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Abstract

We describe an algebraic framework for languages of infinite forests
using Eilenberg-Moore algebras of a monad. We describe the class of
regular algebras, which as recognisers correspond to regular forest lan-
guages, prove the existence of regular syntactic algebras for regular
languages and show that this class forms a pseudovariety, suggesting
existence of an equational characterisation. We also prove a special
case of a characterisation of regular languages definable in the logic
EF, and give a counterexample to the full characterisation.
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1 Introduction

Historically, algebraic methods have had valuable applications in the
theory of formal languages. First defined in the setting of languages of
finite words, one of the central notions in this field is that of the syntac-
tic monoid of a language 𝐿, originally given by Schützenberger. In the
original setting, the algebraic notion of recognisability was proven to
correspond with recognisability by automata in the sense that a lan-
guage of finite words is regular (recognised by a finite automaton) if
and only if its syntactic monoid is finite. Subsequently, applying alge-
braic methods, such as study of pseudovarieties and their equational
characterisations, yielded useful connections between classes of regu-
lar languages and equational classes of finite monoids, a well-known
example being Schützenberger’s decidable characterisation of first-
order definable languages as those with aperiodic syntactic monoids.

The success of this algebraic approach to language theory natu-
rally led to considerations of objects other than finite words. For more
complicated structures, however, especially for those which are in
some way infinite, even the correct notion of what the corresponding
algebraic structure should be becomes less clear. Specifically, in case
of infinite trees, previous work include that of Blumensath (2011) for
infinite trees proper, Idziaszek et al. (2016) for thin trees, Bojańczyk
and Place (2012) using a topological approach and Bojańczyk and
Idziaszek (2009) for infinite forests, where, however, only so-called
regular forests, i.e. forests with only finitely many nonisomorphic sub-
trees, were considered.

A possible solution to the problem of organizing together all the
operations and identities of the desired algebraic structures has been
found in category theory, specifically in the notion of an Eilenberg-
Moore algebra. These algebras form a general abstract framework for
description of “well-behaved” algebraic structures and posses a well-
developed basic theory. This is the approach proposed by Bojańczyk
(2015), used by Blumensath (2018b) for infinite trees and the one we
will adapt for infinite forests.

The goal of this thesis therefore is to develop an algebraic frame-
work for recognisability of languages of infinite forests using this ap-
proach. This entails specifying the correct notion of an infinite forest,
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1. Introduction

so that the monad operations can be defined. Once the monad and
the corresponding algebraic structures are obtained, the next natural
step is to give an algebraic characterisation of regular forest languages.
These are the two primary goals accomplished in this work.

This manuscript is organised as follows: in Chapter 2, we define
the basic concepts such as infinite forests themselves and the category-
theoretic setting in which the rest of the work will be discussed. We
describe the monadic structure of the infinite forest functor and de-
fine the algebraic structures, the 𝜔-forest algebras.

In Chapter 3, we describe the fundamentals of recognisability of
regular forest languages; we introduce the class of 𝜔-forest algebras,
show that they recognise exactly the regular languages, paralleling
Blumensath (2018b), and show that for regular languages, it is possi-
ble to construct its syntactic recognising algebra.

Finally, in Chapter 4, we characterise definability of regular forest
languages using the logic EF, a fragment of CTL, and its characterisa-
tion in terms of the syntactic algebra. We adapt the work of Bojańczyk
and Idziaszek (2009) to prove a special case of this characterisation
and give a counterexample showing that in general, the characterisa-
tion does not hold in our setting. We then discuss the implications for
our current algebraic framework.

In Appendix A, we collect some technical results which would
unnecessarily distract from the main text.
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2 𝜔-forests and algebras

This chapter introduces the basic notions and structures used in the
following ones. The algebraic framework for languages of forests with
infinite branches will be developed using the theory of Eilenberg–
Moore algebras for an appropriate monad as in (Blumensath, 2018b);
the category-theoretical notions used can be found in (Borceux, 1994,
Chapter 4). Unlike in (Blumensath, 2018b), we wish to describe forests
that are unranked, i.e. do not distinguish the arity of labels. On the
other hand, the approach we wish to adapt distinguishes between
usual trees, forests etc. and so-called contexts, which are forests into
which other forests can be substituted. This suggest that the correct
setting is that of two-sorted sets. The following definition captures
this.

Definition 2.1. A biset is simply a pair of sets (𝐴, 𝐵). Given a biset 𝑆,
we will denote its first component by 𝑆0 and the second one by 𝑆1.
Given bisets 𝑆 and 𝑇, a biset map 𝑓 ∶ 𝑆 → 𝑇 is a pair of maps (𝑓0, 𝑓1),
where 𝑓0 is a map 𝑆0 → 𝑇0 and 𝑓1 a map 𝑆1 → 𝑇1. Given such a map,
we will likewise write 𝑓0 for the first component and 𝑓1 for the second
one. Finally, a relation 𝑅 between bisets 𝑆 and 𝑇 is a pair of relations be-
tween their corresponding components. Similarly, the relations com-
prising 𝑅 will be denoted 𝑅0 and 𝑅1. Given a biset 𝑆, we will write 𝑆∪
for the set 𝑆0 ∪ 𝑆1.

The category of bisets will be denoted by BiSet ∶= Set × Set.

We follow the approach of Blumensath (2018a) for trees in defin-
ing forests.

Definition 2.2. Let ℕ∗ denote the free monoid on the set of natural
numbers (including zero) and ℕ+ ∶= ℕ∗ − {𝜀} the free semigroup
on the same set. We will usually write 𝑤 for a general element of ei-
ther ℕ∗ or ℕ+ and ⟨𝑛1 … 𝑛𝑘⟩ for the word composed of letters 𝑛1 to
𝑛𝑘. Concatenation of words will be usually denoted either by simple
juxtaposition or as 𝑤⌢𝑣 where 𝑤𝑣 would not be sufficiently clear.

A forest domain is a subset 𝐷 of ℕ+ which satisfies the following
properties:

1. 𝐷 is nonempty – a forest may not be empty.
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2. 𝜔-forests and algebras

2. For every 𝑤 ∈ 𝐷 ∪ {𝜀}, only finitely many words of the form
𝑤⟨𝑛⟩, 𝑛 ∈ ℕ are in 𝐷. For 𝑤 ∈ 𝐷, this condition ensures finite
branching, while for 𝑤 = 𝜀, it guarantees that forests only have
finitely many trees.

3. For every 𝑣, 𝑤 ∈ ℕ+, if 𝑣𝑤 ∈ 𝐷, then also 𝑣 ∈ 𝐷.

4. For every 𝑤 ∈ 𝐷 ∪ {𝜀} and every 𝑛 such that 𝑤⟨𝑛⟩ ∈ 𝐷, it is
the case that 𝑤⟨𝑘⟩ ∈ 𝐷 for every 𝑘 < 𝑛.

Given a forest domain 𝐷, we define the subsets of leaves

Leaf(𝐷) ∶= {𝑤 ∈ 𝐷 ∣ 𝑤𝑣 ∉ 𝐷 for any 𝑣 ≠ 𝜀} ,

the subset of internal vertices Int(𝐷) ∶= 𝐷 − Leaf(𝐷) and that of roots
Root(𝐷) ∶= {𝑤 ∈ 𝐷 | |𝑤| = 1}.

Definition 2.3. Given a biset 𝑆, a forest over 𝑆 is a triple (𝐷, ℓ0, ℓ1),
where 𝐷 is a forest domain and ℓ0, ℓ1 are maps of types Leaf(𝐷) → 𝑆0
and Int(𝐷) → 𝑆1 respectively, called the labellings.

We will write Dom(𝑡) for the domain of a forest 𝑡 and we will de-
fine, for 𝑤 ∈ Dom(𝑡), 𝑡(𝑤) to be either ℓ0(𝑤) or ℓ1(𝑤) as appropriate.

Finally, a tree over 𝑆 is a forest 𝑡 such that | Root(𝑡)| = 1, in which
case we will refer to the single 𝑤 ∈ Root(𝑡) simply as the root of 𝑡.

Given a vertex 𝑤 ∈ Dom(𝑡), we will write 𝑡|𝑤 for the subtree of 𝑡
rooted at 𝑤; formally, the domain of 𝑡|𝑤 is obtained by taking those
vertices of 𝑡 of which 𝑤 is a prefix and replacing this prefix by ⟨0⟩,
while the labels are transferred in the obvious manner.

The set of all forests over 𝑆 will be denoted 𝔽0𝑆 and the subset of
all trees by 𝕋0𝑆.

Figure 2.1 shows examples of trees – non-nullary labels will be
usually drawn grey, nullary ones white. A general plain tree will be
denoted simply as a triangle, as the tree 𝑡 in the figure.

Definition 2.4. Given an alphabet 𝑆, let 𝑆□ be a biset obtained from 𝑆
by adding a new nullary label 1, which we will denote □ and call the

1. Formally, 𝑆□
1 ∶= 𝑆1 and 𝑆□

0 is the disjoint union 𝑆0+1, where 1 is an arbitrary but
fixed singleton. We will freely identify the elements of 𝑆0 with the corresponding
ones of 𝑆□

0 .
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2. 𝜔-forests and algebras

𝑎

𝑡

𝑏1

𝑎1 𝑏2

𝑎3𝑎2

Figure 2.1: Examples of trees

hole. A context 𝑠 over 𝑆, also called a forest with a hole, is a forest over 𝑆□

such that there is exactly one leaf 𝑣 labelled by □ which furthermore
is not a root of 𝑠, i.e. the path to 𝑣 has nonzero length.

Given a context 𝑠, we will write Hole(𝑠) ∈ Dom(𝑠) for the hole
vertex of Dom(𝑠).

A tree context is simply a context which is also a tree.
We will denote by 𝔽1𝑆 and 𝕋1𝑆 the sets of all contexts and tree

contexts over 𝑆.

𝑏 𝑏

𝑎

𝑠 𝑡

𝑎

a) b) c) d)

Figure 2.2: Tree contexts – examples and nonexamples

The first two pictures depict simple tree contexts (the hole is drawn
black). A pictorial representation of a typical tree context as a triangle
“with the hole at the bottom” is also shown, marked 𝑠. Regarding the
nonexamples, the first one illustrates the condition that the path from
root to the hole has length at least one; this is required to make the
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2. 𝜔-forests and algebras

general composition operation, which we will introduce later, well-
defined. The second one illustrates that since the hole can be under-
stood as standing for an arbitrary forest, the label of its parent must
be always nonnullary, as forests may be (in fact, are required to be)
nonempty.

Having defined forests and contexts, we can describe the functo-
rial action on morphisms.

Definition 2.5. For a biset map 𝑓 ∶ 𝑆 → 𝑇, the map 𝔽0(𝑓 )∶ 𝔽0𝑆 → 𝔽0𝑇
acts on forests by the obvious relabelling, i.e. we have

𝔽0(𝑓 )(𝐷, ℓ0, ℓ1) ∶= (𝐷, 𝑓0 ∘ ℓ0, 𝑓1 ∘ ℓ1) .

Similarly, we define 𝔽1(𝑓 )∶ 𝔽1𝑆 → 𝔽1𝑇 by setting

𝔽1(𝑓 )(𝑠) ∶= 𝔽0(𝑓 □)(𝑠) ,

where 𝑓 □ ∶ 𝑆□ → 𝑇□ acts as 𝑓 does on ordinary labels and as identity
on □.

We also define 𝕋0(𝑓 )∶ 𝕋1𝑆 → 𝕋1𝑇 and 𝕋1(𝑓 )∶ 𝕋1𝑆 → 𝕋1𝑇 as the
appropriate restrictions of the previous maps.

We also extend relations in a similar way.

Definition 2.6. Given a relation 𝑅 between bisets 𝑆 and 𝑇, we define
the relation 𝑅𝔽

0 from 𝔽0𝑆 to 𝔽0𝑇 by setting 𝑅𝔽
0 (𝑡1, 𝑡2) if and only if

Dom(𝑡1) = Dom(𝑡2), 𝑅0(𝑡1(𝑣), 𝑡2(𝑣)) for every leaf 𝑣 ∈ Leaf(𝑡1) and
𝑅1(𝑡1(𝑤), 𝑡2(𝑤)) for every 𝑤 ∈ Int(𝑡1), i.e. the forests are related if they
have the same shape and all the correspondings labels are related.
The relation 𝑅𝔽

1 from 𝔽1𝑆 to 𝔽1𝑇 is defined similarly, requiring both
the domains and the holes to be the same.

The following observation is immediate. We omit the proof.

