
Tree-Interpretable
Linear Orders
Studythesis Eduard Kamburjan
Advisor Priv.-Doz. Dr. Achim Blumensath

Contents

1 Fundamentals 2

1.1 Graphs and Trees . 2
1.2 Operations on Graphs . 5
1.3 Regular Languages . 7

2 Representations of Acceptors 8

2.1 Inverse Substitutions . 9
2.2 Prefix-Recognizable Graphs . 10

3 Generating Representations 13

3.1 Order Terms . 13
3.2 Systems of Graph Equations . 16

4 Generalizations and Further Representations 20

Introduction

The study of infinite structures involves to algorithmically determine properties of these structures. To
process such structures one wants to represent them in a finite way that allows the construction of
effective algorithms. This raises the question of which finite representations can be used for this purpose
and which infinite structures can be represented with them. In this work we present five representations
and show that they describe the same set of linear orders.

Our basis are linear orders which are MSO-interpretable in the complete binary tree, a well understood
structure with decidable MSO-theory [ER66]. The original motivation for some of the representations
was to find operations that preserve the decidability of the theory of the complete binary tree while
constructing more sophisticated graphs. We only consider linear orders to show the main points of the
representations and to give complete but short equivalence proofs.

We divide the representations into two groups: order terms and systems of order equations can be seen
as concepts that generate graphs, while inverse substitutions and prefix-recognizability describe how a
graph can be accepted. This is analogous to the generator/acceptor view on regular grammars and reg-
ular expressions or finite automata in theoretical computer science and is not supposed to imply that a
representations can not be used to fulfill the task of the other group.

Outline

This work is organized as follows: In Section 1 we review basic definitions. In Section 2 we introduce the
concepts of acceptors and show their equivalence. In Section 3 we introduce the concepts of generators
and show their equivalence. We conclude in Section 4 with a brief overview of generalizations to larger
graph classes and further representations for them.

1

1 Fundamentals

In this work we consider mostly monadic second-order logic and directed graphs, thus we review
the basic definitions of them.

1.1 Graphs and Trees

Let C be a finite set.

• A C-colored graph is a tuple G= (V, E, (Pc)c∈C) where V is called the vertex-set, E ⊆ V × V
the edge-set and each Pc ⊆ V a color.

• A path from v0 is a sequence (v0, v1, . . .) such that ∀i.(vi, vi+1) ∈ E and all vertices but the
endpoints are distinct: (∀0< i, j)

�

i 6= j→ vi 6= v j

�

• A path p = (v0, v1, . . .) from v0 is a cycle if p has length i 6= 0 and v0 = vi−1 holds.

• A graph forms a tree if it contains no cycle, and there is a root vertex r such that for every
vertex v 6= r there is a unique path from r containing v .

• A graph forms a linear order if E has the following properties:

– Reflexivity: (∀v ∈ V)
�

(v , v) ∈ E
�

– Transitivity: (∀v , w, u ∈ V)
�

((v , w) ∈ E ∧ (w, u) ∈ E)→ (v , u) ∈ E
�

– Totality: (∀v , w ∈ V)
�

(v , w) ∈ E ∨ (w, v) ∈ E
�

In this case we denote E by ≤.

Definition
Let L = (V,≤) be a linear order and L1, . . . , Ln suborders of L. The suborders L1, . . . , Ln are
mutually dense if for every suborder Lk, every j 6= k and every two vertices v , w ∈ Lk with
v < w, we can find a vertex u with v < u< w that is element of L j.

We denote the uncolored linear order on the natural numbers with ω = (N,≤) and its re-
verse with −ω = (Z \N,≤). Furthermore, we denote the last k elements of a finite order L by
suffixk(L).

The simplest operation on graphs is restriction to a set, which removes all vertices that are not
in a given set.

Definition (Restriction)
Given a graph G= (V, E, (Pc)c∈C) and a set S, the restriction of G to S is

G� S :=
�

V ∩ S, E ∩ S × S, (Pc ∩ S)c∈C

�

We are mostly concerned with linear orders and trees, especially complete trees.

2

Definition (Complete Tree)
Let n ∈ N. A tree Tn = (V, E) is n-complete if its universe V and its edge relation E have this
form:

V =
�

0, . . . , n− 1
	∗

E =
�

(v , w) | v � w∧ |v |= |w|+ 1
	

where � is the usual prefix relation on finite strings.

For simplicity we additionally define the successor functions nextn(v , v ′) ⇐⇒ v ′ = v n and the
left-to-right order for n= 2:

v ≤T2
v ′ ⇐⇒

�

∃w ∈ V
��

∃k, i ∈ {0, 1}
�

�

(wk � v ∧wi � v ′ ∧ k < i)∨ (v ′0� v)∨ (v 1� v ′)
�

In the case n= 2 we denote next0 with left and next1 with right.

Lemma 1
The complete binary tree T2 is dense with respect to ≤T2

.

Proof. Let v , v ′ be two different vertices with v ≤T2
v ′. If we can reach v from v ′ with a path

v ′, w, . . . , v , we may assume w.l.o.g. w= left(v ′). In this case v <T2
right(v)<T2

v ′.

If there is no path between the vertices, let v ′′ be the longest prefix of v ′ and v and by definition
of ≤T2

the formula v <T2
v ′′ <T2

v ′ holds.

We need the following lemma to extend mutually dense orders to mutually dense subsets of T2.

Lemma 2
For every n ∈ N we can find n mutually dense sets P1, . . . , Pn ⊆ {0, 1}∗. Furthermore we can
formulate for each such set Pk a MSO-formula φk(x) that holds iff x is in Pk.

Proof. Set Pk := {w | suffixk+1(w) = 10k}. We show that P1, . . . , Pn are mutually dense in ≤T2
.

Let v , w ∈ Pk with v ≤T2
w for a fixed k, and j 6= k.

• Case v � w: In this case v = u10k and w= v x10k = u10k x10k for some x . For every j the
subtree under v x0 lies between v and w: u10k ≤T2

v x010 j ≤T2
u10k x10k.

