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1 INTRODUCTION

Over the last two decades the beginnings of a model theory for monadic second-
order logic have emerged. Since this logic is more expressive than first-order
logic it is unsurprising that most structures possess an extremely complicated
monadic second-order theory. Fortunately, there remain structures where the
theory is simple enough to develop a structure theory.

The prime example of such a structure is the infinite binary tree which, ac-
cording to Rabin’s theorem, has a decidable monadic theory. It follows that any
structure interpretable in this tree also has a simple theory. While the monadic
theories of arbitrary trees can become highly undecidable, we can nevertheless
develop a kind of structure theory for structures interpretable in them (see [4, 3]).

On the other extreme, every structure in which one can define arbitrarily large
grids has a very complex monadic theory since we can reduce arithmetic to it. In
particular, there is no hope for a structure theory for such structures.

There is a conjecture of Seese [8] stating that these two cases form a dichotomy:
either a structure is interpretable in some tree or we can define arbitrarily large
grids. For graphs (or structures with relations of arity at most 2) a variant of this
conjecture has been solved by Courcelle and Oum [6]. But the general case of
arbitrary structures is still open.

In the present article we approach this conjecture by considering a weaker
statement about first-order theories and applying standard tools from first-order
model theory. Instead of grids we consider first-order definable pairing functions

and we investigate the class of all structures without such a pairing function. We
say that the theory of such a structure does not admit coding. Our focus lies on
indiscernible sequences in structures without coding. We will prove several struc-
ture results for indiscernible sequences. Our main result is Theorem 4.13 which
states that every indiscernible sequence can be extended (both in length’ and
‘width’) to cover any given additional element. These technical results will be used
in a forthcoming article [2] (see also [5]) to prove that every structure that does
not admit coding looks, in a very general sense, like a tree.

Recently there has been renewed interest in first-order theories without the
independence property [11, 13, 12, 7]. The simplest case studied in this context
consists of the so-called dp-minimal theories introduced in [7]. One can show
that theories without coding are dp-minimal but not every dp-minimal theory
does not admit coding. Hence, the class of theories we investigate in the present
article serves as a simple example of dp-minimal theories. But note that the struc-
ture results we obtain in Section 4 do not hold for arbitrary dp-minimal theories.

2 DEPENDENT SEQUENCES

In this section we consider an indiscernible sequence (a" )¢y of a-tuples, and we
try to find a formula y(x) which defines the relation { @” | v € I }. Of course, in
general this is not possible. But if we allow monadic parameters there is a partial
solution to this question. The combinatorial techniques used by the following
lemmas are based on results by Shelah [9].

Let us recall some basic definitions and fix our notation. We define [n] :=
{o,...,n —1}. We tacitly identify tuples a = a,...a,-, € A" with functions
[n] - A and frequently we write a for the set {ao, ..., a,—, }. This allows us to
write @ € A or af; for I ¢ [n]. We use the words ‘tuple’ and ‘sequence’ synony-
mously. In particular, tuples may be infinite.

2°% denotes the set of all binary sequences of length less than « and < is the
prefix ordering on such sequences

x=<y :iff y=xzforsomez.
The empty sequence is denoted by ().

Definition 2.1. Let (a"),¢r be a sequence of a-tuples indexed by a linear order I.

(a) We denote the order type of v € I" by ord(¥) and its equality type by equ(¥).
Forsets C,D ¢ I, we write C < Dif c < d, forall c € C and d € D. Analogously,
we define iz < v for tuples @, v C I.



(b) For v € I, we set
a[v] = (a,...,a").
For J € I and s € I we define
a[J]:=(a")yg and a[<s]:=(a")y<s-

The terms a[>s], @[<s], and so on, are defined analogously.
(c) For v € I*, we set

a(v) = (a;")i<a-

Before turning to the general case below let us show how to define a bijection
a” — b" between two sequences (a”) ey and (") ye;.

Lemma 2.2. Let (a")ye; and (b") e be two sequences indexed by the same linear
order I. If there exists a formula ¢(%, y) (possibly with monadic parameters) and
a relation 0 € {=, #,<, >, <, >} such that

ME(c,d) iff ¢=a"andd="b" forsomeuov,
then we can construct a formula y(x, y) such that
Mey(e,d) iff ¢=a"andd="b" forsomevel.

Proof. 1f 0 € {=, #} then we can set y := ¢ or y := —=¢. By symmetry it therefore
remains to consider the case that ¢ = {<}. We can construct a formula 9 such
that

MEI(e,d) iff ¢=a"andd=a"forsomeu<v,
by setting

9(%,%) = Vi[p(x',7) » 9(%.7)].
Consequently, we obtain the desired formula y by

y(%,7) = V&' (&, 7) - (&, %)]. O

The next lemmas provide a method to find sequences satisfying the preceding
lemma.

Definition 2.3. (a) For a set A of formulae, we denote the A-type of 4 over U by

tp, (a/U).
(b) The type index ti}} (A/U) of a set A over U is the maximal cardinal x such
that there exists a sequence (@');<, of n-tuples @' € A" with

tp,(a’/U) #tp,(a*/U), forizk.

Lemma 2.4. Let A be a finite set of formulae, B € M a set, and (a*) <., an infinite
sequence of tuples such that

tp,(a“/B) #tp,(a*/B), forallu+v.

There exist an infinite subset I € w, a formula ¢ € A, a relation 0 € {=,#,<,>}, a
number m < w, and tuples b” € B, for v € I, such that

Me g(a“,b") if wov, forallu,vel.

Proof. We adapt the proof of Ramsey’s theorem. For indices u # v, fix some
formula ¢,, (%, y) € A and a tuple ¢, € B with

M = (Puv(du) C-uv) - ﬁ%v(ﬁv, C-uv) .

We assume that ¢, = ¢,,, and ¢, = @y, forall u,v < w.

We define two infinite increasing sequences u, < u;, < -+ < w and v, < ¥; <
--- < w of indices and a decreasing sequence w = I, o I, o ... of infinite sets
such that, for every i < w, we have u;,v; € I; and

M E Quv, (8%, ;) < —Qupv, (@, Cup,), forallwel,.
Note that, in particular, this implies that
M= (puivi(dui’ C_“ivi) - _‘q)uivi(duk’ EuiVi) > fori<k.

We start with I, := w. For the induction step, suppose that I; has already been
defined. Fix arbitrary elements u, v € I; with u # v. By symmetry, we may assume
that

M E @ (a”, Cuy) A=@u(a’,cuy).
Let Jo={wel; | ME-p,(a"% cw)},
Ji={wel; | Me @, (a”,¢u)}.



If ], is infinite then we set u; := u, v; := v, and I;,, := J,. Otherwise, we choose
uj:=v,v;:=u,and I;;, := J,.

Set b’ := ¢,,,,. We record for every pair i < k of indices which of the following
relations hold:

ME Qu,y, (a“,0"),
M E (puivi(dui> k) >
ME @, (a",b").

Nl

By Ramsey’s Theorem, there exists an infinite subset S € w such that, for all
indicesi < kand !l < min S,

® Puivi = Purvi >
* ME ¢uivi(dui7 I;l) - gouka(duk) l;k) >
o ME @, (3%, 05 < ¢, ., (a“,b™M).
Setting ¢ := @,,, it follows that, for i < kin S,
ME @(a’,b') < ~p(a,b').
Consequently, we have
Mep(a,b*) iff iok,
where 0 € {=,#,<,>}. O
For uncountable cardinals the proof is more involved.

