1 INTRODUCTION

Formal language theory studies sets of finite and infinite words and terms (usu-
ally called trees) that are finitely described by means of grammars, automata,

R ECOGNIZABILITY, or logical formulas. It also investigates transformations of words and terms in

a similar perspective. Its scope now extends to descriptions of sets of graphs,

HY PERGRAPH O PERATIONS, hypergraphs, partial orders, and related combinatorial structures, and to that
of transformations of these objects, which we will call, as for words and terms,

AND L OGICAL TY PES transductions. Universal algebra and logic are fundamental for developping this

extension, and this article contributes to showing why.
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Context-free languages can be characterized as least solutions of systems of recur-
sive equations, while regular languages can be characterized as union of classes
of finite congruences on the free monoid. Both characterizations are based on
the algebraic structure on words associated with concatenation. As observed by
Mezei and Wright in [30] the two notions of least solution of a system of recur-
sive equations and of a congruence with finitely many classes are meaningful in
every algebra, not only in the monoid of finite words and in the algebra of finite
terms. In every algebra, they yield two families of sets, the family of equational
sets and the family of recognizable sets. These notions generalize those of context-
free languages and of regular languages, respectively.

The advantage of this algebraic approach, especially for describing sets of graphs,
is that it depends neither on rewriting rules nor on automata. This is essential be-
cause graph rewriting rules are complicated to define and to study, and graph
automata satisfying good closure and decidability properties do not exist, except
for very particular classes of graphs. By contrast, the families of recognizable
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We study several algebras of graphs and hypergraphs and the cor-
responding notions of equational sets and recognizable sets. We gen-
eralize and unify several existing results which compare the asso-
ciated equational and recognizable sets. The basic algebra on rela-
tional structures is based on disjoint union and quantifier-free defin-
able operations. We expand it to an equivalent one by adding oper-
ations definable with “few quantifiers’, i.e., operations that take into
account local information about elements or tuples. We also consider
monadic second-order transductions and we prove that the inverse
image of a recognizable set under such a transduction is recogniz-

able. and equational sets of any algebra satisfy useful closure properties: the family
of recognizable sets is closed under union, intersection, and difference, and the

Keywords: monadic second-order logic, graph operation, equational intersection of an equational set with a recognizable one is equational.

set, recognizable set, monadic second-order transduction, logical A class of graphs is made into an algebra by equipping it with graph operations.

type. These operations form the signature of the algebra. A graph operation linking

two graphs can be considered as a generalized concatenation. However, graphs
can be concatenated in several ways, and different operations are specified in
terms of labellings of the vertices. We will also use unary graph operations that

manipulate labellings. In every algebra of graphs, we have thus equational sets
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and need not deal with the specific combinatorial properties of the graphs under
consideration.

In the above description, we have written “graphs” for simplicity, but it equally
applies to hypergraphs, partial orders, and actually all combinatorial objects rep-
resented by relational structures with a finite set of relations. For example, a
graph G is represented by the relational structure whose domain is the set of
vertices and that has a binary relation describing the edges. (The multiplicity of
edges is lost in this representation. There exists another one for graphs with mul-
tiple edges, see [10]).

Several signatures can be defined on the same class of relational structures.
However, in many cases, “small” variations of the signature do not modify the
classes of equational and recognizable sets, a fact indicating the robustness of
the algebraic framework. We will say that two signatures are equivalent if the
corresponding classes of equational and recognizable sets are the same. One of
the purposes of this article is to investigate equivalences of signatures. Another
one is to relate these algebraic notions with monadic second-order logic. We now
explain the role of logic in this theory.

THE ROLE OF LOGIC

Logicis used for three purposes: first to specify the operations on relational struc-
tures in the signatures, second to define recognizable sets of relational structures,
and third to specify transformations of relational structures. Let us comment
each of these uses.

The basic signature of operations, denoted by QF, consists of disjoint union,
of all unary operations that can be defined by quantifier-free formulas (called
quantifier-free operations), and of constants denoting structures with a single el-
ement. The edge complement is an example of a quantifier-free operation: the
edge relation of the output graph is just the complement of the edge relation of
the input graph, hence the former is definable by a formula without quantifiers
in terms of the latter. Quantifier-free operations can be combined with disjoint
union to form various kinds of graph concatenations.