Observation 2.7. With these actions on maps, the assignments 𝕋0, 𝕋1, 𝔽0
and 𝔽1 all form functors of type BiSet → Set.

Definition 2.8. The endofunctor 𝔽∶ BiSet → BiSet is simply the pair-
ing (𝔽0, 𝔽1). Given a relation 𝑅 from 𝑆 to 𝑇, the relation 𝑅𝔽 between
𝔽𝑆 and 𝔽𝑇 is defined as the pair (𝑅𝔽

0 , 𝑅𝔽
1 ).
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2. 𝜔-forests and algebras

𝑡

𝑏1

𝑎1 𝑏2

𝑎3𝑎2
𝕋0(𝑓 )⟼

𝕋0(𝑓 )(𝑡)

𝑓1(𝑏1)

𝑓0(𝑎1) 𝑓1(𝑏2)

𝑓0(𝑎3)𝑓0(𝑎2)

𝑏
𝕋1(𝑓 )⟼

𝑓1(𝑏) 𝑏

𝑎

𝑠 𝑡

𝕋1(𝑓 )⟼
𝑓1(𝑏)

𝑓0(𝑎)

𝕋1(𝑓 )(𝑠) 𝕋0(𝑓 )(𝑡)

Figure 2.3: Action of the maps 𝕋𝑖(𝑓 )
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2. 𝜔-forests and algebras

Before defining the natural transformations required to make 𝔽
into a monad on BiSet, we will describe some useful elementary op-
erations on forests. However, since fully formal definitions of the fol-
lowing concepts would be unnecessarily involved, we only describe
them in sufficient detail, leaving the full formal treatment to the ap-
pendix.

Definition 2.9. Given forests 𝑡1 and 𝑡2 over 𝑆, we will write 𝑡1 ⊕ 𝑡2 for
their horizontal composition, obtained by putting all trees of 𝑡2 to the
right of all trees of 𝑡1. Note that this definition makes sense in two
cases: either both 𝑡1 and 𝑡2 are plain forests, in which case 𝑡1 ⊕ 𝑡2 is
plain as well, or exactly one of 𝑡1 and 𝑡2 is a context, whence 𝑡1 ⊕ 𝑡2
is also a context. Therefore, we actually obtain three operations with
types 𝔽0𝑆×𝔽0𝑆 → 𝔽0𝑆, 𝔽1𝑆×𝔽0𝑆 → 𝔽1𝑆 and 𝔽0𝑆×𝔽1𝑆 → 𝔽1𝑆. When
there is no danger of confusion, however, we will denote all three by
⊕. Note that this “operation” is associative; for all appropriate 𝑡1, 𝑡2, 𝑡3,
we have (𝑡1 ⊕ 𝑡2) ⊕ 𝑡3 = 𝑡1 ⊕ (𝑡2 ⊕ 𝑡3) for the unique consistent choice
of the actual operations.

Definition 2.10. Let 𝑠 be a context and 𝑡 either a forest or a context.
By their vertical composition 𝑠 ⋅ 𝑡 we mean the forest which results from
substituting 𝑡 for the hole in 𝑠, i.e. removing the hole and attaching
every tree in 𝑡 to the vertex the hole was attached to.

… …

…

⟼

… …

…

Figure 2.4: Vertical composition of forests

Since 𝑠 ⋅ 𝑡 has a hole if and only if 𝑡 does, we again get two oper-
ations of types 𝔽1𝑆 × 𝔽0𝑆 → 𝔽0𝑆 and 𝔽1𝑆 × 𝔽1𝑆 → 𝔽1𝑆. As before,
when no confusion can arise, we will denote both operations by 𝑠 ⋅ 𝑡.
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2. 𝜔-forests and algebras

Also, given 𝑏 ∈ 𝑆1 and a forest or context 𝑡, we will write 𝑏𝑡 for
the tree with the root labelled by 𝑏 and the forest of successors of the
root given by 𝑡.

Finally, given a context 𝑠 ∈ 𝔽𝑆1, we will write 𝑠𝜔 ∈ 𝔽0𝑆 for the
forest obtained as the “infinite product” 𝑠 ⋅ 𝑠 ⋅ … satisfying 𝑠𝜔 = 𝑠 ⋅ 𝑠𝜔.

2.1 The natural transformations sing and flat

As discussed in the beginning of this chapter, we want to equip the
functor 𝔽 with the structure of a monad on the category BiSet. This
amounts to defining two natural transformations sing ∶ IdBiSet → 𝔽
and flat ∶ 𝔽2 → 𝔽 satisfying certain conditions. For Eilenberg-Moore
algebras for a general monad 𝑇, the objects 𝑇𝑋 correspond to the (car-
riers of) free algebras; the transformation sing therefore can be un-
derstood as the inclusion of generators into the term algebra, while
flat represents a general kind of term-flattening operation that corre-
sponds e.g. in the case of free semigroups to word concatenation.

Definition 2.11. Given a biset 𝑆, the map sing𝑆,0 ∶ 𝑆0 → 𝔽0𝑆 takes a
label 𝑎 ∈ 𝑆0 to the tree with a single vertex labelled by 𝑎. When no
confusion can arise, the tree sing𝑆,0(𝑎) may be simply written as 𝑎.

Similarly, the map sing𝑆,1 ∶ 𝑆1 → 𝔽1𝑆 takes 𝑏 ∈ 𝑆1 to the tree 𝑏□.

𝑎
sing𝑆,0⟼ 𝑎 𝑏

sing𝑆,1⟼

𝑏

Figure 2.5: The maps sing𝑆,𝑖

Given these definitions, the squares

𝑆0 𝑇0 𝑆1 𝑇1

𝔽0𝑆 𝔽0𝑇 𝔽1𝑆 𝔽1𝑇

𝑓0

sing𝑆,0 sing𝑇,0

𝑓1

sing𝑆,1 sing𝑇,1

𝔽0(𝑓 ) 𝔽1(𝑓 )

9



2. 𝜔-forests and algebras

commute for all 𝑆, 𝑇 and 𝑓 ∶ 𝑆 → 𝑇, so the family (sing𝑆,0, sing𝑆,1)𝑆
forms a natural transformation sing ∶ IdBiSet → 𝔽.

The following definition is rather informal. A more precise version
can be found in the appendix.

Definition 2.12. For a biset 𝑆, the flattening map flat𝑆,0 ∶ 𝔽0𝔽𝑆 → 𝔽0𝑆
acts as follows: to flatten a forest labelled by forests, it flattens the
individual trees and composes the resulting forests horizontally. To
flatten an individual tree, there are two cases.

1. The tree consists of a single vertex, in which case it is labelled
by a forest 𝑡 ∈ 𝔽0𝑆; this forest is then the result of the flattening.

2. The tree has a forest of successors. In this case, its root is la-
belled by a context 𝑠 ∈ 𝔽1𝑆. The forest of successors is flattened
“recursively”, obtaining a forest 𝑡 ∈ 𝔽0𝑆, and 𝑠 ⋅ 𝑡 is returned as
the result.

In symbols, the operation is specified by flat𝑆,0(sing𝔽𝑆,0(𝑡)) ∶= 𝑡 and
flat𝑆,0(𝑡𝜏) ∶= 𝑡 ⋅ flat𝑆,0(𝜏).

Note that this “definition” is not properly recursive, since there
may be infinite branches. However, as will be argued shortly, it can be
realized as a corecursive definition and it does actually define a proper
operation thanks to the restrictions placed on forests.

The map flat𝑆,1 ∶ 𝔽1𝔽𝑆 → 𝔽1𝑆 acts similarly to flat𝑆,0, the only addi-
tional case being the case of a tree 𝜏 whose root is directly succeeded
by a hole. In that case, the hole of 𝜏 becomes the hole of the forest that
labels 𝜏, as in Figure 2.7.

Some of the reasons for the restrictions placed on forests can now
be explained. First, the equation in Definition 2.12 suggests that the
flattened forest is built in a corecursive manner. The usual require-
ment for (positively presented) corecursive definitions to be valid is
that they are productive (Atkey & McBride, 2013), i.e. each iteration
actually proceeds in constructing the resulting structure further; this
is exactly what the requirement that paths from roots to holes have
nonzero length ensures. Furthermore, without this requirement, the
flattening could produce forests with infinite branching, as Figure 2.8
demonstrates.

10



2. 𝜔-forests and algebras

infinite
branch

infinite
branch

flat𝑆,0⟼

Figure 2.6: The map flat𝑆,0

…

𝜁

…

flat𝑆,0(𝜁)

flat𝑆,1⟼

Figure 2.7: The map flat𝑆,1 – the special case
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2. 𝜔-forests and algebras

𝑏

𝑎

𝑎 …

𝑏

𝑎 𝑎 …

?⟼

Figure 2.8: Infinite branching when holes in roots are allowed

The requirement for forests to be nonempty can be easily justified
by noting that if 0 were an empty forest and we had 𝑏 ∈ 𝑆1, there
would be no way to define 𝑏(0) = sing𝑆,1(𝑏) ⋅ 0, as the resulting forest
would have a leaf labeled by an element of 𝑆1. Subsequently, flat𝑆,0
could not be defined.

Note that this section only aims to describe the flattening map in
sufficient detail; the formal definition is given in the appendix. Sim-
ilarly, the fact that flattening is a natural transformation and that to-
gether, the natural transformations satisfy the monad identities are
proved there.

Proposition 2.13. The family of biset morphisms (flat𝑆,0, flat𝑆,1)𝑆 forms a
natural transformation flat ∶ 𝔽2 → 𝔽. Furthermore, the following diagrams
commute in the category of endofunctors of BiSet.

𝔽 𝔽2 𝔽 𝔽3 𝔽2

𝔽 𝔽2 𝔽

sing 𝔽

1𝔽
flat

𝔽 sing

1𝔽

flat 𝔽

𝔽 flat flat

flat

The triple (𝔽, flat, sing) is thus a monad on the category BiSet.

That flat is a natural transformation can be intuitively justified by
noting how the compositions flat𝑇,0 ∘𝔽0(𝔽(𝑓 )) and 𝔽0(𝑓 ) ∘ flat𝑆,0 (or
flat𝑇,1 ∘𝔽1(𝔽(𝑓 )) and 𝔽1(𝑓 ) ∘ flat𝑆,1) act on the trees in Figures 2.6 and
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2. 𝜔-forests and algebras

𝑏

𝑐

𝑎 𝑡

𝑏

𝑐

𝑎 𝔽1(sing𝑆)(𝑡)

𝔽1(sing𝑆)
⟼

flat𝑆,1⟻

Figure 2.9: The right triangle identity for 𝔽

2.7. The triangle identity flat ∘ sing 𝔽 = 1𝔽 can be seen from the defi-
nitions of sing𝑆,0 and sing𝑆,1 and the identity flat ∘𝔽 sing = 1𝔽 is illus-
trated by Figure 2.9.

The final identity, expressing associativity of the flattening maps,
is proved in the appendix.

2.2 𝜔-forest algebras

Having described our notion of forests and the necessary categorical
machinery, we are in a position to describe the algebraic structures
we will use as recognisers for languages. Many definitions presented
here are simply instances of the corresponding general notions from
the theory of Eilenberg–Moore algebras.

Definition 2.14. An 𝜔-forest algebra is a pair (𝐴, 𝛼), where 𝐴 is a biset
and 𝛼∶ 𝔽𝐴 → 𝐴 is a biset morphism making the following diagrams
commute.

𝐴 𝔽𝐴 𝔽2𝐴 𝔽𝐴

𝐴 𝔽𝐴 𝐴

sing𝐴

id𝐴

𝛼

flat𝐴

𝔽(𝛼) 𝛼

𝛼

From now on, 𝜔-forest algebras will be usually called just algebras
for simplicity.
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2. 𝜔-forests and algebras

In this definition, the biset 𝔽𝐴 should be understood as containing
terms built from elements of the carrier set 𝐴 and 𝛼 as an evaluation
map. Note that the identites required in the definition then express
natural requirements on such a map; the first one requires that the
“atomic terms”, in both sorts, evaluate back to whatever values they
contain, while the second identity expresses that evaluating a com-
posite term (represented by the right leg of the square) is the same as
evaluating the subterms and combining the results using the algebra
operations (the left leg).

