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Abstract

We survey operations on (possibly in�nite) relational structures
that are compatible with logical theories in the sense that, if we apply
the operation to given structures then we can compute the theory of
the resulting structure from the theories of the arguments (the logics
under consideration for the result and the arguments might di�er).

Besides general compatibility results for these operations we also
present several results on restricted classes of structures, and their
use for obtaining classes of in�nite structures with decidable theories.

1 Introduction

The aim of this article is to give a survey of operations that can be per-
formed on relational structures while preserving decidability of theories. We
mainly consider �rst-order logic (FO), monadic second-order logic (MSO),
and guarded second-order logic (GSO, also called MS2 by Courcelle). For
example, we might be interested in an operation f that takes a single struc-
ture a and produces a new structure f(a) such that the FO-theory of f(a)
can be e�ectively computed from the MSO-theory of a (we call such oper-
ations (MSO, FO)-compatible), i.e., for each FO-formula ϕ over f(a) we can
construct an MSO-formula ϕ∗ such that

f(a) |= ϕ iff a |= ϕ∗.
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The main application of such operations is to transfer decidability results
for logical theories. This technique can be applied for single structures, as
well as uniformly over classes of structures. The �rst approach is often
used for in�nite structures, but it becomes trivial if the structure is �nite
since each �nite structure has a decidable MSO-theory (even a decidable full
second-order theory). The second approach is also useful for classes of �nite
structures as not every such class has a decidable theory.

In order to process structures by algorithmic means, a �nite encoding
of the structure is required. Such encodings are trivial when structures are
�nite (though one may be interested into �nding compact presentations),
but the choice of encoding becomes a real issue when dealing with in�nite
structures. The approach using operations compatible with logical theories
is as follows. Starting from a (countable) setB of structures all of which have
a decidable theory for a certain logic L, we can construct new structures with
a decidable theory (possibly for a di�erent logic L′) by applying operations
from a �xed (countable) set O of operations of the above form. This gives
rise to the class C of all structures that can be obtained from the basic
structures in B by application of the operations in O. Every element of C
can be represented by a term over O ∪ B. Evaluating an L′-formula over
a structure in C then amounts to constructing and evaluating L-formulae
over structures from B.

Given such a de�nition of a class of structures, an interesting problem is
to understand what structures can be encoded in this way and to give alter-
native characterisations of them. Before we give examples of such classes,
let us brie�y summarise the main operations we are interested in.

Interpretations. An interpretation uses logical formulae with free vari-
ables to describe relations of a new structure inside a given one. Each
formula with n free variables de�nes the relation of arity n that contains
all tuples satisfying the formula. Usually, the free variables are �rst-order
variables and the universe of the new structure is a subset of the universe of
the original structure. Depending on the type of the formulae one speaks of
FO- and MSO-interpretations, and it is not di�cult to see that these types
of interpretations preserve the respective logic. We will frequently combine
other operations with interpretations that perform some pre-processing and
post-processing of structures.

Products. The simplest form is the direct or Cartesian product of two
or more structures. A generalised version allows us to additionally de�ne
new relations on the product by evaluating formulae on the factors and
relating the results on the di�erent factors by another formula. Feferman
and Vaught [FV59] proved that the �rst-order theory of such a product is
determined by the �rst-order theories of its factors (see also [Mak04] for an
overview).



Logical Theories and Compatible Operations 3

Sums. To transfer the results of Feferman and Vaught for products to
monadic second-order logic, Shelah considered sums (or unions) of struc-
tures instead of products [She75].

Iteration. The iteration of a structure consists of copies of the original
structure that are arranged in a tree-like fashion. A theorem of Muchnik
that has been proven in [Wal96, Wal02] states that the MSO-theory of an
iteration can be reduced to the MSO-theory of the original structure.

Incidence Structure. The universe of the incidence structure contains,
in addition to the elements of the original structure, all tuples that appear
in some relation. This construction can be used to reduce the GSO-theory
of a structure to the MSO-theory of its incidence structure [GHO02].

Power set. The power set of a structure consists of all of its subsets.
The relations are transferred to the singleton sets and the signature addi-
tionally contains the subset relation. There is also a weak variant of the
power-set operation that takes only the �nite subsets of a structure. These
constructions allow us to translate FO-formulae over the power-set structure
to MSO-formulae over the original structure, and to weak MSO-formulae in
case of �nite sets [CL07b].

Of course, these operations can also be combined to obtain more com-
plex ones. For example, applying a product with a �nite structure fol-
lowed by an MSO-interpretation yields a parameterless MSO-transduction

(see e.g., [Cou94]). Or applying the power-set operation followed by an
FO-interpretation gives an operation called a set interpretation (or �nite set
interpretation in the case of the weak power set) [CL07b].

Besides the general results on the compatibility of these operations, we
are interested in their behaviour on special classes of structures. In partic-
ular we consider the following families.

Tree-interpretable structures are structures that can be obtained by the
application of an interpretation to a tree. Here, the interpretation can be
chosen to be �rst-order, weak monadic-second order, or monadic second-
order without a�ecting the de�nition (if the tree is changed accordingly).
This class coincides with the class of structures of �nite partition width
[Blu06]. The corresponding class of graphs consists of those with �nite
clique width [Cou04]. Seese [See91] conjectures that all structures with
decidable MSO-theory are tree-interpretable.

Structures of �nite tree width resemble trees. They can be characterised
as the structures with a tree-interpretable incidence graph. A theorem of
Seese [See91] states that all structures with decidable GSO-theory are have
�nite tree width.

Uniformly sparse structures are the structures where the relations con-
tain �few� tuples. Over these structures the expressive powers of GSO and
MSO coincide [Cou03]. A tree-interpretable structure is uniformly sparse if
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and only if it has �nite tree width.

Structures FO-interpretable in the weak power set of a tree have a FO-
theory which is reducible to the WMSO-theory of the tree. Special techniques
are developed to study those structures. In particular, we present reductions
to questions about WMSO-interpretability in trees.

Finally, we employ compatible operations to de�ne classes of in�nite
structures with decidable theories. We use the following classes of structures
to illustrate this method.

Pre�x-recognisable structures. The original de�nition of this class is
based on term rewriting systems [Cau96]. In our framework, these are
all structures that can be obtained from the in�nite binary tree by an
MSO-interpretation, or equivalently by an FO-interpretation [Col07]. As
the in�nite binary tree has a decidable MSO-theory [Rab69], the same holds
for all pre�x-recognisable structures. A fourth de�nition can be given in
terms of the con�guration graphs of pushdown automata [MS85]. A graph
is pre�x-recognisable if and only if it can be obtained from such a con�g-
uration graph by factoring out ε-transitions. The class of HR-equational

structures is a proper subclass of the pre�x-recognisable structures [Cou89].
By de�nition, each pre�x-recognisable structure is tree-interpretable and it
is HR-equational if and only if it has �nite tree width or, equivalently, if it
is uniformly sparse.

The Caucal hierarchy. This hierarchy is de�ned by combining MSO-inter-
pretations with the iteration operation. Starting from the set of all �nite
structures one alternatingly applies these two operations [Cau02]. The �rst
level of this strict hierarchy corresponds to the class of pre�x-recognisable
structures. As both operations are compatible with MSO, one obtains a
large class of in�nite graphs with decidable MSO-theories. Each structure
in the Caucal hierarchy is tree-interpretable.

Automatic structures. According to the original de�nition, the universe
of an automatic structure is a regular set of words and the relations are
de�ned by �nite automata that read tuples of words in a synchronous way
[Hod83]. In the same way one can de�ne tree-automatic structures using
tree automata instead of word automata (and an appropriate de�nition of
automata reading tuples of trees).

In our approach, automatic structures are obtained via an FO-interpre-
tation from the weak power set of the structure 〈ω,<〉 (the natural numbers
with order). In the same way, tree-automatic structures can be obtained
from the in�nite binary tree [CL07b]. By the choice of the operations it
follows that each (tree-)automatic structure has a decidable FO-theory.

