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Abstra
tWe generalise the 
on
ept of 
lique width to stru
tures of arbitrary signature and
ardinality. We present 
hara
terisations of 
lique width in terms of de
ompositionsof a stru
ture and via interpretations in trees. Several model-theoreti
 propertiesof 
lique width are investigated in
luding VC-dimension and preservation of �nite
lique width under elementary extensions and 
ompa
tness.
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1 Introdu
tion
In the last de
ades several measures for the 
omplexity of graphs have beende�ned and investigated. The most prominent one is the tree width whi
happears in the work of Robertson and Seymour [1℄ on graph minors andwhi
h also plays an important role in re
ent developments of graph algorithms.When studying non-sparse graphs and their monadi
 se
ond-order propertiesthe measure of 
hoi
e seems to be the 
lique width de�ned by Cour
elle andOlariu [2℄.Although no hard eviden
e 
ould be obtained so far, various partial resultssuggest that the property of having a �nite 
lique width 
onstitutes the divid-ing line between simple and 
ompli
ated monadi
 theories. On the one handevery stru
ture of �nite 
lique width 
an be interpreted in the binary treeand, therefore, has a simple monadi
 theory. On the other hand, every stru
-ture with an MSO-de�nable pairing fun
tion is of in�nite 
lique width. For
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graphs, the 
onverse also holds. Answering a 
onje
ture of Seese [3℄, Cour
elleand Oum [4℄ have shown that every 
lass of �nite undire
ted graphs with un-bounded 
lique width has an unde
idable (MSO+C2)-theory, where MSO+C2denotes the extension of monadi
 se
ond-order logi
 by 
ounting quanti�ersmodulo 2. Unfortunately, the 
ase of arbitrary stru
tures remains open.
The aim of this arti
le is to show that 
lique width is a meaningful and natural
on
ept not only in graph theory but also from a model-theoreti
 point ofview. We generalise the de�nition of 
lique width to stru
tures of arbitrarysignature and 
ardinality and show that the resulting measure whi
h we 
allpartition width has natural model-theoreti
 properties su
h as preservation of�nite partition width under elementary extensions and 
ompa
tness.
The outline of the arti
le is as follows: The next se
tion is meant to �x notationand re
all basi
 results.
In Se
tion 3 we introdu
e in�nite terms denoting relational stru
tures of arbi-trary 
ardinality. The main problem we will be dealing with is to equip theseterms with a well-de�ned semanti
s. We prove that every stru
ture denotedby su
h a term 
an be interpreted in some tree.
In the following se
tion we de�ne a 
ertain kind of de
omposition of a stru
-ture. The important parameter of su
h a de
omposition is the number ofatomi
 types realised in a 
omponent. This number, 
alled partition width,will be our generalisation of the 
lique width of a graph. We 
on
lude these
tion by proving a tight relationship between these de
ompositions and theterms de�ned in the previous se
tion.
Se
tion 5 
ontains te
hni
al results about the number of atomi
 types whi
hare needed in Se
tion 6 to prove that a stru
ture has �nite partition width ifand only if it 
an be interpreted in some tree.
In the two �nal se
tions we turn to model-theoreti
 questions. In Se
tion 7we prove that the partition width of a stru
ture is �nite i� the width ofits �nite substru
tures is bounded; we give a kind of 
ompa
tness theoremfor stru
tures of a given partition width; and we show that �niteness of thepartition width is preserved under elementary extensions.
In Se
tion 8 it is shown that stru
tures with �nite partition width do not
ontain an MSO-de�nable pairing fun
tion. In parti
ular, they do not havethe independen
e property.
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2 Preliminaries
Logi
. Let us re
all some basi
 de�nitions and �x our notation. Let [n] :=
{0, . . . , n − 1}. We ta
itly identify tuples ā = a0 . . . an−1 ∈ An with fun
tions
[n] → A and frequently we write ā for the set {a0, . . . , an−1}. This allows usto write ā ⊆ b̄ or ā = b̄|I for I ⊆ [n]. The 
omplement of a set X is denotedby X. Re
all that the α-fold iterated exponentiation iα(κ) is de�ned by

i0(κ) = κ and iα(κ) = sup
{

2iβ(κ)
∣

∣

∣ β < α
}

.We will use this notation also for �nite κ.W.l.o.g. we will only 
onsider relational stru
tures A = (A,R0, R1, . . . ) inthis arti
le. The set of relation symbols {R0, R1, . . . } is 
alled the signatureof A. When speaking of the arity of a stru
ture or a signature we mean thesupremum of the arities of its relations.
MSO, monadi
 se
ond-order logi
, extends �rst-order logi
 FO by quanti�
a-tion over sets. In pla
es where the exa
t de�nition matters � say when 
onsid-ering the quanti�er rank of a formula � we will use a variant of MSO without�rst-order variables where the atomi
 formulae are of the form Y = Z, Y ⊆ Z,and RX0 . . . Xn−1, for set variables Xi, Y , Z and relations R. Using slightlynonstandard semanti
s we say that an atom of the form RX̄ holds if there areelements ai ∈ Xi su
h that ā ∈ R. Note that we do not require the Xi to besingletons. Obviously, ea
h MSO-formula 
an be brought into this form.By FOk and MSOk we denote the fragments of the respe
tive logi
 that 
onsistsof those formulae with quanti�er rank at most k.A formula ϕ(x̄) where ea
h free variable is �rst-order de�nes on a given stru
-ture A the relation ϕA := { ā | A |= ϕ(ā) }.De�nition 1 Let A = (A,R0, R1, . . . ) and B be relational stru
tures. A (one-dimensional) MSO-interpretation of A in B is a sequen
e

I =
〈

δ(x), ε(x, y), ϕR0(x̄), ϕR1(x̄), . . .
〉

of MSO-formulae su
h that
A ∼= I(B) :=

(

δB, ϕB

R0
, ϕB

R1
, . . .

)/

εB.To make this expression well-de�ned we require that εB is a 
ongruen
e of thestru
ture (δB, ϕB

R0
, ϕB

R1
, . . . ). We denote the fa
t that I is an MSO-interpre-tation of A in B by I : A ≤MSO B.The epimorphism (δB, ϕB

R0
, ϕB

R1
, . . . ) → A is also denoted by I.
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If I : A ≤MSO B then every formula ϕ over the signature of A 
an be translatedto a formula ϕI over the signature of B by repla
ing every relation symbol Rby its de�nition ϕR, repla
ing every = by ε, and by relativising every quanti�erto δ where set quanti�ers are further relativised to sets 
losed under ε.Lemma 2 If I : A ≤MSO B then
A |= ϕ(I(b̄)) iff B |= ϕI(b̄) for all ϕ ∈ MSO and b̄ ⊆ δB.

We will make use of Ramsey's theorem. Re
all that n → (m)dp asserts thatevery 
olouring of [n]d with p 
olours 
ontains a homogeneous subset of sizem.In order to avoid 
lumsy des
riptions we de�ne
R(m)dp := min

{

n
∣

∣

∣ n→ (m)dp
}

.

Trees. Let κ be a 
ardinal and α an ordinal. By κ<α we denote the set ofall fun
tions β → κ for β < α. We write x � y for x, y ∈ κ<α if x is a pre�xof y. The longest 
ommon pre�x of x and y is denoted by x ⊓ y.A tree is a partial order (T,�) where the universe T ⊆ κ<α is 
losed underpre�xes. Sometimes, we also add the su

essor fun
tions suci(x) := xi for
i < κ. Labelled trees are either represented as stru
tures (T,�, (Pi)i∈Λ) withadditional unary predi
ates Pi for ea
h label i ∈ Λ, or as fun
tions t : T → Λ.
Graph grammars. The notion of 
lique width arose in the study of graphgrammars. We present two kinds of su
h grammars: VR-grammars as 
onsid-ered by Cour
elle [5℄ and NLC-grammars studied by Wanke [6℄.Let C be a set of 
olours. Consider the following operations on C-
olouredundire
ted graphs:
• a denotes the trivial graph whose single vertex is 
oloured a;
• G0 + G1 is the disjoint union of G0 and G1 ;
• the re
olouring ̺β(G) with β : C → C 
hanges ea
h 
olour a to β(a);
• αa,b(G) adds edges from all a-
oloured verti
es to every vertex of 
olour b;
• G0 ⊕S G1 with S ⊆ C × C denotes the disjoint union of G0 and G1 where
a-
oloured verti
es of G0 are 
onne
ted by an edge to b-
oloured verti
esof G1 i� (a, b) ∈ S.A VR-term is a term 
onsisting of the operations a, +, ̺β, and αa,b, whileNLC-terms are built up from a, ̺β, and ⊕S.
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De�nition 3 The 
lique width of a graph G is the minimal size of a set Cof 
olours su
h that there is a VR-term denoting G whi
h uses only 
oloursfrom C. The NLC-width is de�ned analogously using NLC-terms.The following observation by Johansson [7℄ shows that these two measures arenearly the same.Lemma 4 Let k be the 
lique width of a graph G and m its NLC-width. Then
m ≤ k ≤ 2m.The 
hara
terisation we aim to generalise is the following result of Cour
elle [5℄relating 
lique width with interpretations in the binary tree.Theorem 5 A 
ountable graph G = (V,E) has �nite 
lique width if and onlyif G ≤MSO (2<ω,�, P ) for some unary predi
ate P ⊆ 2<ω.
3 In�nite terms
We start by generalising NLC-terms to in�nite terms des
ribing relationalstru
tures of arbitrary 
ardinality. One approa
h, 
hosen by Grohe and Tu-ran [8℄, 
onsists in 
olouring the elements of the stru
ture as for VR-termsabove and generalising the operation αa,b to tuples of length more than two.We 
hoose a di�erent route by 
olouring all tuples of elements instead of justsingletons (see also [9,10℄). That way we obtain a larger 
lass of stru
tures thatstill shares most properties of the 
lass of graphs denoted by VR-terms. In par-ti
ular, we are able to derive an analog of Theorem 5. An example of a stru
-ture whi
h 
an be des
ribed by the terms de�ned below, but not by the termsintrodu
ed by Grohe and Turan, is (Q, R) where R := { (a, b, c) | a < b < c }.De�nition 6 A graded set of 
olours is a set C that is partitioned into �nitenonempty sets Cn, n < ω. Colours c ∈ Cn are said to be of arity n.A C-
olouring of a stru
ture M is a fun
tion χ mapping every n-tuple ā ∈Mnto some 
olour χ(ā) ∈ Cn. The empty tuple is also 
oloured. We 
all the pair
(M, χ) a C-
oloured stru
ture.Analogously to the NLC-
omposition ⊕S we de�ne two operators ∑Θ and ⋃Θto 
ompose a family of C-
oloured stru
tures (Mi, χi), i < α, one for orderedfamilies and one for unordered ones. In both 
ases the resulting stru
ture will
onsist of the union of the Mi. Additionally, we will update the 
olouring andadd new tuples to the relations of M. If ā is a tuple of M then the 
olours ofits parts ā ∩Mi, for i < α, will determine both, its new 
olour and whetherwe add ā to a relation R. We re
ord this information in an update instru
tion
(n, α, Ī, c̄, d, S) where Ii := { k | ak ∈Mi } is the partition of ā indu
ed by the
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union, ci := χi(ā|Ii) is the 
olour of the tuple ā∩Mi, d is the new 
olour of ā,and S 
ontains all relation symbols to whi
h ā is added.De�nition 7 Let τ be a signature and C a graded set of 
olours.(a) An update instru
tion is a tuple (n, α, Ī, c̄, d, S) where
• n < ω is a natural number and α is an ordinal;
• Ī is a partition ·

⋃

i<αIi = [n] of [n] into α 
lasses (of whi
h all but �nitelymany are empty);
• c̄ ∈ Cα is a sequen
e of α 
olours su
h that the arity of ci is |Ii| (whi
himplies that the sum of their arities is n);
• d ∈ Cn is a 
olour of arity n; and
• S ⊆ τ is a set of n-ary relation symbols.The number n is 
alled the arity of the instru
tion.(b) An ordered α-update is a set Θ of update instru
tions that 
ontains exa
tlyone instru
tion (n, α, Ī , c̄, d, S), for all values of n, Ī, and c̄. Ea
h su
h set Θindu
es a family of fun
tions

Θn(Ī; c̄) = (d, S) : iff (n, α, Ī, c̄, d, S) ∈ Θ .

(
) A symmetri
 update is a set Θ of update instru
tions with the followingproperties:
• Θ 
ontains exa
tly one instru
tion (n, s, Ī , c̄, d, S) for all n < ω, every s ≤ n,all partitions Ī = I0 ·∪ · · · ·∪ Is−1 where ea
h of the Ii is nonempty, and allappropriate c̄ ∈ Cs.
• For all permutations σ ∈ Ss we have

(

n, s, 〈Iσ0, . . . , Iσ(s−1)〉, 〈cσ0, . . . , cσ(s−1)〉, d, S
)

∈ Θi� (

n, s, 〈I0, . . . , Is−1〉, 〈c0, . . . , cs−1〉, d, S
)

∈ Θ .The family of fun
tions indu
ed by Θ is
Θs
n(Ī; c̄) = (d, S) : iff (n, s, Ī , c̄, d, S) ∈ Θ .