Lemma 2.5. Let k be an infinite cardinal, A a set of formulae of size |A| < k, and
A, B < M sets. If tiy (A/B) > 2* then there exist a formula ¢(%, j) € A, a number
m < w, and tuples a” € A" and b¥ € B™, forv < k¥, such that

ME o(a*,b*) < —p(a*,b"), forallu<v.
Proof. Let A := (2°)*. Fix a sequence (a"),<, of tuples a” € A" such that,
tp,(a“/B) #tp,(a’/B), foru#v.

We construct a family of sets S, € A, for z € 2*, such that
* Sp=4

*

Sz = Szo u Szn

¢ 528, forx=<y,

*

SxnS, =@, forx £ yand y £ x,and
if|S;| > 1 then S,,, S, + @.
For each z, we will choose a formula ¢, (%, ) and parameters b* C B, and we set

*

S, ::{u<)t’forally<zwehave9ﬁl=goy(d”,l;y) iff )/152}.

We define ¢, inductively. Suppose that ¢, and b* have already been defined,
for all x < z. Then we also know S,. If |S,| < 1 then we choose an arbitrary se-
quence y < z and set ¢, := ¢, and b := b”. Otherwise, choose distinct elements
u,v € S,. Since

tp,(a"/B) # tp,(a”/B)
we can find a formula ¢, € A and parameters b® ¢ B such that
M= g (a",b%) < ¢z (a",b%).
Having defined (S,), we consider the sets
T::{zez<A+ |1S:/>1} and F:={z¢T|yeTforally<z}.

Then |S,| <1, forall z € F and A = U,er S,. Consequently, we have |F| > A.

Let a be the minimal ordinal such that T ¢ 2<%, Then |F| < 2/*! implies that
A <29 Since 2% < A it follows that a > x*. Hence, there exists some # € F with
|| > x*. For i < k%, let z; < 1 be the prefix of 5 of length |z;| = i, and let ¢; < 2
be the number such that z;c; # #. For every i, choose some element u; € S,,.
Since uy ¢ S;,¢;, for k > i, it follows that

ME @, (3%, b7) < —g,. ., (a", b7, fori<k.

By the Pigeon Hole Principle, there exists a subset I € x™ such that ¢,,¢, = ¢z,¢,»
for all i, k € I. Hence, (a*);e; and (b% i) ;c; are the desired sequences. O

Corollary 2.6. Let k be an infinite cardinal, A a set of formulae of size |A| < «,
and A,B ¢ M sets. If ti’s (A/B) > 2*" then there exist a formula ¢(%,7) € A, a
relation o € {=,#,<,>}, a number m < w, and tuples @’ € A" and b¥ € B™, for
v < k%, such that

ME(a*,b’) iff uov.



Proof. By Lemma 2.5, there exist a formula ¢ and sequences (d');<(,x)+ and
(i?i),'<(2x)+ such that

MEg(a',b') < ﬁﬁv(dk,[)i), fori<k.

By the Erdés-Rado Theorem, we have (2*)* — (x*)2. Hence, we can can find a
subsequence I € (2¥)* of size |I| > x* such that

M e g(a',b¥) < ¢(al,b'), forallindices i, j, k, € I with
ord(ik) = ord(jl).

It follows that there is some relation o € {=, #, <, >} such that, forall i, k € I,
Me p(ak, b)) iff koi. O

To generalise Lemma 2.2 we look at the fine structure of an indiscernible se-
quence. In [9] Shelah defines an equivalence relation on the indices of a certain
sequence ("), of a-tuples (actually enumerations of models) by calling two
indices i,k < a equivalent if the bijection a] ~ aj, v € I, is MSO-definable.
Shelah’s main result concering this equivalence relation is a characterisation via
indiscernibility. Inspired by this work we consider the case of arbitrary indis-
cernible sequences. Taking the characterisation in terms of indiscernibility as
the definition we show that this equivalence relation gives rise to definable bijec-
tions a} + ay, v € I. The main ideas of the proof of this fact in Theorem 2.18
below are already contained in [9]. Our contribution consists in streamlining
the presentation, showing that the result holds without the special assumptions
of Shelah, and obtaining more precise information about the formulae defining
the bijections.

Definition 2.7. (a) Let ¢(%°, ..., %) be a formula where each ' is an a-tuple
of variables. A sequence (a"),¢; of a-tuples is g-indiscernible if, for all indices
a', vt eI%, i < k, with ord(@®... %) = ord(#°...75), we have

M g(afa),....a(u")) = o(a(e),....a(v)).

(b) Let A be a set of such formulae. (a"),¢; is A-indiscernible if it is ¢-indis-
cernible, for every ¢ € A. If A is the set of all formulae over a set U of parameters
we say that (a"),; is indiscernible over U.

Example. A sequence (a'); of 4-tuples satisfying
ME (p(aé,af,ai,a;”) if i=kor(i<kandl=m)
is @-indiscernible.

The relation { @” | v € I } is usually not definable. Instead, we define relations
{a"|, | v eI} for certain subsets p C a. The main part of this section consists in
the proof that the sets p where this is possible form a partition of a.

Definition 2.8. (a) A partition of a set X is a set P € £(X) such that X = UP
and p N q = @, for distinct p,q € P.
(b) Every partition P on X induces the equivalence relation
xw~py :iff  thereissome p e Pwithx,yep.
(c) The refinement order on partitions P and Q of X is defined by
PcQ :iff w~pcC Q>
and, for a family F of partitions of X, we define their common refinement by

MF:= X/~ where =~:=pep~p.

Definition 2.9. Let (4"),c; be a sequence of a-tuples and ¢(%°,...,%*) a for-
mula where each %’ is an a-tuple of variables. A ¢-partition of (a*),es is a parti-
tion P of « such that

M= p(a(a°),...,a(a")) < o(a(@°),...,a(#")),
for all indices i, #* € I, i < k, such that
ord(ia°[,...a*|,) = ord(¥°|,...7*|,), foreverypeP.

Let A be a set of formulae. A A-partition is a partition P that is a @-partition,
for every ¢ € A.

Equivalently, P is a A-partition of (@'); if, for every p € P, the ‘band’ (&', );
is indiscernible over its complement (a'|a-);-



Example. Let (a'); be an indiscernible sequence of 4-tuples and suppose that
¢(xox,%,%;) is a formula such that

Dﬁhq)(af),af‘,ai,a;") iff i=kor(i<kandl=m).

There are two ¢-partitions of [4]. The trivial partition with just one class and the
partition with classes {0,1} and {2,3}.

We will show that there is a unique minimal A-partition. We start by pointing
out that there exists at least one A-partition. Then we show that the class of these
partitions is closed under intersections.

Lemma 2.10. If (a")y¢; is a A-indiscernible sequence of a-tuples then {a} is a
A-partition.

Lemma 2.11. If (P;) <y is a decreasing sequence of A-partitions then [;, P; is a
A-partition.

