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Abstract

We generalise the concept of clique width to structures of arbitrary signature and
cardinality. We present characterisations of clique width in terms of decompositions
of a structure and via interpretations in trees. Several model-theoretic properties
of clique width are investigated including VC-dimension and preservation of finite
clique width under elementary extensions and compactness.
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1 Introduction

In the last decades several measures for the complexity of graphs have been
defined and investigated. The most prominent one is the tree width which
appears in the work of Robertson and Seymour [1] on graph minors and
which also plays an important role in recent developments of graph algorithms.
When studying non-sparse graphs and their monadic second-order properties
the measure of choice seems to be the clique width defined by Courcelle and
Olariu [2].

Although no hard evidence could be obtained so far, various partial results
suggest that the property of having a finite clique width constitutes the divid-
ing line between simple and complicated monadic theories. On the one hand
every structure of finite clique width can be interpreted in the binary tree
and, therefore, has a simple monadic theory. On the other hand, every struc-
ture with an MSO-definable pairing function is of infinite clique width. For
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graphs, the converse also holds. Answering a conjecture of Seese [3], Courcelle
and Oum [4]| have shown that every class of finite undirected graphs with un-
bounded clique width has an undecidable (MSO+ C,)-theory, where MSO+Cs
denotes the extension of monadic second-order logic by counting quantifiers
modulo 2. Unfortunately, the case of arbitrary structures remains open.

The aim of this article is to show that clique width is a meaningful and natural
concept not only in graph theory but also from a model-theoretic point of
view. We generalise the definition of clique width to structures of arbitrary
signature and cardinality and show that the resulting measure which we call
partition width has natural model-theoretic properties such as preservation of
finite partition width under elementary extensions and compactness.

The outline of the article is as follows: The next section is meant to fix notation
and recall basic results.

In Section 3 we introduce infinite terms denoting relational structures of arbi-
trary cardinality. The main problem we will be dealing with is to equip these
terms with a well-defined semantics. We prove that every structure denoted
by such a term can be interpreted in some tree.

In the following section we define a certain kind of decomposition of a struc-
ture. The important parameter of such a decomposition is the number of
atomic types realised in a component. This number, called partition width,
will be our generalisation of the clique width of a graph. We conclude the
section by proving a tight relationship between these decompositions and the
terms defined in the previous section.

Section 5 contains technical results about the number of atomic types which
are needed in Section 6 to prove that a structure has finite partition width if
and only if it can be interpreted in some tree.

In the two final sections we turn to model-theoretic questions. In Section 7
we prove that the partition width of a structure is finite iff the width of
its finite substructures is bounded; we give a kind of compactness theorem
for structures of a given partition width; and we show that finiteness of the
partition width is preserved under elementary extensions.

In Section 8 it is shown that structures with finite partition width do not
contain an MSO-definable pairing function. In particular, they do not have
the independence property.



2 Preliminaries

Logic. Let us recall some basic definitions and fix our notation. Let [n] :=
{0,...,n — 1}. We tacitly identify tuples a = ay...a,_1 € A™ with functions
[n] — A and frequently we write a for the set {ay,...,a,_1}. This allows us
to write @ C b or @ = b|; for I C [n]. The complement of a set X is denoted
by X. Recall that the a-fold iterated exponentiation 3, (k) is defined by

jo(ﬁ) =k and :a(l‘f> = sup { QZIB(R)

0 < a } )
We will use this notation also for finite k.

W.lo.g. we will only consider relational structures 2 = (A, Ry, Ry,...) in
this article. The set of relation symbols {Ry, R1, ...} is called the signature
of 2. When speaking of the arity of a structure or a signature we mean the
supremum of the arities of its relations.

MSO, monadic second-order logic, extends first-order logic FO by quantifica-
tion over sets. In places where the exact definition matters — say when consid-
ering the quantifier rank of a formula — we will use a variant of MSO without
first-order variables where the atomic formulae are of the formY = 7Y C 7,
and RXj...X,_1, for set variables X;, Y, Z and relations R. Using slightly
nonstandard semantics we say that an atom of the form RX holds if there are
elements a; € X; such that a € R. Note that we do not require the X; to be
singletons. Obviously, each MSO-formula can be brought into this form.

By FO, and MSO,, we denote the fragments of the respective logic that consists
of those formulae with quantifier rank at most k.

A formula ¢(Z) where each free variable is first-order defines on a given struc-
ture 2 the relation ¢* :={a | 2 & ¢(a) }.

Definition 1 Let 2 = (A, Ry, R1,...) and B be relational structures. A (one-
dimensional) MSO-interpretation of 2 in B is a sequence

1= <5([E)7 €(£E,y), @Ro(j)7 @Rl(j>7 s >
of MSO-formulae such that
AXT(B) = (5%, go?o, go?l, . )/53

To make this expression well-defined we require that ¥ is a congruence of the
structure (6%, cp%o, go?l, ... ). We denote the fact that T is an MSO-interpre-
tation of A in B by L : A <o B.

The epimorphism (6%, ¢F ., ¢F,,...) — 2 is also denoted by T.



If7 : A <yso B then every formula ¢ over the signature of 2 can be translated
to a formula ¢? over the signature of 9B by replacing every relation symbol R
by its definition @g, replacing every = by ¢, and by relativising every quantifier
to 0 where set quantifiers are further relativised to sets closed under &.

Lemma 2 If7 : A <yis0 B then

A= o(Z(h) iff B *(b) for all o € MSO and b C 6™.

We will make use of Ramsey’s theorem. Recall that n — (m)} asserts that

every colouring of [n]? with p colours contains a homogeneous subset of size m.
In order to avoid clumsy descriptions we define

R(m)d = min{n ‘ n— (m);‘f}

Trees. Let k be a cardinal and « an ordinal. By x<¢ we denote the set of
all functions § — k for 8 < a. We write x < y for z,y € k<% if x is a prefix
of y. The longest common prefix of x and y is denoted by x My.

A tree is a partial order (7', <) where the universe 7' C k<% is closed under

prefixes. Sometimes, we also add the successor functions suc;(z) := xi for
i < k. Labelled trees are either represented as structures (7', <, (P;);ep) with
additional unary predicates P; for each label i € A, or as functions ¢t : T — A.

Graph grammars. The notion of clique width arose in the study of graph
grammars. We present two kinds of such grammars: VR-grammars as consid-
ered by Courcelle [5] and NLC-grammars studied by Wanke [6].

Let C' be a set of colours. Consider the following operations on C-coloured
undirected graphs:

e ¢ denotes the trivial graph whose single vertex is coloured a;

e B) + &, is the disjoint union of &y and &;;

e the recolouring p3(®) with 5 : C' — C changes each colour a to 3(a);

o a,,(®) adds edges from all a-coloured vertices to every vertex of colour b;

o B)Dg &, with § C C x C denotes the disjoint union of &, and &; where
a-coloured vertices of &, are connected by an edge to b-coloured vertices
of &, iff (a,b) € S.

A VR-term is a term consisting of the operations a, +, 03, and oy, while
NLC-terms are built up from a, gg, and @g.



Definition 3 The clique width of a graph & is the minimal size of a set C
of colours such that there is a VR-term denoting & which uses only colours
from C'. The NLC-width is defined analogously using NLC-terms.

The following observation by Johansson [7] shows that these two measures are
nearly the same.

Lemma 4 Let k be the clique width of a graph & and m its NLC-width. Then
m <k <2m.

The characterisation we aim to generalise is the following result of Courcelle [5]
relating clique width with interpretations in the binary tree.

Theorem 5 A countable graph & = (V| E) has finite clique width if and only
if & <yso (25, X, P) for some unary predicate P C 2<%,

3 Infinite terms

We start by generalising NLC-terms to infinite terms describing relational
structures of arbitrary cardinality. One approach, chosen by Grohe and Tu-
ran [8], consists in colouring the elements of the structure as for VR-terms
above and generalising the operation «a,j to tuples of length more than two.
We choose a different route by colouring all tuples of elements instead of just
singletons (see also [9,10]). That way we obtain a larger class of structures that
still shares most properties of the class of graphs denoted by VR-terms. In par-
ticular, we are able to derive an analog of Theorem 5. An example of a struc-
ture which can be described by the terms defined below, but not by the terms
introduced by Grohe and Turan, is (Q, R) where R := { (a,b,c) | a < b < c}.

Definition 6 A graded set of colours is a set C' that is partitioned into finite
nonempty sets Cp,, n < w. Colours c € C,, are said to be of arity n.

A C-colouring of a structure M is a function x mapping every n-tuplea € M"
to some colour x(a) € C,. The empty tuple is also coloured. We call the pair
(M, x) a C-coloured structure.

Analogously to the NLC-composition @g we define two operators >.© and U®
to compose a family of C-coloured structures (9;, x;), ¢ < «, one for ordered
families and one for unordered ones. In both cases the resulting structure will
consist of the union of the 9t;. Additionally, we will update the colouring and
add new tuples to the relations of 1. If a is a tuple of 91 then the colours of
its parts a N M;, for ¢+ < a, will determine both, its new colour and whether
we add a to a relation R. We record this information in an update instruction
(n,a, I,¢,d,S) where I; := { k | ax € M;} is the partition of @ induced by the



union, ¢; := x;(aly,) is the colour of the tuple a N M;, d is the new colour of a,
and S contains all relation symbols to which a is added.

Definition 7 Let 7 be a signature and C' a graded set of colours.
(a) An update instruction is a tuple (n,a, I, ¢ d,S) where

e n < w is a natural number and o is an ordinal;

I is a partition \J;c,I; = [n] of [n] into « classes (of which all but finitely
many are empty);

e ¢ € C is a sequence of a colours such that the arity of ¢; is |I;| (which
implies that the sum of their arities is n);

d € C, is a colour of arity n; and

e S C 7 is a set of n-ary relation symbols.

The number n is called the arity of the instruction.

(b) An ordered a-update is a set © of update instructions that contains eractly
one instruction (n,«, I,¢,d,S), for all values of n, I, and ¢. Each such set ©
induces a family of functions

O,(I;¢) = (d,S) :iff (n,a,1,¢,d,S)€O.

(c) A symmetric update is a set © of update instructions with the following
properties:

e O contains exactly one instruction (n, s, I,¢,d, S) for alln < w, everys < n,
all partitions I = Iy\J --- U I,_, where each of the I; is nonempty, and all
appropriate ¢ € C*.

e For all permutations o € S, we have

n, s, <It707 o 7]J(sfl)>7 <CO'05 o .. 700'(871)>7 d7 S S @
Zﬁ n, s, <IO7"'7IS—1>7 <CO7"'7CS—1>7 d? S)€0O.

