
Masaryk University

Faculty of Informatics

Automatic Structures of Polynomial
Growth

Master Thesis

Author:
Bc. Matěj Žáček

Supervisor:
Dr. rer. nat. Achim

Blumensath

December 2023

Declaration

Hereby I declare that this thesis is my original authorial work, which I have worked out
on my own. All sources, references, and literature used or excerpted during elaboration
of this work are properly cited and listed in complete reference to the due source.

Brno, December 2023

Bc. Matěj Žáček

Abstract

An automatic structure is a structure that can be represented by regular languages.
A natural subclass are poly-growth automatic structures. The regular languages repre-
senting these structures have polynomial growth. In this thesis we focus on poly-growth
automatic equivalence structures. We prove a classification of a special case, and then
we sketch a possible generalisation of this proof to get the complete classification of
poly-growth automatic equivalence structures.

Keywords

automatic structures, multi-dimensional interpretations, equivalence structures, polyno-
mial growth

ii

Acknowledgements

Achim Blumensath certainly deserves esteem for granting humble I, just keen light-
hearted master’s novice, opportunity peacefully researching simply theoretical, univer-
sally vibrant work. Xylography yields zenith.

iii

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Convolution . 3
2.2 Automatic structures . 5
2.3 Interpretations . 8
2.4 Unary automatic structures . 9
2.5 Automatic structures with polynomial growth 10

2.5.1 Known classifications . 12

3 Equivalence structures 14
3.0.1 Separation of equivalence structures 14
3.0.2 Pumping arguments . 15

3.1 Unary equivalence structures . 19
3.2 Equivalence structures over 0∗1∗ . 20
3.3 Notes on the general case . 29

3.3.1 Modification of the proof . 30
3.3.2 Equivalence structures definable by “combinatorial polynomials” 30

4 Conclusion 33

iv

1 Introduction

One of the topics heavily studied in computer science concerns finite representations of
infinite objects. This has applications in many different fields from database theory and
knowledge representation to formal verification and computational group theory. Model
theory approaches this problem via investigating logical properties of structures.

However, not all finite representations are useful, for example

“K := {i ∈ N | turing machine with index i halts on input i}”

is a finite representation of an infinite set, but we do not have any way of computing
this set.

Algorithmic model theory aims to restrict model theory such that the model checking
problem is decidable. This approach gives results that are more useful in practice.

Algorithmic model theory studies structures with finite representation (e.g. by an ax-
iomatisation in some logic, by an algorithm, by a collection of automata, . . .), with
requirement for effective semantics, i.e. for relevant logics L, given φ ∈ L and a repre-
sentation of a structure A, it should be decidable whether A |= φ.

These are just minimal required conditions, and depending on a context we might
want to add for example some closure properties to be able to argue more easily, or
require effective query evaluation for our theory to be more useful in practice.

One of the methods currently studied ([Hod76; KN94; BG00]) are automatic struc-
tures. Informally, a structure A is automatic if its universe and relations can be recog-
nised by a multi-headed automaton.

As an example, we can intuitively see that ⟨N,+⟩ is automatic. If we represent
each number in binary with the least significant bit first, we can construct a multi-head
automaton that keeps track of the carry bit during addition. On the other hand, it was
proven that ⟨Q,+⟩ is not automatic [Tsa11].

One of the advantages of this approach is that it can be equivalently defined via
model-theoretic interpretations [BG00] so we are able to tackle given problems by dif-
ferent techniques.

This concept was first researched in algorithmic group theory (see [BE92]), where
they realised that many computational problems about certain fundamental groups are
related to automata theory. Their definition is however slightly different than the one we
use for structures. Every automatic group (in the group theoretic sense) is an automatic
structure, but not every group that is an automatic structure is an automatic group (for
example the discrete Heisenberg group, see [Blub]).

This notion was then refined for structures by Khoussainov and Nerode [KN94], and
their theory has been developed by Blumensath in [BG00]. It has been shown there that
the first-order theory of automatic structures is decidable. However in it was also shown
that the transition graph of any Turing machine is automatic, therefore if we extend
first-order logic with reachability or transitive closure, we obtain an undecidable theory.

However, it seems that the classification of automatic structures is a challenging
problem. It is therefore only natural to study natural subclasses of automatic struc-
tures. The first natural subclass that comes to mind are unary automatic structures,
i.e. structures with a representation over a unary alphabet, for example ⟨N,≤⟩. We can
represent each n ∈ N as the word 0n, and we can simply check which word is longer. For
many types of structures (equivalence structures, linear orders, . . .) there exist complete
classifications of unary automatic structures (see [Blu99]), but this subclass seems too
simple to be interesting.

It was shown in [Szi+92] that for any regular language the number of words of
shorter than n is either bounded by some polynomial (called a language with polynomial
growth), or this number is asymptotically exponential. Therefore another potentially

1

interesting natural subclass are automatic structures where the universe of the represen-
tation is a language with polynomial growth. We call these automatic structures with
polynomial growth. We will give an exact definition in chapter 2.

Note that every unary automatic structure has polynomial growth, but it does not
hold the other way. For example ⟨N2,∼⟩ where (a, b) ∼ (a′, b′) iff a = a′ has polynomial
growth but it is not unary.

This subclass has been researched briefly by Bárány in [Bár07] and Huschenbett in
[Hus16]. Our thesis aims to present notions necessary to properly outline these results
in chapter 2. Then in chapter 3 we will prove a complete classification of equivalence
structures over 0∗1∗ and discuss a possible modification of our proof so that it would
work for arbitrary 0∗1∗ . . . (n− 1)∗, which would result in the complete classification of
automatic equivalence structures with polynomial growth. Lastly, in chapter 4 we will
summarise our results.

Shortly before submitting this thesis, we discovered a paper [GK20] by Ganardi and
Khoussainov containing a more general version of our results. Let us note that our
proofs have been obtained independently and use very different techniques.

2

2 Preliminaries

2.1 Convolution

As we explained in the previous chapter, we would like to define automatic structures via
being recognised by multi-head automata. However it will be easier to do arguments with
regular languages. For this, we define a convolution of tuples of words and a convolution
of finitary relations over words. Intuitively, the convolution transforms a k-tuple of words
over the alphabet Σ into a word over Σk. Then, a relation R is recognised by a multi-
head automaton if the convolution of R (written R⊗) is recognised by a single-head
automaton, i.e. R⊗ is a regular language.

We will have to deal with tuples of words where not all the words will have the same
length. For this we will have to introduce a blank symbol □.

Definition 2.1. (a) For an alphabet Σ, we denote by Σ□ := Σ ∪ {□} the extension
by a new blank symbol □ ̸∈ Σ.

(b) Let s0, . . . , sk−1 be words over the alphabet Σ, which we regard as functions si :
dom(si) → Σ, where dom(si) = {0, 1, . . . , len(si)− 1}. The convolution s0 ⊗ · · · ⊗
sk−1 is the word:

s0 ⊗ · · · ⊗ sk−1 :
⋃
i<k

dom(si) → Σk
□

over the alphabet Σk
□ where the labeling is given by

(s0 ⊗ · · · ⊗ sk−1)(x) :=

s0(x)
s1(x)
...

sk−1(x)

 ,
with the convention that si(x) = □ if x ̸∈ dom(si). We also use the shorthand

s⊗ = s0 ⊗ · · · ⊗ sk−1

(c) Let R ⊆ (Σ∗)k be a k-ary relation. Then

R⊗ := {s⊗ | s ∈ R} ⊆ (Σk
□)

∗.

We will call R regular if R⊗ is regular.

ab
a

ba
a

 b□
a

a□
c

a□
c

 c□
b

□□
a

□□
b

□□
a

Figure 1: abbaac⊗ ba⊗ aaaccbaba

In the figure 1 you can see an example of a convolution of words. Now we will
show some examples of regular relations by giving regular expressions that generate
that language.

3

Example. Let Γ = {a0, . . . , an−1} be a finite alphabet, and let < be a strict linear
ordering on Γ.

(a) The equality relation = over Γ∗ is given by([
a0
a0

]
+

[
a1
a1

]
+ · · ·+

[
an−1

an−1

])∗

=

(∑
x∈Γ

[
x
x

])∗

= ID

(b) The symmetric relation ▷◁ where all words are only in relation with ε is given by(∑
x∈Γ

[
□
x

])∗

+

(∑
x∈Γ

[
x
□

])∗

= END

(c) The equal length relation =len:= {(u, v) | |u| = |v|} is given by ∑
x,y∈Γ

[
x
y

]∗

= LEN

(d) The total relation Γ∗ × Γ∗ is given by ∑
x,y∈Γ

[
x
y

]∗

·

[(∑
x∈Γ

[
□
x

])∗

+

(∑
x∈Γ

[
x
□

])∗]
= LEN · END

(e) The prefix order ⪯ is given by(∑
x∈Γ

[
x
x

])∗

·

(∑
x∈Γ

[
□
x

])∗

= PO

(f) The lexicographic ordering

u ≤lex v :iff u ⪯ v or (u = wau′ and v = wbv′ for some u′, v′ ∈ Γ∗)

is given by

PO + ID ·

 ∑
x,y∈Γ′

x<y

[
x
y

] · LEN · END

(g) The length-lexicographic ordering

u ≤llex v : iff |u| < |v| or (|u| = |v| and u ≤lex v)

is given by

LEN ·

(∑
x∈Γ

[
□
x

])+

+ ID ·

 ∑
x,y∈Γ′

x<y

[
x
y

] · LEN + ID

4

(h) Addition + on natural numbers represented in binary with least significant bit
first is regular. For this, we will present an automaton accepting +:

0 1

11
0

00
1

00
0

,
01
1

,
10
1

 01
0

,
10
1

,
11
1

We have only given the part of the automaton that does not mention the blank
symbols □. The full automaton can be obtained by adding more copies of the au-
tomaton above where some labels 0 are replaced by □.

To help us construct regular relations, we have the following closure properties.

Definition 2.2. A homomorphism φ : Σ∗ → Γ∗ is uniform if

|φ(a)| = |φ(b)|, for all a, b ∈ Σ

Lemma 2.3. The class of regular relations over Σ∗ is closed under:

(a) boolean operations,

(b) direct products,

(c) projections,

(d) inverse uniform homomorphisms,

(e) uniform homomorphisms.

Proof. See e.g. [Blub].

2.2 Automatic structures

To be complete, first we have to define relational structures:

Definition 2.4. (a) A relational signature Γ is a set of relational symbols, each of
which has fixed (finite) arity.

(b) Let Γ be a relational signature. A (relational) Γ-structure A consists of a set
A called the universe of A, and for each relational symbol R ∈ Γ with arity n
an n-ary relation RA.

Formally we can define a relational structure to be a pair ⟨A, σ⟩, where A is the uni-
verse and σ maps relational symbols from Γ to the relation it denotes. Note that we do
not have requirements on the size of Γ, but in this thesis we will be working only with fi-
nite relational signatures, and we will write them simply as a tuple ⟨A,RA

0 , R
A
1 , . . . , R

A
j ⟩.

Many (n + 1)-ary relational symbols will represent n-ary functions and we will use
the standard functional notation when working with them (i.e. we will write a+ b = c
instead of (a, b, c) ∈ +).

