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Abstract are of increasing importance.
From a more general theoretical point of view, one may

We study definability and complexity issues for automatic ask what classes of infinite structures are suitable for such
andw-automatic structures. These are, in general, infinite an extension. More specifically what conditions must be
structures but they can be finitely presented by a collection satisfied by a clas§ of not necessarily finite structures such
of automata. Moreover, they admit effective (in fact auto- that the approach and methods of finite model theory make
matic) evaluation of all first-order queries. Therefore-au sense. There are two obvious and fundamental conditions:
tomatic structures provide an interesting framework for ex
tending many algorithmic and logical methods from finite
structures to infinite ones.

We explain the notion of)automatic structures, give Effective semanticgfor a relevant logicZ, e.g., first-order

Finite representationsEvery structureéd € C should be
representable in a finite way.

examples, and discuss the relationship to automatic groups logic). Given any formula)(z) of L and (a presenta-
We determine the complexity of model checking and query  tion of) a structurel € K, one can effectively produce
evaluation on automatic structures for fragments of first- a presentation of the s¢t : 2 = ¢ (a) }.

order logic. Further, we study closure properties and de-
finability issues on automatic structures and present a-tech
nigue for proving that a structure is not automatic. We give
model-theoretic characterisations for automatic struetu
via interpretations. Finally we discuss the compositiog-th
ory of automatic structures and prove that they are closed
under finitary Feferman-Vaught-like products.

Note that effective semantics means in particular that the
L-theory of eveny’l € K is decidable. A class of infinite
structures that have been studied quite intensively in inode
theory arerecursive structures There have recently been
some papers proposing the study of recursive structures
(e.g., recursive databases) for the issues just mentioned
[14, 15, 22]. However, the class of recursive structures is
too large since, in general, only the quantifier-free formu-

) lae admit effective evaluation algorithms. Other clasdes o
1. Introduction infinite structures where the relationship of definabilibga
complexity has been studied include metafinite structures

The relationship between logical definability and com- [12] and constraint databases [20].
putational complexity is an important issue in a number In this paper we consideautomatic structures While
of different fields including finite model theory, databases automatic groupshave been studied rather intensively in
knowledge representation, and computer-aided verifigatio computational group theory (see [9, 10]) a general notion of
So far most of the research has been devoted to finite strucautomatic structure has only been defined and investigated
tures where the relationship between definability and com-in a paper by Khoussainov and Nerode [19], and the theory
plexity is by now fairly well understood (see e.g. [6, 18]) of these structures is not well-developed yet. Informally,
and has many applications in particular to database theorya relational structur@ = (A, Ry, ..., R,,) is automatic
[1]. However, in many cases the limitation to finite struc- if its universe and its relations can be presented by finite
tures is too restrictive. Therefore in most of the fields men- automata. This means that we can find a regular language
tioned above, there have been considerable efforts toéxten Ls C X* (which provides names for the element2Qfand
the methodology from finite structures to suitable clas$es o a functionv : Ls — A mapping every wordv € Ls to the
infinite ones. In particular, this is the case for databards a element of that it represents. The functienmust be sur-
computer-aided verification where infinite structuresglik jective (every element &l must be named) but need not be
constraint databases or systems with infinite state spaceshjective (elements can have more than one name). In addi-



tion it must be recognisable by finite automata whethertwo  The goal of this paper is not to make significant new con-
words inLs name the same elements, and, for each relationtributions to automata theory. The main technical contri-
R; of 2, whether a tuple of words is names a tuple be-  butions of this paper are (1) an algorithm to evaluate the
longing to R;. A more detailed definition will be given in  quantifier “there exists infinitely many”, (2) the complexit
the next section. results for low level fragments of first-order logic on auto-
We believe that automatic structures are very promising matic structures, (3) the proofs that certain interestinges
for the approach sketched above. Not only do automatictures are not automatic and in particular, (4) the compmwsiti
structures admit finite presentations, there also are numertheorem for automatic structures. But the main purpose of
ous interesting examples and a large body of methods thathis paper ionceptualwe want to explore to what extent
has been developed in five decades of automata theory. Furautomatic structures are a suitable framework for extendin
ther, contrary to the class of recursive structures, autisma the methods of finite model theory to infinite structures. We
structures admit effective (in fact, automatic) evaluatid believe that the model-theoretic characterizations ob-aut
all first-order queries and possess many other pleasant algomatic andv-automatic structures in terms of interpretability
rithmic properties. are particularly useful for this and also suggest a very gen-
The notion of an automatic structure can be modified and eral way for obtaining other interesting classes of infinite
generalised in many directions, for instance by using au- structures suitable for such an approach: Fix a struciure
tomata over infinite words, or over finite or infinite trees. In with ‘nice’ (algorithmic and/or model-theoretic) propies,
this paper we study automatic andautomatic structures and consider the class of all structures that are (firstsprde
only. Many results can be extended to tree-automatic struc-interpretable in2(. Obviously each structure in this class
tures without much change (see [2]), but for lack of space, is finitely presentable (by an interpretation). Furthencsi
we do not mention them here. many ‘nice’ properties are preserved by first-order interpr
tations, every structure in the class inherits them ffzhm
In particular, every class of queries that is effective?n
and closed under first-order operations is effective on the
interpretation-closure ¢fi.

Here is an outline of this paper. In Section 2 we de-
fine the notions of automatic and-automatic structures
and mention some examples. For the purposes of this pa
per, our most important examples of automatic structures
are the expansion®, = (N,+,],) of Presburger arith-
metic by a restricted divisibility predicate and tree struc
tures Tredp). Our fundamental examples afautomatic
structures aréi,, the expansion of the additive real group
(R, +) by order and restricted divisibility, anfree’ (p), a
natural extension ofregp). We will also explain in Sec-
tion 2 the notion of an automatic group.