Given an algebra (𝐴, 𝛼), we will use the notation for compositions
of forests also for the corresponding operations in (𝐴, 𝛼), e.g. given
𝑎 ∈ 𝐴0 and 𝑏 ∈ 𝐴1, we will write 𝑎⊕𝑏 ∈ 𝐴1 for 𝛼1(𝑎⊕𝑏), 𝑏 ⋅ 𝑎 ∈ 𝐴0 for
𝛼0(𝑏𝑎), 𝑏𝜔 ∈ 𝐴0 for the infinite power 𝛼0((𝑏□)𝜔) and so on. Further-
more, if 𝐴 is finite, the context sort of (𝐴, 𝛼) forms a finite semigroup
under the operation of vertical composition. Hence it makes sense to
define, for 𝑏 ∈ 𝐴1, 𝑏𝜋 ∈ 𝐴1 as the unique idempotent of the subsemi-
group generated by 𝑏.

Note that the identities required for the singleton and flattening
maps ensure, among others, that (𝔽𝑆, flat𝑆) is an 𝜔-forest algebra for
every biset 𝑆.

Definition 2.15. Given 𝜔-forest algebras (𝐴, 𝛼) and (𝐵, 𝛽), a homomor-
phism 𝜙∶ (𝐴, 𝛼) → (𝐵, 𝛽) is a biset map 𝜙∶ 𝐴 → 𝐵 such that the follow-
ing square commutes.

𝔽𝐴 𝔽𝐵

𝐴 𝐵

𝛼

𝔽(𝜙)

𝛽
𝜙

Observe that the second identity from Definition 2.14 also implies
that the map 𝛼 is itself a homomorphism 𝛼∶ (𝔽𝐴, flat𝐴) → (𝐴, 𝛼).

By a standard result from semigroup theory, the operation 𝑏𝜋 is
preserved by 𝜔-forest algebra homomorphisms, since they preserve
vertical composition.

Another standard result is that the algebra (𝔽𝑆, flat𝑆) is the free
algebra over the biset 𝑆: for every algebra (𝐴, 𝛼) and a map 𝑓 ∶ 𝑆 → 𝐴,
there is a unique homomorphism 𝑓 ♯ ∶ (𝔽𝑆, flat𝑆) → (𝐴, 𝛼) such that

14



2. 𝜔-forests and algebras

𝑓 ♯ ∘ sing𝑆 = 𝑓 . This homomorphism equals 𝛼 ∘ 𝔽(𝑓 ), as might be ex-
pected. Every homomorphism ℎ∶ (𝔽𝑆, flat𝑆) → (𝐴, 𝛼) is actually of
the form 𝑓 ♯, for 𝑓 = ℎ ∘ sing𝑆.
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3 Language theory

In this chapter, we introduce a framework of recognisability for lan-
guages of infinite forests, including a notion of regularity for 𝜔-forest
algebras and the construction of syntactic algebras.

Definition 3.1. Given a biset 𝛴, a language 𝐿 over 𝛴 is a sub-biset of
𝔽𝛴, i.e. a biset such that 𝐿0 ⊆ 𝔽0𝛴 and 𝐿1 ⊆ 𝔽1𝛴. In this situation, we
will write 𝐿 ⊆ 𝔽𝛴.

As usual, we say that a language 𝐿 ⊆ 𝔽𝛴 is recognized by a homo-
morphism 𝜙∶ (𝔽𝑆, flat𝑆) → (𝐴, 𝛼) into an algebra (𝐴, 𝛼) if there is a
subset 𝑇 ⊆ 𝐴 such that 𝐿 = 𝜙−1(𝑇) (where the inverse image is taken
in both components separately).

3.1 Regular languages and automata

We adapt the approach of Blumensath (2018b) in characterizing the
class of algebras that recognize precisely the regular forest languages.
We start by fixing our terminology regarding regular languages, i.e.
languages accepted by a finite automaton defined as follows.

Definition 3.2. Let 𝛴 be an alphabet. A nondeterministic forest automa-
ton over 𝛴 is a tuple (𝑄, 𝛥0, 𝛥1, 𝐼, 𝛺) with components as follows.

1. 𝑄 is a finite semigroup of states whose (not neccessarily com-
mutative) operation shall be denoted by +.

2. 𝛥0 ⊆ 𝑄 × 𝛴□
0 is the nullary transition relation.

3. 𝛥1 ⊆ 𝑄 × 𝛴□
1 × 𝑄 is the non-nullary transition relation.

4. 𝐼 ⊆ 𝑄 is the set of initial states.

5. 𝛺∶ 𝑄 → ℕ is the priority mapping.

To define the language accepted by an automaton, we first need
the notion of a run (both on forests and on contexts). From now on,
given a set 𝑋, we may simply write 𝑋 as a shorthand for the biset
(𝑋, 𝑋).
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3. Language theory

Definition 3.3. For an automaton 𝒜 as in the previous definition and
a forest 𝑡 ∈ 𝔽𝑖𝛴, a run of 𝒜 on 𝑡 is a forest 𝑟 ∈ 𝔽0𝑄 of the same shape
(i.e. with the same domain) which satisfies the following conditions.

1. For every 𝑤 ∈ Leaf(𝑡), we have (𝑟(𝑤), 𝑡(𝑤)) ∈ 𝛥0.

2. For every 𝑤 ∈ Int(𝑡) and 𝑤1, … , 𝑤𝑛 the successor vertices of 𝑤,
we have (𝑟(𝑤), 𝑡(𝑤), 𝑟(𝑤1) + ⋯ + 𝑟(𝑤𝑛)) ∈ 𝛥1.

If 𝑟 is a run, 𝑤1, … , 𝑤𝑛 are the roots of 𝑟 and 𝑞 = 𝑟(𝑤1)+⋯+𝑟(𝑤𝑛),
we say that the run 𝑅 is from the state 𝑞. The set of all runs of 𝒜 on 𝑡
will be denoted Run𝒜(𝑡).

An infinite branch of a forest 𝑡′ over an arbitrary biset 𝑋 is an infinite
sequence of vertices 𝑤1, 𝑤2, … of 𝑡′ such that 𝑤1 is a root and each 𝑤𝑖+1
is a successor of 𝑤𝑖. We say that a run 𝑟 on 𝑡 ∈ 𝔽𝑖𝑆, 𝑖 = 0, 1 is accepting
if it starts in a state 𝑞 ∈ 𝐼 and satisfies the following parity condition.

3. For every infinite branch (𝑤𝑖)𝑖 of 𝑡, lim inf𝑖∈ℕ+ 𝛺(𝑟(𝑤𝑖)) is even.

Finally, the nullary language accepted by 𝒜 is the set

Lang0(𝒜) ∶= {𝑡 ∈ 𝔽0𝛴∣ there is an accepting run of 𝒜 on 𝑡} ,

the non-nullary language is the set Lang1(𝒜) ⊆ 𝔽1𝛴 defined similarly
and the language accepted by the automaton 𝒜 is the biset Lang(𝒜)
defined as (Lang0(𝒜), Lang1(𝒜)).

The definition given above is a fairly standard definition of a par-
ity automaton on unranked forests. Let us highlight two points of par-
ticular interest.

First, to deal with arbitrary branching and multiple trees in forests,
we impose the structure of a semigroup on the state space, as in (Bo-
jańczyk and Idziaszek, 2009). Note that this approach is more general,
since the “usual” definition of tree automata, with every state and la-
bel prescribing a fixed number of successors and automaton states,
can be recovered as a special case of this definition by taking 𝑄 to be
the finite quotient of the free semigroup on the state space obtained
by identifying all strings longer than the longest right side of a rule
in 𝛥1.

Second, the same automaton is used to accept both forests and
contexts simply by treating the hole as a special leaf which may or
may not be accepted by a state 𝑞.
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3. Language theory

Let us recall the following well-known facts about regular lan-
guages.

Fact 3.4. Regular languages are closed under unions, complementation, in-
tersections, substitutions and inverse substitutions, i.e. direct and inverse
images of homomorphisms of the form 𝔽(𝑓 ) ∶ 𝔽𝛴 → 𝔽𝛱 .

3.2 Regular forest algebras

We can now describe the class of algebras characterising regular lan-
guages. Our definition is a straightforward adaptation of the notion
of a regular algebra by Blumensath (2018b).

Definition 3.5. An 𝜔-forest algebra (𝐴, 𝛼) is regular if it is finite and
for both sorts 𝑖 and every 𝑎 ∈ 𝐴𝑖, the set 𝛼−1

𝑖 (𝑎) is a regular language
(we treat this set as a forest language by considering the other sort to
be empty).

Since we have only finitely many sorts, the finitarity requirement
of Blumensath (2018b) translates to simple finiteness, which means
that the entire algebra 𝐴 can be taken as the required finite set of gen-
erators for concreteness, as regularity does not depend on the partic-
ular choice.

The following theorem is a straightforward reformulation of the
one in (Blumensath, 2018b).

Theorem 3.6. A finite algebra (𝐴, 𝛼) is regular if and only if all languages
it recognises are regular.

Proof. In one direction, if (𝐴, 𝛼) is nonregular, i.e. if there is 𝑎 ∈ 𝐴𝑖
such that 𝛼−1

𝑖 (𝑎) is not regular, then 𝛼∶ (𝔽𝐴, flat𝐴) → (𝐴, 𝛼) is a ho-
momorphism recognizing a nonregular language.

In the other direction, we observe that if ℎ♯ ∶ (𝔽𝛴, flat𝛴) → (𝐴, 𝛼)
is a homomorphism, for ℎ∶ 𝛴 → 𝐴, it follows from the fact that ℎ♯

equals 𝛼 ∘ 𝔽(ℎ) that any language (ℎ♯)−1(𝑆), for 𝑆 ⊆ 𝐴, is an inverse
substitution of a finite union of regular languages, which is regular.

That regular forest algebras characterise regular languages is ex-
pressed by the following theorem.
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3. Language theory

Theorem 3.7. A language 𝐿 ⊆ 𝔽𝛴 is regular if and only if it is recognised
by a regular forest algebra.

In one direction, the proof is obvious; by Theorem 3.6, a language
recognised by a regular algebra is regular. In the other direction, it is
sufficient to construct, from an automaton 𝒜 recognising 𝐿 ⊆ 𝔽𝛴, a
regular algebra and a homomorphism recognising the same language.
This construction will be described now.

To construct a homomorphism recognising a language accepted
by an automaton, we need the following simple construction. Given
a biset 𝑆, we can apply the power set operation to both components to
obtain the biset 𝒫𝑆 ∶= (𝒫𝑆0, 𝒫𝑆1). We then have the relation ∈ from
𝑆 to 𝒫𝑆 whose components are given by (the appropriate restrictions
of) the ordinary containment relation ∈. The construction will make
use of the extended relation ∈𝔽 from 𝔽𝑆 to 𝔽𝒫𝑆.

Theorem 3.8. Every language 𝐿 ⊆ 𝔽𝛴 accepted by a finite automaton 𝒜
is recognised by a regular algebra M(𝒜).

Proof. As in (Blumensath, 2018b), the algebra M(𝒜) will simulate the
automaton 𝒜 , with its product corresponding to composition of runs
of 𝒜 .

Given a forest 𝑡 ∈ 𝔽0𝛴, what is the relevant information about
possible behaviors of 𝒜 on 𝑡, i.e. what are the profiles of 𝒜? We need to
keep track of the states in which a successful run 𝑟 on 𝑡 can start. We do
not have to track the priorities, however, since if we want to compose
𝑟 with some with some previous behavior, any infinite branch of this
larger run passing through 𝑟 can only have a finite prefix outside 𝑟
and this prefix can be ignored with regard to the limit. This suggest
that elements of M(𝒜)0 should simply be sets of states of 𝒜 .

For a context 𝑡 ∈ 𝔽1𝛴, the starting state is still relevant. However,
we also need to keep track of the state in which the automaton is
right before the hole, so that we can decide if two runs actually “fit to-
gether”. Furthermore, since we in general need to compose an infinite
number of such context runs, we also need to track the priorities; since
the limit taken over infinite branches is a limit inferior, we need to re-
member the lowest priority encountered in the run on the path from
the initial state to the hole state; the other priorities may be ignored as
in the previous paragraph. Therefore, the elements of M(𝒜)1 should
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3. Language theory

be sets of triples (𝑞, 𝑛, 𝑞′), where 𝑞 and 𝑞′ are the extremal states and
𝑛 is the remembered priority.

Therefore, let 𝐷 ⊆ ℕ be the range of the priority map 𝛺 and let 𝐾𝒜
be the biset (𝑄, 𝑄 × 𝐷 × 𝑄). Intuitively, a forest 𝑡 ∈ 𝔽0𝐾𝒜 in which all
the profiles fit together and where the parity condition is satisfied has
a defined product given by the sum of the root states, and similarly
for 𝑡 ∈ 𝔽1𝐾𝒜 . The carrier of M(𝒜) will be 𝒫𝐾𝒜 and the multiplica-
tion map comp ∶ 𝔽𝒫𝐾𝒜 → 𝒫𝐾𝒜 will extract from a forest labelled by
sets of profiles the composable forests of profiles and return the set
of resulting profiles.