The family of functions induced by © is

o (I;e) = (d,S) :iff (n,s,1,¢,d,S)€0O.

We use ordered updates to define a sum operation >°© where the ordering
of the structures matters, whereas symmetric updates are used to define an
operation U® that is invariant under permutations of its arguments. For every
symmetric sum there exists an equivalent ordered one, while the converse only
holds if we are allowed to use more colours. (Basically, we need to colour each
structure with a different copy of the colours.) Below we will use ordered sums
only for finitely many arguments.



Definition 8 Let (IM;, x;), i < Kk, be a sequence of C-coloured structures.

(a) Let © be an ordered k-update. The ordered sum

6]

> (M, xi)

1<K

of (M, xi), 1 < K, with respect to O is the structure (N, n) obtained from the
disjoint union of the M; by the following operation:

For every n-tuple a € N", n < w, if
On(I;¢) = (d. )
where
I ={k<nl|a,€ M} and ¢ :=yi(aly) fori<ek,
then we add a to all relations R € S and set the new colour to n(a) := d.

(b) Let © be a symmetric update. The symmetric sum
e

<K

of (M, xi), © < K, with respect to © is the structure (M, n) obtained from the
disjoint union of the IM; by the following operation :

For every n-tuple a € N", n < w, containing elements from M;,, ..., M; ., if
O,(I;¢) = (d,5)
where

I ={k<nl|a,€e M} and ¢ :=yxi(a

Ii) fOT'i <s,
then we add a to all relations R € S and set the new colour to n(a) := d.

Note that this definition does not depend on the ordering of jo, ..., Jjs—1 Since
© is invariant under permutations.

(c) For every sequence of colours ¢, € C,, n < w, let ¢ denote the C-coloured
structure (D, () with universe D := [1] and empty relations R := () where the
only n-tuple is coloured with c,,.

Example 9 Consider three structures with universes {z,z'}, {y,y'}, and {z, 2'},



and colouring

x(() =e,

x(z) =a, x(y) =10, x(z) =c,

x(@) =0, x(') =c, x(?) =a,
x(z,2") =d, x(,y') =d, x(z,2") = f,
x(@',x) =d, xwhy) =1, x(#2)=f.

(a) Let © be a symmetric update. The following examples show how the new
colour and relations of a tuple are determined.

(w,9): ©3({0}, {1}; a,b)

(v,7): ©3({0},{1}; b.a) = ©3({1},{0}; a,b)
W,y : 65({0,1} f)
(2,9): ©3({1},{0,2}; a.d)

(,2,2): ©3({1},{2},{0}; c,a,b)

(b) For an ordered 3-update © we have:

) @2({0},{1},@; a,b,e)

)i ©5({1},{0},0; a,b,¢)
(W,9): ©2(0,{0,1},0; ¢ f.e)

)i 05({1},{0,2},0; a,d,e)

)i 05({25 {0}, {1} a,b,c)

Having decided on the operations we can start building terms. Since we want
to support uncountable structures we consider terms as infinitely branching
trees of ordinal height.

Definition 10 (a) For a graded set of colours C' and a signature 7, let Y5,

be the signature consisting of all operations of the form ¢ and ¥.° with colours
from C' and relation symbols from . Similarly, Yc ,; consists of ¢ and Ue.

(b) Let Y be a signature. A Y-term is a tree T C k< labelled with symbols
from T such that the number of successors of a node equals the arity of the
symbol labelling it.



Figure 1. The term 7,42
Example 11 Let C) = {a,b,c}, C, = {1}, forn # 1, and

= {1, 1, oy, (a), b, 0),
(1, 1, ({0}), (b), b, ),
(1, 1, ({0}), (e}, a, 0),
(2, 2, {({0},{1}), {c;a), 1, {suc,<}),
(2, 2, ({1},{0}), {a,¢), 1, {suc,<}),
(2, 2, {({0},{1}), {&,b), 1, {<}),
(2, 2, {({1}1,{0}), {b;c), 1, {<}),

(where we left out the irrelevant entries). Let ® be the update obtained from ©
by replacing the instruction (1, 1, ({0}), (¢), a, 0) by (1, 1, ({0}), (¢), b, 0).
For each ordinal o, we can define a term T, denoting the structure (o, suc, <)
where the colour of the first element is a and the other elements are coloured
by b. (A formal definition of the value of a term can be found below.) For
0 < «a, we set

e . .
Ta(()ﬁ) = - Zfﬁ Z,S ¢ s'uc?essor, and Ta(Oﬁl) =c
u® if B is a limit,

For instance,

Ty = e P (e (cu® 7 {e})

When trying to evaluate an infinite term 7" C k< for @ > w in a bottom-
up fashion, we face the difficulty that, after having obtained the value of a
subterm whose root is at a limit depth, we have to propagate this value to its



predecessors. To do so, we start at the predecessor in question and trace the
value back until we reach the already evaluated subterm.

Definition 12 Fix a relation < well-ordering each colour set C,, such that
colours of different arities are incomparable.

(1) For sequences of colours (¢;)i<a and (d;)i<o we define the ordering compo-
nentwise.

(ci)i < (dy); :iff ¢ <d; foralli < a,

(2) Let T be a term, v € T a node, and o := |v|. A colour trace to v is a
sequence (¢;)i<cas1 Of colours of the same arity which satisfies the following
conditions:

(a) If a = B+1 is a successor then (¢;)i<p+1 5 a colour trace to the predeces-
sor u of v and the operation at uw changes the colour of tuples from cgiq
to cg.

(b) If v is a limit then each subsequence (¢;)i<py1 for f < a is a colour trace
to the corresponding prefix of v, and c, s the minimal colour ¢ such that
the set { B < | cg = ¢} is unbounded below .

Example 13 For the terms T, in the previous example, the colour traces are
of the form bb . . .bbac, bb...bba, or bb...Dbb.

With these notions we can define a subclass of terms to which we can assign
a value. Basically, we call a term T" well-formed if its value val(T") (which we
introduce below) is well-defined.

Definition 14 A term T is well-formed if the following conditions are satis-

fied:

(1) For each v € T, the set of colour traces to v is linearly ordered by <.

(2) For every leaf v labelled ¢ and all arities n there exists a colour trace
(d;)icar1 to v with dy = cp.

(3) For all finite sequences of vertices v*, k < m, and all colour traces (cF);
to v¥, there exists a colour trace (d;)icaq1 to u = 00T+ Mv™ L such
that d, is the result of the operation at u applied to the colours CZ_H.

Lemma 15 Let T be a well-formed term. For every v € T and all colours ¢ €
C' there is at most one colour trace (¢g)s<at+1 to v with ¢, = c.

PROOF. Let (¢g)g<a+1 and (dg)s<a+1 be colour traces to v with ¢, = d,.
We prove by induction on « that (cg)s = (dg)s. The case o = 0 is trivial.

10



If « = g+ 1 is a successor ordinal then the operation at v maps ¢, = d,
to cs = dg and the claim follows by induction hypothesis.

Suppose that « is a limit and that (cg)g # (dg)s. By symmetry, we may
assume that (cg)g < (dg)s. By definition, the set

Si={f<ald;=d,}

is unbounded below «a. Let e be the minimal colour such that the subset
S":={pf €S |cs=e} is also unbounded. Such a colour exists since there
are only finitely many colours of the given arity.

By definition of a colour trace we have e > c,. Since cg < dg for all § < a it
follows that e = ¢g < dg = d, = ¢, for § € S’. Consequently, ¢z = ds for all
B € 5. Since S’ is unbounded the induction hypothesis implies that ¢z = dg
for all § < . Contradiction. O

Definition 16 Let T C k<% be a well-formed term and L C T the set of its
leaves.

(a) To every tuple a € L™ we associate a colour trace x(a) by induction on n.
If ap = -+ = a,—1 and the node aq is labelled by d then x(a) := (c3)p<at1 1S
the (unique) colour trace to ag that ends in c, = d,.

Otherwise, let v := [ 1a. There is a partition Io\J--- U I,_; = [n] of the indices
such that

e v <a;Mag ift and k belong to the same class I}, and
e v=uaq;Nay fori and k belonging to different classes.

The node v is labelled by either X° or U® for some update ©. Let (ch)p ==
x(alr,), for i <s, and let o := |v|. We either have

(d.8) = 04(I':(E)icr) o (d.5) =05 (L¢l.e),

«

where ('), is the sequence of length k obtained from ¢, ... c5™! by insert-
ing the colour of the empty tuple at the appropriate places. We let x(a) =

(¢g)p<at+1 be the (unique) colour trace to v with ¢, = d.

(b) The value val(T') of T is the structure whose universe M := L consists of
all leaves of T'. A tuple a € M™ with associated colour trace x(a) = (¢g)g<a+1
belongs to a relation R iff there is some node v < [ 1a labelled by an operation

S2€ or U® that adds tuples coloured | to R.

In the following we will tacitly assume that all terms are well-formed.

11



What structures can be the value of a T¢ -term? If 901 is a finite structure
with |[M"| < |Cy|, for all n < w, then, by assigning different colours to each
tuple a C M, we can easily construct a term denoting 1.

But, if M is infinite, this does not need to be the case. In the next lemma we
prove that every structure denoted by an Y ,-term 7" can be interpreted in
some tree, namely, the term 7T itself. The converse is shown in Section 6.

One remaining technicality we have to deal with is to fix an encoding of
terms as structures. In order to allow infinite signatures we encode a Y-term
T C k<% as a structure (7, =, P) with universe T, prefix ordering =<, and
unary predicates P coding the functions in Y. Each operator is encoded by
several predicates:

P, :={v €T |wvislabelled by some ¢ with d € ¢ },
Poatear =1{v €T | vis labelled by Zfa or J° for some ©
containing (n,«, I, ¢,d,S) with R € S'}.

Proposition 17 For all signatures T and every set C of colours there are
MSO-interpretations V and Vi, k < Yo, such that

Vi oval(T) <wmso (T, =, P, (suc;)ick) for all Y& ~terms T C k<%,
and V : val(T) <uso (T, =, P) for all Y ,-terms T C k=°.

If the arity of T is bounded then there even exist MSO,,-interpretations for
some m.

PROOF. The universe of val(T') consists of the set of leaves of T', which is
definable. The above definition of the relations of val(7") can be translated
immediately into MSO once we have shown how to encode colour traces. If
colour traces (¢;)i<o € C2 to some node v € T are represented by sets (Xg)acc,
such that u < v belongs to X iff ¢,) = d, then there is an MSO-formula which
expresses that the sequence of colours encoded in some tuple X is indeed a
colour trace.

