |w;i| = |wo| forallo< k<.
By assumption
(Wi, | < Iwi| < |wip, | +1

for all k < t —1. Hence, t > rI and there exist indices k < [ in
{io> ..., 1} such that wy ~ w; and (ag, ary, ), (aj, a4, ) € E, for some A.
Since |wk| > |w;| there is some word x with wy = w;x and w;x < w;
forall o < i < k. Let (a}), be the path obtained from (4;); by shifting

the subpath a,,..., g from wix to w; and removing the subpath
Akt -+ -5 4]
By Claim 2 we may further assume that |w;, | — |w;| < rI* for

all i < n —1. Define K, := r3I*|2|"". The third claim concludes the
proof.

Claim 3. There exists a path a.,...,a,, from a, to a, with spine

/ 4
Wy oo Wi, Such that

|w!| < max {|w,]|, |wn|}+r3I4|Z|”2.




root
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Fix some base point wy such that |wy| is maximal, and consider
the subsequences w;_,..., w; and wj , ..., wj, of base points w;, for
i < k, and wj, for j > k, such that

[w;i| < |wi] foralli<I<k,
[wi| < |wi] forallk <I<j.

Assume that |wy| > max {|w,|, |w,|} + *I*|Z|"". By assumption,
this implies that

s> P12 () = P3|

Fori € {i,, ..., i} define f(i) € {jo, ..., ji } such that [ws;)| > |w;]| is
minimal. We colour each i € {i,, ..., is} with the tuple

x(@) = ([wil~s [Wraiy ] Wi wpcys A L)

where A and A’ are indices with (a;, a;1,) € Ex and (az(iy, ar(iy+1) € Ex.
(Note that w; < w; for all i < I < f(i).) Since

Iwrayl < |wi| +rI*

there are less than I?|X|""#* different colours. Therefore, there are
two indices i, i’ € {io, ..., i}, i < i, with y(i) = x(i'). Let wyr = w;x.
Then wix < w; for i’ <1< f(i") and the desired path is obtained from
Ao, . . ., @ by removing the subpaths a;,, . .., ar and ag(iry1, . . -, as(iy
and by shifting the subpath a;/,,, ..., as(;ry from wix to w;.

Corollary 5.5.9. Let 9 be a tree-interpretable transition system. All
elements a, b in the same component of M are connected by a path
bounded by max {|a|, |b|} + K, + L.

Proof. Let a,, ..., a, be a path from a to b whose spine wo, ..., Wy,
satisfies

[wi| < max {|wo|, [wy |} + Ko foralli<n.
Applying Lemma 5.5.4 we obtain a path a, .. ., a, from a to b with
la;| < max {|wi,|, |wi|} + I <max {|wo|, |Wpo |} + Ko + 1]

With these preparations we are able to prove the existence of k-
normal paths.

Proposition 5.5.10. Let 901 be a tree-interpretable graph. There is a
constant K such that each connected component of I contains a
vertex v, which we call its root, such that there are K-normal paths
from v to all other vertices of the component.
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Proof. Let K = K, +I —1. Choose v such that |v| is minimal. Let
o, - - ., Ay be a path from v to some other vertex, and let w,, ..., W,
be its spine. We transform it into a path with K,-increasing spine as
follows. Suppose there are indices i < j such that [w;| < [w;| - Ko.
Let k < i be the greatest index such that |wx| < |w;|. By Propo-
sition 5.5.8 there is a path b,, ..., b, from a; to a; whose spine is
bounded by |w;| + K,. By iterating this operation we obtain a path
with K,-increasing spine. Applying Lemma 5.5.5 we obtain a path
ag ..., a, fromvto a, with aj/K < w; < aj,a,, forallo <i<j<n.
It remains to prove that a_ /K = v/K < a}/K. Since |a|| > |v| it is
sufficient to show v/K < a!. Assume that [vmal| < |v| — K. Then
lal] > |v| > |[vna!| +K. Thus, there exists some b with vral < b < a!
and |b| < |vnal| +I < |v| such that (vral)7*b ~ (vnal)™al. There-
fore, (v, a) € E) implies (v, b) € E). This is a contradiction since the
connected component of v does not contain vertices of length less
than |v|. O

We conclude this section with some results bounding the length

of paths.

Lemmas.5.a1. Letk > 1. Ifa,, ..., a, is a path with k-increasing spine
Wo» - . .» Wny then its length is bounded by

n < (|was| = [wo| +k +1)| 2|

Proof. By assumption we have w;/k < w; for all i < j, i.e., there are
words x;; € X< such that w; = (w;/k)x;;. Since there are

. |Z|k+l—1
P

words of length at most k, all sets of the form {x;;, ..., X} with
m > i+ A contain some word x;; of a greater length. It follows that
|wj| > |w;| and, by induction, there is some & < A such that

[ W6 2 [wo| +|(n—1)/4].

Thus, [wue| > |wo| +[(n—1)/A] -k

and 1< (|Wpea| = [wo| +k+1)A
|Z|k+1_1
:(|Wn—1| — |wo| +k+l)ﬁ
<(|w,,_1|—|w0|+k+1)|2|k“. O

Proposition 5.5.12. Let N be a tree-interpretable transition system.
Every pair of vertices a, b in the same connected component of M is
connected by a path of length less than

(Ja| + |b] + 2K +2)| |5,
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Proof. By Proposition 5.5.10, there are K-normal paths from some
vertex v to a and to b. Their concatenation yields a path from a to b
whose length is bounded by

(Ja| + K+ ) [ 2% + (|b] + K +1)|2|%*"
according to Lemma 5.5.11. O

Lemma 5.5.13. Let I = (M, (Ex)zea, P) be a tree-interpretable tran-
sition system and x € M. If there exists a k-normal path from x to
some element in P, then we can find such a path of length less than
(I+1)| 2],

Proof. Fix some k-normal path a,,...,a, with spine w, ..., Wy
starting in a, = x, ending in a4, € P, and such that »n is minimal.
Let w;,, ..., w;, be the subsequence of those base points w; such that
[wj| > |w;]| forallj > i. By (the proof of) Lemma 5.5.11, it follows that
il — iy < | 2R

We claim that s < I. Otherwise, there would be indices j < j’
in {iy,...,is} such that w; ~ wj, and we could obtain a shorter
path by deleting the subsequence aj,,, ..., ay and shifting the path
Qjr4as . . . » @y from wyr to wj. This new path ends in some aj, ~ a,, that
is also in P. It follows that n < (s + 2)| Z|**" < (I +1)|Z|**. O

Proposition 5.5.14. Let 9 = (M, (E))jea, P) be a tree-interpretable
transition system. There is a constant L such that, for every predicate P
and all vertices x, y € P in the same connected component of I, there
exists a path from x to y every subpath of which of length L contains
some element of P.

Proof. Fix some connected component of 901. By Proposition 5.5.10,
in contains some vertex v such that there are K-normal paths from v
to every other vertex of the component. It is sufficient to construct
paths with the desired property from v to x and from v to y.

Let a,,...,a, be a K-normal path from v to x or y with spine
Wo, ..., Wny. By the preceding lemma, there exist K-normal paths
of length less than (I +1)|Z|¥*! from a; to some element z; € P, for
every i < n. If we insert these paths from g; to z; and back again into
the original path, we obtain a path where every subpath of length
L = 2(I+1)|Z|X* contains a vertex in P. O

5.6 SUBSTRUCTURES AND
BACK-AND-FORTH EQUIVALENCE

As in the previous section let ~ be the intersection of the syntactic
congruences of all languages appearing in the presentation of a tree-
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interpretable structure.