Tree-automatic hierarchy. Combining the previous ideas, one can con-
sider the hierarchy of structures obtained by applying the weak power-set
operation followed by an FO-interpretation to all trees in the Caucal hier-
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archy. It can be shown that this yields a strict hierarchy of structures with
a decidable FO-theory.

The article is structured as follows. In the next section we introduce
basic terminology and de�nitions. Section 3 is devoted to the presentation
of the operations and basic results concerning their compatibility. Further
results that can be obtained on restricted classes of structures are presented
in Section 4. The use of compatible operations for de�ning classes of struc-
tures with decidable theories is illustrated in Section 5.

2 Preliminaries

Let us �x notation. We de�ne [n] := {0, . . . , n − 1}, and P(X) denotes
the power set of X. Tuples ā = 〈a0, . . . , an−1〉 ∈ An will be identi�ed
with functions [n] → A. We will only consider relational structures a =
〈A,R0, . . . , Rn−1〉 with �nitely many relations R0, . . . , Rn−1 and where the
universe A is at most countable.

An important special case of structures are trees. Let D be a set. We
denote by D∗ the set of all �nite sequences of elements of D. The empty
sequence is 〈〉. The pre�x ordering is the relation � ⊆ D∗ ×D∗ de�ned by

x � y : iff y = xz for some z ∈ D∗.

An unlabelled tree is a structure t isomorphic to 〈T,�〉 where T ⊆ D∗

is pre�x closed, for some set D. A tree is a structure of the form 〈T,�, P̄ 〉
where 〈T,�〉 is an unlabelled tree and the Pi are unary predicates.

A tree is deterministic if it is of the form 〈T,�, (childd)d∈D, P̄ 〉 where
D is �nite and

childd := {ud | u ∈ D∗ } .

The complete binary tree is t2 :=
〈
{0, 1}∗, child0, child1,�

〉
.

We will consider several logics. Besides �rst-order logic FO we will use
monadic second-order logic MSO which extends FO by set variables and
set quanti�ers, weak monadic second-order logic WMSO which extends FO

by variables for �nite sets and the corresponding quanti�ers, and guarded

second-order logic GSO. The syntax of GSO is the same as that of full
second-order logic where we allow variables for relations of arbitrary arity
and quanti�cation over such variables. The semantics of such a second-
order quanti�er is as follows (for a more detailed de�nition see [GHO02]).
We call a tuple ā guarded if there exists a relation Ri and a tuple c̄ ∈ Ri

such that every component ai of ā appears in c̄. A relation is guarded if it
only contains guarded tuples. We de�ne a formula of the form ∃Sϕ(S) to
be true if there exists a guarded relation S satisfying ϕ. Similarly, ∀Sϕ(S)
holds if every guarded relation S satis�es ϕ. For instance, given a graph
g = 〈V,E〉 we can use guarded quanti�ers to quantify over sets of edges.
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De�nition 2.1. Let L and L′ be two logics. A (total) unary operation f
on structures is (L,L′)-compatible if, for every sentence ϕ ∈ L′, we can
e�ectively compute a sentence ϕf ∈ L such that

f(a) |= ϕ iff a |= ϕf , for every structure a .

We call f (L,L′)-bicompatible if, furthermore, for every sentence ϕ ∈ L, we
can e�ectively compute a sentence ϕ′ ∈ L′ such that

a |= ϕ iff f(a) |= ϕ′ , for every structure a .

For the case that L = L′ we simply speak of L-compatible and L-bicompatible
operations.

The interest in compatible operations is mainly based on the fact that
they preserve the decidability of theories.

Lemma 2.2. Let f be a (L,L′)-compatible operation. If the L-theory of a
is decidable then so is the L′-theory of f(a).

Another natural property of this de�nition is the ability to compose
compatible operations.

Lemma 2.3. If f is an (L,L′)-compatible operation and g an (L′, L′′)-com-
patible one then g ◦ f is (L,L′′)-compatible. If f and g are bicompatible
then so is g ◦ f .

3 Operations

In this section we survey various operations on structures and their e�ect
on logical theories (see also [Mak04, Tho97a, Gur85]). We attempt to pro-
vide a generic and self-contained panorama. We do not intend to present
all results in their strongest and most precise form. For instance, many
compatibility statements can be strengthened to compatibility for (i) the
bounded quanti�er fragments of the corresponding logics; (ii) their exten-
sions by cardinality and counting quanti�ers; or (iii) operations depending
on parameters. The statements we present could also be re�ned by study-
ing their complexity in terms of the size of formulae. This goes beyond the
scope of this survey.

3.1 Generic operations

We start with interpretations, which are among the most versatile opera-
tions we will introduce. In fact, all other operations we present are quite
limited on their own. Only when combined with an interpretation they
reveal their full strength.
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De�nition 3.1. Let L be a logic and Σ and Γ signatures. An L-interpre-
tation from Σ to Γ is a list

I =
〈
δ(x), (ϕR(x̄))R∈Γ

〉
of L-formulae over the signature Σ where δ has 1 free (�rst-order) variable
and the number of free variables of ϕR coincides with the arity of R.

Such an interpretation induces an operation mapping a Σ-structure a to
the Γ-structure

I(a) := 〈D,R0, . . . , Rr−1〉

where

D :=
{
a ∈ A

∣∣ a |= δ(a)
}

and Ri :=
{
ā ∈ An

∣∣ a |= ϕRi
(ā)

}
.

The coordinate map of I is the function mapping those elements of A that
encode an element of I(a) to that element. It is also denoted by I.

An L-interpretation with δ(x) = true is called an L-expansion. An L-
marking is an L-expansion that only adds unary predicates without chang-
ing the existing relations of a structure.

Proposition 3.2. Let I be an L-interpretation where L is one of FO,
WMSO, or MSO. For every L-formula ϕ(x̄), there exists an L-formula ϕI(x̄)
such that

I(a) |= ϕ(I(ā)) iff a |= ϕI(ā) ,

for all structures a and all elements ai ∈ A with a |= δ(ai).

The formula ϕI is easily constructed from ϕ by performing the following
operations: (i) replacing every atom Rx̄ by its de�nition ϕR ; (ii) relativising
all �rst-order quanti�ers to elements satisfying δ, and all set quanti�ers to
sets of such elements.

Corollary 3.3. L-interpretations are L-compatible if L is one of FO, WMSO,
or MSO.

A nice property of interpretations is that they are closed under compo-
sition.

Proposition 3.4. Let L be one of FO, WMSO, or MSO. For all L-interpre-
tations I and J , there exists an L-interpretation K such that K = I ◦ J .

The second generic operation we are considering is the quotient opera-
tion.
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De�nition 3.5. Let a = 〈A, R̄〉 be a structure and ∼ a binary relation. If
∼ is a congruence relation of a then we can form the quotient of a by ∼
which is the structure

a/∼ := 〈A/∼, S̄〉

where, if we denote the ∼-class of a by [a], we have

A/∼ :=
{

[a]
∣∣ a ∈ A}

,

Si :=
{
〈[a0], . . . , [an−1]〉

∣∣ 〈a0, . . . , an−1〉 ∈ Ri

}
.

By convention, if ∼ is not a congruence, we set a/∼ to be a.

We will only consider quotients by relations ∼ that are already present
in the structure. This is no loss of generality since we can use a suitable
interpretation to add any de�nable equivalence relation. For a relation
symbol R and a structure a we denote by Ra the relation of a corresponding
to R.

Proposition 3.6. Let L be one of FO, WMSO or MSO, and ∼ a binary
relation symbol. The quotient operation a 7→ a/∼a is L-compatible.

Remark 3.7. (a) The convention in the case that ∼ is not a congruence
causes no problems for the logics we are considering since in each of them
we can express the fact that a given binary relation is a congruence.

(b) In order to factorise by a de�nable congruence relation that is not
present in the structure we can precede the quotient operation by a suitable
interpretation that expands the structure by the congruence.

(c) It is also possible to de�ne quotients with respect to equivalence rela-
tions that are no congruences. This case is also subsumed by our de�nition
since, given an equivalence relation ∼, we can use an FO-interpretation I
to modify the relations of a structure a in such a way that ∼ becomes a
congruence and the quotient I(a)/∼ equals a/∼.