The quantifier rank of these formulae depends only on |C,| and the arity of
the relations involved. O

4 Partition refinements

Our goal is to obtain a characterisation of the class of structures denoted by
some term similar to Theorem 5. As an intermediate step before proving the
converse of Proposition 17 we show that the structure denoted by a term can

12



be decomposed in a certain way, and that, vice versa, every such decomposition
yields a term.

If we ignore the colours, Y¢ ,-terms consist purely of disjoint unions. Thus,
when traversing a term 7" from the root to its leaves we observe a progression
of decompositions of the structure denoted by 7. This process is captured by
the following definition.

Definition 18 (a) A partial x<“-partition refinement of a structure M is a
family (Uy,)yer of nonempty subsets U, C M indezxed by a tree T C k=% such
that the following conditions are satisfied:

(1) U. = M and for every a € M there is some leaf v € T with a € U,.
(2) Each U, is the disjoint union of its successors Uyg, v3 € T, B < k.
(3) If |v| is a limit ordinal then U, = Ny, Uy-

The granularity of a partial partition refinement (U,), is the supremum of the
cardinalities |U,| of its leaves v.

(b) A k<%-partition refinement is a partial k~*-partition refinement of gran-
ularity 1.

It turns out that it is not necessary to explicitly add information about the
colouring to a partition refinement. Instead, the colours can directly be read
off from a given partition refinement since the colour of a tuple corresponds
to its type as explained below. As the colours are only needed to connect
tuples @ C U, in some component U, with tuples b C U, in the complement
we define a notion of type consisting only of formulae containing both, a free
variable and some parameter.

Definition 19 Let 9 be a structure, a € M", and U C M. Let A C FO.
The A-type of a over U is the set

tpa(@/U) = {p(z;0) [ M= p(a;c), p € A, cC U}
The external A-type of a over U is defined by
etpa(a/U) :={ p(z;¢) € tpa(a/U) | every atom of ¢ contains a variable

and some parameter ¢ € U }.

We denote the set of all A-types over U with n free variables by S} (U) and

its subset of external types by ESA(U). In case A = FO, we simply write
tp,(a/U) and SE(U).

For sets A C P(M) and monadic formulae A C MSO we also define the

13



monadic A-type of A over U and its external variant by

mtpa (A/U) i= { p(X:C) | ME p(A,C), ¢ € A, CCPU)}
emtpa (A/U) :={ o(X;C) € mtpr(A/U) | every atom of ¢ contains
a variable and some parameter C C U }.

The set of all monadic A-types over U with n free variables is denoted by MSK (U).

Definition 20 Let 9 be a structure and U C M. For tuples a, b C M we
define

amBT i tpa(a/U) = tpa(B/U),
5b :iff etpa(a/U) = etpa(b/U).

For sets A, B C P(M) we reuse the these symbols and write

Hiff mtpa (A/U) = mtpa(B/U),
iff  emtpa (A/U) = emtpy (B/U).

The |external| [monadic| A-type index of a set X over U is

tig (X/U) = [X"/~g], mti} (X/U) = [P(X)"/~g],
etin(X/U) = | X" /=8|, emtik (X/U) = |P(X)"/~5]|.

Again, in case A = FOy, we simply write ~F ti(X/U), and so on.

Remark 21 Note that, for undirected graphs, the relations ~; coincides with
the relation ~5 defined by Courcelle in [11].

For the most part we will concentrate on atomic external types etp,(a/U) and
the corresponding index etig(X/U).

Example 22 Consider the binary tree ¥ = (25%, <) and fiz a verter w € 25%.
Ifvefw:={ve2=|w=v} then

u=v  forallu€|w:={ve2x|v=<w},
and u A v for allu € 2=*\ (TwU |w) .

Hence eti}(Tw/Tw) = 1 since only one external atomic type over 25\ Tw
is realised in Tw. On the other hand, etij(Tw/Tw) = 2 because there are two
external atomic types over Tw realised in 25\ Tw.

Below it will be shown that, when colouring a component U, of a partition
refinement, we can take as colours the classes of the relation :?]—, i.e., the
atomic external types over the complement of U,. Therefore, the number of
n-ary colours we need equals etif} (U, /U,).
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Definition 23 (1) The n-ary partition width of a partition refinement (U, )yer
s the number

pwd,, (U, )yer := sup { etig (U, /U,) ‘ v E T} ,

and the n-ary symmetric partition width s

spwd,,(Uy)ver := sup { etiy (Uz’e[ Ui / Uier Uvi) ’ veTl, I Ck }

(2) The n-ary partition width pwd, (9, k<) of a structure M is defined in-
ductively as follows: pwd,, (9, K<%) is the minimal cardinal \ such that there
exists a K<“-partition refinement (U,), with

pwd,(U,)y =X and pwd;(U,), = pwd,;(9N, k=%)  fori < n.

If k<@ = 2<IMIT e omit the second parameter and simply write pwd,, M. M s
said to be of finite partition width if pwd,, MM is finite for all n < w.

The n-ary symmetric partition width spwd,, (9, k<) of M is defined analo-
gously. We set spwd, I := spwd,, (zm, ]M]<|M\+)_

(3) The monadic [symmetric| partition widths mpwd, and smpwd,, of a parti-
tion refinement or a structure are defined similarly by replacing etiy by emtif.

Remark 24 (1) Obviously, we have pwd,, (I, k<) < spwd,, (9N, k<*).

(2) In each partition refinement (U,)ver we can remove all nodes v € T with
exactly one successor. In that way we can transform any k<“-partition refine-
ment of a structure of cardinality X into a k<*-partition refinement.

(3) It is not clear whether there always exists a partition refinement (U,), such

that pwd,, M = pwd,,(U,), for all n.

Lemma 25 Every linear order 9 = (M, <) has a 2<™M"partition refinement
v)ver Of monadic partition width mpw v)v = 1 where every U, forms an
U de tit dth d, (U, 1 wh U
interval of M.

PROOF. We define U, by induction on |v|. Let U, := M. Given an interval U,
containing at least two different elements, we pick some a € U, that is not the
least element of U, and set

Up:={beU,|b<a} and Uy :={belU,|b>a}.

Finally, if |v| is a limit ordinal, we set U, := N <, Uy. O
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Lemma 26 For the tree T := (<%, <) we have

smpwd, (Z,82) =1 and smpwd, (T,2°60+2) =1,

PROOF. We define a 3<?*-partition refinement (U, ), by induction on v. Set
U. := (<. Suppose that U, is already defined and of the form Tw := {x €
G| w = x } for some w. We define

Up :={w}, Uy=U,\{w}, Uy;:=Twi fori<p.
Then we have emti}(U,/U,) = 1 for all v, as desired.

The second claim is proved analogously. If U, = Tw is already defined, we set

U = {w}, Uprr = |JTwi, Upiro:=Twy fory<p.

127y

We promised above that we will show how one can use types to define a
canonical colouring. For the symmetric case we first need a technical lemma
which relates infinite symmetric sums and symmetric partition width.

We say that a disjoint union |J; X; induces the equivalence relation
a~b :iff there is some ¢ with a,b € X;.

When considering an n-tuple a, this relation induces a partition Io--- Ul =
[n] of the indices such that a; ~ aiffi, k € I; for some I.

We call a tuple a C U; X; UU fragmented if the induced partition consists of
at least two classes. Further, we say that a colouring x of a set X is compatible
with the equivalence relation ~?; if

x(a) = x(b) iff a~{b for all a,b C X .
Proposition 27 Let 9 be a structure of arity r < w, ¥ :=U;.. Xi C M a
disjoint union, and U C M disjoint from Y. For I C k, define X := U;er X
and Uy := U U (Y \ X;). Let ~ be the equivalence relation induced by the
unton |J; X;. Consider the following statements:

(1) There is a bound w € w* with w, < w,y such that

etig (X1/Ur) < wy, foralln <w and I C k.
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(2) There exists a set of colours C and C-colourings n of Y and x; of X
compatible with, respectively, ~?, and :?]{i} such that

(gﬁ|Y777> = U (m

1<K

X5 Xi) for suitable © .

The following implications hold:

(2) = (1) with w, < n""(c,)™ where ¢, := max;<,|C;] .
(1) = (2) with |C,| < (wn(r —n) + 1)R(K,)%11 where

K, = wy(rw,)" + R(w, + 2(r —n) +2)3 .

PROOF. (2) = (1) Define x(a) := x;(a) for a C X;, i < k. Let I C x and a,
a’ € (X;)™. We claim that, if ~ induces the same partition Jy U --- U Js = [n]

of the indices of @ and @’ and if x(a|;,) = x(a@'|,,) for all i <'s, then a ~7; @'

First suppose that 9 |= ¢(a; b) for some atomic formula ¢ and parameters bC
Y\ X;. Then U® adds all tuples of colour n(ab) = n(a'b) to the corresponding
relation. Hence, MM = p(a’; b).

It remains to consider the case 9 = p(a;b,c) where bCY\X;ande CU.
n(ab) = n(a'b) implies ab ~ @'b. Thus, M = ¢(a’; b, ¢).

Setting ¢, := max;<,|C;| it follows that

(1) = (2) We call a sequence ( f,),<, of functions

fn: UX2—>C'n

a<kK
a valid colouring iff

My, n) = U (Mx,: Xa)

a<k

for some © where Y, is the colouring of X, induced by (f,),. This condition
is equivalent to the following one: (f,), is valid if and only if, for all tuples
a, b € Y" such that ~ induces the same partition Jy U --- U J; of their in-

dices, fiz/(als) = fi (b 1

7)), © < s, and for every atomic formula ¢(z;d) with
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parameters d C U such that ad and bd are fragmented, we have

M |= p(a;d) < o(b;d).

Fix (fn)n- For ap € X7 and by € X§, we write ap by if there are tuples
a; CY \ X, and by CY \ Xg such that

e ~ induces the same partition Jo U --- U J; of their indices,

hd f\Jil(dl Ji) = f|J¢\<b1|Ji)> for i < 8, and _ B o

e for some atomic formula ¢(Z, y; d) with parameters d C U such that apa;d and bobd
are fragmented, we have

m ): 90(&07 ap; J) ~ ﬂ90(60761; J) .
We will call such tuples @, and b, witnesses of the fact that ag ~ by.

By the above remark, it follows that (f,), is a valid colouring if and only if
a <~ b implies f,(a) # f.(b) for all a and b.

Let (f.)n be a valid colouring such that C,, := rng f, is of minimal size.
Suppose that

m = |Cp| > (wn(r —n) + 1) R(Kp)Zars1 -
We fix an arbitrary ordering of each C),, and we order colourings pointwise:

(fa)n < (gn)n :iff fo(a) < gn(a) foralln<r aecl|JX!.