The main topic of our thesis are equivalence structures:

5

Definition 2.5. Let ⟨A,E⟩ be a relational structure, where E has arity 2. We call
⟨A,E⟩ an equivalence structure if E is an equivalence relation on A.

Since the first-order theory of regular languages is decidable (see [KN94]), encoding
structures using regular languages is a reasonable approach for constructing models with
effective semantics. This motivates the definition of automatic structures:

Definition 2.6. Let A be a Γ-structure for some finite relational signature Γ.

(a) An automatic presentation of A (over the finite alphabet Σ) is a surjective partial
function π : Σ∗ → A such that the languages

Lδ := dom(π),

L= := {u⊗ v | π(u) = π(v)},
LR := {u⊗ | (π(u0), . . . , π(unR−1)) ∈ R} for all R ∈ Γ,

are all regular.

(b) The structure A is automatic if it has an automatic presentation.

(c) If we fix a presentation π of A, for a ∈ A we will denote the length of the shortest
word representing a by ||a||, i.e. ||a|| = min{|u| | π(u) = a}. We will say that a
has the norm ||a||.

Usually we will only write the sets ⟨Lδ, L=, (LR)R∈Σ⟩, leaving π implicit. Note that
π can be recovered from ⟨Lδ, L=, (LR)R∈Σ⟩ (up to isomorphism) since

A ∼= ⟨Lδ, (LR)R∈Σ⟩/L=.

Moreover, from the definition it is clear that only structures with countable size are
automatic, therefore in the rest of the paper whenever we say infinite number, we mean
countable infinity.

Example. (a) Given m > 1, the structure ⟨ω,≤,m|·⟩ is automatic. We will encode
each number n by the word 0n:

• Lδ = 0∗,

• L= =

[
0
0

]∗
,

• L≤ =

[
0
0

]∗
·
[
□
0

]∗
• Lm|· = (0m)∗

(b) The structure ⟨ω,≤,+⟩ is automatic. We will encode each number n in binary
with the least significant bit first, i.e. π(x · w) = x+ 2π(w) with π(ε) = 0.

• Lδ = (0 + 1)∗,

• L= =

([
0
0

]
+

[
1
1

])∗

·
([

□
0

]∗
+

[
0
□

]∗)
,

• L≤ = L= +

(∑
x,y∈{0,1}

[
x
y

])∗

·
[
0
1

]
· L=

• L+: we have shown in the example (h) in the section 2.1 that this language
is regular.

6

(c) For each n, the ordinal ⟨ωn,≤⟩ is automatic. Let π((n − 1)xn−1 . . . 1x10x0) :=
ωn−1 · xn−1 + · · ·+ ω · x1 + x0. Then:

• Lδ = (n− 1)∗ . . . 1∗0∗,

• L= =

[
n− 1
n− 1

]∗
· · · · ·

[
1
1

]∗
·
[
0
0

]∗
,

• L≤ is lexicographic ordering ≤lex (from the example (f) in the section 2.1)
restricted to (n− 1)∗ . . . 1∗0∗

(d) The structure ⟨T, root, (succi)i<n⟩ is automatic, where T is the complete n-ary
rooted tree of depth ω. You can find the picture of this tree in the figure 2.
The alphabet of our encoding will be Γ = {0, 1, . . . , n−1} and we will encode each
node t by the path from the root node, i.e. if tp is the predecessor of t, t is the i-th
successor of tp, and π(ep) = tp, then π(ep · i) = t.

• Lδ = Γ∗,

• L= =

(∑
i<n

[
i
i

])∗

,

• Lroot = {ε}

• Lsuccj = L= ·
[
□
j

]
(e) The structure Pfin⟨ω,≤⟩ := ⟨Pfin(ω),⊆,≤′⟩ (where ≤′ compares only single ele-

ment sets) is automatic. We will encode each subset by its characteristic function
(for example π(1100110) = {0, 1, 4, 5}):

• Lδ = (0 + 1)∗,

• L= =

([
0
0

]
+

[
1
1

])∗

·
([

□
0

]∗
+

[
0
□

]∗)
,

• L⊆ =

([
0
0

]
+

[
0
1

]
+

[
1
1

])∗

·
([

□
0

]∗
+

[
0
□

]∗)
,

• L≤′ =

[
0
0

]∗
·
([

1
1

]
+

[
1
0

]
·
[
0
0

]∗
·
[
0
1

])
·
[
0
0

]∗([
□
0

]∗
+

[
0
□

]∗)
.

Figure 2: A picture of the tree structure from the example (d) for n = 3.

7

2.3 Interpretations

Often when working with structures, we use some representation of its elements – for
example when working with complex numbers we often use cartesian coordinates over
R2. The definition of a k-dimensional interpretation formalizes this notion:

Definition 2.7. Let Σ and Γ be relational signatures.

(a) Given an FO[Σ]-formula φ and a Σ-structure A, we will denote

φA := {x | A |= φ(x)}

(b) A k-dimensional first-order interpretation (from signature Σ to Γ) is given by a
list of FO[Σ]-formulae

τ = ⟨δ(x), ε(x, y), (φR(x0, . . . , xnR−1))R∈Γ⟩

where x, y, xi are k-tuples of variables and nR is the arity of the relation R.

Given a Σ-structure A, it produces the Γ-structure

τ(A) := ⟨δA, (φA
R)R∈Γ⟩/ ≈,

where ≈ ⊆ (Ak)2 is the equivalence relation generated by the relation εA. If we do
not want to specify the number k, we speak of a multi-dimensional interpretation

(c) We write A ≤FO B if there exists a multi-dimensional interpretation τ such that
τ(B) ∼= A.

Since this definition can seem complicated, we will give an example of a 2-dimensional
interpretation. Note that neither of the mentioned structures are automatic.

Example. We will show that ⟨C,+⟩ ≤FO ⟨R,+⟩ via 2-dimensional interpretation. Intu-
itively we will represent every complex number by its real and imaginary part.

• δ((x0, x1)) := x0 = x0 (or any other tautology)

• ε((x0, x1), (y0, y1)) := x0 = y0 ∧ x1 = y1

• φ+((x0, x1), (y0, y1), (r0, r1)) := x0 + y0 = r0 ∧ x1 + y1 = r1

Then we can write down the according sets:

• δR = R2

• ≈= {((r0, r1), (r0, r1)) | (r0, r1) ∈ R2} (i.e. identity on R2 × R2)

• φR
+ = {((r0, r1), (q0, q1), (r0 + q0, r1 + q1)) | (r0, r1, q0, q1) ∈ R4}

Since ≈ is the identity, we just have to show that ⟨C,+⟩ ∼= ⟨R2, φR
+⟩. We can choose

the bijection ψ((r0, r1)) := r0+ ir1. It is trivial to show that it indeed is a bijection and
that ψ((r0, r1)) + ψ((q0, q1)) = ψ((r0 + q0, r1 + q1)).

The notion of a multi-dimensional interpretation is interesting for us because the class
of automatic structures is closed under them, formally:

Theorem 2.8 (Blumensath, Grädel[BG00]). Let B be automatic structure and A be
a structure. Then if A ≤FO B, then A is automatic.

8

As we mentioned in the introduction, there is an equivalent definition of automatic
structures via multi-dimensional interpretations that is often more convenient for prov-
ing statements.

Theorem 2.9 (Colcombet[CL07]). Let A be a structure. A is automatic if and only if
A ≤FO Pfin⟨ω,≤⟩.

We can say that Pfin⟨ω,≤⟩ is a complete structure with respect to first-order inter-
pretations. Note that Pfin⟨ω,≤⟩ is just one of the complete structures. More can be
found in [BG00].

2.4 Unary automatic structures

Definition 2.10. A structure A is a unary automatic structure if it has an automatic
presentation over a unary alphabet.

Example. The following structures are unary automatic.

(a) Every finite structure is unary automatic.

(b) In the example (a) in the section 2.2 we have shown that givenm > 1, the structure
⟨ω,≤,m|·⟩ has an automatic presentation over a unary alphabet, therefore it is
unary automatic.

(c) The ordinal ⟨ω+ω,≤⟩ is unary automatic. Let π(02k) := k, and π(02k+1) = ω+k.
Then:

• Lδ = 0∗,

• L= =

[
0
0

]∗
,

• L≤ =

([
0
0

]2)∗

·
[
□
0

]∗
+

([
0
0

]2)∗

·
[
0
0

]
·

([
□
0

]2)∗

(d) The structure ⟨S, root, (succi)i<n⟩ is unary automatic, where S is the n-ary rooted
tree, where the 0-th successor has n successors, and other successors have 0. You
can find the picture of this tree in the figure 3. We will encode each node t according
to the path from the root node in the following way: let tp be the predecessor of
t and π(ep) = tp. Then if t is the 0-th successor of tp π(ep · 0n) = t, otherwise if t
is the i-th successor, then π(ep · 0i) = t.

• Lδ = 0∗,

• L= =

[
0
0

]∗
,

• Lroot = {ε}

• Lsucc0 =

([
0
0

]n)∗

·
[
□
0

]n
• Lsuccj>0

=

([
0
0

]n)∗

·
[
□
0

]j
Unary automatic structures are the simplest natural subclass of automatic structures.

It is closed under finite disjoint unions and one-dimensional interpretations, but it is not
closed under direct products nor under multi-dimensional interpretations (see [Blu99]).

We can get an equivalent definition of unary automatic structures using one-dimensional
interpretation:

9

Figure 3: A picture of the tree structure from the example (d) for n = 3.

Theorem 2.11 (Blumensath[Blu99]). A structure A is unary automatic structure if
and only if there exists m > 1 such that A ≤FO ⟨ω,≤,m|·⟩ via a one-dimensional
interpretation.

From this characterisation we can easily see that a representation over a unary al-
phabet gives us only information about the length, which when sufficiently large can be
tested only modulo some constant. Because of this simplicity, linear ordering, equiv-
alence structures, and more have been completely characterised. We will present the
result for equivalence structures:

Theorem 2.12 (Khoussainov,Rubin[KR99]). Let ⟨A,∼⟩ be an equivalence structure.
Then the following statements are equivalent:

i. ⟨A,∼⟩ is unary automatic,

ii. There exists a constant k such that |C| < k for all finite equivalence classes C, and
there is only finite number of infinite equivalence classes.

2.5 Automatic structures with polynomial growth

The main goal of this thesis is to characterise automatic equivalence structures with
polynomial growth. This class is richer than the one of unary structures, but its charac-
terisation seems much simpler than the one for ordinary automatic structures.

Definition 2.13. A structure A is an automatic structure with polynomial growth if it
has an automatic presentation π such that there exists a polynomial p(x) where for all
n ∈ N

|{a ∈ A | ||a|| ≤ n}| ≤ p(n)

We also say that A has polynomial growth, or that A is poly-growth automatic. Note
that by [Bár07] we can without loss of generality assume that this presentation is injec-
tive, and in the rest of the paper we will do so.