• Case v 6� w: In this case w = x10k for some x and the subtree under x0 is between v and
w. Thus we construct: v ≤T2

x010 j ≤T2
w

We set φk(x) := ∃y.
�

x = right
�

left(left(. . .
︸ ︷︷ ︸

k times

(y) . . .))
��

Note that this is no partition. We slightly extend these sets to obtain subtrees, which contain no
element of any of these sets:

3

Lemma 3
For every n ∈ Nwe can find n mutually dense sets Q1, . . . ,Qn ⊆ {0, 1}∗ such that the right subtree
under any element of any of these sets contains no element from these sets. Furthermore we
can formulate for each such set Qk a MSO-formula ψk(x) that defines Qk.

Proof. We stretch the sets from Lemma 2 by putting in 0’s at every second position in the words
of Pk:

Qk :=
�

w | w= w00w10 . . . 0wn and w0w1wn · · · ∈ Pk for some n ∈ N and w0, . . . , wn ∈ {0, 1}
	

In every word every character at an odd position is a 0, thus the right subtree of any element
contains no further element as it has a prefix of odd length that ends with a 1. The claim of
mutually density is analogous to Lemma 2 and we set:

ψk(x) := even(x)∧∀x ′.
�

x ′ ≤ x ∧ even(x ′)⇒∃z.[x ′ = left(z)]
�

∧
∃y.

�

x = right
�

left(left(. . .
︸ ︷︷ ︸

2k times

(y) . . .))
��

Where even(x) is a shortcut for

∀X .
�

X (ε)∧∀z.[X (z)⇒ X (left(left(z))∧X (left(right(z))∧X (right(left(z))∧X (right(right(z))]⇒ X (x)
�

which denotes that the length of the path to an element is even.

To constrain the evaluation of a formula to a certain subtree we introduce restriction.

Definition
Given a formula φ and a node p in T2 the restriction of φ to the subtree under p is obtained by
replacing every subformula of the form ∃x .ψ with ∃x .

�

p � x ∧ψ
�

and every subformula of the
form ∀x .ψ with ∀x .

�

p � x →ψ
�

. We denote the resulting formula with φ(p).

For readability we introduce the following shortcuts:

Definition
Given a node v in T2 we write èv for the left subtree under v and év for the right subtree
under v

Also we use define MSO-formulas RBranch and LBranch defining the right-most and left-most
branch of the complete binary tree.

RBranch(v) := ∃B.
�

B(ε)∧∀x .
�

B(x)↔ B(right(x))
�

∧∀y.¬B(left(y))∧ B(v)
�

LBranch(v) := ∃B.
�

B(ε)∧∀x .
�

B(x)↔ B(left(x))
�

∧∀y.¬B(right(y))∧ B(v)
�

4

1.2 Operations on Graphs

We shortly review the definitions of sums and products of C-colored orders with a finite color
set C: The sum L⊕ L′ is the the result of the disjoint union of L and L′, and placing all elements
of L before the elements L′:

(V,≤, (Pc)c∈C)⊕ (V ′,≤′, (P ′c)c∈C) = (V ∪̇ V ′,≤ ∪ ≤′ ∪V × V ′, (Pc ∪ P ′c)c∈C)

The product L⊗ L′ is the result of replacing every element of L′ by a copy of L and maintaining
the coloring of L:

(V, E, (Pc)c∈C)× (V ′, E′, (P ′c)c∈C) = (V × V ′,≤′, (P ′′c)c∈C)

with (v1, v2)≤ (v ′1, v ′2) ⇐⇒ (v2, v ′2) ∈ E′ ∨
�

v ′2 = v2 ∧ (v1, v ′1) ∈ E
�

and
(v1, v2) ∈ P ′′c ⇐⇒ v1 ∈ Pc.

An operation for generating different dense orders isσ: given n ∈ N linear orders L1, . . . , Ln their
shuffle is obtained from a partition of Q into n mutually dense subsets A1, . . . , An and replacing
each element of Ai with a copy of Li.

We need the following statement for the well-definedness of the shuffle:

Lemma 4
For every n ∈ N we can partition Q into n mutually dense subsets and for all such partitions the
resulting shuffles are isomorphic.

A proof can be found in [Ros82].

An MSO-interpretation is a way to extract elements from a structure by defining a predicate
which the elements must satisfy in the source structure and defining new relation by similar
predicates.

Definition
Let τ,τ′ be two relational signatures. A MSO-interpretation from a τ-structure A into a τ′-
structure B is a list of MSO-formulas over τ

〈δ(x), (φr(y))r∈τ′〉

Where y has the arity of the respective r.

Given a τ-structure A = (A, (Rr)r∈τ) the result of applying an interpretation I =
〈δ(x), (φr(y))r∈τ′〉 on A is the τ′-structure B:

B=
�

{a ∈ A | A |= δ(a)}, ({y ∈ A|y| | A |= φr(y)})r∈τ′
�

We say that B is interpreted in A.

5

In this work we only consider interpretations from T2 into linear orders with a finite set of
colors. We emphasize that an interpretation is in this case already a finite representation of an
infinite structure, as we have a finite list of finite formulas. However algorithms can make little
use of this representation to extract additional information about the linear order.

Given a linear order interpreted in T2 the order must not be a suborder of ≤T2
, however it is

always isomorphic to one:

Lemma 5
Let A = (V,≤, (Pc)c∈C) be a linear order interpreted in T2. Than there is a linear order A′ =
(V ′,≤T2

, (P ′c)c∈C) that is isomorphic to A and is interpreted in T2.

Proof. We first observe that giving two distinct subtrees t1, t2 there can be only finitely many
jumps (adjacent pairs e1 ≤ e2 with e1 ∈ t1, e2 ∈ t2 or vice versa.) between them in a linear
order interpreted in T2 and we can retrieve a bound k on the number from the structure of the
interpretation [Blu03].

We construct a function i : V → V ′ for a given node inductively by splitting the tree above each
node and counting how many jumps are traversed before one reaches this node and ordering
the nodes by the binary encoding of the jump count and the original node.