In Section 3 we show that first-order logic (and in fact its
extension by the quantifier “there exist infinitely many”sha X
effective semantics on.{)automatic structures. We also ©f Words as inputs and work synchronously onfattom-
study complexity results for model-checking and query- ponents ofio. To make this precise, we represent a tuple

— *\ k
evaluation for first-order logic and for some of its frag- % © (X )k by a wordw; ® --- ® wy over the alphabet
ments. (X u{0O})%, called theconvolutionof wy, . . ., wy. HereO

In Section 4 we study definability properties of auto- is a padding symbol not belonging 18, which is appended

matic structures and present a technique for proving thatLO SOT]e of the lwordﬁ;i to m?ke su”re that all compon*ents
a structure is not automatic. As an application we prove, ave the same length. More formally, fof, ..., w;, € 2,

2. Automatic structures and automatic groups

We assume that the reader is familiar with the basic
notions of automata theory and regular languages. One
slightly nonstandard aspect is that we need a notion of reg-
ularity not just for languages C X* but alsok-ary rela-
tions of words, fork > 1. The idea is that regular relations
are defined by automata that take tuples- (ws, ..., wg)

for instance, that neither Skolem arithmeti§, ) nor the Wit wi = wir -+~ wi¢, andl = max{|wil, ..., lwkl},
divisibility poset(N, |) are automatic. wi, wig

In Section 5 we present model-theoretic characterisa- w; @ ---@Qup:=| : |...| : | € ((FU {D})k)*
tions of automatic and-automatic structures. We prove w, wl,

that a structure is automatic if and only if it is interprd&ab
in N, or, equivalently, inTredp) for some (and hence all)
p > 2. Similarly, a structure is>-automatic if and only if it
is interpretable iM}, or Tree’ (p).

Finally in Section 6 this characterisation is used to study
the composition theory of automatic structures. We prove
that automatic structures are closed under finitary praduct ~ As usual in mathematical logic, we considgructures
unions, and similar constructions. A = (A, R1,Rs,..., f1, f2,...) whereA is a non-empty

wherew;; = w;; for j < |w;| andw;; = O] otherwise.

Now, a relationk C (X*)* is calledautomaticor reg-
ular, if {un ® - @ wg : (w1,...,w,) € R} is aregular
language. In the sequel we do not distinguish between a
relation on words and its encoding as a language.



set, called theuniverseof 2, where eachR; C A" is

a relation onA and eachf; : A% — A is a function
on A. The names of the relations and functionpfto-
gether with their arities, form thegocabularyof 2. We
consider constants as functions of arity 0. réational
structure is a structure without functions. We can asseciat
with every structureX its relational variantwhich is ob-
tained by replacing each functigh: A°* — A by its graph
Gy:={(a,b) € A*T1: f(a) =b}.

Definition 2.1. A relational structure2l is automatic if
there exist a regular languadg C X* and a surjective
functionrv : Ls — A such that the relation

L.:={(w,w')€Lsx Ls:vw=vw } C X" x X*
and, for all predicate® C A" of 2, the relations

Ly := {’LT] S (L(S)T : (le, .. .,l/w7-) S R} - (2*)7
are regular. An arbitrary (not necessarily relationaljictr

ture is automatic if and only if its relational variant is.

By an automatic presentatiof a r-structure2l we
either mean a paifr,d) consisting of the functions :
Ls — A and a collectiord = (Ms, M., (MRg)ge-) Of
finite automata that recognide;, L., and L for all re-
lations R of A, or we mean just the collection alone.
(Note thato determines the structure that it presents up to
isomorphism.) An automatic presentation is caltbter-
ministicif all its automata are, and it is called injective if
Le ={(u,u):u € Ls } (whichimpliesthat : Ls — Ais
injective). We writeAutStr[r] for the class of all automatic
structures of vocabulary.

Examples.(1) All finite structures are automatic.

(2) Important examples of automatic structures are Prgsibur
arithmetic(N, +) and its expansion3t, := (N, +, |) by the re-
lation

z |py :iff xis a power ofp dividing y.

Using p-ary encodings (starting with the least significant didit) i
is not difficult to construct automata recognizing equabydition
and|,.

(3) Natural candidates for automatic structures are those c
sisting of words. (But note that free monoids with at least ggn-
erators danot have automatic presentations.) Fix some alphabet
and consider the structur@reqy’) (X", (0a)acs, X, €l)
where

oa(2) = za,
xRy iff Fz(zz =vy),
el(z, y) iff |z = [yl

Obviously, this structure is automatic as well.

The following two observations are simple, but useful.

(1) Every automatic structure admits an automatic presen-
tation with alphabef0, 1} [2].

(2) Every automatic structure admits an injective auto-
matic presentation [19].

Automatic Groups. The class of automatic structures that
have been studied most intensively are automatic groups.
Let (G,-) be agroup and = {s1,...,sn} C G a set of
semigroup generators ¢f. This means that each € G

can be written as a produgt, - - - s;, of elements ofS and
hence the canonical homomorphism S* — G is sur-
jective. TheCayley graphl’(G, S) of G with respect taS

is the graph(G, 51, ..., S,) whose vertices are the group
elements and wher§; is the set of pairgg, h) such that

gs; = h. By definition (G, -) is automaticif there is a fi-
nite setS of semigroup generators and a regular language
Ls C S5* such that the restriction af to L; is surjective
and provides an automatic presentation g€z, S). (That

is, the inverse image of equality,

Lo ={(w,w'") € Ls x Ls : vw = vw' },

andv—1(S;) (fori = 1,...,m) are regular).

Note that it is not the group structufés, -) itself that
is automatic in the sense of Definition 2.1, but the Cay-
ley graph. There are many natural examples of automatic
groups (see [9, 10]). The importance of this notion in com-
putational group theory comes from the fact that an auto-
matic presentation of a group yields (efficient) algoritbmi
solutions for computational problems that are undecidable
in the general case.

Remark.By definition, if G is an automatic group, then
for some setS of semigroup generators, the Cayley graph
I'(G, S) is an automatic structure. Contrary to a claim in
[19] it is not clear whether the converse holds. Indeed the
definition of an automatic group requires that the function
v : Ls — @G is the restriction of the canonical homomor-
phism fromS* to G. The mere condition thdt(G, S) is an
automatic structure does not seem to imply this.

w-automatic structures. The notion of an automatic
structure can be modified and generalised in a number of
different directions (see [2, 19]). In particular, we obtai
the interesting class-AutStr of w-automatic structures.
The definition is analogous to the one for automatic struc-
tures except that the elements of @rautomatic structure
are named by infinite words from some regulatanguage
and the relations of the structure are recognisable by Biichi
automata.