This definition generalizes and unifies previously defined algebras, the alge-
bra of graphs called VR, and the algebra of hypergraphs called HR. They have
been defined in such a way that their equational sets are the sets of graphs and
hypergraphs defined by certain context-free graph grammars, based respectively
on vertex replacement and on hyperedge replacement (see [10] and other chapters
of the same book on graph grammars). Many results proved independently for

these two algebras can now be proved as particular instances of more general
results relative to QF.

Monadic second-order logic (MSO) is the fundamental language for defining
recognizable sets and transductions of relational structures. That MSO is useful
is not too surprizing given that, for sets of words and terms, MSO-definability is
equivalent to definability by finite-state automata, and that many types of tree
transductions can also be described by MSO-formulas (see [1, 6, 21]). A funda-
mental result says that every set of relational structures that is the set of finite
models of an MSO-formula is QF-recognizable (i.e., is recognizable with respect
to the algebra of relational structures defined by the signature Q). On the other
hand, it is much easier to check that a property is definable by an MSO-formula
than to construct a finite congruence saturating the corresponding set. In the
cases of words and trees, finite-state automata offer such a convenient specifica-
tion language for recognizable sets, but they do not work on graphs and, a fortiori,
on relational structures. Hence MSO takes their place in a natural way. Transduc-
ers which define transformations of words or terms into words or terms are finite-
state automata with outputs. Hence, they cannot be generalized to graphs on the
basis of automata, and MSO, again, offers a powerful and easy to use specification
language.

Furthermore, there are quite close connections between equational sets and
recognizable sets of relational structures, and MSO-transductions: for example,
a set is equational iff it is the image of a recognizable set of finite terms under an
MSO-transduction, and it follows that the class of equational sets is stable under
MSO-transductions. Further, we prove in this article that the inverse image of a
QF-recognizable set under an MSO-transduction is QF-recognizable.

THE MAIN RESULTS

We will only consider finite terms, graphs, hypergraphs, and relational struc-
tures. Furthermore, we will consider relational structures only up to isomor-
phism. There are several reasons for doing so. First, we have no use for distin-
guishing isomorphic relational structures. This is also a requirement for applying
logic since logical formulas cannot distinguish between isomorphic structures.
In order to derive algorithms from this theory as done in [15], we need to use
whenever possible finite signatures and we do not want to introduce infinitely
many constants to describe infinitely many isomorphic structures. Hence a term
will not define a single relational structure but the isomorphism class of some
relational structure.



Our starting point is the signature QF of operations on relational structures
consisting of disjoint union, quantifier-free operations (there are countably many;,
the use of infinite signatures for dealing with graphs, even finite ones, is unavoid-
able), and constants denoting relational structures having a singleton domain.

We prove in Section 5 that the inverse image of a QF-recognizable set un-
der an MSO-transduction is QF-recognizable. This result, of which weak forms
are already known, confirms the robustness of the formal framework associating
graph operations and MSO.

In Section 6, we prove that the signature QF can be restricted to an equivalent
subsignature. This “small” (although still countably infinite) signature is based on
quantifier-free operations of three types: we can forget a relation R (i.e., delete all
tuples in R without modifying the domain of the considered structure), rename a
relation R into S (where R and S have same arity; if R and S are both present in the
input structure then this operation merges them into a single relation), and we
can add either a new relation T or tuples to an existing relation T (roughly, given
two relations R and S we concatenate the tuples of R with those of S and add the
resulting tuples to T'). If the signature X contains only relations of arity at most n
then we can define an equational set of X-structures by a system of equations
where the operations only use the relations of X and auxiliary relations of arity
at most #n — 1. In the case of graphs, that is for n = 2, we obtain known results
about the signature VR (cf. [5, 17]) where the auxiliary relations are unary, i.e.,
they encode vertex labels.

In Section 7, we develop a method for enlarging the signature QF to an equiv-
alent one, and we apply this method to the fusion operation considered by Cour-
celle and Makowsky in [14]. This operation fuses all elements satisfying a given
unary relation. It is not quantifier-free. Roughly speaking, we prove that adding
it to QF yields an equivalent signature. This generalizes the results of [14].

In Section 8, we consider the algebra %R whose equational sets are those de-
fined by hyperedge replacement context-free graph grammars. This is an algebra
of relational structures with distinguished elements called sources. The opera-
tions consist of constants for singleton structures and parallel composition which
combines two structures with sources into the one obtained from their disjoint
union by fusing the sources with same label. One can replace a relational struc-
ture with sources by a purely relational one by introducing, for each constant ¢, a
unary relation lab, which contains as single element the value of c. However, if we
do so, quantifier-free definable operations on relational structures with sources
are no longer quantifier-free definable on the corresponding relational structures
without sources. We overcome this difficulty by showing that nevertheless the

operations of HR can be handled in the general framework of purely relational
structures.