The following function assigns the jump counts under a given node v before another node w:

count :{0, 1}∗ × {0,1}∗→ N

count(v , w) =
�

�

�

¦

(v1, v2) ∈ V |v1 ∈èv ∧ v2 ∈év ∧ v1, v2 ≤T2
w∧∀v ′.

�

v ′ ≤ v1, v2 ∨ v ′ ≥ v1, v2

�

©

�

�

�+
�

�

�

¦

(v1, v2) ∈ V |v1 ∈év ∧ v2 ∈èv ∧ v1, v2 ≤T2
w∧∀v ′.

�

v ′ ≤ v1, v2 ∨ v ′ ≥ v1, v2

�

©

�

�

�

The first part of the formulas describing the sets ensures that (v1, v2) are in different subtrees
and the second part that there is no v ′ between them.

Furthermore, when we split at a node v and count the jumps we need to remember where v is
ordered, by checking whether v is before or after a given node w:

mid(v , w) =
§

0 if v > w
1 otherwise

The flat function saves this and the counting information for each position:

flat : {0, 1}∗ ×N× {0,1}∗→ {0,1} × {0, ..., k} × {0,1}∗

flat(v , i, w) =
�

mid(v , w0...wi), count(v , w0...wi), wi)
�

◦ flat(v wi, i + 1, w) if i < |w|

flat(v , i, w) =
�

ε,ε,ε
�

otherwise

Where ◦ is componentwise concatenation. The isomorphism is given by assigning to every vertex
v ∈ V the binary encoding of flat(ε, 0, v).

6

1.3 Regular Languages

Regular languages are a well-understood class of languages which we use to represent regular
structure in graphs. We denote the set of all regular languages over an alphabet Σ with Reg(Σ).
The following result is the base for their study[EB58]:

Theorem 1
The following statements are equivalent:

• L is regular

• There is a deterministic finite automaton A with L(A) = L

• There is a MSO-formula φ with w ∈ L ⇐⇒ w |= φ

• There is a MSO-formula φL(x) with w ∈ L ⇐⇒ T2 |= φ(w)

We call φL the formula associated with L.

Furthermore we can use formulas to characterize suffixes:

Lemma 6
Let L be a regular language over Σ. Then there is a formula ψL(x , y) such that

T2 |=ψL(x , y) ⇐⇒ (∃z ∈ Σ∗)
�

y = xz and z ∈ L
�

We call ψL also associated with L as it is distinguishable from φL by its number of variables.

Regular languages are closed under several common operations, including union, intersection,
negation and reversion. In particular they are closed under concatenation and we denote the
concatenation of two languages A, B with A◦ B.

We additionally need the following property to deal with paths over graphs:

Lemma 7
Let L be a regular language over the alphabet Σ, and N ⊆ Σ a subset of the alphabet. The set of
all words in L which first contain only elements of N and then only elements of Σ \N is a finite
union of concatenated pairs of regular languages, e.g. the following formula holds:

�

∃n ∈ N
��

∃A1, ..., An ∈ Reg(N)
��

∃B1, ..., Bn ∈ Reg(Σ \ N)
�

�

L ∩ N ∗(Σ \ N)∗ =
⋃

i≤n

Ai ◦ Bi

�

Proof. As L is regular there is a deterministic finite automaton A=
�

Σ,Q, q0,∆, F
�

with L(A) = L
and Q = {q0, ..., qn}. We can restrict this automaton in such a way that it only works on a subset
of the alphabet by deleting all edges that are labelled with a letter from the complement of this
subset. This gives rise to two automata which work on N and Σ \ N :

AN :=
�

N ,Q, q0,∆N , F
�

A−N :=
�

Σ \ N ,Q′, q′0,∆−N , F ′
�

7

where Q′ = {q′0, . . . , q′n} is a disjoint copy of Q and ∆N ,∆−N are the restrictions of ∆ to the
respective state set and input alphabets:

∆N =∆∩Q× N ×Q

∆−N =∆∩Q′ ×Σ \ N ×Q′

We combine these automata to one that first works on elements of N and then on those of Σ\N
by adding ε edges between a state of AN and its counterpart in A−N :

AΣ :=
�

Σ,Q ∪Q′, q0,∆N ∪∆−N ∪ {(qi,ε, q′i) ∈Q× {ε} ×Q′}, F ′
�

The language L(AΣ) is the required restriction of L to N ∗(Σ \ N)∗, it remains to show that we
can split L(AΣ) into a finite union.

For this we split AΣ into subautomata according to the newly introduced ε-edges. For every state
qi we restrict the state set to the states that can reach qi and thus accepts the first part of the
input, and to those that are reachable from q′i. If no final state is reachable or this edge is not
reachable from the start state we set Aqi

to the automata that never accepts and otherwise:

Aqi
:=
�

Σ, {q ∈Q ∪Q′|reach(q, qi)∨ reach(q′i, q)}, q0,∆Σ�Qqi
×Σ∪ {ε} ×Qqi

, F ′
�

As A is finite, AΣ is finite and there are only finitely many such automata. Each of these automata
consists of two parts which are connected by an ε-edge. If we split these automata again along
this edge we get the required languages Ai, Bi:

AN
qi

:=
�

N , {q ∈Q|reach(q, qi)}, q0,∆Σ ∩Q× N ∪ {ε} ×Q, {qi}
�

A−N
qi

:=
�

Σ \ N , {q ∈Q′|reach(q′i, q)}, q′i,∆
Σ ∩Q′ ×Σ \ N ∪ {ε} ×Q′, F ′

�

For every qi whose automaton always rejects we set Ai = Bi = ;, otherwise we set Ai := L(AN
qi
)

and Bi := L(A−N
qi
).

2 Representations of Acceptors

The representations of acceptors considered in the next chapter differ from the generators in
the aspect that they only represent the structure of the linear ordering in the binary tree and not
the coloring.

To use them for the same class of graphs, we identify colored graphs G = (V, E, (Pc)c∈C) with
the pair

�

(V, E), (Pc)c∈C

�

. This requires a finite representation of the colors and it suffices for this
work to consider regular colorings.

The representations of acceptors define the ordering between two vertices by their relative posi-
tion and the path between them in the complete binary tree, thus extracting the order from this
structure. To describe the relation between two vertices both approaches describe vertices with
regular languages and reduce the paths between them to paths which are labelled by a regular
language.