Examples.(1) All automatic structures are-automatic.



(2) The real numbers with additiofiR, +), and indeed the ex-
panded structur®, := (R, +, <, |, 1) arew-automatic, where

z|py :iff In,k € Z: z = p" andy = kz.

(3) The tree automatic structurdseg X)) extend in a natu-
ral way to the (uncountable)-automatic structure$ree’ (X)) =
(ngv (Ua)aev:n = el)

3. Model-checking and query-evaluation

In this section we study decidability and complexity is-
sues for automatic structures. For a structirand a for-
mulap(z), let p* = {a : A = ¢(a)} be the relation
(or query) defined by on 2. Two fundamental algorith-
mic problems are

Model-checking:Given a (presentation of a) structie a
formulay(z), and a tuple of parametegsn 2, decide
whether = ¢(a).

Query-evaluation:Given a presentation of a structuge
and some formulay(z), compute a presentation of
(2, ). That is, given a paifv, d) representing,
construct an automaton that recognises ().

We first observe that all first-order queries on automatic

structures are effectively computable. In fact, this isthse
not only for first-order logic but also for formulae contain-
ing the quantified* meaning “there are infinitely many”.

Proposition 3.1. Given an injective presentatiofy,d) of

an automatic orw-automatic structurel and a formula
»(z) € FO(3¥) one can effectively construct an automaton
recognisings ! ().

Proof. For FO-formulae this follows readily from classical
results on the closure properties of regula)languages.
In case of automatic structures the quantifiércan be

Letv, w € X* and define ~* w iff v[n
for somen. Let[v]. := {v' € V(w) : ¢/
~*-class ofv in V(w).

= w[n,w)

v} be the

,w)
ok

Claim. V(w) is infinite if and only if there is some € X«
such thafv], € V(w)/~* is infinite.

Proof. (<) is trivial and (=) is proved by showing that
V/a* contains at most finite ~*-classes.

Assume there are words,...,v, € V(w) belong-
ing to different finite =*-classes. Denote the run (se-
guence of states) aif onw ® v; by ¢;. Definel;; =
{k < w : gilk] = p;[k]}. Since there are only states,
for eachk < w there have to be indices j such that

k € ILj, ie,U;;I;; = w. Thus, at least ond;; is
infinite. For each[v;]. there is a positiom; such that
v[ng,w) = v'[n;,w) for all v,v" € [v].. Letm be the

maximum ofnyg, ..., ne. Fix 4,j such thatl;; is infinite.
Sincev; #* wv; there is a positionn’ > m such that
vilm,m’) # v;j[m,m’). Choose somen” < I;; with
m’” > m/. Letu := v;[0,m)vj[m, m")v;[m”,w). Then,
w®uv; € L(M) iff w®wu € L(M) which implies that
u € [vi]«. Butum,w) # v;[m,w) in contradiction to the
choice ofm. O

To finish the proof letp(z) := F“yy(Z,y) andA be
w-automatic. One can express thdt. is finite by

finite(Z,v) := InV' (Y(Z,v") Av ~* v
where

equal(v,v’,n) :=n = 10 A v[i,w) = V'[i,w).

Clearly, ~* andequal can be recognised hy-automata.

handled using a pumping argument. Consider for simplicity By the claim above

the formulad“zy (z,y). There are infinitely many satis-
fying ¢ iff for any m there are infinitely many elemenis
whose encoding is at least symbols longer than that gf
If we takem to be the number of states of the automaton
for ¢) then, by the Pumping Lemma, the last condition is
equivalent to the existence of at least one suchThus
Wap(x,y) = Jr(Y(z,y) A“x is long enough) for which

we can obviously construct an automaton. Note that the in-

jectivity of (v,0) ensures that each of the infinitely many
words encodes a different elemengof

For w-automatic structures the proof is more involved.
First we introduce some notation. By, k) we denote
the factorv; ... vp_1 of v = wouy ... € X¥. Similarly,
v[i,w) is equal tov;vi41 . .., andvli] := v[i,i + 1).

Let M be a deterministic Muller automaton wittstates
recognising the languadgg(M) C I'* ® Y. Forw € I'¥
letV(w) :={veX“: wveL(M)}.

©(Z) = Fo(Y(T,v) A ~finite(Z, v)).

Hence, we can construct an automaton recognisthg [

Corollary 3.2. TheFO(3*¥)-theory of any automatic struc-
ture and of anyw-automatic with injective presentation is
decidable.

As an immediate consequence we conclude that full
arithmetic(N, +, -) is neither automatic, nap-automatic.
For most of the common extensions of first-order logic
used in finite model theory, such as transitive closure log-
ics, fixed point logics, monadic second-order logic, or first
order logic with counting, the model-checking problem on
automatic structures becomes undecidable.



Complexity. The complexity of model-checking can be (i) The expression complexity ALOGTIME-complete
measured in three different ways. First, one can fix the with regard to deterministic log-time reductions.
formula and ask how the complexity depends on the input
structure. This measure is callsttucture complexityThe
expression complexityn the other hand is defined relative L .
to a fixed structure in terms of the formula. Finally, one can all what remains 1S to evaluate a boolean formula which
look at thecombined complexitwhere both parts may vary.  ¢&" be done in DIME [O(|¢])] and Arime [O(log[¢l)] <

Of course, the complexity of these problems may very DsPACE O (log|¢l)] (see [5]). The value of an atoiz
much depend on how automatic structures are presented®@n be calculated by smulatm_g the correspondlng_automa—
We focus here on presentations tigterministicautomata (0N On those components@ivhich belong to the variables
because these admit boolean operations to be performed ifPPearing inz. The naive algorithm to do so uses time
polynomial time, whereas for nondeterministic automata, O(X\°(a) o] log 2])) and SpaC@(log [o] 4 log A° (d)). .
complementation may cause an exponential blow-up. .For the time complexity bound we perform this simu-