Proof. 1f k is finite then we have [, P; = P,_,, which is a A-partition. For in-
finite « the claim follows from the fact that every formula ¢ € A contains only
finitely many variables. O

Lemma 2.12. Let (a"),¢; be an infinite sequence of a-tuples. If P and Q are A-
partitions then so is P Q.

Proof. Ttis sufficient to prove the claim for A = {¢}. Since ¢ contains only finitely
many variables we may assume w.l.o.g. that « is finite and that

P={por..ospnry and Q={qo>--->qm-1}-

For i < m,let g} := a \ g;. Since

PnQ=Pn{qo,qo} N 1 {qm-1» Gy}

it is sufficient to prove the claim for Q = {q, g’}
Let us introduce some shorthand. For i; € 779 and #; € I?""9 , we set

A[fios -+ s inss Vos-r s Vns] = (),

where x; is

¢ the [-th element of iiy, if i is the [-th element of pj N g,

o the I-th element of ¥, if i is the /-th element of py N ¢’
Suppose that ¢ = ¢(%°,...,%*). For ii! € [Pi" and ¥/ € 17"’ we define

k -0 -k -0 -k -0 -k o

We have to show that

M e (P[ao,-~-’1/_ln—1a170>- . -;vn—l] g ¢[§oa-~-x§n—1> fosenos tn—l] >

whenever ord(it;) = ord(5;) and ord(#;) = ord(?;). If we prove the following
special case then the general one will follow by symmetry (w.r.t. permutations of
P and Q) and induction.

Claim. Iford(it,) = ord(w, ) then

MM E @[, Uysevvslnos> Vs> Vni)

< Q[Wo, Uy e v s ln-1>V0s -+ o> Ve ] -

Letit, :=#,...0,_,and v, := ¥, ...V,_,. Since I is infinite we can find indices
S0 o, %, Ex € I such that

ord(5,8.) = ord(dots), ord(fof.) =ord(Vevs), So»8s < fo,ts.
Since Q is a g-partition we have

M E @lio, s> Vor Vi | < @505 54> Fos F4] -
Fix indices 3., £/, such that

ord(5#) = ord(5of,) and 5., <3,5,.
Since P is a @-partition we have

m ’: (P[S_O) S_ﬂ-’ EO) tx—] had (P[ggas_x-) E(’)) i*] .

Choose ) such that ord(5]'#]) = ord(w,7, ). Since ord(5)5.) = ord(s.s.) and
Q is a @-partition it follows that

M = @[50, 5., Fo, B ] < @[50, 54, T, E4]

10



Finally, let 5, £/, < I be indices such that

ord(55,) = ord(50s,),
ord(#.t.) = ord(£,t,),
ord(5.#,) = ord(it.v.) .

As Q is a g-partition we have

M 9I35 5 ] <> 95,510 B L]

%> vo>

Furthermore, ord(s)#,) = ord(w,¥,) and ord(s, ,) = ord(u.v, ) implies that

l

mz = (p[ 0)§*> 0> ZJ] - (P[wm il)f)f/O) 17%—] >
because P is a ¢-partition. O
Combining the preceding lemmas we obtain the following result.

Theorem 2.13. For every infinite A-indiscernible sequence (a")yej, there exists a
unique minimal A-partition P.

Definition 2.14. Let (@"),¢; be an infinite A-indiscernible sequence of a-tuples
and let P be the minimal A-partition of & corresponding to (a"),.

(a) The elements of P are called A-classes. Two indices i and k are A-dependent
if i »p k. Otherwise, they are A-independent.

(b) If A is the set of all first-order formulae over U we also also speak of U-
partitions, U-classes, and U-independent indices.

Remark. Note that, if i < a is an index such that no variable x! appears in A then
{i} is a A-class. Hence, if A is finite then every A-class is finite.

Remark. Let (a")ye; be an infinite indiscernible sequence over U. For every U-
class p, the sequence (a"|,)yer is indiscernible over U U |, [I].

We adopt the usual convention of working in a sufficiently saturated monster
model M into which we can embed every model 9)t under consideration. All ele-
ments and sets are tacitly assumed to be contained in M. By an U-automorphism,
we mean an automorphism 7 of M with 7|y = idy. We will frequently use the
following standard facts from model theory.

11

Lemma 2.15. Let (a")ye; be an infinite indiscernible sequence over U and let
P be its minimal U-partition. For every family (B,) pep of strictly increasing maps
By : I — I, there exists a U-automorphism m such that

n(a’lp) = dﬁ"(v)|p, forall p e Pandv edom§f,.

Lemma 2.16. Let (a")yer be an indiscernible sequence over U. For every order
embedding o : I — ] there exists an indiscernible sequence (b”),¢; over U such
that b*) = &, forv e L.

An argument we will frequently employ below is worth singling out. Suppose
we are given a sequence X, . .., X, where x, has some property P while x,, does
not. Then there is some index i with x; € P and x;,, ¢ P. For instance, if x, =
Uo...Upm—y and x, = v, ...V, are tuples then we can use the sequence x; :=
Vo ... VimUj ... Uy, to conclude that there are tuples i’ € Pand v’ ¢ P that differ
in exactly one component. A more involved example that appears in the proof of
the next theorem is the following one. For an ordered index set I, indices it, v € I",
and a number m < n, we define @ ~,, ¥ iff there exists some k < n such that

& up £vrand u; =v;, fori # k, and

+ cither there are exactly m indices i # k with u; = uy and there is no i with
U <u;j <V or v <u; <ug,

U, Uy = Uy us = Ug Us u;
U~y v

Va Vi =Vy V6 V3 Vs v,
or there are exactly m indices i # k with v; = v} and there is no i with
Vi <Vi<Uur Oor uUuplv;<vg.
Let v e =~ Urr U~y

Lemma 2.17. If1 is densely ordered then any two tuples ii, v € I" are connected by
a ~,-path.

Proof. For a contradiction, suppose that & and ¥ are not connected. As explained
above we may assume that i and v differ in exactly one component. Say & = x2
and ¥ = yz. Since the definition of ~,, is invariant under permutations of the
tuples we may assume that Z is increasing and

Zo< Sz SX<Zp < <2 <Y<z < <2y,

12



We choose k and [ such that x < z; and z;_, < y. We derive a contradiction by
induction on I — k. If k = [ then we have

XZ ~cp YZ.
Contradiction. Suppose that k < I. We claim that
XZ ~cp ot ~en ZkZ.

Hence, the result follows by induction hypothesis. If z;_, = x < z; then we can
take any element z,_, < x” < z; and it follows that

XZ <~y X'Z <cp 242
If z;_, < x < z then we immediately have
XZ ~cp ZkZ. O

After these preparations we can finally prove that, for every A-class p, we can
define the relation { a"|, | v € I'} with the help of monadic parameters. In the
constructions below this will allow us to replace sequences (a"), of tuples by
sequences (a} ), of singletons.

Theorem 2.18. Suppose that ("), is an infinite -indiscernible sequence of a-
tuples where ¢ has r free variables. For each ¢-class p and every finite subset q < p,
there exists a formula y,(%; y, 2, Z) with the following property.

If5, t € I" are strictly increasing r-tuples with § < t and

Aj:={a]|vel,s<v<it}, foriep,
then we have
ME xq(Gals),ali],A) iff  ¢=a’|,forsomevelwiths<v<t.