8

2.1 Inverse Substitutions

Inverse substitutions extract a graph from a tree by specifying the edge relation through a ho-
momorphism from their label in the extracted graph to paths.

As in the complete tree all edges are pointed away from the root, we introduce mirrored trees
to enable paths between arbitrary vertices.

Definition (Mirrored Trees)
Given a complete tree Tn =

�

{0, . . . , n−1}∗, E
�

we define the mirrored complete tree Tn = (V, E′)
by adding all inverted all edges:

E′ := E ∪ {(u, v)|(v , u) ∈ E}

To talk about labelled paths we regard an edge (v , w) ∈ E′ as labelled by n, if w = v n and as
labelled by n if v = wn. Thus if we descend from a vertex v to v n this edge is labelled by n and
the mirror of this edge by n. We write that an edge between v , w is labelled by n in a graph G
as v →G

n w.

We say that a path (v0, v1, ..., vn) ∈ V ∗ from v0 to vn is labelled by a = a0a1...an−1 ∈ {0, 0, ..., n−
1, n− 1}∗ if for each i < n the edge (vi, vi+1) ∈ E′ is labelled by ai. We write that there is a path
between v , w that is labelled by a in a graph G as v ⇒G

a w.

Definition (Substitution)
Let R be a finite set. An extended substitution h is a homomorphism from words in R∗ into the
set of languages over {0, 0, ..., n− 1, n− 1}∗:

h : R∗→P ({0, 0, ..., n− 1, n− 1}∗)

We say that h is regular if for every r ∈ R the language h(r) is regular. A graph G = (V, E) is an
inverse regular substitution of h on Tn = (V, E′, (Pc)c∈C) if for each v , w ∈ V any edge between
them that is labelled by a ∈ R there is a word w ∈ {0, 0, ..., n − 1, n− 1}∗ in h(a) that labels a
path between v and w in Tn:

v →G
a w ⇐⇒ (∃u ∈ {0, 0, ..., n− 1, n− 1}∗).

�

u ∈ h(a)∧ v ⇒Tn
u w

�

If the graph has this form we write G= h−1(T2)

Note that if w is a path, it may not be the shortest path between its endpoints. The only difference
between the shortest path and other paths in the mirrored complete tree is that these contain
a subpath that is a loop, i.e. their path label has a subsequence of the form v v−1 or v v−1. The
following lemma shows that in case of inverse regular substitutions it suffices to consider the
shortest paths[Cau96].

Lemma 8
Let h be a homomorphism h : R → {0, 1, 0, 1}∗. Then there is a homomorphism h : R →
{0,1, 0, 1}∗ such that for every r ∈ R the set h(r) contains no words that have a subword of
the form v v−1 or v v−1 for any v ∈ {0, 1} and h−1(T2) = h−1(T2).

9

Proof. h is constructed by iteratively removing every subword of the required form. If this word
was a path label, the resulting word labels a path between the same vertices but without a
detour of v . Note that this is a property of trees, not of general graphs.

Substitutions are defined on uncolored graphs, we need to encode the coloring as additional
edges. To encode a family of regular colors P = (Pc)c∈C in T2 we add edges (v , v) which we
regard as labelled with c if v ∈ c. We denote such an extended tree with TP

2 .

Substitutions are a way to extract paths with labels from a regular language from a tree. How-
ever to ensure that all vertices form a regular language and to get rid of vertices that are, in
some sense, irrelevant one needs to restrict inverse regular substitutions to a regular set. As
it turns out with this restriction we can represent all linear orders that are interpreted in the
complete binary tree, as the following lemma shows:

Lemma 9
Let h : {v}∗ → P ({0,1, 0, 1}∗) be a regular homomorphism, L a regular language and Q =
(Q i)i∈I , (Pc)c∈C two finite families of regular colors such that

�

h−1(TQ
2) �L, (Pc)c∈C

�

is a linear
order. Then there is an interpretation I = 〈δ(x),ψ≤, (ψc)c∈C〉 such that

�

h−1(TQ
2)�L, (Pc)c∈C

�

=
I (T2).

Proof. By Lemma 8 it suffices to regard h and by Lemma 7 we can represent any regular language
by a union ∪i≤nAi ◦ Bi for some regular languages A0, . . . , An ⊆ {0, 1}∗ and B0, . . . , Bn ⊆ {0, 1}∗.
Let ∪i≤nAi◦Bi be such a representation of h(v). As regular languages are closed under reversing,
let ψAi

be the formula associated with the reverse of Ai where every element a is replaced by a,
and let ψBi

be the language associated with Bi.

We modify these formulas to consider the additional information added by the encoded colors Q
and setψ′Ai

to the formula that is obtained from replacing every subformula of the form Ei(z, z′)
for i ∈ I by z = z′ ∧Q i(z) in ψAi

. We set

ψ≤(x , y) := ∃w.
�

w= x u y ∧ψ′Ai
(w, x)∧ψ′Bi

(w, y)
�

where x u y denotes the longest common prefix of x and y . As L and the colors are regular we
set δ and ψc to the according associated formulas.

2.2 Prefix-Recognizable Graphs

Prefix-recognizable graphs capture the structure of the linear ordering by describing an edge
between two vertices v and w by dissecting the paths from the root to these vertices.

Definition (Prefix-Recognizable Graphs)
A graph (V , E, (Pc)c∈C) is prefix-recognizable if V ⊆ {0,1}∗ is a regular language, for every c ∈ C
the set Pc is a regular language and E is a finite union of relations of the form W (U × V) :=
¦

(wu, wv) | w ∈W, v ∈ V, u ∈ U
©

with regular W, V, U .

10

It is easy too see that this is a finite representation as we can describe regular sets with finite
MSO-formulas:

Lemma 10
Let (V,≤, (Pc)c∈C) be a prefix-recognizable linear ordering. Then there is an interpretation I =
〈δ,φ≤, (φc)c∈C〉 such that (V,≤, (Pc)c∈C) = I(T2).