Definition5.6.1. Let 9t be astructureand n < w. For sequences a, b €
M?, not necessarily finite, we define the back-and-forth equivalence
a =, bby induction on n. @ =, bholds if the map a; + b; is a partial
isomorphism, and a %, b holds if

o for every c there exists some d such that ac =, bd, and
o for every d there exists some c such that ac =, bd.

For sets A, B € M, we write A =, B if there are enumerations
aand b of A and B, respectively, such that a =, b.

We start by deriving a sufficient condition for two tuples to be
~,-equivalent.

Definition 5.6.2. Let n < w. The n-type 7,(w) of a word w € Z<¢ is
defined by

To(w) = [w].,

Tnnn (W) = { (12 (1), T,(v)) [ w=uv}.
Let ~, € 2<“ x 2<% be the kernel of 7,,, i.e., u ~, viff 7,,(u) = 7,(v).

Lemmas.6.3. Let N be a tree-interpretable structure and let a, beM"
be tuples of the form a; = ux; and b; = vx; for i < n. If u ~ v then the
map a — b is a partial isomorphism.

Proof. Suppose that a € R for some relation R. Note that the branch-
ing structures of @ and b are isomorphic. To each edge e of this
branching structure we can associate a regular language W, as in
Proposition 5.2.4. W.l.o.g. we may assume that, if e and e’ are edges
with a common first vertex and w € W,, w' € W, words, then
wnw = ¢ Let e = (¢ [a) be the edge at the root. There exists a
word w € W, such that u < w, ie, w = uy and b; = vyz; for some
¥, z; € X< Since vy ~ uy = w this implies that vy € W, and, hence,
beR. O

Corollary 5.6.4. Let 9 be a tree-interpretable structure and u, v €
Z<“ Ifu ~ v then the substructures induced by uX<* and vZ<“ are
isomorphic.

Proposition 5.6.5. Let I be a tree-interpretable structure. Let a be an
enumeration of M 0 uX<“ and b the corresponding one of M N vZ<¢,
that is, v7'b; = u™'a;. If u ~, vthena =, b.

Proof. The case n = o is the preceding corollary. For n > o we verify
the forth condition by induction on n. The back condition follows by
symmetry. Suppose that @ ~, b, and fix an arbitrary element c € M.

back-and-forth equivalence
az, b

n-type T,(w)

U~y V
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We have to find some d such that ac ~,_, bd. Then, by induction
hypothesis, it follows that ac =,_, bd.

If u < cthen ¢ = a; for some i and we can set d := b;. Otherwise, let
Uo == uncand u, := (u,)"u. Since u ~, v, there exists a factorisation
v = vov, with vy ~,_, 1, and v, ~,_, u,. Thus, we can choose

d = v, (ugy'c). O

Given a tree-interpretable structure 90t we would like to infer in-
formation about the encoding of elements by words. To this end, we
choose the following approach: fixing a word w € 2<“ we consider
the class of substructures A of 9t with [TJA = w. The next result
constitutes the main tool to derive structural properties of these sub-
structures.

Proposition 5.6.6. Let 90t be a tree-interpretable structure and u € X<°.
Let IC be a class of substructures of 9 which is ~,-closed for some n,
ie.,

A=z, B implies AeK < Bek.

Up to isomorphism, M| ,s<o has only finitely many different substruc-
tures in K if and only if there is a constant k such that, for every word
w = u, there are at most k nonisomorphic substructures A € K with
w=[]B.

Proof. (=) is trivial. For (<) suppose there are infinitely many non-
isomorphic substructures A; € K, i < w, with A; € uX<®. Set w; :=
[MA;. There exists an infinite set ] € w of indices such that w; ~,,., w;
foralli, j € J. Choose k+1different indices i, . . ., ix. € J. For simplicity,
we may assume that these are o, ..., k. Thus, Ao, ..., Ay induce k + 1
nonisomorphic substructures of M with wy ~p4; -+ ~ppy Wi

For i < k, define the map p; : w;Z<“ - w,Z<“ by

pi(x) = wo (w; %),

and let B; := p;(A;) be the image of A; under p;. Since all the p; are
partial isomorphisms, we have B; 2 A; and, thus, B,, ..., By induce
k + 1 nonisomorphic substructures of 91 with the same infimum
Wo = [B; = u. This yields the desired contradiction, since B; =, A;
implies that all the B; are contained in K. O

5.7 TREE-INTERPRETABLE GRAPHS

We apply the results of the previous section to study graphs. First, we
count the number of nonisomorphic connected components.
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Lemma 5.7.1. Let & be a tree-interpretable undirected graph. For all
words w € <%, there are

(a) at most I|X| +1 connected components C with w =[C and

(b) atmost I*| 2| +1strongly connected components C withw =[] C.

Proof. (a) At most one component contains w. Let m := I|X| and
suppose there are m+1components C,, . .., C,, not containing w with
w =[]C,;fori < m. Fixelements a;, b; € C; with w¢; < a; and wd; < b;
for some ¢; # d;. Since each C; is connected we can choose some path
from a; to b;. Each such path must contain some edge (4}, b}) such
that a} = wc;x; and b} = we;y; for some e; # ¢; and words x;, y; € Z<¢.
Since m+1 > I|Z| there are indices i # j with ¢; = ¢; and x; ~ x;. Thus,
(aj, b}) € E implies (a;, b;) € E. Therefore, the components C; and C;
are connected and, hence, identical. Contradiction.

(b) Let m := I*|X| and suppose there are m + 1 components
Co, ...> Cyy not containing w with w = [C;. In the same way as
above we can find edges (a;, b;) and (b}, a}), for i < I*, with a;, 4],
b;, b} € C; such that

! 4 ! w4
a; = weixi, a; =wex;, bi=wdy;, b;=wdy;.

Since m +1 > I*|X|, there are indices i # j with ¢; = Cj» Xi ~ Xj,
and x; ~ x](. Consequently, we have edges (a;, bj) and (b]’-, a’), and
C; and C; are connected. Contradiction. OJ

Proposition 5.7.2. A tree-interpretable graph & has only finitely many
nonisomorphic (a) connected components and (b) strongly connected
components.

Proof. (a) Let IC be the class of connected components. By the pre-
ceding lemma and Proposition 5.6.6, it is sufficient to show that /C is
= -closed. Let B, C ¢ A with B 2, C. Then B is connected if and only
if C is. Furthermore, a connected set X is maximal iff there is no ele-
ment a € M\ X thatis connected to some vertex b € X. Consequently,
B =, Cimplies that B is a maximal connected component if and only
if C is one. (b) follows in the same way. O

In Section 2.4 we have seen that the parameter §(®) which bounds
the size of complete bipartite subgraphs plays an important role
when studying graphs of bounded clique width. In the case of tree-
interpretable graphs Barthelmann [4] has shown that, if S(®) is
infinite, then we can find subgraphs of the form K, », or Ky, . for
arbitrarily large n < N,. But note that, nevertheless, there still might
be no subgraph Ky_ x, as the counterexample (w, <) shows.

Propositions.7.3. Let & = (V, E) be a tree-interpretable graph. If there
are subgraphs of the form K, , for arbitrary large finite m, n then there
are subgraphs of the form Ky, n or K, x, for all n < X,,.
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Proof. Wlo.g. we may assume that the alphabet ¥ = [2] is binary.
A complete bipartite subgraph of & is given by two sets X, Y ¢ V
with X x Y € E. We will represent such a subgraph by the pair (X, Y)
which we will write as X x Y. (Do not confuse the subgraph X x Y with
the cartesian product of X and Y. In particular, we have X x & # X' x &
for X # X'.) Given a class C of bipartite subgraphs and a set U < 2<
we define the restriction of C to U by

Clu={(XnU)x(YnU) |XxYeC}.