Proof. The proof is based on [9, Fact 11.1.5]. We prove the claim by induction
on n :=|q|. For g = {i}, we can set

Xq(x) = Aix.

Furthermore, if q and g are sets such that g n ¢' # @ and y, and x, exist, then
we can define

Xquq’(’z}_’z) = Xq(’z)_’) A Xq’()_’z) >

13

where the variables X correspond to the elements of g \ q’,  to g n ¢’, and Z to
9~

Consequently, there exists a partition p = g, U--- U g,_, such that each q; is a
maximal subset of p with the property that y,, exists. We have to show that n =1
and q, = p. Let b, := @"|4+,, for an arbitrary index v. For ¥ € I", we define

g D).

(7] = 9(a"g,» ..., "

We will show that
ME plu] < ¢[v], foralla,vel.

It follows that each g; is a ¢-class which implies that q; = p.
By Lemma 2.17 and the remarks preceding it, it is sufficient to prove that

i~,v implies ME g[a] < ¢[v].
We prove this claim by induction on m. Let k be the index witnessing the fact

that # ~,, 7. By symmetry, we may assume that u is increasing, that ux < v,
and that uy € { u; | i # k }. Hence, we have

Ug S S Upoy < Uy =+ = Up < Vi < Uggy <o < Upey «

Define

$i1=Up.. Ugomoy> U=Up, V=V, = Uy ... Upog,
and set b_ := @ |, ...a%m|, and by = @%@t
For m = o, the claim follows immediately by indiscernibility of (a"),. Suppose
that m = 1and that

—m—1

ME @[S, u,u, F] A-p[5,u,v,£].
If M = —¢[$, v, u, t] then we have

MEe g[5,x,p,8] if x=y,
and we can define

XaxaUax (%5 7) = Xgu, (%) A xq (7)) A (P(I_’—”_C’)_” b., I;*) >

14



in contradiction to our choice of g.
Thus, we have 01 = @[5, v, u, £]. This implies that

Meo[s,x,pt] iff x>yp.
As in Lemma 2.2, we obtain a formula

9(% ") = Vi xg (7) A 9(b-, % 7, by, be) = 9(b-, ', 7, b4, b))
such that

Me 9(a*|g,_,,d"q.,) iff x<y,
and we can set

quﬂuqk(’_c’}_’) = quﬂ(’_c) A qu(}_’)
AE (g () A @b 7 3B, b.) > (5, 9)].

Contradiction.
It remains to consider the case that m > 1. Again, assume that

Me@[S,u...u,u, ] A-@[S,u...u,v,f].
By indiscernibility, the former implies that
Meo[s,w...w,{], forallw e Iwiths§ <w < £.

On the other hand, if w € I""*" is a tuple such that § < w < # and |rngw| > 1 then
Wt~ Su...uvi. Hence, by induction hypothesis, we have

M = -p[S,w, 1], for all such w .
Consequently, we have

M = @[S, w, {] iff  we=:=wy,
and we can define

Xk—mU-Uqp (Xos s Xkom) = Xk-m (Zo) Ao A Xax (Xk-m)

AP(b_yRos...s Kpems iy b)),

in contradiction to our choice of g. O
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3 PAIRING FUNCTIONS AND CODING

In [1] Baldwin and Shelah argue that the monadic theories of structures are hope-
lessly complicated if they admit coding, i.e., if they contain a first-order definable
pairing function. Then they proceed by classifying the remaining structures by
their first-order theories. Baldwin and Shelah show that, if the first-order theory
is stable then structures that do not admit coding have a tree-like decomposi-
tion with countable components. The unstable case is considered in [9] but the
resulting theory remains fragmentary.

In a forthcoming article [2] (see also [5]) we will complete the picture by prov-
ing that every structure that does not admit coding is tree-like in the sense that
it has a so-called ‘partition refinement’ of bounded (though infinite) width. This
also gives an alternative proof of the already known results on stable structures.

In the present article we develop the structure theory needed for this result.
We start by collecting conditions that imply the definability of a pairing func-
tion. Special emphasis is placed on indiscernible sequences. In this section we
present the needed definitions and results from [1], together with some simple
consequences. The next section contains mostly new results.

Definition 3.1. A structure 9t admits coding if there exist an elementary exten-
sion N > I, unary predicates P, and infinite sets A, B, C € N such that in the
structure (N, P) there exists a first-order definable bijection A x B — C.

An alternative characterisation of coding is based on the existence of two
equivalence relations.

Lemma 3.2. Suppose that ¢(x, y) and y(x, y) are formulae (with monadic pa-
rameters) and (c*"), v<w are elements such that

Me p(c™, ') ff u=s,
Mey(c™, ) if v=t.

Then M admits coding.

Proof. The formula y(x, y,z) := ¢(x,2z) A y(y,z) defines the bijection
{c¢"u<w}x{c|v<w}->{"|uv<w}

sending the pair (c*°, c°") to ¢*". O

A first simple criterion for coding is the independence property.
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Definition 3.3. Let T be a first-order theory. A formula ¢ (%, 7) has the indepen-
dence property (w.r.t. T) if there exists a model 2 of T' containing sequences
(ax)xcw and (b;) i<, such that

MEg(ax,b;) iff ieX.

We say that a structure 901 has the independence property if there exists a
formula ¢ that has the independence property w.r.t. Th(90). If ax and b; are
singletons we say that 901 has the independence property on singletons.

Lemma 3.4. If 9N has the independence property on singletons then it admits cod-
ing.
Proof. Fix sequences (ax)xce and (b;);e, and a formula ¢(x, y) such that

Mlzgo(ax,b,-) iff ieX.

Fix disjoint infinite sets U,V € {b; | i < w} and define f : U x V - M by
f(bi,by) = agi k. Then we have

f(xy)=2z iff Mk o(z,x)Ap(zy),
forxeU,yeV,andz e f(U,V). O

In [1] it is shown that the independence property and the independence prop-
erty on singletons coincide if we allow unary predicates.

Lemma 3.5 (Baldwin, Shelah). Suppose that 9 has the independence property.
There exists an elementary extension M > M and unary predicates P such that
(M, P) has the independence property on singletons.

Consequently, the independence property implies coding.

Corollary 3.6 (Baldwin, Shelah). If 901 has the independence property then it ad-
mits coding.

Related to the notion of coding is the notion of dp-minimality. Intuitively, a
first-order theory is dp-minimal if there is no pairing function that is first-order
definable without monadic parameters. In particular, every theory that does not
admit coding is dp-minimal. The precise definition of dp-minimality is as follows

(see [7]).
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Definition 3.7. A first-order theory T is not dp-minimal if we can find first-
order formulae ¢(x, ) and y(x, y) (without parameters) and some model 2t
of T containing two indiscernible sequences (a"),<, and (E” ) n<w and a family
(c™*); k< such that

Meo(c*a") if n=i,
and Me (K b") iff n=k.

It will follow from the results of the next section that every theory that does
not admit coding is dp-minimal. But there are dp-minimal theories that do admit
coding. For instance, one can show that every o-minimal theory is dp-minimal.
Hence, the theory of ordered abelian groups and the theory of real closed fields
are dp-minimal, while they do admit coding.