In the following we always assume that the vocabulary lation for every atom, store the outcome, and eyaluate the
of the given automatic structures and the alphabet of the auformula. Since there are at mogt| atoms the claim fol-
tomata we deal with are fixed. Furthermore the vocabulary |OWS- _
is assumed to be relational when not stated otherwise. For 10 obtain the space bound we cannot store the value of
a (deterministic) presentationof an automatic structure, ©ach atom. Therefore we use the&spacealgorithm to
we denote byp| the maximal size of the automatazinand evalu_atap and, every time the value of an atom is needed,
for an automatic presentatigm, ?) of the structure, we we simulate the run of the corresponding automaton on a

Proof. (i) To decide whethe®l |= ¢(a) holds, we need to
know the truth value of each atom appearingsin Then,

defineX? : A — N to be the function separate set of tapes. _
(i) We present a reduction of thedGspACEcomplete
N(a) := min{ |z| : v(z) = a} problem DETREACH, reachability by deterministic paths,

(see e.g. [18]) to the model-checking problem. Given a
graph® = (V, E, s, t) we construct the automatald =
(V,{0}, A, s,{t}) with

mapping each element 8f to the length of its shortest en-
coding. Finally, let\’(a4, ..., a,) be an abbreviation for
max{ A°(a;) :i=1,...,7 }.

While we have seen above that query-evaluation and A= {(4,0,v) :u#t, (u,v) € Eandthereis no
model-checking for first-order formulae are effective v' # v with (u,v') € E'}
on AutStr, the complexity of these problems is non- U{(t,0,8)}
elementary, i.e., it exceeds any fixed number of iterations T
of the exponential function. This follows immediately from That is, we remove all edges originating at vertices with
the fact the the complexity oth(91,) is non-elementary  out-degree greater thanand add a loop at Then there
(see [11]). is a deterministic path fromto ¢ in & iff M accepts some

Proposition 3.3. There exist automatic structures such that Word 0™ iff 0Vl e L(M). Thus,

the expression complexity of the model-checking problem is (V,E, s,t) € DETREACH iff 21 polvl
non-elementary.

It turns out that model-checking and query-evaluation for Where2 = (B, P) is the structure with the presentation
e - . . * H 1
quantifier-free and existential formulae are stil—to some ({0}", L(M)). A closer inspection reveals that the above
extent—tractable. As usual, I& andX; denote, respec- transformation can be defined in first-order logic.

tively the class of quantifier-free and the class of exisaént (i) Evaluation of boolean formulae is AOGTIME-
first-order formulae. complete (see [5]). O
Theorem 3.4. (i) Given a presentatio of a relational For most questions we can restrict attention to relational

structure?l € AutStr, a tuplea in 2, and a quantifier-  vocabularies and replace functions by their graphs at the ex
free formulap(z) € FO, the model-checking problem for pense of introducing additional quantifiers. When study-
(A, a,)isin ing quantifier-free formulae we will not want do to this and
0 hence need to consider the case of quantifier-free formu-
DTiIME [O(J¢| A°(a) [o| log [2])] and lae with function symbols separately. This class is denoted
DsPACE[O(log || + log [d] + log A°(a))]. ¥o+fun. The following lemmais essentially due to Epstein

tal. [9].
(i) The structure complexity of model-checking for etal. [9]

guantifier-free formulae id oGspACEcomplete with re-  Lemma 3.5. Given a tuplew of words overY, and an au-
spect toFO-reductions. tomaton2 = (Q, X, 4, qo, F) recognising the graph of a



function f, the calculation off (w) is in S1,.-.,Sm, the structurdG,e,g — gsi1,...,9 — gSm)
is just a functional way of presenting the Cayley graph and
DTIME[O(|Q[ log |Q| (|Q| + [@]))] and therefore automatic. Each instance of the word problem is
DSPACE[O(|Q| log |Q| + log |W|)] _ described by a quantifier-free sentence (a term equation) on
this structure.
Theorem 3.6. (i) Let 7 be a vocabulary which may con-
tain functions. Given the presentati@nof a structurel
in AutStr[r], a tuplea in 2, and a quantifier-free formula
»(z) € FO[r], the model-checking problem f@, a, ¢) is
in

Theorem 3.7. (i) Given a presentatio of a structure2(
in AutStr, a tuplea in A, and a formulap(z) € ¥, the
model-checking problem fdRL, a, ¢) is in

NTIME [O(Jg| o] X° (@) + [2]°#P)] and
DTIME [O (|| 10> log [0 (lel o] +X°(a@)))] and NsPACE[O(|¢| ([o] + log |¢|) + log A°(a))].

/=
DSPACE[O(M (M ol +A (a>) + |0|log|0|)]. (i) The structure complexity of model-checking for
¥;-formulae is NPTIME-complete with respect te<l-
reductions.
(iii) The expression complexityRsPACEcomplete with

regard to<!°s-reductions.

(i) The structure complexity of the model-checking
problem for quantifier-free formulae with functions is in
NLOGSPACE

(iii) The expression complexity FrIME-complete with

I i . .
regard to< ;#-reductions. Proof. (i) As above we can run the corresponding automa-
Proof. (i) Our algorithm proceeds in two steps. First the ton forr] every atom aprl)earlngm(;nhth_e encod_mg of. ?}L_Jth
values of all functions appearingnare calculated starting EOWt ere are some e emenhts ofthe input mlzsmghw Ic Wed
with the innermost one. Then all functions can be replaced., ave to guiss. Smcfe W?I ave to enshure .t a} t.e guesse
by their values and a formula containing only relations re- Inputs are the same for all automata, the simufation is per-

mains which can be evaluated as above. We need to evaluatté)r_lr?r?d s;mu!tsnegusly. . hich iand
at most|p| functions. If they are nested the result can be of . e algorithm determines which atoms appeapian
length|| [o] + A?(a). This yields the bounds given above. simulates the product automaton constructed from the au-
(i) It is sufficient to present a nondeterministic log- tomatfa_for thqse rela_t|0ns. At each step the_ gyr_nbol for the
space algorithm for evaluating a single fixed atom contain- quantified variables is gue_ssed nondetermmlstlcally.eNo_t
ing functions. The algorithm simultaneously simulates the that the values of thosg varlable§ may pe longer than _the n-
automata of the relation and of all functions on the given put so we have to continue Fhe simulation after reaching its
input. Components of the input corresponding to values of end for at most the cardinality of the state-space number of