We use ordered updates to de�ne a sum operation ∑Θ where the orderingof the stru
tures matters, whereas symmetri
 updates are used to de�ne anoperation ⋃Θ that is invariant under permutations of its arguments. For everysymmetri
 sum there exists an equivalent ordered one, while the 
onverse onlyholds if we are allowed to use more 
olours. (Basi
ally, we need to 
olour ea
hstru
ture with a di�erent 
opy of the 
olours.) Below we will use ordered sumsonly for �nitely many arguments.
6



De�nition 8 Let (Mi, χi), i < κ, be a sequen
e of C-
oloured stru
tures.(a) Let Θ be an ordered κ-update. The ordered sum
Θ
∑

i<κ

(Mi, χi)

of (Mi, χi), i < κ, with respe
t to Θ is the stru
ture (N, η) obtained from thedisjoint union of the Mi by the following operation:For every n-tuple ā ∈ Nn, n < ω, if
Θn(Ī; c̄) = (d, S)where
Ii := { k < n | ak ∈Mi } and ci := χi(ā|Ii) for i < κ ,then we add ā to all relations R ∈ S and set the new 
olour to η(ā) := d.(b) Let Θ be a symmetri
 update. The symmetri
 sum
Θ
⋃

i<κ

(Mi, χi)

of (Mi, χi), i < κ, with respe
t to Θ is the stru
ture (N, η) obtained from thedisjoint union of the Mi by the following operation:For every n-tuple ā ∈ Nn, n < ω, 
ontaining elements from Mj0 , . . . ,Mjs−1, if
Θs
n(Ī; c̄) = (d, S)where

Ii := { k < n | ak ∈Mji } and ci := χi(ā|Ii) for i < s ,then we add ā to all relations R ∈ S and set the new 
olour to η(ā) := d.Note that this de�nition does not depend on the ordering of j0, . . . , js−1 sin
e
Θ is invariant under permutations.(
) For every sequen
e of 
olours cn ∈ Cn, n < ω, let c̄ denote the C-
olouredstru
ture (D, ζ) with universe D := [1] and empty relations R := ∅ where theonly n-tuple is 
oloured with cn.Example 9 Consider three stru
tures with universes {x, x′}, {y, y′}, and {z, z′},
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and 
olouring
χ(〈〉) = e ,

χ(x) = a , χ(y) = b , χ(z) = c ,

χ(x′) = b , χ(y′) = c , χ(z′) = a ,

χ(x, x′) = d , χ(y, y′) = d , χ(z, z′) = f ,

χ(x′, x) = d , χ(y′, y) = f , χ(z′, z) = f .

(a) Let Θ be a symmetri
 update. The following examples show how the new
olour and relations of a tuple are determined.
(x, y) : Θ2

2

(

{0}, {1}; a, b
)

(y, x) : Θ2
2

(

{0}, {1}; b, a
)

= Θ2
2

(

{1}, {0}; a, b
)

(y′, y) : Θ1
2

(

{0, 1}; f
)

(y, x, y′) : Θ2
3

(

{1}, {0, 2}; a, d
)

(y, z, x) : Θ3
3

(

{1}, {2}, {0}; c, a, b
)

(b) For an ordered 3-update Θ we have:
(x, y) : Θ2

(

{0}, {1}, ∅; a, b, e
)

(y, x) : Θ2

(

{1}, {0}, ∅; a, b, e
)

(y′, y) : Θ2

(

∅, {0, 1}, ∅; e, f, e
)

(y, x, y′) : Θ3

(

{1}, {0, 2}, ∅; a, d, e
)

(y, z, x) : Θ3

(

{2}, {0}, {1}; a, b, c
)

Having de
ided on the operations we 
an start building terms. Sin
e we wantto support un
ountable stru
tures we 
onsider terms as in�nitely bran
hingtrees of ordinal height.De�nition 10 (a) For a graded set of 
olours C and a signature τ , let Υ<
C,τbe the signature 
onsisting of all operations of the form c̄ and ∑Θ with 
oloursfrom C and relation symbols from τ . Similarly, ΥC,τ 
onsists of c̄ and ⋃Θ.(b) Let Υ be a signature. A Υ-term is a tree T ⊆ κ<α labelled with symbolsfrom Υ su
h that the number of su

essors of a node equals the arity of thesymbol labelling it.
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8Θ

8Θ

8Θ

8Φ

8Θ

c

c

c

c

cFigure 1. The term Tω+2Example 11 Let C1 = {a, b, c}, Cn = {1}, for n 6= 1, and
Θ :=

{

(1, 1, 〈{0}〉, 〈a〉, b, ∅) ,

(1, 1, 〈{0}〉, 〈b〉, b, ∅) ,

(1, 1, 〈{0}〉, 〈c〉, a, ∅) ,

(2, 2, 〈{0}, {1}〉, 〈c, a〉, 1, {suc,≤}) ,

(2, 2, 〈{1}, {0}〉, 〈a, c〉, 1, {suc,≤}) ,

(2, 2, 〈{0}, {1}〉, 〈c, b〉, 1, {≤}) ,

(2, 2, 〈{1}, {0}〉, 〈b, c〉, 1, {≤}) ,

. . .
}

(where we left out the irrelevant entries). Let Φ be the update obtained from Θby repla
ing the instru
tion (1, 1, 〈{0}〉, 〈c〉, a, ∅) by (1, 1, 〈{0}〉, 〈c〉, b, ∅).For ea
h ordinal α, we 
an de�ne a term Tα denoting the stru
ture (α, suc,≤)where the 
olour of the �rst element is a and the other elements are 
olouredby b. (A formal de�nition of the value of a term 
an be found below.) For
β < α, we set

Tα(0
β) :=







∪Θ if β is a su

essor ,
∪Φ if β is a limit , and Tα(0

β1) := c .

For instan
e,
T4 = c ∪Θ (c ∪Θ (c ∪Θ

⋃Θ
{c})) .

When trying to evaluate an in�nite term T ⊆ κ<α for α > ω in a bottom-up fashion, we fa
e the di�
ulty that, after having obtained the value of asubterm whose root is at a limit depth, we have to propagate this value to its
9



prede
essors. To do so, we start at the prede
essor in question and tra
e thevalue ba
k until we rea
h the already evaluated subterm.De�nition 12 Fix a relation ≤ well-ordering ea
h 
olour set Cn su
h that
olours of di�erent arities are in
omparable.(1) For sequen
es of 
olours (ci)i<α and (di)i<α we de�ne the ordering 
ompo-nentwise.
(ci)i ≤ (di)i : iff ci ≤ di for all i < α ,and (ci)i < (di)i : iff (ci)i ≤ (di)i and (di)i � (ci)i .

(2) Let T be a term, v ∈ T a node, and α := |v|. A 
olour tra
e to v is asequen
e (ci)i<α+1 of 
olours of the same arity whi
h satis�es the following
onditions:(a) If α = β+1 is a su

essor then (ci)i<β+1 is a 
olour tra
e to the prede
es-sor u of v and the operation at u 
hanges the 
olour of tuples from cβ+1to cβ.(b) If α is a limit then ea
h subsequen
e (ci)i<β+1 for β < α is a 
olour tra
eto the 
orresponding pre�x of v, and cα is the minimal 
olour c su
h thatthe set { β < α | cβ = c } is unbounded below α.Example 13 For the terms Tα in the previous example, the 
olour tra
es areof the form bb . . . bbac, bb . . . bba, or bb . . . bb.With these notions we 
an de�ne a sub
lass of terms to whi
h we 
an assigna value. Basi
ally, we 
all a term T well-formed if its value val(T ) (whi
h weintrodu
e below) is well-de�ned.De�nition 14 A term T is well-formed if the following 
onditions are satis-�ed:(1) For ea
h v ∈ T , the set of 
olour tra
es to v is linearly ordered by ≤.(2) For every leaf v labelled c̄ and all arities n there exists a 
olour tra
e
(di)i<α+1 to v with dα = cn.(3) For all �nite sequen
es of verti
es vk, k < m, and all 
olour tra
es (cki )ito vk, there exists a 
olour tra
e (di)i<α+1 to u := v0 ⊓ · · · ⊓ vm−1 su
hthat dα is the result of the operation at u applied to the 
olours ckα+1.Lemma 15 Let T be a well-formed term. For every v ∈ T and all 
olours c ∈

C there is at most one 
olour tra
e (cβ)β<α+1 to v with cα = c.
PROOF. Let (cβ)β<α+1 and (dβ)β<α+1 be 
olour tra
es to v with cα = dα.We prove by indu
tion on α that (cβ)β = (dβ)β. The 
ase α = 0 is trivial.
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If α = β + 1 is a su

essor ordinal then the operation at v maps cα = dαto cβ = dβ and the 
laim follows by indu
tion hypothesis.Suppose that α is a limit and that (cβ)β 6= (dβ)β. By symmetry, we mayassume that (cβ)β < (dβ)β. By de�nition, the set
S := { β < α | dβ = dα }is unbounded below α. Let e be the minimal 
olour su
h that the subset

S ′ := { β ∈ S | cβ = e } is also unbounded. Su
h a 
olour exists sin
e thereare only �nitely many 
olours of the given arity.By de�nition of a 
olour tra
e we have e ≥ cα. Sin
e cβ ≤ dβ for all β < α itfollows that e = cβ ≤ dβ = dα = cα for β ∈ S ′. Consequently, cβ = dβ for all
β ∈ S ′. Sin
e S ′ is unbounded the indu
tion hypothesis implies that cβ = dβfor all β < α. Contradi
tion. 2

De�nition 16 Let T ⊆ κ<α be a well-formed term and L ⊆ T the set of itsleaves.(a) To every tuple ā ∈ Ln we asso
iate a 
olour tra
e χ(ā) by indu
tion on n.If a0 = · · · = an−1 and the node a0 is labelled by d̄ then χ(ā) := (cβ)β<α+1 isthe (unique) 
olour tra
e to a0 that ends in cα = dn.Otherwise, let v := ⊓ ā. There is a partition I0 ·∪ · · · ·∪Is−1 = [n] of the indi
essu
h that
• v ≺ ai ⊓ ak if i and k belong to the same 
lass Il, and
• v = ai ⊓ ak for i and k belonging to di�erent 
lasses.The node v is labelled by either ∑Θ or ⋃Θ for some update Θ. Let (ciβ)β :=
χ(ā|Ii), for i < s, and let α := |v|. We either have

(d, S) = Θn

(

Ī ′; (ĉiα)i<κ
) or (d, S) = Θs

n

(

Ī; c0α, . . . , c
s−1
α

)

,

where (ĉiα)i<κ is the sequen
e of length κ obtained from c0α, . . . , c
s−1
α by insert-ing the 
olour of the empty tuple at the appropriate pla
es. We let χ(ā) :=

(cβ)β<α+1 be the (unique) 
olour tra
e to v with cα = d.(b) The value val(T ) of T is the stru
ture whose universe M := L 
onsists ofall leaves of T . A tuple ā ∈Mn with asso
iated 
olour tra
e χ(ā) = (cβ)β<α+1belongs to a relation R i� there is some node v �⊓ ā labelled by an operation
∑Θ or ⋃Θ that adds tuples 
oloured c|v| to R.In the following we will ta
itly assume that all terms are well-formed.

11



What stru
tures 
an be the value of a ΥC,τ -term? If M is a �nite stru
turewith |Mn| ≤ |Cn|, for all n < ω, then, by assigning di�erent 
olours to ea
htuple ā ⊆M , we 
an easily 
onstru
t a term denoting M.But, if M is in�nite, this does not need to be the 
ase. In the next lemma weprove that every stru
ture denoted by an ΥC,τ -term T 
an be interpreted insome tree, namely, the term T itself. The 
onverse is shown in Se
tion 6.One remaining te
hni
ality we have to deal with is to �x an en
oding ofterms as stru
tures. In order to allow in�nite signatures we en
ode a Υ-term
T ⊆ κ<α as a stru
ture (T,�, P̄ ) with universe T , pre�x ordering �, andunary predi
ates P̄ 
oding the fun
tions in Υ. Ea
h operator is en
oded byseveral predi
ates:

Pd := { v ∈ T | v is labelled by some c̄ with d ∈ c̄ } ,

P(n,α,Ī,c̄,d,R) := { v ∈ T | v is labelled by ∑Θ or ⋃Θ for some Θ
ontaining (n, α, Ī, c̄, d, S) with R ∈ S } .Proposition 17 For all signatures τ and every set C of 
olours there are
MSO-interpretations V and V<k , k < ℵ0, su
h that

V<k : val(T ) ≤MSO (T,�, P̄ , (suci)i<k) for all Υ<
C,τ -terms T ⊆ k<α,and V : val(T ) ≤MSO (T,�, P̄ ) for all ΥC,τ -terms T ⊆ κ<α.If the arity of τ is bounded then there even exist MSOm-interpretations forsome m.

PROOF. The universe of val(T ) 
onsists of the set of leaves of T , whi
h isde�nable. The above de�nition of the relations of val(T ) 
an be translatedimmediately into MSO on
e we have shown how to en
ode 
olour tra
es. If
olour tra
es (ci)i<α ∈ Cα
n to some node v ∈ T are represented by sets (Xd)d∈Cnsu
h that u � v belongs to Xd i� c|u| = d, then there is an MSO-formula whi
hexpresses that the sequen
e of 
olours en
oded in some tuple X̄ is indeed a
olour tra
e.The quanti�er rank of these formulae depends only on |Cn| and the arity ofthe relations involved. 2

4 Partition re�nements
Our goal is to obtain a 
hara
terisation of the 
lass of stru
tures denoted bysome term similar to Theorem 5. As an intermediate step before proving the
onverse of Proposition 17 we show that the stru
ture denoted by a term 
an

12



be de
omposed in a 
ertain way, and that, vi
e versa, every su
h de
ompositionyields a term.If we ignore the 
olours, ΥC,τ -terms 
onsist purely of disjoint unions. Thus,when traversing a term T from the root to its leaves we observe a progressionof de
ompositions of the stru
ture denoted by T . This pro
ess is 
aptured bythe following de�nition.De�nition 18 (a) A partial κ<α-partition re�nement of a stru
ture M is afamily (Uv)v∈T of nonempty subsets Uv ⊆ M indexed by a tree T ⊆ κ<α su
hthat the following 
onditions are satis�ed:(1) Uε = M and for every a ∈M there is some leaf v ∈ T with a ∈ Uv.(2) Ea
h Uv is the disjoint union of its su

essors Uvβ, vβ ∈ T , β < κ.(3) If |v| is a limit ordinal then Uv =
⋂

u≺v Uu.The granularity of a partial partition re�nement (Uv)v is the supremum of the
ardinalities |Uv| of its leaves v.(b) A κ<α-partition re�nement is a partial κ<α-partition re�nement of gran-ularity 1.It turns out that it is not ne
essary to expli
itly add information about the
olouring to a partition re�nement. Instead, the 
olours 
an dire
tly be reado� from a given partition re�nement sin
e the 
olour of a tuple 
orrespondsto its type as explained below. As the 
olours are only needed to 
onne
ttuples ā ⊆ Uv in some 
omponent Uv with tuples b̄ ⊆ Uv in the 
omplementwe de�ne a notion of type 
onsisting only of formulae 
ontaining both, a freevariable and some parameter.De�nition 19 Let M be a stru
ture, ā ∈ Mn, and U ⊆ M . Let ∆ ⊆ FO.The ∆-type of ā over U is the set
tp∆(ā/U) := {ϕ(x̄; c̄) | M |= ϕ(ā; c̄), ϕ ∈ ∆, c̄ ⊆ U } .The external ∆-type of ā over U is de�ned by
etp∆(ā/U) := {ϕ(x̄; c̄) ∈ tp∆(ā/U) | every atom of ϕ 
ontains a variableand some parameter c ∈ U }.