W.l.o.g. we may assume that (f,), is minimal w.r.t. this ordering. It follows
that, for all a € U, X2 and every colour ¢ € C,, with ¢ < f,(a), there exists

some tuple b € f7!(c) with @ — b since, otherwise, the sequence (g,), defined
by

B c ifz=a,
gn(:L‘) ::{

fn(Z) otherwise,
and g; := f; for i # n, would be a strictly smaller valid colouring.

Further, it follows that |rng f,|xz| < w, for all a < & since, if @ z%{a} b and

fa(@) < f,(b), then we could change the colour of b to f,(@) and the colouring
would still be valid.

(A) Fix a decreasing enumeration ¢ > --- > ¢,,_1 of C,,. We construct a
sequence (a'); such that @’ — a* for i # k. By induction on i, we define

e an increasing sequence of indices s; € [m];
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e a decreasing sequence of sets H; C [m];
e sets [;; C k, for s; <t < m; and
e tuples a' € f, '(cs,) N X}

i—1,s;

such that

e b—a forallbe f'(c,) N X}, s; <t<m,and
o fillc)N X} #0forallte H,.

Let H_; := [m] and I_,,; := k. For every i, we perform the following steps.
If H;_; = () we stop. Otherwise, let s; := min H,_; and choose an arbitrary
tuple @’ € f,(cs,) ﬂX}:_LSi, say a' € X. Since I;_1 5, C Iy, for k < i and by
induction hypothesis, we have a’ «— a*, for every k < i, as desired.

To define I, s; < t < m, fix some by € f(c;) such that by < @, say, by € X3.
By definition, there exist an atomic formula ¢(z, 7; d) with parameters d C U
and tuples a; and by such that a‘a;d and byb,d are fragmented, ~ induces the
same partition JyU- - - U J; of the indices of a; and by, fin@ls) = fi (bils),
for [ < s, and we have

g‘n ): ¢<al’ C_Ll? J) = _'90(607 617 d_) :
Let J C k be the minimal set such that by C X,. If ¥/ € I e) N X then
m ): (p(l_)/?l_)l; J) — 90(60761; J)

since (f,), is a valid colouring. This implies & « a'. Therefore, we can set
Iy :==1I,_1, \ J. We conclude the construction by setting

Hy={te Hia\{si} | fy ' (c)N X}, #0}.

The sequence (a@');,,, obtained this way satisfies a’ < a”* for i # k. It remains
to determine its length m;. We have

|| = [Hia| = wplJ] =1
> |H 1| — (i+ 1)(wu(r —n) +1)
=m—(i+ 1)(w,(r—mn)+1).

We can define @’ provided H;_; # (. This is the case if

< m
< —.
wy(r—m)+1

Consequently,

m

— > R(K,)%.1 .
wp(r—m)+1 (B

m1>
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(B) Denote the index « such that a' € X" by «;. For all ¢ < k, we fix tuples
b* C X\ (o and b¥ C X, (4,) Witnessing the fact that @’ — a*, that is,

M = (@', b'*; d) — —p(a", b"; d)

for some atomic formula ¢(7,y;d). Let Jo U --- U Jg be the partition of the
indices of ™ (or of b*") induced by ~. Set

1ik . __ ik ki .__ pki
bl —b |Jl7 bl —b ‘Jl7

and let 3% F" < k be the indices such that bi* C X giv and i C X gri- Assume
that we have chosen b%* and b* such that the set

N (1B =)
is maximal.

It follows that, for each [ ¢ N, we either have 3* = a4 or there exists some
index o (1) # I such that 5{* = 3%;. Otherwise, we could replace bf by bi* and
the resulting pair of tuples would still witness @’ ~ @”* in contradiction to the
maximality of N.

Let oy : [s+ 1]\ N — ([s+ 1] \ N) U {x} be the function such that

l ki .
7.y Otherwise,

ik {Ozk lf Ulk(l) = *,

and define oy; analogously. The maximality of N further implies that there
exists no sequence l, ..., !; of indices such that o;;({;) = 41, for j < ¢, and
oix(l;) = ly since, otherwise, we could simultaneously replace each l_)fji by l_ﬁf
and again obtain witnesses for @’ « a* with strictly larger N.

It follows that 5* € {ay, B8, ..., B}, for every | ¢ N, and there is some

number j such that o7, (1) = *, i.e., i’j,l(l) = .
Tik

For each pair ¢ < k of indices we record

e the partition Jy U - - - U J, of the indices of b** induced by ~,
o the size |N| of the set N defined above, and
e the functions oy, and oy;.

There exists a subset I C k of size

[I| > my :=max{k|my — (k)% }
> K, = w,(rw,)" + R(w, +2(r —n) +2);
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such that all pairs ¢, k € I with ¢ < k are coloured in the same way. W.l.o.g.
we may assume that I = [msy].

(c) First, consider the case that N = [s + 1] for all i,k € I. Let By, C &
be the smallest set of indices such that b = b C X B,,- Clearly, B, = DBy,;.
Also note that, by definition of b and v**, we have «;, oy, ¢ By;. For each set
{i,k,l} of indices i < k < [, we record which of the following conditions hold:

@ € By, ap € By, o€ By.
There exists a subset I’ C [my] of size
\I'| > msz :=max {k|my— (k)3 } > w, +2(r —n) +2

such that all triples i, k,l € I’ are coloured in the same way. W.l.o.g. we may
assume that I’ = [myg].

First we consider the case that oy € By, for all ¢« < k < | < mg3. Then
a; € By, for 1 < i < mg. Furthermore, for 0 < i < k, we have a; ¢ By; and
ar € Bo; \ Bor, which implies that «; # ay. Hence,

ms < |Bo|+2<r—n+2.

Contradiction. Analogously, if a; € By or ap € By, for ¢+ < k < [, then we
obtain, respectively,

m3 < |Bpy—ams—1] +2 and  mg < |Bym,-1| + 2,
which lead to similar contradictions.

The only remaining case is that none of the above conditions holds, that is,
we have a; ¢ By, for all pairwise distinct sets of indices 4, k,l. Let H := { a; |
i <mg}. b C Uy implies a’ %, a*, for all i # k. Consequently, we have

etlg(XH/UH) > msg > Wy,

Contradiction.

(D) It remains to consider the case that [s + 1] \ N # 0. Let Iy € oy (%),
ie., l]f)’ = q, for all i < k, and define [;1; := o¢1(l;). Let ly,...,l; be the
sequence of indices obtained in this way where [; = . Note that, for i < k
and j < tf 1, we have ﬁff = ﬁél(zj) = Z:l For notational convenience, we
also set ¥ = lltk,l = Q.

By induction on j < ¢, we construct a decreasing sequence of subsets I; C I
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of size
1] > (|1 = 1)/ (rw, )’
such that

1) =30 and fin, (0 ) = fin, (B)F,) forall i, ke I;.

For all indices 4, k € I, it follows that a; = 3 = 30 = .. Since each tuple a’
has a different colour it further follows that |I;| < w, which implies that

wa 2 112 (1] = Df(rw,)t > w, .
Contradiction.
(E) We still have to construct the sets I;. Let I := I'\{0}. Since §}° = ap = S}

our clalm holds for 7 = 0. Suppose that Iy,...,I;_y are already defined. Since

0= l , for i,k € I;,_;, there exists a subset I C I; 4 of size
j—1

|15 > |fj—1|/wulj_1| > L] /w,
such that f\sz_ll( )= f‘]lj 1|(bfjo_1) for all 4,k € I}. Tt follows that

= fin, @) = fn, @) = fn, Q) = fia, @0,

and, by the remarks in (B), we have f‘}ll ((€) € X{a,80,..p0}- Therefore,
-1

.....

there exists a subset I; C [ J’ of size
1| > |1 /(s +2) > ||/ (rw,) > (/] = 1)/ (rw, )’
such that 5z()ji,1 = ﬁfj’i for all i, k € I;. Tt follows that

0 __ 20c  __ 20k kO

l]' - lj,1 - lj,1 - l]'

as desired. O

After these somewhat lengthy preparations we are finally able to prove that
every structure denoted by a term has finite partition width and, conversely,
every structure with finite partition width is denoted by a term.

Proposition 28 Let C be a graded set of colours, T a signature, and n < w.

(1) pwd,(val(T'),s<%) < Ny for all T§ ,-terms T C k=
(2) spwd, (val(T), k<*) < Xq for every Y -term T C k<°.
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PROOF. (1) Consider the subterm 7}, of 7" with root v € T and let U, be the
universe of val(7,). We claim that (U,),er is the desired partition refinement.

Suppose that @, b € U? are tuples such that, for all I C [n], the subtuples
al; and b|; have the same colour at node v. Let ¢(Z,¢) be an atomic formula
with parameters ¢ C U,,. If val(T) & ¢(a,¢) then there exists a node u < v
such that @, ¢ C U, and the operation Y.© at u adds all tuples with the
colour of (ac)|; to the relation in ¢ where [ is the set of those indices that
actually appear in . Since (b¢)|; has the same colour it follows that also
val(T) |= (b, ). Consequently, we have a QOU—U b.

(2) Define (U,), as above. By the preceding proposition, we have

ei§ (U, U / Uiz, ) < 0% axcnl)

O

Remark 29 Note that, for n = 1, the proof above implies pwd, (val(T'), k<*) <
|CAl.

Proposition 30 Let M be a T-structure.

(1) Let k < XNg. For every k~*-partition refinement (U,)ves of M of finite
partition width, there exists a Y& -term T C k<* denoting MM where C is a
set of colours with |C,| < pwd,(U,), forn < w.

(2) If the arity of M is finite and there exists a K=*-partition refinement (U, )yes
of M such that spwd, (Uy,), < Rg for all n, then there is a Yo -term T C k<*
denoting MM for some set of colours C'.

PROOF. (1) Let w,, := pwd,(U,),. Let T':= S U{w0 | w leaf of S} be the
tree obtained from S by adding to every leaf of S a new vertex as successor.
We construct a T<’T—term with domain 7T such that, for every v € S, the
subterm T, := {w € T | w > v} will evaluate to the substructure 9|y, of M
induced by U,.

In a first step, each such component U, will be coloured by a different set C"
of colours with |C¥| < w,. To obtain a single set of colours C' we then define
injective functions u? : C! — [w,] and identify colours ¢ € C* and d € C¥ iff
u(e) = ().