Example. The following structures are poly-growth automatic:

(a) Every unary automatic structure has polynomial growth, in particular ⟨ω,≤,m|·⟩

(b) In the example (c) in the section 2.2 we have shown that for all n, the ordinal
⟨ωn,≤⟩ has an automatic presentation over (n− 1)∗ . . . 1∗0∗. In the theorem 2.16
we will show that this implies that ⟨ωn,≤⟩ is poly-growth automatic

(c) The equivalence structure ⟨N2,∼⟩ is poly-growth automatic, where ∼ is equality
on the first element. Let π(0a1b) = (a, b).

10

• Lδ = 0∗1∗,

• L= =

[
0
0

]∗
·
[
1
1

]
,

• L∼ =

[
0
0

]∗
·
[
1
1

]∗
·
([

□
1

]∗
+

[
1
□

]∗)
Since Lδ = 0∗1∗, by the theorem 2.16 this is an automatic structure with polyno-
mial growth.

(d) The structure ⟨R, root, (succi)i<n⟩ is poly-growth automatic, where S is the n-
ary rooted tree, where the (n − 1)-th successor has n successors, and all other
successors have 1. You can find the picture of this tree in the figure 4. We will
use the same encoding as in the example (d) in the section 2.2, i.e. the alphabet
of our encoding will be Γ = {0, 1, . . . , n − 1} and we will encode each node t by
the path from the root node. The only difference will be the domain of π.

• Lδ = (n− 1)∗ · (
∑

i<n−1 i) · 0∗ + (n− 1)∗,

• L= =

[
n− 1
n− 1

]∗
·
(∑

i<n−1

[
i
i

])
·
[
0
0

]∗
+

[
n− 1
n− 1

]∗
,

• Lroot = {ε}

• Lsucc0 = L= ·
[
□
0

]
• Lsuccj>0

=

[
n− 1
n− 1

]∗
·
[
□
j

]
We can see that Lδ ⊆ (n − 1)∗ . . . 1∗0∗, therefore by the theorem 2.16 this is
an automatic structure with polynomial growth.

Figure 4: A picture of the tree structure from the example (d) for n = 3.

To show that this is a natural class of structures, Bárány has shown the following
closure properties:

Theorem 2.14 (Bárány[Bár07]). The class of automatic structures with polynomial
growth is closed under disjoint union, direct product, and first-order interpretations.

Similarly as for automatic structures, there is an equivalent definition using inter-
pretations for automatic structures with polynomial growth.

Theorem 2.15 (Bárány[Bár07]). Let A be a structure. A is automatic with polynomial
growth if and only if there exists m > 1 such that A ≤FO ⟨ω,≤,m|·⟩.

11

The most useful tool for our thesis is the following result:

Theorem 2.16 (Bárány[Bár07]). Let A be a structure. A is automatic with polynomial
growth if and only if A has an automatic presentation whose universe is a subset of
a∗0a

∗
1 . . . a

∗
n−1 for some n and ai’s.

If we could characterise equivalence structures with automatic presentation over
0∗1∗ . . . (n− 1)∗ for arbitrary n, we would obtain a complete characterisation of equiv-
alence structures with polynomial growth. In the next chapter we will give a proof of
the characterisation of equivalence structures with automatic presentation over 0∗1∗, and
then we will give a proof sketch for equivalence structures with automatic presentation
over 0∗1∗ . . . (n− 1)∗ for arbitrary n.

2.5.1 Known classifications

Finally the following complete classifications of automatic structures with polynomial
growth are known:

Theorem 2.17 (Huschenbett[Hus16]). An ordinal ⟨α,≤⟩ is poly-growth automatic if
and only if α < ωω.

Theorem 2.18 (Blumensath[Blua]). An abelian group is poly-growth automatic if and
only if it is finite.

In the next chapter we will give a complete classification of poly-growth automatic
equivalence structures over 0∗1∗. This subclass is also closed under finite unions, for-
malized by the following lemma:

Lemma 2.19. Let A,B be automatic structures with injective presentations πA, πB over
0∗1∗ . . . (n− 1)∗. Then A ∪B has an injective presentation π over 0∗1∗ . . . (n− 1)∗.

Idea of proof: We will encode elements of A by words such that they have even number
of each letter, and elements of B by words such that they have odd number of each
letter.

Proof. Let A,B be automatic structures with injective presentations πA, πB over
0∗1∗ . . . (n− 1)∗. Let π : 0∗1∗ . . . (n− 1)∗ → A ∪B given by:

π(0m01m1 . . . (n− 1)mn−1) =

πA(0

m0
2 1

m1
2 . . . (n− 1)

mn−1
2) if 2 | mi for all i

πB(0
m0−1

2 1
m1−1

2 . . . (n− 1)
mn−1−1

2) if 2 ∤ mi for all i

⊥ else

Trivially π is injective, and dom(π) is regular. Now for every R from the relational
signature, we know that we can separate RA∪B into RA∪RB. Then LR = LR,A∪LR,B ,
where LR,X := {(u, v)⊗ | (π(u), π(v)) ∈ RX}.

Let ψ be a endomorphism given by

ψ(x) = x2 for all x ∈ {0, 1, . . . , n− 1}.

Then LR,A = ψnR({(u0, u1, . . . , unR−1) | (πA(u0), πA(u1), . . . , πA(unR−1) ∈ RA})⊗.
Since πA is an automatic presentation, and regular relations are closed under uniform
homomorphisms by the theorem 2.3, LR,A is regular.

To prove that LR,B , we have to introduce function η : 0∗1∗ . . . (n−1)∗ → 0∗1∗ . . . (n−
1)∗:

12

η(0m01m1 . . . (n− 1)mn−1) = 0m0+11m1+1 . . . (n− 1)mn−1+1

Then LR,B = ηnR(ψnR({(u0, u1, . . . , unR−1) | (πB(u0), πB(u1), . . . , πB(unR−1) ∈ RB}))⊗.
Similarly since πB is an automatic presentation, regular relations are closed under uni-
form homomorphisms by the theorem 2.3, and trivially η keeps regularity, LR,B is reg-
ular.

We then have shown that π is an injective presentation of A∪B over 0∗1∗ . . . (n−1)∗.

13

3 Equivalence structures

In this chapter we will study poly-growth automatic equivalence structures. First we
will prove two very helpful theorems; the first tells us that we can study equivalence
structures with only finite equivalence classes and with only infinite ones separately.
The second one is a stronger version of the pumping lemma, stating that if our language
is a subset of a finite union of languages of the form a∗0a

∗
1 . . . a

∗
n−1 for some n and ai’s,

we can pump every word (that has a long enough sub-word) by the same constant m,
and we will pump only a part of the subword that contains only one type of letters.

3.0.1 Separation of equivalence structures

Theorem 3.1. Let ⟨A,∼⟩ be an equivalence structure with an injective automatic repre-
sentation π with universe L ⊆ Σ∗. Then there exist structures ⟨Afin,∼fin⟩ and ⟨Ainf ,∼inf

⟩ with injective automatic presentations πfin, πinf over Σ∗ such that:

1. ⟨Afin,∼fin⟩ ∪ ⟨Ainf ,∼inf⟩ ∼= ⟨A,∼⟩

2. All equivalence classes of ⟨Afin,∼fin⟩ are finite

3. All equivalence classes of ⟨Ainf ,∼inf⟩ are infinite

4. The universe of these presentations are disjoint subsets of L.

Idea of proof: Since ≤llex is regular, we can use this to construct a first-order formula
φ(x) that is satisfied if x is part of a finite equivalence class. This separates A into Afin

and Ainf .

Proof. Let D := π−1(A), and E := {(a, b)⊗ | π(a) ∼ π(b)}. First we will show that idD
is an automatic presentation of ⟨D,E,≤llex⟩. Trivially, id−1

D (D) = D is regular, so is
{(a, b)⊗ | (a, b) = (idD(a), idD(b)) ∈ E}. From the example (g) in the section 2.1 we
also know that ≤llex is regular, so {(a, b)⊗ | (a, b) = (idD(a), idD(b)) ∈≤llex} is regular.

Now let’s consider the following formula:

φ(x) := ∀y.[E(x, y) ⇒ (∃z.y ̸= z ∧ y ≤llex z ∧ E(x, z))]

It holds for all x ∈ D that:

⟨D,E,≤llex⟩ |= φ(x) ⇐⇒ x is in an infinite equivalence class

Let Dfin := {x ∈ D | ⟨D,E,≤llex⟩ ̸|= φ(x)} and Dinf := {x ∈ D | ⟨D,E,≤llex⟩ |=
φ(x)}. Since φ is a first-order formula, both Dfin and Dinf are regular. Also trivially
Efin := {(a, b)⊗ | (a, b)⊗ ∈ E, a ∈ Dfin} and Einf := {(a, b)⊗ | (a, b)⊗ ∈ E, a ∈ Dinf} are
both regular. Now let πfin := π|Dfin

and πinf := π|Dinf
.

Let Afin := im(πfin), Ainf := im(πinf), ∼fin:= {(πfin(x), πfin(y)) | x, y ∈ Dfin, (x⊗y) ∈
E}, and ∼inf := {(πinf(x), πinf(y)) | x, y ∈ Dinf , (x ⊗ y) ∈ E}. As we discussed earlier,
all Dfin, Dinf , Efin, and Einf are all regular, so πfin is an automatic presentation of
⟨Afin,∼fin⟩ and πinf is an automatic presentation of ⟨Ainf ,∼inf⟩.

Moreover, from our construction it is trivial to see that both πfin, πinf are injective,
are over Σ∗, and all 4 points from our theorem hold.

14

3.0.2 Pumping arguments

Definition 3.2. Let L be a regular language with L ⊆ a∗0 . . . a
∗
l−1 for some distinct

a0, . . . , al−1. Then we say that L has rank l.

To prove our pumping lemma more easily, first we will prove that regular languages
with rank l (for some l) can be decomposed into a finite union of concatenations of
unary languages.

Lemma 3.3. Let L ⊆ a∗0 . . . a
∗
n−1 be a regular language, and all a0, . . . , an−1 are distinct.

Then there exists a finite set I and regular languages A0,i, . . . , An−1,i for all i ∈ I such
that Aj,i ⊆ a∗j and L =

⋃
i∈I A

∗
0,i . . . A

∗
n−1,i.

Idea of proof: We will prove this by induction on the rank n. The intuition behind
the inductive step can be seen in the figure 5. We transform the original automaton A
into a finite number of pairs of automata Ki,Ri, where the language accepted by Ki is
a subset of a∗0, the language of Ri is a subset of a∗1 . . . a

∗
n−1, and L(A) =

⋃
i∈I L(Ki) ·

L(Ri).

(a) The original automaton

(b) The automaton accepting L(K0) · L(R0)

(c) The automaton accepting L(K3) · L(R3)

Figure 5: The intuition behind the inductive step in the proof of the lemma 3.3

15

Proof. We will prove this by induction on the rank n. If n = 1, our statement trivially
holds. Now let n > 1, L ⊆ a∗0 . . . a

∗
n−1 and assume that our lemma holds for all regular

languages K satisfying our assumption with nk < n.
First, let A0,0 := L ∩ a∗0. It is obvious that A0,0 is regular since L is regular.
Now, since L is a regular language, there exists a deterministic automaton A with

a single initial state q0 such that L(A) = L. Let T be the labeled transition system
that we obtain from A by removing all edges that are not labeled by a0 and removing
all states that are not reachable from q0. The set of labels for the states of T is equal
to Σ \ {a0}, and the labeling is given by:

l(q) := {aj | ∃q′ ∈ STATES(A).(q, aj , q
′) ∈ EDGES(A)}.