These results contribute to build a robust foundation for the extension of for-
mal language theory to sets of graphs, hypergraphs, and relational structures. Let
us say a few words about the tools we use for establishing them. The main one
is the classical notion of a logical type used, e.g., in [2, 25, 26, 28]. Given a finite
set @ of formulas with n free variables (for instance, the set of MSO-formulas
of quantifier height at most k, up to logical equivalence), we define the @-type
of an n-tuple of elements a of a relational structure as the set of those formu-
las of @ that are satisfied by a. There are thus finitely many possible @-types. If
the formulas in @ are quantifier-free or if their quantifications are restricted to
a “neighbourhood” of 4, then the @-type of a encodes local information associ-
ated with a. Given a structure 2, its @-annotation is the structure M ¢ (2() with
same domain where, for each @-type p, we have a new n-ary relation T}, contain-
ing all n-tuples of 2 with type p. The annotation M (21) provides information
about 2 that is immediately available from the relations without the need to use
formulas with quantifiers. In the language of database theory, this construction
builds an extensional database out of an intensional one. In this article, a typical
use is the following: a transduction of structures 2, defined by MSO-formulas
of quantifier height at most k can be replaced by a quantifier-free transduction
acting on the annotated structures M ¢ (1) where @ is the set of MSO-formulas
of quantifier height at most k.

RELATED WORKS

This article develops the algebraic and logical extension of formal language the-
ory to sets of relational structures intiated by Courcelle and presented in [9] (its
algebraic background) and [10] (its application to graphs and hypergraphs, and
its relationships with graph grammars). This theory also uses results from [1, 12,
22]. Sections 6 and 8 elaborate the definition given in [5] of an algebra for re-
lational structures with constants. Section 7 generalizes the definition of fusion
given in [14] and establishes new results. Closure properties of the family of HR-
recognizable sets of hypergraphs have been studied in [8], and Section 5 contin-
ues this work. The stability of the family of recognizable sets under modifications
of signatures is studied in [17], and the notion of equivalence of signatures inves-
tigated in Sections 6, 7, and 8 extends this stability requirement to also include
the family of equational sets.



SUMMARY OF THE ARTICLE

The article is organized as follows. Section 2 reviews algebras, equational and
recognizable sets, and it introduces an extension of the notion of derived op-
eration closely related to linear deterministic bottom-up tree transductions. It
also extends the notion of a homomorphism to that of a heteromorphism, mak-
ing it possible to relate algebras of different signatures. Section 3 reviews rela-
tional structures, monadic second-order logic, monadic second-order transduc-
tions, and operations on relational structures defined by quantifier-free formulas.
Section 4 introduces monadic types (sets of monadic second-order formulas of
bounded quantifier height) as a first form of type information, and establishes
several technical results. Section 5 establishes the preservation of recognizability
under inverse MSO-transductions. Section 6 shows the equivalence of the basic
signature QF on relational structures with a proper subsignature that general-
izes the signature VR to relational structures and, hence, to hypergraphs. Sec-
tion 7 takes the opposite direction. Its objective is to extend QF by operations
that are not quantifier-free definable, but to obtain nevertheless an equivalent
signature. A method for doing so is introduced and applied to the fusion op-
eration. Section 8 shows how the operations defining the HR-equational and
‘HR-recognizable sets can be studied in terms of relational structures without
constants.

NOTATION, CONVENTIONS, AND GENERAL FACTS

In this article we only consider equational and recognizable sets of finite struc-
tures. The reason for this limitation is that the algebraic definitions of these no-
tions are not well-suited to infinite objects. In particular, the recognizable sets of
infinite trees are not those defined by tree automata. However, our technical con-
structions of transformations of structures based on logical formulas work for
infinite structures as well. But their algebraic consequences are only meaningful
in the finite case.

All proofs in this article are effective. Hence every statement of the form “For
every m, n, there exists an MSO-transduction such that...” can be read as “There
exists an algorithm that, given m, n, constructs an MSO-transduction such that

Let us fix notation and introduce some conventions. The set N of natural num-
bers contains 0. We set [k] := {1,...,k} and [o] := @. We denote by £(X) the
power set of a set X. For an n-tuple a = 4, ... a,, we sometimes also write a for

the set {a,, ..., a,} of its components. In particular, we sometimes write a € A
instead of a € A”. The empty tuple is denoted by (). We will denote by |x| both,
the cardinality of a set x and the length of a word x. (No ambiguity will arise.)