: LT . i i imali lel i ;
functions are guessed nondeterministically. Each simula-Steps. Since this (_:ardlnallty.@(|a| ?!) a closer inspection
tion only needs counters for the current state and the inputef the algorithm yields the given bounds.

position which both use logarithmic space. (i) We reduce the IﬁTlmE—complete non-universality
(i) Let M be ap(n) time-bounded deterministic Turing problem for nondete_rmlnlstlc automata over a unary alpha-
machine for some polynomial A configuration(q, w, p) !oet (see [21, 17]), given such an automaton (_:heck whether
of M can be coded as wordoqw; with w = wow; and it does not recognise the Iangua@’_e to the given p_rob-
lwo| = p. Using this encoding both the functighmap- lem. This reduction is performed in two steps. First the

ping one configuration to its successor and the prediate 2utomaton must be simplified and transformed into a deter-
for configurations containing accepting states can be recog Ministic one, then we construct an automatic structure and
nised by automata. We assume tiiét) = c for accepting @ formulap(z) such thatp(a) holds for several values af
configurations. Let gy be the starting state of/. Then i and only if the original automaton recognisés As the
M accepts some word if and only if the configuration ~ Model-checking has to be performed for more than one pa-

#PUeD (gow) is accepting if and only i#( = P 7D (gow) rameter this yields not a many-to-one but a truth-table re-
where2l = (4, P, f) is automatic. Hence, the mapping tak- duction. o
ing w to the pairgow andP f7(“Dz is the desired reduction ~ Let M = (Q,{0}, 4, qo, F) be a nondeterministic fi-
which can clearly be computed in logarithmic space.] nite automaton over the alphabgi}. We construct an

automatonM’ such that there are at most two transitions
Remark.Theorem 3.6 says that, on any fixed automatic outgoing at every state. This is done be replacing all tran-
structure, quantifier-free formulae can be evaluated in sition form some given state by a binary tree of transi-
guadratic time. This extends the result of [9] that the word tions with new states as internal nodes. Of course, this
problem for every automatic group is solvable in quadratic changes the language of the automaton. Sind¥ievery
time. Indeed, for every automatic grodp generated by  state has at mosf)| successors, we can take trees of fixed



heightk := [log|Q|]. Thus,L(M') = h(L(M)) where Structure-Complexity ~ Expression-Complexity
h is the homomorphism taking to 0*. Note that the size Model-Checking
of M’ is polynomial in that of\/.

P o . s o LoGsPACEcOomplete A OGTIME-complete
M’ still is nondeterministic. To make it deterministic we
add a second component to the labels of each transitions >0  fun NLOGSPACE PTIME-complete
which is either0 or 1. This yields an automatoh/” such | NPTIME-complete BpPACEcomplete
that M accepts the word” iff there is somey € {0, 1}*" Query-Evaluation
such thatM " acceptd)*” @ y. o LOGSPACE PSPACE
M can be used in a presentation= ({0, 1}*, L(M")) o PSPACE EXPSPACE

of some{ R}-structurel. Then

B = Jy ROy if 0" eye L(M")

Besides the two obvious criteria, namely that automatic
iff 0" e L(M). y

structures are countable and that their first-order theory i

It follows that decidable, not much is known. The only non-trivial cri-
. . terion that is available at present use growth rates for the
L(M) = 0" iff B = Jy R0™yforalln < 2|Q)|. length of the encodings of elements of definable sets.
The part(=) is trivial. To show(«) let n be the least  proposition 4.1(Elgot and Mezei [8]) Let 2 be an auto-
number such thad™ ¢ L(M). By assumptiom > 2|Q[.  matic structure with injective presentatiqw,?), and let
But then we can apply the Pumping Lemma and find some ¢ . A _, A pe a function ofl. Then there is a constant
number’ < nwith 0" ¢ L(M). Contradiction. such that\® (£(a)) < A°(@) +m forall a € A"
(iii) is shown by coding computations of Turing ma-  The same is true if we replageby a relationR where
chines. The proof can be found in [2]. O for all a there are only finitely many valuésuch thatRab
We now turn to the query-evaluation problem for these holds.
formula classes. This result deals with a single application of a function or
Theorem 3.8. Given a presentation of a structure2l in ~ relation. In the remaining part of this section we will study
AutStr and a formulap(z), an automaton representing? the effect of applymg functions |terat|vely, i.e., we wglbn-
can be computed sider some definable subset of the universe and calculate

upper bounds on the length of the encodings of elements
(i) in time O([o|”*") and spaced(|¢|log[o]) inthe  in the substructure generated by it. First we need bounds
case of quantifier-freg(z), and for the (encodings of) elements of some definable subsets.

(i) in time (’)(2'“'0(“’”) and space(9(|a|o(‘“”|)) in the The following lemma follows easily from classical results

case of existential formulag(z). in automata theory (see, e.g., [7, Proposition V.1.1]).

In particular, the structure complexity of query-evalwati ~ Lemma 4.2. Let® be a structure imAutStr with presenta-
is in LogsPACEfor quantifier-free formulae and iRspace  tion, and letB be anFO(3¥)-definable subset of. Then
for existential formulae. The expression complexity is in A°(B) is a finite union of arithmetical progressions.

Pspacefor quantifier-free formulae and iExpsPACEfor

. , In the process of generating a substructure we have to
existential formulae.

count the number of applications of functions.