We will start by fixing some terminology. For a forest 𝑡 ∈ 𝔽0𝐾𝒜
and 𝑤 ∈ Dom(𝑡), define ℓ𝑤 ∈ 𝑄 to be 𝑡(𝑤) if 𝑤 ∈ Leaf(𝑡) and 𝑞 when
𝑤 ∈ Int(𝑡) and 𝑤 is labelled by (𝑞, 𝑛, 𝑞′). We say that 𝑡 is consistent if
for every 𝑤 ∈ Int(𝑡) with label (𝑞, 𝑛, 𝑞′) and sucessors 𝑤1, … , 𝑤𝑘, we
have 𝑞′ = ℓ𝑤1

+ ⋯ + ℓ𝑤𝑘
.

Furthermore, we say that the forest 𝑡 satisfies the parity condition if
for every infinite branch (𝑤𝑖)𝑖 of 𝑡 with labels (𝑞𝑖, 𝑛𝑖, 𝑞′

𝑖), we have that
lim inf𝑖 𝑛𝑖 is even.

Finally, define Init(𝑡) ∈ 𝑄 to be the state ∑𝑤∈Root(𝐹) ℓ𝑤 (the sum is
computed in the natural order of the roots).

Putting these concepts together, we can define the nullary part of
the algebra product, the map comp0 ∶ 𝔽0𝒫𝐾𝒜 → 𝒫𝑄, by

comp0(𝑝) ∶= {Init(𝑡) | 𝑡 ∈ 𝔽0𝐾𝒜 , 𝑡 ∈𝔽
0 𝑝, 𝑡 is consistent and

satisfies the parity condition}

The map comp1 ∶ 𝔽1𝒫𝐾𝒜 → 𝒫(𝑄 × 𝐷 × 𝑄) can be defined as fol-
lows.

Given a forest 𝑡 ∈ 𝔽1𝐾𝒜 , we say that a triple (𝑞, 𝑛, 𝑞′) ∈ 𝑄 × 𝐷 × 𝑄
corresponds to 𝑡 if Init(𝑡) = 𝑞, the plain forest obtained from 𝑡 by la-
belling the hole with 𝑞′ is consistent and satisfies the parity condition
and 𝑛 is the lowest priority on the path from the corresponding root
to the leaf which was the hole in 𝑡.

The map can then be defined by setting

comp1(𝑝) ∶= {(𝑞, 𝑛, 𝑞′) | there is a forest 𝑡 ∈ 𝔽1𝐾𝒜 such that
𝑡 ∈𝔽

1 𝑝 and (𝑞, 𝑛, 𝑞′) corresponds to 𝑡}
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3. Language theory

We need to verify that these two multiplication maps make 𝒫𝐾𝒜
into a forest algebra.

The first condition is verified easily. First, for every 𝑋 ⊆ 𝑄, the
forests 𝑡 ∈ 𝔽0𝐾𝒜 such that 𝑡 ∈𝔽

0 sing𝐾𝒫𝒜 ,0(𝑋) are precisely the single-
ton forests sing𝐾𝒜 ,0(𝑞) for 𝑞 ∈ 𝑋. All these forests are trivially consis-
tent and satisfy the parity condition, and since Init(sing𝐾𝒜 ,0(𝑞)) = 𝑞,
we have comp0(sing𝒫𝐾𝒜 ,0(𝑋)) = 𝑋.

Similarly, for 𝑋 ⊆ 𝑄 × 𝐷 × 𝑄, the forests sing𝐾𝒜 ,1(𝑞, 𝑛, 𝑞′) for every
triple (𝑞, 𝑛, 𝑞′) ∈ 𝑋 are precisely the ones related by ∈𝔽

1 to sing𝒫𝐾𝒜 ,1(𝑋)
and to each of these forests corresponds precisely the single triple
(𝑞, 𝑛, 𝑞′), hence comp1(sing𝒫𝐾𝒜 ,1(𝑋)) = 𝑋.

To verify the associative law, first consider a forest 𝑝 ∈ 𝔽0𝔽𝒫𝐾𝒜
and assume we have 𝑞 ∈ comp0(𝔽0(comp)(𝑝)). The argument pro-
ceeds in the following steps.

1. There exists a forest 𝑡 ∈ 𝔽0𝐾𝒜 , 𝑡 ∈𝔽
0 𝔽0(comp)(𝑝) which is

consistent and satisfies the parity condition and has Init(𝑡) = 𝑞.

2. Therefore for every 𝑤 ∈ Leaf(𝑡), there is a forest 𝑡𝑤 ∈ 𝔽0𝐾𝒜 ,
𝑡𝑤 ∈𝔽

0 𝑝(𝑤) with Init(𝑡𝑤) = 𝑡(𝑤). Likewise, for 𝑤 ∈ Int(𝑡), there
is a context 𝑡𝑤 ∈ 𝔽1𝐾𝒜 , 𝑡𝑤 ∈𝔽

1 𝑝(𝑤) such that the triple 𝑡(𝑤)
corresponds to 𝑡𝑤. By taking the domain of 𝑡, which is identi-
cal to that of 𝑝, and labelling each vertex 𝑤 by 𝑡𝑤, we obtain a
new forest 𝑝′ ∈ 𝔽0𝔽𝐾𝒜 with the property that 𝑝′ (∈𝔽)𝔽

0 𝑝 (here,
the relation is extended twice). It follows that flat𝐾𝒜 ,0(𝑝′) ∈𝔽

0
flat𝒫𝐾𝒜 ,0(𝑝).

3. The forest 𝑡′ ∶= flat𝐾𝒜 ,0(𝑝′) is consistent; if both an internal
vertex and all of its successors come from the same forest 𝑝′(𝑤),
the equality is guaranteed by consistency of 𝑡𝑤, if 𝑤 comes from
a vertex that precedes the hole of some 𝑡𝑣, its successors are

𝑎1, … , 𝑎𝑛, 𝑏1, … , 𝑏𝑚, 𝑐1, … , 𝑐𝑘

where the vertices 𝑎𝑖, 𝑐𝑖 come from 𝑡𝑣 and the ones denoted 𝑏𝑖
come from the roots of all the forests labelling the successor ver-
tices of 𝑣. Since the triple 𝑡(𝑣) = (𝑞, 𝑛, 𝑞′) corresponds to 𝑡𝑣 and
the forest 𝑡 is consistent, we have 𝑡′

𝑏1
+ ⋯ + 𝑡′

𝑏𝑚
= 𝑞′; since the
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forest obtained from 𝑡𝑣 by labelling the hole with 𝑞′ is also con-
sistent, the state 𝑎1 + ⋯ + 𝑎𝑛 + 𝑞′ + 𝑐1 + ⋯ + 𝑐𝑘 is equal to the
corresponding state of the triple above the hole of 𝑡𝑣.
The forest 𝑡′ also satisfies the parity condition; given an infinite
branch (𝑤𝑖)𝑖 and a sequence of corresponding labels (𝑞𝑖, 𝑛𝑖, 𝑞′

𝑖)𝑖,
either from some index 𝑗 on, all the subsequent vertices come
from a single forest 𝑡𝑣 which itself satisfies the condition and
removing a finite prefix of the sequence does not affect the limit,
or we can partition the sequence into infinitely many finite parts

𝑛1,1, … , 𝑛1,𝑘1
, 𝑛2,1 … 𝑛2,𝑘2

, …

where each 𝑛𝑖,1, … , 𝑛𝑖,𝑘𝑖
is the sequence of priorities occuring on

the path from root to hole of a forest 𝑝′(𝑣𝑖) for some infinite
branch (𝑣𝑖)𝑖 of 𝑝′. Since the sequence (𝑚𝑖)𝑖 obtained by choos-
ing from each finite part the least element has even limit infe-
rior (the forest 𝑡 satisfies the parity condition), it follows that
lim inf𝑖 𝑛𝑖 is also even.
Finally, it can be easily verified that Init(𝑡′) = 𝑞 and therefore
𝑞 ∈ comp0(flat𝒫𝐾𝒜 ,0(𝑝)).

The previous argument may be easily inverted to show the op-
posite inclusion, and the argument for the map comp1 is essentially
similar.

We have shown that M(𝒜) is a forest algebra. The next step is to
construct the required homomorphism. Since (𝔽𝛴, flat𝛴) is the free
forest algebra over 𝛴, we only need to define a biset map 𝑓 ∶ 𝛴 → 𝒫𝐾𝒜 ,
which we do by setting

𝑓0(𝑎) ∶= {𝑞 ∈ 𝑄|(𝑞, 𝑎) ∈ 𝛥0}

and

𝑓1(𝑏) ∶= {(𝑞, 𝑛, 𝑞′) |(𝑞, 𝑏, 𝑞′) ∈ 𝛥1, 𝑛 = min{𝛺(𝑞), 𝛺(𝑞′)}} .

The accepting set 𝑇 ⊆ 𝒫𝐾𝒜 is defined as

𝑇0 ∶= {𝑋 ⊆ 𝑄|𝑋 ∩ 𝐼 ≠ ∅}
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and

𝑇1 ∶= {𝑋 ⊆ 𝑄 × 𝐷 × 𝑄| there exists (𝑞, 𝑛, 𝑞′) ∈ 𝑋 such that 𝑞 ∈ 𝐼
and (𝑞′,□) ∈ 𝛥0}

and it remains to argue that (𝑓 ♯)−1(𝑇) = Lang(𝒜).
Assume 𝑡 ∈ Lang0(𝒜), i.e. there is an accepting run 𝑅 of 𝒜 on 𝑡.

Since 𝑓 ♯
0 (𝑡) = comp0(𝔽0(𝑓 )(𝑡)), it is easily seen that there is a consis-

tent forest 𝑡′ ∈𝔽
0 𝔽0(𝑓 )(𝑡) which satisfies the parity condition and has

Init(𝑡′) ∈ 𝐼. Conversely, given 𝑞 ∈ 𝑓 ♯
0 (𝑡) ∩ 𝐼, one can use the fact that

𝑓 ♯
0 (𝑡) = comp0(𝔽0(𝑓 )(𝑡)) to construct an accepting run of 𝒜 on 𝐹. The
argument for 𝑓 ♯

1 is similar.
To finish the proof, we have to show that the algebra M(𝒜) is reg-

ular.
For any given state 𝑞0 of 𝒜 , an automaton that recognises the set

of forests 𝑡 ∈ 𝔽0 M(𝒜) such that 𝑞0 ∈ comp0(𝑡) can be constructed
in a straightforward manner. For its semigroup, we take 𝑄 × 𝐷, with
the operation defined by (𝑞, 𝑛) + (𝑞′, 𝑛′) ∶= (𝑞 + 𝑞′, 𝑛) (the choice of
operation for the priorities does not really matter here). The prior-
ity mapping is given simply by projection onto the second argument,
while the sets of transitions 𝛥′

0 and 𝛥′
1 are defined as

𝛥′
0 ∶= {((𝑞, 𝑛), 𝑋) ∈ (𝑄 × 𝐷) × M(𝒜)0 | 𝑞 ∈ 𝑋}

and

𝛥′
1 ∶= {((𝑞, 𝑛), 𝑋, (𝑞′, 𝑛′)) ∈ (𝑄 × 𝐷) × M(𝒜)1 × (𝑄 × 𝐷)|(𝑞, 𝑛, 𝑞′) ∈ 𝑋}.

For the set of accepting states, we take {𝑞0} × 𝐷.
We can also construct, for every triple (𝑞0, 𝑛0, 𝑞′

0) ∈ 𝑄 × 𝐷 × 𝑄,
an automaton recognising the set of contexts 𝑡 ∈ 𝔽1 M(𝒜) such that
(𝑞0, 𝑛0, 𝑞′

0) ∈ comp1(𝑡). In this case, the construction is essentially sim-
ilar: for the semigroup, we take the set {0, 1}×𝑄×𝐷×𝒫(𝐷) extended
with an error value which we will denote ⊥. Intuitively, the first coor-
dinate specifies whether the automaton expects a forest or a context,
the second and third components are the expected state and priority
and the last component keeps track of the priorities encountered on
the path to the hole (it is empty if the automaton expects a forest).
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The operation on states is given by

(0, 𝑞, 𝑛, ∅) + (0, 𝑞′, 𝑛′, ∅) ∶= (0, 𝑞 + 𝑞′, 𝑛, ∅)
(1, 𝑞, 𝑛, 𝑃) + (0, 𝑞′, 𝑛′, ∅) ∶= (1, 𝑞 + 𝑞′, 𝑛, 𝑃)
(0, 𝑞, 𝑛, ∅) + (1, 𝑞′, 𝑛′, 𝑃) ∶= (1, 𝑞 + 𝑞′, 𝑛, 𝑃)

(in all other cases, the result is ⊥) and the transitions by

((1, 𝑞′
0, 𝑛, ∅),□) ∈ 𝛥′

0 for every 𝑛 ∈ 𝐷
((0, 𝑞, 𝑛, ∅), 𝑋) ∈ 𝛥′

0 if 𝑞 ∈ 𝑋

and

((1, 𝑞, 𝑛, 𝑃 ∪ {𝑛}), 𝑋, (1, 𝑞′, 𝑛′, 𝑃)) ∈ 𝛥′
1 if (𝑞, 𝑛, 𝑞′) ∈ 𝑋.