Proof. We set δ to be the formula associated with V and φc the formula associated with the cor-
responding Pc. By definition ≤=

⋃

i≤n Wi(Ui × Vi) for regular languages (Wi)i≤n, (Ui)i≤n, (Vi)i≤n
We can define for each i ≤ n the relation Wi(Vi × Ui) by the following formula

ψi(x , y) := ∃z.
�

φWi
(z)∧φUi

(z, x)∧φVi
(z, y)

�

where φL is the formula associated with the regular language L. The union of these relations is
translated into a disjunction of the formulas:

φ≤(x , y) :=
∨

i≤n

ψi(x , y)

The reverse also holds and we first introduce a further representation of regular languages by
tree automata and encoding variables in trees.

Lemma 11
Let φ(x1, x2) be a fixed MSO-formula with two free variables and v , w two vertices of the
complete binary tree. There is a tree automaton A such that the formula φ(v , w) holds iff A
accepts the complete binary tree with the following additional labeling:

A vertex u is labelled by [0, 0] if u 6= v , u 6= w, by [1, 0] if u = v , u 6= w, by [0, 1] if u 6= v , u = w
and by [1,1] if u= v = w.

A proof can be found in [Tho96].

In [Blu01] this result is used to reduce tree automata to a triple of normal automata:

Lemma 12
Let I = 〈δ,ψ≤, (φc)c∈C〉 be a interpretation such that I(T2) is a linear order. Then I(T2) is
prefix-recognizable.

Proof. Let A = (Q, {0,1},∆, q0, F) be the tree automaton associated with ψ≤(x , y) according
to Lemma 11 and Occ(t) the set of all labels occuring in the tree t. We classify the states Q
according to whether and where they occur on a accepting run of A:

Q; :=
�

q ∈Q | Occ(t) = {[0, 0]} for all trees t accepted after A was in q at the root of t
	

Q x :=
�

q ∈Q | Occ(t) = {[0, 0], [1,0]} for all trees t accepted after A was in q at the root of t
	

Q y :=
�

q ∈Q | Occ(t) = {[0, 0], [0,1]} for all trees t accepted after A was in q at the root of t
	

Q x ,y :=
�

q ∈Q | Occ(t) = {[0, 0], [1,0], [0,1]} or Occ(t) = {[0, 0], [1,1]}
for all trees t accepted after A was in q at the root of t

	

11

The states in Q x are the ones that are passed through by the automata on some accepting run
on the path from the root to the vertex x . Q y is analogous for y and Q x ,y are the states passed
through on the paths to x and y .

Thus to describe the path from the root to x it suffices to use the states from Q x and we define
for each q ∈Q x the automaton Ax

q = (Q ∪ {q f }, {0,1},∆q, q, {q f }) by

∆q :=
�

(p, 0, p′) | (p, [0, 0], p′, p0) ∈∆, p0 ∈Q;
	

∪
�

(p, 1, p′) | (p, [0, 0], p0, p′) ∈∆, p0 ∈Q;
	

∪
�

(p,ε, q f) | (p, [1, 0], p0, p′) ∈∆, p0 ∈Q;}
	

where the states in Q; mark the direction which is not on the path. The first two subsets describe
the way down and the last one the accepting state. Note that Ax

q does not walk the whole path
from the root to x , but only the part after the common prefix of the paths to x and y . Automata
Ay

q are defined analogous. To describe the path down to the longest common prefix of x , y we
use the automaton Ax y

q = (Q ∪ {q f }, {0, 1},∆′q, q0, {q}) with

∆q :=
�

(p, 0, p′) | (p, [0, 0], p′, p0) ∈∆, p0 ∈Q;
	

�

(p, 0, p′) | (p, [0,0], p0, p′) ∈∆, p0 ∈Q;
	

Intuitively we can use any state q to extract the common prefix of x and y which ends at
a vertex v in the state q. With this we can use the automaton Ax

q to walk the path from v
to x and Ay

q to walk the path from v to y . The prefix can we read by Ax y
q and we set ≤ =

⋃

q∈Q L(Ax y
q)
�

L(Ax
q)× L(Ay

q)
�

To show that interpretations, prefix-recognizable graphs and inverse substitutions represent the
same set of linear orders it remains to show the following lemma:

Lemma 13
Let G = (V,≤, (Pc)c∈C) be a prefix-recognizable linear order. Then there is a regular homomor-
phism h : {v}∗ → P ({0, 1, 0, 1}∗), a finite family of regular sets Q = (Q i)i≤n and a regular
language L such that

�

h−1(TQ
2)�L, (Pc)c∈C

�

=G.

Proof. As G is prefix-recognizable, V is regular and there is a n ∈ N such that ≤ = ∪i≤nWi(Ui ×
Vi). L is given by V as both have the purpose of restricting the vertex set:

L := V

Let Ui denote the reverse language of Ui where additionally in every word every letter a is
replaced by a. Let $1, . . . , $n be new letters. We mark the vertices where the topmost point of
every path between two vertices in Wi(Ui × Vi) is with a regular language with $i. As Wi is
regular we can set Q i :=Wi to mark those vertices.

Let Arci be the language of all words that are labels on the shortest path from some vertex v to
some vertex w such that the label is in Ui ◦ $i ◦ Vi.

Arci := Ui ◦ $i ◦ Vi

12

Arci is regular because it involves only checking whether a word is the reverse of another and
checking the membership to regular sets.

We can now give the homomorphism by checking for a word w whether it is contained in Arc.

h(v) :=
⋃

i≤n

Arci

It remains to show that h−1(TQ
2 , (Pc)c∈C) �L= G holds. Let vh be the order relation of

h−1(TQ
2 , (Pc)c∈C)�L.

Let v , v ′ ∈ V be two vertices of the tree.

• v vh v ′⇒ v ≤ v ′:
If v vh v ′ then there is a word w such that w ∈ h(v), i.e. w is in Arci for some i and thus
(v , v ′) ∈

⋃

i≤n Wi(Ui × Vi) holds.

• v ≤ v ′⇒ v vh v ′:
If v ≤ v ′ then there is an i ≤ n and a word w ∈ Arci labeling the shortest path between
them. Thus w ∈ h(v) and v vh v ′ holds.