We denote the set of all ∆-types over U with n free variables by Sn∆(U) andits subset of external types by ESn∆(U). In 
ase ∆ = FOk we simply write
tpk(ā/U) and Snk (U).For sets Ā ⊆ P(M) and monadi
 formulae ∆ ⊆ MSO we also de�ne the

13



monadi
 ∆-type of Ā over U and its external variant by
mtp∆(Ā/U) := {ϕ(X̄; C̄) | M |= ϕ(Ā, C̄), ϕ ∈ ∆, C̄ ⊆ P(U) }

emtp∆(Ā/U) := { ϕ(X̄; C̄) ∈ mtp∆(Ā/U) | every atom of ϕ 
ontainsa variable and some parameter C ⊆ U }.The set of all monadi
 ∆-types over U with n free variables is denoted by MSn∆(U).De�nition 20 Let M be a stru
ture and U ⊆ M . For tuples ā, b̄ ⊆ M wede�ne
ā ≈∆

U b̄ : iff tp∆(ā/U) = tp∆(b̄/U) ,

ā ≃∆
U b̄ : iff etp∆(ā/U) = etp∆(b̄/U) .For sets Ā, B̄ ⊆ P(M) we reuse the these symbols and write

Ā ≈∆
U B̄ : iff mtp∆(Ā/U) = mtp∆(B̄/U) ,

Ā ≃∆
U B̄ : iff emtp∆(Ā/U) = emtp∆(B̄/U) .

The [external℄ [monadi
℄ ∆-type index of a set X over U is
tin∆(X/U) := |Xn/≈∆

U | , mtin∆(X/U) := |P(X)n/≈∆
U | ,

etin∆(X/U) := |Xn/≃∆
U | , emtin∆(X/U) := |P(X)n/≃∆

U | .Again, in 
ase ∆ = FOk we simply write ≈k
U , tink(X/U), and so on.Remark 21 Note that, for undire
ted graphs, the relations ≃0

U 
oin
ides withthe relation ∼U de�ned by Cour
elle in [11℄.For the most part we will 
on
entrate on atomi
 external types etp0(ā/U) andthe 
orresponding index etin0 (X/U).Example 22 Consider the binary tree T = (2≤ω,�) and �x a vertex w ∈ 2≤ω.If v ∈ ↑w := { v ∈ 2≤ω | w � v } then
u � v for all u ∈ ↓w := { v ∈ 2≤ω | v ≺ w } ,and u � v for all u ∈ 2≤ω \ (↑w ∪ ↓w) .Hen
e eti10(↑w/↑w) = 1 sin
e only one external atomi
 type over 2≤ω \ ↑wis realised in ↑w. On the other hand, eti10(↑w/↑w) = 2 be
ause there are twoexternal atomi
 types over ↑w realised in 2≤ω \ ↑w.Below it will be shown that, when 
olouring a 
omponent Uv of a partitionre�nement, we 
an take as 
olours the 
lasses of the relation ≃0

Uv
, i.e., theatomi
 external types over the 
omplement of Uv. Therefore, the number of

n-ary 
olours we need equals etin0 (Uv/Uv).
14



De�nition 23 (1) The n-ary partition width of a partition re�nement (Uv)v∈Tis the number
pwdn(Uv)v∈T := sup

{

etin0 (Uv/Uv)
∣

∣

∣ v ∈ T
}

,and the n-ary symmetri
 partition width is
spwdn(Uv)v∈T := sup

{

etin0
(

⋃

i∈I Uvi
/

⋃

i∈I Uvi
)
∣

∣

∣ v ∈ T, I ⊆ κ
}

.

(2) The n-ary partition width pwdn(M, κ<α) of a stru
ture M is de�ned in-du
tively as follows: pwdn(M, κ<α) is the minimal 
ardinal λ su
h that thereexists a κ<α-partition re�nement (Uv)v with
pwdn(Uv)v = λ and pwdi(Uv)v = pwdi(M, κ<α) for i < n.If κ<α = 2<|M |+ we omit the se
ond parameter and simply write pwdn M. M issaid to be of �nite partition width if pwdn M is �nite for all n < ω.The n-ary symmetri
 partition width spwdn(M, κ<α) of M is de�ned analo-gously. We set spwdn M := spwdn

(

M, |M |<|M |+
).(3) The monadi
 [symmetri
℄ partition widths mpwdn and smpwdn of a parti-tion re�nement or a stru
ture are de�ned similarly by repla
ing etin0 by emtin0 .Remark 24 (1) Obviously, we have pwdn(M, κ<α) ≤ spwdn(M, κ<α).(2) In ea
h partition re�nement (Uv)v∈T we 
an remove all nodes v ∈ T withexa
tly one su

essor. In that way we 
an transform any κ<α-partition re�ne-ment of a stru
ture of 
ardinality λ into a κ<λ+-partition re�nement.(3) It is not 
lear whether there always exists a partition re�nement (Uv)v su
hthat pwdn M = pwdn(Uv)v for all n.Lemma 25 Every linear order M = (M,≤) has a 2<|M |+-partition re�nement

(Uv)v∈T of monadi
 partition width mpwdn(Uv)v = 1 where every Uv forms aninterval of M.
PROOF. We de�ne Uv by indu
tion on |v|. Let Uε := M . Given an interval Uv
ontaining at least two di�erent elements, we pi
k some a ∈ Uv that is not theleast element of Uv and set

Uv0 := { b ∈ Uv | b < a } and Uv1 := { b ∈ Uv | b ≥ a } .Finally, if |v| is a limit ordinal, we set Uv :=
⋂

u�v Uu. 2
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Lemma 26 For the tree T := (β<α,�) we have
smpwdn(T, β

<2α) = 1 and smpwdn(T, 2
<(β+2)α) = 1.

PROOF. We de�ne a β<2α-partition re�nement (Uv)v by indu
tion on v. Set
Uε := β<α. Suppose that Uv is already de�ned and of the form ↑w := { x ∈
β<α | w � x } for some w. We de�ne

Uv0 := {w} , Uv1 = Uv \ {w} , Uv1i := ↑wi for i < β .Then we have emtin0 (Uv/Uv) = 1 for all v, as desired.The se
ond 
laim is proved analogously. If Uv = ↑w is already de�ned, we set
Uv0 := {w} , Uv11γ :=

⋃

i≥γ

↑wi , Uv11γ0 := ↑wγ for γ < β .

2

We promised above that we will show how one 
an use types to de�ne a
anoni
al 
olouring. For the symmetri
 
ase we �rst need a te
hni
al lemmawhi
h relates in�nite symmetri
 sums and symmetri
 partition width.We say that a disjoint union ⋃iXi indu
es the equivalen
e relation
a ∼ b : iff there is some i with a, b ∈ Xi .When 
onsidering an n-tuple ā, this relation indu
es a partition I0 ·∪ · · · ·∪ Is =

[n] of the indi
es su
h that ai ∼ akiffi, k ∈ Il for some l.We 
all a tuple ā ⊆
⋃

iXi ∪ U fragmented if the indu
ed partition 
onsists ofat least two 
lasses. Further, we say that a 
olouring χ of a set X is 
ompatiblewith the equivalen
e relation ≃0
U if

χ(ā) = χ(b̄) iff ā ≃0
U b̄ for all ā, b̄ ⊆ X .Proposition 27 Let M be a stru
ture of arity r < ω, Y :=

⋃

i<κXi ⊆ M adisjoint union, and U ⊆ M disjoint from Y . For I ⊆ κ, de�ne XI :=
⋃

i∈I Xiand UI := U ∪ (Y \ XI). Let ∼ be the equivalen
e relation indu
ed by theunion ⋃iXi. Consider the following statements:(1) There is a bound w̄ ∈ ωω with wn ≤ wn+1 su
h that
etin0 (XI/UI) ≤ wn for all n < ω and I ⊆ κ .
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(2) There exists a set of 
olours C and C-
olourings η of Y and χi of Xi
ompatible with, respe
tively, ≃0
U and ≃0

U{i}
su
h that

(M|Y , η) =
Θ
⋃

i<κ

(M|Xi
, χi) for suitable Θ .

The following impli
ations hold:
(2) ⇒ (1) with wn ≤ nn+1(cn)

n where cn := maxi≤n|Ci| .
(1) ⇒ (2) with |Cn| < (wn(r − n) + 1)R(Kn)

2
r3r+1 where

Kn := wn(rwr)
r +R(wn + 2(r − n) + 2)3

8 .

PROOF. (2) ⇒ (1) De�ne χ(ā) := χi(ā) for ā ⊆ Xi, i < κ. Let I ⊆ κ and ā,
ā′ ∈ (XI)

n. We 
laim that, if ∼ indu
es the same partition J0 ·∪ · · · ·∪ Js = [n]of the indi
es of ā and ā′ and if χ(ā|Ji
) = χ(ā′|Ji

) for all i ≤ s, then ā ≃0
UI
ā′.First suppose that M |= ϕ(ā; b̄) for some atomi
 formula ϕ and parameters b̄ ⊆

Y \XI . Then ⋃Θ adds all tuples of 
olour η(āb̄) = η(ā′b̄) to the 
orrespondingrelation. Hen
e, M |= ϕ(ā′; b̄).It remains to 
onsider the 
ase M |= ϕ(ā; b̄, c̄) where b̄ ⊆ Y \XI and c̄ ⊆ U .
η(āb̄) = η(ā′b̄) implies āb̄ ≃0

U ā
′b̄. Thus, M |= ϕ(ā′; b̄, c̄).Setting cn := maxi≤n|Ci| it follows that

wn ≤
∑

{

|C|J0|| · · · · · |C|Js−1||
∣

∣

∣ J0 ·∪ · · · ·∪ Js−1 = [n], s ≤ n
}

≤
∑

s≤n

sn(cn)
s ≤ nn+1(cn)

n .

(1) ⇒ (2) We 
all a sequen
e (fn)n≤r of fun
tions
fn :

⋃

α<κ

Xn
α → Cn

a valid 
olouring i�
(M|Y , η) =

Θ
⋃

α<κ

(M|Xα
, χα)

for some Θ where χα is the 
olouring of Xα indu
ed by (fn)n. This 
onditionis equivalent to the following one: (fn)n is valid if and only if, for all tuples
ā, b̄ ∈ Y n su
h that ∼ indu
es the same partition J0 ∪ · · · ∪ Js of their in-di
es, f|Ji|(ā|Ji

) = f|Ji|(b̄|Ji
), i ≤ s, and for every atomi
 formula ϕ(x̄; d̄) with

17



parameters d̄ ⊆ U su
h that ād̄ and b̄d̄ are fragmented, we have
M |= ϕ(ā; d̄) ↔ ϕ(b̄; d̄) .

Fix (fn)n. For ā0 ∈ Xn
α and b̄0 ∈ Xn

β , we write ā0 ↽⇀ b̄0 if there are tuples
ā1 ⊆ Y \Xα and b̄1 ⊆ Y \Xβ su
h that
• ∼ indu
es the same partition J0 ∪ · · · ∪ Js of their indi
es,
• f|Ji|(ā1|Ji

) = f|Ji|(b̄1|Ji
), for i ≤ s, and

• for some atomi
 formula ϕ(x̄, ȳ; d̄) with parameters d̄ ⊆ U su
h that ā0ā1d̄ and b̄0b̄1d̄are fragmented, we have
M |= ϕ(ā0, ā1; d̄) ↔ ¬ϕ(b̄0, b̄1; d̄) .We will 
all su
h tuples ā1 and b̄1 witnesses of the fa
t that ā0 ↽⇀ b̄0.By the above remark, it follows that (fn)n is a valid 
olouring if and only if

ā ↽⇀ b̄ implies fn(ā) 6= fn(b̄) for all ā and b̄.Let (fn)n be a valid 
olouring su
h that Cn := rng fn is of minimal size.Suppose that
m := |Cn| ≥ (wn(r − n) + 1)R(Kn)

2
r3r+1 .We �x an arbitrary ordering of ea
h Cn and we order 
olourings pointwise:

(fn)n ≤ (gn)n : iff fn(ā) ≤ gn(ā) for all n ≤ r, ā ∈
⋃

α

Xn
α .

W.l.o.g. we may assume that (fn)n is minimal w.r.t. this ordering. It followsthat, for all ā ∈
⋃

αX
n
α and every 
olour c ∈ Cn with c < fn(ā), there existssome tuple b̄ ∈ f−1

n (c) with ā ↽⇀ b̄ sin
e, otherwise, the sequen
e (gn)n de�nedby
gn(x̄) :=







c if x̄ = ā ,

fn(x̄) otherwise ,and gi := fi for i 6= n, would be a stri
tly smaller valid 
olouring.Further, it follows that |rng fn|Xn
α
| ≤ wn for all α < κ sin
e, if ā ≃0

U{α}
b̄ and

fn(ā) < fn(b̄), then we 
ould 
hange the 
olour of b̄ to fn(ā) and the 
olouringwould still be valid.
(a) Fix a de
reasing enumeration c0 > · · · > cm−1 of Cn. We 
onstru
t asequen
e (āi)i su
h that āi ↽⇀ āk for i 6= k. By indu
tion on i, we de�ne
• an in
reasing sequen
e of indi
es si ∈ [m];
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• a de
reasing sequen
e of sets Hi ⊆ [m];
• sets Iit ⊆ κ, for si < t < m; and
• tuples āi ∈ f−1

n (csi
) ∩Xn

Ii−1,sisu
h that
• b̄ ↽⇀ āi for all b̄ ∈ f−1

n (ct) ∩X
n
Iit
, si < t < m, and

• f−1
n (ct) ∩X

n
Iit

6= ∅ for all t ∈ Hi.Let H−1 := [m] and I−1,t := κ. For every i, we perform the following steps.If Hi−1 = ∅ we stop. Otherwise, let si := minHi−1 and 
hoose an arbitrarytuple āi ∈ f−1
n (csi

)∩Xn
Ii−1,si

, say āi ∈ Xn
α . Sin
e Ii−1,si

⊆ Iksi
for k < i and byindu
tion hypothesis, we have āi ↽⇀ āk, for every k < i, as desired.To de�ne Iit, si < t < m, �x some b̄0 ∈ f−1

n (ct) su
h that b̄0 ↽⇀ āi, say, b̄0 ∈ Xn
β .By de�nition, there exist an atomi
 formula ϕ(x̄, ȳ; d̄) with parameters d̄ ⊆ Uand tuples ā1 and b̄1 su
h that āiā1d̄ and b̄0b̄1d̄ are fragmented, ∼ indu
es thesame partition J0 ∪ · · · ∪Js of the indi
es of ā1 and b̄1, f|Jl|(ā1|Jl

) = f|Jl|(b̄1|Jl
),for l ≤ s, and we have

M |= ϕ(āi, ā1; d̄) ↔ ¬ϕ(b̄0, b̄1; d̄) .Let J ⊆ κ be the minimal set su
h that b̄1 ⊆ XJ . If b̄′ ∈ f−1
n (ct) ∩X

n
κ\J then

M |= ϕ(b̄′, b̄1; d̄) ↔ ϕ(b̄0, b̄1; d̄)sin
e (fn)n is a valid 
olouring. This implies b̄′ ↽⇀ āi. Therefore, we 
an set
Iit := Ii−1,t \ J . We 
on
lude the 
onstru
tion by setting

Hi := { t ∈ Hi−1 \ {si} | f−1
n (ct) ∩X

n
Iit

6= ∅ } .