Let JC be the class of finite bipartite subgraphs X x Y such that there
is no subgraph X’ x Y/ with X x Y c X' x Y’ C E.

We have to show that, if there are infinitely many nonisomorphic
graphs in K, then & does contain the subgraphs K, x, or Ky, , for
arbitrarily large n. We will construct the following sequences:

(Wi)i<w of words w; € 2<%,

(ci)icw of symbols ¢; € [2],

(Up)i<w of subsets U; € 2%,

(A;, Bj)icw of subsets A;, B; € U;,

(Ki)icw of classes K; € K|y, ,

(Z1)i<w of classes of subgraphs X x Y ¢ U; x U;.

We will ensure that, for all i < w,
(1) wic; < wiy, and U; € w;c;2<%,
(2) Kin € Ki|u,,, contains graphs of unbounded size,
(3) @+ Ziy, € Ki|w where W := U; \ wiy,¢i4,2°%,
(4) A;jxYCEand X xB;CEforall X xY € Z,,
(5) XxYCcA;xB;forall X xY e K;,,,

Since X #+ JorY + @forall X x Y € Z,,i < w, there exists,
for every n < w, an index m and subgraphs X; x Y; € Z; fori < m
such that X := U, X; or Y := U,.,, Y; is of size at least n. Note that
(5) implies that the sets A; and B; are infinite. Hence, it follows that

Kun, SXxA,CE or Kw,,n ©Bn xYCE.
It remains to describe the construction. For X x Y € K let
HXY) = (W], wXO )~ w' X~y W'Y~ WY )

where w :=(Xu Y) and Z¢ := Z n wc2=* for Z € {X, Y}. Note that
the range of ¢ is finite.

The construction proceeds in several steps. In order to avoid the
special case of i = o in every definition below, we set w_, := ¢, c_, = ¢,
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U_, := 2% and K_, := K. Suppose that K;_, and U;_, have already
been defined.

(a) By Proposition 5.6.6 and Corollary 5.6.4, we can choose w; €
Ui, such that there are infinitely many nonisomorphic X x Y € K;_,
withw; =M XUY.

(b) There exists an infinite subclass C € KC;_, containing subgraphs
X x Y of unbounded size such that, forall X x Y, X' x Y’ € C,

X, Y € wp2~® and HXY)=t(X,Y').

Suppose that #(X, Y) = ([w;], A°, A", B°, B").

(c) There existssome ¢; € [2] such that there are subgraphs XxY € C
of unbounded size with X, Y € w;c;2<“. Set U; = w;c;2<%, A; = A9,
and B; := B¢.

(d) Let K; := Cy, and Z; := C|w where W = Ui, \ wic;2<“. [

5.8 TREE-INTERPRETABLE
PARTIAL ORDERS

We begin our investigation of tree-interpretable partial orders by
looking at chains. The following two lemmas bound the number of,
respectively, intervals of a chain and of pairwise incomparable chains
that have the same infimum.

Lemma 5.8.1. Let M = (M, <, R) be a tree-interpretable structure
partially ordered by <. For every chain C € M, every family J of
pairwise disjoint nonempty intervals ] < C, and every word w € X<
there are at most I +1 intervals | € J withw =[1].

Proof. There is at most one interval ] € J with w € J. Suppose there
are I +1intervals J,,...,J; € J not containing w with w = [1]; for
i < I. Order the J; such that i < jimpliesa < b for a € J; and b € J;. By
assumption, we can choose elements a;, b; € J;, for i < I, with a; < b;
such that a; = we;x; and b; = wd,y; for some ¢;, d; € Z, ¢; # d;, and
xi, yi € 2=¢. There are indices i < j with ¢;x; ~ ¢jx;. Therefore, a; < b;
implies a; < b;. Contradiction. O

Lemma5.8.2. Let M = (M, <, R) be a tree-interpretable partial order.
For every family J of pairwise incomparable nonempty intervals and
every word w € Z<“ there are at most I +1intervals | € J withw =[1].

Proof. There is at most one interval ] € J with w € J. Suppose there
are I +1intervals J,,...,J; € J not containing w with w = [1]J; for
i < I. We choose elements a;, b; € J;, for i < I, with a; < b; such that
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a; = weix; and b; = wd,;y; for symbols ¢; # d; and words x;, y; € Z<¢.
Again, there are indices i # j with ¢;x; ~ ¢;x;. Hence, a; < b; implies
aj < b;. But J; and J; are incomparable. Contradiction. O

One easy application of Proposition 5.6.6 is the following result.

Proposition 5.8.3. Let M = (M, <, P) be a tree-interpretable coloured
linear order. Define a ~ b iff the interval [a, b] of M is dense. Up to
isomorphism there are only finitely many ~-classes of .

Proof. Let K be the set of ~-classes. Each B € K is either a singleton
or a dense linear order. Since ~ can be defined by

x~y iff VeV (x<z<zZ' <y—>Ju(z<u<z)),

which has quantifier rank 3, it follows that B =, C implies B € I iff
C € K. Therefore, we can apply Proposition 5.6.6 and, by Lemma 5.8.1,
the claim follows. O

Next we try to develop a normal form for encodings of tree-
interpretable partial orders.

Lemma 5.8.4. Let (M, <) be a tree-interpretable partial order. For
X S Mandw e X< let X,, := X nwX<. For every chain C € M and
every word w € X< such that C N wX* # & there is some ¢ € X such
that C,,. contains an upper bound for the set U{ Cud | d+c }

Proof. Otherwise, there exists an increasing subsequence (d;) <, of C
with a; M a;, = w since for each a; € C,, there is some a;, € C,q4,
for d # ¢, with a; < a;4,. Since X is finite there is some ¢ € X such that
there are infinitely many a; € C,,.. There exist indices i < k such that
wa; ~ wag. By construction, k > i + 1. a; M a;, = dx Ma;, and
w'a; ~ way implies that a; < a4, iff a < a;4,. Contradiction. []

infix order Definition 5.8.5. For x, y € 2<%, we define the infix order <; by
<

- x<y  ciff a1 ex .
We obtain the following normal form for tree-interpretable par-

tially ordered structures. This result will be crucial for the characteri-
sation of tree-interpretable linear orders below.

Lemma 5.8.6. Let 9 = (M, <, R) be a tree-interpretable structure
partially ordered by <. We can construct a tree-interpretable structure
N = M with universe N € 2= such that its order is a subset of <;.

Proof. Let M € 2<“. W.l.o.g. we may assume that ¥ = [2]. We will
encode each element x = u, -+~ u,, € M by some word of the form

X = (bo: ios uo) (bm’ Ims um)
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over the alphabet = := [2] x [k] x Z for some k < w. Once this is done
the symbols of £ can be encoded in binary without changing their
ordering. The additional components of % are defined by

b o ifug-u_, >x,
1= .
1 otherwise,

and i == max{i+1 | thereis some word z such that

(bO) io: uo) (bl—l) il—l) ul—l)(bb i) 1- UZ)Z

< (bos doy o)+ (b iy Um) } -
By induction on [ and ij, one can show that the above definition
is sound. Lemma 5.8.1 implies that there exists a common upper

bound k for the labels ;.
The choice of b, . . ., by, ensures that, for all words w, x, y,

w<w(bicx = b=1,

w(bic)x<w = b=o,
and the second labelling implies that
w(b i, c)x <w(bjd)y = i<j,

for ¢ # d. Thus, using a suitable binary encoding of = the order < is
contained in the infix ordering.