As both representations describe the same set of uncolored linear orders, they can be used to
represent the same set of colored linear colors if the colors themselves are finitely representable.
This is clearly the case with regular colors and allows the following theorem:

Theorem 2
Let I = (V, E, (Pc)c∈C) be a C-colored linear order with finitely many colors, then the following
statements are equivalent:

• There is an interpretation I such that I (T2) = I

• There is an inverse substitution h, a regular language L and families of regular sets
Q, (Pc)c∈C such that

�

h−1(TQ
2)�L, (Pc)c∈C

�

= I

• I is prefix-recognizable.

3 Generating Representations

The representations of generators do not rely on extracting regularity from the complete binary
tree. Instead they describe operations on trivially interpretable graphs to describe structure and
use fixed points to impose infinite size.

3.1 Order Terms

Analogous to regular expressions we define expressions to generate colored linear orders.

Definition (Order terms)
Let C be a finite set of colors and c ∈ C . We define the set of order terms by the following
grammar:

t ::= c | t + t | t ×ω | t ×−ω | shuffle(t, . . . , t)

13

The + operator describes ordered sums, × ordered products and shuffle(t1, . . . , tn) the shuffle
operation. c describes the linear order with one vertex that is colored solely with c. We define
the order defined by a term with the evaluation function J K:

Jshuffle(t1, . . . , tn)K= σ(Jt1K, . . . , JtnK)
Jt ×−ωK= JtK⊗−ω

Jt ×ωK= JtK⊗ω
Jt + t ′K= JtK⊕ Jt ′K

JcK=
��

0
	

,
�

(0,0)
	

, (Pc′)c′∈C

�

where Pc = {0} and Pc′ = ; for c′ 6= c.

We show that all linear orders generated by order-terms can be described by interpretations in
the binary tree.

Lemma 14
For every order term t there is an MSO-interpretation I such that JtK= I(T2).

Proof. Induction on the structure of t:

• Base Case, t = c:
In this case we can define the root element of the tree with δ(x) := ∀z.

�

x 6= left(z)∧ x 6=
right(z)

�

and define the relations by φ≤(x , y) = φc(x) = true and φc′ := false if c′ 6= c.
Finally we set I = 〈δ,φ≤, (φc)c∈C〉.

• Step Case, t = t ′ + t ′′:
By induction hypothesis we have interpretations I ′, I ′′ for Jt ′K,Jt ′′K with I ′ = 〈δ′,φ′≤, (φ′c)c∈C〉
and I ′′ = 〈δ′′,φ′′≤, (φ′′c)c∈C〉.

We need to ensure that we do not get elements satisfying δ that are in both orders, thus
we evaluate δ′ on the left sub-tree of the root and δ′′ on the right one:

δ(x) = δ′
�

left(ε)
�

(x)∨δ′′
�

right(ε)
�

(x)

This way we get Jt ′K as an order of elements in the left sub-tree and Jt ′′K an order of
elements in the right sub-tree, and we can distinguish between them by checking whether
0 or 1 is a prefix of all their elements.

As we have shifted the elements one step down we also need to consider this in the color-
ing:

φc(x) = φ
′
�

left(ε)
�

c (x)∨φ
′′
�

right(ε)
�

c (x)

However we can just use the ordering from the tree to encode the order on the interpreted
order:

φ≤(x , y) :=
�

left(ε)≤ x ∧ right(ε)≤ y
�

∨φ′≤

�

left(ε)
�

(x , y)∨φ′′≤

�

right(ε)
�

(x , y)

14

• Step Case, t = t ′ ×ω:
By induction hypothesis we have an interpretation I ′ for Jt ′K with I ′ = 〈δ′,φ′≤, (φ′c)c∈C〉.

One can see t ′ ×ω as a shortcut for t ′ + t ′ + t ′ + We can generalize the encoding for
addition by choosing not two elements where we interpret the sub-tree but by choosing a
infinite descending chain and interpreting the tree of t ′ under each element of it.

δ(x) := ∃y.
�

RBranch(y)∧δ′
�

left(y)
�

(x)
�

This formula expresses that there is a vertex on the rightmost path of the tree, and we
evaluate δ′ in the left subtree of any of this vertex.

The predicates for the relations are analogous to the t + t case.

φc(x) := ∀y.
�

RBranch(y)∧φ
′
�

left(y)
�

c (x)
�

φ≤(x , y) := ∃z. ∃z′.
�

RBranch(z)∧ RBranch(z′)∧ left(z)≤ x ∧ left(z′)≤ y∧

�

(z = z′ ∧φ
′
�

left(z)
�

≤ (x , y))∨ (z 6= z′ ∧ z ≤ z′
�

�

• Step Case, t = t ′ ×−ω:
analogous to the case t ′ ×ω with exchanging left and RBranch with right and LBranch.

• Step Case, t = shuffle(t(1), . . . , t(n)):
By induction hypothesis we have for each i ≤ n interpretations I (i) for Jt(i)K with I (i) =
〈δ(i),φ≤(i), (φc(i))c∈C〉.

By Lemma 3 we can construct n dense pairwise disjoint MSO-definable sets in T2 such
that every right successor of every element in every of these maps contains no elements
from any of these sets. We use the formulas (ψi)i≤n given in the proof of the lemma and
interpret the right successor of every element in the ith set with a copy of Jt(i)K:

δ(x) := ∃y.
∨

i≤n

�

ψi(y)→ δ
�

right(y)
�

(i) (x)
�

The predicate formulas are constructed analogously:

φc(x) := ∃y.
�
∨

i≤n

�

ψi(y)→ φc

�

right(y)
�

(i) (x)
��

φ≤(x , y) := ∃z.∃z′.
�∨

i≤n

ψi(z)∧
∨

i≤n

ψi(z
′)∧ right(z)≤ x ∧ right(z′)≤ x∧

�

(z = z′ ∧φ′≤(x , y))∨ (z 6= z′ ∧ z ≤ z′
�

�

15

3.2 Systems of Graph Equations

Order terms as introduced in the last section reassemble regular expressions for a more general
class of infinite linear orders. Here we introduce an extension of grammars to this class.