Another property of the quotient operation is that it commutes with
interpretations in the sense of the following proposition.

Proposition 3.8. Let L be one of FO, WMSO or MSO. For every L-
interpretation I and each binary relation symbol ∼, there exists an L-
interpretation J such that

I(a/∼a) = J (a)/∼J (a) , for every structure a .

In combination with Proposition 3.4, it follows that every sequence of
L-interpretations and quotients can equivalently be written as a single L-
interpretation followed by a quotient. This is the reason why one often
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de�nes a more general notion of an interpretation that combines the simple
interpretations above with a quotient operation by a de�nable congruence.
It follows that these generalised interpretations are also closed under com-
position.

3.2 Monadic second-order logic

We now turn to operations compatible speci�cally with monadic second-
order logic. The simplest one is the disjoint union. We also present a much
more general kind of union called a generalised sum. Finally we present
Muchnik's iteration construction.

De�nition 3.9. The disjoint union of two structures a = 〈A, R̄〉 and b =
〈B, S̄〉 is the structure

a ] b := 〈A ·∪B, T̄ 〉 where Ti := Ri ·∪ Si .

The theory of the sum can be reduced to the theory of the two arguments
using the following proposition.

Proposition 3.10. Let L be one of FO, MSO, WMSO or GSO. For every
L-formula ϕ there exist L-formulae ψ0, . . . , ψn and ϑ0, . . . , ϑn such that

a ] b |= ϕ iff there is some i ≤ n such that a |= ϕi and b |= ϑi .

Unions behave well with respect to MSO, but the same does not hold for
products. A notable exception are products with a �xed �nite structure. In
the following de�nition we introduce the simpler product with a �nite set,
which, up to FO-interpretations, is equivalent to using a �nite structure.

De�nition 3.11. Let a = 〈A, R̄〉 be a structure and k < ω a number. The
product of a with k is the structure

k × a :=
〈
[k]×A, R̄′, P̄ , I

〉
,

where

R′
j := { (〈i, a0〉, . . . , 〈i, an−1〉) | ā ∈ Rj and i < k } ,
Pi := {i} ×A ,

I := { (〈i, a〉, 〈j, a〉) | a ∈ A, i, j < k } .

Proposition 3.12. For every MSO-formula ϕ(X0, . . . , Xn−1) and all k < ω,
there exists an MSO-formula ϕk(X̄0, . . . , X̄n−1) such that

k × a |= ϕ(P 0, . . . , Pn−1) iff a |= ϕk(Q̄0, . . . , Q̄n−1) ,

where Ql
i := { a ∈ A | 〈i, a〉 ∈ P l } . The same holds for WMSO.
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This result can be proven as a consequence of Theorem 3.16 below.

Corollary 3.13. For k < ω, the product operation a 7→ k × a is MSO-
compatible. It is MSO-bicompatible if k 6= 0. The same holds for WMSO and
GSO.

Finite products are sometimes combined with MSO-interpretations re-
sulting in what is called a parameterless MSO-transduction [Cou94]. Such
a transduction maps a structure a to the structure I(k × a), where k is a
natural number, and I is an MSO-interpretation. It follows that parameter-
less MSO-transductions are MSO-compatible. Furthermore, they are closed
under composition since, for every MSO-interpretation J , there exists an
MSO-interpretation K with

k × J (l × a) ∼= K(kl × a) .

The operation of disjoint union can be generalised to a union of in�nitely
many structures. Furthermore, we can endow the index set with a struc-
ture of its own. This operations also generalises the product with a �nite
structure.

De�nition 3.14. Let i = 〈I, S̄〉 be a structure and (a(i))i∈I a sequence of
structures a(i) = 〈A(i), R̄(i)〉 indexed by elements i of i.

The generalised sum of (a(i))i∈I is the structure∑
i∈i

a(i) :=
〈
U,∼, R̄′, S̄′

〉
with universe U := { 〈i, a〉 | i ∈ I, a ∈ A(i) } and relations

〈i, a〉 ∼ 〈j, b〉 : iff i = j ,

R′
l :=

{
(〈i, a0〉, . . . , 〈i, an−1〉)

∣∣ i ∈ I and ā ∈ R(i)
l

}
,

S′l :=
{

(〈i0, a0〉, . . . , 〈in−1, an−1〉)
∣∣ ı̄ ∈ Sl

}
.

To illustrate the de�nition let us show how a generalised sum can be
used to de�ne the standard ordered sum of linear orderings.

Example 3.15. Let i = 〈I,@〉 and a(i) = 〈A(i), <(i)〉, for i ∈ I, be linear
orders. Then ∑

i∈i

a(i) = 〈U,∼, <,@〉

where U = { 〈i, a〉 | a ∈ A(i) } and we have

〈i, a〉 < 〈j, b〉 iff i = j and a <(i) b ,

〈i, a〉 @ 〈j, b〉 iff i @ j .
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If we introduce the new (de�nable) relation

〈i, a〉 ≺ 〈j, b〉 : iff 〈i, a〉 @ 〈j, b〉 or 〈i, a〉 < 〈j, b〉

then the structure 〈U,≺〉 is isomorphic to the ordered sum of the orders a(i).

The generalisation of Proposition 3.10 takes the following form.

Theorem 3.16. For every MSO-sentence ϕ, we can construct a �nite se-
quence of MSO-formulae χ0, . . . , χs−1 and an MSO-formula ψ such that∑

i∈i

a(i) |= ϕ iff
〈
i, [[χ0]], . . . , [[χs−1]]

〉
|= ψ ,

where [[χ]] := { i ∈ I | a(i) |= χ } .

Remark 3.17. This theorem is a special case of a result of Shelah [She75]
following the ideas developped by Feferman and Vaught [FV59], see [Tho97a,
Gur85] for a readable exposition. As mentioned above it implies Proposi-
tion 3.10 (for MSO) as well as Proposition 3.12.

We �nally survey the iteration operation originally introduced by Much-
nik. Given a structure a this operation produces a structure consisting of
in�nitely many copies of a arranged in a tree-like fashion.

De�nition 3.18. The iteration of a structure a = 〈A, R̄〉 is the structure
a∗ := 〈A∗,�, cl, R̄∗〉 where � is the pre�x ordering and

cl := {waa | w ∈ A∗, a ∈ A } ,
R∗

i := { (wa0, . . . , war) | w ∈ A∗, ā ∈ Ri } .

Theorem 3.19 (Muchnik). The iteration operation is MSO-bicompatible.1

Remark 3.20. The Theorem of Muchnik was announced without proof
in [Sem84]. The �rst published proof, based on automata-theoretic tech-
niques, is due to Walukiewicz [Wal96, Wal02]. An exposition can be found
in [BB02] and a generalisation to various other logics is given in [BK05].

Example 3.21. (a) Let a := 〈[2], P0, P1〉 be a structure with two elements
and unary predicates P0 := {0} and P1 := {1} to distinguish them. Its
iteration a∗ = 〈[2]∗,�, cl, P ∗

0 , P
∗
1 〉 resembles the complete binary tree t2.

Applying a simple (quanti�er free) FO-interpretation I we obtain t2 = I(a∗).

1 In the printed version of the paper the same statement is made for WMSO. At present,
the question whether the iteration operation is WMSO-(bi)compatible is open. We
thank Dietrich Kuske for pointing us to this mistake.
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(b) Let g be a graph. The unravelling of g is the graph U(g) := 〈U,F 〉
where U is the set of all paths through g and F consists of all pairs 〈u, v〉
such that the path v is obtained from u by appending a single edge of g.

The unravelling of g can be obtained from g via an iteration followed by
an interpretation. Note that g∗ consists of all sequences of vertices of g. All
that is needed to get U(g) is to de�ne the subset of those sequences that
are paths through g. This can be done by the formula

δ(w) := ∀u∀v
[
suc(u, v) ∧ v � w → ∃u′(suc(u, u′) ∧ cl(u′) ∧ E∗u′v)

]
.

In view of the examples above we directly obtain the following corollaries.

Corollary 3.22 (Rabin [Rab69]). The MSO-theory of the in�nite binary
tree t2 is decidable.