The sequen
e (āi)i<m1 obtained this way satis�es āi ↽⇀ āk for i 6= k. It remainsto determine its length m1. We have
|Hi| ≥ |Hi−1| − wn|J | − 1

≥ |H−1| − (i+ 1)(wn(r − n) + 1)

= m− (i+ 1)(wn(r − n) + 1) .We 
an de�ne āi provided Hi−1 6= ∅. This is the 
ase if
i <

m

wn(r − n) + 1
.

Consequently,
m1 ≥

m

wn(r − n) + 1
≥ R(Kn)

2
r3r+1 .
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(b) Denote the index α su
h that āi ∈ Xn
α by αi. For all i < k, we �x tuples

b̄ik ⊆ Xκ\{αi} and b̄ki ⊆ Xκ\{αk} witnessing the fa
t that āi ↽⇀ āk, that is,
M |= ϕ(āi, b̄ik; d̄) ↔ ¬ϕ(āk, b̄ki; d̄)for some atomi
 formula ϕ(x̄, ȳ; d̄). Let J0 ·∪ · · · ·∪ Js be the partition of theindi
es of b̄ik (or of b̄ki) indu
ed by ∼. Set
b̄ikl := b̄ik|Jl

, b̄kil := b̄ki|Jl
,and let βikl , βkil < κ be the indi
es su
h that b̄ikl ⊆ Xβik

l
and b̄kil ⊆ Xβki

l
. Assumethat we have 
hosen b̄ik and b̄ki su
h that the set

N := { l | b̄ikl = b̄kil }is maximal.It follows that, for ea
h l /∈ N , we either have βikl = αk or there exists someindex σ(l) 6= l su
h that βikl = βkiσ(l). Otherwise, we 
ould repla
e b̄kil by b̄ikl andthe resulting pair of tuples would still witness āi ↽⇀ āk in 
ontradi
tion to themaximality of N .Let σik : [s+ 1] \N → ([s+ 1] \N) ·∪ {∗} be the fun
tion su
h that
βikl =







αk if σik(l) = ∗ ,

βkiσik(l) otherwise ,and de�ne σki analogously. The maximality of N further implies that thereexists no sequen
e l0, . . . , lt of indi
es su
h that σik(lj) = lj+1, for j < t, and
σik(lt) = l0 sin
e, otherwise, we 
ould simultaneously repla
e ea
h b̄kilj by b̄ikljand again obtain witnesses for āi ↽⇀ āk with stri
tly larger N .It follows that βikl ∈ {αk, β

ki
0 , . . . , β

ki
s }, for every l /∈ N , and there is somenumber j su
h that σjik(l) = ∗, i.e., βik
σj−1

ik
(l)

= αk.For ea
h pair i < k of indi
es we re
ord
• the partition J0 ·∪ · · · ·∪ Js of the indi
es of b̄ik indu
ed by ∼,
• the size |N | of the set N de�ned above, and
• the fun
tions σik and σki.There exists a subset I ⊆ κ of size

|I| ≥ m2 := max { k | m1 → (k)2
r3r+1 }

≥ Kn = wn(rwr)
r +R(wn + 2(r − n) + 2)3

8

20



su
h that all pairs i, k ∈ I with i < k are 
oloured in the same way. W.l.o.g.we may assume that I = [m2].
(
) First, 
onsider the 
ase that N = [s + 1] for all i, k ∈ I. Let Bik ⊆ κbe the smallest set of indi
es su
h that b̄ik = b̄ki ⊆ XBik

. Clearly, Bik = Bki.Also note that, by de�nition of b̄ik and b̄ki, we have αi, αk /∈ Bik. For ea
h set
{i, k, l} of indi
es i < k < l, we re
ord whi
h of the following 
onditions hold:

αi ∈ Bkl , αk ∈ Bil , αl ∈ Bik .There exists a subset I ′ ⊆ [m2] of size
|I ′| ≥ m3 := max { k | m2 → (k)3

23 } ≥ wn + 2(r − n) + 2su
h that all triples i, k, l ∈ I ′ are 
oloured in the same way. W.l.o.g. we mayassume that I ′ = [m3].First we 
onsider the 
ase that αl ∈ Bik for all i < k < l < m3. Then
αi ∈ B01, for 1 < i < m3. Furthermore, for 0 < i < k, we have αi /∈ B0i and
αk ∈ B0i \B0k whi
h implies that αi 6= αk. Hen
e,

m3 ≤ |B01| + 2 ≤ r − n+ 2 .Contradi
tion. Analogously, if αi ∈ Bkl or αk ∈ Bil, for i < k < l, then weobtain, respe
tively,
m3 ≤ |Bm3−2,m3−1| + 2 and m3 ≤ |B0,m3−1| + 2 ,whi
h lead to similar 
ontradi
tions.The only remaining 
ase is that none of the above 
onditions holds, that is,we have αi /∈ Bkl for all pairwise distin
t sets of indi
es i, k, l. Let H := {αi |

i < m3 }. b̄ik ⊆ UH implies āi 6≃0
UH

āk, for all i 6= k. Consequently, we have
etin0 (XH/UH) ≥ m3 > wn.Contradi
tion.

(d) It remains to 
onsider the 
ase that [s + 1] \ N 6= ∅. Let l0 ∈ σ−1
10 (∗),i.e., βkil0 = αi, for all i < k, and de�ne lj+1 := σ01(lj). Let l0, . . . , lt be thesequen
e of indi
es obtained in this way where lt = ∗. Note that, for i < kand j < t − 1, we have βiklj = βkiσ01(lj)

= βkilj+1
. For notational 
onvenien
e, wealso set βki∗ := βiklt−1

= αk.By indu
tion on j ≤ t, we 
onstru
t a de
reasing sequen
e of subsets Ij ⊆ I
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of size
|Ij| ≥ (|I| − 1)/(rwr)

j

su
h that
βi0lj = βk0lj and f|Jlj−1

|(b̄
0i
lj−1

) = f|Jlj−1
|(b̄

0k
lj−1

) for all i, k ∈ Ij .

For all indi
es i, k ∈ It it follows that αi = βi0∗ = βk0∗ = αk. Sin
e ea
h tuple āihas a di�erent 
olour it further follows that |It| ≤ wn whi
h implies that
wn ≥ |It| ≥ (|I| − 1)/(rwr)

t > wn .Contradi
tion.
(e)We still have to 
onstru
t the sets Ij. Let I0 := I\{0}. Sin
e βi0l0 = α0 = βk0l0our 
laim holds for j = 0. Suppose that I0, . . . , Ij−1 are already de�ned. Sin
e
βi0lj−1

= βk0lj−1
, for i, k ∈ Ij−1, there exists a subset I ′j ⊆ Ij−1 of size

|I ′j| ≥ |Ij−1|/w|Jlj−1
| ≥ |Ij−1|/wrsu
h that f|Jlj−1

|(b̄
i0
lj−1

) = f|Jlj−1
|(b̄

k0
lj−1

) for all i, k ∈ I ′j. It follows that
c := f|Jlj−1

|(b̄
0i
lj−1

) = f|Jlj−1
|(b̄

i0
lj−1

) = f|Jlj−1
|(b̄

k0
lj−1

) = f|Jlj−1
|(b̄

0k
lj−1

) ,and, by the remarks in (b), we have f−1
|Jlj−1

|(c) ⊆ X{α0,β0i
0 ,...,β

0i
s }. Therefore,there exists a subset Ij ⊆ I ′j of size

|Ij| ≥ |I ′j |/(s+ 2) ≥ |Ij−1|/(rwr) ≥ (|I| − 1)/(rwr)
j

su
h that β0i
lj−1

= β0k
lj−1

for all i, k ∈ Ij. It follows that
βi0lj = β0i

lj−1
= β0k

lj−1
= βk0ljas desired. 2

After these somewhat lengthy preparations we are �nally able to prove thatevery stru
ture denoted by a term has �nite partition width and, 
onversely,every stru
ture with �nite partition width is denoted by a term.Proposition 28 Let C be a graded set of 
olours, τ a signature, and n < ω.(1) pwdn(val(T ), κ<α) < ℵ0 for all Υ<
C,τ -terms T ⊆ κ<α.(2) spwdn(val(T ), κ<α) < ℵ0 for every ΥC,τ -term T ⊆ κ<α.
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PROOF. (1) Consider the subterm Tv of T with root v ∈ T and let Uv be theuniverse of val(Tv). We 
laim that (Uv)v∈T is the desired partition re�nement.Suppose that ā, b̄ ∈ Un
v are tuples su
h that, for all I ⊆ [n], the subtuples

ā|I and b̄|I have the same 
olour at node v. Let ϕ(x̄, c̄) be an atomi
 formulawith parameters c̄ ⊆ Uv. If val(T ) |= ϕ(ā, c̄) then there exists a node u ≺ vsu
h that ā, c̄ ⊆ Uu and the operation ∑Θ at u adds all tuples with the
olour of (āc̄)|I to the relation in ϕ where I is the set of those indi
es thata
tually appear in ϕ. Sin
e (b̄c̄)|I has the same 
olour it follows that also
val(T ) |= ϕ(b̄, c̄). Consequently, we have ā ≃0

Uv
b̄.(2) De�ne (Uv)v as above. By the pre
eding proposition, we have

etin0
(

⋃

i∈I
Uvi

/

⋃

i∈I
Uvi
)

≤ nn+1
(

max
i≤n

|Cn|
)n
.

2

Remark 29 Note that, for n = 1, the proof above implies pwd1(val(T ), κ<α) ≤
|C1|.Proposition 30 Let M be a τ -stru
ture.(1) Let k < ℵ0. For every k<α-partition re�nement (Uv)v∈S of M of �nitepartition width, there exists a Υ<

C,τ -term T ⊆ k<α denoting M where C is aset of 
olours with |Cn| ≤ pwdn(Uv)v for n < ω.(2) If the arity of M is �nite and there exists a κ<α-partition re�nement (Uv)v∈Sof M su
h that spwdn(Uv)v < ℵ0 for all n, then there is a ΥC,τ -term T ⊆ κ<αdenoting M for some set of 
olours C.
PROOF. (1) Let wn := pwdn(Uv)v. Let T := S ∪ {w0 | w leaf of S } be thetree obtained from S by adding to every leaf of S a new vertex as su

essor.We 
onstru
t a Υ<

C,τ -term with domain T su
h that, for every v ∈ S, thesubterm Tv := {w ∈ T | w � v } will evaluate to the substru
ture M|Uv
of Mindu
ed by Uv.In a �rst step, ea
h su
h 
omponent Uv will be 
oloured by a di�erent set Cvof 
olours with |Cv

n| ≤ wn. To obtain a single set of 
olours C we then de�neinje
tive fun
tions µvn : Cv
n → [wn] and identify 
olours c ∈ Cu

n and d ∈ Cv
n i�

µun(c) = µvn(d).Colour ea
h tuple ā ⊆ Uv by its external type etp0(ā/Uv). If āi ⊆ Uvi, for i < k,then the type etp0(ā0 . . . āk−1/Uv) is uniquely determined by etp0(āi/Uvi) for
i < k. Hen
e, these 
olourings χv enable us to express Uv as the ordered sum
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of the Uvi
(M|Uv

, χv) =
Θv
∑

i<k

(M|Uvi
, χvi)

for a suitable set Θv.For non-leaves v ∈ S, we de�ne the labelling of T by T (v) :=
∑Θv . Then wehave Tv =

∑Θv

i<k Tvi.For leaves v ∈ S with Uv = {a} we set T (v) :=
∑Θ and T (v0) := c̄, i.e.,

Tv =
∑Θ c̄, where cn := etp0(a

n/M \ {a}) and
Θ := { (n, 1, [n], cn, cn, Sn) | n < ω }with Sn := {R | an ∈ R }.It remains to de�ne the fun
tions µvn : Cv

n → [wn] su
h that the resultingterm T := Tε is well-formed. For v ∈ T , we denote by vβ � v the pre�x of vof length |vβ| = β and, for ea
h type p ∈ Cv
n over Uv, we denote by pβ itsrestri
tion to Uvβ

.For T to be well-formed it is su�
ient to de�ne µvn su
h that
• for ea
h p ∈ Cv

n, the sequen
e (µ
vβ
n (pβ))β<|v|+1 forms a 
olour tra
e to v ;

• the 
olour tra
es to v are linearly ordered.We de�ne µvn by indu
tion on |v|. Let µεn be an arbitrary inje
tive fun
-tion Cε
n → [wn]. (Note that |Cε

n| = 1 sin
e there is only one external typeover the empty set.) Suppose that µun is already de�ned for all |u| < α and let
|v| = α.First, 
onsider the 
ase that α = β+1 is a su

essor. Set u := vβ and let < bethe ordering on Cu

n indu
ed by the fun
tion µun. We order Cv
n in the followingway. If pβ < p′β, for p, p′ ∈ Cv

n, then we set p < p′ and, if pβ = p′β, then we
hoose an arbitrary ordering between them. Finally, let µvn be some inje
tiveorder preserving fun
tion Cv
n → [wn].It remains to 
onsider limit ordinals α. Let p ∈ Cv

n and let c be the minimalnumber su
h that the set { β < α | µ
vβ
n (pβ) = c } is unbounded. We set

µvn(p) := c.With these de�nitions, (µvβ
n pβ)β satis�es both 
onditions on a 
olour tra
e, andwe have ensured that all 
olour tra
es to some node v are linearly ordered.(2) In the symmetri
 
ase the proof is analogous ex
ept that, a

ording to theabove proposition, we have to use a suitable re�nement of the 
olouring given
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by the external types. This poses no problem sin
e the number of additional
n-ary 
olours only depends on the arity of M and spwdi(Uv)v, for i < ω, sothe bound sup { |Cv

i | | v ∈ S } remains �nite. 2

We 
laimed above that partition width generalises the notion of 
lique-widthor NLC-width. This is justi�ed by the following lemma.Lemma 31 Let G = (V,E) be a 
ountable undire
ted graph of NLC-width k.
pwd1(G, 2

<ω) ≤ k ≤ cwd G ≤ 2 · pwd1(G, 2
<ω) .