Now let I ′ := {(q, aj) | q ∈ STATES(T), aj ∈ l(q)}. For every pair (q, aj) ∈ I ′ we
will construct two automata K(q,aj), R(q,aj), and the languages they accept will be our
regular languages A0,(q,aj), R(q,aj) that decompose L \A0,0.

Let (q, aj) ∈ I ′. Then we get K(q,aj) from T by setting q0 (from the original automa-
ton A) as the initial state, and setting q as the only accepting state. Now R(q,aj) we
construct from A by removing all edges labeled by ai for all i < j, adding a new state
q′ with the same outgoing edges as q that are labeled by aj (so that we don’t accept ε
and the first letter is aj), setting q

′ as its initial state, and leaving the accepting states
the same as in A.

Let A0,i := L(Ki), Ri := L(Ri) for every i ∈ I ′. Now we will prove that L =
A0,0 · {ε} ∪

⋃
i∈I A0,i ·Ri.

Let w ∈ L ∩ A0,0. It is obvious that w ∈ A0,0 · {ε}. Now let w ∈ L \ A0,0. From
that we can infer that w has to be of form w = am0 · aj ·w′ for some m ∈ N0, j > 0, and
w′ ∈ (Σ \ {a0})∗. Then there exists an accepting run r on A. Let q be the (m + 1)-th
state of this run (the state after we’ve read the am0). It is obvious from our construction
that am0 ∈ A0,(q,aj) and that aj ·w′ ∈ R(q,aj), therefore w ∈

⋃
i∈I A0,i ·Ri. From this we

get that L ⊆ A0,0 · {ε} ∪
⋃

i∈I A0,i ·Ri.
Let w ∈ A0,0 · {ε}. Since A0,0 · {ε} = A0,0 and A0,0 ⊆ L, w ∈ L. Now let w ∈⋃

i∈I A0,i · Ri. Then there exists (q, aj) ∈ I ′ such that w ∈ A0,(q,aj) · R(q,aj), thus
w = wk · wr, where wk ∈ A0,(q,aj), wr ∈ R(q,aj). Then there exist accepting runs rk, rl
in K(q,aj) andR(q,aj) respectively. From our construction we can transform rk ·rl into run
r in A that is accepting, thus w ∈ L. From this we get that A0,0 ·{ε}∪

⋃
i∈I′ A0,i ·Ri ⊆ L.

We’ve proven that L =
⋃

i∈I∪{0}Ki ·Ri, now we can apply our induction hypothesis

I times to get that L =
⋃

i∈J∪{0}A0,i ·
⋃

ri∈Ri
A∗

1,ri . . . A
∗
n−1,ri =

⋃
i∈J′ A∗

0,i . . . A
∗
n−1,i,

which we wanted to prove.

Corollary 3.3.1. Let L ⊆
⋃

j∈J a
∗
0,j . . . a

∗
lj ,j

be a regular language, where J is finite,
and for all j ∈ J , a0,j , . . . , alj ,j are distinct. Then for each j ∈ J there exist finite
set Ij and regular languages A0,i,j , . . . , Alj ,i,j for all i ∈ Ij such that Ak,i,j ⊆ a∗k,j and
L =

⋃
j∈J,i∈Ij

A∗
0,i,j . . . A

∗
lj ,i,j

.

Proof. Apply the previous lemma for each j ∈ J and take their union.

Theorem 3.4. Let L ⊆
⋃

j∈J a
∗
0,j . . . a

∗
lj ,j

be a regular language, where J is finite, and
for all j ∈ J , a0,j , . . . , alj ,j are distinct. Then there exist constants k,m such that for

all j ∈ J , o0, . . . , olj ∈ N, and for every subword w of ao00,j . . . a
olj
lj ,j

∈ L with |w| > k:

∃i ∈ {0, . . . , lj}.ai,j ∈ w ∧ ∀n ∈ N.ao00,j . . . a
oi−m+nm
i,j . . . a

olj
lj ,j

∈ L

Idea of proof: With the previous lemma, we can construct an automaton where all
the cycles have the same length, and there are no two cycles reachable from one another.
The rest of this proof is similar to a proof of the standard pumping lemma.

16

Proof. From the corollary 3.3.1 we know that there exist a finite number of unary regular
languages such that L =

⋃
j∈J,i∈Ij

A∗
0,i,j . . . A

∗
lj ,i,j

with Ak,i,j ⊆ a∗k,j . First, for each
Ak,i,j we construct an automat Ak,i,j .

Since Ak,i,j is regular, there exists a minimal deterministic automat A over the unary
alphabet {ak,j} such that L(A′

k,i,j) = Ak,i,j . This automaton has a pre-period of some
length hk,i,j ≥ 0, and if Ak,i,j is not finite, it ends with loop of length lk,i,j ≥ 0,
represented by the following diagram:

q0 q1
a
hk,i,j

0
a
lk,i,j

0

Now let m := LCM({lk,i,j | |Ak,i,j | = ω}). We transform all A′
k,i,j with loops into

Ak,i,j by extending the loop by a factor m
lk,i,j

, so that all the created automata will have

a loop of length m. This will also multiply the number of accepting states on the loop
by the same factor so that L(Ak,i,j) = L(A′

k,i,j). If A′
k,i,j has no loop, we will set

Ak,i,j := A′
k,i,j .

For every language A∗
0,i,j . . . A

∗
lj ,i,j

we will construct an automaton Aj,i from the au-
tomata for the unary languages by the standard construction for concatenation of lan-
guages, and finally we will construct nondeterministic automata A for L from Aj,i by
the standard construction for finite union of languages. Let k be the number of states
of A.

Let u := ao00,j . . . a
olj
lj ,j

∈ L for some j ∈ J , o0, . . . , olj ∈ N, and let w be a subword of

u longer than k. Since u ∈ L, there exists an accepting run (r0, r1, . . . , r|u|+1) in A, and
let (rp, ..., rp+|w|+1) be a subword of r be states visited when reading w. Since |w| > k,
p > k and therefore there must exist two indices i < j such that ri = rj . Let iM , jM be
such a pair of indices with iM being minimal among those i’s and jM be minimal among
j’s such that riM = rj . Therefore (riM , riM+1, . . . , rjM) form a cycle, and because of
minimality of jM this cycle has length m. Moreover, from our construction of A we can
see that this cycle corresponds to reading am for some a ∈ w.

From this we get that for every n ∈ N, r0, . . . , (riM , riM+1, . . . , rjM)n, rjM+1, . . . , r|u|+1

is again accepting run, i.e. there exists ai,j ∈ w such that for all n ∈ N:

ao00,j . . . a
oi−m+nm
i,j . . . a

olj
lj ,j

∈ L,

which we wanted to prove.

Note that in the rest of this chapter whenever we will claim an existence of constants
k,m, in the proof it will always be the constants from this pumping lemma.

In the following corollary you can see how we will be using our pumping lemma.
Often we will be able to prove equivalence statements about elements that are “far
enough”. The figure 6 illustrates this lemma. The two rows represent two words, each
blue block represents a block of letters (the longer the block, the more letters there are),
and the orange box highlights the part of the convolution of words we will be pumping.
Note that we will be using similar figures in the rest of this thesis when explaining
the intuition behind theorems that use the pumping lemma.

Corollary 3.4.1. Let ⟨A,∼⟩ be an equivalence structure with an injective automatic
representation π over 0∗1∗ . . . (n− 1)∗. Then there exist constants k,m such that for all
0a · u, 0a′ · u′ ∈ π−1(A) with a, a′ > k it holds that:

π(0a · u) ∼ π(0a
′
· u′) ⇔ π(0a+m · u) ∼ π(0a

′+m · u′)

17

Figure 6: The intuition behind the corollary 3.4.1 for n = 3

Proof. Since E := {(x, y)⊗ | π(x) ∼ π(y)} is a finite union of languages of some finite
rank, we will be able to use the theorem 3.4. Choose k,m according to the theorem 3.4,
and let 0a · u, 0a′ · u′ ∈ π−1(A) with a, a′ > k.

First assume that π(0a · u) ∼ π(0a
′ · u′). Then (0a · u) ⊗ (0a

′ · u′) =
[
0
0

]k+1

· v for

some v. From the theorem 3.4 (choosing n = 2) we get that

[
0
0

]k+1+m

· v ∈ E, which is

equivalent to π(0a+m · u) ∼ π(0a
′+m · u′).

Similarly, for (0a+m · u)⊗ (0a
′+m · u′) ∈ E we can choose n = 0 to get that (0a · u)⊗

(0a
′ · u′) ∈ E, which is equivalent to π(0a · u) ∼ π(0a

′ · u′).

From the theorem 3.1 we know we can study finite and infinite equivalence classes
separately. The infinite classes are quite uninteresting – theorem 2.12 tells us that if
the equivalence structure has a finite number of infinite equivalence classes, it is unary.
The equivalence structure from the example (c) in the section 2.5 has an infinite number
of infinite equivalence classes, and has representation over 0∗1∗. Because of this we will
be interested only in studying the finite equivalence classes.

The first important observations then is that if we have a finite equivalence class C,
the words that represent elements of C have to have similar length, otherwise we could
use the theorem 3.4 to obtain an infinite number of distinct elements that have to be in
C. The figure 7 shows this.

Figure 7: The intuition behind the theorem 3.5 for n = 3

Theorem 3.5. Let ⟨A,∼⟩ be an equivalence structure with an injective automatic rep-
resentation π over 0∗1∗ . . . (n − 1)∗. Then there exists a constant k such that for all
finite equivalence classes C ∈ A/ ∼ and for all a, b ∈ π−1(C):

|b| − |a| ≤ k

Proof. Let ⟨A,∼⟩ be an equivalence structure with an injective automatic representation
π over 0∗1∗ . . . (n− 1)∗, and choose k,m according to the theorem 3.4. Let C ∈ A/ ∼ be

18

finite equivalence class, and let a, b ∈ π−1(C) such that |a| < |b| − k. Then a⊗ b = u · v
for some u, v such that:

v ∈ (

n−1∑
i=0

[
□
i

]
)k+1

Since E := {(x, y)⊗ | π(x) ∼ π(y)} is a finite union of languages of some finite rank, and
|v| > k, from the theorem 3.4 there exist x, y, z with |y| > 0 (more specifically |y| = m)
and v = xyz such that for all n ∈ N, uxynz ∈ E. From the definition of E, for each n
there exists an, bn such that an⊗ bn = uxynz. But since v had only blanks at the zeroth
position, an = a for all n ∈ N. Moreover, since π is injective, and for all i ̸= j, bi ̸= bj ,
we obtain that |C| ≥ ω, contradicting the finiteness of C.

The direct consequence of this is an upper bound on the size of an equivalence class
depending on the length of the shortest word representing an element that class.