For the priority map, we take the priority of an element (0, 𝑞, 𝑛, 𝑃)
to be 𝑛, of (1, 𝑞, 𝑛, 𝑃) to be 1 (to ensure that the automaton accepts only
contexts) and of ⊥ (arbitarily) also 1. Finally, for the accepting states
we take those elements (1, 𝑞0, 𝑛, 𝑃) such that 𝑃 is nonempty and 𝑛0 is
the smallest element of 𝑃.

The automata recognising comp−1
𝒜,0(𝑋) and comp−1

𝒜,1(𝑋) can then
be constructed using closure under complementations and intersec-
tions.

We have shown the other direction, namely that for a regular lan-
guage 𝐿 we can construct a regular algebra recognizing 𝐿, thus prov-
ing Theorem 3.7.

3.2.1 Closure properties of regular algebras & their equational
definition

As the following theorem shows, the class of regular 𝜔-forest algebras
forms a pseudovariety. By an abstract result of Chen et al. (2016, The-
orem 4.12), this pseudovariety is specified by a system of equations
of “profinite 𝜔-forests”. This suggests possible future work in deter-
mining what such equations look like and describing the system that
defines regular algebras.

Theorem 3.9. The class of regular algebras is closed under subalgebras, ho-
momorphic images and finite products.
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Proof. Let us first show that a subalgebra 𝑆 of a regular algebra (𝐴, 𝛼),
i.e. a subset 𝑆 such that for every 𝑡 ∈ 𝔽𝑖𝑆, we have 𝛼𝑖(𝑡) ∈ 𝑆𝑖, is again
regular. Given an element 𝑎 ∈ 𝑆𝑖, the language 𝛼−1

𝑖 (𝑎) ⊆ 𝔽𝑖𝐴 is regu-
lar by assumption. We need to show that 𝛼−1

𝑖 (𝑎)∩𝔽𝑖𝑆 is regular, which
is easily seen, since 𝔽𝑖𝑆 ⊆ 𝔽𝑖𝐴 is recognised by the automaton which
rejects forests containing a label outside of 𝑆 and accepts all others.

Next, we need to show that given a surjective homomorphism
ℎ∶ (𝐴, 𝛼) ↠ (𝐵, 𝛽) with (𝐴, 𝛼) regular, the algebra (𝐵, 𝛽) is also reg-
ular. As is easily seen, we have 𝛽−1

𝑖 (𝑏) = 𝔽𝑖(ℎ)(𝛼−1
𝑖 (ℎ−1

𝑖 (𝑏))), which
is regular since it is an image under substitution of a finite union of
regular languages (since ℎ−1

𝑖 (𝑏) is finite).
Finally, we have to show that the final algebra 1 is regular (which

is obvious) and that given regular algebras (𝐴, 𝛼) and (𝐵, 𝛽), their
product is also regular. Let us denote the multiplication of the prod-
uct algebra 𝛾 ∶ 𝔽(𝐴 × 𝐵) → (𝐴 × 𝐵). Then the required inverse im-
age 𝛾−1

𝑖 (𝑎, 𝑏) equals (𝔽𝑖(𝜋1))−1(𝛼−1
𝑖 (𝑎)) ∩ (𝔽𝑖(𝜋2))−1(𝛽−1

𝑖 (𝑏)), where
𝜋1 ∶ 𝐴×𝐵 → 𝐴 and 𝜋2 ∶ 𝐴×𝐵 → 𝐵 are the projection homomorphisms.
Therefore, 𝛾−1

𝑖 (𝑎, 𝑏) is an intersection of inverse substitutions of regu-
lar languages, which is again regular.

3.3 The syntactic algebra

The usual notion of a syntactic congruence of a language 𝐿 and its
associated syntactic algebra might not be well-behaved when dealing
with infinite objects; for languages of infinite forests, the equivalence
obtained might fail to actually be a congruence. However, following
(Blumensath, 2018b), we can show that for regular languages, a uni-
versal recognizing algebra can be constructed and is, in fact, regular.

Definition 3.10. Given an algebra (𝐴, 𝛼), a congruence of (𝐴, 𝛼) is an
equivalence relation ∼ on the biset 𝐴 with the property that for both
sorts 𝑖 and every pair of forests 𝑡1, 𝑡2 ∈ 𝔽𝑖𝐴 with 𝑡1 ∼𝔽

𝑖 𝑡2, we have
𝛼𝑖(𝑡1) ∼𝑖 𝛼𝑖(𝑡2).

The following definitions are adapted from (Bojańczyk, 2015). They
can be naturally made fully formal if required.

Definition 3.11. For an algebra (𝐴, 𝛼), and a sort 𝑖 a (single-variable)
polynomial of sort 𝑖 is a forest (or a context) 𝑝 labelled by elements of
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𝐴 plus a single fresh label of sort 𝑖, which will be denoted 𝑥. The biset
of such polynomials will be denoted Pol((𝐴, 𝛼), 𝑖).

Given an element 𝑎 ∈ 𝐴𝑖, we define 𝑝(𝑎) to be the product, in
(𝐴, 𝛼), of the forest obtained by replacing each 𝑥 with 𝑎.

Definition 3.12. Let (𝐴, 𝛼) be an algebra and 𝐿 ⊆ 𝐴 its subset. The
syntactic equivalence of 𝐿 is the relation ∼𝐿 given by setting 𝑎1 ∼𝐿,𝑖 𝑎2 if
for both sorts 𝑗 and every polynomial 𝑝 ∈ Pol((𝐴, 𝛼), 𝑖)𝑗, either both
𝑝(𝑎1) and 𝑝(𝑎2) are in 𝐿𝑗 or neither is.

Lemma 3.13. For every finite algebra (𝐴, 𝛼) and 𝐿 ⊆ 𝐴, the syntactic equiv-
alence ∼𝐿 is a congruence.

Proof. Intuitively, replacing a product 𝛼𝑖(𝑡) by 𝛼𝑖(𝑡′) in a polynomial 𝑝
can be accomplished by replacing the individual labels of 𝑡, of which
there is only a finite number, by those of 𝑡′.

Suppose we have forests 𝑡, 𝑡′ ∈ 𝔽𝑖𝐴, and that 𝑡 (∼𝔽
𝐿)𝑖 𝑡′. Since

both forests have only finitely many distinct labels, there is a parti-
tion 𝐷1, … , 𝐷𝑛 of their domain 𝐷 and a sequence of pairs of elements
(𝑎1, 𝑎′

1), … , (𝑎𝑛, 𝑎′
𝑛) such that for every 𝑘, all the vertices from 𝐷𝑘 are

labelled by 𝑎𝑘 in 𝑡 and by 𝑎′
𝑘 in 𝑡′ and 𝑎𝑘 ∼𝐿,𝑖𝑘 𝑎′

𝑘, where 𝑖𝑘 ∈ {0, 1} is
the appropriate arity.

Let 𝑝 ∈ Pol(𝒜, 𝑖)𝑗 be a polynomial; we need to demonstrate that
[𝑝](𝛼𝑖(𝐹)) is in 𝐿𝑗 if and only if [𝑝](𝛼𝑖(𝐹′)) is. Define a sequence of
forests 𝑡0, … , 𝑡𝑛 by setting 𝑡0 ∶= 𝑡 and letting 𝑡𝑘+1 be the forest obtained
from 𝑡𝑘 by relabelling all the vertices in 𝐷𝑘+1 (which are labelled by
𝑎𝑘+1) by 𝑎′

𝑘+1. Then 𝑡𝑛 = 𝑡′. Also, define a sequence of polynomials
𝑝1, … , 𝑝𝑛, 𝑝𝑘 ∈ Pol(𝒜, 𝑖𝑘)𝑖, where 𝑝𝑘 is obtained by labelling 𝐷𝑘 in
𝑡𝑘 by the single variable of sort 𝑖𝑘, so that for 0 ≤ 𝑘 < 𝑛, we have
[𝑝𝑘+1](𝑎𝑘+1) = 𝛼𝑖(𝑡𝑘) and [𝑝𝑘+1](𝑎′

𝑘+1) = 𝛼𝑖(𝑡𝑘+1). As is easily seen, we
have

[𝑝](𝛼𝑖(𝑡𝑘)) = [𝑝]([𝑝𝑘+1](𝑎𝑘+1)) = [[𝑝](𝑝𝑘+1)](𝑎𝑘+1)

and
[𝑝](𝛼𝑖(𝑡𝑘+1)) = [𝑝]([𝑝𝑘+1](𝑎′

𝑘+1)) = [[𝑝](𝑝𝑘+1)](𝑎′
𝑘+1)

for every 0 ≤ 𝑘 < 𝑛 and since each 𝑎𝑘+1 is equivalent to 𝑎′
𝑘+1, the

element [𝑝](𝛼𝑖(𝑡𝑘)) is in 𝐿𝑗 if and only if [𝑝](𝛼𝑖(𝑡𝑘+1)) is. By transitivity,
[𝑝](𝛼𝑖(𝑡)) is in 𝐿𝑗 if and only if [𝑝](𝛼𝑖(𝑡′)) is.
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The central statement of this section is the following. The proof is
analogous to that of Blumensath (2018b).

Theorem 3.14. If 𝐿 ⊆ 𝔽𝛴 is a regular language, then ∼𝐿 is a congru-
ence on 𝔽𝛴 and the quotient algebra Synt(𝐿) ∶= 𝔽𝛴/∼𝐿 is regular and,
together with the quotient homomorphism 𝑝∼𝐿

∶ 𝔽𝛴 → Synt(𝐿), recognizes
𝐿. Moreover, it satisfies the usual universal property of syntactic algebras:
for every surjective homomorphism 𝜙∶ (𝔽𝛴, flat𝛴) ↠ (𝐴, 𝛼) which recog-
nises 𝐿, there is a unique homomorphism 𝑔 ∶ (𝐴, 𝛼) ↠ Synt(𝐿) such that
the following diagram commutes.

𝔽𝛴 Synt(𝐿)

𝐴

𝑝∼𝐿

𝜙 𝑔
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4 The logic EF

Our final goal is to characterise regular languages definable in the
logic EF (a fragment of CTL) by transfering the proof of Bojańczyk
and Idziaszek (2009) into our framework. Our definition of EF formu-
lae over an alphabet 𝛴 is taken from there.

Definition 4.1. The set of forest formulae over an alphabet 𝛴 is defined
inductively as follows.

1. For both sorts 𝑖 and every 𝑎 ∈ 𝛴𝑖, the atomic formula 𝑎 is a
forest formula.

2. If 𝜙 and 𝜓 are formulae, their disjunction 𝜙 ∨ 𝜓 is also a for-
mula. Likewise, if 𝜙 is a formula, so is its negation ¬𝜙.

3. For every formula 𝜙, EF 𝜙 is also a formula. Here, EF stands
for exists finally.

Such formulae will be interpreted over forests; for contexts, we
define context formulae over 𝛴 to be simply forest formulae over 𝛴□.

Our definition of satisfaction of a formula 𝜙 by a tree 𝑡 is standard.

1. A tree 𝑡 satisfies an atomic formula 𝑎 if the root label is 𝑎.

2. The semantics of ∨ and ¬ are standard.

3. A formula of the form EF 𝜙 is satisfied by 𝑡 if a proper subtree
of 𝑡 satisfies 𝜙.

For forests with more than one tree, however, we change the defi-
nition of Bojańczyk and Idziaszek (2009) slightly.

1. No atomic formula 𝑎 is satisfied by a forest 𝑡 with at least two
trees.

3. A formula of the form EF 𝜙 is satisfied by such a forest 𝑡 simply
if there is a subtree of 𝑡 satisfying 𝜙.

Intuitively, according to our definition forests behave as trees with
an “invisible” root vertex. In effect, a formula of the form EF 𝜓 is true
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over a forest according to our semantics if and only if EF∗ 𝜓 is true
over the same forest according to Bojańczyk and Idziaszek (2009).