Clearly, all relations of 90t are still tree interpretable in this encoding.
It only remains to prove that the set of such encodings is regular. The
formula

(xy) =Iw\/(y=wcAw<x)

ceX

states, for x = uo --- Uy, and y = u, -~ 4y, that by = 1.
By induction on i, we construct an MSO-formula ¢;(x) which states
that the last symbol of the labelling i, --- i,, should be i.

@i(x) =3Iw \/Z(x =weA (Vz< x)(\/ wd<z— \/goj(z))

d#c j<i

AQBz< x)(\/ wd <z A ¢i—1(z)))

d+c

where we set ¢_, (x) := true. Let 7 be the projection from I' to X. x is
a correctly encoded word if and only if

(Vy < x)(v(y) A 9(mx, 1))
holds where

() = V(p:i(m) A3w \/ y=w(bic)).

i<k b,c<2 D
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Corollary 5.8.7. Let M be a linearly ordered tree-interpretable struc-
ture. There exists a tree-interpretable structure N = I with universe
N € 259 such that its order is <; | N.

Corollary 5.8.8. Every tree-interpretable partial order can be com-
pleted to a tree-interpretable linear order.

Proof. Let (M, <) be a tree-interpretable partial order. By the preced-
ing lemma we can assume that < C <;. Thus (M, <;| ) is the desired
completion. |

Remark. The proofs of Lemmas 5.8.1 and 5.8.6 can easily be gener-
alised to other levels of the Caucal hierarchy and to arbitrary partial
orders of finite partition width.

For trees we can obtain a similar, but slightly weaker, normal form.

Lemma 5.8.9. Let (T, <) be a tree-interpretable tree with T < N5“.
There exists an interpretation T : (T, <) <yso %, such that I(a) £
Z(b) implies a # b for all a, b in the domain of L.

Proof. Let : ([2] x[2])<” — [2]“ be the projection onto the first co-
ordinate where we identify [2] x[2] with the set {00, 01, 10, 11} € [2]<“.
Fix an arbitrary injective interpretation J = (3, ¢<) : (T, <) <mso0 Ta
and consider T := 7' J*(T). Let J' = (', ¢.) be the interpreta-
tion with J'(x) = Jn(x) for x € T'. We construct a formula y(x)
such that for every a € rng J' there exists exactly one x € J'*(a)
satisfying y. The second component of each word x € T” is used to sat-
isfy the additional condition required above. If x = (a,, b, ) -+ (a1, by)
then w(x) states that

bi=1 it J(ao-a;) £ T(aoa).

In particular, this implies that b; = o. The interpretation Z :=
(6" Ay, @) has the desired property. O

5.8.1 LINEAR ORDERS

Applying Lemma 5.8.6 we can characterise tree-interpretable linear
orders by systems of equations.

Proposition 5.8.10. A coloured linear order (M, <, P) is tree interpret-
able if and only if it is the canonical solution of a finite system of
equations of the form

x,~=xj+xk or X; =¢,

where + denotes ordered sum and c is a chain of length 1 with colour c.
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Proof. (=) Any such system is a special form of a system of equations
of VR-terms. The solutions of those are tree interpretable.

(<) For w € 2<%, let A,, := M n wXZ<“. By Lemma 5.8.6 we can
assume that < = <;| . It follows that

A< Ayo+c+A,, ifweMiscolouredc,
Y Avo + Ay ifweM.

This infinite system of equations can be reduced to a finite one since
v ~, wimplies (A,, <) 2 (A, <). O

Another way to characterise the tree-interpretable linear orders
is via closure under certain operations. It immediately follows from
the preceding proposition that the class of tree-interpretable linear
orders is closed under ordered sums and products.

Corollary 5.8.11. Let (&,,<) and (§,,<) be tree-interpretable linear
orders. Then &, + &, and &, - &, are tree interpretable as well.

Proof. Given systems of equations for &, and £, we can construct
systems for &, + &, and &, - . O

Another operation tree-interpretable linear orders are closed under
are dense shuffles.

Definition 5.8.12. Let M, ..., M, be linear orders. The shuffle of
Mo, ..., M, is the linear ordering defined by the equations

Xo =% + Mo + X1,

Xpoy = X + My + X,

Xp = Xo + M, +x,.

It turns out that these operations are sufficient to construct every
tree-interpretable linear order.

Theorem 5.8.13. A coloured linear order is tree interpretable if and
only if it can be obtained from singletons by the operations of ordered
sum, right-multiplication by w and —w, and shuffle.

Proof. Since tree-interpretable structures are closed under these op-
erations all such orders are tree interpretable. For the other direction
consider a system of equations of the form x; = x; + x; or x; = ¢
defining a tree-interpretable order 9.

We define the dependency preorder = of the variables as follows.
Construct a graph with vertices x,, ..., X,—, and, for each equation
X; = x +x;, add edges x; — xx and x; — x;. Then we set x; 2 xy if this
graph contains a path from x; to x.

shuffle
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We prove the claim by induction on the number of equivalence
classes induced by 2. Suppose that X := {x,, ..., x;,} is the maximal
S-class, and let Y = {y,,..., yn} be the set of constants and other
variables. By induction hypothesis, the orders that are the value of
variables in Y can be obtained by finitely many applications of the
above operations. To construct a term yielding 9T we consider two
cases.

(1) Suppose that all equations are of the form x = y+x" orx = x" +y
for x' € X and y € Y. By repeatedly replacing the variables x” € X by
their definitions, we finally obtain equations of the form

xX=z+x+27
where z and z’ are sums of variables in Y. Thus,
x=zw+7 (~w).

(2) Otherwise there are equations of the form x; = xj + x;. Elim-
inate all equations with only one x” € X on the right-hand side by
replacing x’ by its definition. Then all equations are of the form

x,~=z+xk+z'+xl+z"

where z, z/, and 2" are sums of variables in Y. By introducing a new
variable y we can rewrite this equation as

Xi=Z+X+Y,
y=72+x+2",

and by replacing x; in the latter equation by its definition we obtain
a system of equations of the form

Xi=z+x+x+2 .
For each such equation we define orders A;, y;, p; by
/1,' =zZ+ Ak ,

pi=pi+2,
and A +pi+pi=xi.

The equations for A; and p; are of the form above. Their solutions are
Ai= (20 + +2)w, and  pi=(z, ++z))(-w).
The y; can equivalently be defined by
Wi =kt Pt h

Let ¢; be the ordering obtained from y; by replacing the sum p +4; in
each such equation by a constant c;. Then y; can be obtained from ¢;
by substituting the cx; by px +A;. Since the ; are dense orders without
end points each y; denotes the shuffle of the orders py + A;. O
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The following theorem summarises the various characterisations
we have obtained.

Theorem 5.8.14. Let M be a coloured linear order. The following
statements are equivalent:

(1) M is tree interpretable.

(2) M is the solution of a system of equations of the form x; = x +x;
orxi==c.

(3) 9 can be obtained from singletons by ordered sum, right-multi-
plication by w and —w, and shuffle.

5.8.2 WELL-ORDERS

After having given a complete characterisation of all tree-interpreta-
ble linear orders we present some further results for the simpler case
of well-orders.

Lemma 5.8.15. Let I be a well-ordered tree-interpretable structure.
Then |a,| € O(n) for n < w where a, is the n-th element of M.

Proof. Since the successor function is definable we have |a + 1| <
|a| + I. Therefore, |a,| € O(n).

To show the other bound consider some element a,,. Lemma 5.4.1
implies that there exists a constant k such that a/k < ay for every
a < a,. Therefore, there are at most |X|**' - |a, | such elements and
we have |a, | > n|Z|~* € Q(n). O

We have seen that every unary-automatic structure is tree inter-
pretable. The following result states the converse in the case of well-
ordered structures.