Proof. Enumerate the state space of the product automaton ) i
Definition 4.3. Let 21 € AutStr with presentatiorp, let

and output the transition function. O - ) , o
f1,--., fr be finitely many operations d¥l with arities
r1,...,r., respectively, and lek = {e;,es,...} be some

4. Structures that are not automatic subset of4 with A°(e1) < A?(e2) < ---. ThenG,,(E), the
nh generatiorof E, is defined inductively by

To prove that a structure is automatic, we just have to Ci(E) = {e1)

find a suitable presentation. But how can we prove that a ! A

structure is not automatic? The main difficulty is that a pri- Gn(E) := {en} UGn_1(E)

ori, nothing is known about how elements of an automatic U{fi(@:aeG, (E),1<i<r}.

structure are named by words of the regular langdage.

1In the case of automatic groups, where the naming functidixesl, Putting everythm.g .terther we obtain the foIIowmg re-
more techniques are available such as katellow traveller property, sult. The case of finitely generated substructures already

see [9]. appeared in [19].



Proposition 4.4. Let 2 an injective presentation of an au- (1) numbers of the forrp’fl,
tomatic structure, let f1,..., f. be finitely many defin- (2) numbers of the form®? . .. pk», and
able operations o and letE be a definable subset dff. 2 "

Then there is a constamt such that\?(a) < mn for all (3) numbers of a mixed form.

a € Gy (E). Inparticular, |G, (E)| < |X|™""" whereX is In n steps we can create
the alphabet ob. )
1) p1,...,p} (vias),
The proof consists of a simple induction an (2) v(n — 1) numbers withe, = 0, and

Theorem 4.5. None of the following structures has an au- (3) for every0 < k; < n, y(n — 2) — 1 numbers of a
tomatic presentation. mixed form (vialcm).

(i) Any trace monoidt = (M, -) with at least two non-  All in all we obtain
commuting generators andb.

> -1 -1 —2)—1
(if) Any structure in which a pairing functionf can be v Zntyn =1+ -1 -2)-1)
defined. =yn—-1)+n—-1)y(n—-2)+1

(ii)) The divisibility poset, |). >ny(n—2) (asy(n—1) > ~(n—2))
(iv) Skolem arithmeti¢N, -). >n(n—2)---3y(1)

n (w.l.0.g. assume that is odd
Proof. (i) We show that{a, b}<2" C G,,11(a, b) by induc-

tion onn. We have{a,b} C {a,aa,b} = Go(a,b) for =n(n=2)-3
n=1,and forn > 1 = ((n+1)/2)!
c 2Q(nlog n)'
Gni1(a,b) = {uv tu,v € Gn(a,b)}
5 {uv Cuv € {avb}gylfl } Contradiction. O
= {a, b}ST‘_ Remark.(1) Since it is easy to constructteee-automatic
presentation of Skolem arithmetic this result implies that
Therefore|G,,(a,b)| > 22" and the claim follows. class of structures with tree-automatic presentationtitri
(ii) is analogous to (i), and (iv) immediately follows includes the class of automatic structures (see [2]).
from (iii) as the divisibility relation is definable (N, -). (2) The structuréN, 1) where_ L stands for having no
(iii) Suppose(N,|) € AutStr. We define the set of common divisor is automatic.

primes
5. Characterising automatic structures via in-

. oy = =
Pz :iff c #1AYy(ylz —-y=1Vy=ux), terpretations
the set of powers of some prime

Interpretations are important in mathematical logic, for
model-theory in particular. They are used to define a copy
of a structure inside another one, and thus permit to trans-
fer definability, decidability, and complexity results ango

theories.

Qz :iff JYy(PyAVz(z|zAz#1—y|z)),

and a relation containing all paifs, pn) wherep is a prime
divisor ofn

1 =1 - -
Sy :iff x|y AIT2(Qe APz Az ]y Aoz 2). Definition 5.1. A (k-dimensional) interpretationf a rela-

The least common multiple of two numbers is tional o-structuredl = (A, Ry, ..., Ry) in ar-structure®
is given by a sequence
lem(z,y) =z :iff x|zAy]z o - -

A-Fu(u#zAz|uAylunul|z). L ={0(2),e(2,0), o (1, Ty )5 )
of first-order formulae of vocabulary(where each tuple,

7, T; consists ofk variables), provided that there exists a
surjective maph : 62 — A, called thecoordinate maof
the interpretation such that the following hold:

For everyn € N there are only finitely many with Snm.
Therefore S satisfies the conditions of Proposition 4.1.
Consider the set generated By via S andlcm, and let
~v(n) := |G, (P)| be the cardinality of7,,(P). If (N,|) is

in AutStr then(N, |, P, Q, S) € AutStr andy(n) € 29 (i) Forallb,cec 6%

by Proposition 4.4. LeP = {p1,p2,...}. Forn = 1 we - _
haveG,(P) = {p1}. GenerallyG, (P) consists of B = e(b,¢) iff h(b) = h(e),



(i) for every relationR; of 2t and allb,, . .

B = or(bi, ...

by, €67
bry) iff (AD1),... h(by)) € R

That is, the formula(z, 3) defines a congruence on the
structure (6%, 03, , ..., ¢{ ) such thath is an isomor-
phism from the quotient structufé™, o3 ..., ¢x )/e®
to®. Inthe case tha& isthis quotient structure itself (rather
than just being isomorphic to it) we say thats definable
in B. Obviously,2l is definable in% if and only if there
is an interpretation ofl in 8 whose coordinate map is the
canonical projection, mapping every tuglec ¢ to its
equivalence clasy/c.

If 2 is a structure including not only relations but also
functions then, by definition, an interpretationin % is
an interpretation of the relational variant#f(where func-
tions are replaced by their graphs)¥h

We write2l <gp B to denote that there exists an inter-
pretation of2l in B. If both 2 <po B andB <po A we
say2 and®B aremutually interpretable

Examples.(1) Recall that we writez |, b to denote that is a
power ofp dividing b. LetV,, : N — N be the function that maps
each number to the largest poweroflividing it. It is very easy
to see that the structuré®, +, |, ) and(N, +, V;,) are mutually
interpretable. Indeed we can define the statement V,,(y) in
(N, +, |p) by the formulaz |, y AV2(z |p y — 2 |p ). In the
other directionV,(z) = x A 3z(x + z = V,(y)) is a definition
ofz|py.