Colour each tuple a C U, by its external type etp,(a/U,). If a; C U,;, fori < k,

then the type etpy(ao ... ax_1/U,) is uniquely determined by etp,(a;/U,;) for
1 < k. Hence, these colourings Yy, enable us to express U, as the ordered sum
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of the U,;

Oy

(g‘n|Uv7 XU) = Z (m‘va Xm)

1<k
for a suitable set O,.

For non-leaves v € S, we define the labelling of T by T'(v) := >°". Then we
have T, = Z?;k Ti.

For leaves v € S with U, = {a} we set T(v) := X° and T(v0) := ¢, i.e.,
T, = 29 ¢, where ¢, := etpy(a”/M \ {a}) and

©:={(n,1,[n],cn,cn,Sn) | n<w}
with S, :=={ R |a" € R}.

It remains to define the functions u? : C? — [w,] such that the resulting
term T := T, is well-formed. For v € T', we denote by vg < v the prefix of v
of length |vs| = ( and, for each type p € C! over U,, we denote by pg its

restriction to U,,.
For T to be well-formed it is sufficient to define p such that

e for each p € C, the sequence (pn’ (pg))p<jv/+1 forms a colour trace to v;
e the colour traces to v are linearly ordered.

We define p? by induction on |v|. Let pf be an arbitrary injective func-
tion C% — [w,]. (Note that |C| = 1 since there is only one external type
over the empty set.) Suppose that p is already defined for all |u| < a and let
lv| = a.

First, consider the case that o = 3+ 1 is a successor. Set u := vg and let < be
the ordering on C}' induced by the function p!. We order C}, in the following
way. If pg < pj, for p, p’ € C, then we set p < p’ and, if ps = pj;, then we
choose an arbitrary ordering between them. Finally, let ;7 be some injective
order preserving function C! — [wy,].

It remains to consider limit ordinals a.. Let p € C} and let ¢ be the minimal
number such that the set {3 < a | u’(pg) = ¢} is unbounded. We set

pin(p) = c.

With these definitions, (un’ pg)p satisfies both conditions on a colour trace, and
we have ensured that all colour traces to some node v are linearly ordered.

(2) In the symmetric case the proof is analogous except that, according to the
above proposition, we have to use a suitable refinement of the colouring given
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by the external types. This poses no problem since the number of additional
n-ary colours only depends on the arity of 9t and spwd,(U,),, for i < w, so
the bound sup { |C}| | v € S} remains finite. O

We claimed above that partition width generalises the notion of clique-width
or NLC-width. This is justified by the following lemma.

Lemma 31 Let & = (V, E) be a countable undirected graph of NLC-width k.

pwd, (6,2%) < k < ewd & < 2 - pwd, (&, 2<¥) .

PROOF. The first inequality follows since VR- and NLC-operations can be
expressed by suitable T -terms using the same set of colours. For the last
inequality, fix a Y5 -term 7" denoting & with n := |C| colours of arity 1. We
construct a VR-term using colours [2n].

For w € 2<%, let T,, be the subterm of 7" with root w and let U, be the
universe of val(T},,). For every injective mapping ¢ of the atomic external 1-
types over U, realised in U, into the set [2n], we will construct a VR-term ¢?
that denotes val(T,) such that the colouring of elements a € U, is the one
induced by ¢.

If w is a leaf with U,, = {a} then we set
1 = e (etpo(a/V \ {a})).

Otherwise, T,, = Tyyo +° T1, and we set
5, = opadd(t}y + t1)

where 1)y and 1/, are mappings with disjoint ranges, 3 maps the colours induced
by 1y and 91 to the ones required by ¢, and add is a sequence of operations ay,
adding all the necessary edges. O

5 The type equivalence

Before proceeding we need to collect some basic properties of type indices. In
the following lemmas let 901 be a fixed relational structure.

Recall that, when speaking of the quantifier rank of monadic second-order
formulae, we consider the variant of MSO without first-order variables where
the atomic formulae are of the form X C Y and RX, where the latter means
that there exist some elements q; € X, such that a € R.
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The first lemma summarises some immediate relations between the various
kinds of type indices.

Lemma 32 Let X,U C M and a,b € M".

(1) If m <n and T C A then tif*(X/U) < tix(X/U) and analogously for the
external and monadic case.
(2) etig(X/U) < tig(X/U) < [Sg(D)] - etig(X/U),

emti? (X/U) < mti?(X/U) < |MS2(0)] - emti?(X/U) .

(3) ag...Qn—1 %% bo R bn,liff{ao} R {an,l} %% {bo} R {bnfl}.
(4) If the arity of M is bounded by r then

etig (X/U) < (etiy (X/0))"

PROOF. (1) a ~5 b implies a|; =% b|; for all sets of indices 1.
(2) @ =~ biff a ~Y b and tpy(a) = tpy(b).

(3) For singletons X; = {a;} we have RX iff Ra.

(4) Let @, b € X™ such that a|; ~ b|; for all I C [n] of size |I| < r. If a % b
then there is some atomic formula ¢(Zz;¢) with ¢ C U such that

M = p(a;¢) < ~p(b;e).

Let I C [n] be the set of those indices i such that the variable z; appears in ¢.
Then || < r and a|; %Y b|;. Contradiction.

Since there are

5 (1) =)=

subsets of [n] of size less than r the claim follows. O

Frequently, one would like to compute the type index of a boolean combination
of sets from their respective type indices. For arbitrary structures this is only
possible in special cases and even then quite complicated. For instance, we can
construct a structure 9 such that pwd, 9T > Ny, for all n, but there exists a
single element v € M such that pwd,, M|, = 1 for all n < w:

Let (Z x Z, E) be the infinite grid, and let v be a new vertex. We can set
M = (M, R) where

M :=7x7ZU{v}
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and R:={(a,b,v)| (a,b)e E}.

Nevertheless, some results can be obtained.

Lemma 33 Let X, Y C M andn < w.

HAXUY/XUY) <Y (?)tiZ(X/Y) Y\ X/Y\ X)

i<n

< 2t (X/X) L (Y \ X/Y \ X).

The same holds for etiy.

PROOF. The second inequality holds by Lemma 32 (1). To prove the first
one, let i < n, a,a’ € X', and b0/ € (Y \ X)" . Set U := X UY. We claim
that

— A = LA : Y NGYANS N ASVAN AN
a~p; gy 6 and b ~p, b implies abp ab’ =~y a'b' .

Suppose for a contradiction that ab 29, @'t’. There exists some formula (z, 7; ¢) €
A with parameters ¢ C U such that

M = o(a,b;¢) « ~p(a,b';e).
But b ~5 . b’ implies that
M k= p(a,bye) < p(a,b'se),

A

oup @ implies that

and a ~

M = p(a,b;e) — o@,b;e).

Contradiction. The result follows since there are (") possible ways to shuffle

i

an i-tuple and an (n — i)-tuple. O

Lemma 34 Let 9 be a relational structure, X,U C M. Let m be the number
of relations of arity greater than 1 and let r be the supremum of their arities.

etiy (U/X) < gmimtaeis (X/0),

PROOF. Let a,a’ € U". We have a ~% a’ iff

M = o(a,b) — o(a,b)
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for all b C X and for all atomic formulae (%, §j) containing at least one z; and
one y;. Obviously, we only need to consider tuples b of less than r elements.
Also note that, if b ~ ¥, then MM = ¢(a,b) iff M = ¢(a,b'). Hence, it
is sufficient to take one representative of each ~Y-class. Finally, if ¢'(z,7)
is obtained from o(Z,¥) by a permutation of ¢, then M |= ¢(a,b) iff M =
¢'(a,t') where b is the corresponding permutation of b. Thus, we can ignore
the ordering of the variables y. The claim follows since there are at most

m(n + 1)" atomic formulae with variables zy and the number ~-classes is
etip H(X/U). O

In the definition of partition width we only considered atomic formulae. This
is no restriction as the type indices of formulae of higher quantifier rank are
bounded by the quantifier-free ones.

Lemma 35 Let I be a structure, X C M, and n, k < w.

(1) etif(X/X) < :lk(etanrk()QX)).

(2) tip(X/X) < Dp(tig™(X/X)).

(3) mtip(X/X) < Jp(mtipt™(X/X)).
(4) emti?(X/X) < Jj(emtilt*(X/X)).

PROOF. Since the proofs are very similar we only show a strong version
of (3). Let A(k) be the fragment of infinitary monadic second-order logic con-
sisting of all formulae of quantifier rank at most k. We prove that mti} ;) (X/X) <

2mtlz'(Fkl) (X/X) ‘

For A, A’ € P(X)" we have

A %% (k+1) 4" iff for all B there is some B’ with AB Né(k A'B’

and vice versa.

Since AB ~2" A'B'iff A(BNX) ~" A(B'NX)and B\ X = B'\ X, we
only need to consider sets B C X. Defining

e(A) = {[AB] e (X" /3" | BC X }

we obtain A N%kﬂ) A’ iff e(A) = e(A"). Tt follows that

mti 4 1) (X/X) = ’73( bok / N%um)‘
< [P(PX)™! [ RA0)| = gmiZio (/D).
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The next result shows that having finite partition width is a finitary condition.
This is the reason for the various compactness properties of Section 7.

Lemma 36 Let X, U C M, A CFO, andn < w.

(1) Let a,b C M. If a %5 b then there is a finite subset Uy C U and a single
formula ¢ € A such that a #§, b. The same holds for ~f

(2) If tix(X/U) is finite then there are finite subsets Uy C U and Ay C A
such that X" /~5 = X" /~5°. The same holds for eti}y and ~5

(3) If etik (X/U) is finite then

etip (X/U) = sup {etiy (X/U) | Ay € A finite} .

(4) If tiA(X/U) is finite then the relation ~% is B(A)-definable on X™.
(B(A) is the boolean closure of A.)

PROOF. (1) If a £§ b then there is some formula ¢(z,¢) € A with ¢ C U
such that 9 = p(a,e) < (b, ¢). Setting Uy := ¢ we obtain a 7, b

(2) According to (1) there are finite sets Upyp and formulae oy, for each
pair of distinct classes [a],[b] € X"/~#, such that a aéw[“ [b b. Setting Uy :=

Ugaiis Uy @nd Ao == { o | [a] # [b] } we obtain

~5 b iff aNU b for all a,b € X" .

(3) immediately follows from (2).