2 EQUATIONAL AND RECOGNIZABLE SETS IN
ARBITRARY ALGEBRAS

The notions of an equational set and a recognizable set are due to Mezei and
Wright [30]. While they were originally defined for algebras over one sort, we
adapt them to the many-sorted case with infinitely many sorts. We begin with
definitions concerning such algebras. We refer the reader to [9] for more about
recognizable and equational sets.

2.1 ALGEBRAS

Let S be a set whose elements we call sorts. An S-signature is a set F of function
symbols each of which hasa types, xs, x---xs, - s wheres,,...,s,,s € S. We may
have n = o0; in this case the symbol is called a constant. We denote by T'(F, X) the
set of finite well-formed terms built with functions from F and variables from X.
They will simply be called terms in the following. In the case X = &, we simply
write T(F). Automata defining sets of terms are usually called tree automata, and
multivalued mappings from terms to terms are called tree transductions. We will
keep this standard terminology, although trees in the sense of graph theory do
not coincide with terms.

An F-algebra is an object M = ((M)es, (fir) fer) where each set M, called
the domain of M of sort s, is nonempty and, for every symbol f € F of type
s, X == x5, — s, we have a total function fyy : M, x --- x M; — M;. These
mappings are called the operations of M. We assume that M; n My = &, for
s # s’. We denote the set U{ M | s € S } also by M. We assume that the notions
of a homomorphism, subsignature, subalgebra, etc. are well-known. See [9] or [17]
for details.

We can define a canonical F-algebra (the free F-algebra) on the set of terms T'(F)
such that, for every F-algebra M, there exists a unique homomorphism valy, :
T(F) - M.For t € T(F);, the image of ¢ under valy, is an element of M, called
the value of t in M. A term t with variables x,, ..., x, of sorts,,...,s, definesa
function ty : Mg, x --- x M, — M which is obtained by replacing all function



symbols f in ¢ by the corresponding operations fj; of M. In the special case that
n = o we obtain t = valp(¢).

A derived operation of the algebra M is an n-ary operation defined by a term in
T(F,{x,,...,xn}) where each variable x; occurs at most once. Such terms are
called linear. Let F and G be S-signatures and M an F-algebra. If N is a G-algebra
with the same domains as M such that each operation of N is a derived operation
of M then we say that N is a derived algebra, and that it is derived of M. We call
G a derived signature of F. The signature of all derived operations of F is denoted
by Fder'

Our notion of a derived operation is restricted to linear terms in order to guar-
antee that the class of equational sets is not changed by adding derived operations
to a signature. The class of recognizable sets stays the same even if we add derived
operations built from nonlinear terms.

If G is a derived signature of F every term ¢t € T(G) can be translated into
a term 8(t) € T(F) such that §(¢)y = tp, for all algebras M and N as above.
The mapping 9 is a tree transducer of a particular type, namely a deterministic,
bottom-up, linear tree transducer with a single state. By a regular set of terms we
mean a subset K € T(F), for some finite signature F, that is defined by a finite-
state tree automaton. Generalizing the notion of a regular set we will define below
the notion of a recognizable set in an arbitrary algebra. It is an easy exercise to
show that a set of terms in T'(F) is regular if and only if it is recognizable in the
free F-algebra T(F).

For definitions and basic results concerning tree automata and tree transduc-
ers, we refer the reader to the books [23] or 3], and to the surveys [24] and [31].
In the following we will only use finite-state deterministic, bottom-up, linear tree
transducers and we will call them simply tree transducers. Among the basic facts
we recall that the image of a regular set of terms under such a tree transducer is
again regular.

Lemma2.1. IfCisaregular set of terms then so is §(C), for every tree transducer §.

Let us stress that, by our definition, a tree transducer always is linear. Without
this condition Lemma 2.1 would not hold.

2.2 RECOGNIZABLE AND EQUATIONAL SETS

Let F be an S-signature. We say that an F-algebra M is locally finite if each do-
main M; is finite. (Note that in universal algebra the term “locally finite” has a
different meaning.)

A congruence on M is an equivalence relation ~ on U{ M | s € S } such that
each set M; is a union of equivalence classes and such that » is stable under all
operations of M. It is said to be finite if, for each sort s, the restriction »; of ~
to M is finite, i.e., has finitely many classes. A congruence saturates a set X € M
if X is a union of equivalence classes.