4 INDISCERNIBLES

This final section is concerned with the following question. Given an indiscern-
ible sequence ("), and an arbitrary element ¢ what is their relationship? Is
the sequence also indiscernible over ¢ or can one distinguish intervals of I with
the help of ¢? (We use the term ‘interval’ for arbitrary convex subsets. We do
not require the existence of a supremum or infimum.) As an example we give a
characterisation of the independence property in these terms, which is basically
due to Shelah (see [10] and [11].)

Definition 4.1. Let ¢(x) be a formula and (a"),; a sequence. We define

[p(a)lver={vel|Mrg(a")}.

Lemma 4.2 (Shelah). A formula ¢(x,y) has the independence property if and
only if there exists an indiscernible sequence (a" )1 and a tuple ¢ such that the set
[¢(¢,a")]ver cannot be written as union of finitely many intervals.

Proof. (=) Let (@;)i<o and (bx)xc. be sequences such that
ME ¢(bx,a;) iff ieX.

By compactness, we may assume that (d; )< is indiscernible. Take the set X :=
{2i]i < w} of even numbers and set ¢ := bx. Then [¢(¢, a;)]; has the desired

property.
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(«=) Fix a strictly increasing or a strictly decreasing subsequence (u;) <, of I
such that every interval (u;, u;;,) contains elements of both [¢(¢,a")], and
[-9(& a")],. Let J := {u; | i < @} and set b; := a*. For every set X € w, we
can fix a strictly increasing function ax : J - I such that

ax(u;) e[o(ca”)], iff ieX.

Let mx be an automorphism such that ﬂ(ti""‘(")) = g%, forv € J, and set ¢y :=
72(¢). Then it follows that

ME ¢(éx,b;) iff ieX.
Consequently, ¢ has the independence property. O

Corollary 4.3. Let (a"),e; be an infinite indiscernible sequence and ¢ a tuple such
that the sets

[p(¢,a")]ver and  [-9(¢,a")]ver
are both infinite. If (a"), is totally indiscernible then 9 admits coding.

Proof. By taking a suitable subsequence we may assume that I is countable. We
can choose a bijection « : Q — I such that the sets

[9(&,a*)]veg and  [-9(Ea*™)]eq

are dense in Q. If (a@"),¢; is totally indiscernible then so is the rearranged se-
quence (a*(")),cq. By the preceding lemma it follows that ¢ has the indepen-
dence property. O

In order to develop a structure theory for structures that do not admit coding
we investigate indiscernible sequences. In the following we derive a sequence of
lemmas containing more and more strict conditions on definable intervals of in-
discernible sequence. We will prove that the U-classes of such an indiscernible
sequence are not affected if we add a new element ¢ to U, i.e., every U-class is
also a (U U {c})-class. The main result of this section states that, if the struc-
ture in question does not admit coding, then we can extend each indiscernible
sequence (a"),er to cover every given set, i.e., we can find an indiscernible se-
quence (b"),e; with I € Jand b” 2 @, for v € I, such that b[J] contains the
given set. As a consequence it follows that every structure without coding has a
basically linear structure.
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Note that the result obviously fails for arbitrary structures. For instance, if
(ax)xco and (b;);<, witness the independence property, then we cannot extend
(b;); to include the element A1)

Let us start with a simple example that illuminates the general structure of the
more involved arguments below. Given two indiscernible sequences (a”),¢; and
(b")yer with certain additional properties, we construct a family (¢*"),,,er and
a definable bijection (a,, b,) — c*".

Lemma 4.4. Let (a")yez and (b") ez be sequences such that (a"), is indiscernible
over UUb[Z] and (b"), is indiscernible over U U a[Z]. If there exist an element c,
formulae ¢(x, y) and y(x, y) over U, and relations p,0 € {=,#,<,>,<,>} such
that

Meg(a’,c) if vpo
and Mey(b’,c) iff voo,

then N admits coding.

Proof. Let 75 be an U-automorphism such that

ng(a’) =a"" and 7, (b')=0b"",
and set ¢*' := my;(c). It follows that

Me p(a’, ) f Meg(a>c) if v-spo iff wvps,
and similarly

Me vy, ') if vot.

Let A:={a"|vel}and B:={b"|vel}. Wecan construct formulae y(x, y)
and 9(x, y) such that

MEe y(c", ") if u=s,
Me (™, ) iff v=t,

by setting

x(x,y) = (Vz.Az)[9(2,x) < 9(2, )],
9(x,y) = (V2.B2)[y(z,x) < v(z,y)].

By Lemma 3.2 it follows that 9T admits coding. O
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The following criterion for coding appears in [9].

Lemma 4.5 (Shelah). Let (a"),e; be an infinite indiscernible sequence over U.
Suppose that there exists a U-class p, an element ¢ € M, a formula y over U, and
indices s < t such that

o Mevy(c,d’lpalp),

o ME -y(c,a’|,, a’|,) for infinitely many v > t,

o ME -y(c,a’|p, a'l,) for infinitely many v < s.
Then I admits coding.

In the preceding lemma we have considered the case that the truth value of ¢
changes if we move the index v outside the interval [s, ¢]. The next lemma states
a dual version of this result where we consider instead indices v € (s, t).

Lemma 4.6. Let (a"),¢; be an infinite indiscernible sequence over U. If there exist
an element c, a U-class p, a formula ¢, and indices s < t such that

M= g(c,a’lp) Aol a'ly),
M= -¢(c,a’|y), forinfinitely manys <v<t,
then M admits coding.

Proof. Wlo.g. assume that @', = a@”. By Ramsey’s theorem and compactness,
we may assume that I = R and

M e -p(c,a’), foralls<v<t,

Mep(c,a”) < ¢o(c,a”), forallu,v<s,

Meo(c,a") < ¢o(c,a”), forallu,v>t.
For u < v, fix an order isomorphism a,,, : I — I with a(s) = u and a(t) = v and
let 7,,, be an U-automorphism such that 7, (a*) = a®™) We set ¢ := Ty (€).
Fix a partition I = I, u I, into infinite sets I, and I, with I, < I,,s € I, and ¢ € I,.

First, consider the case that 9 = ¢(c,a"), for all v < s. We can define the

order of (a")yeg, by

9(%,7) = (V2.C2)[9(2.%) » 9(z,7)],

where C := { " |u € I,, v € I, }. Let y(x) be a formula with monadic parame-
ters such that

M E x(b) implies b=a", forsomevel,.
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For the formula
¥(z,%) = ¢(2,%) AVI[x(7) A (X, 7) = —9(2,7)]
we have
[w(c’t, @) ]ver = [@(c**, @) ]ver ~ (-00,5), forsel,andtel,.

Similarly, if 9 & ¢(c*', "), for all v > ¢, then we can construct a formula w
such that

[y(c™, a")ver = [p(c*, @) Jver ~ (£, 0).
Consequently, we can assume that
lo(ct,a")], = {s,t}, forallsel,andtel,.
Forall s,u € I, and t, v € I,, it follows that
MEp(ch,a*)Ap(c’,a") if wu=sandv=t.
Let (%) be a formula with monadic parameters such that
M y(b) implies b=a", forsomevel,.
It follows that the formula
y(x, ,2) = 323 [x(xx") A x(97") A p(2,x2") A 9(2, 75)].
defines the bijection (a%, ay) — c*”,foru € I, and v € I,. O

For sequences (a"), with a single U-class, it follows that, in the absence of
coding, the structure of sets of the form [¢(c, a")], is quite simple.