(2) For everyp € N we write Tregp) for the tree structure
Treg{0,...,p—1}). The structure8t, and Tredp) are mutually
interpretable, for each > 2 (see [2, 11]).

Observe that Proposition 3.1 implies an interesting clo-
sure property foAutStr andw-AutStr.

Proposition 5.2. The classes of automatic andautomat-
ic structures are closed under interpretations, i.e.5fis
(w-)automatic andd <pp 9B, then so il.

Corollary 5.3. The classes of automatic, resp-automat-
ic, structures are closed undegfi) extensions by defin-
able relations(ii) factorisations by definable congruences,
(i) substructures with definable universe, afin finite
powers.

The model-theoretic characterisation of automatic struc-
tures is given in the following theorem. It states that the
structuredt, (and Tregp)) is completefor AutStr, i.e., a
structurel belongs toAutStr if and only if A <ro 91,,.

Theorem 5.4. For every structure2(, the following are
equivalent:

(i) 2Ais automatic.
(i) A <po N, for some (and hence alp) > 2.

(iii) A <po Tredp) for some (and hence alj) > 2.

Proof. The facts that (ii) and (iii) are equivalent and that
they imply (i) follow immediately from the mutual inter-
pretability of9t, and Tregp), from the fact that these struc-
tures are automatic, and from the closure of automatic-struc
tures under interpretations.

It remains to show that every automatic structure is in-
terpretable i1, (or Tregp)). Suppose that is an auto-
matic presentation ofl with alphabefp] := {0,...,p—1}
for somep > 2 (without loss of generality, we could take
p = 2). For every wordw € [p]*, let val(w) be the nat-
ural number whose-ary encoding isw, i.e., val(w) :=
> i<w wip'. By a classical result, sometimes called the
Biichi-Bruyére Theorem, a relatioR C N* is first-order
definable in(N, +, V) if and only if

{ (val ™! (z1), ...

is regular. (See [4] for a proof of this fact and for more infor
mation on the relationship between automata and definabil-
ity in expansions of Presburger arithmetic.) The formulae
that define in this sense the regular language and the regular
relations in an automatic presentatiorRbprovide an inter-
pretation ofX in (N, +,V},). Hence als® <po N,,. ([

val ™t (zp)) s (z1,...,28) € RY

For automatic groups we are not free to change the co-
ordinate map, therefore the arguments used above give a
characterisation in terms of definability rather than inter
pretability.

Theorem 5.5. (G, -) is an automatic group if and only if
there exists a finite set C G of semigroup generators such
that I'(G, S) is FO-definable inTred S).

We now turn tow-automatic structures. To provide a
similar characterisation we can use an equivalent of the
Bichi-Bruyére Theorem for encodings ofregular rela-
tions. One such result has been obtained recently by
Boigelot, Rassart and Wolper [3]. Using natural transtaio
betweenuv-words overp] and real numbers, they prove that
a relation ovefp]“ can be recognised by a Buchi automa-
ton if an only if its translation is first-order definable ireth
structure(R, +, <, Z, X,,) whereX,, C R3 is a relation
that explicitly represents the translation betwgéri andR.
X,(z,y, z) holds iff there exists a representationzoby a
word in[p]“ such that the digit at the position specifiedipy
is z. A somewhat unsatisfactory aspect of this result is the
assumption that the encoding relati& must be given as
a basic relation of the structure. It would be preferable if
more natural expansions of the additive real gréRp-+)
could be used instead.

We show here that this is indeed possible if, as in the
case ofdt,, we use a restricted variant of the divisibility
relation. Recall that the structurgs, and Tree’ (p) (intro-
duced at the end of Section 2) aveautomatic. As a first



step we show that the behaviour of Biichi automata recog-by a tuple(qs, .. ., ¢n) € ([p]*)™ of w-words such that the
nising regular relations ovgp]* can be simulated by first- symbols ofq, ..., ¢, at some position equdl, ..., k.,
order formulae inTre¢’ (p). Second we show thdtree’ (p) iff the automaton is in staték, ..., k,) when scanning
andf, are mutually interpretable. As a result we obtain the the input symbol at that position, (Z) has the form
following model-theoretic characterisation ©fautomatic

structures. Jq1 - - - Igm [ADM(g, Z) A START(q, 2)

ARUN(g,Z) AN ACC(q, T

Theorem 5.6. For every structure2(, the following are @) (@,2)
equivalent where the admissibility conditioADM(z, §) states that all
components of andq are infinite, START (z, ) says that

(i) s w-automatic. the first state i9, ACC(z, ¢) that some final state appears

(i) A <po R, for some (and hence alf) > 2. infinitely often, andRUN(z, g) ensures that all transitions
(i) A <o Tree’(p) for some (and hence alf) > 2. are correct.

. . Define the following auxiliary formulae. To access
Proof. In order to construct interpretations diree’(p) the digits of a tuple of words at some position we define

in R, and vice versa we define formulae which allow to gy, _(z,2) := A.dig, (2:,z), and to characterise the-
access the digits of, respectively, some numbéeRjnand words of[p] <« we set
some word inTree’ (p). In the later case we set
Inf(z) :=Vylx Ry — x =y).
digy, (x,y) := Fz(el(z,y) N orz < x)
ADM andSTART are defined as
which states that the digit af at position|y| is k. For, . .
the situation is more complicated as some real numbers ad- _
mit two encodings. The following formula describes that (7,7) z—/\l nf(gi) A A nf(z:)
there is one encoding af such that the digit at position

is k. (This corresponds to the predicateof [3].) START(, 7) == Symg(q; €),

digy (z,9) == 3s3t(|x| =s + k -y +tAp-yl, s RUN states that at every position a valid transition is used