Corollary 3.5.1. Let ⟨A,∼⟩ be an equivalence structure with an injective automatic
representation π over 0∗1∗ . . . (n− 1)∗. Then there exists a constant k such that for all
finite equivalence classes C ∈ A/ ∼:

|C| ≤
||C||+k∑
i=||C||

(
i+ n− 1

n− 1

)
,

where ||C|| = min{||c|| | c ∈ C}. In particular, for n = 1 we get that |C| ≤ k+1, and for

n = 2 we get |C| ≤ (k + 1) · ||C||+ (k+2)·(k+1)
2 .

Proof. Choose k according to the theorem 3.5. For each c, we know that the number
of words of length c is

(
c+n−1
n−1

)
. From the theorem 3.5 we know that we only can have

words of length from ||C|| to ||C||+ k, so we get that:

|C| ≤
||C||+k∑
i=||C||

(
i+ n− 1

n− 1

)
,

3.1 Unary equivalence structures

We have given the complete characterisation of this class in the theorem 2.12. Here
we will present an equivalent characterisation that mirrors the one we will give for
the equivalence structures over 0∗1∗, and which we will propose for the general case.
Intuitively if our equivalence structure has a representation over 0∗1∗ . . . (n − 1)∗, we
can represent “big enough” classes uniquely with a pair i ∈ N and polynomial p(x) of
degree (n− 1), i.e. in the unary case with constant polynomials.

Theorem 3.6. Let ⟨A,∼⟩ be an equivalence structure. Then the following statements
are equivalent:

i. ⟨A,∼⟩ has an injective automatic representation π over 0∗

ii. There exists a constant k such that for all finite equivalence classes C, |C| < k,
and there is only finite number of infinite equivalence classes.

iii. There is only a finite number of infinite equivalence classes and there exist a con-
stant s, and a finite index set I and for each i ∈ I, a number ci ∈ N such that
there exists a bijection f between I × N and all finite equivalence classes C with
|C| > s. Additionally, it holds that |f(i, n)| = ci.

19

Proof. Let ⟨A,∼⟩ be an equivalence structure with only finite number of infinite equiv-
alence classes. First we will show that ii implies iii, and then that iii implies ii.

Let k be such that all for all finite equivalence classes C, |C| < k. Then we can
choose s := k and I := ∅. Since there are no finite equivalence classes bigger than s,
the bijection between two empty sets satisfies iii.

For the other implication, assume that iii holds. If I is empty, we can choose
k := s+ 1. Otherwise choose k := max {ci | i ∈ I}+ 1.

3.2 Equivalence structures over 0∗1∗

To obtain the classification of equivalence relations over 0∗1∗, first we will show there
is some internal structure within equivalence classes in the lemma 3.9, and then we will
show that this structure is copied among different equivalence classes in the lemma 3.10.
From this we will create an enumeration of all equivalence classes, from which we can
effectively compute their sizes (corollary 3.10.1).

In this section, we will write (a, b) instead of 0a1b. Moreover, if we have ⟨A,∼⟩
with some fixed automatic representation π, we will write (a, b) ∼ (a′, b′) instead of
π((a, b)) ∼ π((a′, b′)).

First we will prove useful consequences of our pumping lemma. Note that for the
last four points we will be using the pumping argument twice, illustrated in the figure
8.

Figure 8: The intuition behind iii. from the theorem 3.7

In figure 9 you can see different visualisation of this theorem. To illustrate our argu-
ments, we will represent each word as a point on a two dimensional plane. The horizontal
axis corresponds to the number of zeros, the vertical axis corresponds to the number
of ones, and two points have the same colour if they are part of the same equivalence
class. The diagonal lines enclose the regions where points from the same class can be
(as limited by the theorem 3.5).

Theorem 3.7. Let ⟨A,∼⟩ be an equivalence structure with an injective automatic repre-
sentation π over 0∗1∗. Then there exist constants k,m such that for all (aL, bL), (aR, bR) ∈
π−1(A):

i. (aL, aR > k) ⇒ ((aL, bL) ∼ (aR, bR) ⇔ (aL +m, bL) ∼ (aR +m, bR))

ii. (aR − aL > k) ∧ (bL > k) ⇒ ((aL, bL) ∼ (aR, bR) ⇔ (aL, bL +m) ∼ (aR +m, bR))

iii. [(aR−aL > k)∧ (aL > k)∧ (bL > k)∧ (aL, bL) ∼ (aR, bR)] ⇒ ((aL+m, bL−m) ∼
(aR, bR))

iv. [(aR−aL > k)∧ (aL > k)∧ (bL > k)∧ (aL, bL) ∼ (aR, bR)] ⇒ ((aL−m, bL+m) ∼
(aR, bR))

20

(a) i. from the theorem 3.7 (b) ii. from the theorem 3.7

(c) iii. and iv. from the theorem 3.7 (d) v. and vi. from the theorem 3.7

Figure 9: The visualisation of the theorem 3.7

Moreover, for all finite equivalence classes C ∈ A/ ∼ with π((aL, bL)), π((aR, bR)) ∈
C:

v. [(aR − aL > k) ∧ (bL > k) ∧ (bR > k)] ⇒ ((aL, bL) ∼ (aR +m, bR −m))

vi. [(aR − aL > k) ∧ (bL > k) ∧ (bR > k)] ⇒ ((aL, bL) ∼ (aR −m, bR +m))

Proof. Since E := {(x, y)⊗ | π(x) ∼ π(y)} is a finite union of languages of some finite
rank, we will be able to use the theorem 3.4. Choose k,m according to the theorem 3.4,
and let (a, b), (a′, b′) ∈ π−1(A).

i. : This follows directly from the corollary 3.4.1.
ii. : Let’s assume that aR − aL > k and bL > k. Then for some v, v′:

(aL, bL)⊗ (aR, bR) =

[
0
0

]aL

·
[
1
0

]min(aR−aL,bL)

· v′ =
[
0
0

]aL

·
[
1
0

]k+1

· v

If we assume (aL, bL) ⊗ (aR, bR) ∈ E, then from the theorem 3.4 (choosing n = 2)
we get that:

21

[
0
0

]aL

·
[
1
0

]k+1+m

· v = (aL, bL +m)⊗ (aR +m, bR) ∈ E

which is equivalent to (aL, bL + m) ∼ (aR + m, bR). Similarly for (aL, bL + m) ∼
(aR+m, bR) we can choose n = 0 to get that (aL, bL)⊗(aR, bR) ∈ E, which is equivalent
to (aL, bL) ∼ (aR, bR).

iii. : Lets assume (aR − aL > k), (aL > k), and (bL > k). Then for some v, v′:

(aL, bL)⊗ (aR, bR) =

[
0
0

]aL

·
[
1
0

]min(aR−aL,bL)

· v′ =
[
0
0

]aL

·
[
1
0

]k+1

· v

Since aL > k, and k + 1 > k, we can use the theorem 3.4 (choosing first n = 2 and
then n = 0) to get that: [

0
0

]aL+m

·
[
1
0

]k+1−m

· v ∈ E,

which is equivalent to (aL +m, bL −m) ∼ (aR, bR).
iv. : Same proof as for iii., choosing first n = 0 and then n = 2.
Now let C ∈ A/ ∼ be finite equivalence class, and let C = π−1(C), and assume

(aL, bL), (aR, bR) ∈ C.
v. : Lets assume aR − aL > k, bL > k, and bR > k. We know that aR − aL ≤ bL,

otherwise aL + bL < aR + bR − k, thus by the theorem 3.5 C would be infinite. First
assume that aL + bL ≥ aR + bR. Then:

(aL, bL)⊗ (aR, bR) =

[
0
0

]aL

·
[
1
0

]aR−aL

·
[
1
1

]bR
·
[
1
□

]bL−bR−(aR−aL)

,

Since bR > k, we can use the theorem 3.4 (choosing n = 0) to get that:[
0
0

]aL

·
[
1
0

]aR−aL

·
[
1
1

]bR−m

·
[
1
□

]bL−bR−(aR−aL)

∈ E,

Moreover since aR − aL > k, we can use the theorem 3.4 (choosing n = 2) to get
that: [

0
0

]aL

·
[
1
0

]aR−aL+m

·
[
1
1

]bR−m

·
[
1
□

]bL−bR−(aR−aL)

∈ E,

which is equivalent to (aL, bL) ∼ (aR +m, bR −m).
Now assume that aL + bL < aR + bR. Then:

(aL, bL)⊗ (aR, bR) =

[
0
0

]aL

·
[
1
0

]aR−aL

·
[
1
1

]bL−(aR−aL)

·
[
□
1

]bR−bL+aR−aL

Since bR > k, we know that subword

[
1
1

]bL−(aR−aL)

·
[
□
1

]bR−bL+aR−aL

is longer

than k. From the theorem 3.4, we know that we can apply it on either

[
1
1

]bL−(aR−aL)

or

[
□
1

]bR−bL+aR−aL

. If we applied it on the latter, we would obtain that (aL, bL) ∼

(aR, bL + km) for all k ∈ N, contradicting the finiteness of C. Therefore we know that
we can apply it on the former; choosing n = 0 we get:

22

[
0
0

]aL

·
[
1
0

]aR−aL

·
[
1
1

]bL−(aR−aL)−m

·
[
□
1

]bR−bL+aR−aL

∈ E

Also we can again use the theorem 3.4 (choosing n = 2) to get that[
0
0

]aL

·
[
1
0

]aR−aL+m

·
[
1
1

]bL−(aR−aL)−m

·
[
□
1

]bR−bL+aR−aL

∈ E,

which is equivalent to (aL, bL) ∼ (aR +m, bR −m), proving v.
vi. : Almost the same proof as for v., first choosing n = 2 and then choosing n =

0.

The first two points of the previous theorem intuitively tell us there is some repeating
structure between different equivalence classes. The rest of the points on the other hand
show that there is some repeating structure within an equivalence class.

To be able to more easily argue in the rest of the proofs, we will prove that if
the equivalence class is “big enough”, for each point in some bounds there is an element of
that equivalence class that is closer than some constant. This is illustrated in the figure
10. Note that the diagonal lines correspond to ||C|| and ||C|| + k, the vertical and
horizontal line correspond to k number of zeros and ones, and the blue vertical lines
correspond to the intervals i±m.

Figure 10: The intuition behind the lemma 3.8

Lemma 3.8. Let ⟨A,∼⟩ be an equivalence structure with an injective automatic repre-
sentation π over 0∗1∗. Then there exist constants k,m such that for all finite equivalence
classes C ∈ A/ ∼ with |C| > 4(k + 1)2:

∀i ∈ N.(k+m < i < ||C||−k−m) ⇒ (∃(a, b) ∈ π−1(C).|i−a| < m∧ (k < a < ||C||−k)).

Proof. Choose k,m according to the theorem 3.7. Let C be a finite equivalence class
bigger than 4(k+1)2. From the theorem 3.5 we know that there are at least 4(k+1)2−
2(k + 1)2 = 2(k + 1)2 elements of π−1(C) such that they have more than k zeros and k
ones. Lets denote this subset C′.

23

Let I be set of indices i, such that k + m < i < ||C|| − k − m and there is no
(a, b) ∈ C′ such that |i− a| < m, and assume that I is nonempty. Let iL := min(I), and
iR := max(I).