Definition
Let X = {x0, x1, . . . , xn} be a finite set of non-terminal symbols and C a set of colors. The set of
equation terms t is defined by the following grammar:

t ::= c | x i | t + t

An order equation is an expression x j = t where t is an equation term.

An system of order equations is a tuple (X , C , S, x0) where X and C are as above, S is a set of
order equations and x0 ∈ X is the start variable. Every non-terminal symbol occurs exactly once
on the left-hand-side of an equation.

We call a system of equations simple iff every equation has the form x i = x j + xk or x i = c.

We assume fixed X , C in this section and write S in the usual form:

x0 = x j + xk

. . .

x i = ci

. . .

xn = x l + xm

In regular grammars the solution of such a system is obtained by replacing non-terminals with
their definition. Here the non-terminals are nodes colored with an element of X that have to be
replaced with the order described by this symbol.

Definition
Let G = (X , C , S, x0) be a system of equations. The starting configuration of G is a set of orders
(gx)x∈X with colors C ∪ X where every gx is

• the graph with a single node that is colored with c if x occurs on the left-hand side of an
equation in S as x = c

• the graph with two nodes, colored with x i or xk if x occurs on the left-hand side of an
equation in S as x = x i + xk. In this graph there is a single edge going from the node
colored with x i to the other one.

Let Ĝ = (gx)x∈X be such a system of orders with colors C ∪ X . The step-function SĜ takes one
order as input and replaces all of its non-terminal nodes, which are colored with x i by the order
gxi

. If there is no non-terminal node it returns the order unchanged. The translation function
S ∗ takes a system of orders as described above and applies the step-function to every order.

We aim to define the solution of a system of equations G as sub-graph of the least fixed point
of S ∗ that is obtained from the starting variable. Before we can do this we need to state some
properties of SĜ:

16

Lemma 15
If we regard the set of all linear orders as a partial order with the prefix ordering the following
two statements hold:

• SĜ is monotonous

• SĜ is ω-complete, i.e. every sequence has a least upper bound.

A proof can be found in [CE12]

Definition
Let G be a system of equations and (gx)x∈X be a fixed point of S ∗, then gx0

is a solution of G.
The canonical solution is the graph g ′x0

of the least fixed point (g ′x)x∈X of S ∗. We denote the
canonical solution by can(G).

By Lemma 15 we can conclude that there is always a canonical solution. We show now that the
canonical solution can be described with an order term:

Lemma 16
Given a simple system of equations G = (X , C , S, x0) we can construct an order term t such that
JtK= can(G)

Proof. We define on the set X the following partial order: If xk = x i + x j then xk v x i and
xk v x j. The undirected graph of this order may not be connected, but for the construction of
the term only the sub-graph which contains x0 is relevant. Thus we may assume that v forms a
connected graph where all nodes are reachable from the node x0.

If this graph is a tree with x0 as the root, we may regard it as the syntax tree representation
of a term: the leaves are non-terminals with equations x i = c and we identify their node with
the respective color. The inner nodes are non-terminals with equations xk = x i + x j which we
identify with +.

If this graph is not a tree but contains no cycles we turn it into one: Let x be a node that has
two predecessors. We copy the graph under x and redirect one of the edges (x ′, x) to this copy.

Hence we only must find terms that resolve circles in the v-graph and turns it into a tree. In any
case we first remove the chains ending in leaves: we repeatedly replace all xk whose equation
contains no non-terminal by their defining equation-term. Thus we may assume that the circle
has no outgoing edges.

• Case 1 - the circle is a loop.
In this case the node with the loop is a variable xk with an equation xk = xk + c or
xk = c+ xk. We remove the loop and mark the node with the solution of its equation: c×ω
resp. c × (−ω)

• Case 2 - all circles are disjoint.
I.e. every non-terminal occurs in at most one circle. In this case the non-terminals

17

x i, x j, . . . xk form a subsystem of equations where every equation has one of the follow-
ing forms:

x i = x j + y
x j = y ′ + x l

where y, y ′ are equation terms without non-terminals. We repeatedly replace all xk in this
sub system by its definition until we have a single equation of the form

xk = y + xk + y ′

where y, y ′ are equation terms without non-terminals as before. We remove the whole
loop and replace it with a single node xk which we mark with the solution of this equation:
y ×ω+ y ′ × (−ω).

Case 1 can be seen as a degenerate subcase of this.

• Case 3 - some circles intersect.
I.e. there are nodes that occur in two circles. In this case the non-terminals x i, x j, . . . xk of
the both circles form an sub system where every equation has one of the following forms:

x i = xk + y
x j = y + x l

xk = xm + xn

We first apply the method from case 2 to get rid of the variables that have equation of
the first two forms. We end up with a system of equations where every equation has the
following form:

xk = y + xm + y ′ + xn + y ′′

where y, y ′, y ′′ are equation terms without non-terminals as before and xn, xm have equa-
tions of the same form.

For each of these equations we introduce a new variable x ′k and split the equation:

xk = y + xm + x ′k
x ′k = y ′ + xn + y ′′

And replace xk in the new equation with its definition, thus we end up with a system of
equations of the following form:

xk = y + xm + xn + y ′

For each of these equations we introduce new variables λk,ρk,µk and redefine the equa-
tion:

λk = y +λm

ρk = ρn + y ′

µk = µm +ρm +λn +µn

xk = λk +µk +ρk

18

The solution of the first two equations can be obtained from case 2:

λk = (y0 + · · ·+ yi)×ω
ρk = (y

′
0 + · · ·+ y ′i)× (−ω)

Where y0, y ′0 . . . are all the y and y ′ of the above equations. The µk are the dense shuffle
of the ρm + λn, thus we can replace all the cycles involved in the construction by n new
nodes x∗k, one for each in-going edge. Each x∗k is marked with the following term:

(y0 + · · ·+ yi)×ω+ shuffle(ρlλk) + (y
′
0 + · · ·+ y ′i)× (−ω)

Where ρlλk is the shortcut for the list of all ρm + λn with n, m for all pairs (xn, xm) of
variables that had an equation in the last step of the construction.