(4) For each pair [a],[)] € X"/~5 of distinct classes we fix a A-formula
¢ (T, ¥) and parameters i such that

M = oaE (@ cam) < L cam) -
Then we have a ~5 @ iff
ME A (epm @ cpm) < vom@.cam)) -
[b]#(b']
O
Lemma 37 Let w € w*. Let (X,),er be an increasing chain of sets X, (i.e.,

u < v implies X,, C X,) indezxed by an arbitrary linear order (I,<) such that
etif) (X,/X,) < w, for alln < w.

etig(U XU/W) <w, and etig(ﬂ X, /W) < w, .

vel vel vel vel
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PROOF. For the first claim, let W := U,c; X,. Suppose there are w,, + 1
tuples a; € W™, 1 < w,, such that a; qéOW ay for i # k. There exists some v € [
with a; C X, for all + < w,. Hence,

etig (X,/X,) > etig(X,/W) > w, + 1.
Contradiction.

To prove the second bound, set W := ,c; X,. Suppose there are w,,+1 tuples
a; € W", i < w,, such that a; ;éOW ay for i # k. By the preceding lemma,
there exist finite sets Uy, C W, i # k, such that a; ¢?Jzk ay for ¢ # k. Since
U := Uz, Uy, is finite there is some v € [ with U C X,. As a; C X, for all
1 < w, it follows that

etif) (X,/X,) > etig(X,/U) > w, + 1.

Contradiction. O

Finally, we note that adding unary predicates does not change the parti-
tion width since etp,(a/U) does not contain formulae of the form Pr;, and
emtpa (A/U) no formulae PX;.

Lemma 38 Let X,U C M. etix (X/U) and emti} (X/U) do not change if we
add arbitrarily many unary predicates to 9.

6 Interpretations

Now we are ready to give a characterisation of the class of structures of finite
partition width in terms of interpretations in trees. One direction was already
presented in Proposition 17. For the other one, we show that finiteness of
partition width is preserved by interpretations.

Proposition 39 Let M and N be structures of finite signature andZ : M <ps0,
M. If mpwd,, (M, k<) is finite for all n < w then so is mpwd,, (I, k<*). The
same holds for smpwd,, (91, k<%).

PROOF. Let (U,), be a partition refinement of 9 of finite width. We claim
that the partition refinement (Z(U,)), of M also has a finite width. By Lemmas
32 (2) and 35 it is sufficient to prove that, for all A, B C P(N), U C N, and
n<w,

A~ B implies I(A) &%) Z(B).
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Suppose Z(A) %7, Z(B 3). There exists an MSO,,-formula o(z, C') with pa-
rameters C' C P(Z(U)) such that

M = p(Z(A),C) A =p(Z(B),C).
Choose D C P(U) such that C = Z(D). Then
N k= ¢ (A, D) A—~¢*(B, D).
Since @7 € MSO,4x we have A 5 B. O

Proposition 40 If M <o, (k<%, =, P) for finitely many unary predi-
cates P and some k < w, then smpwd,, (I, k<%) is finite for alln < w.

The following theorem summarises the various characterisations we have ob-
tained so far.

Theorem 41 Let 9N be a structure of finite signature.

(a) For each tree k=% the following statements are equivalent:
(1) spwd, (9, k<%) is finite for all n < w.
(2) smpwd,, (9N, k<) is finite for alln < w.
(3) M =val(T) for some Y, -term T C k<
(4) M <nso, (K<Y, =, P) for finitely many unary predicates P and some
n<w.
(b) If k < Ny is finite then the following statements are equivalent to those
above :
(5) pwd,, (M, k<) is finite for all n < w.
(6) mpwd,, (9N, k<*) is finite for all n < w.
(7) M = val(T) for some TG -term T C k=°.
(8) M <wmso, (K<, =, (suc;)icx, P) for finitely many unary predicates P
and some n < w.

PROOF. (1) = (3) Since the arity of 9t is bounded Lemma 32 (4) implies
that there exists a partition refinement (U,), of 9t such that spwd,,(U,), is
finite for all n < w. Consequently, the claim follows from Proposition 30.

(3) = (4) = (2) follows by Propositions 17 and 40.
(2) = (1) spwd, (90, 5<) < smpwd, (9, 5<°).

Analogously, (5) = (7) = (8) = (6) follows from, respectively, Proposi-
tions 30, 17, and 40, together with the fact that pwd,, (9, k<) < spwd,, (9N, K<°).

(6) = (5) is trivial.
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(1) = (5) also follows from pwd,, (9, K<*) < spwd,, (M, K<).

(8) = (4) If & is finite then (k<% =<, (suc;)i<x, P) <mso, (k<% =<, P, Q) where
(); := rngsuc; since we can define

suci(z,y) :iff x<yAQiyA-Iz(x <z <y).

7 Coding and compactness

In the final two sections we are going to show that the concept of partition
width is a natural one from a model-theoretic point of view. We prove that
elementary extensions preserve finiteness of partition width and present a
compactness theorem for structures of finite partition width. In Section 8 it is
shown that structures of finite partition width do not have the independence

property.

We will restrict our attention to binary trees 2<. This can be done without loss
of generality since (<%, <) <po (2<%%, <, P) for a suitable unary predicate P.
We start with a simple observation.

Lemma 42 If 9 C N then pwd,, (M, k<) < pwd,,(N, k<%) for all n < w.

PROOF. Each partition refinement (U,),er of 9t induces the partition refine-
ment (U,NM),er of M which has the width pwd, (U,NM), < pwd,,(U,),. O

In order to compute the partition width of structures constructed by model-
theoretic means we need to code partition refinements by relations.

Definition 43 (a) Let (U,)ver be a family of sets U, C M indezed by a partial
order (T, <). A pair (U,C) of relations U C M and T C M*" code (U, )ver
if there exists an isomorphism

f(D,E)=(T, %),
where D :={a € M" |aCa}, such that

UZ:{(CL,B)GMXD’CLGU“E)},

and @ C b implies a,b € D.
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(b) We call a partition refinement (U,)yer of M reduced if all non-leaves of T
have at least two immediate successors. If (U,)yer is reduced we can define a
canonical coding of (U,), in the following way. For each v € T choose leaves
ug,u1 € T with v = ug Muy and set h(v) := (ag,a;) where U,, = {a;}, 1 < 2.
Let D :=rngh. We define

aCb :iff a,be D andh '(a)<h'(b),
UZ:{(C,(Z)’(ZED, CEUh—l(a)}.

Remark 44 Note that not every partition refinement (U,)yer of a struc-
ture M can be coded, since we might have |T| > |M™"| for all n < w. But we
can always obtain a codable partition refinement by removing some vertices
v € T with exactly one immediate successor. The same holds for non-standard
partition refinements which will be defined below.

The fact that a relation U codes some partition refinement can be expressed
in first-order logic, with the sole exception that it is not possible to state
that the components are arranged in a tree. Therefore, we consider partition
refinements indexed by non-standard trees.

Definition 45 Let TF

e be the theory of all trees (S, <) where S C k<% is
prefix-closed.

Definition 46 A non-standard x<“-partition refinement of a structure 9 is
a family (Uy,)per of subsets U, C M indezed by a model T of T, satisfying
the following conditions:

(1) For all a € M there exists some v € T with U, = {a}.
(2) Ifu = wv, foru,v €T, then U, O U,.
(3) If u,v € T are incomparable then U, N U, = 0.

Note that we do not require the U, to be nonempty.

The widths pwd,,(U,), and spwd, (U,), of (U,), are defined in the same way
as for standard partition refinements.

For a structure 9 we define the non-standard [symmetric| partition width
pwd;* 9 [spwd)® M/ of M as the minimal partition width of a non-standard
259 [N5Y - [partition refinement of M.

Lemma 47 If (U,)er is a non-standard k=“-partition refinement of M and
C C M then (U, N C)yer is a non-standard k= -partition refinement of IM|c
of width

pwd,, (U, N C)per < pwd,,(Uy)w for alln < w.

Corollary 48 If 9t C 9N then pwd,) (I, k<) < pwd*(M, k<%) for alln < w.
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Lemma 49 Let MM be a 7-structure and (U,C) a pair of additional relation
symbols. For each k < Ry, there exists an FO-theory T such that (M, U,C) =
Tv. if and only if (U, E) codes a non-standard x=-partition refinement of M.

PROOF. Let ¥ be the theory obtained from 7}; ., by replacing every occur-
rence of < by C and relativising every formula to the set D :={a | a C a}.
Further, let ® consist of the following formulae which express the properties
of a non-standard partition refinement:

VedyVz(Uzy < z = x)

ViVz(y C 2 — Vo (Uzz — Uzy))

VoVz(g L ZNzZ Ly — —Fx(Uxy AN UzZ))
VIVI(TCy—-TETAGLCG)
VaVy(Uzy — y C )

Let T = ® U W. We claim that (M, U,E) = T}, iff (U,E) codes a non-

standard x<“-partition refinement of 1.

(«=) is obvious. For (=), suppose that (I, U,C) = T;.. We define
T={aeM"|aCa},

and Uz :=={be M | (ba) e U}, foraeT.

Then (T,C) | T, tree, a C b implies @,b € D, and (U;)aer forms the desired
non-standard x<“-partition refinement coded by (U,C). O

Lemma 50 Let M be a 7-structure and (U,C) a pair of additional relation
symbols.

(1) For every sequence w € w*“ there is a set of sentences 115 C FO such
that (M, U, C) =112 if and only if (U,C) codes a non-standard 2<*-partition
refinement (U,), of M with pwd,,(U,), < w, for alln < w.

(2) For every sequence w € w*“ there is a set of sentences I1¥ C FO such
that (MM, U,C) = 1% if and only if (U,C) codes a non-standard N5“-partition
refinement (U,), of M with spwd,,(U,), < w, for alln < w.

PROOF. (1) Since (M, U,C) = T3 iff (U,C) codes a non-standard 2<-
partition refinement of 91, it remains to express that the partition width is
bounded.

According to Lemma 36 (3) it is sufficient to do so for all finite subsets 75 C 7.
We construct formulae ¢;°,, expressing that the n-ary partition width of the
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To-reduct is at most m. Then we can set
2 := Tgru{cp:{jwn | n <w, 70 C 7 finite } .

Let r be the maximal arity of relations in 7. For a, b € X, we have
a~%b iff a~2b for allee X

Consequently, we can express that z QOY y by the formula

V(@5 X) == (V2. \ ~Xz) [etp,, (7/2) = etp,, (57/2)]

<r
where Z is an r-tuple. Finally, we set

om0, = (vgj.g C g) (H:EO LN Ux{g)

<n,j<m
(va'. A\ Uzjg) \/ v(&, 27U _y)
i<n j<m

where the 77, 7/, and § are n-tuples, and U ¢ indicates that every atom
Xz in v should be replaced by U zy.