Corollary 4.7. Suppose that 9 does not admit coding and let (a"),e; be an in-
discernible sequence over U where the order I has no minimal and no maximal
element.

For every U-class p, each element ¢, and all formulae ¢(x, y) over U, one of the
following cases holds:

¢ [lo(e.a"p)]| <1
o [[-9(c.a"]p)]v] <1
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¢ [o(c,a"[,)]y is an initial segment of 1.
o [o(c,a"l,y)]y is a final segment of I.

Proof. We simplify notation by setting [¢] := [¢(c,a"|,)], and similarly for
[-¢]. Suppose that [¢] and [-¢] both contain at least two elements. We con-
sider three cases.

(a) Suppose that, for every v € I there are elements u, u’ € [¢] withu <v < u'.
We fix indices s, t € [-~¢] with s < . The formula

¥(2.%,7) = ~9(2, %) A -9(2,7)

and the indices s < t satisfy the conditions of Lemma 4.5. Hence, 91 admits
coding. A contradiction.

(b) If, for every v € I, there are elements u, u’ € [-¢] with u < v < u’ then we
obtain a contradiction as in (a) by exchanging ¢ and -¢.

(c) It follows that there are indices s < t such that either

(-o0,s) o] and (£00) < [-9],
or (-oo,s)c[-¢] and (t,00)c[g].

By symmetry, we may assume the former. If s = ¢ then we are done.

For a contradiction, suppose that there are elements s < u < v < t with u €
[-¢] and v € [¢]. By indiscernibility and compactness, we may assume that I is
dense. If (u,v) N[ ¢] is infinite then —¢ and the pair u < f satisfy the conditions
of Lemma 4.6. Otherwise, (u,v) N[-¢] is infinite and ¢ and the pair s < v satisfy
these conditions. In both cases it follows that 9t admits coding. Contradiction.

O

Remark. If the order I in the corollary is (Dedekind) complete then we can
rephrase the statement as follows: there exists an index s € I and a relation
oe{@,I1x1,=,+,5%,2,<,>} such that

Meg(c,a’l,) if vos.

In the remainder of this section we generalise this result. We start by consid-
ering formulae ¢(c, a[v]) talking about several elements of the sequence. Then
we generalise the results to the case of several U-classes.

Lemma 4.8. Suppose that I does not admit coding. Let (3" )¢ be an indiscerni-
ble sequence over U and p a U-class. For every element ¢ € M, there exists a linear
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order ] 2 1, an element s € ], and an indiscernible sequence (b")yej over U such
that b¥ = a"|,, forv € I, and

M = g(c,ba]) < ¢(c,b[7]),
for every formula ¢ over U and all indices 11, v C ] with ord(st) = ord(sv).

Proof. Replacing a” by a"|, we may assume that p is the only U-class. Let ] be
a complete dense order extending I and let (b"),¢; be an indiscernible sequence
extending (a")ye;.

If (b"), is indiscernible over U U {c} then there is nothing to do. Otherwise,
there are a formula ¢ and tuples @, v € J with ord(#) = ord(#¥) such that

M = ¢(c, b[a]) A-p(c, b[7]).

We can choose i and ¥ such that there is exactly one index i with u; # v;. Hence,
we may assume w.l.o.g. that &# = 47°7* and v = v#°#* where

(o} (o] 1 1
To <o <t SUSVL<Tg << T, .

Fix the interval J, := (ry,_,,7;) S J. The sequence (b")yej, is indiscernible
over U U b[7°7"]. We can apply Corollary 4.7 to the element ¢ and the sequence
(b")yey, to find an index s € J, and a relation o € {=, #, <, <} such that

Me o(c,b",b[7°F]) if xos, forallxe],.

We claim that s is the desired index.
Suppose otherwise. Then there is some formula y and indices %, ¥ € J with
ord(sit) = ord(sv) such that

M = y(c, b[a]) A -y(c, b7]).

Again we may assume that i = u7*7* and v = vi*#3 with r2 <--- <1},  <u<

v<rd<--<r,_.Let] = (r},_,,r}) € J. As above there is some index t € ],

and some p € {=, #, <, <} such that
Me y(c,b*,b[*7]) iff xpt.

ord(su) = ord(sv) and u < t < v implies that ¢ # s. Hence, there exist infinite
convex subsets I, € J, and I, € J, withs € I, and t € I, such that I, n I, = &,
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7°7 NI, = @, and 77 N I, = @. Furthermore, there are formulae ¢'(x, y) and
y'(x, ) with monadic parameters such that

ME¢'(c,b") iff x=s, forallx € I,,
Mey'(c,b™) iff x=t, forallx €1, .

For u € I, and v € I, fix order isomorphisms «,, : I, - I, and 8, : I, - I, with
a,(s) =uand fB,(t) = v. Let i, be a U-automorphism such that

Ty (b)) = b () forx el,,
ﬂuv(éx):i)ﬁ”(x) forxel,,
nuv(l_)x)zl_)x forxeJ~(lLbul,),
and set ¢"¥ := 7, (c). For u,s € I, and v, t € I, it follows that
ME @' (™, b) Ay (¢™,b") iff u=sandv=t.
Contradiction. |

Lemma 4.9. Suppose that 9 does not admit coding. Let (a"),e1 be an indiscerni-
ble sequence over U, ¢ € M an element, ¢(z,x°,...,x™™") a formula over U, and
p a U-class. Set

ple,v]=9(c,a"|p,....a"|p).

If there are indices 01, v € I'"" such that
M= olc,a] A-p[c, 7]

then there either exists a formula 9(%, y) (with monadic parameters) such that
Me9(a*|,,a,) iff x<y,

or there exist an index s € I such that equ(sx) = equ(sy) implies
M g[e.x] < ¢[c, 7].

Proof. By Lemma 4.8, there is an index s such that the truth value of ¢[ ¢, X] only
depends on ord(sx). Suppose that there are indices @, v € I" with equ(szt) =
equ(sv) and

M e p[c,u] A-9[c,v].
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We construct a formula 9 that defines the ordering of I. By adding unused vari-
ables to ¢ we may assume that s € 4. Furthermore, by changing ¢ we may assume
that u; # u, and v; # v, for i # k. Let k be the minimal index such that

IME @[, Vo - Vilgsr - Ume] -
Since
ME Q[ Vo - - Vi Uklgay - - - Um1 ] A =Q[C Vo« . Vi Viliggr« - - U ]

we may assume that there is some index k such that u; = v;, for i # k. Wlo.g.
assume that k = o and that u, < v,. Since ord(it) # ord(v) there must be at
least one index k > o with u, < uy < v,. By a similar argument as above we may
assume that there is exactly one such index. Hence, we may assume that

U =utrory, and v =vtr,7, wherer, <u<t<v<r.
We consider two cases.
(a) Suppose that t # s. Then equ(sii) = equ(sv) implies that s € 7,7,. Since
ord(vuf,7,) = ord(vi7,7,) it follows that

M E o[c, wwior, | A —@[c, vutof .