We also define the formulae EF∗ 𝜙, AG 𝜙 (always globally) and
AG∗ 𝜙 as abbreviations for 𝜙 ∨ EF 𝜙, ¬EF ¬𝜙 and 𝜙 ∧ AG 𝜙 respec-
tively.

As in (Bojańczyk and Idziaszek, 2009), we define a notion of bisim-
ilarity of forests which corresponds to equivalence under the logic EF.

Definition 4.2. Given an alphabet 𝛴, the relation ∼EF of EF-bisimilarity
can be defined on trees in 𝕋0𝛴 as the greatest relation1 satisfying the
following properties.

1. If 𝑠 ∼EF 𝑡, then the root labels of 𝑠 and 𝑡 are the same.

2. If 𝑠 ∼EF 𝑡, then for every proper subtree 𝑠|𝑣 of 𝑠 (i.e. such that
|𝑣| ≥ 2), there is a proper subtree 𝑡|𝑤 of 𝑡 such that 𝑠|𝑣 ∼EF 𝑡|𝑤.
Similarly, for every proper subtree 𝑡|𝑣 of 𝑡, there is a proper sub-
tree 𝑠|𝑤 of 𝑤 such that 𝑠|𝑤 ∼EF 𝑡|𝑣.

Similarly, for each 𝑛 ∈ ℕ, we have the relation ∼EF(𝑛) of 𝑛-bisimila-
rity, which can be defined by induction as follows:

1. If the root labels of 𝑠 and 𝑡 are the same, then 𝑠 ∼EF(0) 𝑡.

2. If the root labels of 𝑠 and 𝑡 are the same and for every proper
subtree 𝑠|𝑣 of 𝑠 there is a proper subtree 𝑡|𝑤 of 𝑡 such that 𝑠|𝑣 ∼EF(𝑛)
𝑡|𝑤 and vice versa, then 𝑠 ∼EF(𝑛+1) 𝑡.

To extend the definition of bisimilarity to forests with more than
one tree, we simply say that two such forests 𝑠 and 𝑡 are bisimilar if
each subtree 𝑠|𝑣 of 𝑠 has a bisimilar counterpart 𝑡|𝑤 and vice versa,
and analogously for 𝑛-bisimilarity – two forests are said to be (𝑛 + 1)-
bisimilar if every 𝑠|𝑣 has a 𝑛-bisimilar counterpart 𝑡|𝑤 and vice versa
(we consider all proper forests to be 0-bisimilar).

Two contexts 𝑠, 𝑡 ∈ 𝔽1𝛴 are then said to be bisimilar if they are
bisimilar as forests over 𝛴□.

1. This relation exists, since the defining properties are satisfied by the empty re-
lation and are preserved by taking arbitrary unions.
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There is a well-known characterisation of bisimilarity in game-
theoretic terms; the EF game is played on a pair of forests 𝑡0, 𝑡1 ∈ 𝔽0𝛴
by two players, Spoiler and Duplicator. In each round, Spoiler selects
a forest 𝑡𝑖 and a subtree 𝑡𝑖|𝑤 of 𝑡𝑖 (a proper subtree when 𝑡𝑖 is a tree); if
such choice cannot be made, i.e. if 𝑡𝑖 is a tree consisting only of a root,
Spoiler loses. Otherwise, Duplicator must counter Spoiler’s move by
selecting a (proper) subtree 𝑡1−𝑖|𝑣 of 𝑡1−𝑖 such that the root labels of
𝑡𝑖|𝑤 and 𝑡1−𝑖|𝑣 agree. If there is no such choice, Duplicator loses; oth-
erwise, the game advances into the next round, which is played on
the pair 𝑡𝑖|𝑤, 𝑡1−𝑖|𝑣. The forests 𝑡0, 𝑡1 are then said to be bisimilar if Du-
plicator has a winning strategy for this pair, i.e. if each play either
lasts for infinitely many rounds or ends with Spoiler losing. It is eas-
ily seen that if we add a further condition, namely that if 𝑡0 and 𝑡1 are
trees, then their root labels match, this definition becomes equivalent
to Definition 4.2. Similarly, 𝑛-bisimilarity has a game-theoretic defini-
tion obtained by requiring Duplicator to last for 𝑛 rounds instead of
infinitely many.

In the following, we will call languages 𝐿 such that 𝐿1 = ∅ pure
forest languages. Similarly, a context language is a language 𝐿 such that
𝐿0 = ∅.

We recall that a forest (context) 𝑡 ∈ 𝔽𝑖𝛴 is regular if it has, up to iso-
morphism, only finitely many distinct subtrees. A well-known prop-
erty of regular languages is that they are entirely determined by the
regular forests they contain, much like regular languages of 𝜔-words
are determined by the ultimately periodic words they contain. This
fact will be significant for the proof of the following lemma.

Lemma 4.3. Let (𝐴, 𝛼) be a regular algebra and ℎ∶ 𝛴 → 𝐴 a map such that
the homomorphism ℎ♯ ∶ (𝔽𝛴, flat𝛴) ↠ (𝐴, 𝛼) is surjective. Assume that ℎ♯

0
and ℎ♯

1 are invariant under EF-bisimarity (i.e. ℎ♯
𝑖 maps two bisimilar forests

from 𝔽𝑖𝛴 to the same value) and that (𝐴, 𝛼) satisfies the equation

𝑣𝜋 ⋅ 𝑎 = (𝑣 ⊕ (𝑣𝜋 ⋅ 𝑎))𝜔 (4.1)

for all 𝑣 ∈ 𝐴1, 𝑎 ∈ 𝐴0. Then for every 𝑎 ∈ 𝐴0, there is a forest EF formula
𝜙𝑎 such that a forest 𝑡 ∈ 𝔽0𝛴 satisfies 𝜙𝑎 if and only if ℎ♯

0(𝑡) = 𝑎.

Proof. We proceed as in (Bojańczyk and Idziaszek, 2009). We first ob-
serve some facts about the structure of the algebra 𝐴.
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Since ℎ♯
0 is invariant under bisimilarity, it follows that the horizon-

tal composition ⊕ on 𝐴0 is commutative; indeed, we have

𝑎 ⊕ 𝑏 = ℎ♯
0(𝑠) ⊕ ℎ♯

0(𝑡) = ℎ♯
0(𝑠 ⊕ 𝑡)

for suitable forests 𝑠, 𝑡 ∈ 𝔽0𝛴 and the forests 𝑠⊕𝑡 and 𝑡⊕𝑠 are bisimilar.
In the same manner, we can observe that ⊕ is idempotent and that the
following equation is satisfied for every 𝑎 ∈ 𝐴0 and 𝑐 ∈ 𝐴1.

(𝑐 ⋅ 𝑎) ⊕ 𝑎 = 𝑐 ⋅ 𝑎 (4.2)

Next, Bojańczyk and Idziaszek (2009) define a reachability rela-
tion on 𝐴0 by calling an element 𝑎 ∈ 𝐴0 reachable from 𝑏 ∈ 𝐴0 if there
is a 𝑐 ∈ 𝐴1 with 𝑎 = 𝑐 ⋅ 𝑏. To mirror this definition in our setting, how-
ever, we have to add another condition, since in this work, we do not
allow contexts in which the hole vertex is a root. We also choose to
make reachability reflexive by definition. Therefore, we define 𝑎 to be
reachable from 𝑏 if either

1. 𝑎 is equal to 𝑏, or

2. there exists an element 𝑐 ∈ 𝐴1 such that 𝑎 = 𝑐 ⋅ 𝑏, or

3. 𝑎 = 𝑏 ⊕ 𝑎′ for some 𝑎′ ∈ 𝐴0.

Note that the other two naturally expected cases, when 𝑎 is of the form
𝑎′ ⊕ 𝑏 or 𝑎′ ⊕ 𝑏 ⊕ 𝑎″, are subsumed by case 3, since ⊕ is commutative.

It is easily seen that reachability is transitive. We also need to show
that it is antisymmetric, and hence a partial order. Therefore, assume
that 𝑎, 𝑏 ∈ 𝐴0 are reachable from each other. If 𝑎 = 𝑐 ⋅ 𝑏 and 𝑏 = 𝑑 ⋅ 𝑎,
we have

𝑎 = 𝑐 ⋅ 𝑏 = 𝑐 ⋅ 𝑑 ⋅ 𝑎 = (𝑐 ⋅ 𝑑 ⋅ 𝑎) ⊕ (𝑑 ⋅ 𝑎) = 𝑎 ⊕ (𝑑 ⋅ 𝑎) = (𝑑 ⋅ 𝑎) = 𝑏

as in (Bojańczyk and Idziaszek, 2009). In the other cases, the proof is
similar, e.g. if 𝑎 = 𝑐 ⋅ 𝑏 and 𝑏 = 𝑎 ⊕ 𝑏′, we have

𝑎 = 𝑐 ⋅ 𝑏 = 𝑐 ⋅ (𝑎 ⊕ 𝑏′) = 𝑐 ⋅ (𝑎 ⊕ 𝑏′) ⊕ (𝑎 ⊕ 𝑏′) = 𝑎 ⊕ 𝑎 ⊕ 𝑏′ = 𝑎 ⊕ 𝑏′ = 𝑏,

while if 𝑎 = 𝑏, the proof is trivial.
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Exactly as in (Bojańczyk and Idziaszek, 2009), we can also show
that there is a unique element ⊥ reachable from every 𝑎 ∈ 𝐴0, the
minimal element of 𝐴0. An element 𝑏 ∈ 𝐴0, 𝑏 ≠ ⊥ is called subminimal
if only 𝑏 and ⊥ are reachable from 𝑏.

After these remarks, we are able to prove the lemma by induction
on |𝐴0|. We take 𝜙𝑎 to be an arbitrary tautology if |𝐴0| = 1. For the
induction step, we distinguish several cases.

1. If 𝑎 = ⊥, we simply take the conjunction of the negations of
the formulae obtained in the other cases.

2. If 𝑎 is the unique subminimal element, we will obtain the re-
quired formula 𝜙𝑎 by the construction shown below.

3. If 𝑎 is subminimal and there are other subminimal elements,
or if 𝑎 is neither minimal or subminimal, we will take the quo-
tient of 𝐴 by an appropriate congruence and proceed by induc-
tion on this smaller algebra; this step will also be described be-
low.

(2.) To construct the formula 𝜙𝑎 in case 2, we observe that thanks
to case 3, we have a formula 𝜙𝑓 defining (ℎ♯)−1

0 (𝑓 ) for every 𝑓 in the
set 𝐹 ∶= 𝐴0 − {⊥, 𝑎}; this is the set of elements above 𝑎 in the reacha-
bility relation. Hence, we also have the formula 𝜙𝐹 ∶= ⋁𝑓 ∈𝐹 𝜙𝑓 , which
charaterises the set (ℎ♯)−1

0 (𝐹).
Next, we define a partition of the vertices of a tree 𝑡 into components

by saying that two vertices 𝑥 and 𝑦 belong to the same component if
𝑡|𝑥 is a subtree of 𝑡|𝑦 and vice versa. Using the same arguments as in
(Bojańczyk and Idziaszek, 2009), we can observe:

1. If 𝑡 is a regular forest, it has only finitely many components.

2. If 𝑥 and 𝑦 are in the same component, the trees 𝑡|𝑥 and 𝑡|𝑦 are
bisimilar; hence we can define the type of a component [𝑥] to be
the value ℎ♯

0(𝑡|𝑥).

3. We call a tree 𝑡 prime if it has exactly one component whose
type lies outside of 𝐹. In such a case, this component is necessar-
ily the root component, by the definition of reachability. Since
every component is either a singleton one, with a single vertex,
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or a proper one, with infinitely many vertices, we analogously
speak about either singleton or proper prime trees.

The profile of a prime tree 𝑡 is a pair in 𝒫(𝐹)×(𝛴∪ +𝒫(𝛴∪)) (recall
that 𝛴∪ is the union of the components of 𝛴); the first component
stores the set of types of components of 𝑡 which have type in 𝐹, the
second one stores the labels of vertices in the root component – either
a single label if the tree is singleton prime, or a set of labels (possibly
a singleton set) if the tree is proper prime.

Again, we make some observations, whose proofs can be lifted
directly from (Bojańczyk and Idziaszek, 2009).