Corollary 3.23 (Courcelle, Walukiewicz [CW98]). The unravelling opera-
tion U is MSO-compatible and WMSO-compatible.

Finally, let us mention that iterations commute with interpretations in
the following sense.

Lemma 3.24 ([Blu03]). For every MSO-interpretation I, there exists an
MSO-interpretation J such that

I(a)∗ = J (a∗), for all structures a .

3.3 First-order logic

In this section we concentrate on �rst-order logic. We start by introducing
the power-set operation which relates MSO-theories to FO-theories. This
operation provides a systematic way to relate results about FO-compatibility
to those about MSO-compatibility above.

De�nition 3.25. Let a = 〈A, R̄〉 be a structure. The power set of a is the
structure

P(a) := 〈P(A), R̄′,⊆〉 ,

where R′
i :=

{
〈{a0}, . . . , {an−1}〉

∣∣ ā ∈ Ri

}
.

The weak power set Pw(a) of a is the substructure of P(a) induced by
the set of all �nite subsets of A.

Since elements of P(a) are sets of elements of a, FO-formulae over P(a)
directly correspond to MSO-formulae over a (and similarly for WMSO).

Proposition 3.26. (a) For every FO-formula ϕ(x̄), we can construct an
MSO-formula ϕ′(X̄) such that

P(a) |= ϕ(P̄ ) iff a |= ϕ′(P̄ ) ,
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for every structure a and all subsets Pi ⊆ A.
(b) For every MSO-formula ϕ(X̄), we can construct an FO-formula ϕ′(x̄)

such that

a |= ϕ(P̄ ) iff P(a) |= ϕ′(P̄ ) ,

for every structure a and all subsets Pi ⊆ A.
(c) Analogous statements hold for WMSO-formulae and the weak power-

set operation Pw.

Corollary 3.27. The power-set operation P is (MSO, FO)-bicompatible and
the weak power-set operation Pw is (WMSO, FO)-bicompatible.

Lemma 3.28. For every MSO-interpretation I, there exists an FO-interpre-
tation J such that

P ◦ I = J ◦ P .

A similar statement holds with WMSO instead of MSO and Pw instead of P.

Remark 3.29. In [Col04, CL07b] (�nite) set interpretations are introduced
which are halfway between �rst-order and monadic second-order interpre-
tations. A (�nite) set interpretation is of the form

I =
〈
δ(X), (ϕR(X̄))R∈Γ

〉
where δ, ϕR are (weak) monadic second-order formulae with set variables

as free variables. Correspondingly the elements of the structure I(a) are
encoded by (�nite) subsets of the original structure. With the operations of
the present article we can express such a set interpretation as, respectively,

J ◦ P or J ◦ Pw

where J is an FO-interpretation. From Corollary 3.27 it follows that

• set interpretations are (MSO, FO)-compatible and

• �nite set interpretations are (WMSO, FO)-compatible.

From Lemma 3.28 and Proposition 3.4 it follows that, if I is an FO-inter-
pretation, J a set interpretation, and K an MSO-interpretation then their
composition I ◦J ◦K is also a set interpretation. The same holds for �nite
set interpretations provided K is a WMSO-interpretation.

We have mentioned that products are not compatible with monadic
second-order logic. But they are compatible with �rst-order logic. In fact,
historically they were among the �rst operations shown to be compatible
with some logic.
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De�nition 3.30. The (direct, or Cartesian) product of two structures a =
〈A, R̄〉 and b = 〈B, S̄〉 is the structure

a× b := 〈A×B, T̄ 〉 ,

where Ti :=
{

(〈a0, b0〉, . . . , 〈an−1, bn−1〉)
∣∣ ā ∈ Ri and b̄ ∈ Si

}
.

Proposition 3.31. For every FO-formula ϕ, we can construct FO-formulae
ψ0, . . . , ψn and ϑ0, . . . , ϑn such that

a× b |= ϕ iff there is some i ≤ n such that a |= ψi and b |= ϑi .

Product and disjoint union are related via the power-set construction.

Proposition 3.32. There exist FO-interpretations I,J and K such that

P(a ] b) ∼= I(J (P(a))×K(P(b))) , for all structures a and b .

A similar statement holds with Pw instead of P.

Remark 3.33. (a) The interpretations J and K are only needed to avoid
problems with empty relations. If a relation is empty in one of the factors
then the corresponding relation of the product is also empty and cannot be
reconstructed. The quanti�er-free interpretations are used to create dummy
relations to avoid this phenomenon.

(b) Using this result together with the (MSO, FO)-bicompatibility of P
we can deduce the MSO variant of Proposition 3.10 from Proposition 3.31.
A similar argument yields the WMSO version.

Similar to �nite products that are MSO-compatible we can de�ne a �nite
exponentiation which is FO-compatible.

De�nition 3.34. Let a = 〈A, R̄〉 be a structure and k < ω a number. The
exponent of a to the k is the structure

ak := 〈Ak, R̄′, Ē〉

with relations

R′
li := { (ā0, . . . , ān−1) | (a0

i , . . . , a
n−1
i ) ∈ Rl } ,

Eij := { (ā, b̄) | ai = bj } .

The good behaviour of the �nite exponent operation is illustrated by the
next proposition.
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Proposition 3.35. For each k < ω and every FO-formula ϕ(x0, . . . , xn−1),
there exists an FO-formula ϕk(x̄0, . . . , x̄n−1) such that

ak |= ϕ(ā0, . . . , ān−1) iff a |= ϕk(ā0, . . . , ān−1) ,

for every structure a and all āi ∈ Ak.

Corollary 3.36. Let k < ω. The exponent operation a 7→ ak is FO-
compatible. It is FO-bicompatible for k ≥ 1.

The relation between �nite exponentiation and �nite products is given
in the next proposition. (This allows us to deduce Proposition 3.12 from
Proposition 3.35).

Proposition 3.37. For every k < ω, there exists an FO-interpretation I
such that

P(k × a) ∼= I(P(a)k) , for every structure a .

The same holds for the weak power-set operation.

In the same way as the combination of MSO-interpretations and �nite
products leads to the notion of a parameterless MSO-transduction, one can
perform a �nite exponentiation before an FO-interpretation. The resulting
operation is called a k-dimensional FO-interpretation. The composition of
a k-dimensional FO-interpretation with an l-dimensional one yields a kl-
dimensional FO-interpretation. In the same spirit as above, multi-dimen-
sional interpretations are correlated to parameterless MSO-transductions via
the power-set operation.

As for unions we can generalise products to in�nitely many factors. In
the original de�nition of a generalised product by Feferman and Vaught
[FV59] FO-formulae are used to determine the relations in the product
structure. We will adopt a simpler yet richer de�nition where the product
structure is completely determined by the index structure and the factors.

De�nition 3.38. Let a(i) = 〈A(i), R̄(i)〉, i ∈ I, be structures, and let

i =
〈
P(I),⊆, S̄

〉
be the expansion of the power-set algebra P(I) by arbitrary relations S̄. We
de�ne the generalised product of the a(i) over i to be the structure∏

i∈i

a(i) :=
〈
U,⊆, S̄, R̄′, E=〉
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with universe

U := P(I) ·∪
∏
i∈I

A(i)

where the relations ⊆ and S̄ are those of i and we have

R′
k :=

{
(X, ā)

∣∣ X = [[Rā]]
}
,

E= :=
{

(X, a, b)
∣∣ X = [[a = b]]

}
,

and [[χ(ā)]] := { i ∈ I | a(i) |= χ(ā(i)) }.

Before stating that the generalised products are compatible with �rst-
order logic let us give two examples.

Example 3.39. Let g0 = 〈V0, E0〉 and g1 = 〈V1, E1〉 be two directed
graphs. There are two standard ways to form their product: we can take the
direct or synchronous product with edge relation Es := E0×E1, and we can
take the asynchronous product with edge relation Ea := (E0×id)∪(id×E1).
Both kinds of products can be obtained from the generalised product via a
�rst-order interpretation.