PROOF. The �rst inequality follows sin
e VR- and NLC-operations 
an beexpressed by suitable Υ<
C,τ -terms using the same set of 
olours. For the lastinequality, �x a Υ<

C,τ -term T denoting G with n := |C1| 
olours of arity 1. We
onstru
t a VR-term using 
olours [2n].For w ∈ 2<ω, let Tw be the subterm of T with root w and let Uw be theuniverse of val(Tw). For every inje
tive mapping ϕ of the atomi
 external 1-types over Uw realised in Uw into the set [2n], we will 
onstru
t a VR-term tϕwthat denotes val(Tw) su
h that the 
olouring of elements a ∈ Uw is the oneindu
ed by ϕ.If w is a leaf with Uw = {a} then we set
tϕw := ϕ

(

etp0(a/V \ {a})
)

.Otherwise, Tw = Tw0 +Θ Tw1, and we set
tϕw := ̺βadd(tψ0

w0 + tψ1
w1)where ψ0 and ψ1 are mappings with disjoint ranges, β maps the 
olours indu
edby ψ0 and ψ1 to the ones required by ϕ, and add is a sequen
e of operations αa,badding all the ne
essary edges. 2

5 The type equivalen
e
Before pro
eeding we need to 
olle
t some basi
 properties of type indi
es. Inthe following lemmas let M be a �xed relational stru
ture.Re
all that, when speaking of the quanti�er rank of monadi
 se
ond-orderformulae, we 
onsider the variant of MSO without �rst-order variables wherethe atomi
 formulae are of the form X ⊆ Y and RX̄, where the latter meansthat there exist some elements ai ∈ Xi su
h that ā ∈ R.
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The �rst lemma summarises some immediate relations between the variouskinds of type indi
es.Lemma 32 Let X,U ⊆M and ā, b̄ ∈Mn.(1) If m ≤ n and Γ ⊆ ∆ then timΓ (X/U) ≤ tin∆(X/U) and analogously for theexternal and monadi
 
ase.(2) etin0 (X/U) ≤ tin0 (X/U) ≤ |Sn0 (∅)| · etin0 (X/U) ,

emtin0 (X/U) ≤ mtin0 (X/U) ≤ |MSn0 (∅)| · emtin0(X/U) .(3) a0 . . . an−1 ≈
0
U b0 . . . bn−1iff{a0} . . . {an−1} ≈0

U {b0} . . . {bn−1}.(4) If the arity of M is bounded by r then
etin0 (X/U) ≤

(

etir−1
0 (X/U)

)2n

.

PROOF. (1) ā ≈∆
U b̄ implies ā|I ≈Γ

U b̄|I for all sets of indi
es I.(2) ā ≈0
U b̄ i� ā ≃0

U b̄ and tp0(ā) = tp0(b̄).(3) For singletons Xi = {ai} we have RX̄ i� Rā.(4) Let ā, b̄ ∈ Xn su
h that ā|I ≃0
U b̄|I for all I ⊆ [n] of size |I| < r. If ā 6≃0

U b̄then there is some atomi
 formula ϕ(x̄; c̄) with c̄ ⊆ U su
h that
M |= ϕ(ā; c̄) ↔ ¬ϕ(b̄; c̄) .Let I ⊆ [n] be the set of those indi
es i su
h that the variable xi appears in ϕ.Then |I| < r and ā|I 6≃0

U b̄|I . Contradi
tion.Sin
e there are
r−1
∑

i=0

(

n

i

)

≤
∑

i<n

(

n

i

)

= 2n

subsets of [n] of size less than r the 
laim follows. 2

Frequently, one would like to 
ompute the type index of a boolean 
ombinationof sets from their respe
tive type indi
es. For arbitrary stru
tures this is onlypossible in spe
ial 
ases and even then quite 
ompli
ated. For instan
e, we 
an
onstru
t a stru
ture M su
h that pwdn M ≥ ℵ0, for all n, but there exists asingle element v ∈M su
h that pwdn M|M\v = 1 for all n < ω :Let (Z × Z, E) be the in�nite grid, and let v be a new vertex. We 
an set
M := (M,R) where

M := Z × Z ∪ {v}
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and R := { (a, b, v) | (a, b) ∈ E } .

Nevertheless, some results 
an be obtained.Lemma 33 Let X, Y ⊆M and n < ω.
tin∆(X ∪ Y/X ∪ Y ) ≤

∑

i≤n

(

n

i

)

tii∆(X/X) tin−i∆ (Y \X/Y \X)

≤ 2n tin∆(X/X) tin∆(Y \X/Y \X) .The same holds for etin∆.
PROOF. The se
ond inequality holds by Lemma 32 (1). To prove the �rstone, let i < n, ā, ā′ ∈ X i, and b̄, b̄′ ∈ (Y \X)n−i. Set U := X ∪ Y . We 
laimthat

ā ≈∆
U∪b̄′ ā

′ and b̄ ≈∆
U∪ā b̄

′ implies āb̄ ≈∆
U āb̄

′ ≈∆
U ā

′b̄′ .Suppose for a 
ontradi
tion that āb̄ 6≃0
U ā

′b̄′. There exists some formula ϕ(x̄, ȳ; c̄) ∈
∆ with parameters c̄ ⊆ U su
h that

M |= ϕ(ā, b̄; c̄) ↔ ¬ϕ(ā′, b̄′; c̄) .But b̄ ≈∆
U∪ā b̄

′ implies that
M |= ϕ(ā, b̄; c̄) ↔ ϕ(ā, b̄′; c̄) ,and ā ≈∆

U∪b̄′ ā
′ implies that

M |= ϕ(ā, b̄′; c̄) ↔ ϕ(ā′, b̄′; c̄) .

Contradi
tion. The result follows sin
e there are (n
i

) possible ways to shu�ean i-tuple and an (n− i)-tuple. 2

Lemma 34 Let M be a relational stru
ture, X,U ⊆M . Let m be the numberof relations of arity greater than 1 and let r be the supremum of their arities.
etin0 (U/X) ≤ 2m(n+1)retir−1

0 (X/U) .

PROOF. Let ā, ā′ ∈ Un. We have ā ≃0
X ā′ i�

M |= ϕ(ā, b̄) ↔ ϕ(ā′, b̄)
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for all b̄ ⊆ X and for all atomi
 formulae ϕ(x̄, ȳ) 
ontaining at least one xi andone yj. Obviously, we only need to 
onsider tuples b̄ of less than r elements.Also note that, if b̄ ≃0
U b̄′, then M |= ϕ(ā, b̄) i� M |= ϕ(ā, b̄′). Hen
e, itis su�
ient to take one representative of ea
h ≃0

U -
lass. Finally, if ϕ′(x̄, ȳ)is obtained from ϕ(x̄, ȳ) by a permutation of ȳ, then M |= ϕ(ā, b̄) i� M |=
ϕ′(ā, b̄′) where b̄′ is the 
orresponding permutation of b̄. Thus, we 
an ignorethe ordering of the variables ȳ. The 
laim follows sin
e there are at most
m(n + 1)r atomi
 formulae with variables x̄ȳ and the number ≃0

U -
lasses is
etir−1

0 (X/U). 2

In the de�nition of partition width we only 
onsidered atomi
 formulae. Thisis no restri
tion as the type indi
es of formulae of higher quanti�er rank arebounded by the quanti�er-free ones.Lemma 35 Let M be a stru
ture, X ⊆M , and n, k < ω.(1) etink(X/X) ≤ ik(eti
n+k
0 (X/X)).(2) tink(X/X) ≤ ik(ti

n+k
0 (X/X)).(3) mtink(X/X) ≤ ik(mtin+k

0 (X/X)).(4) emtink(X/X) ≤ ik(emtin+k
0 (X/X)).

PROOF. Sin
e the proofs are very similar we only show a strong versionof (3). Let ∆(k) be the fragment of in�nitary monadi
 se
ond-order logi
 
on-sisting of all formulae of quanti�er rank at most k. We prove that mtin∆(k+1)(X/X) ≤

2
mtin+1

∆(k)
(X/X).For Ā, Ā′ ∈ P(X)n we have

Ā ≈
∆(k+1)

X
Ā′ iff for all B there is some B′ with ĀB ≈

∆(k)

X
Ā′B′and vi
e versa .

Sin
e ĀB ≈
∆(k)

X
Ā′B′ i� Ā(B ∩X) ≈

∆(k)

X
Ā′(B′ ∩X) and B \X = B′ \X, weonly need to 
onsider sets B ⊆ X. De�ning

e(Ā) :=
{

[ĀB] ∈ P(X)n+1/≈
∆(k)

X

∣

∣

∣ B ⊆ X
}

we obtain Ā ≈
∆(k+1)

X
Ā′ i� e(Ā) = e(Ā′). It follows that

mtin∆(k+1)(X/X) =
∣

∣

∣P(X)n
/

≈
∆(k+1)

X

∣

∣

∣

≤
∣

∣

∣P
(

P(X)n+1
/

≈
∆(k)

X

)
∣

∣

∣ = 2
mtin+1

∆(k)
(X/X)

.

2
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The next result shows that having �nite partition width is a �nitary 
ondition.This is the reason for the various 
ompa
tness properties of Se
tion 7.Lemma 36 Let X,U ⊆M , ∆ ⊆ FO, and n < ω.(1) Let ā, b̄ ⊆M . If ā 6≈∆
U b̄ then there is a �nite subset U0 ⊆ U and a singleformula ϕ ∈ ∆ su
h that ā 6≈ϕ

U0
b̄. The same holds for ≃∆

U .(2) If tin∆(X/U) is �nite then there are �nite subsets U0 ⊆ U and ∆0 ⊆ ∆su
h that Xn/≈∆
U = Xn/≈∆0

U0
. The same holds for etin∆ and ≃∆

U .(3) If etin∆(X/U) is �nite then
etin∆(X/U) = sup { etin∆0

(X/U) | ∆0 ⊆ ∆ �nite } .(4) If tin∆(X/U) is �nite then the relation ≈∆
U is B(∆)-de�nable on Xn.(B(∆) is the boolean 
losure of ∆.)

PROOF. (1) If ā 6≈∆
U b̄ then there is some formula ϕ(x̄, c̄) ∈ ∆ with c̄ ⊆ Usu
h that M |= ϕ(ā, c̄) ↔ ¬ϕ(b̄, c̄). Setting U0 := c̄ we obtain ā 6≈ϕ

U0
b̄.(2) A

ording to (1) there are �nite sets U[ā][b̄] and formulae ϕ[ā][b̄], for ea
hpair of distin
t 
lasses [ā], [b̄] ∈ Xn/≈∆

U , su
h that ā 6≈
ϕ[ā][b̄]

U[ā][b̄]
b̄. Setting U0 :=

⋃

[ā]6=[b̄] U[ā][b̄] and ∆0 := {ϕ[ā][b̄] | [ā] 6= [b̄] } we obtain
ā ≈∆

U b̄ iff ā ≈∆0
U0
b̄ for all ā, b̄ ∈ Xn .

(3) immediately follows from (2).(4) For ea
h pair [ā], [b̄] ∈ Xn/≈∆
U of distin
t 
lasses we �x a ∆-formula

ϕ[ā][b̄](x̄, ȳ) and parameters c̄[ā][b̄] su
h that
M |= ϕ[ā][b̄](ā, c̄[ā][b̄]) ↔ ¬ϕ[ā][b̄](b̄, c̄[ā][b̄]) .Then we have ā ≈∆

U ā
′ i�

M |=
∧

[b̄]6=[b̄′]

(

ϕ[b̄][b̄′](ā, c[b̄][b̄′]) ↔ ϕ[b̄][b̄′](ā
′, c[b̄][b̄′])

)

.