1. If two prime trees 𝑠, 𝑡 have the same profile, then ℎ♯
0(𝑠) = ℎ♯

0(𝑡).
Hence, for 𝑏 ∈ 𝐴0 we can define the set 𝑃𝑏 of profiles of prime
trees 𝑡 with ℎ♯

0(𝑡) = 𝑏.

2. For every profile 𝑝, there is an EF formula 𝜙𝑝 which is satisfied
by every prime tree with profile 𝑝 and such that any regular
forest which satisfies 𝜙𝑝 has type 𝑏 if 𝑝 ∈ 𝑃𝑏 and ⊥ otherwise.

Using these facts, we can construct the formula 𝜙𝑎. Observe that
the formula AG 𝜙𝐹 is satisfied by a regular forest 𝑡 precisely if 𝑡 does
not have a prime subtree. Hence we can take 𝜙𝑎 to be the disjunction
of the formulae (AG 𝜙𝐹) ∧ 𝜙𝑎,nonprime and (¬AG 𝜙𝐹) ∧ 𝜙𝑎,prime, where
𝜙𝑎,nonprime characterizes forests without a prime subtree and 𝜙𝑎,prime
those that have a prime subtree. We can take 𝜙𝑎,nonprime to be

(¬ ⋁
𝐺⊆𝐹,∑ 𝐺=⊥

⋀
𝑔∈𝐺

EF 𝜙𝑔) ∧ ( ⋁
𝐺⊆𝐹,⨁ 𝐺=𝑎

⋀
𝑔∈𝐺

EF 𝜙𝑔),

where ⨁{𝑔1, … , 𝑔𝑛} denotes the sum 𝑔1 ⊕ ⋯ ⊕ 𝑔𝑛, which does not de-
pend on either order or multiplicity since ℎ♯ is bisimulation invariant,
and 𝜙𝑎,prime to be

(¬ ⋁
𝑝∉𝑃𝑎

EF 𝜙𝑝) ∧ ( ⋀
𝑓 ∈𝐹,𝑓 ⊕𝑎=⊥

¬EF 𝜙𝑓 ) ∧ (AG ⋀
𝑐∉𝐶

(𝑐 → AG 𝜙𝐹)),

where 𝐶 ⊆ 𝛴1 is the set of labels 𝑐 such that ℎ♯
1(𝑐) ⋅ 𝑎 = 𝑎.

The argument that a regular forest 𝑡 satisfies the formula 𝜙𝑎 pre-
cisely if ℎ♯

0(𝑡) = 𝑎 remains the same as in (Bojańczyk and Idziaszek,
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2009). The proof of case 2 is then finished by noting that both (ℎ♯
0)−1(𝑎)

and {𝑡 ∈ 𝔽0𝛴|𝑡 satisfies 𝜙𝑎} are regular languages (considering their
context sorts to be empty); the first one by regularity of (𝐴, 𝛼), the
second one since EF is a fragment of the logic MSO; since these lan-
guages contain the same regular forests, they are actually identical.

(3.) For case 3, suppose that the element 𝑎 is neither minimal nor
subminimal, or that it is one of at least two subminimal elements. Let
𝑀 ⊆ 𝐴0 be the set of elements from which 𝑎 is not reachable and
define an equivalence relation ≈ on 𝐴 by setting 𝑏1 ≈0 𝑏2 if either
𝑏1 = 𝑏2 or if both 𝑏1 and 𝑏2 belong to 𝑀.

Note that ≈0 is an equivalence relation which in either of the two
cases identifies at least two elements of 𝐴0; ⊥ and the subminimal
one “between” 𝑎 and ⊥ if 𝑎 is neither minimal nor subminimal and ⊥
and the other subminimal elements if 𝑎 is subminimal but not unique.
On the other hand, the element 𝑎 is only identified with itself. Thus it
suffices to extend ≈0 to a congruence ≈ on 𝐴; then we can form the
quotient (𝐴, 𝛼)/≈ and apply the induction hypothesis to ℎ♯ postcom-
posed with the quotient homomorphism and the equivalence class of
𝑎.

We say that an element 𝑐 ∈ 𝐴1 is reachable from 𝑏 ∈ 𝐴0 if 𝑐 is of
the form 𝛼1(𝑡) for some context 𝑡 ∈ 𝔽1𝐴 which contains a leaf labelled
by 𝑏. Define the set 𝑀′ ⊆ 𝐴1 to contain those elements 𝑐 ∈ 𝐴1 which
are reachable from some element 𝑏 ∈ 𝑀 and put 𝑐1 ≈1 𝑐2 if either
𝑐1 = 𝑐2 or both 𝑐1 and 𝑐2 belong to 𝑀′.

We have to verify that ≈ is a congruence. Therefore, suppose we
have 𝑠 ≈𝔽

0 𝑡 for forests 𝑠, 𝑡 ∈ 𝔽0𝐴. If 𝑠 = 𝑡, the statement is trivial. Oth-
erwise, suppose there is a leaf 𝑣 such that 𝑠(𝑣) ≠ 𝑡(𝑣). Then 𝑎 cannot
be reached from either 𝑠(𝑣) or 𝑡(𝑣). Hence, 𝑎 cannot be reachable from
𝛼0(𝑠) or 𝛼0(𝑡) either. Finally, suppose there is an internal vertex 𝑣 such
that 𝑠(𝑣) ≠ 𝑡(𝑣). Then 𝑠(𝑣) and 𝑡(𝑣) are reachable from an element of
𝑀, i.e. there is a context 𝑠′ ∈ 𝔽1𝐴 whose product is 𝑠(𝑣) and has a
leaf labelled by an element of 𝑀 and an analogous context 𝑡′ ∈ 𝔽1𝐴
for 𝑡(𝑣). Let 𝜎 be the forest obtained from 𝔽0(sing𝐴)(𝑠) by relabelling
𝑣 by 𝑠′. Then we have 𝛼0(𝑠) = 𝛼0(𝔽0(𝛼)(𝜎)) = 𝛼0(flat𝐴,0(𝜎)). This
value is reachable from an element of 𝑀 and therefore contained in
𝑀. Similarly, we have 𝛼0(𝑡) ∈ 𝑀. Hence, 𝛼0(𝑠) ≈0 𝛼0(𝑡).

35



4. The logic EF

We also need to show that ≈ is respected by 𝛼1. Suppose we have
𝑠 ≈𝔽

1 𝑡. Again, if 𝑠 = 𝑡, the statement is trivial. If there is a leaf 𝑣 such
that 𝑠(𝑣) and 𝑡(𝑣) belong to 𝑀, then 𝛼1(𝑠) and 𝛼1(𝑡) belong to 𝑀′ by
definition. Finally, if there is an internal vertex 𝑣 such that 𝑠(𝑣) and
𝑡(𝑣) belong to 𝑀′, we can replace them by a suitable forest containing
an element of 𝑀. Thus, their products again belong to 𝑀′.

Theorem 4.4. A regular pure forest language 𝐿 ⊆ 𝔽𝛴 is definable by an
EF formula if and only if it is closed under EF bisimilarity and its syntactic
algebra satisfies equation 4.1.

Proof. (⇐) If 𝐿 has the required properties, we can apply the previous
lemma to its syntactic algebra and homomorphism, the invariance of
which follows easily from closure of 𝐿 under bisimilarity.

(⇒) Conversely, a language specified by a formula 𝜙 is closed un-
der bisimilarity. To show that Synt(𝐿) satisfies equation 4.1, we pro-
ceed as in (Bojańczyk and Idziaszek, 2009). Namely, let 𝑚 ∈ ℕ be
such that 𝑣𝑚 is idempotent for every 𝑣 ∈ Synt(𝐿)1 (such an 𝑚 exists
since Synt(𝐿) is finite) and let 𝑚 ⋅ 𝑛 ∈ ℕ be a multiple of 𝑚 greater
than the EF-nesting depth of the formula defining 𝐿. We will show
that the equation

𝑣𝑚⋅𝑛 ⋅ 𝑎 = (𝑣 ⊕ (𝑣𝑚⋅𝑛 ⋅ 𝑎))𝜔

holds for all 𝑣, 𝑎. By definition, we have to show that for every context
𝑐 ∈ 𝔽1𝛴, every forest 𝑡 ∈ 𝔽0𝛴 and every forest polynomial 𝛷 of sort
𝑖, the forest [𝛷](𝑐𝑚⋅𝑛 ⋅ 𝑡) is in 𝐿𝑖 if and only if [𝛷]((𝑐 ⊕ (𝑐𝑚⋅𝑛 ⋅ 𝑡))𝜔) is.

To do this, it is sufficient to show that the two forests are (𝑚 ⋅ 𝑛)-
bisimilar, since then the formula 𝜙 cannot distinguish them. It is easily
seen that (𝑚 ⋅ 𝑛)-bisimilarity is a congruence. Hence it is actually suf-
ficient to note that 𝑐𝑚⋅𝑛 ⋅ 𝑡 and (𝑐 ⊕ (𝑐𝑚⋅𝑛 ⋅ 𝑡))𝜔 are (𝑚 ⋅ 𝑛)-bisimilar,
which is readily seen.

The same result, however, does not hold for languages contain-
ing contexts. Intuitively, in a context, the path to the hole becomes
distinguishable. We discuss a counterexample next.

Lemma 4.5. Let 𝑠, 𝑡 ∈ 𝔽1𝛴 be two EF-bisimilar contexts. Then the paths
to the hole in 𝑠 and 𝑡 have the same length and are marked by the same labels
in the same order.
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Proof. We will first show that the path to the hole in 𝑡 is at least as
long as in 𝑠. Let 𝑣1, … , 𝑣𝑛 be the path in 𝑠. Then 𝑡 has a subtree 𝑡|𝑤1
bisimilar to 𝑠|𝑣1. Since 𝑠|𝑣1 contains the hole of 𝑠, 𝑡|𝑤1 must necessarily
contain the hole of 𝑡. Similarly, the tree 𝑡|𝑤1 must contain a proper
subtree 𝑡|𝑤2 bisimilar to 𝑠|𝑣2 and this 𝑡|𝑤2 again must contain the hole
vertex. Continuing this way, we obtain 𝑛 distinct vertices 𝑤1, … , 𝑤𝑛 on
the path to the hole in 𝑡.

Since bisimilarity is symmetric, it follows that the paths have the
same length. To see that they have the same labels in the same order,
note that if 𝑣1, … , 𝑣𝑛 is again the path to the hole in 𝑠, the subtree 𝑡′ of
𝑡 bisimilar to 𝑠|𝑣𝑘 must be rooted at the vertex at depth 𝑘, otherwise
𝑠|𝑣𝑘 and 𝑡′ would differ in the lengths of their paths to the hole.

Consider now the alphabet 𝐴 with 𝐴0 = 𝐴1 = {𝑎} and the lan-
guage 𝐿 ⊆ 𝔽𝐴 such that 𝐿0 is empty and 𝐿1 contains those contexts 𝑡
such the length of the path to the hole is odd. This language is regu-
lar; an automaton recognizing 𝐿 can be constructed by taking 𝑄 to be
the following semigroup on the set {e, o, p, ⊥} (representing “even”,
“odd”, “plain” and “error”):

+ e o p ⊥
e ⊥ ⊥ e ⊥
o ⊥ ⊥ o ⊥
p e o p ⊥
⊥ ⊥ ⊥ ⊥ ⊥

We add the transitions (e,□) and (p, 𝑎) to 𝛥0 and (e, 𝑎, o), (o, 𝑎, e)
and (p, 𝑎, p) to 𝛥1, with the set of accepting states 𝐼 = {o} and the
priority mapping 𝛺(⊥) = 𝛺(p) = 0 and 𝛺(o) = 𝛺(e) = 1.

By the above lemma, the language 𝐿 is invariant under bisimilarity
of contexts. Its syntactic algebra also satisfies Equation 4.1, since all
forests 𝑠, 𝑡 ∈ 𝔽0𝐴 are language-equivalent; replacing 𝑠 by 𝑡 within a
forest-sorted polynomial does not change anything, since 𝐿0 is empty,
and replacing 𝑠 by 𝑡 in a context-sorted polynomial does not change
the length of the path in the resulting context.

However, the set 𝐿1 ⊆ 𝔽1𝐴 cannot be specified by a formula of EF,
as the following lemma shows.
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Lemma 4.6. For every context formula 𝜙 over 𝐴, there are either finitely or
cofinitely many natural numbers 𝑛 ≥ 1 such that the context 𝑎𝑛□ satisfies
𝜙.