Fix a linear order J 2 I and a strictly increasing function « : I — ] such that
a(fo) < I < (). Let (b")yes be an indiscernible sequence extending (a*) e
and fix a U-automorphism 7 such that 7(a*) = 5%*). We set d := 7(c). For
x, y € I with x # y it follows that

ME p[d, xya(Fo)a(r)] if x<y.
Hence, we can define
9(%,7) =% = 7V (ds %, 7, bla(FoR)]) .
(b) It remains to consider the case that t = s. Then we have
M E ¢[c, ustof, | A =@[c,vsiot,].

Fix a linear order J 2 I, tuples w,, w, C ] with w, < I < w,, and an indiscernible
sequence (b"),¢; extending (a"),¢;. For each ¢ € I, let a; : I — ] be an order
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embedding such that a;(s7,7,) = tW,w, and choose a U-automorphism 7; with
(@) = b*)_ Setting ¢’ := 7, (c) it follows, for x # ¢, that

Me o[, xtwow,] iff x<t.
By Theorem 2.18, there is a formula y (with monadic parameters) such that
Mey(c,a) f a=a"andc=c", forsomexel.

If we define

it follows that
ME9(a",a’) if x<y. O

Next we consider the case that there are several U-classes. The following lemma]
roughly states that, when adding an element ¢ to U, the partition into U-classes
does not change.

Lemma 4.10. Let (a") s be an infinite indiscernible sequence over U, ¢ € M be

an element, ¢(z,%°,...,x™™") a formula over U, and let p,, ..., px-, be the U-
classes corresponding to the variables in x°, ..., x™ 7. For indices Vo, . .., Vg, € I",
we set
(6 Tor v Tka] 2= 9 @%p, ... 75| G Y S

gD sVoseeesVik—1] -+ (P > Po“' Pk—l""’ Pocc- Pk*l .
If there are indices iy, Uy, Vo> . . ., Vi—, € I"™ such that ord(#1;) = ord(v;), fori < 2,
and

M e §0|:C’ 170) 1-/1’ 1-’27 cees 1-/k—l]

M = @[, to, V1> Vas -+ +» Vi |

M = =@[C, Vor Uy Var oo o> Vi |
then M admits coding.

Proof. For a contradiction, suppose that 9t does not admit coding. Since the
sequence (a"|p,up, )v is indiscernible over U U a|p,...up,_, [I], we may w.l.o.g. as-
sume that k = 2. Further, note that the sequence (@"|,,), is indiscernible over
Uualp,[1].
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For fixed y € I", there are two cases. The truth value of ¢[c, %, ] might only
depend on ord(x). Otherwise, we may assume, by Lemma 4.8, that there ex-
ists a unique index s(j) such that the truth value of ¢[c, %, ] only depends on
ord(xs()). Similarly, if, for x € I", ¢[c, X, 7] depends on more that just ord(y)
then there exists a unique index ¢(&) such that the truth value of ¢[c, %, y] only
depends on ord(yt(x)).

By compactness, we may assume that I = R. For every pair of order automor-
phisms «, B : I - I, fix a U-automorphism 7, such that

map(a’lp,) = da(v)|po >
”aﬁ(dv|p,) = dﬁ(v)|p1 .

First, we prove that we have s(y) = s(3'), for all 7, 5" € I such that s(7)
and s(j") are defined. For a contradiction, suppose that s(7) < s(3"). For u <v
in I let a, : I — I be an order isomorphism such that a,,(s()) = u and
auy (s(7')) = v, and set ¢*” := my,, 1a(c). We construct formulae y(z, %) and
¥'(z, %) (with monadic parameters) such that

Meyle,d'lp,) iff v=s(y),
and Mey'(c,a"l,,) iff v=s(3).
Let x,, be the formula from Theorem 2.18 defining the relation { a"|,, |v € I}.

If the linear ordering on the sequence (a”|p, )ves is definable by a formula over
Uu{c}ualpu-upn,[I] then we can define y(z, ) by

Xpo (X) AV Y™ Y0y
[ A Gt (i) 7 x5, (7))
nord(xu®...a" ") =ord(xv° ... 9™ ")

pA AT ¢’(z,&°,...,v*”“))]

where ¢’(z,%°,...,%™") is an abbreviation for

n)-

If the ordering is not definable then it follows by Lemma 4.9 that the truth value
of ¢[c, i1, ¥] only depends on equ(sit). In this case we can replace the condition

om-1

o - = Y
o(z, %%, @°p,..., x"7, @
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ord(xu°...) = ord(x¥°...) in the above formula by the formula
equ(xu®...a" ") =equ(xv... 7" ).

The formula y’'(z, x) is defined analogously. It follows that
Mey(c™,a*l,,) Ay (", a],,) iff x=uandy=v.

Fixing disjoint intervals I,,I; € I with I, < I, we obtain a definable bijection
alp,[Io] x alp, [I,] = { " | u € Io,v € I, }. Contradiction.

In the same way it follows that t(x) = t(x') if these values are defined. By
assumption, there are indices x := v, and y := ¥, such that s(7) and ¢(x) are de-
fined. Let us denote these values by s and ¢. As above we can construct formulae
95 (2, %) and 9,(z, ) such that

Me 9(c,a"],,) iff x=s,
and MeE 9 (c,a’|,) iff y=t.

For u,v € I, Let ay, 8, : I - I be order isomorphisms such that «, (s) = u and
B.(t) = v,and set c"” := 74, g,. It follows that

M e 9o (™, a"|p,) A9:(c",d],,) iff x=uandy=v.
Consequently, 9t admits coding. O

Lemma 4.11. Suppose that 9 does not admit coding. Let (a"),e; be an indis-
cernible sequence over U. For every element ¢ such that (a"), is not indiscernible
over U u {c}, there exist a linear order ] 2 I, an indiscernible sequence (b") ey
with b" = @", for v € I, and a unique index s €  such that

M = ¢(c,b[a]) < ¢(c,b[7]),
for all formulae ¢ over U and all tuples i, v € ] with ord(sit) = ord(sv).

Proof. Let a :=|a"|. By Lemma 4.10, there is a U-class p such that the sequence
(@"[a~p)v is indiscernible over U u a|,[I] u {c}. Furthermore, by Lemma 4.8
there exists a linear order J 2 I, an indiscernible sequence (b"),¢; with b” = a”,
for v € I, and an index s € J such that

M= p(c, bl []) < ¢(c, bl,[7]),
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for all formulae ¢ over U U b|s,[/] and all indices i, % € J with ord(sit) =
ord(sv). It follows that

M = g(c,b[a]) < ¢(c,b[7]),
for all formulae ¢ over U and all indices @, ¥ € ] with ord(s#t) = ord(sv). O

It follows that we can generalise Corollary 4.7 to sequences with several U-
classes.

Corollary 4.12. Suppose that I does not admit coding and let (a*),er be an in-
discernible sequence over U where the order I has no minimal and no maximal
element.

For each element ¢ and all formulae ¢(x, ) over U, one of the following cases
holds:

* [lo(c,a)]y] <1
o [[~p(c.@)]| <1
o [o(c,a")]y is an initial segment of 1.
o [o(c,a")]y is afinal segment of I.
Combining the preceding lemmas we finally obtain the main result of this

section. The next theorem states that we can extend each indiscernible sequence
to cover every given element.