2Lemma 37 Let w̄ ∈ ωω. Let (Xv)v∈I be an in
reasing 
hain of sets Xv (i.e.,
u ≤ v implies Xu ⊆ Xv) indexed by an arbitrary linear order (I,≤) su
h that
etin0 (Xv/Xv) ≤ wn for all n < ω.

etin0
(

⋃

v∈I

Xv

/

⋃

v∈I

Xv

)

≤ wn and etin0
(

⋂

v∈I

Xv

/

⋂

v∈I

Xv

)

≤ wn .
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PROOF. For the �rst 
laim, let W :=
⋃

v∈I Xv. Suppose there are wn + 1tuples āi ∈W n, i ≤ wn, su
h that āi 6≃0
W
āk for i 6= k. There exists some v ∈ Iwith āi ⊆ Xv for all i ≤ wn. Hen
e,

etin0 (Xv/Xv) ≥ etin0 (Xv/W ) ≥ wn + 1 .Contradi
tion.To prove the se
ond bound, setW :=
⋂

v∈I Xv. Suppose there are wn+1 tuples
āi ∈ W n, i ≤ wn, su
h that āi 6≃0

W
āk for i 6= k. By the pre
eding lemma,there exist �nite sets Uik ⊆ W , i 6= k, su
h that āi 6≃0

Uik
āk for i 6= k. Sin
e

U :=
⋃

i6=k Uik is �nite there is some v ∈ I with U ⊆ Xv. As āi ⊆ Xv for all
i ≤ wn it follows that

etin0 (Xv/Xv) ≥ etin0 (Xv/U) ≥ wn + 1 .Contradi
tion. 2

Finally, we note that adding unary predi
ates does not 
hange the parti-tion width sin
e etp∆(ā/U) does not 
ontain formulae of the form Pxi, and
emtp∆(Ā/U) no formulae PXi.Lemma 38 Let X,U ⊆M . etiα∆(X/U) and emtiα∆(X/U) do not 
hange if weadd arbitrarily many unary predi
ates to M.
6 Interpretations
Now we are ready to give a 
hara
terisation of the 
lass of stru
tures of �nitepartition width in terms of interpretations in trees. One dire
tion was alreadypresented in Proposition 17. For the other one, we show that �niteness ofpartition width is preserved by interpretations.Proposition 39 Let M and N be stru
tures of �nite signature and I : M ≤MSOk

N. If mpwdn(N, κ
<α) is �nite for all n < ω then so is mpwdn(M, κ<α). Thesame holds for smpwdn(N, κ

<α).
PROOF. Let (Uv)v be a partition re�nement of N of �nite width. We 
laimthat the partition re�nement (I(Uv))v of M also has a �nite width. By Lemmas32 (2) and 35 it is su�
ient to prove that, for all Ā, B̄ ⊆ P(N), U ⊆ N , and
n < ω,̄

A ≈n+k
U B̄ implies I(Ā) ≈n

I(U) I(B̄) .
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Suppose I(Ā) 6≈n
I(U) I(B̄). There exists an MSOn-formula ϕ(x̄, C̄) with pa-rameters C̄ ⊆ P(I(U)) su
h that

M |= ϕ(I(Ā), C̄) ∧ ¬ϕ(I(B̄), C̄) .Choose D̄ ⊆ P(U) su
h that C̄ = I(D̄). Then
N |= ϕI(Ā, D̄) ∧ ¬ϕI(B̄, D̄) .Sin
e ϕI ∈ MSOn+k we have Ā 6≈n+k

U B̄. 2

Proposition 40 If M ≤MSOk
(κ<α,�, P̄ ) for �nitely many unary predi-
ates P̄ and some k < ω, then smpwdn(M, κ<α) is �nite for all n < ω.The following theorem summarises the various 
hara
terisations we have ob-tained so far.Theorem 41 Let M be a stru
ture of �nite signature.(a) For ea
h tree κ<α the following statements are equivalent:(1) spwdn(M, κ<α) is �nite for all n < ω.(2) smpwdn(M, κ<α) is �nite for all n < ω.(3) M = val(T ) for some ΥC,τ -term T ⊆ κ<α.(4) M ≤MSOn

(κ<α,�, P̄ ) for �nitely many unary predi
ates P̄ and some
n < ω.(b) If κ < ℵ0 is �nite then the following statements are equivalent to thoseabove:(5) pwdn(M, κ<α) is �nite for all n < ω.(6) mpwdn(M, κ<α) is �nite for all n < ω.(7) M = val(T ) for some Υ<

C,τ -term T ⊆ κ<α.(8) M ≤MSOn
(κ<α,�, (suci)i<κ, P̄ ) for �nitely many unary predi
ates P̄and some n < ω.

PROOF. (1) ⇒ (3) Sin
e the arity of M is bounded Lemma 32 (4) impliesthat there exists a partition re�nement (Uv)v of M su
h that spwdn(Uv)v is�nite for all n < ω. Consequently, the 
laim follows from Proposition 30.
(3) ⇒ (4) ⇒ (2) follows by Propositions 17 and 40.
(2) ⇒ (1) spwdn(M, κ<α) ≤ smpwdn(M, κ<α).Analogously, (5) ⇒ (7) ⇒ (8) ⇒ (6) follows from, respe
tively, Proposi-tions 30, 17, and 40, together with the fa
t that pwdn(M, κ<α) ≤ spwdn(M, κ<α).
(6) ⇒ (5) is trivial.
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(1) ⇒ (5) also follows from pwdn(M, κ<α) ≤ spwdn(M, κ<α).
(8) ⇒ (4) If κ is �nite then (κ<α,�, (suci)i<κ, P̄ ) ≤MSO1 (κ<α,�, P̄ , Q̄) where
Qi := rng suci sin
e we 
an de�ne

suci(x, y) : iff x ≺ y ∧Qiy ∧ ¬∃z(x ≺ z ≺ y).

2

7 Coding and 
ompa
tness
In the �nal two se
tions we are going to show that the 
on
ept of partitionwidth is a natural one from a model-theoreti
 point of view. We prove thatelementary extensions preserve �niteness of partition width and present a
ompa
tness theorem for stru
tures of �nite partition width. In Se
tion 8 it isshown that stru
tures of �nite partition width do not have the independen
eproperty.We will restri
t our attention to binary trees 2<α. This 
an be done without lossof generality sin
e (α<β,�) ≤FO (2<αβ,�, P ) for a suitable unary predi
ate P .We start with a simple observation.Lemma 42 If M ⊆ N then pwdn(M, κ<α) ≤ pwdn(N, κ

<α) for all n < ω.
PROOF. Ea
h partition re�nement (Uv)v∈T of N indu
es the partition re�ne-ment (Uv∩M)v∈T of M whi
h has the width pwdn(Uv∩M)v ≤ pwdn(Uv)v. 2

In order to 
ompute the partition width of stru
tures 
onstru
ted by model-theoreti
 means we need to 
ode partition re�nements by relations.De�nition 43 (a) Let (Uv)v∈T be a family of sets Uv ⊆M indexed by a partialorder (T,�). A pair (U,⊑) of relations U ⊆M 1+n and ⊑ ⊆M 2n 
ode (Uv)v∈Tif there exists an isomorphism
f : (D,⊑) ∼= (T,�) ,where D := { ā ∈Mn | ā ⊑ ā }, su
h that
U := { (a, b̄) ∈M ×D | a ∈ Uf(b̄) } ,and ā ⊑ b̄ implies ā, b̄ ∈ D .
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(b) We 
all a partition re�nement (Uv)v∈T of M redu
ed if all non-leaves of Thave at least two immediate su

essors. If (Uv)v∈T is redu
ed we 
an de�ne a
anoni
al 
oding of (Uv)v in the following way. For ea
h v ∈ T 
hoose leaves
u0, u1 ∈ T with v = u0 ⊓ u1 and set h(v) := (a0, a1) where Uui

= {ai}, i < 2.Let D := rng h. We de�ne
ā ⊑ b̄ : iff ā, b̄ ∈ D and h−1(ā) � h−1(b̄) ,

U := { (c, ā) | ā ∈ D, c ∈ Uh−1(ā) } .Remark 44 Note that not every partition re�nement (Uv)v∈T of a stru
-ture M 
an be 
oded, sin
e we might have |T | > |Mn| for all n < ω. But we
an always obtain a 
odable partition re�nement by removing some verti
es
v ∈ T with exa
tly one immediate su

essor. The same holds for non-standardpartition re�nements whi
h will be de�ned below.The fa
t that a relation U 
odes some partition re�nement 
an be expressedin �rst-order logi
, with the sole ex
eption that it is not possible to statethat the 
omponents are arranged in a tree. Therefore, we 
onsider partitionre�nements indexed by non-standard trees.De�nition 45 Let T κtree be the theory of all trees (S,�) where S ⊆ κ<ω ispre�x-
losed.De�nition 46 A non-standard κ<ω-partition re�nement of a stru
ture M isa family (Uv)v∈T of subsets Uv ⊆ M indexed by a model T of T κtree satisfyingthe following 
onditions:(1) For all a ∈M there exists some v ∈ T with Uv = {a}.(2) If u � v, for u, v ∈ T , then Uu ⊇ Uv.(3) If u, v ∈ T are in
omparable then Uu ∩ Uv = ∅.Note that we do not require the Uv to be nonempty.The widths pwdn(Uv)v and spwdn(Uv)v of (Uv)v are de�ned in the same wayas for standard partition re�nements.For a stru
ture M we de�ne the non-standard [symmetri
℄ partition width
pwdns

n M [spwdns
n M℄ of M as the minimal partition width of a non-standard

2<ω-[ℵ<ω0 -℄partition re�nement of M.Lemma 47 If (Uv)v∈T is a non-standard κ<ω-partition re�nement of M and
C ⊆ M then (Uv ∩ C)v∈T is a non-standard κ<ω-partition re�nement of M|Cof width

pwdn(Uv ∩ C)v∈T ≤ pwdn(Uv)v for all n < ω.Corollary 48 If M ⊆ N then pwdns
n (M, κ<α) ≤ pwdns

n (N, κ<α) for all n < ω.
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Lemma 49 Let M be a τ -stru
ture and (U,⊑) a pair of additional relationsymbols. For ea
h κ ≤ ℵ0, there exists an FO-theory T κpr su
h that (M, U,⊑) |=
T κpr if and only if (U,⊑) 
odes a non-standard κ<ω-partition re�nement of M.
PROOF. Let Ψ be the theory obtained from T κtree by repla
ing every o

ur-ren
e of � by ⊑ and relativising every formula to the set D := { ā | ā ⊑ ā }.Further, let Φ 
onsist of the following formulae whi
h express the propertiesof a non-standard partition re�nement:

∀x∃ȳ∀z(Uzȳ ↔ z = x)

∀ȳ∀z̄(ȳ ⊑ z̄ → ∀x(Uxz̄ → Uxȳ))

∀ȳ∀z̄(ȳ 6⊑ z̄ ∧ z̄ 6⊑ ȳ → ¬∃x(Uxȳ ∧ Uxz̄))

∀x̄∀ȳ(x̄ ⊑ ȳ → x̄ ⊑ x̄ ∧ ȳ ⊑ ȳ)

∀x∀y(Uxȳ → ȳ ⊑ ȳ)

Let T κpr := Φ ∪ Ψ. We 
laim that (M, U,⊑) |= T κpr i� (U,⊑) 
odes a non-standard κ<ω-partition re�nement of M.
(⇐) is obvious. For (⇒), suppose that (M, U,⊑) |= T κpr. We de�ne

T := { ā ∈Mn | ā ⊑ ā } ,and Uā := { b ∈M | (b, ā) ∈ U } , for ā ∈ T .Then (T,⊑) |= T κtree, ā ⊑ b̄ implies ā, b̄ ∈ D, and (Uā)ā∈T forms the desirednon-standard κ<ω-partition re�nement 
oded by (U,⊑). 2Lemma 50 Let M be a τ -stru
ture and (U,⊑) a pair of additional relationsymbols.(1) For every sequen
e w̄ ∈ ωω there is a set of senten
es Π2
w̄ ⊆ FO su
hthat (M, U,⊑) |= Π2

w̄ if and only if (U,⊑) 
odes a non-standard 2<ω-partitionre�nement (Uv)v of M with pwdn(Uv)v ≤ wn for all n < ω.(2) For every sequen
e w̄ ∈ ωω there is a set of senten
es Πω
w̄ ⊆ FO su
hthat (M, U,⊑) |= Πω

w̄ if and only if (U,⊑) 
odes a non-standard ℵ<ω0 -partitionre�nement (Uv)v of M with spwdn(Uv)v ≤ wn for all n < ω.
PROOF. (1) Sin
e (M, U,⊑) |= T 2

pr i� (U,⊑) 
odes a non-standard 2<ω-partition re�nement of M, it remains to express that the partition width isbounded.A

ording to Lemma 36 (3) it is su�
ient to do so for all �nite subsets τ0 ⊆ τ .We 
onstru
t formulae ϕτ0n,m expressing that the n-ary partition width of the
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τ0-redu
t is at most m. Then we 
an set
Π2
w̄ := T 2

pr ∪ {ϕτ0n,wn
| n < ω, τ0 ⊆ τ �nite } .

Let r be the maximal arity of relations in τ0. For ā, b̄ ∈ X, we have
ā ≃0

X
b̄ iff ā ≃0

c̄ b̄ for all c̄ ∈ X
r
.

Consequently, we 
an express that x̄ ≃0
X
ȳ by the formula

ψ(x̄, ȳ;X) := (∀z̄.
∧

i<r

¬Xzi
)[

etpτ0(x̄/z̄) = etpτ0(ȳ/z̄)
]

where z̄ is an r-tuple. Finally, we set
ϕτ0n,m :=

(

∀ȳ.ȳ ⊑ ȳ
)(

∃x̄0 . . . x̄m−1.
∧

i<n,j<m

Uxji ȳ
)

(

∀x̄′.
∧

i<n

Ux′iȳ
)

∨

j<m

ψ(x̄′, x̄j;U_ȳ)
where the x̄j, x̄′, and ȳ are n-tuples, and U_ȳ indi
ates that every atom
Xz in ψ should be repla
ed by Uzȳ.(2) As above we 
onstru
t formulae ϕτ0n,m expressing that the n-ary symmetri
partition width of the τ0-redu
t is at most m, and set

Πω
w̄ := T ℵ0

pr ∪ {ϕτ0n,wn
| n < ω, τ0 ⊆ τ �nite } .

Let r be the maximal arity of relations in τ0. The formula
η(ȳ0, ȳ1) := ȳ0 ⊏ ȳ1 ∧ ¬∃z̄(ȳ0 ⊏ z̄ ⊏ ȳ1)de�nes the su

essor relation of the partial order ⊑. For tuples x̄0, . . . , x̄m
ontained in U_ȳ the formula
ϑ(z; ȳ, x̄0, . . . , x̄m) := ∀ȳ′

(

(

η(ȳ, ȳ′) ∧ Uzȳ′
)

→ ¬
∧

i<n,j≤m

Uxji ȳ
′
)

states that the element z is not a member of any 
omponent U_ȳ′ 
ontainingsome of the x̄j.We have to express that there is no sequen
e ā0, . . . , ām of m + 1 tuples ofpairwise distin
t types over all 
omponents that do not 
ontain any of the āi.
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This 
an be done by de�ning
ϕτ0n,m := ∀ȳ¬

(

∃x̄0. . . x̄m.
∧

i<n,j<m

Uxji ȳ
)

∧

j 6=k

(

∃z̄.
∧

i<r

ϑ(zi; ȳ, x̄
0, . . . , x̄m)

)

[

etp0(x̄
j/z̄) 6= etp0(x̄

k/z̄)
]

.