Proposition 5.8.16. Let 9 be well-ordered of order type a < w>. M is
tree interpretable if and only if it is unary automatic.

Proof. Since all unary-automatic structures are tree interpretable it
remains to show the other direction. Let 91 be well-ordered or order-
type & where w(n — 1) < a < wn. For i < n, we denote the elements a
of M with wi < a < w(i+1) thatare of length by a] , ..., a] ,, where,
according to Lemma 5.4.1, m is bounded by some constant k. Further,
werequirethata) ,..., a}, aresortedlexicographically. Applying the
homomorphism o + 0% and 1 + 1" we can assume that M contains
only elements whose length is a multiple of nk. To construct a unary
presentation of 97 we encode the element a; ,, . by the word 1Rk

It remains to define, for each relation R, a formula ¢g such that

(Tz, 5 el) = ¢R(1nklo+kio+jo, . 1nkl,+ki,+j,)
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1 io ir
it (apy o) €R.

Since all tree-interpretable structures are automatic there is a for-
mula yr which defines R in (%,, <, el). It can be used to define gg
if we are able to decode 1"¥*%% into a' , .. Given a word 1"**ki*/ we
search for all elements a;; ,...,ay,, . and pick the (ki + j)-th one.
Let §(x) be the formula defining the universe. We set

9i(x) =\/|x| = (ki+j) (mod nk)
j<k
1:(y) = (FTz<y)Vu<z2)I(u<v<z)
and  x(xy) = 0(y) A |x| —nk <[yl < |x| A A@i(x) < n:()
<n
which states that y is one of the a;kl,].,, j' <k, if x is the encoding

1"k+ki%j For simplicity, consider the case of a unary relation R only.
We can define R by

pr(x) =
\V Elxo---xm_l(El:'”yx(x, P) AN x(xi) A\ Xi <iex X
r:ér;c i<m i<j

AV (Ixl =[x +Ki+j A yr(x)).
i<n
jem O
We conclude this section with a characterisation of all tree-inter-
pretable well-orders. These results already follow from the characteri-
sation of tree-interpretable linear orders above. But, since the present
case is much simpler, we also give a direct proof.

Proposition 5.8.17. (w*, <) is not tree interpretable.

Proof. Assume otherwise. By Proposition 5.8.10, there exists a finite
system of equations of the form

Xi = Xp + X or X =1.

Let (&;, <) be the order that the canonical solution assigns to x;. W.l.o.g.
we can assume that all the ; are nonempty. Since each (§;, <) is an
interval of (w”, <) it does not contain an infinite descending chain
and, hence, all the §; are ordinals. Consider the equation x; = xj+x; for
those x; with & = w®. By assumption, & # o and, thus, & < & = w®.
On the other hand, & + & = w® which implies §; = w®. Thus, we can
assume that / = i. The equation x; = xi + x; has the solution &; = & w.
But &w = w® implies & = w®. Contradiction. O

Theorem 5.8.18. Let a be an ordinal. (a, <) is tree interpretable if and
only if a < w®.
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5.9 TREE-INTERPRETABLE GROUPS

The investigation of infinite structures with finite presentations has
its origins in group theory. As this field remains an important area
for the application of finitely presented structures it is natural to ask
which groups are tree interpretable.

There are two different ways to represent finitely generated groups
as structures. Either multiplication is treated as binary function or
one just includes several unary functions denoting the multiplication
by a generator. We have already seen in Corollary 3.5.8 that, if the
first version is chosen, no infinite group is of finite partition width
and, consequently, no such group is tree interpretable.

Lemma 5.9.1. A group (G, ") is tree interpretable if and only if G is
finite.

Example. (Z,+) is not tree interpretable.

The second type of presentation is called the Cayley graph of a
group. Given a set S € G of semigroup generators, the Cayley graph
of & is the structure

I(®,8) = (G, (f.)ees)

where f,(x) := xe. Since I'(8, S) <yso ®, the requirement that the
Cayley graph is tree interpretable is weaker than the one that & < T,.
It turns out that we indeed obtain a larger class of groups using this
representations. Thus we will say that a finitely generated group is
tree interpretable iff its Cayley graph is so.

Example. Let & be the free group of two generators a and b. Its Cay-
ley graph is tree interpretable. Let S := {a, b, a™, b™'}. The universe
consists of all words over S which are reduced, that is, they do not
contain any of the following factors:

aa’’, a‘a, bb', b'b.

The multiplication by a takes words w not ending in a™* to wa and
words of the form w = ua™ to u. Hence, we can write f, in the form

fa=(exa)uS(axaa)uS¥(a xe)
US(bxba) uS™“(b™" xb'a).

The other generators can be defined similarly. It follows that I'(&, S) is
tree interpretable.

We will show that the class of tree-interpretable groups coin-
cides with the class of context-free groups introduced by Muller
and Schupp [56, 57].

Cayley graph
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Definition 5.9.2. A group & is context-free if there exists a set S € G
of semigroup generators such that the language {w € S | w =1}
is context-free.

Lemma 5.9.3. A group is tree interpretable if and only if it is context-

free.

Proof. Muller and Schupp [56, 57] have shown that a group is context-
free if and only if its Cayley graph is isomorphic to the configuration
graph of a pushdown automaton. This is equivalent to being iso-
morphic to a structure of the form (V, (E;),) where V is a regular
language and each relation E, is of the form

E, = U Wi({ui} x {vi}).

Clearly, each such structure is tree interpretable. For the converse,
note that, if

fa= U Wi(U; x Vy)

is a function, then every set V; must be a singleton as, otherwise,
we would have f,(wu) = wv and f,(wu) = wv' for words w € W,,
u € U;, and v, v/ € V; with v # v/, Furthermore, since f, is injective,
we have | U;| = 1 by the same reasoning. O

The class of context-free groups is well investigated and has several
characterisations.

Theorem 5.9.4. Let & be a finitely generated group. The following
statements are equivalent:

(1) & is context-free.
(2) & is virtually free.
(3) I'(®,S) has only finitely many nonisomorphic ends.

(4) I'(®,8) isisomorphic to the configuration graph of a pushdown
automaton.

(5) I'(®,S) is k-triangulable for some finite x.
(6) I'(8,S) is tree interpretable.
(7) I'(&,5) eC.
(8) I'(®,S) has finite tree width.
(9) I'(&,S) has finite partition width.
(10) The MSO-theory of I'(®, S) is decidable.



5.9 Tree-interpretable groups « 177

The equivalence of (1) - (4) was shown by Muller and Schupp
in [56, 57], while characterisations (8) and (10) are from Kuske
and Lohrey [50]. The equivalence of (8) and (9) follows from The-
orem 2.4.6. Finally, (6) = (7) = (9). We will prove a special case of
the equivalence of (6) and (8).

Theorem 5.9.5 (Ly [51]). A finitely generated group & is context-free
if and only if I'(®, S) has a tree decomposition (F,), of finite width
where every component F,, is connected.