For the direct product, we de�ne the edge relation by the formula

ϕEs(x, y) := ∃z[All(z) ∧ Ezxy]

where the formula

All(x) := x ⊆ x ∧ ∀y(x ⊆ y → x = y)

states that x = I is the maximal element of P(I). (Note that the condition
x ⊆ x is needed to ensure that x ∈ P(I).)

Similarly, we de�ne the edge relation of the asynchronous product by

ϕEa(x, y) := ∃u∃v
[
E=vxy ∧ Euxy ∧ Sing(u)

∧ ∀z(z ⊆ z → (u * z ↔ z ⊆ v))
]

where the formula

Sing(z) := z ⊆ z ∧ ∀u∀v[v ⊆ u ⊆ z → (v = u ∨ u = z)]

states that z is a singleton set in P(I).

Theorem 3.40 (Feferman-Vaught [FV59]). For every FO-sentence ϕ, there
exist an FO-sentence ϕ′ and a �nite sequence of FO-sentences χ0, . . . , χm

such that ∏
i∈i

a(i) |= ϕ iff
〈
i, [[χ0]], . . . , [[χm]]

〉
|= ϕ′ ,

where [[χ]] := { i ∈ I | a(i) |= χ } .
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Remark 3.41. (a) If the structure i is of the form P(j), for some index
structure j, then instead of a FO-formula ϕ′ over i we can also construct
an MSO-formula over j, by Proposition 3.26. Hence, in this case we can
reduce the FO-theory of the product

∏
i ai to the MSO-theory of the index

structure j.
(b) Note that Theorem 3.16 follows from Theorem 3.40 and Proposi-

tion 3.26 since there exist FO-interpretations I,J such that

P
(∑

i∈i

ai

)
= I

( ∏
i∈P(i)

J (P(ai))
)
.

(c) As an application of the generalised product we give an alternative
proof to a result of Kuske and Lohrey [KL06] which states that, if we modify
the iteration operation by omitting the clone relation cl then the resulting
operation is (FO,Chain)-compatible. Here, Chain denotes the restriction of
MSO where set variables only range over chains, i.e., sets that are totally
ordered with respect to the pre�x order �. Let us denote by a] the iter-
ation of a without cl and let Pch(a) be the substructure of P(a) induced
by all chains of a (we assume that a contains a partial order �). A closer
inspection reveals that, up to isomorphism, the structure Pch(a]) can be ob-
tained by a (2-dimensional) FO-interpretation from the generalised product
of several copies of a indexed by the structure P〈ω,<〉. By Theorem 3.40
and the decidability of the MSO-theory of 〈ω,<〉 [Büc62], it follows that the
operation a 7→ a] is (FO,Chain)-compatible.

3.4 Guarded second-order logic

We conclude this section by considering an operation that connects guarded
second-order logic with monadic second-order logic.

De�nition 3.42. The incidence structure of a structure a = 〈A,R0, . . . , Rr〉
is

In(a) := 〈A ·∪G, R̄′, I0, . . . , In−1〉

where G := R0 ·∪ · · · ·∪Rr is the set of all tuples appearing in a relation of a,
we have unary predicates

R′
i := { ā ∈ G | ā ∈ Ri } ,

and binary incidence relations Ii ⊆ A×G with

Ii := { (ai, ā) ∈ A×G | ā ∈ G } .

Example 3.43. The incidence structure of a graph g = 〈V,E〉 is the struc-
ture

In(g) = 〈V ·∪ E,E′, I0, I1〉
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where the universe consists of all vertices and edges, the unary predicate E′

identi�es the edges, and the incidence relations I0 and I1 map each edge to
its �rst and second vertex, respectively.

The GSO-theory of a structure is equivalent to the MSO-theory of its
incidence structure.

Proposition 3.44. The operation In is (GSO,MSO)-bicompatible.

Remark 3.45. For the proof, note that we can encode every guarded n-
tuple ā by a triple 〈R, c̄, σ〉 consisting of an m-ary relation R, a tuple c̄ ∈ R,
and the function σ : [n] → [m] such that ai = cσ(i). Consequently, we can
encode a guarded relation S ⊆ An by a (�nite) family of subsets PR,σ ⊆ G
where

PR,σ := { c̄ ∈ G | 〈R, c̄, σ〉 encodes an element of S } .

4 Structural properties

So far, we have presented a number of purely logical properties of operations.
In this section, we survey other equivalences which hold under some addi-
tional hypothesis on the structures in question. First we study properties
speci�c to trees. Then we present results for uniformly sparse structures.
Finally we consider structures interpretable in the weak power set of a tree.

4.1 Tree-interpretable structures

When studying logical theories of trees various tools become available that
fail for arbitrary structures. The most prominent example are automata-

theoretic methods. For instance, one can translate every MSO-formula into
an equivalent tree automaton (see [Büc60, TW68, Rab69]). Closer to the
topic of the present paper are composition arguments which are based on
Theorem 3.16 and its variants. Those techniques provide the necessary
arguments for the tree-speci�c statements of the present section.

De�nition 4.1. A structure is tree-interpretable if it is isomorphic to I(t)
for some MSO-interpretation I and tree t.

The notion of tree-interpretability is linked to two complexity measures:
the clique width [Cou04] (for graphs) and the partition width [Blu03, Blu06]
(for arbitrary structures). It turns out that a graph/structure is tree-
interpretable if and only if its clique width/partition width is �nite.

In the de�nition of tree-interpretable structures, we can require the tree t
to be deterministic without any e�ect. We can also replace MSO by WMSO

without changing the de�nition. Our �rst result implies that the de�nition
still remains equivalent if we use FO instead of MSO.
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Theorem 4.2 ([Col07]). For every MSO-interpretation I, there exists an
FO-interpretation J and an MSO-marking M such that

I(t) = (J ◦M)(t) , for every tree t .

The same holds when MSO is replaced by WMSO.

Indeed, since the class of trees is closed under MSO-markings every tree-
interpretable structure can be obtained by an FO-interpretation from a tree.
Note that it is mandatory for this result that trees are de�ned in terms of
the pre�x order � instead of using just the immediate successor relation.

One motivation for the study of tree-interpretable structures is the fact
that this class seems to capture the dividing line between simple and com-
plicated MSO-theories. On the one hand, trees have simple MSO-theories
and, therefore, so have all structures that can be interpreted in a tree. Con-
versely, it is conjectured that the MSO-theory of every structure that is not
tree-interpretable is complicated.

Conjecture 4.3 (Seese [See91]). Every structure with a decidable MSO-
theory is tree-interpretable.

Currently the best result in this direction was recently obtained by
Courcelle and Oum [CO07]. It states that every graph that is not tree-
interpretable has an undecidable C2MSO-theory where C2MSO is the exten-
sion of MSO by predicates for counting modulo 2. Unfortunately their proof
appears surprisingly di�cult to generalise to arbitrary structures.

One evidence for Seese's conjecture is the fact that the class of tree-inter-
pretable structures is closed under all known MSO-compatible operations.

Proposition 4.4. The class of tree-interpretable structures is closed under
(i) disjoint unions, (ii) generalised sums, (iii) �nite products, (iv) quotients,
(v) MSO-interpretations, and (vi) iterations.

There is no di�culty in proving this proposition. In particular, it is easy
to establish that the quotient of a tree-interpretable structure is also tree-
interpretable. Indeed it is su�cient to guess a system C of representatives of
the equivalence classes. Once we have expanded the tree by this new unary
predicate C we can use a simple MSO-interpretation to obtain the quotient.
However, if one wants the representatives C to be unique and MSO-de�nable
this becomes impossible. This follows from the following result of Gurevich
and Shelah [GS83] (see [CL07a] for a simple proof): There is no MSO-
formula ϕ(x,X) such that, for every deterministic tree t and all nonempty
sets P ⊆ t, there is a unique element a ∈ P such that t |= ϕ(a, P ).

The following theorem circumvents this di�culty. It is more precise than
simply claiming the closure under quotients in that it states that we can
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choose the same deterministic tree. The result is given for FO, but it can
also be derived for MSO and WMSO by a direct application of Theorem 4.2.