(2) As above we construct formulae ¢}°,, expressing that the n-ary symmetric
partition width of the 7p-reduct is at most m, and set

I =T00 U{er, |n<w, 1 Cr7finite}.
Let r be the maximal arity of relations in 7y. The formula
(Yo, 51) =1%o © §1 A =32(%o C 2 C 41)

defines the successor relation of the partial order C. For tuples z°,...,z™
contained in U _y the formula

0z 9,7°,...,7") :IVy’((n(y,y/)AUzg’)ﬁﬁ A U:czﬂ’)

<n,j<m

states that the element z is not a member of any component U 4’ containing
some of the 7.

We have to express that there is no sequence @’,...,a™ of m + 1 tuples of

pairwise distinct types over all components that do not contain any of the a'.
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This can be done by defining

PP =Yy (302 N\ Ualp)
i<n,j<m
A (32. A 9(zi;5,7° ... ,;?:m))

j#k i<r

[etpo(7/2) # etpo(2*/7)]

Having established our main tool we first apply it to show that the non-
standard partition width of a structure is determined by the non-standard
partition widths of its finite substructures. This generalises the analogous re-
sult for the clique width of countable graphs by Courcelle [11].

Proposition 51 Let M be a relational structure and w € w”.

(1) pwd®*IM < wy,, for alln < w, if and only if all finite substructures of M
have a non-standard 2<“-partition refinement of width at most w.

(2) spwd* I < wy,, for alln < w, if and only if all finite substructures of M
have a non-standard N§¥-partition refinement of width at most w.

PROOF. One direction immediately follows from Corollary 48. For the other
one, set & := A U Il where A is the atomic diagram of 91 and II is either
12 or T1%.

If & has a model (91,U,C) then there is a non-standard partition refine-
ment (U,), of M of width w. The restriction (U, N M), of (U,), to M yields
the desired refinement of 91.

To prove that ® is consistent let &3 C ® be finite. Then there is a finite set
A C M such that &y C Ag UII where A is the atomic diagram of 91| 4. Let
(Uy), be a reduced partition refinement of 9|4 of width w, and let (U, C) be
relations coding it. Then (9|4, U,C) = ®y. O

Of course, we are interested in a standard partition refinement. Unfortunately,
the width of a non-standard partition refinement may increase when we trans-
form it into a standard one.

Example 52 (Courcelle [11]) Let & be the graph with universe V := [2] xw
and edge relation

E:={({bk),(1,n)) | k<n, b<2}.
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Then pwd; &y = pwd]” &g = pwd]° & = 1 for every finite induced subgraph
By C & but pwd; & =2

To compute pwd, By and pwd]" B it is sufficient to consider the case that
&g = B|xm. A partition refinement of width 1 is given by (U,)yer where
T :=0<2"1<2 and

Ugor = [2] X [n — ],

Upary :=={(0,n =k = 1)},

Ugoro 1= [2] % [n— —U{{Ln—k—1)},
Upzror :=={(L,n =k —1)}.

For pwd}® & we use as index structure the tree T of all sequences w : I — [2]
where I is a prefix of w + (. Then we can define analogously

Upn :=[2
Ugotwr—2k i= [2
Uporer-ary == {(0,k = 1)},
Ugorwr—arg = [2] X [k = 1JU{(1,k — 1)},
Uporer-argr == {(1,k = 1)},
and U, =0, for all other indices v .

w, forn < w,

Suppose that there exists a partition refinement (U,), of & of width 1. By
symmetry, we may assume that Uy N [b] X w is infinite for some b < 2.

If (b,n) € Uy and k > n then (1 — b, k) ¢ U, since there exists some n' > k
with (b,n') € Uy and (b,n) £ 44 (b,n'). Similarly, (b,k) ¢ Uy for k > n
since (b,n) £y 1y (b,n') for alln' > k. Hence, Uy C [2] x [m] for some m < w.
Fiz some element (c,k) € Uy. There are elements (0,ng),(1,n1) € Uy with
no,m1 > k. But (0,n0) %0,y (1,n1) contradicts our assumption that etig(Uo/Uy) =
1.

Proposition 53 Let O be a structure with m relations of arity greater than 1
and let r be the mazimum of their arities.

(1) If (U,), is a non-standard 2<“-partition refinement (U,), of M of width
wy, == pwd,, (U,), then

pwd, O < Q) w2 e
" - .

(2) If (Uy), is a non-standard NX5¥-partition refinement (U,), of M of width
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wy, = spwd,, (U, ), then

T —
Tw',-712mr wp_1+r—1

spwd, I < 2mnFD)

PROOF. Since both cases are similar we only prove (1). Let (U,),er be a
non-standard 2<“-partition refinement of 9t. By induction on «, we define

e a strictly decreasing sequence T, C T' of subsets of T;
e an increasing sequence of trees S, ; and
e a partial partition refinement (V,),cs,

such that v € T, and v < v imply v € T, and we can partition 7T, into sets
TY satisfying the following conditions:

e u,v €T, belong to the same component Tg iff urtv e T,.
e For every maximal path C' C S, such that W := (N, V, contains at least
2 elements, there exists some § with U, .6 U, = W and, vice versa, for

every component T there exists such a chain C' C S,,.

Intuitively, S, is the part of T" we have already converted and T, is the part
that still has to be transformed into a standard refinement.

Let Sy be the standard part of T, set Ty := T'\ Sy, and let V,, := U, for v € Sj.
If o is a limit we set S, := Ug<, Ss and T, := Ng<q Tp-

Suppose that o = $+ 1. Fix a maximal chain C' C S such that W :=,cc V)
contains at least 2 elements. If such a chain does not exist then (V,),cs, is
already a partition refinement of 9t (after adding some singletons as leaves if
necessary) and we are done.

If there is some vy € T such that U, = W then let 7" consists of all u € T
with vy < u. We add the standard part of 7" to Sz above C' and remove
from T} this part and all other elements v with v Mwvy € T (the elements
below vg). Set V,, := U, for the new elements u € Sz \ Sp.

If such a vertex vy does not exist, let 7" C T} be the set of all v € Tj such that
U, C W. Then, by assumption, U, U, = W. Fix a maximal chain I C T".
Note that, for every v € 7" and all u € I we have uMv € I. Since [ is a linear
order there exists a partition refinement (H,),cr of (I,=) of width 1 where
each component is some interval H, C I. We add the tree F' to Sz above C,
define

V, = U Uw\U{Uw|w€], w>uforallu e H,},

weH,

for v € F, and set T4y =T\ 1.
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Since T,, D Tp for v < f3, the construction must stop after at most |T'|* steps
with some partition refinement (V,,),es.

The components V,, are of the form X or X \ Y where X and Y are either
components U, for some w € T, or of the form U, cc Uy, for some chain
C C T. By Lemma 37, we have etij(X/X) < w, in both cases. It follows, by
Lemmas 33 and 34, that
et (Y UX/X \Y) < 2retin(Y/Y)2mn D etip (X/X)
< 2nwn2m(n+1)’“w7«_1’

where m is the number of relations of arity greater than 1, and r is the maxi-
mum of their arities. Therefore,

etlg (X \ Y/Y U 7) < 2m(n+1)er712mT?"wT—1+r—1 .

O

Corollary 54 (1) If there exists a sequence w € w* such that pwd, A < w,,
n < w, for every finite substructure A C I then pwd, M < Ny forn < w.

(2) If there exists a sequence w € w* such that spwd, A < w,, n < w, for
every finite substructure A C 9M then spwd, M < Ny for n < w.

A direct consequence of Proposition 51 is the fact that having a finite partition
width is a property of first-order theories.

Theorem 55 If 9 is of finite non-standard partition width and 9 =po N
then

pwd,* M = pwd*IN  and spwd,’ M = spwd* N

foralln < w.

PROOF. Let w; := pwd,; M, for : < w. W.l.o.g. assume that the signature
is finite. Since there are only finitely many structures of size n there exists
an FO-formula ¢} (2o, . .., 2,-1) stating that pwd, M|z < k. M = VY7, (7)
implies N = VY7, (7). By Proposition 51 it follows that pwd,* 9 < pwd,* 9
for n < w. The claim follows by symmetry.

In the same way we can show that the non-standard symmetric partition
widths are equal. O

Corollary 56 If M =po N and M is of finite [symmetric| partition width
then so is M.
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For the non-standard partition width we are able to prove that for every
structure 9 such that pwd,” 901 is finite there exists a non-standard partition
refinement of exactly this width.

Proposition 57 Let I be a structure.

(1) There ezists a non-standard 2<-partition refinement (U,), of partition
width pwd,, (U, ), = pwd> M for all n < w.

(2) There ezists a non-standard N5 -partition refinement (U,), of partition
width spwd,, (Uy), = spwd,* I for all n < w.

PROOF. Since the proofs are nearly identical, we prove only (1). Let w, :=
pwd?* 9, and let A be the atomic diagram of 9. If (N, U,C) | ¢ := AUTEZ
then 9t C 9 and (U,C) codes a non-standard partition refinement of 9 of
width w which induces one of 91 of the same width.

To show that ® is consistent let &y C ® be finite. There exists some k < w
such that ®, does not contain any formula of the form ¢, for n > k. Let
(U,C) code a non-standard partition refinement (U,), of 9t such that

pwd, (Uy)p = pwd,*9M  foralln < k.

Then (M, U,C) = Py. O

Consider an elementary extension 91 > 9t of 9. Every non-standard partition
refinement (U,),er of M induces a corresponding refinement (U, NM ), 7 of I,
that is, each partition refinement of 1 can be obtained by extending one of 1.
The following proposition states the converse: every non-standard partition
refinement of 91 can be extended to one of .

Proposition 58 Let (U,)yer be a non-standard 2<% -partition refinement of .
For every N = M there exists an elementary extension S = T and a non-
standard 2<“-partition refinement (V,),es of M of the same width such that
Viw) 2 Uy for all v € T where h : T — S is the corresponding elementary
embedding.

PROOF. W.lo.g. we may assume that |M| > RXy. Set w,, := pwd,, (U,),. Let
(U,C) be relations coding (U,),. Let An be the elementary diagram of 1,
= the elementary diagram of (M, U, C), and set

I''={Palae N}.
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By a straightforward modification of IT% we obtain a set of formulae expressing
that (U N (P x M"™),C) codes a non-standard partition refinement of P. Let
I17 be this set.

We have to show that ¥ := ZUT UIIY U Ay has a model (0, P, V,C’). Then
there exists an elementary embedding h : (T, C) < (S,C’) where

S:={ae(N)"|aCa},

and (V;)aes with V; := {b € N | (b,a) € V } is a non-standard partition
refinement of M with U, C Vj,(,).