Proof. (=) By results of Muller and Schupp [56, 57], there exists a set
S ¢ G of semigroup generators and some prefix closed set V ¢ §<¢
such that I'(8, S) = (V; (f.)ees) and each function f; is of the form

fo=UWi{ui} x {vi}).

i<n
The family (F,,),, with F,, := wS/ N V is a tree decomposition since

lul, [fe()| < lunfe(u)| +1,

implies that u, f,(u) € Fyqf, ) for all u € 25°. Furthermore, each
component F,, is connected since the universe V is prefix closed.
(«<=) Suppose there exists a tree decomposition (F, ), with |F, | < k.
We will construct a k-triangulation of I'(&, S). Let aq, ..., a,, be a
cycle where each edge is either an actual edge of I'(®, S) or represents
a path of length at most k. Let T be the subtree of the decomposition
which contains edges of the cycle. The triangulation is constructed
by induction on the size of T. Consider a leaf F, of T containing
Qj> - .., Aiym but neither a;_;, nor a;,.,. Note that any two vertices
in F, are connected by a path of length at most k. If m = 1 the edge
(ai, aiy,) is also contained in the predecessor of F, which, thus, can
be deleted from T. Otherwise, add a path of length at most k from g;
to a;.« to the cycle. By induction hypothesis there is a k-triangulation
of the cycle a,, ..., aj, itk - - . » a,. By adding paths, say, from g; to
each a;,;, for j < k, it can be completed to a triangulation of the whole
cycle. O
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6 AXIOMATISATIONS

ACH TREE-INTERPRETABLE STRUCTURE can be encoded by
E a finite amount of information, namely, by an MSO-interpretation
in the binary tree. Therefore, it should not be surprising that every
such structure can be axiomatised in a suitable logic. In the present
chapter we will show that each tree-interpretable structure 901 is
finitely GSO(3*)-axiomatisable, i.e., there is a GSO(3*)-sentence yon
such that 91 = oy if and only if 9 = M.

Actually, we will prove the slightly stronger statement that, for
each tree-interpretable structure 9, there is a colouring y of the
guarded tuples such that the coloured structure (901, y) is MSO(3*)-
axiomatisable. That is, the axiom consists of a sequence of existen-
tial non-monadic second-order quantifiers followed by an MSO(3*)-
formula.

Roughly, the proof consists in defining a forest (§, x) in (901, x) in
such a way that the original structure (9, y) can be reconstructed
from (3, x). Then the theorem follows from the corresponding, but
much simpler, result for forests.

6.1 THE CONGRUENCE COLOURING

If x is a word, we denote by sufy x the suffix of x of length k. The
axiomatisation uses colourings of elements and of pairs of elements
that are of the following form:

Definition 6.1.1. (a) Let ~ € X<“ x £<“ be a congruence of finite
index and let k € N. The (~, k)-congruence colouring y% maps words
x € 2<% to the pair

2E(x) = ([x/K]w, sufyx)

and pairs x, y € Z<“ to

K6 y) = (w2, xS(w™))
where w = xMy.

(b) A (&', k")-colouring x’ refines the (~, k)-colouring y if ' € »
and k' > k. We denote this fact by ¥ > y. The common refine-
ment of the (=, k, )-colouring x, and the (=, k, )-colouring y, is the
(mo Nm,;, max {k,, k, })-colouring denoted by y, U y;.
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Definition 6.1.2. The y-expansion (M, y) of M expands N by unary
and binary relations for each colour class where the binary colour
classes consists only of pairs (x, y) which are guarded.

The restriction to guarded pairs is essential since GSO allows only
quantification over relations of this form. Below we frequently will
need to obtain the value y(x, y) for pairs (x, y) which are not guarded.
These values must be computed explicitly from available data. This is
where the k-normal paths of Section 5.5 come into play.

Lemma 6.1.3. Let x; > Xo.

(a) There exists a function f with y, = f o x,.

(b) (M, x,) is FO-interpretable in (M, x,).

Lemma 6.1.4. Let 9 be a tree-interpretable structure, ~ a congruence
of finite index, and k a constant. The yX-expansion (I, xX) of M is
also tree interpretable.

Proof. Itissufficient to note that, since ~ is of finite index, each ~-class
forms a regular language. O

We say that a set P of vertices codes a path between x and y if every
element of P except for x and y is connected to exactly two other
elements in P whereas x and y are connected to exactly one such
element. Clearly, not every path can be coded in this way. Fortunately,
for our purposes it is sufficient that, if there exists a k-normal path
between two vertices, then we can obtain a codable k-normal path
between them by removing some vertices.

Lemma 6.1.5. For every number k and each colour c there exists an
MSO-formula ¢.(B x, y) such that, for all graphs ® and all (~, k)-con-
gruence colourings y we have (8, x) & ¢.(B x, y) if and only if P codes
a k-normal path from x to y and x((x N y)'y) = c.

Proof. We label the elements z € P by the (», k")-colour of (x/k)™'z
for some k < k" < 2k. Since x/k < y we can compute y((x ny)™'y)
from y(x) and the label of y. To decide whether a given labelling is
correct note that, if (z,2’) is an edge of the path and z is labelled
([u], w), then the label of z" consists of the suffix w’ of z’ of length
min{2k, |w| + |2'| — |z|} and the ~-class of (x/k)™'z'(w')™" both of
which can be calculated from the colour of z. Note that, since the
path is k-normal, we can ensure that the length of the stored suffix is
at least 2k — k = k. |
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6.2 FORESTS

We start slowly by showing that forests are finitely axiomatisable.
We regard forests as partial orders such that the elements below any
given one form a finite linear order. For any partial order (A4, <) let
Ix={zeA|z<x}andtx:={z€eA|x<z}.

Lemma 6.2.1. Let T = (T, <) be a tree-interpretable forest and x., the
(~, I)-congruence colouring. y'(x) = xL(y) implies that 1x = 1y.

Proof. For each b € T, there are only finitely many a < b. By
Lemma 5.4.1, it follows that a < b implies a/I < b. Therefore,
ta € (a/I)2<“, and the function f : (x/I)2Z<“ — (y/I)Z<“ mapping
(x/I)z to (y/I)z is the desired isomorphism. O

Theorem 6.2.2. If T = (T, <) is a tree-interpretable forest and y > x.
then the structure (%, ) is finitely FO(3*)-axiomatisable.

Proof. Let T, € T be the set of minimal elements, and we denote
by S(x) the set of immediate successors of x € T. For X < T let u(X)
be the function which maps each colour ¢ to the number of elements
x € X coloured c.

We claim that a structure X := (X, <, ¥’) is isomorphic to (%, y) if
and only if

(1) <is a partial order such that, for all x € X, the set |x is either
empty or it forms a finite linear order,

(2) u(Xo) = u(T,) where X, c X is the set of minimal elements,
and

(3) u(S(x)) = u(S(u)) forall x € X and u € T with y'(x) = y(u).

Clearly, all these conditions can be expressed in FO(3*).

To prove the nontrivial direction we construct an isomorphism
h : X — T given some order X that satisfies the above conditions.
Note that (1) implies that X is a forest. Let ht(x) := |lx|. We construct
h as the limit of partial isomorphisms

hi:{xeX|ht(x)<i}>{ueT|ht(u)<i}, i<w,

as follows.

(i = 0) Since u(X,) = u(T,) there is a bijection h, : X, — T, that
preserves the colouring.

(i > o) For each x € X with ht(x) = i — 1 we choose a colour
preserving bijection g, : S(x) - S(h;_,x). Note that (3) ensures its
existence. /; is the extension of h;_, by all the g,.

Using the preceding lemma it is easy to show that & is well-defined
and indeed an isomorphism. O

1x, tx
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6.3 PARTIAL ORDERS

The next step consists in extending the result to tree-interpretable
partial orders 90t := (M, <) for which there is a constant n € N such
that x < y implies x/n < y/n for all x, y € M. To do so we have to
define a forest in 91. When speaking of paths we always consider
undirected paths in this section, that is, we ignore the direction of
the edges.