Theorem 4.5. Let I be an FO-interpretation and ∼ a binary relation sym-
bol. There exists an FO-interpretation J such that

I(t)/∼I(t) ∼= J (t) , for every deterministic tree t .

Remark 4.6. For the proof of this result it is su�cient to assign to each
∼-class a unique element of the tree in an FO-de�nable way. First, one
maps each class to its in�mum (for the pre�x order �). With this de�nition
several classes might be mapped to the same element. Using a technique
similar to the one from [CL07b] it is possible to distribute those elements
in a FO-de�nable way and thereby to transform the original mapping into
an injective one.

Another phenomenon is that the iteration and unravelling operations
turn out to be equivalent in the context of MSO-interpretations over trees.

Theorem 4.7 ([CW03]). There exist MSO-interpretations I,J such that

t∗ ∼= I(U(J (t))) , for every deterministic tree t .

The �rst interpretation J adds backward edges and loops to every vertex
of t. From the unravelling of this structure we can reconstruct the iteration
of t by an MSO-interpretation.

4.2 Tree width, uniform sparse structures, and complete

bipartite subgraphs

In this section we introduce the tree width of a structure, a complexity
measure similar to the clique width or partition width, which were related
to the notion of tree-interpretability. Intuitively the tree width of a structure
measures how much it resembles a tree (see [Bod98] for a survey).

De�nition 4.8. Let a = 〈A, R̄〉 be a structure.
(a) A tree decomposition of a is a family (Uv)v∈T of subsets Uv ⊆ A

indexed by an undirected tree T with the following properties:

1.
⋃

v Uv = A .

2. For all ā ∈ Ri in some relation of a, there is some v ∈ T with ā ⊆ Uv.

3. For every element a ∈ A, the set { v ∈ T | a ∈ Uv } is connected.

(b) The width of such a tree decomposition (Uv)v∈T is

sup { |Uv| | v ∈ T } .
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(For aesthetic reasons the width is traditionally de�ned as supremum of
|Uv| − 1. We have dropped the −1 since it makes many statements more
complicated and omitting it does not in�uence the results.)

(c) The tree width twd a is the minimal width of a tree decomposition
of a.

It turns out that, with respect to tree width, GSO plays a similar role
as MSO does with respect to tree-interpretability. The incidence structure
allows to go back and forth in this analogy.

Theorem 4.9. A structure a has �nite tree width i� In(a) is tree-interpret-
able.

The corresponding result for classes of �nite structures is due to Cour-
celle and Engelfriet [CE95]. The same ideas can be used to prove Theo-
rem 4.9. Note that this theorem in particular implies that every structure
with �nite tree width is tree-interpretable. However the converse does not
hold. For instance, the in�nite clique is tree-interpretable but its tree width
is in�nite.

The equivalent of Seese's Conjecture 4.3 for tree width has been proved
by Seese.

Theorem 4.10 (Seese [See91]). Every structure with a decidable GSO-
theory has �nite tree width.

The proof is based on the Excluded Grid Theorem of Robertson and
Seymour [RS86] and on the fact that the class of all �nite grids has an
undecidable MSO-theory (see also [Cou95a, Blu03]).

In the remaining of this section, we present two other complexity mea-
sures for countable structures: sparsity and the existence of big complete
bipartite subgraphs in the Gaifman graph. A structure is uniformly sparse
if, in every substructure, the number of guarded tuples is linearly bounded
by the size of the substructure.

De�nition 4.11. Let k < ω. A structure a = 〈A,R0, . . . , Rn−1〉 is called
uniformly k-sparse if, for all �nite sets X ⊆ A and every i < n, we have

|Ri|X | ≤ k · |X| .

A structure is uniformly sparse if it is uniformly k-sparse for some k < ω.

The requirement of uniform sparsity is less restrictive than that of having
a �nite tree width: every structure of �nite tree width is uniformly sparse,
but the converse does not hold in general. Consider for instance the in�nite
grid Z×Z with an edge between (i, k) and (j, l) if |i− j|+ |k− l| = 1. This
graph is uniformly sparse, but has in�nite tree width.
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The work of Courcelle [Cou03] shows that the property of being uni-
formly sparse is the correct notion for studying the relationship between
GSO and MSO. While, in general, GSO is strictly more expressive than MSO,
it collapses to MSO on uniformly sparse structures.

Theorem 4.12. Let k < ω. For every GSO-sentence ϕ, we can construct
an MSO-sentence ϕ′ such that

a |= ϕ iff a |= ϕ′ , for all countable uniformly k-sparse structures a .

The proof of this result relies on the possibility, once k is �xed, to in-
terpret In(a) in n × a for a suitably chosen n, provided one has correctly
labelled n × a by a certain number of monadic parameters. Then Theo-
rem 4.12 follows by Proposition 3.44. This technique is formalised by the
following lemma.

Lemma 4.13. For all k < ω, there exist n < ω, an MSO-interpretation I,
and an MSO-formula ϕ such that, for every countable uniformly k-sparse
structure a,

• there exist unary predicates P̄ such that a |= ϕ(P̄ ) and

• In(a) = I(n× 〈a, P̄ 〉) , for all P̄ with a |= ϕ(P̄ ) .

The last notion we present is based on the Gaifman graph of a structure.

De�nition 4.14. Let a = 〈A,R0, . . . , Rn−1〉 be a structure. The Gaifman
graph of a is the undirected graph

Gaif(a) := 〈A,E〉

with edge relation

E := { (a, b) | a 6= b and (a, b) is guarded } .

The Gaifman graph gives an approximation of the relations in a struc-
ture. All the notions of this section can be de�ned in terms of the Gaifman
graph as stated by the following proposition.

Proposition 4.15. A structure has �nite tree width i� its Gaifman graph
has �nite tree width. A structure is uniformly sparse i� its Gaifman graph
is uniformly sparse.

A complete bipartite graph is an undirected graph 〈V,E〉 where V is
partitioned into two sets A ·∪B such that

E = (A×B) ∪ (B ×A) .
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If |A| = |B| = n then we say that the graph is of size n. If a graph has
complete bipartite subgraphs of arbitrary size this implies that for those
subgraphs the number of edges is quadratic in the number of vertices. As
a consequence such a graph cannot be uniformly sparse. Hence, for ev-
ery uniformly sparse graph, there is a bound on the size of its complete
bipartite subgraphs. Over structures this means that for every uniformly
sparse structure there exists a bound on the size of the complete bipartite
subgraphs of its Gaifman graph. However the converse does not hold in
general. It is possible to de�ne non-uniformly sparse graphs which do not
possess any complete bipartite subgraphs of size larger than some constant.
For instance, the graph with vertices Z with an edge between m and n i�
|m− n| is a power of 2.

The three notions of (i) admitting a bound on the size of complete bi-
partite subgraphs; (ii) being uniformly sparse; and (iii) having bounded
tree width; are related but do not coincide. The following theorem states
the equivalence of these three notions over tree-interpretable structures. It
was �rst proved for �nite graphs in [Cou95b]. The generalisation to in�nite
structures proceeds along the same lines (see [Blu03]).

Theorem 4.16. For every structure a, the following statements are equiv-
alent:

1. a has �nite tree width.

2. a is tree-interpretable and uniformly sparse.

3. a is tree-interpretable and the size of the complete bipartite subgraphs
of its Gaifman graph is bounded.

4.3 The weak power set of trees

We have seen that the power-set construction allows us to relate MSO and
FO, in the same way MSO and GSO are related by the incidence structure con-
struction. Hence, one may wonder whether results similar to Theorem 4.10
for GSO or Conjecture 4.3 for MSO hold in this setting. The answer is neg-
ative.

Proposition 4.17 ([CL07b]). There are structures of decidable FO-theory
which are not of the form I(Pw(t)), for a tree t and an FO-interpretation I.

An example of this phenomenon is the random graph (a graph in which
every �nite graph can be embedded) which has a decidable FO-theory but
is not of the above form. This propositon is established as an application
of the following theorem which eliminates the weak power-set operation in
the equation (I ◦ Pw)(t) = Pw(a), provided that t is a deterministic tree.
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Theorem 4.18 ([CL07b]). For every FO-interpretation I, there exists a
WMSO-interpretation J such that

(I ◦ Pw)(t) ∼= Pw(a) implies J (t) ∼= a ,

for every deterministic tree t and every structure a.