If iL = k+m+1, there are no (a′, b′) ∈ C′ with a < iL. Lets take (aL, bL) ∈ C′ such
that for all other elements of (a′, b′) ∈ C′ holds that aL ≤ a′ and aL = a′ ⇒ bL ≥ b′.
Since for each a ∈ N, there are at most k + 1 elements from C′ that have a zeros,
there must exist (aR, bR) ∈ C′ such that aR − aL > k. From definition of C′ we know
that bL > k. Moreover, since aL > iL, we know that aL > k. Now we can use iv.
from the theorem 3.7 to get that (aL −m, bL +m) ∈ C′, obtaining the contradiction to
the minimality of (aL, bL).

Similarly, if iR = ||C|| − k −m− 1, we can take (aR, bR) ∈ C′ such that for all other
elements of (a′, b′) ∈ C′ holds that aR ≥ a′ and aR = a′ ⇒ bR ≥ b′, and get that there
must exist (aL, bL) ∈ C′ such that aR − aL > k, bL > k, and bR > k. Now we can use v.
from the theorem 3.7 to get that (aR +m, bR −m) ∈ C′, obtaining the contradiction to
the maximality of (aR, bR).

Now assume that iL ̸= k +m + 1 and iR ̸= ||C|| − k −m − 1. Let EL = {(a′, b′) ∈
C′ | iL − m > a′ > k}. Similarly let ER = {(a′, b′) ∈ C′ | iL + m < a′ < k}. Note
that EL ∪ ER = C′. From iL ̸= k + m + 1 we get there exists (a′, b′) ∈ C′ with
iL −m > a′ > k, so EL is not empty. Similarly from iR ̸= ||C|| − k −m− 1 we get that
there exists (a′, b′) ∈ C′ with iL +m ≤ iR +m < a′ < k, so ER is also not empty. Since
|C′| = 2(k + 1)2, either EL or ER has to have at least (k + 1)2 elements.

First, lets assume that |EL| ≥ (k + 1)2, and take (aR, bR) ∈ ER such that for all
(a′, b′) ∈ ER, aR ≤ a′ ∧ (aR = a′ ⇒ bR ≥ b′). Since |EL| ≥ k2, there must exist
(aL, bL) ∈ EL such that iL − aL > k, thus aR − aL > k. From definition of ER we also
know that bR > k, and with iv. from the theorem 3.7 we get that (aR−m, bR+m) ∈ C′.
Since (aR, bR) is minimal, (aR −m, bR +m) ̸∈ ER. But (aR −m, bR +m) cannot be
an element of EL, since for all (a′, b′) ∈ EL, a

′ < iL −m, and with aR > iL +m we get
that a′ < aR − 2m, obtaining a contradiction.

Finally, lets assume that |ER| ≥ (k + 1)2, and take (aL, bL) ∈ EL such that for all
(a′, b′) ∈ EL, aL ≥ a′ and aL = a′ ⇒ bL ≥ b′. Similarly as in the previous paragraph
we can get (aR, bR) ∈ ER such that aR − iL > k, thus aR − aL > k. From the definition
of EL we also know that bL > k, and with iv. from the theorem 3.7 we get that
(aL + m, bL − m) ∈ C ′. Since (aL, bL) is maximal, (aL + m, bL − m) ̸∈ EL. But
(aL +m, bL −m) cannot be an element of ER, since for all (a′, b′) ∈ ER, a

′ > iL +m,
and with aL < iL −m we get that a′ > aL + 2m, obtaining a contradiction.

We have discussed all the cases and obtaining contradictions in each of them, there-
fore I has to be an empty set, proving our theorem.

The two corollaries of this are lower and upper bounds on |C| given by terms of ||C||,
and vice versa.

Corollary 3.8.1. Let ⟨A,∼⟩ be an equivalence structure with an injective automatic
representation π over 0∗1∗. Then there exist constants k,m such that for all finite
equivalence classes C ∈ A/ ∼ with |C| > 4(k + 1)2:

||C|| − 2k − 1

2m
≤ |C| ≤ (k + 1) · ||C||+ (k + 2) · (k + 1)

2

Proof. Choose k,m according to the lemma 3.8. From the lemma 3.8 we get that there

have to be at least ||C||−2k−1
2m elements, and from the corollary 3.5.1 we get the upper

bound.

24

Corollary 3.8.2. Let ⟨A,∼⟩ be an equivalence structure with an injective automatic
representation π over 0∗1∗. Then there exist constants k,m such that for all finite
equivalence classes C ∈ A/ ∼ with |C| > 4(k + 1)2:

|C|
k + 1

− k

2
− 1 ≤ ||C|| ≤ 2m|C|+ 2k + 1

Proof. Trivial consequence of 3.8.1.

Now we will show that “big enough” classes have some internal structure. The struc-
ture is given as solutions to a finite number of equations of the following structure (for
a fixed m):

x0, x1 > k

x0 + x1 = s

x0 ≡m c

You can see the visual intuition of this lemma in the figure 11.

Figure 11: The intuition behind the lemma 3.9

Lemma 3.9. Let ⟨A,∼⟩ be an equivalence structure without infinite classes. Then there
exist constants k,m such that for all C ∈ A/ ∼ with |C| > 13(k + 1)2, there exist sets of
constants P0, . . . , Pk ⊆ {0, . . . ,m− 1} such that:

∀(a, b) ∈ N2.∀i ∈ {0, . . . , k}.((a > k ∧ b > k ∧ a+ b = ||C||+ i)

⇒ ((∃p ∈ Pi.a ≡m p) ⇔ (a, b) ∈ π−1(C)))

Proof. Choose k,m according to the lemma 3.8, from the theorem 3.8.2 (and thatm ≤ k,
k ≥ 1) we get that:

4m+ 5k + 2 ≤ 12k − 1 =
13(k + 1)k

k + 1
− k − 1 ≤ 13(k + 1)2

k + 1
− k

2
− 1 ≤ ||C||.

Let C be an equivalence class satisfying the assumptions, let i ∈ {0, . . . , k} and let
C ′

i := {(a, b) ∈ π−1(C) | a > k ∧ b > k ∧ a + b = ||C|| + i}. Lets choose Pi := {a′

25

mod m | (a′, b′) ∈ C ′
i}. It is trivial that for all (a, b) ∈ C ′

i there exists according p ∈ Pi.
Note that Pi is empty if and only if C ′

i is empty.
First, if Pi is empty, C ′

i is empty, and the conclusion of our implication trivially
holds.

Now let p ∈ Pi, and let Cp := {(a, b) ∈ C ′
i | a ≡m p} and Rp := {(a, b) ∈ N2 | a >

k ∧ b > k ∧ a+ b = ||C||+ i∧ a ≡m p} \Cp. In the rest of the proof we will assume that
any aX , bX will be greater than k since our lemma only argues about elements with this
property. To obtain contradiction, assume that Rp is not empty. We know that there
must exists (aE , bE) ∈ Rp such that there exists (aC , bC) ∈ Cp with |aC − aE | = m
(otherwise Cp would be empty).

First assume that aE + m = aC . If aC ≤ bC , choose (aR, bR) ∈ C ′
i such that

aR > ||C|| − k − 2m (existence of such element is guaranteed by the lemma 3.8). Since

aR − aC > k (from aR − aC ≥ aR − ||C||+i+1
2 > ||C||−i−1

2 − k − 2m ≥ ||C||−k−1
2 −

k − 2m > 2m + 2k − k − 2m = k), we can use iv. from the theorem 3.7 to get that
(aC −m, bC +m) = (aE , bE) ∈ C ′

i, therefore (aE , bE) ∈ Cp obtaining contradiction.
If aC > bC , choose (aL, bL) ∈ C ′

i such that aL < k+2m (existence of such element is
guaranteed by the lemma 3.8). Since aC − aL > k (from similar counting argument as
in previous case), we can use vi. from the theorem 3.7 to get that (aC −m, bC +m) =
(aE , bE) ∈ C ′

i, therefore (aE , bE) ∈ Cp obtaining contradiction.
Now assume that aE − m = aC . If aC ≤ bC , choose (aR, bR) ∈ C ′

i such that
aR > ||C|| − k − 2m (existence of such element is guaranteed by the lemma 3.8). Since
aR−aC > k (again from the same counting argument), we can use iii. from the theorem
3.7 to get that (aC + m, bC − m) = (aE , bE) ∈ C ′

i, therefore (aE , bE) ∈ Cp obtaining
contradiction.

Finally, if aC > bC , choose (aL, bL) ∈ C ′
i such that aL < k + 2m (existence of such

element is guaranteed by the lemma 3.8). Since aC − aL > k (from similar counting
argument as in previous case), we can use v. from the theorem 3.7 to get that (aC +
m, bC −m) = (aE , bE) ∈ C ′

i, therefore (aE , bE) ∈ Cp obtaining a contradiction.
We have discussed all possibilities, obtaining contradictions, therefore Rp has to be

empty, proving our lemma.

A simple consequence of this lemma is that if two classes have two elements with
the same length and same residual after dividing the first component by m, these two
classes are the same.

Corollary 3.9.1. Let ⟨A,∼⟩ be an equivalence structure without infinite classes. Then
there exist constants k,m such that for all C, C′ ∈ A/ ∼ with |C| > 13(k + 1)2 and C′ of
arbitrary size:

[∃(a, b) ∈ π−1(C), (a′, b′) ∈ π−1(C′).(a, a′, b, b′ > k ∧ a+ b = a′ + b′ ∧ a ≡m a′)] ⇒ C = C′

Proof. From the lemma 3.9 we get that (a, b) ∼ (a′b′), by transitivity we get C = C′.

For a given class C and i ∈ {0, . . . , k}, we will denote the set of constants from
the lemma 3.9 by PC,i and we will set P C := (PC,0, PC,1, . . . , PC,k). For a given class C,
let CM := {(a, b) ∈ C | a > k ∧ b > k}. For a given length l, we will denote the set of all
classes C with ||CM || = l by Cl.

Now we will show there is a unique correspondence between equivalence classes
according to their sets PC,i and length ||CM || of the shortest element with a, b > k.
You can see the visual intuition of this lemma in the figure 12.

Lemma 3.10. Let ⟨A,∼⟩ be an equivalence structure without infinite classes. Then
there exist constants k,m such that for all i ∈ N, and all P ∈ P({0, . . . ,m− 1})k+1:

26

Figure 12: The intuition behind the lemma 3.10

(∃C ∈ Ci.|C| > 13(k + 1)2 ∧ P C = P) ⇒ ∃C′ ∈ Ci+m.P C′ = P (1)

and

(∃C′ ∈ Ci+m.|C′| > 13(k + 1)2 ∧ P C′ = P) ⇒ ∃C ∈ Ci.P C = P (2)

Proof. Choose k,m according to the lemma 3.9, let i ∈ N, and let Pl ⊆ {0, . . . ,m− 1}.
First we will prove (1). Let’s assume that there exists C ∈ Ci with |C| > 13(k+ 1)2 and
PC,l = Pl for each l. Fix some l, and for each p ∈ Pl, choose (m ·ap+p, bp) ∈ C such that
k < m ·ap+p < k+2m and m ·ap+p, bp = i+ l, and (ac, bc) ∈ C such that k+2m < ac
(we know these exist, because |C| > 2k + 4m). For each p ∈ P , we can use i. from
the theorem 3.7 to get that (m · ap + p+m, bp) = (m · (ap + 1) + p, bp) ∼ (ac +m, bc).
Lets call this equivalence class C′.