Theorem 4.13. Suppose that I does not admit coding. Let (a")ye; be an indis-
cernible sequence over U. For every element c, there exist a linear order ] 2 I and
an indiscernible sequence (b*c")yej over U such that b” = @", forv e I, and ¢ = ¢*,
for some v € J.

Proof. W.lo.g. assume that I is infinite and complete. If (a"), is indiscernible
over ¢ then we can set ¢” := ¢, for all v. Otherwise, it follows by Lemma 4.11 that
there exist a linear order J 2 I, an indiscernible sequence (b"),¢; with b” = a,
for v € I, and a unique index s € J such that

M &= p(c, b[a]) < ¢(c,b[7]),

for all formulae ¢ over U and all tuples i, ¥ € J such that ord(sir) = ord(sv).
For u € ], let &, : ] — ] be an order isomorphism with &, (s) = u. Choose
U-automorphisms 7, with 7, (b”) = b*(*) and set ¢* := 7,(¢).
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Let @ be the set of all formulae ¢ (%, 7) such that, for some infinite subset J, <
J, we have

M & ¢(b[a],c[@]), forallincreasing sequences ii € J, .

For every formula ¢ we have ¢ € @ or -¢ € @, by Ramsey’s theorem. Further-
more, O is closed under entailment. Let ¥ ¢ @ be a maximal consistent subset
of @.If there were a formula ¢ with ¢ ¢ ¥ and ~¢ ¢ ¥ then Yu{¢} and Yu{-¢}
were inconsistent. Hence, we would have ¥ = -¢ and ¥ £ ¢. This implies that
¥ E ¢ A —¢ and ¥ is inconsistent. Contradiction.

It follows that ¥ is a complete type. Let (5”¢"),¢; be a sequence realising V.
Since tp(&°/UU(b"),) = tp(c/Uu(b"), ) there exists an U-isomorphism 7 with
7(&) = cand 7(b*) = b, for all v € J. It follows that the sequence (5" 7(&")),
is the desired indiscernible sequence. O

By induction it follows that we can extend each indiscernible sequence to cover
every given set of elements.

Corollary 4.14. Suppose that O does not admit coding. Let (a"),¢; be an indis-
cernible sequence of a-tuples over U. For every set C € M, there exist a linear order
J 2 I and an indiscernible sequence (b"),e; of B-tuples over U with B > « such
that C < b[J] and " = b"|,, forv e L.

We conclude this section by an investigation of the U-partition of a sequence
of the form (a"|y),, for an arbitrary set N C «r. We start with a generalisation of
Lemma 4.10.

Lemma 4.15. Let (a"c")ye1 be an infinite indiscernible sequence over U and let

P be the minimal U-partition for the sequence (a")ye. Let ¢(2,%°,...,%x™") be
a formula over U and let po, ..., px—, € P be the U-classes corresponding to the
variables in x°, ..., x™ . For t,Vq,...,Vi_, € I", we set

(P[i-’ 170; e 1-/k—l:| =

p(c[t],alp, .. @ p reer @™ [pg o @’ [p, ).
If there are indices o, iy, Vo, - - -, Vk_1» t € I™ such that ord(i1;) = ord(v;), for
i<2,and

m E gol:i’ 1707 171; 1-/2, e ,Vk_l]
DM = —~[E, thos 1 Vs - o5 Vs ]
M = (L, Vor iy, Vs - o5 Vs ]

31

then N admits coding.

Proof. Replacing U by U U d|p,u..up,_, [I] we may assume that k = 2. By assump-
tion there are tuples #,, ), %,, i, € I"" such that

ord(a;) = ord(@};) = ord(v;)

and

As usual we may assume that #; and i} differ only in one component. Thus, sup-
pose that i#; = u,;7; and @} = u'7;. Furthermore, we may assume that

[[ui u] N <1

since, if u; < t; < t; < u} then we can replace either u; or u; by some index
between t; and t;. Hence, suppose that there are indices k and / such that

[to,ul]ntc{ty} and [u,uj]nic{t}.

Let a be an order isomorphism with «(#;) = t;. W.l.o.g. suppose that k = 0 and
let = t,t'. It follows that

M &= p[toa(t), a(Po), alito)] A —~p[toa (), a(vo), a(iy)].
Fix indices s_, s, such that
s_ <uoupa(uy)a(ul) <sy and (s_,sy)ni={to},

and set J := (s_, s, ). The subsequence (a"),¢; is indiscernible over the set V :=
U u a[I ~J]. Defining

V(2, %o Jos %1 J1) 1= 9(2, c[F'], o» %1) A @(2, c[a(T')], Jos 1)
we obtain a formula over V such that

M e W[Cto’ ao“(f/o)> 1-/105(1:41)] >
M e _'W[Cto’ a;“(f/o)’f/la(ﬁl)] >
M = —y[c, doa(vo), hal(il)].

By Lemma 4.10 it follows that 9T admits coding. O
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It follows that the A-dependence of two indices i and k is a ‘local’ property

since it only depends on the sequence (a}ay),, not on all of (a"),.

Theorem 4.16. Suppose that I does not admit coding. Let (a"),er be an indis-
cernible sequence over U with |a*| = «, and let N C a. If P is the U-partition of
(a"), then the U-partition of (a"|n),is {pn N |peP}.

Proof. 1t is sufficient to consider the case that N = « \ {n}. Then the general
case will follow by induction. Let P be the U-partition of (a"|y),. Consider a
formula ¢(z°x°,...,z"'x™™") over U where the variables z' correspond to a’,
while %’ correspond to @”|y. Let po, ..., px—, C N be the U-classes appearing
in the variables x'. By Lemma 4.15, it follows that, for every f € I", there exists
some class p; such that the truth value of ¢ only depends on the class p;, i.e.,

R e R _ym

ME g(apael,, ...a% |y ,...oapate |y, ...a"% |, )
to =v2 “Vp_ tmey VTt Svpet

o p(ard”lp,...a" | p @@ |py .. d%p )

for all indices &', 7' € I"™ with ord(&') = ord(#'), for i < k, and &' = #'. By
indiscernibility, this index is the same for all #. It follows that the U-class of # is
either {n} or p; U {n}, while the other U-classes are p, j # [. O

5 CONCLUSION

We have developed a structure theory for indiscernible sequences in structures
that do not admit coding. In particular, we have introduced the notion of a U-
class and we have shown that, for every U-class p of an indiscernible sequence
(@")ver and all indices i, k € p, we can define the map a} — a}, v € I. Further,
we have shown that these U-classes behave well under extensions of the indis-
cernible sequence. Finally, our main theorem states that we can extend every
indiscernible sequence (in width or in length) to cover any given subset of the
universe.

These results show that theories that do not admit coding are nicer behaved
than dp-minimal theories (where our main theorem fails). It might be hoped
that theories without coding can be used as a test bed for the investigation of
dp-minimal theories: they provide a simple context in which hypotheses can
be tested and proved more easily, before they are generalised to cover all dp-
minimal theories.
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The original motivation of our work comes from the model theory of monadic
second-order logic. In particular, we aimed at solving the conjecture of Seese,
which is equivalent to the statement that every structure with no MSO-definable
pairing function has a finite partition width. In a forthcoming paper [2] (see
also [5]), we will give a partial answer to this conjecture by showing that the
partition width of every structure not admitting coding is bounded by 22
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