Note that some kind of converse to this theorem can easily be deduced
from Lemma 3.28. Indeed, for every WMSO-interpretation J , there exists
an FO-interpretation I such that

I ◦ Pw = Pw ◦ J .

Consequently, J (t) ∼= a implies (I ◦ Pw)(t) = (Pw ◦ J )(t) ∼= Pw(a).
Finally, let us state a variant of Theorem 4.5 for the weak power set of

a tree.

Theorem 4.19 ([CL07b]). For every FO-interpretation I and every binary
relation symbol ∼, there is an FO-interpretation J such that:

(I ◦ Pw)(t)/∼(I◦Pw)(t) ∼= (J ◦ Pw)(t) , for every deterministic tree t .

When the power set operation is used instead of the weak power-set, we
conjecture that this theorem becomes false, whereas Theorem 4.18 remains
true: New phenomena arise when in�nite sets are allowed.

5 Classes

Suppose that we are interested in, say, the monadic second-order theory of
some structure a. One way to show the decidability of this theory is to start
from a structure b for which we already know that its monadic second-order
theory is decidable, and then to construct a from b using MSO-compatible
operations. We have seen an example of this approach in Corollary 3.22
where the in�nite binary tree t2 is constructed from a �nite structure using
an iteration and an MSO-interpretation.

In this last section we follow this idea and consider not only single struc-
tures but classes of structures that can be obtained in the way described
above. For example, by applying the iteration operation to a �nite struc-
ture followed by an MSO-interpretation we can not only construct t2 but
a whole class of structures with a decidable monadic second-order theory.
This class and its generalisations are the subject of the �rst part of this
section. In Section 5.2 we consider classes of structures with a decidable
�rst-order theory that can be obtained with the help of FO-interpretations
and the (weak) power-set operation. We conclude our survey in Section 5.3
by presenting HR-equational structures and their GSO-theory.
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5.1 Pre�x-recognisable structures and the Caucal hierarchy

We have conjectured above that all structures with a decidable MSO-theory
are tree-interpretable. In this section we take the opposite direction and
de�ne large classes of tree-interpretable structures with a decidable MSO-
theory. We start with the class of pre�x-recognisable structures. Originally,
this class was de�ned as a class of graphs in [Cau96]. These graphs are
de�ned over a universe consisting of a regular set of �nite words and their
edge relation is given as a �nite union of relations of the form

(U × V )W := { (uw, vw) | u ∈ U, v ∈ V, w ∈W } ,

for regular languages U, V,W . Such relations are a combination of a recog-
nisable relation U×V for regular U and V , followed by the identity relation,
explaining the term `pre�x-recognisable'.

This de�nition can been extended to arbitrary structures instead of
graphs (see [Blu04, CC03]) but the description of pre�x-recognisable re-
lations gets more complicated. Using the approach of compatible opera-
tions we obtain an alternative and simpler de�nition of the same class of
structures.

De�nition 5.1. A structure a is pre�x-recognisable if and only if a ∼= I(t2),
for some MSO-interpretation I.

This de�nition directly implies that each pre�x-recognisable structure
is tree-interpretable and has a decidable monadic second-order theory be-
cause t2 has. Further elementary properties are summarised in the following
proposition.

Proposition 5.2. The class of pre�x-recognisable structures is closed un-
der (i) MSO-interpretations, (ii) parameterless MSO-transductions, (iii) dis-
joint unions, (iv) �nite products, (v) quotients, and (vi) generalised sums
of the form

∑
i∈i a in which both a and i are pre�x-recognisable and all

summands a are isomorphic.

In fact, according to Theorem 4.22, we can even replace MSO-interpre-
tations by FO-interpretations.

Theorem 5.3 ([Col07]). A structure a is pre�x-recognisable if and only if
a ∼= I(t2), for some FO-interpretation I.

For pre�x-recognisable graphs several alternative characterisations have
been given, for example they are the con�guration graphs of pushdown au-
tomata after factoring out the ε-transitions, and also those graphs obtained

2 In combination with the fact that every regular tree is FO-interpretable in t2.
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as the least solutions of �nite systems of equations whose operations con-
sists of (i) disjoint unions and (ii) positive quanti�er-free interpretations
(this approach is due to Barthelmann [Bar98], see [Blu01] for an overview).

In the de�nition of pre�x-recognisable structures we have used the in�-
nite binary tree t2 as a generator and applied MSO-interpretations to it. In
Section 3 we have seen how t2 can be obtained from a �nite structure with
the help of the iteration operation. In fact, we do not get more structures
when we allow the application of an MSO-interpretation to the iteration of
an arbitrary �nite structure.

Proposition 5.4. The pre�x-recognisable structures are exactly those of
the form I(a∗) for an MSO-interpretation I and a �nite structure a.

As both operations used in Proposition 5.4 are MSO-compatible there
is no reason to stop after just one application of each of them. This idea
is used in [Cau02] for graphs using the unravelling operation instead of
the iteration and an inverse rational mapping (a weakening of an MSO-
interpretation) instead of an MSO-interpretation. According to [CW03] the
following de�nition is equivalent to the original one.

De�nition 5.5. The Caucal hierarchy C0 ⊂ C1 ⊂ . . . is de�ned as follows.
The �rst level C0 consists of all �nite structures. Each higher level Cn+1

consists of all structures of the form I(a∗) where I is an MSO-interpretation
and a ∈ Cn.

The compatibility of the employed operations directly yields the decid-
ability of the MSO-theory for all structures in this class.

Theorem 5.6. All structures in the Caucal hierarchy have a decidable
MSO-theory.

In the same spirit as Theorem 5.3 one can show that MSO-interpretations
can be replaced by FO-interpretations. Furthermore, the iteration can also
be replaced by the unravelling operation applied to the graphs on each level.

Theorem 5.7 ([Col07]). A structure belongs to Cn+1 if and only if it is
of the form (I ◦ U)(g) where I is an FO-interpretation, U the unravelling
operation, and g ∈ Cn is a graph.

At present, the Caucal hierarchy is the largest known natural class of
structures with a decidable MSO-theory (other structures with decidable
MSO-theory can be constructed by ad hoc arguments; see, e.g., Proposi-
tion 5 of [CW03]). The �rst level of this hierarchy, i.e., the class of pre�x-
recognisable structures, is already well investigated. In [CW03] the graphs of
level n are shown to be the same as the con�guration graphs of higher-order
pushdown automata of level n (automata using nested stacks of nesting
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depth n). Using this equivalence and a result on the languages accepted by
higher-order pushdown automata, one obtains the strictness of the Caucal
hierarchy. In [CW03] it is also shown that not all structures of decidable
MSO-theory are captured: There is a tree with decidable MSO-theory that is
not contained in any level of the hierarchy. It remains an open task to gain
a better understanding of the structures in higher levels of the hierarchy.

5.2 Automatic structures and extensions

Let us turn to structures with a decidable FO-theory. A prominent class of
such structures is the class of automatic (and tree-automatic) structures, a
notion originally introduced by Hodgson [Hod83].

A relation R ⊆ (Σ∗)r on words is automatic if there is a �nite automa-
ton accepting exactly the tuples (w0, . . . , wr−1) ∈ R, where the automaton
reads all the words in parallel with the shorter words padded with a blank
symbol (for formal de�nitions see, e.g., [KN95, Blu99, BG00]). A structure
is called automatic (or has an automatic presentation) if it is isomorphic to
a structure whose universe is a regular set of words and whose relations are
automatic in the sense described above.

In the same way we can also use automata on �nite (ranked) trees to
recognise relations. The superposition of a tuple of trees is de�ned by align-
ing their roots and then, for each node aligning the sequence of successors
from left to right, �lling up missing positions with a blank symbol (again, a
formal de�nition can be found in [Blu99, BG00]). Accordingly, a structure is
called tree-automatic if it is isomorphic to a structure whose domain consists
of a regular set of �nite trees and whose relations are recognised by �nite
automata reading the superpositions of tuples of trees. An alternative de�-
nition for tree-automatic structures can be given via least solutions of sys-
tem of equations [Col04] in the same spirit as [Bar98] for pre�x-recognisable
structures. In addition to the operations for pre�x-recognisable structures
one allows the Cartesian product in the equations.