If C′ ∈ Cj for some j < i + m, there would exist an element (aX , bX) ∈ C′ with
aX + bX = j and aX > k, bX > k. By the lemma 3.9 we can then find (a′X , b

′
X) ∈ C′

with a′X +b′X = j and a′X > k+m, b′X > k+m (and with aX ≡m a′X). Then we can find
an element (aY , bY) ∈ C′ such that aY > k+m and (aY −m, bY) ∈ C. Then we can use
i. from the theorem 3.7 to get that (a′X −m, b′X) ∈ C. Since a′X −m+ b′X = j −m < i,
and a′X −m > k, b′X > k, this would mean that C ̸∈ Ci, getting contradiction. Moreover,
since C ∈ Ci, PC,i is not empty and therefore there exists (a, b) ∈ C′ with a+ b = i+m,
obtaining that C′ ∈ Ci+m.

Now with the lemma 3.9 we can see that PC,l ⊆ PC′,l for all l.
Now let p′ ∈ PC′,l for some l. There exist (m · a′ + p′, b′) ∈ C′ such that k +m <

m · a′ + p′ < k + 2m. Since (m · a′ + p′, b′) ∼ (ac + m, bc), we can again use i. from
the theorem 3.7 to get that (m · a′ + p′ −m, b′) = (m · (a′p − 1) + p) ∼ (ac, bc). With
the lemma 3.9 we get that PC′,l ⊆ PC,l, obtaining PC′,l = PC,l for all l.

The proof for (2) is the same, because of the size we can always find elements
(a, b) ∈ C′ with a > k +m, b > k +m for any given length and residual class.

From the corollary 3.9.1 we know that the corresponding C′ is unique. We will denote
it by α(C). Also for every “big enough” C′, there is exactly one C such that α(C) = C′.

The last thing we need is a relation between |C| and |α(C)|. We can easily show that
|C \ CM | = |α(C) \ α(C)M |, so we will only have to determine the size of α(C)M . This
will be achieved by a simple combinatorial calculation.

27

Corollary 3.10.1. Let ⟨A,∼⟩ be an equivalence structure without infinite classes. Then
there exist constants k,m such that for all C ∈ A/ ∼ with |C| > 13(k + 1)2:

∀n ∈ N.|αn(C)| = |C|+ n ·
k∑

j=0

|PC,j |

Proof. For any equivalence class C, we will use CR,j = {(a, b) ∈ C | a ≥ ||C||−k∧a+ b =
||C|| + j}, CL,j = {(a, b) ∈ C | a ≤ k ∧ a + b = ||C|| + j}, and CM,j = C{(a, b) ∈ C | k <
a < ||C|| − k ∧ a+ b = ||C||+ j}. Note that C =

⋃k
j=0 CR,j ∪ CM,j ∪ CL,j .

Choose k,m according to the lemma 3.9, let C ∈ Ci with |C| > 13(k + 1)2, let j ∈
{0, . . . , k}, and let n ∈ N. From the lemma 3.8 we know there exist (aL, bL), (aR, bR) ∈
CM,j such that aL < k+ 2m and aR > ||C|| − k− 2m. For every (a′, b′) ∈ CL,j we apply
ii. from the theorem 3.7 with (aR, bR) n times to get that (a′, b′) ∼ (aR, bR) ⇔ (a′, b′ +
nm) ∼ (aR + nm, bR), obtaining |CL,j | = |α(C)L,j |. Similarly for every (a′, b′) ∈ CR,j

we use ii. from the theorem 3.7 with (aL, bL) n times to get that (a′, b′) ∼ (aL, bL) ⇔
(a′ + nm, b′) ∼ (aL, bL + nm), obtaining |CR,j | = |α(C)R,j |.

Last, we can use i. from the theorem 3.7 to get that for every (a′, b′) ∈ CM,j ,
(a′+nm, b′+nm) ∼ (aR+nm, bR+nm), so we get that |αn(C)M,j | = |CM,j |+ |{(a, b) ∈
αn(C)M,j | a ≤ k +mn}|

Since PC,j = Pαn(C),j , and since we know that for every p ∈ PC,j there are n elements
from {(a, b) ∈ αn(C)M,j | a ≤ k+mn} with a ≡m p, we get that |{(a, b) ∈ αn(C)M,j | a ≤
k +mn}| = n · |PC,j |.

With this, we get that for each j, |αn(C)R,j ∪ αn(C)M,j ∪ αn(C)L,j | = |CR,j ∪ CM,j ∪
CL,j |+ n · |PC,j |. By summing these we get that:

|αn(C)| = |C|+ n ·
k∑

j=0

|PC,j |

Finally, we have all the tools necessary to prove the classification theorem.

Theorem 3.11 (The classification of equivalence structures over 0∗1∗). Let ⟨A,∼⟩ be
an equivalence structure. Then the following statements are equivalent:

i. ⟨A,∼⟩ has an injective automatic representation π over 0∗1∗

ii. There exist a constant s, and a finite index set I and for each i ∈ I, a pair (ci, pi) ∈
N2 such that there exists bijection f between I×N and all finite equivalence classes
C with |C| > s. Additionally, it holds that |f(i, n)| = ci + n · pi.

Proof. Let ⟨A,∼⟩ be an equivalence structure. First we will prove “⇒”. Assume that
⟨A,∼⟩ has an injective automatic representation π over 0∗1∗. By the theorem 3.1 there
exist ⟨Afin,∼fin⟩ and ⟨Ainf ,∼inf⟩ with injective automatic presentations πfin, πinf over
Σ∗ such that ⟨Afin,∼fin⟩ ∪ ⟨Ainf ,∼inf⟩ ∼= ⟨A,∼⟩ and such that ⟨Afin,∼fin⟩ has only finite
equivalence classes, and ⟨Ainf ,∼inf⟩ has only infinite equivalence classes. From now we
will only consider ⟨A′,∼′⟩ := ⟨Afin,∼fin⟩.

Let k,m be constants from the previous theorems for ⟨A′,∼′⟩, choose s := 13(k+1)2,
and let C := {C ∈ A′/ ∼′ | |C| > 13(k + 1)2}. Now let B := C \ α(C). In the lemma
3.10 we have shown that for every C ∈ C, there exists C′ ∈ A′/ ∼′ such that C = α(C′).
With the fact that if C ∈ Ci then α(C) ∈ Ci+m for some fixed m, we get that B is finite.
Moreover we have shown that α is injective, therefore function f : B× N → C given by
f(B, n) := αn(B) is a bijection.

28

For each B ∈ B, let pB :=
∑k

j=0 |PB,j | and cb := |B|. From the corollary 3.10.1 we

get that |f(B, n)| = |αn(B)| = |B| + n ·
∑k

j=0 |PB,j | = cb + n · pb, which we wanted to
show.

For “⇐”, we will first decompose ⟨A,∼⟩ into ⟨Afin,∼fin⟩ ∪ ⟨Ainf ,∼inf⟩, where Afin

contains all the finite equivalence classes, and Ainf contains all the infinite classes.
If Ainf = ∅, then ⟨Afin,∼fin⟩ ∼= ⟨A,∼⟩. If |Ainf/ ∼inf | = n ∈ N then ⟨Ainf ,∼inf

⟩ ∼= ⟨N,≡n⟩, which has automatic representation over 0∗1∗ by the example (b) from
the section 2.4. If |Ainf/ ∼inf | = ω, then ⟨Ainf ,∼inf⟩ is isomorphic to the structure from
the example (c) in the section 2.5, therefore has automatic representation over 0∗1∗.

Let s ∈ N. Now we will decompose ⟨Afin,∼fin⟩ into ⟨Aconst,∼const⟩ ∪ ⟨A′,∼′⟩, where
⟨Aconst,∼const⟩ contains all the equivalence classes smaller or equal to s. From the the-
orem 2.12 we know that ⟨Aconst,∼const⟩ has automatic representation over 0∗, therefore
it has automatic representation over 0∗1∗.

Now let I be finite, and for each i ∈ I let (ci, pi) ∈ N2. Finally let f be a bijection
between I ×N and all finite equivalence classes C with |C| > s with |f(i, n)| = ci+n · pi.
We will decompose ⟨A′,∼′⟩ =

⋃
i∈I⟨Ai,∼i⟩, where ⟨Ai,∼i⟩ contains only classes in

im(f(i,−)). Let i ∈ I, we will construct an equivalence relation ⟨Bi,≡i⟩ such that
⟨Ai,∼i⟩ ∼= ⟨Bi,≡i⟩.

Since all equivalence classes have size bigger than some s, c > 0. Now let Bn :=
{(a, b) ∈ N2 | a+ b = n ·pi+ ci− 1} for all n ∈ N. It is easy to see that |Bn| = n ·pi+ ci,
and consider Bi =

⋃
n∈NBn, and (a, b) ≡i (a

′, b′) := a+ b = a′ + b′. We will show that

πi(0
a1b) := (a, b) is automatic presentation:

• π is trivially surjective

• D := dom(π) = {0a1b | ∃n ∈ N0.a+ b = n · pi + ci − 1} = {0a1b | a+ b ≡pi
ci − 1},

which is easy to see that it is regular.

• π is injective, therefore {(x, y)⊗ | π(x) = π(y)} is trivially regular

• {(x, y)⊗ | π(x) ≡ π(y)} = {(x, y)⊗ | π(x) ≡i π(y)} = {(x, y)⊗ | x, y ∈ D, |x| = |y|},
therefore it is trivially regular since D is regular.

Since ⟨A,∼⟩ = ⟨Ainf ,∼inf⟩ ∪ ⟨Aconst,∼const⟩ ∪
⋃

i∈I⟨Bi,≡i⟩, and I is finite, from
the theorem 2.19 we get that there also exists automatic presentation over 0∗1∗ for
⟨A,∼⟩, which we wanted to show.

3.3 Notes on the general case

We think our approach could be used to solve the general case. First we will define
a class of functions we assume would arise in the proof of the general case. We will give
the explanation of our intuition in the next section.

For every M,m > 0, let FM,m : N → N given by:

FM,m(x) =

{(x
M +m
m

)
if M | x and x

M ≥ m

0 else

Let F := {FM,m | M,m > 0} and let P be a closure of F under addition of functions
and under substitution of x by x− n for all n ∈ N.

We would like to prove the following conjecture:

Conjecture 3.12. Let ⟨A,∼⟩ be an equivalence structure. Then the following state-
ments are equivalent:

29

i. ⟨A,∼⟩ is poly-growth automatic

ii. There exist a constant s, and a finite index set I and for each i ∈ I, a function
pi ∈ P such that there exists bijection f between I × N and all finite equivalence
classes C with |C| > s. Additionally, it holds that |f(i, n)| = pi(n).

We will discuss how the proof for the 0∗1∗ case can be modified to prove the general
case, and then we will discuss that ii implies i.