After removing all cycles we can again regard the tree as a syntax tree of a term, but with the
aforementioned markings as the terms on the leaves.

We complete this section by showing that given an interpretation for a linear order we can
construct a system of order equations that has this linear order as its solution. First we define
syntactic congruences for our orders:

Definition
As seen in Theorem 2 each linear order interpretable in T2 is composed from regular languages.
The syntactic congruence ∼ of such a linear order A with respect to a fixed interpretation is the
intersection of all syntactical congruences of the languages of its representation as described in
Lemma 13.

Lemma 17
Given an interpretation I = 〈δ(x),φ≤(x , y), (φc(x))c∈C〉 we can construct a simple system of
order equations G = (X , C , S, x0) such that

I(T2) = can(G)

Proof. Given Lemma 5 we can assume that I(T2) = (V,≤, (Pc)c∈C) where ≤ is a suborder of ≤T2
.

We first construct an infinite system of order equations by assigning a non-terminal Av to each
vertex v ∈ {0, 1}∗ with:

Av =
§

Av 0 + c + Av 1 if v ∈ V ∧ v ∈ Pc
Av 0 + Av 1 otherwise

It is easy to see that this system characterizes I(T2). We can reduce this system to a finite one
because there are only finitely many classes of pairs of disjoint subtrees in T2 which are equal
up to isomorphism [Blu03]: This follows from the fact that t1 ∼ t2 implies t1

∼= t2 and there are
only finitely many ∼ classes [Hol82] and thus èv ∼ èw∧ v ∼ w implies that the tree under v
and w are isomorphic.

19

Thus we can group the equations by the equivalence class of their left-hand side and retain only
one equation for each equivalence class. Finally we turn equations of the form A = A′ + c + A′′

into a subsystem of the form

A= A′ + B
B = C + A′′

C = c

with new non-terminals B, C . Thus the resulting system has I(T2) as its solution and is finite
and simple.

Given this three lemmas we can state the following theorem:

Theorem 3
Let L be a C-colored linear order with finitely many colors, then the following statements are
equivalent:

• There is an interpretation I such that I(T2) = L

• There is a simple system of order equations G such that can(G) = L

• There is an order term t such that JtK= L

4 Generalizations and Further Representations

The representations of acceptors in this work are based on the study of general graphs inter-
pretable in the complete binary tree. Thus Theorem 2 holds for this bigger class. Our proof
of 2 is based on a general proof in [Cau96]. This class of graphs can be extended in several
ways: [Cau02] introduced a hierarchy with the prefix-recognizable graphs at the bottom. In
[KN95] automatic structures were introduced, which characterize infinite structures that are FO-
interpretable in the complete binary tree with additional information. The prefix-recognizable
graphs are a strict subset of them.

The representations of acceptors require another set of operations to generalize to general
graphs. In [Bar97] it is shown that there is such a set that gives rise to systems of equations
whose solutions are prefix-recognizable. These VR-grammars generalize the simple graph gram-
mars used here. Further graph terms are introduced, where the countable terms have prefix-
recognizable graphs as their solution, whether it is possible to represent them with finite terms
over other operations is yet unknown. Our proof is based on [Blu03].

In [Blu01] representations based on groups for prefix-recognizable graphs are presented, e.g.
that the Caylay-graph of a group is prefix-recognizable iff the group is context-free or virtually
free.

Furthermore it is known that prefix-recognizable graphs correspond to the configuration graph
of pushdown automata with ε-transitions[Sti00].

20

References

[Bar97] Klaus Barthelmann. On equational simple graphs. Technical report, 1997.

[Blu01] Achim Blumensath. Prefix-recognisable graphs and monadic second-order logic. Tech-
nical report, RWTH Aachen, 2001.

[Blu03] Achim Blumensath. Structures of Bounded Partition Width. PhD thesis, RWTH Aachen,
2003.

[Cau96] Didier Caucal. On infinite transition graphs having a decidable monadic theory. In
Proceedings of the 23rd International Colloquium on Automata, Languages and Pro-
gramming, ICALP ’96, pages 194–205, London, UK, UK, 1996. Springer-Verlag.

[Cau02] Didier Caucal. On infinite terms having a decidable monadic theory. In Mathematical
Foundations of Computer Science 2002, 27th International Symposium, MFCS 2002,
Warsaw, Poland, August 26-30, 2002, Proceedings, pages 165–176, 2002.

[CE12] Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order
Logic: A Language-Theoretic Approach. Cambridge University Press, New York, NY,
USA, 1st edition, 2012.

[EB58] Calvin C. Elgot and Julius R. Büchi. Decision problems of weak second order arith-
metics and finite automata. Notices of the American Mathematical Society, 1958.

[ER66] Calvin C. Elgot and Michael O. Rabin. Decidability and undecidability of extensions
of second (first) order theory of (generalized) successor. Journal of Symbolic Logic,
31(2):169–181, 1966.

[GKP94] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics:
A Foundation for Computer Science. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2nd edition, 1994.

[Hol82] William Michael Lloyd Holcombe. Algebraic automata theory. Cambridge studies in ad-
vanced mathematics. Cambridge University Press, Cambridge, New York, Melbourne,
1982.

[KN95] Bakhadyr Khoussainov and Anil Nerode. Automatic presentations of structures. In
Selected Papers from the International Workshop on Logical and Computational Com-
plexity, LCC ’94, pages 367–392, London, UK, UK, 1995. Springer-Verlag.

[Ros82] J.G. Rosenstein. Linear Orderings. 1982.

[Sti00] Colin Stirling. Decidability of bisimulation equivalence for pushdown processes. Tech-
nical report, 2000.

[Tho96] Wolfgang Thomas. Languages, automata, and logic. In Handbook of Formal Languages,
pages 389–455. Springer, 1996.

21

	Fundamentals
	Graphs and Trees
	Operations on Graphs
	Regular Languages

	Representations of Acceptors
	Inverse Substitutions
	Prefix-Recognizable Graphs

	Generating Representations
	Order Terms
	Systems of Graph Equations

	Generalizations and Further Representations