2

Having established our main tool we �rst apply it to show that the non-standard partition width of a stru
ture is determined by the non-standardpartition widths of its �nite substru
tures. This generalises the analogous re-sult for the 
lique width of 
ountable graphs by Cour
elle [11℄.Proposition 51 Let M be a relational stru
ture and w̄ ∈ ωω.(1) pwdns
n M ≤ wn, for all n < ω, if and only if all �nite substru
tures of Mhave a non-standard 2<ω-partition re�nement of width at most w̄.(2) spwdns
n M ≤ wn, for all n < ω, if and only if all �nite substru
tures of Mhave a non-standard ℵ<ω0 -partition re�nement of width at most w̄.

PROOF. One dire
tion immediately follows from Corollary 48. For the otherone, set Φ := ∆ ∪ Π where ∆ is the atomi
 diagram of M and Π is either
Π2
w̄ or Πω

w̄.If Φ has a model (N, U,⊑) then there is a non-standard partition re�ne-ment (Uv)v of N of width w̄. The restri
tion (Uv ∩M)v of (Uv)v to M yieldsthe desired re�nement of M.To prove that Φ is 
onsistent let Φ0 ⊆ Φ be �nite. Then there is a �nite set
A ⊆ M su
h that Φ0 ⊆ ∆0 ∪ Π where ∆0 is the atomi
 diagram of M|A. Let
(Uv)v be a redu
ed partition re�nement of M|A of width w̄, and let (U,⊑) berelations 
oding it. Then (M|A, U,⊑) |= Φ0. 2

Of 
ourse, we are interested in a standard partition re�nement. Unfortunately,the width of a non-standard partition re�nement may in
rease when we trans-form it into a standard one.Example 52 (Cour
elle [11℄) Let G be the graph with universe V := [2]×ωand edge relation
E := { (〈b, k〉, 〈1, n〉) | k < n, b < 2 } .
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Then pwd1 G0 = pwdns
1 G0 = pwdns

1 G = 1 for every �nite indu
ed subgraph
G0 ⊆ G but pwd1 G = 2.To 
ompute pwd1 G0 and pwdns

1 G0 it is su�
ient to 
onsider the 
ase that
G0 = G|[2]×[n]. A partition re�nement of width 1 is given by (Uv)v∈T where
T := 0<2n1<2 and

U02k := [2] × [n− k] ,

U02k1 := {〈0, n− k − 1〉} ,

U02k0 := [2] × [n− k − 1] ∪ {〈1, n− k − 1〉} ,

U02k01 := {〈1, n− k − 1〉} .

For pwdns
1 G we use as index stru
ture the tree T of all sequen
es w : I → [2]where I is a pre�x of ω + ζ. Then we 
an de�ne analogously

U0n := [2] × ω , for n < ω ,

U0ω+ω∗−2k := [2] × [k] ,

U0ω+ω∗−2k1 := {〈0, k − 1〉} ,

U0ω+ω∗−2k0 := [2] × [k − 1] ∪ {〈1, k − 1〉} ,

U0ω+ω∗−2k01 := {〈1, k − 1〉} ,and Uv := ∅ , for all other indi
es v .
Suppose that there exists a partition re�nement (Uv)v of G of width 1. Bysymmetry, we may assume that U0 ∩ [b] × ω is in�nite for some b < 2.If 〈b, n〉 ∈ U0 and k > n then 〈1 − b, k〉 /∈ U1 sin
e there exists some n′ > kwith 〈b, n′〉 ∈ U0 and 〈b, n〉 6≃0

〈1−b,k〉 〈b, n′〉. Similarly, 〈b, k〉 /∈ U1 for k > nsin
e 〈b, n〉 6≃0
〈b,k〉 〈b, n

′〉 for all n′ > k. Hen
e, U1 ⊆ [2]× [m] for some m < ω.Fix some element 〈c, k〉 ∈ U1. There are elements 〈0, n0〉, 〈1, n1〉 ∈ U0 with
n0, n1 > k. But 〈0, n0〉 6≃

0
〈c,k〉 〈1, n1〉 
ontradi
ts our assumption that eti10(U0/U1) =

1.Proposition 53 Let M be a stru
ture with m relations of arity greater than 1and let r be the maximum of their arities.(1) If (Uv)v is a non-standard 2<ω-partition re�nement (Uv)v of M of width
wn := pwdn(Uv)v then

pwdn M ≤ 2m(n+1)rwr−12mrrwr−1+r−1

.(2) If (Uv)v is a non-standard ℵ<ω0 -partition re�nement (Uv)v of M of width
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wn := spwdn(Uv)v then
spwdn M ≤ 2m(n+1)rwr−12mrrwr−1+r−1

.

PROOF. Sin
e both 
ases are similar we only prove (1). Let (Uv)v∈T be anon-standard 2<ω-partition re�nement of M. By indu
tion on α, we de�ne
• a stri
tly de
reasing sequen
e Tα ⊆ T of subsets of T ;
• an in
reasing sequen
e of trees Sα ; and
• a partial partition re�nement (Vv)v∈Sαsu
h that u ∈ Tα and u � v imply v ∈ Tα and we 
an partition Tα into sets
T βα satisfying the following 
onditions:
• u, v ∈ Tα belong to the same 
omponent T βα i� u ⊓ v ∈ Tα.
• For every maximal path C ⊆ Sα su
h that W :=

⋂

v∈C Vv 
ontains at least
2 elements, there exists some β with ⋃

v∈Tβ
α
Uv = W and, vi
e versa, forevery 
omponent T βα there exists su
h a 
hain C ⊆ Sα.Intuitively, Sα is the part of T we have already 
onverted and Tα is the partthat still has to be transformed into a standard re�nement.Let S0 be the standard part of T , set T0 := T \S0, and let Vv := Uv for v ∈ S0.If α is a limit we set Sα :=

⋃

β<α Sβ and Tα :=
⋂

β<α Tβ.Suppose that α = β+1. Fix a maximal 
hain C ⊆ Sβ su
h thatW :=
⋂

v∈C Vv
ontains at least 2 elements. If su
h a 
hain does not exist then (Vv)v∈Sβ
isalready a partition re�nement of M (after adding some singletons as leaves ifne
essary) and we are done.If there is some v0 ∈ Tβ su
h that Uv = W then let T ′ 
onsists of all u ∈ Tβwith v0 � u. We add the standard part of T ′ to Sβ above C and removefrom Tβ this part and all other elements v with v ⊓ v0 ∈ Tβ (the elementsbelow v0). Set Vu := Uu for the new elements u ∈ Sβ+1 \ Sβ.If su
h a vertex v0 does not exist, let T ′ ⊆ Tβ be the set of all v ∈ Tβ su
h that

Uv ⊆ W . Then, by assumption, ⋃v∈T ′ Uv = W . Fix a maximal 
hain I ⊆ T ′.Note that, for every v ∈ T ′ and all u ∈ I we have u⊓ v ∈ I. Sin
e I is a linearorder there exists a partition re�nement (Hv)v∈F of (I,�) of width 1 whereea
h 
omponent is some interval Hv ⊆ I. We add the tree F to Sβ above C,de�ne
Vv :=

⋃

w∈Hv

Uw \
⋃

{Uw | w ∈ I, w > u for all u ∈ Hv } ,

for v ∈ F , and set Tβ+1 := Tβ \ I.
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Sin
e Tα ⊃ Tβ for α < β, the 
onstru
tion must stop after at most |T |+ stepswith some partition re�nement (Vv)v∈S.The 
omponents Vv are of the form X or X \ Y where X and Y are either
omponents Uw, for some w ∈ T , or of the form ⋃

w∈C Uw, for some 
hain
C ⊆ T . By Lemma 37, we have etin0 (X/X) ≤ wn in both 
ases. It follows, byLemmas 33 and 34, that

etin0 (Y ∪X/X \ Y ) ≤ 2netin0 (Y/Y )2m(n+1)retir−1
0 (X/X)

≤ 2nwn2
m(n+1)rwr−1 ,where m is the number of relations of arity greater than 1, and r is the maxi-mum of their arities. Therefore,

etin0 (X \ Y/Y ∪X) ≤ 2m(n+1)rwr−12mrrwr−1+r−1

.

2

Corollary 54 (1) If there exists a sequen
e w̄ ∈ ωω su
h that pwdn A ≤ wn,
n < ω, for every �nite substru
ture A ⊆ M then pwdn M ≤ ℵ0 for n < ω.(2) If there exists a sequen
e w̄ ∈ ωω su
h that spwdn A ≤ wn, n < ω, forevery �nite substru
ture A ⊆ M then spwdn M ≤ ℵ0 for n < ω.A dire
t 
onsequen
e of Proposition 51 is the fa
t that having a �nite partitionwidth is a property of �rst-order theories.Theorem 55 If M is of �nite non-standard partition width and M ≡FO Nthen

pwdns
n M = pwdns

n N and spwdns
n M = spwdns

n Nfor all n < ω.
PROOF. Let wi := pwdi M, for i < ω. W.l.o.g. assume that the signatureis �nite. Sin
e there are only �nitely many stru
tures of size n there existsan FO-formula ψni,k(x0, . . . , xn−1) stating that pwdi M|x̄ ≤ k. M |= ∀x̄ψni,wi

(x̄)implies N |= ∀x̄ψni,wi
(x̄). By Proposition 51 it follows that pwdns

n N ≤ pwdns
n Mfor n < ω. The 
laim follows by symmetry.In the same way we 
an show that the non-standard symmetri
 partitionwidths are equal. 2

Corollary 56 If M ≡FO N and M is of �nite [symmetri
℄ partition widththen so is N.
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For the non-standard partition width we are able to prove that for everystru
ture M su
h that pwdns
n M is �nite there exists a non-standard partitionre�nement of exa
tly this width.Proposition 57 Let M be a stru
ture.(1) There exists a non-standard 2<ω-partition re�nement (Uv)v of partitionwidth pwdn(Uv)v = pwdns
n M for all n < ω.(2) There exists a non-standard ℵ<ω0 -partition re�nement (Uv)v of partitionwidth spwdn(Uv)v = spwdns
n M for all n < ω.

PROOF. Sin
e the proofs are nearly identi
al, we prove only (1). Let wn :=
pwdns

n M, and let ∆ be the atomi
 diagram of M. If (N, U,⊑) |= Φ := ∆∪Π2
w̄then M ⊆ N and (U,⊑) 
odes a non-standard partition re�nement of N ofwidth w̄ whi
h indu
es one of M of the same width.To show that Φ is 
onsistent let Φ0 ⊆ Φ be �nite. There exists some k < ωsu
h that Φ0 does not 
ontain any formula of the form ϕτ0n,m for n ≥ k. Let

(U,⊑) 
ode a non-standard partition re�nement (Uv)v of M su
h that
pwdn(Uv)v = pwdns

n M for all n < k .Then (M, U,⊑) |= Φ0. 2

Consider an elementary extension N � M of M. Every non-standard partitionre�nement (Uv)v∈T of N indu
es a 
orresponding re�nement (Uv∩M)v∈T of M,that is, ea
h partition re�nement of N 
an be obtained by extending one of M.The following proposition states the 
onverse: every non-standard partitionre�nement of M 
an be extended to one of N.Proposition 58 Let (Uv)v∈T be a non-standard 2<ω-partition re�nement of M.For every N � M there exists an elementary extension S � T and a non-standard 2<ω-partition re�nement (Vv)v∈S of N of the same width su
h that
Vh(v) ⊇ Uv for all v ∈ T where h : T → S is the 
orresponding elementaryembedding.
PROOF. W.l.o.g. we may assume that |M | ≥ ℵ0. Set wn := pwdn(Uv)v. Let
(U,⊑) be relations 
oding (Uv)v. Let ∆N be the elementary diagram of N,
Ξ the elementary diagram of (M,U,⊑), and set

Γ := {Pa | a ∈ N } .
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By a straightforward modi�
ation of Π2
w̄ we obtain a set of formulae expressingthat (U ∩ (P ×Mn),⊑) 
odes a non-standard partition re�nement of P . Let

ΠP be this set.We have to show that Ψ := Ξ∪Γ∪ΠP ∪∆N has a model (N′, P, V,⊑′). Thenthere exists an elementary embedding h : (T,⊑) � (S,⊑′) where
S := { ā ∈ (N ′)n | ā ⊑ ā } ,and (Vā)ā∈S with Vā := { b ∈ N | (b, ā) ∈ V } is a non-standard partitionre�nement of N with Uv ⊆ Vh(v).Let Ψ0 ⊆ Ψ be a �nite subset. Then Ψ0 ⊆ Ξ0 ∪ Γ0 ∪ ΠP ∪ ∆0 for some �nitesets Ξ0 ⊆ Ξ, Γ0 ⊆ Γ, and ∆0 ⊆ ∆N. Let A ⊆ N be the �nite set of elementsmentioned in Ξ0 ∪ Γ0 ∪ ∆0, and set M0 := A ∩M , N0 := A \M . Let ā bean enumeration of N0. There exists a tuple b̄ ⊆ M su
h that tp(b̄/M0) =

tp(ā/M0). Then (M,M0 ∪ b̄, U,⊑) |= Ψ0. 2

We 
on
lude this se
tion with the proof of a 
ompa
tness theorem for stru
-tures of �nite non-standard partition width.Theorem 59 (Compa
tness) Let w̄ ∈ ωω. A set Φ ⊆ FO of senten
es hasa model M with pwdns
n M ≤ wn for n < ω if and only if every �nite subset

Φ0 ⊆ Φ has su
h a model. The same holds for spwdns
n M.