By inductively translating formulae to automata we can use the strong
closure properties of �nite automata to show that each FO-de�nable relation
over an automatic structure is again automatic. As the emptiness problem
for �nite automata is decidable this yields a decision procedure for the
model-checking of FO-formulae over (tree-)automatic structures.

We are interested in generating structures with a decidable FO-theory
using FO-compatible operations. We focus here on the use of FO-interpreta-
tions. The �rst possibility is to start from structures with a decidable FO-
theory and then apply FO-interpretations to it. Alternatively we can start
from structures with a decidable MSO-theory and then apply the (weak)
power-set operation followed by an FO-interpretation.

To obtain the class of automatic structures in this way let us �rst note
that each automatic structure can be represented using a binary alphabet,
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say [2] = {0, 1}. A word over this alphabet can either be seen as the binary
encoding of a number, or as a set of natural numbers, namely the set of all
positions in the word that are labelled by 1.

When encoding [2]-words by natural numbers we need relations that
allow us to extract single bits of a number to be able to simulate the
behaviour of �nite automata in �rst-order logic. This can be done using
the addition operation + and the relation |2 de�ned as follows (see, e.g.,
[BHMV94, Blu99]):

k |2 m : iff k is a power of 2 dividing m.

Similarly, if [2]-words are viewed as sets of natural numbers we have to be
able to access the elements of the set. This is possible in the weak power-set
of the structure 〈ω,<〉. By Corollary 3.27, FO over Pw〈ω,<〉 corresponds
to WMSO over 〈ω,<〉, which is known to have the same expressive power as
�nite automata (see, e.g., [Tho97b]).

These ideas lead to the following characterisations of automatic struc-
tures.

Proposition 5.8. Let a be a structure. The following statements are equiv-
alent:

1. a is automatic.

2. a ∼= I〈N,+, |2〉, for some FO-interpretation I.

3. a ∼= (I ◦ Pw)〈ω,<〉, for some FO-interpretation I.

To obtain tree-automatic structures we �rst note that it is enough to
consider unlabelled �nite binary trees. Such a tree can be encoded in the
in�nite binary tree t2 by the set of its nodes. It is not di�cult to see
that �rst-order logic over the weak power-set structure of t2 has the same
expressive power as �nite automata over trees.

Proposition 5.9. A structure a is tree-automatic if and only if a = (I ◦
Pw)(t2), for some FO-interpretation I.

This approach via compatible operations can easily be generalised by
using other generators than 〈ω,<〉 and t2. In the previous section we have
obtained a hierarchy of structures with a decidable MSO-theory. The in�nite
binary tree t2 is on the �rst level of this hierarchy. Using Proposition 5.9 as
a de�nition for tree-automatic structures, we obtain a natural hierarchy of
higher-order tree-automatic structures.

De�nition 5.10. A higher-order tree-automatic structure of level n is a
structure of the form (I ◦ Pw)(t) for some tree t from Cn, the n-th level of
the Caucal hierarchy.
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Using Theorem 5.6 and the properties of the operations involved we
obtain the following result.

Theorem 5.11. Every higher-order tree-automatic structure has a decid-
able �rst-order theory.

Although the Caucal hierarchy is known to be strict this does not di-
rectly imply that the hierarchy of higher-order tree-automatic structures is
also strict. But by Theorem 4.18 it follows that, if the hierarchy would
collapse then all the trees in the Caucal hierarchy could be generated from
a single tree t in this hierarchy by means of WMSO-interpretations. This
would contradict the strictness of the Caucal hierarchy because, according
to [CW03]3, each level is closed under WMSO-interpretations.

Theorem 5.12 ([CL07b]). The hierarchy of higher-order tree-automatic
structures is strict.

As mentioned in the previous section very little is known about struc-
tures on the higher levels of the Caucal hierarchy. As higher-order tree-
automatic structures are de�ned by means of the Caucal hierarchy we even
know less about these structures. In [CL07b] it is illustrated how to apply
Theorem 4.18 to show that structures are not higher-order tree-automatic.

5.3 HR-equational structures

In [Cou89] equations using operations on structures are used to de�ne in�-
nite structures. The operations work on structures that are coloured by a
�nite set of colours. We introduce constant symbols for each �nite structure
(over a �xed signature). From these we build new structures using:

• the disjoint union operation ];

• unary operations ρab recolouring all elements of colour a to colour b;

• unary operations θa that merge all elements of colour a into a single
element.

For example, the equation

x = ρ20

(
θ2

(
(
1•→2•) ] ρ12(x)

))
has as least solution the graph

1•→0•→0•→0•→ · · ·
3 In [CW03] the closure of each level under MSO-interpretations is shown. But in the
same paper it is shown that each level can be generated by MSO-interpretations from
a deterministic tree of this level, and on deterministic trees the �niteness of a set can
be expressed in MSO. Hence the levels are also closed under WMSO-interpretations.
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The class of structures obtained as solutions of �nite systems of equa-
tions over these operations has various names in the literature (equational,
regular, hyperedge replacement). We use here the term HR-equational.

We obtain a connection between HR-equational structures and trees by
unravelling the system of equations de�ning a given structure a into an
in�nite tree t. The inner nodes of the tree are labelled with the operations
and the leaves with the �nite structures that are used as building blocks
for the resulting in�nite structure. As an unravelling of a �nite system of
equations the tree t is regular and it contains all the information on how to
build the structure a.

It should not be surprising that it is possible to construct the structure a
from t via a parameterless MSO-transduction. But we can do even better
because all the information on the relations of a is contained in the leaves
of the de�ning tree. This allows us to construct not only a but also In(a)
by a parameterless MSO-transduction. It turns out that this property char-
acterises HR-equational structures. As for pre�x-recognisable structures we
therefore choose this property as the de�nition.

De�nition 5.13. A structure a is HR-equational if and only if In(a) is
pre�x-recognisable.

By Proposition 3.44 we can reduce the GSO-theory of an HR-equational
structure to the MSO-theory of a pre�x-recognisable one.

Proposition 5.14. Every HR-equational structure has a decidable GSO-
theory.

Courcelle [Cou90] has proved that the isomorphism problem for HR-
equational structures is decidable. We can generalise this result as follows.
In [Blu04] it is shown that pre�x-recognisable structures can be axiomatised
in GSO, i.e., for each pre�x recognisable structure a, one can construct a
GSO-sentence ψa such that

b |= ψa iff b ∼= a , for every structure b .

If we take b from a class of structures for which we can decide whether
b |= ψa holds then this allows us to solve the isomorphism problem for
a and b. To this end let b be a uniformly sparse structure from the Caucal
hierarchy. (Note that every HR-equational structure is uniformly sparse.)
According to Theorem 4.12 we can construct an MSO-sentence ψ′a that is
equivalent to ψa on b. And since the MSO-theory of each structure in the
Caucal hierarchy is decidable we can now verify if b |= ψ′a, which is the case
if, and only if, a ∼= b.

Theorem 5.15. Given an HR-equational structure a and a uniformly sparse
structure b from the Caucal hierarchy, we can decide whether a ∼= b.
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The above description is slightly simpli�ed. The GSO-sentence ψa con-
structed in [Blu04] uses cardinality quanti�ers ∃κ meaning �there are at least
κ many�, for a cardinal κ. To make Theorem 5.15 work in this extended
setting, we �rst note that Theorem 4.12 also works if the logics are extended
with cardinality quanti�ers. Second, we have to verify that b |= ψ′a can also
be checked if ψ′a contains cardinality quanti�ers. Because b is countable, we
only need to consider the quanti�er �there are in�nitely many�. This quan-
ti�er can be eliminated since each structure of the Caucal hierarchy can be
obtained by an MSO-interpretation from a deterministic tree of the same
level and on such trees the property of a set being in�nite can be expressed
in MSO.
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