ANO<sAO<t<y) RUN(q,z) :=
Fori, <ro Tre¢ (p) we represent each number as a vz \/  (Symg(q,2) A Sym,(z, 2)
pair of words. The first one is finite and encodes the integer (k,a,k")eA A Symy, (g, 002)),
part, the other one is infinite and contains the fractiongl pa
In the other direction we map finite words - - - a, € [p]* and ACC says that there is one final state which appears
to the interval2, 3] via infinitely often ing
P Y apTi+2€[2,3]. ACC(q,2) == \/ V232'(]2'] > |2 A Symg(q, Z’))I-j
i=1 keF

Infinite wordsajas - - - € [p]* are mapped to two intervals

(—1,0] and0, 1] via 6. Composition of structures

izaip*i c[-1,1]. The composition method (_jeveloped by_l_:eferman and

- ’ Vaught, and by Shelah considers compositions (products

and sums) of structures according to some index struc-

This is necessary because some words, &@,— 1)~ ture and allows one to compute—depending on the type of

and10v“, would be mapped to the same number otherwise. composition—the first-order or monadic second-order the-
Now the desired interpretations can be constructed easilyory of the whole structure from the respective theoriesf it

using the formulaeig, defined above. components and the monadic theory of the index structure.
It remains to prove that iR C ([p]*)" is w-regular then The characterisation given in the previous section can be

it is definable inTre¢’ (p). Let M = (Q, [p]™, 4, qo, F) used to prove closure of automatic structures under such

be a Bichi-automaton foR. W.l.o.g. assume&) = [p|™ compositions of finitely many structures (see [23, 13, 16]).

for somem andgy = (0,...,0). We prove the claim by A generalised product—asitis defined below—is a general-
constructing a formula,; () € FO stating that there isa  isation of a direct product, a disjoint union, and an ordered
successful run o onz; ® --- ® x,. Therunis encoded sum. We will prove that given a finite sequen@&;); of



structures which belong to some cl@Sgontaining a com-
plete structure, all their generalised products are mesnber
of K as well.

The definition of such a product is a bit technical. Its
relations are defined in terms of the types of the compo-
nents of its elements. Thratomicn-typeatpy (a) of a tu-
ple (ao, . ..,an,—1) in @ structurel is the conjunction of all
atomic and negated atomic formula¢z) such thatp(a)
holds in%l.

Let us first look at how a direct product and an ordered
sum can be defined using types.

Example. (1) Let2l := Ao x 2A; where2l; = (A4;, R;), fori €
{0,1}, andR is a binary relation. The universe 2ifis Ag x A;.
Some pair(a, b) belongs toR iff (ag,bo) € Ro and(a1,b1) €
R:. This is equivalent to the condition that the atomic types of
aobo and ofa1b;1 both include the formul®zoz;.

(2) LetA := 2o + Ay where; = (A4;,<;), fori € {0,1},
and <o, <; are partial orders. The universe #fis Ao U A1 =
Ao x {0} U {0} x Ay, and we have

a < l_) iffa= (a0,<>), l_)Z (bo7 <>) andag <o bo,
ora = (¢,a1), b= (0,b1) anda; <1 b1,
ora = (ao, 0), b = (0, b1).

Again, the conditioru; <; b; can be expressed using types.

Definition 6.1. LetT = {Ry, ..., R} be afinite relational
vocabularyy; the arity of R;, and? := max{ro,...,7s}.
Let (;);cr be a sequence afstructures, and be an arbi-
trary relationab--structure with universé.
Fix for eachk < 7 an enumeratioftg, . ... ¢, } of the
atomick-types and set
o := o U{Dy,...

u{T"

7Dk71}
:m < k,l <n(m

)}

The oy;-expansiorli(b) of J belonging to a sequendec
(IT;c;(Ai U {O}))* is given by

DI ={icl:();#0},

(17 = {i € I :atpy((bjy)i .- (b, )i) = 1"
and{j:(bj); #0} =
{jo,- s dm-1}}.

ForD C B! andg; € FOlo,,], C := (3, D, Bo, ..., 3s)

defines the generalised product C(2;)icr
(A, Ro, ..., Ré) of (mi)ie] where
= U I xa ({0}, 4),
deD i€l
Ri:={bec A" :3(b) = B },

andys(ao, a1) == ap.

Example. (continued)
(1) For the direct product dfl; x 2; we would setJ :=
with I = {0,1}, D := {(1,1)}, and

8= \/Tﬁo A \/ T21,

leL leL

()

wherelL is the set of atomic types containing the forméao ;.
(2) In this case we would sét:= (I) with I = {0,1}, D :=
{(1,0),(0,1)}, and

8= (DOO/\D10/\ \/Tfo)
leL
v (Dol ADiin\/ Tfl) V (Do0 A D1 1),
leL

whereL is the set of atomic types containing the formula< z1.

Theorem 6.2. Let 7 be a finite relational vocabulary, and
K a class ofr-structures containing all finite-structures
and a structureg which is complete fofC with regard to
many-dimensiondlO-interpretations.

LetJ be a finite relationab-structure, let(2;);c; be a
sequence of structures iG, andC = (3, D, 3) a gener-
alised product. Thed(2l;);c; € K, and an interpretation
C(;)ier <ro € can be constructed effectively from the
interpretation; <po € andJ <go €.

Proof. Let 7 = {Ro,..., Rs}. W.l.o.g. assume that =
{0,...,]I] — 1} and that® contains constantsandl. We
have to construct an interpretation®f:= C(2L;);cs in €.
Letr; be the arity ofR;. Considem;-dimensional interpre-
tations

Ez(jz,gz), 906(@6, M
O (ZThy - -

Tho 1)y

Ty, 1))

of A; in €. We represent an elememtof 2 by a tuple of
([I] +no + -+ +nyp—1) elements

_ <hi76i(i,i)7

= (J, ;ZO, ,f|1|71)

whered € D determines which components are empty and
7' encodes thé'" component of.. The desired interpreta-
tion is constructed as follows.

= (h,6(z),2(Z,7), 20(Zos - -+ Tro—1)s- - - »
(}98(1‘07 cey j7'5—1)>
where
h(d,z°, ..., 71171 =
(Xdo(o hO ),._.’Xd‘1‘71(Q,hm_l(,i‘ul_l))),

g1y = \/ (J:EA A 5i(fi)),

ceD 1: ci=1
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