Let ¥y C ¥ be a finite subset. Then ¥, C =, U 'y U I U A for some finite
sets Zg C =, 'y C T, and Ag C Ap. Let A C N be the finite set of elements
mentioned in Zg U 'y U Ay, and set My := ANM, Ny := A\ M. Let a be
an enumeration of Ny. There exists a tuple b C M such that tp(b/M,) =
tp(a/My). Then (9, My Ub,U,C) = ¥y. O

We conclude this section with the proof of a compactness theorem for struc-
tures of finite non-standard partition width.

Theorem 59 (Compactness) Let w € w*. A set & C FO of sentences has

a model M with pwd*IM < w, for n < w if and only if every finite subset
Oy C @ has such a model. The same holds for spwd,’ .

PROOF. ¢ has a model 9 of width pwd)* 9 < w,, if and only if ® U IIZ
is consistent. Since all finite subsets of ® U TI% are consistent, so is the whole
set. O

Corollary 60 A set ® C FO of sentences has a model of finite partition
width if and only if there exists a sequence w € w“ such that every finite
subset &y C ® has a model M with pwd, M < w,, forn < w. The same holds
for the symmetric partition width.

8 Pairing functions and the independence property

Baldwin and Shelah argue in [12] that monadic second-order theories in which
a pairing function can be defined are hopelessly complicated and then proceed
to classify the other ones. They show that the models of every stable theory
without definable pairing function can be decomposed in a tree-like fashion
and that these theories can be interpreted in the theory of a suitable class
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of trees. Extended to include unstable theories a finitary version of their re-
sults would answer the analogue of the conjecture of Seese [3] for partition
width. It is quite easy to show that the existence of a pairing function implies
an infinite partition width while a proof of the converse seems to be quite
involved requiring an adaptation of the excluded grid theorem of Robertson
and Seymour [13].

Recently, a slightly weaker form of the conjecture of Seese has been proved by
Courcelle and Oum [4]. Let us denote by MSO + C; the extension of monadic
second-order logic by quantifiers “The number of elements x such that ...is
finite and even.” The m X n grid is the undirected graph (V, F) with V =
[m] x [n] and

E:={((F),GD) eV XV I]]i—jl+k—I=1}.

Theorem 61 (Courcelle and Oum) Let K be a class of finite undirected
graphs. If the clique width of the graphs in K is unbounded then there ezists
an (MSO + Cs)-interpretation T such that Z(KC) is the class of all finite grids.

Note that this result only applies to graphs. Furthermore, it seems that for
the case of arbitrary structures a fundamentaly different proof is required.

Definition 62 A structure MM admits MSO-coding if there exists an MSO-
formula ¢(z,y,2; X) such that, for each natural number n < w, there are
sets A, B, C C M of size |A| = |B| = n such that, for suitable monadic
parameters P, o(z,y, z; P) defines a bijection A x B — C.

Lemma 63 Let M be a structure and n < Ny. The following statements are
equivalent:

(1) There exists an MSO-formula x(x,y,z) with monadic parameters that
defines a bijection A x B — C for sets of size |A| = |B| = n.

(2) There exists an MSO-formula ¥(x,y) with monadic parameters that de-
fines an n x n grid.

(3) There exist MSO-formulae p(x,y) and ¥(x,y) each of which defines an
equivalence relation with n classes such that every class of the first one
intersects each class of the other one.

PROOF. (1) = (3) Let f : Ax B — C be the given bijection. We can define
two equivalence relations on C' by setting

o(x,y) == Fudvz(f(u,z) =x A f(v,2) =vy),
and ¢¥(x,y) := FuvIz(f(z,u) =z A f(z,0) =y).

(2) = (1) Fix n < Ry and C = n x n as above. Let A :=n x {0} C C and
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n C C. We claim that the function f : A x B — C defined by
:= (1, k) is MSO-definable.

With the help of the parameters

Hyo={(k) [i2m (mod3)}CC
and Vp, :={(,k)|k=m (mod3)}CC,

for m < 3, we can define the successor relations

— (LK), (i+1,k) [i<n—1, k<n}
and S = {((i,k),(i,k+ 1)) |i<n, k<n—1}.

Then the desired coding function can be defined by
flz,y) =2z iff (z,2) € (S1)" and (y,z) € (So)*.
(3) = (2) Let ~g and ~ be the two equivalences. Fix elements a;, i,k < n,
such that
g ~0 Ay I 1 =m and Qi ~1 Ay T k=1
With the help of the parameters
P:={a;li<n} and Q:={au|i+1<n},
we define the relations

SO = { (aik7a(i+1)k) ‘ ia k< n}a
Sl = {(aik7a’i(k+1)) | ia k< n}u

by setting

Soxy =2 ~1 y A JuFv(QuAPo ANz ~guANy ~gv Aun~qv),
and Sixy =2 ~gy A FuFv(PuNQuAT ~ uNy ~1 vAU~gV).

O

Remark 64 Note that the translation in the preceding lemma is uniform, that
is, given x(x,y, z; Z) we can construct a formula 9(z,y; Z) such that, whenever
P are parameters such that x(x,y, z; P) defines a bijection A x B — C with
|A| = |B| = n, then we can find parameters Q such that 9(x,y; Q) defines an
n X n grid. Analogous statements hold for the other directions.

It follows that structures admitting MSO-coding are complicated. In particu-
lar, it follows from the following theorem that their MSO-theory is undecid-
able.
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Theorem 65 (Seese [14]) The MSO-theory of the class of all finite grids is
undecidable.

An easy proof consists in coding domino problems (see [15]). Together with
Lemma 63 this theorem implies the following result.

Theorem 66 If M is a structure that admits MSO-coding then the MSO-
theory of M is undecidable.

We conjecture that the property of admitting MSO-coding is equivalent to an
infinite partition width.

Conjecture 67 A structure 9 with finite signature has finite partition width
if and only if it does not admit MSO-coding.

Note that this conjecture fails if we allow infinite signatures. Consider 9t =
(w X w, (E,)n<w) where

Ep o= {(G,k), G.0) |li—dl+ k=1 =1,i5kl<n}.

Then, pwd; 9T = Ny. On the other hand, the MSO-theory of 91 is decidable
since each formula contains only finitely many relation symbols and every
finite reduct of 901 is the disjoint union of a finite structure and an infinite set.

Since all structures admitting MSO-coding have an undecidable MSO-theory a
proof of this conjecture would settle the conjecture of Seese that every class of
finite graphs with decidable MSO-theory has finite clique width. The following
lemma deals with the easy direction.

We call a function f : A x B — C cancellative if f(a,b) = f(a’,b) implies
a=ad and f(a,b) = f(a,b") implies b = ¥'.

Proposition 68 Let M be a T-structure. If there are unary predicates P and
an MSOy-formula p(z,y, z; P) defining a cancellative function f : Ax B — C
then |A| < K or |B| < K where

K :=3-33(Nyompwd,,, M) and Ny := |MS;(0)]

where MS’S is taken with respect to the signature T U P.

PROOF. Let f : Ax B — C be the given function. Fix a partition refinement
(Uy)ver of M such that mpwd,,,(U,), is minimal and define

wy, := sup { mti}(U,/U,) |veT}.
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By Lemmas 32 (2) and 35 we have

wy < Tp(Noyp mpwdy,, M) = K/3.
Suppose, for a contradiction, that m := |A| = |B| > 3ws.
We claim that there exists some vertex v € 71" such that

sm < |[U,NA|<2m and |B\U,| > ws,
or sm<|U,NB|<3m and [A\U,|>w,.

Let vy be some vertex with m < |U,, N B| < 2m. If |A\ U,,| < w; then there
exists some v > vy such that

sm < |U,NAl < 2m
and |B\ U,| > |B\ Uy| > m/3 > w,.

Thus, by symmetry we may assume that there exists some v € T satisfying
the first condition.

There are at most wy elements b € B\ U, such that f(a,b) = ¢ for some
a € U,NA, ¢ € U,NC. Otherwise, there would be tuples f(a,b) = ¢ and
f(a’l, b') = ¢ with b # b and {a}{c} %’fj—u {d'}{}. Then, f(da',V') = ¢ would
imply

f(avb/) =C= f(a'ab)a
and by cancellation, we would have b = b’ in contradiction to our assumption.

Since |B \ U,| > wy it follows that there exists some b € B\ U, such that
f(a,b) € U, for all a € U, N A.

Furthermore, since |U, N A| > m/3 > w, there are two different elements
a,a’ € U, N A such that a ~*- o. This implies f(a,b) = c iff f(a’,b) = ¢ for
all ¢ € U,. Contradiction. O

Corollary 69 If MM admits MSO-coding then pwd, 9 > Ny for some n.
Corollary 70 A group has finite partition width if and only if it is finite.

Proposition 68 can be used to link the concept of partition width with the
model theoretic notion of VC-dimension or, equivalently, the independence

property.

Definition 71 Let T be a first-order theory. An FO-formula ¢(Z,y) has the
independence property (w.r.t. T') if there exists a model MM of T containing
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sequences (a)rc, and (b;)ic, such that

M = plar,b;) iff iel.

We say that a structure 9 has the independence property if there exists a
formula ¢ that has the independence property w.r.t. Th(9N). If a; and b; are
singletons we say that M has the independence property on singletons.

In [12] it is shown that these two notions coincide if we allow monadic param-
eters.

Lemma 72 Let 9 have the independence property. There exists an elemen-
tary extension N = M and unary predicates P such that (N, P) has the inde-
pendence property on singletons.

It immediately follows that the independence property implies MSO-coding.

Lemma 73 Let 9N have the independence property on singletons. There exists
an elementary extension N = M that admits FO-coding.

PROOF. Choose an elementary extension 91 that contains sequences (ar)rc
and (b;);e, such that, for some formula ¢(x,y), we have

NE=plan,b) iff iel.

Fix disjoint infinite sets X, Y C B := {b; | i < w}, and define a function
[ X XY — Mby f(b;,b;) :=agj.Forxe X, yeY,and 2z € Z := f(X,Y)
we have

flzy) =2 it MEp(z,2) ANp(2,y).

Hence, f is an FO-definable bijection X x Y — Z. O

Together with the results above it follows that no structure with the inde-
pendence property has finite partition width. This slightly extends a result of
Parigot [16] who showed that trees do not have the independence property.

Proposition 74 If 9 is a structure with the independence property then
pwd,, M > Ny for some n.

PROOF. If M has the independence property then there exists an elemen-
tary extension 91 > 9t and unary predicates P such that (9, P) has the inde-
pendence property on singletons. Hence, there exists an elementary extension
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(97, P') which admits FO-coding. If 9 where of finite partition width, then
so would be 91, (M, P), and (M, P’). The latter contradicts Corollary 69. O
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