3.3.1 Modification of the proof

Let ⟨A,∼⟩ be an automatic equivalence structure over 0∗1∗ . . . (n− 1)∗ with only finite
equivalence classes. We have shown in the theorem 3.5 that all equivalence classes lie in
k consecutive layers, where each layer corresponds to the elements of the same length.
Each of these layers (if the length is “big enough”) can be decomposed into 2m distinct
regions Rφ, where φ(a) :=

∧
ψi(ai) and ψi(x) ∈ {x > k, x ≤ k}.

If we are able to find pumping arguments similar to the theorem 3.7, then if a region
Rφ has “enough elements” from the same class C, we can show that the elements of C are
distributed over the region (similar to 3.8). Then we are able to show that an element
a ∈ Rφ is in C if and only if it is a solution to one of the following systems of equations
(similar to 3.9):

l∑
i=0

xi = s

x0 ≡m c0

x1 ≡m c1

...

xl−1 ≡m cl−1

This equation has an equivalent number of solutions as the following one (for some
K):

l∑
i=0

xi =
s−K

m

The number of solutions of this equation is
(s−K

m +l
l

)
.

Finally to finish the proof for the general case, we have to find a similar correspon-
dence α of “big enough” equivalence classes (similar to the corollary 3.10.1), which would
finish our proof.

3.3.2 Equivalence structures definable by “combinatorial polynomials”

We give a sketch of the proof of the easy direction of the conjecture 3.12. First, we
will show that for each p ∈ P, there exists a poly-growth structure ⟨Ap,∼p⟩ such that
sizes of the equivalence class Ci is equal to p(i) for i ∈ N. Then we will show that
if an automatic structure ⟨A,∼⟩ fulfills ii from the conjecture 3.12, it is isomorphic to
a union of structures ⟨Aconst,∼const⟩ (where all equivalence classes have size smaller than
some constant), ⟨Ainf ,∼inf⟩ (where all equivalence classes are infinite), and ⟨Ap,∼p⟩ for
finitely many p ∈ P.

30

Definition 3.13. Let f : N → N. A canonical structure of f is the structure ⟨Af ,∼f ⟩
such that if there exists an enumeration of Af/ ∼f ∪{∅} such that |Ci| = f(i) for all
i ∈ N, and for i ̸= j, Ci = Cj implies Ci = ∅.

Note that the canonical structure is not unique, but it is unique up to isomorphism.
Clearly, if ⟨Ap,∼p⟩ is poly-growth automatic, then if we obtain ⟨A,∼⟩ from ⟨Ap,∼p⟩

by adding or removing equivalence classes smaller than some constant s, ⟨A,∼⟩ will
again be poly-growth automatic. This implies that if we prove that for all p ∈ P their
canonical structure ⟨Ap,∼p⟩ is poly-growth automatic, we will prove that ii implies i
from the conjecture 3.12.

Now we will show that for all p ∈ P, ⟨Ap,∼p⟩ is poly-growth automatic. First we
will show this for the base case p ∈ F, then for the closure under the substitution of x
by x− n, and last for the closure under the addition of functions.

Lemma 3.14. Let m,M > 0, and let F : N → N given by:

F (x) =

{(x
M +m−1
m−1

)
if M | x

0 if M ∤ x

Then there exists an automatic canonical structure ⟨AF ,∼F ⟩ with AF ⊆ 0∗ . . . (m−
1)∗ such that ∼F is realised as a restriction of =len, and for the enumeration from
the definition 3.13 it holds that elements from Ci have length i.

Sketch of proof: Choose ⟨(0M)∗(1M)∗ . . . ((m− 1)M)∗,=len⟩

Lemma 3.15. Let n > 0, f : N → N with automatic canonical structure ⟨Af ,=len⟩ of
F , where Af ⊆ 0∗1∗ . . . (m − 1)∗ for some m, and assume there exists c ∈ N such that
for the canonical enumeration holds that elements of Ci have length i+ c.

Then there exists an automatic canonical structure ⟨Af(x−n),∼⟩ of f(x − n) with
Af(x−n) ⊆ 0∗ . . . (m − 1)∗ such that ∼ is realised as a restriction of =len, and for
the enumeration from the definition 3.13 it holds that elements from Ci have length
i+ c.

Sketch of proof: Choose ⟨0n ·A,=len⟩.

Lemma 3.16. Let f : N → N, g : N → N with automatic canonical structures ⟨Af ,=len

⟩, ⟨Ag,=len⟩, where Af , Ag ⊆ 0∗1∗ . . . (m − 1)∗ for some m, and assume there exists
cf , cg ∈ N such that for the canonical enumerations holds that elements of Ci ∈ Af/len
have length i+ cf , and elements of Ci ∈ Af/len have length i+ cg.

Then there exists an automatic canonical structure ⟨A,∼⟩ of f(x) + g(x) with A ⊆
0∗ . . . (m − 1)∗ such that ∼ is realised as a restriction of =len, and there exists c such
that for the enumeration from the definition 3.13 it holds that elements from Ci have
length i+ c.

Sketch of proof: Let φ : 0∗1∗ . . . (m− 1)∗ → 0∗1∗ . . . (m+1)∗ be a homomorphism given
by φ(x) = x + 2, and A′

f = φ(Af), A
′
g = φ(Ag). Without loss of generality assume

cf ≥ cg and let c′ = cf − cg. Then choose ⟨00 ·A′
f + 011c

′ ·A′
g,=len⟩.

Corollary 3.16.1. For every p ∈ P there exist a poly-growth automatic structure ⟨A,∼⟩,
and an enumeration of equivalence classes Ci of A such that p(n) = |Cn| for all n ∈ N.

Corollary 3.16.2. Let ⟨A,∼⟩ be an equivalence structure. If there exist a constant
s, and a finite index set I and for each i ∈ I, a function pi ∈ P such that there
exists bijection f between I × N and all finite equivalence classes C with |C| > s with
|f(i, n)| = pi(n), then ⟨A,∼⟩ is poly-growth automatic.

31

Sketch of proof: First we will decompose ⟨A,∼⟩ into ⟨Ainf ,∼inf⟩ ∪ ⟨Aconst,∼const⟩ ∪⋃
i∈I⟨Api

,∼pi
⟩, where:

• ⟨Aconst,∼const⟩ contains all the equivalence classes with size smaller or equal to s

• ⟨Ainf ,∼inf⟩ contains all the equivalence classes with infinite size

• ⟨Api
,∼pi

⟩ contains the equivalence classes from the image of f(i,−)

From the proof of the theorem 3.11 we know that ⟨Aconst,∼const⟩ and ⟨Ainf ,∼inf⟩
are poly-growth automatic. From the previous corollary we get that for all pi there
exists according poly-growth automatic structure that is isomorphic to ⟨Api ,∼pi⟩. Since
poly-growth automatic structures are closed under finite unions, ⟨A,∼⟩ is poly-growth
automatic.

32

4 Conclusion

We have defined the notion of automatic structures, unary automatic structures and
automatic structures with polynomial growth. We have defined multi-dimensional in-
terpretations, and used this to give an equivalent definition of automatic structures,
unary automatic structures and automatic structures with polynomial growth. We have
presented known results about automatic structures with polynomial growth, the most
important one stating that structure is poly-growth automatic if and only if it has
an automatic presentation over a∗0a

∗
1 . . . a

∗
n−1 for some n and ai’s.

We have shown that automatic structures with a presentation over a∗0a
∗
1 . . . a

∗
n−1 for

some fixed n are closed under finite unions. We have then presented the lemmas nec-
essary to prove the complete classification of equivalence structures with an automatic
presentation over 0∗1∗.

Lastly we have presented a possible generalisation of our proof to obtain the complete
classification of equivalence structures with an automatic presentation over 0∗1∗ . . . (n−
1)∗ for arbitrary n, therefore a complete classification of poly-growth automatic equiv-
alence structures.

33

References

[Bár07] Vince Bárány. “Automatic presentations of infinite structures”. PhD thesis.
RWTH Aachen University, Germany, 2007.

[BE92] David Bernard and Alper Epstein. Word processing in groups. Jones and
Bartlett Publishers, 1992.

[BG00] Achim Blumensath and Erich Grädel. “Automatic Structures”. In: 15th An-
nual IEEE Symposium on Logic in Computer Science, Santa Barbara, Cali-
fornia, USA, June 26-29, 2000. IEEE Computer Society, 2000, pp. 51–62.

[Blua] Achim Blumensath. personal communication.

[Blub] Achim Blumensath. Monadic Second-Order Model Theory. Accessed: 2023-
11-21. url: https://www.fi.muni.cz/~blumens/MSO2.pdf.

[Blu99] Achim Blumensath. Automatic structures. Diploma thesis. 1999.

[CL07] Thomas Colcombet and Christof Löding. “Transforming structures by set
interpretations”. In: Log. Methods Comput. Sci. 3.2 (2007).

[GK20] Moses Ganardi and Bakhadyr Khoussainov. “Automatic Equivalence Struc-
tures of Polynomial Growth”. In: 28th EACSL Annual Conference on Com-
puter Science Logic, CSL 2020, January 13-16, 2020, Barcelona, Spain. Ed.
by Maribel Fernández and Anca Muscholl. Vol. 152. LIPIcs. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2020, 21:1–21:16.

[Hod76] B. R. Hodgson. “Théories décidables par automate fini”. PhD thesis. Univer-
sité de Montréal, 1976.

[Hus16] Martin Huschenbett. “The model-theoretic complexity of automatic linear
orders”. PhD thesis. Technische Universität Ilmenau, Germany, 2016.

[KN94] Bakhadyr Khoussainov and Anil Nerode. “Automatic Presentations of Struc-
tures”. In: Logical and Computational Complexity. Selected Papers. Logic and
Computational Complexity, International Workshop LCC ’94, Indianapolis,
Indiana, USA, 13-16 October 1994. Ed. by Daniel Leivant. Vol. 960. Lecture
Notes in Computer Science. Springer, 1994, pp. 367–392.

[KR99] Bakhadyr Khoussainov and S. Rubin. “Finite Automata and Isomorphism
Types”. unpublished. 1999.

[Szi+92] Andrew Szilard et al. “Characterizing Regular Languages with Polynomial
Densities”. In: Mathematical Foundations of Computer Science 1992, 17th
International Symposium, MFCS’92, Prague, Czechoslovakia, August 24-28,
1992, Proceedings. Ed. by Ivan M. Havel and Václav Koubek. Vol. 629. Lecture
Notes in Computer Science. Springer, 1992, pp. 494–503.

[Tsa11] Todor Tsankov. “The additive group of the rationals does not have an auto-
matic presentation”. In: J. Symb. Log. 76.4 (2011), pp. 1341–1351.

34

https://www.fi.muni.cz/~blumens/MSO2.pdf

	Introduction
	Preliminaries
	Convolution
	Automatic structures
	Interpretations
	Unary automatic structures
	Automatic structures with polynomial growth
	Known classifications

	Equivalence structures
	Separation of equivalence structures
	Pumping arguments

	Unary equivalence structures
	Equivalence structures over 0*1*
	Notes on the general case
	Modification of the proof
	Equivalence structures definable by “combinatorial polynomials”

	Conclusion