Definition 6.3.1. Letx £ yiff x/n < y/nand there exists an undirected
<-path z,, ..., zy from x to y with x/n < z;/n for all i < m. Further,
definex=yiffxc yand yc x.

Lemma 6.3.2. (M, E)/=is a forest.

Proof. It is sufficient to show that |[x]= is a linear order for all [x]= €
M/=. Suppose that [y]=, [z]z E [x]=. Then y/n,z/n < x/n and, by
symmetry, we may assume that y/n < z/n. We claim that [y]= E [z]=.

By definition, there are undirected <-paths y,, ..., y; from y to x

and z,, ..., z, from z to x such that y/n < y;/n and z/n < z;/n for
all i. y/n < z/n implies y/n < z;/n and the path yo, ..., ¥, Zm—, - - .» Zo
leading from y to z witnesses that y £ z. O

Using the result of the previous section we first prove that (M, &, x)
is axiomatisable by defining a suitable copy of (M, £)/= in it.

Lemma 6.3.3. The subset M, € M which consists of the lexicographi-
cally minimal elements of each =-class is MSO-definable in (M, 5, y").

Proof. Since x = y implies x/n = y/n, one can determine whether
x <jex y by looking at suf,, x and suf,, y. This information is contained
in the colouring y”. O

Proposition 6.3.4. There is a congruence-colouring x, such that the
order (M, 5, ) is finitely MSO(3*)-axiomatisable for every x > ¥o.

Proof. Let B := (M, £), and let §(x) be the formula defining M, in
(B, x). We set x, = x" U x" where ~ is the syntactic congruence
corresponding to B/= and I, is its index.

A structure (X, ') = (X, £, ') is isomorphic to (B, y) if and
only if there is an isomorphism f : (X/=/, ') - (B/= x) such that
[x]zr 2 flx]= for all x € X where =" := £’ n 2. This condition is

equivalent to the following ones:
(1) 8% contains exactly one element of each =~class of X.
(2) (%2, ¢) = (6%, 5 ).
(3) [x]=r = [a]=for all x € X and a € M with y'(x) = x(a).
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(1) and (3) are easily expressed in MSO. (2) can be checked since
X 2 Xﬂ“ and therefore the forest (67,5, x) = (B/= y) is FO(I*)-
axiomatisable. O

In order to transfer the axiomatisability result from (M, ) to I,
we have to show that each of the structures is definable in the other
one.

Lemma 6.3.5. Let k := max {K, n}.
(a) Ifx c ythen thereis a k-normal path z., . . ., Z from x to y with
x/n < z;/n for all i.
(b) Ifx = y then there exists an undirected <-path z., . .., zy, from x
to y with x/n < zi/n and |z;| < |x| + k for all i < m.
(c) The relation c is MSO-definable in (90, y*).
(d) (M, 5, x) is MSO-definable in (M, x) for all y > x*.

Proof. (a)isimplied by Proposition 5.5.10, and (b) follows from Corol-
lary 5.5.9 since x and y are connected by a path above x/n = y/n.

(c) We have x £ yiff there is a k-normal undirected path z, . . ., Z,
from x to y with x/n < z;/n for all i. Thus, x £ y iff there is a k-
normal path P such that each initial segment P’ of P leads to some
vertex zwith |z| > |x|. It follows from Lemma 6.1.5 that the condition
|z| > |x| can be expressed by an MSO-formula.

(d) By (c) it remains to define the colouring y(x, y) for x £ y.
This can by done, by Lemma 6.1.5, since there exists a k-normal path
from x to y. O

Lemma 6.3.6. (90, y) is MSO-definable in (M, 5, x) for all y > x".

Proof. Since < is tree interpretable and x < y implies x/n < y/n, there
aresets U([w]) € =<fand V([w]) € Z<¢/~foreveryclass [w] € Z<¢/~
such that x < y iff

xfn<y/n, wlxeU(w]), and [w'y]eV([w]).

where w := xMy. Since x < y implies x £ , all of the above conditions
can be expressed in MSO using y(x), x(¥), and y(x, y). The colouring
of (I, x) is definable for the same reason. O

Theorem 6.3.7. Let 9 := (M, <) be a tree-interpretable partial order
and let n € N be a constant such that x < y implies x[n < y/n for all
X, y € M. There is a congruence colouring x, such that (9, y) is finitely
MSO(3*)-axiomatisable for every x > xo.

Proof. Let x! be the colouring of Proposition 6.3.4. We set y, =
xb U xX Ly Let T be the MSO-definition of (M, S, y) in (9, ). By
the preceding lemmas, a structure (%, x') is isomorphic to (%, y) if
and only if Z(X, x") = Z(9M, x). The claim follows since Z(9M, y) is
MSO(3*)-axiomatisable by Proposition 6.3.4. O
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6.4 THE GENERAL CASE

Finally, we consider an arbitrary tree-interpretable structure 9. For
the reduction to the previous case we define, as above, a partial order <
and show that the structures (M, <) and 91 are definable within each
other.

Definition 6.4.1. Let x + y if x/I < y/I and the pair (x, y) is guarded.
Let < be the reflexive and transitive closure of I-.

Lemma 6.4.2. (M, <, x) is MSO-definable in (I, y) for all y > yL.

Proof. The relation + is FO-definable, since one can tell whether
x/T < y/I holds by looking at y'(x, y). Thus, <, its reflexive and
transitive closure, is MSO-definable.

To show that the colouring is also definable we prove that, for each
colour ¢ of x, there is a formula ¢.(x, y) such that

(M x) Epelxy) iff  x<yandy(xy)=c.
X)E@clXy y x(x y

If x - y then there is a relation R and a tuple a € R with x, y € a.
Hence, y(x, y) is available in (901, y). Thus, there is a formula ¢ (x, )
which expresses that x -~ y and y(x, y) = c. We have x < y iff there is
apathx =z, - -+ z, = y. Note that z; - z;,, implies z;/I < z;,,/I.
Therefore, we can compute x(x, zi,) from x(x, z;) and x(z;, zi,). O

The proof of the converse is more involved and requires an inves-
tigation of the branching structure of a tuple.
Definition 6.4.3. Let a, b € M". We say that a is a reduct of biff
(1) the branching structures of @ and b are isomorphic,
(2) Ma~Mb,
(3) (aina;)™(axnay) ~ (b nb;)™(bx N by) for all indices such
thata; Ma; <axna,

(4) lail < |Ma| +nl foralli<n.
A tuple is called reduced if it is a reduct of itself.
Lemma 6.4.4. Ifaisareductofband beRthenaeR.

We can check whether a tuple a belongs to a relation R by using the
characterisation of Proposition 5.2.4. To do so we need the ~-class of
u~'v for branching points u and v of a.

Definition 6.4.5. Let a € M". The elements b;, € M, for i, k < n, code
the branching structure of a if

(1) bjj=a;fori<n,

(2) bi/nl < a;jnag < by forall i, k, and

(3) ifa;Max < a;Na;then by + by for i, k, I < n.
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Given by, and b;; we can compute the ~-class of (a; M ag) ™ (a; Nap).
Hence, if we can show that such elements always exist and that they
are definable, then we are almost done.

Lemma 6.4.6. Let y > x"'. For each branching structure X there exists
a formula Bx (%, y) such that (M, <, x) = fx(a, b) if and only if the
branching structure of a is X and it is coded by b.

Proof. For all i, k < n we have to express that by/m = a; 1 a; for
some m < nl. Since bjr + b;; = a; and bj, ~ by = ai this can be
determined by looking at y(bix, a;) and x(bi, ax). The verification of
the other conditions can be done easily. O

Lemma 6.4.7. Let R be an n-ary relation of 9t and a € R. There are
elements by € M, i, k < n, coding the branching structure of a.