Definition 2.2. Let M be an F-algebra and s € S. A subset X € M, is M-recog-
nizable if it is saturated by a finite congruence on M. We denote the set of all
M-recognizable subsets of M, by Rec(M);, and the union of the sets Rec(M);
by Rec(M).

An equivalent definition can be given in terms of homomorphisms. A subset
X € M, is M-recognizable if and only if there exists a homomorphism h: M — A
into alocally finite F-algebra A and a (finite) subset Y € A such that X = h™*(Y).
The class Rec(M), forms a boolean algebra. We have @, M, € Rec(M);, and
X,Y € Rec(M), impliesthat XU Y, X NnY,X \ Y € Rec(M); (see [9]).

Note that in the definition of a congruence constants play no role. Hence, a
set X is recognizable with respect to an F-algebra M if and only if it is recogniz-
able with respect to the F_-reduct of M where F_ consists of all operations of F
except for the constant symbols.

Definition 2.3. A subset L € M; is M-equational if it is a component of the
least solution of a finite system of recursive equations using as operations union
and the extension of the operations of F to subsets of M. We denote the class of
equational subsets of M by Equat(M ), and by Equat(M); the subclass of those
included in M;.

For instance, the equational sets of a free monoid are exactly the context-free
languages. Similarly, the equational subsets of graph algebras are exactly those
that are context-free. See [10] for the relationship between graph grammars and
equational sets. Instead of the above definition we will mainly use the following
characterization of M-equational sets.

Proposition 2.4 ([30, 9]). Let M be an F-algebra. A set L € M, is M-equational
if and only if there exist a regular set K € T(F); such that L = valp(K).

Note that, by definition, if K € T(F); is a regular set of terms then there is a
finite subsignature F, € F with K € T(F,)s.

Corollary 2.5. A set K € T(F)j is regular if and only if it is equational.
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In particular, if F is a finite signature that generates M, i.e., such that every ele-
ment of M is the value of a term in T'(F), then every recognizable set is equa-

tional. This condition is satisfied for the usual algebras of finitely generated monoids,

but not for the algebras of graphs that we will consider. See [9] for a thorough
treatment of the basic results about recognizable and equational sets.

In certain cases, for instance when considering graphs, there is a canonical
choice for the domains M;, s € S, while there are several possible signatures F.
To simplify terminology and notation we will speak in such cases of F-equational
and F-recognizable sets instead of introducing a separate name MF for the struc-
ture obtained from the signature F and using the term “Mpg-equational” and
“ME-recognizable”. Similarly we will write Equat(F) and Rec(F) instead of, re-
spectively, Equat( M) and Rec(MF).

2.3 FINITE-STATE DERIVED OPERATIONS AND
HOMOMORPHISMS

We will need some extensions of the classical notions of a derived operation and
a homomorphism that are closely related to tree transducers.

Definition 2.6. Let M be an F-algebra. A mapping « : M — X from M into an
arbitrary set X is M-computable if the sets A == a(M;) € X, for s € S, are finite
and pairwise disjoint, and there exists an F-algebra A with domains A, for each s,
such that & : M — A is a homomorphism. In other words, the latter condition
means that, for every f € F of arity n and all a,, ..., a, € M of appropriate sorts,
the value a(fyr(a)) can be computed from a(a,),...,a(a,).

Definition 2.7. Let M be an F-algebra and « : M — A be M-computable. An
n-ary mapping g : M, x --- x M, — M;, n > 1, is a finite-state derived operation
(based on a) if, for each a € A", there is an n-ary derived operation t[a] of M
such that we have

glxrs oo xn) =tla(x)s .o a(xn) (%o x0) s
for all elements x,, ..., x, € M of sorts, respectively, s,, ..., S,.

Example. Let X be a set and F the signature consisting of one binary operation -
and constant symbols € and a, for every a € X. Let M be the free monoid over X,
that is, the F-algebra with domain X* where - is concatenation, &3 the empty
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word, and ay = a, for a € X. Fix some element a € X. We define a binary
operation ® on X* by

® uv if neither u nor v contains an occurrence of a,
UV =
a  otherwise.

We claim that  is a finite-state derived operation. We define an F-algebra N
on [2] by setting

i~Nk:={2 ifi=k=2,

1 otherwise,
en=2, an:=1, and by:=2,forb+a.

Let « : M — N be the homomorphism

(u) 1 if u contains an occurrence of a,
a(u) =
2 otherwise.