PROOF. Φ has a model M of width pwdns
n M ≤ wn if and only if Φ ∪ Π2

w̄is 
onsistent. Sin
e all �nite subsets of Φ ∪ Π2
w̄ are 
onsistent, so is the wholeset. 2

Corollary 60 A set Φ ⊆ FO of senten
es has a model of �nite partitionwidth if and only if there exists a sequen
e w̄ ∈ ωω su
h that every �nitesubset Φ0 ⊆ Φ has a model M with pwdn M ≤ wn for n < ω. The same holdsfor the symmetri
 partition width.
8 Pairing fun
tions and the independen
e property
Baldwin and Shelah argue in [12℄ that monadi
 se
ond-order theories in whi
ha pairing fun
tion 
an be de�ned are hopelessly 
ompli
ated and then pro
eedto 
lassify the other ones. They show that the models of every stable theorywithout de�nable pairing fun
tion 
an be de
omposed in a tree-like fashionand that these theories 
an be interpreted in the theory of a suitable 
lass
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of trees. Extended to in
lude unstable theories a �nitary version of their re-sults would answer the analogue of the 
onje
ture of Seese [3℄ for partitionwidth. It is quite easy to show that the existen
e of a pairing fun
tion impliesan in�nite partition width while a proof of the 
onverse seems to be quiteinvolved requiring an adaptation of the ex
luded grid theorem of Robertsonand Seymour [13℄.Re
ently, a slightly weaker form of the 
onje
ture of Seese has been proved byCour
elle and Oum [4℄. Let us denote by MSO + C2 the extension of monadi
se
ond-order logi
 by quanti�ers �The number of elements x su
h that . . . is�nite and even.� The m × n grid is the undire
ted graph (V,E) with V =
[m] × [n] and

E := { ((i, k), (j, l)) ∈ V × V | |i− j| + |k − l| = 1 } .Theorem 61 (Cour
elle and Oum) Let K be a 
lass of �nite undire
tedgraphs. If the 
lique width of the graphs in K is unbounded then there existsan (MSO + C2)-interpretation I su
h that I(K) is the 
lass of all �nite grids.Note that this result only applies to graphs. Furthermore, it seems that forthe 
ase of arbitrary stru
tures a fundamentaly di�erent proof is required.De�nition 62 A stru
ture M admits MSO-
oding if there exists an MSO-formula ϕ(x, y, z; X̄) su
h that, for ea
h natural number n < ω, there aresets A, B, C ⊆ M of size |A| = |B| = n su
h that, for suitable monadi
parameters P̄ , ϕ(x, y, z; P̄ ) de�nes a bije
tion A×B → C.Lemma 63 Let M be a stru
ture and n < ℵ0. The following statements areequivalent:(1) There exists an MSO-formula χ(x, y, z) with monadi
 parameters thatde�nes a bije
tion A×B → C for sets of size |A| = |B| = n.(2) There exists an MSO-formula ϑ(x, y) with monadi
 parameters that de-�nes an n× n grid.(3) There exist MSO-formulae ϕ(x, y) and ψ(x, y) ea
h of whi
h de�nes anequivalen
e relation with n 
lasses su
h that every 
lass of the �rst oneinterse
ts ea
h 
lass of the other one.
PROOF. (1) ⇒ (3) Let f : A×B → C be the given bije
tion. We 
an de�netwo equivalen
e relations on C by setting

ϕ(x, y) := ∃u∃v∃z(f(u, z) = x ∧ f(v, z) = y) ,and ψ(x, y) := ∃u∃v∃z(f(z, u) = x ∧ f(z, v) = y) .

(2) ⇒ (1) Fix n < ℵ0 and C ∼= n × n as above. Let A := n × {0} ⊆ C and
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B := {0} × n ⊆ C. We 
laim that the fun
tion f : A × B → C de�ned by
f((i, 0), (0, k)) := (i, k) is MSO-de�nable.With the help of the parameters

Hm := { (i, k) | i ∼= m (mod 3) } ⊆ Cand Vm := { (i, k) | k ∼= m (mod 3) } ⊆ C ,for m < 3, we 
an de�ne the su

essor relations
S0 := { ((i, k), (i+ 1, k)) | i < n− 1, k < n }and S1 := { ((i, k), (i, k + 1)) | i < n, k < n− 1 } .Then the desired 
oding fun
tion 
an be de�ned by
f(x, y) = z iff (x, z) ∈ (S1)

∗ and (y, z) ∈ (S0)
∗ .

(3) ⇒ (2) Let ∼0 and ∼1 be the two equivalen
es. Fix elements aik, i, k < n,su
h that
aik ∼0 aml iff i = m and aik ∼1 aml iff k = l .With the help of the parameters
P := { aii | i < n } and Q := { ai(i+1) | i+ 1 < n } ,we de�ne the relations
S0 := { (aik, a(i+1)k) | i, k < n } ,

S1 := { (aik, ai(k+1)) | i, k < n } ,by setting
S0xy := x ∼1 y ∧ ∃u∃v(Qu ∧ Pv ∧ x ∼0 u ∧ y ∼0 v ∧ u ∼1 v) ,and S1xy := x ∼0 y ∧ ∃u∃v(Pu ∧Qv ∧ x ∼1 u ∧ y ∼1 v ∧ u ∼0 v) .

2Remark 64 Note that the translation in the pre
eding lemma is uniform, thatis, given χ(x, y, z; Z̄) we 
an 
onstru
t a formula ϑ(x, y; Z̄) su
h that, whenever
P̄ are parameters su
h that χ(x, y, z; P̄ ) de�nes a bije
tion A × B → C with
|A| = |B| = n, then we 
an �nd parameters Q̄ su
h that ϑ(x, y; Q̄) de�nes an
n× n grid. Analogous statements hold for the other dire
tions.It follows that stru
tures admitting MSO-
oding are 
ompli
ated. In parti
u-lar, it follows from the following theorem that their MSO-theory is unde
id-able.
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Theorem 65 (Seese [14℄) The MSO-theory of the 
lass of all �nite grids isunde
idable.An easy proof 
onsists in 
oding domino problems (see [15℄). Together withLemma 63 this theorem implies the following result.Theorem 66 If M is a stru
ture that admits MSO-
oding then the MSO-theory of M is unde
idable.We 
onje
ture that the property of admitting MSO-
oding is equivalent to anin�nite partition width.Conje
ture 67 A stru
ture M with �nite signature has �nite partition widthif and only if it does not admit MSO-
oding.Note that this 
onje
ture fails if we allow in�nite signatures. Consider M =
(ω × ω, (En)n<ω) where

En :=
{

(〈i, k〉, 〈j, l〉)
∣

∣

∣ |i− j| + |k − l| = 1, i, j, k, l < n
}

.Then, pwd1 M = ℵ0. On the other hand, the MSO-theory of M is de
idablesin
e ea
h formula 
ontains only �nitely many relation symbols and every�nite redu
t of M is the disjoint union of a �nite stru
ture and an in�nite set.Sin
e all stru
tures admitting MSO-
oding have an unde
idable MSO-theory aproof of this 
onje
ture would settle the 
onje
ture of Seese that every 
lass of�nite graphs with de
idable MSO-theory has �nite 
lique width. The followinglemma deals with the easy dire
tion.We 
all a fun
tion f : A × B → C 
an
ellative if f(a, b) = f(a′, b) implies
a = a′ and f(a, b) = f(a, b′) implies b = b′.Proposition 68 Let M be a τ -stru
ture. If there are unary predi
ates P̄ andan MSOk-formula ϕ(x, y, z; P̄ ) de�ning a 
an
ellative fun
tion f : A×B → Cthen |A| ≤ K or |B| ≤ K where

K := 3 · ik(Nk+2 mpwdk+2 M) and Nk := |MSk0(∅)|where MSk0 is taken with respe
t to the signature τ ∪ P̄ .
PROOF. Let f : A×B → C be the given fun
tion. Fix a partition re�nement
(Uv)v∈T of M su
h that mpwdk+2(Uv)v is minimal and de�ne

wn := sup {mtink(Uv/Uv) | v ∈ T } .
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By Lemmas 32 (2) and 35 we have
w2 ≤ ik(N2+k mpwd2+k M) = K/3 .Suppose, for a 
ontradi
tion, that m := |A| = |B| > 3w2.We 
laim that there exists some vertex v ∈ T su
h that
1
3
m ≤ |Uv ∩ A| ≤

2
3
m and |B \ Uv| > w2 ,or 1

3
m ≤ |Uv ∩B| ≤ 2

3
m and |A \ Uv| > w2 .Let v0 be some vertex with 1

3
m ≤ |Uv0 ∩B| ≤ 2

3
m. If |A\Uv0| ≤ w2 then thereexists some v � v0 su
h that

1
3
m ≤ |Uv ∩ A| ≤

2
3
mand |B \ Uv| ≥ |B \ Uv0| ≥ m/3 > w2 .

Thus, by symmetry we may assume that there exists some v ∈ T satisfyingthe �rst 
ondition.There are at most w2 elements b ∈ B \ Uv su
h that f(a, b) = c for some
a ∈ Uv ∩ A, c ∈ Uv ∩ C. Otherwise, there would be tuples f(a, b) = c and
f(a′, b′) = c′ with b 6= b′ and {a}{c} ≈k

Uu
{a′}{c′}. Then, f(a′, b′) = c′ wouldimply

f(a, b′) = c = f(a, b) ,and by 
an
ellation, we would have b = b′ in 
ontradi
tion to our assumption.Sin
e |B \ Uv| > w2 it follows that there exists some b ∈ B \ Uv su
h that
f(a, b) ∈ Uv for all a ∈ Uv ∩ A.Furthermore, sin
e |Uv ∩ A| ≥ m/3 > w2 there are two di�erent elements
a, a′ ∈ Uv ∩ A su
h that a ≈k

Uv
a′. This implies f(a, b) = c i� f(a′, b) = c forall c ∈ Uv. Contradi
tion. 2Corollary 69 If M admits MSO-
oding then pwdn M ≥ ℵ0 for some n.Corollary 70 A group has �nite partition width if and only if it is �nite.Proposition 68 
an be used to link the 
on
ept of partition width with themodel theoreti
 notion of VC-dimension or, equivalently, the independen
eproperty.De�nition 71 Let T be a �rst-order theory. An FO-formula ϕ(x̄, ȳ) has theindependen
e property (w.r.t. T ) if there exists a model M of T 
ontaining
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sequen
es (āI)I⊆ω and (b̄i)i<ω su
h that
M |= ϕ(āI , b̄i) iff i ∈ I .

We say that a stru
ture M has the independen
e property if there exists aformula ϕ that has the independen
e property w.r.t. Th(M). If āI and b̄i aresingletons we say that M has the independen
e property on singletons.In [12℄ it is shown that these two notions 
oin
ide if we allow monadi
 param-eters.Lemma 72 Let M have the independen
e property. There exists an elemen-tary extension N � M and unary predi
ates P̄ su
h that (N, P̄ ) has the inde-penden
e property on singletons.It immediately follows that the independen
e property implies MSO-
oding.Lemma 73 Let M have the independen
e property on singletons. There existsan elementary extension N � M that admits FO-
oding.
PROOF. Choose an elementary extension N that 
ontains sequen
es (aI)I⊆ωand (bi)i∈ω su
h that, for some formula ϕ(x, y), we have

N |= ϕ(aI , bi) iff i ∈ I .Fix disjoint in�nite sets X, Y ⊆ B := { bi | i < ω }, and de�ne a fun
tion
f : X×Y →M by f(bi, bj) := a{i,j}. For x ∈ X, y ∈ Y , and z ∈ Z := f(X,Y )we have

f(x, y) = z iff M |= ϕ(z, x) ∧ ϕ(z, y) .Hen
e, f is an FO-de�nable bije
tion X × Y → Z. 2

Together with the results above it follows that no stru
ture with the inde-penden
e property has �nite partition width. This slightly extends a result ofParigot [16℄ who showed that trees do not have the independen
e property.Proposition 74 If M is a stru
ture with the independen
e property then
pwdn M ≥ ℵ0 for some n.
PROOF. If M has the independen
e property then there exists an elemen-tary extension N � M and unary predi
ates P̄ su
h that (N, P̄ ) has the inde-penden
e property on singletons. Hen
e, there exists an elementary extension
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(N′, P̄ ′) whi
h admits FO-
oding. If M where of �nite partition width, thenso would be N, (N, P̄ ), and (N′, P̄ ′). The latter 
ontradi
ts Corollary 69. 2

Referen
es
[1℄ N. Robertson, P. D. Seymour, Graph Minors. III. Planar Tree-Width, Journalof Combinatorial Theory B 36 (1984) 49�64.[2℄ B. Cour
elle, S. Olariu, Upper bounds to the 
lique width of graphs, Dis
reteApplied Mathemati
s 101 (2000) 77�114.[3℄ D. Seese, The stru
ture of the models of de
idable monadi
 theories of graphs,Annals of Pure and Applied Logi
 53 (1991) 169�195.[4℄ B. Cour
elle, S.-I. Oum, Vertex-Minors, Monadi
 Se
ond-Order Logi
, and aConje
ture by Seese, unpublished (2004).[5℄ B. Cour
elle, The monadi
 se
ond-order logi
 of graphs VII: Graphs as relationalstru
tures, Theoreti
al Computer S
ien
e 101 (1992) 3�33.[6℄ E. Wanke, k-NLC graphs and polynomial algorithms, Dis
rete AppliedMathemati
s 54 (1994) 251�266.[7℄ Ö. Johansson, Clique-de
omposition, NLC-de
omposition, and modularde
omposition � relationsships and results for random graphs, CongressusNumerantium 132 (1998) 39�60.[8℄ M. Grohe, G. Turan, Learnability and De�nability in Trees and SimilarStru
tures, in: Pro
. 19th Annual Symp. on Theoreti
al Aspe
ts of ComputerS
ien
e, STACS, LNCS, 2285, 2002, pp. 645�658.[9℄ A. Blumensath, Stru
tures of Bounded Partition Width, Ph.D. Thesis, RWTHAa
hen, Aa
hen (2003).[10℄ A. Blumensath, B. Cour
elle, Re
ognizability, Hypergraph Operations, andLogi
al Types, Information and Computation.[11℄ B. Cour
elle, Clique-Width of Countable Graphs: A Compa
tness Property,Dis
rete Mathemati
s 276 (2004) 127�148.[12℄ J. T. Baldwin, S. Shelah, Se
ond-Order Quanti�ers and the Complexity ofTheories, Notre Dame Journal of Formal Logi
 29 (3) (1985) 229�303.[13℄ N. Robertson, P. D. Seymour, Graph Minors. V. Ex
luding a Planar Graph,Journal of Combinatorial Theory B 41 (1986) 92�114.[14℄ D. Seese, Ents
heidbarkeits- und De�nierbarkeitsfragen der Theorie `netzartiger'Graphen, Wissens
haftli
he Zeits
hrift der Humbold-Universität zu BerlinMath.-Nat. R. XXI (5) (1972) 513�517.

47



[15℄ R. Berger, The unde
idability of the domino problem, Mem. Amer. Math. So
.66, 1966.[16℄ M. Parigot, Théories d'arbes, Journal of Symboli
 Logi
 47 (1982) 841�853.

48