Proof. Wlo.g. assume that X = [2]. Let
Ji ={j<n|ana;<ana}.

We define tuples ¢y, for i, k < n, by induction on |Ji| such that ¢ |,
isareduct of a|;,. If Jix = @ let ¢ := a. Otherwise, let j, I be indices
such that the branching points a; M a; and a; N aj are the immediate
successors of a; M ay. Let

dix = Ca |]ik u Ejk |]ki U a|]ikU]ki !

Choose ¢ such that

Cik | Jur 1s @ reduct of dig |, and - Cixlrgr- = aly o7
Finally, set bjx := (cix)k- Since, by construction, dix |m UCik|y,, € Rwe
have

bik = (ci)x = (dix)1 = (ci)1 = bar. O
At last, we are able to prove the other direction.

Lemma 6.4.8. The structure (9N, x) is MSO-definable in (M, <, x) for
every x > x" where n is the maximal arity of relations of 9.

Proof. Let R be an n-ary relation of (90, y). We prove the claim by
induction on n.

(n =1) R € Z<“ is regular with a coarser congruence than ~. Thus,
we can determine whether a € R by looking at y(a).

(n >1) Wlo.g. assume that all tuples a € R have the same branch-
ing structure. For all branching points a;  a; with immediate suc-
cessor a; M a; let Wy be the regular language such that a € R iff
(aimag)™*(a; Na;) € Wiy for all such i, k, I. By the preceding lemma
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it follows that @ € R if and only if there are elements by, i, k < n,
coding the branching structure of a and constants m;; < nl such that
bix/mix = a; 1 ay and (bix/mi) " (by/mi) € Wy for all admissible
i, k, I. Since b + bj; we can check the latter condition by looking at
x(bik, bir). O

Theorem 6.4.9. Let N be a tree-interpretable structure. There is a
congruence colouring x, such that (9N, y) is finitely MSO(3*)-axioma-
tisable for all x > xo.

Proof. The proof is completely analogous to the one of Theorem 6.3.7.
Let y/ be the colouring of Theorem 6.3.7 for the structure (M, <), and
set xo = xh U x" where n is the maximal arity of relations of 9.
Let X be a structure. By the preceding lemmas (90, ) and (M, <, y)
are MSO-definable within each other. Let Z : (M, <, x) <mso (9%, x)
be the corresponding interpretation. It follows that X = (90, y) iff
Z(%) = Z(9M, x). The later condition is MSO(F*)-expressible by
Theorem 6.3.7. O

Since GSO(3*) allows quantification over colourings y we obtain
as an immediate corollary the following result.

Theorem 6.4.10. Every tree-interpretable structure is finitely GSO(3)-
axiomatisable.

As GSO(T") collapses to MSO(3*) on uniformly k-sparse structures
we obtain the following result of Courcelle [22].

Corollary 6.4.11. Every HR-equational structure is finitely MSO(3*)-
axiomatisable.

6.5 LOWER BOUNDS

We have shown that every tree-interpretable structure is finitely
GSO(3*)-axiomatisable. Can we do better? In this section we show
that at least the quantifiers 3 and 3™ are needed. Since all tree-
interpretable structures are countable we obviously can do without
the ones for higher cardinalities.

For a logic £ let £,, denote the set of £-formulae of quantifier
rank at most m where we count both first- and second-order quanti-
fiers. The following statements about the expressivity of MSO,, and
MSO,,(3F%) can easily be proved using the corresponding versions
of the Ehrenfeucht-Fraissé game.
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Lemma 6.5.1. (a) For every m < w there exists a constant k such that
two sets A and B are MSO,,-equivalent if and only if

|A|l = |B| or |A| |B|=>k.

(b) For every m < w there exists a constant k such that two sets
A and B are MSO,,,(3%)-equivalent if and only if

|A] =|B|, or k<|A|,|B|<R,, or |A]l |Bl=X,.
(c) Any two infinite sets are MSO(3%° )-equivalent.

Lemma 6.5.2. For all GSO(3)-sentences ¢ there exists an MSO(3)-
sentence ¢’ such that

Tee iff TEe¢  foreverytreeT.

Proof. This is a special case of Theorem 1.2.13. Since each vertex has
at most one predecessor one can code a set of edges by the set of their
second components. This way each quantifier over sets of edges can
be replaced by a monadic quantifier. O

Theorem 6.5.3. There exists a tree-interpretable tree which is not
GSO(3™°)-axiomatisable.

Proof. The tree K, y, is tree interpretable and the preceding lemmas
imply that K, x, =gso(a%) Kix,- O

This shows that we cannot do without all cardinality quantifiers
even if we allow infinitely many axioms. But do we really need non-
monadic second-order quantifiers?

Open Problem. Are there tree-interpretable structures that are not
(finitely) MSO(3*)-axiomatisable?

6.6 APPLICATIONS

Proposition 6.6.1. Let M = val(T) for some Y -term T € 25¢. If
M is finitely MSO(3*)-axiomatisable then N is tree interpretable. The
same holds for Y _-terms.

Proof. Let ¢ € MSO(3¥) be the axiom for 1. By Proposition 3.1.9,
there exists an MSO-interpretation V such that V(T) = val(T) for
every Y¢ .-term T. The class of terms T with val(T) = 90 is finitely
MSO(3F*)-axiomatisable since

TeeY iff V(I)=MEeog.

Thus, the set of such trees forms a regular tree language and contains
aregular tree T,. T, <yso ¥ implies M = val(T,) <mso T. O
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Corollary 6.6.2 (Courcelle [20, 22]). Let 9t be a countable structure
of finite tree width. 9 is finitely MSO(3*)-axiomatisable if and only if
it is HR-equational.

Lemma 6.6.3. Thereisa Y¢ -term T € 2<¢ such that M := val(T) is
finitely GSO-axiomatisable but not tree interpretable.

Proof. Let M = (N, <, E, P) where E := Nx Nand P ¢ N is any
arithmetical but non-recursive set. Then 97 is not tree interpretable.

On the other hand, because of E the expressive power of GSO
equals full second-order logic. Thus, addition and multiplication are
definable in 9t and we can construct an axiom using the FO-definition
of Pin (N, +, ).

Finally, there exists a term denoting M since 7 : (N, <, E) <yso %,
implies (N, <, E, P) <yso (%,, Z7'(P)). O

Lemma 6.6.4. Let I be a tree-interpretable structure and a € M. The
orbit O of a under automorphisms is GSO(3*)-definable.

Proof. If 91 is tree interpretable then so is (1, a). Let ¢(x) be the
GSO(3*)-formula obtained from the axiom of (9, a) by replacing
every occurrence of the constant a by the variable x. It follows that

beO iff (M b)=(Ma) iff Me g(b). O

Lemma 6.6.5 (Pélecq [59]). Let 9 be a tree-interpretable structure of
finite tree width and let O be the orbit of a € M under automorphisms.
Then (M, O) is tree interpretable.

Proof. O is GSO(3*)-definable by the preceding lemma. Since 9 is
of finite tree width it follows that O is even MSO(3*)-definable and,
therefore, (9, O) <yso Ts- O

Theorem 6.6.6 (Courcelle [22]). Given two tree-interpretable struc-
tures I and N of finite tree width one can decide whether I = .

Proof. Although not stated explicitly, the construction of the axiom in
the previous section is effective. Thus, in order to determine whether
M = I one can construct the GSO(F*)-formula ¢gn which axioma-
tises 9t and check whether 91 = @gy. O

Open Problem. Is isomorphism decidable for all tree-interpretable
structures?
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