Proof. By induction on 𝜙. The only interesting case is when 𝜙 is of the
form EF 𝜓 for some formula 𝜓. If some context 𝑎𝑛□ satisfies 𝜓, then
𝑎𝑛+𝑘□ satisfies 𝜙 for every 𝑘 ≥ 1. If no context 𝑎𝑛□ satisfies 𝜓, we need
to consider if□ (a plain forest over 𝐴□) satisfies 𝜓. If it does, then every
context 𝑎𝑛□ satisfies 𝜙; if not, then no such context can satisfy 𝜙.

It would be desirable to have a characterisation similar to Theorem
4.4 for arbitrary regular languages, as the restriction to pure forest lan-
guages is unnatural in our setting. There seem to be several directions
in which future work could proceed.

First, we could search for additional equations to impose on the
syntactic algebra. In general, this might be a part of discovering an
equational characterisation of bisimilarity invariance of algebras – if,
as suggested by Bojańczyk and Idziaszek (2009), we define an algebra
to be invariant if every language it recognises is invariant, then the
class of invariant algebras is easily seen to be a pseudovariety.

However, as Lemma 4.5 shows, contexts and bisimilarity might
be somewhat “incompatible” notions. Another solution might be to
enrich our algebra, for example by allowing contexts in which the
hole might occur multiple times. We intend to explore this approach
in the future as well.
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5 Conclusion

We have introduced a basic algebraic framework for recognisability
of infinite forests. We have defined the basic contepts dealing with
infinite forests, we have described the monadic structure on the con-
structed functor and we have given a presentation of the intended
algebraic structures as Eilenberg-Moore algebras for the monad.

We have specified the class of algebras which as recognisers ex-
actly correspond to regular languages and we have shown that for
regular languages, regular syntactic algebras exist.

We have also given a characterisation of definability of regular lan-
guages in the logic EF in the special case of pure forest languages. This
result, however, does not carry over for general regular languages, as
shown by a simple counterexample we have described.

Potential directions of future work include finding equations char-
acterising the pseudovariety of regular algebras and invariance of al-
gebras under EF-bisimilarity. The definition of 𝜔-forest algebras might
also be enriched to lend a more well-behaved notion of context bisim-
ilarity and subsequently better characterisations.
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A Technical results

A.1 Formal definition of the flattening map

Let 𝑆 be a biset and suppose we have a forest 𝜎 ∈ 𝔽0𝔽𝑆. Our aim
is to formally define the forest flat𝑆,0(𝜎) and to prove that the maps
obtained this way form a natural transformation satisfying the laws
of the multiplication map of a monad.

To construct the forest flat𝑆,0(𝜎), we may observe that the vertices
of flat𝑆,0(𝜎) should be in direct correspondence with those of the indi-
vidual forests 𝜎(𝑤), with the exception of the holes of contexts, which
should be replaced by the roots of the forests following in 𝜎 . There-
fore, we will proceed by constructing a bijection between the domain
of flat𝑆,0(𝜎) and the disjoint union of the domains of the forests 𝜎(𝑤),
minus the holes. We will use this bijection to transfer the labels and
prove the required properties.

First, given a forest 𝑠 over some biset 𝑇, define Size(𝑠) ∶= | Root(𝑠)|,
i.e. the number of trees in 𝑠. Also, given a context 𝑠 ∈ 𝔽1𝑇, denote by
PreHole(𝑠) the vertex 𝑤 ∈ Dom(𝑠) directly preceeding Hole(𝑠).

Now, given the forest 𝜎 , we will introduce some notation. For a
vertex 𝑤 ∈ Dom(𝜎), we will define the set Dom(𝜎, 𝑤) as follows.

Dom(𝜎, 𝑤) ∶=
⎧{
⎨{⎩

Dom(𝜎(𝑤)) if 𝑤 ∈ Leaf(𝜎)
Dom(𝜎(𝑤)) − {Hole(𝜎(𝑤))} if 𝑤 ∈ Int(𝜎)

We will construct an injection ℎ∶ ∐𝑤∈Dom(𝜎) Dom(𝜎, 𝑤) → ℕ+

and prove that the range of ℎ is a forest domain; the intended bijection
will then be obtained simply by restricting the codomain.

How should this map ℎ behave? As noted before, the vertices of
a forest 𝜎(𝑤⟨𝑛⟩) are appended to the vertex preceeding the hole of
𝜎(𝑤); this suggests that ℎ(𝑤, 𝑣) should be defined by recursion on 𝑤.
However, if a vertex 𝑤 of 𝜎 has a nonzero number of siblings on the
left, the vertices of 𝜎(𝑤) also have to be shifted in the first element
by an appropriate number. Likewise, if 𝜎(𝑤) is a context, the left sib-
lings of the hole vertex introduce additional shifts to the roots of the
appended forests, while right siblings in general have to be shifted
themselves.

41



A. Technical results

To better keep track of the individual shiftings, we will actually
define ℎ by double recursion. We distinguish three cases. For roots of
forests labelling root vertices of 𝜎 , the values for shifts are straightfor-
ward; we simply set

ℎ(⟨𝑚⟩, ⟨𝑛⟩) ∶= ⟨𝑛 + 𝑠⟩,

where 𝑠 ∶= ∑𝑘<𝑚 Size(𝜎(⟨𝑘⟩)).
Suppose we already know where a parent of a vertex 𝑣 inside a

forest 𝜎(𝑤) maps to. If 𝑣 is not a right sibling of the hole vertex, its
value stays the same. If it is, it has to be shifted by the total number of
trees that should be in the place of the hole minus one (since the hole
itself disappears). Therefore, we set

ℎ(𝑤, 𝑣⌢⟨𝑛⟩) ∶=
⎧{{
⎨{{⎩

ℎ(𝑤, 𝑣)⌢⟨𝑛⟩ if 𝑣⟨𝑛⟩ is not a right sibling of
Hole(𝜎(𝑤))

ℎ(𝑤, 𝑣)⌢⟨𝑛 − 1 + 𝑠⟩ otherwise,

where 𝑠 ∶= ∑𝑤⌢⟨𝑘⟩∈Dom(𝜎) Size(𝜎(𝑤⟨𝑘⟩)) (recall that 𝑤⌢𝑣 denotes the
concatenation of 𝑤 and 𝑣).

It remains to calculate the shift for roots that should replace a hole
in a forest above. For this, we define

ℎ(𝑤⟨𝑚⟩, ⟨𝑛⟩) ∶= ℎ(𝑤, PreHole(𝜎(𝑤)))⌢⟨𝑛 + 𝑘 + 𝑠⟩,

where PreHole(𝜎(𝑤)) = 𝑣⟨𝑘⟩ for some 𝑣 and 𝑠 ∶= ∑ℓ<𝑚 Size(𝜎(𝑤⟨ℓ⟩).
Using these definitions, it is now straightforward to prove by dou-

ble induction that ℎ is injective and its image is a valid forest domain.
Considering now ℎ as a bijection ℎ𝜎 ∶ ∐𝑤∈Dom(𝜎) Dom(𝜎, 𝑤) → Im(ℎ),
where the subscript 𝜎 is a reminder of the dependence of ℎ on the ac-
tual forest, we can define the forest flat𝑆,0(𝜎) ∈ 𝔽0𝑆 as (Im(ℎ𝜎), ℓ0, ℓ1),
where both labellings can be defined by the same formula,

ℓ𝑖(𝑤) ∶= 𝜎(𝜋1(ℎ−1
𝜎 (𝑤)))(𝜋2(ℎ−1

𝜎 (𝑤)).

We also need to define the map flat𝑆,1 ∶ 𝔽1𝔽𝑆 → 𝔽1𝑆. This can be
easily reduced to the nullary case: let 𝜄 ∶ 𝑆 → 𝑆□ be the obvious inclu-
sion map. We will write ○ ∈ 𝑆□

0 for the new label added to 𝑆 to distin-
guish it from the hole □ ∈ (𝑆□)□0 . For a context 𝜎 ∈ 𝔽1𝔽𝑆, denote by
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𝜎 ′ ∈ 𝔽0𝔽(𝑆□) the forest obtained from 𝔽1(𝔽(𝜄))(𝜎) by relabelling the
hole vertex with the forest sing𝑆□,0(○). The forest flat𝑆□,0(𝜎 ′) is then
a valid context over 𝑆 and can be defined as the result of flat𝑆,1(𝜎).

It is easily verified that the family (flat𝑆,0, flat𝑆,1)𝑆 forms a nat-
ural transformation flat ∶ 𝔽2 → 𝔽. Likewise, the triangle identities
flat ∘(sing 𝔽) = 1𝔽 = flat ∘(𝔽 sing) can be directly established.

It remains to prove associativity, i.e. the commutativity of the fol-
lowing diagram.

𝔽3 𝔽2

𝔽2 𝔽

flat 𝔽

𝔽 flat flat

flat

Suppose we have a forest 𝑇 ∈ 𝔽0𝔽𝔽𝑆. Consider the maps

𝑓 , 𝑔 ∶ ∐
𝑤∈Dom(𝑇)

∐
𝑣∈Dom(𝑇,𝑤)

Dom(𝑇(𝑤), 𝑣) → ℕ+

which we define by setting 𝑓 (𝑤, 𝑣, 𝑢) ∶= ℎflat𝔽𝑆,0(𝑇)(ℎ𝑇(𝑤, 𝑣), 𝑢) and
𝑔(𝑤, 𝑣, 𝑢) ∶= ℎ𝔽0(𝔽(flat𝑆))(𝑇)(𝑤, ℎ𝑇(𝑤)(𝑣, 𝑢)). It is easily seen that the maps
correspond to the two ways of flattening 𝑇 as follows.

1. The image of 𝑓 equals the domain of flat𝑆,0(flat𝔽𝑆,0(𝑇)) and for
every (𝑤, 𝑣, 𝑢), we have

𝑇(𝑤)(𝑣)(𝑢) = flat𝑆,0(flat𝔽𝑆,0(𝑇))(𝑓 (𝑤, 𝑣, 𝑢)),

and similarly,

2. The image of 𝑔 equals the domain of flat𝑆,0(𝔽0(flat𝑆)(𝑇)) and
for every (𝑤, 𝑣, 𝑢), we have

𝑇(𝑤)(𝑣)(𝑢) = flat𝑆,0(𝔽0(flat𝑆)(𝑇))(𝑔(𝑤, 𝑣, 𝑢)).

However, by triple induction, we can show that 𝑓 (𝑤, 𝑣, 𝑢) = 𝑔(𝑤, 𝑣, 𝑢),
establishing the required equality.

A.2 Definitions of common forest operations

Using the general flattening operation, we can define the particular
operations mentioned in Chapter 2.
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Given two forests 𝑠, 𝑡 ∈ 𝔽0𝑆, we define their horizontal composi-
tion 𝑠 ⊕ 𝑡 ∈ 𝔽0𝑆 as flat𝑆,0({⟨0⟩, ⟨1⟩}, (⟨0⟩ ↦ 𝑠, ⟨1⟩ ↦ 𝑡), ∅). Similarly,
given a forest 𝑠 ∈ 𝔽0𝑆 and a context 𝑡 ∈ 𝔽1𝑆, we define 𝑠 ⊕ 𝑡 ∈ 𝔽1𝑆 as

flat𝑆,1({⟨0⟩, ⟨1⟩, ⟨10⟩}, ℓ0, ℓ1),

where the labellings are given by ℓ0(⟨0⟩) ∶= 𝑠, ℓ0(⟨10⟩) ∶= □ and
ℓ1(⟨1⟩) ∶= 𝑡, and 𝑡 ⊕ 𝑠 analogically.

Given a context 𝑠 ∈ 𝔽1𝑆 and a forest 𝑡 ∈ 𝔽0𝑆, their vertical com-
position 𝑠 ⋅ 𝑡 can be defined as flat𝑆,0({⟨0⟩, ⟨00⟩}, (⟨00⟩ ↦ 𝑡), (⟨0⟩ ↦ 𝑠)).
If 𝑡 ∈ 𝔽1𝑆 is a context instead, 𝑠 ⋅ 𝑡 can be defined as

flat𝑆,1({⟨0⟩, ⟨00⟩, ⟨000⟩}, ℓ0, ℓ1),

where ℓ0(⟨000⟩) ∶= □, ℓ1(⟨0⟩) ∶= 𝑠 and ℓ1(⟨00⟩) ∶= 𝑡.
Finally, given a context 𝑠 ∈ 𝔽1𝑆, we can define the infinite unfold-

ing 𝑠𝜔 as
flat𝑆,0({⟨0⟩𝑛 |𝑛 ≥ 1}, ∅, (𝑤 ↦ 𝑠)).

The expected identities, such as associativity of ⊕, satisfied by these
operations can be easily proven using associativity of the transforma-
tion flat.
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