Then we can define ® by the terms

a,

X-y.

t[L1](x,y) =a, t[1,2](x, ) :
Hatl(xy) =a,  tl2,2)(x):

If M is an F-algebra and G a set of finite-state derived operations we obtain
a G-algebra N with the same sorts and domains as M. We call G a signature of
finite-state derived operations, and we call N a finite-state derived algebra of M. If
the operations of G are all based on the same M-computable mapping « then we
say that G and N are based on a.

For each M-computable mapping «, we denote by F3¢' the signature of all
finite-state derived operations based on a. If F is countable then so is F3* since
we require that the sets A, are finite. Clearly, F°" contains F4* because the oper-
ations #[a] in the above definition may actually not depend on a. Note that the
operations of F3¢' depend on M via &, whereas those of F* do not: they are
defined in a purely syntactic way without reference to any algebra.

Remark. Let F be a finite signature, M an F-algebra, and G a signature of finite-
state derived operations based on some function « : M — A. Let N be the asso-
ciated (F U G)-algebra. For every t € T(F U G), there exists a term §(¢) € T(F)
with ¢y = 8(#) . This mapping & can be defined by a tree transducer.

12



We will see below that adding finite-state derived operations does not change
the notions of an equational or a recognizable set. Hence, when we want to com-
pare algebras with respect to such sets we need a kind of homomorphism that is
invariant under this operation. Furthermore, we will need to relate algebras with
different signatures.

Definition 2.8. Let M be an F-algebra with set of sorts S and N a G-algebra with
set of sorts §'.

(a) A heteromorphism h : M — N is a collection of mappings consisting of
heort : S — S and h : My — Ny (s)> for each s € S, such that, for every f € F of

type s, x ---x s, — s, there exists a linear term t/ € T(G, {x,,...,x,}) such that

he(far(Brs - bw)) = th(hs, (b)), ..., b, (b))

forall b,,...,b, € M of sorts s, ...,s,.

(b) Let « : M — A be an M-computable mapping. We will say that a collec-
tion h as above is a finite-state heteromorphism based on « if, for every f € F of
type s, x --- x s, — s, there exist linear terms t/[a] € T(G, {x,,...,x,}), for
a € A", such that

hs(fu (i b)) = [a(B2), @) I (hs, (B2) o B, (b))

forall b,,...,b, € M of sorts s, ...,s,.

In the following we will write in both cases h instead of hgo,¢ or h;, without
risk of ambiguity.

Remark. An important special case of a (finite-state) heteromorphism consists
of a function h : M — N from an F-algebra M to a G-algebra N such that there
exists a set G’ of (finite-state) derived operations of N that turns 4 : M — N into
a homomorphism from M to the G’-algebra N.

Example. Let M be the free monoid as in the previous example.

(a) The function h : u +— i that maps every word to its mirror image is a
heteromorphism. Since #v = 7i we can choose the term ¢ (x, y) := y - x.

(b) An example of a finite-state heteromorphism is the function

(u) #  if u contains no occurrence of a,
glu)=y ,

a™ if u contains n > o occurrences of a.
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If we again choose a : M — [2] to be the homomorphism with

(u) {1 if u contains an occurrence of a,
a(u) =

2 otherwise,
then we can define g by the terms

1) (x,y) = -y, £1,2] (x, ) = ,
#l21](x.y) =y, t]2,2](x,y) =y x.
Remark. Let h : M — N be a finite-state heteromorphism. For every term

t € T(F), there exists a term 8(t) € T(F) such that h(fy) = 8(¢) . If the signa-
ture F of M is finite then this mapping § can be defined by a tree transducer.

Lemma 2.9. Let h : M — N be a finite-state heteromorphism based on o between
an F-algebra M and a G-algebra N.

(a) L eRec(N) implies h™ (L) € Rec(M).

(b) L € Equat(M) implies h(L) € Equat(N).
Proof. (a)Let L € Rec(N) and ~be a finite G-congruence saturating L. We define
arelation = on M by setting

x=y :iff xand y have the same sort,
h(x) ~ h(y). and a(x) = a(y).

It is clear that = is an equivalence relation. For each sort s, it has at most
INj(sy/~|-|As| classes. If x = y then h(x) € L implies h(y) € Lsince h(x) ~ h(y)
and ~ saturates L. Consequently, = saturates ™ (L).

It remains to prove that = is a congruence. Let f € F be of arity n and let
X,y € M" with x; = y;, for all i. By the definition of =, we have a(x;) = a(y;),
and since « is a homomorphism it follows that a( far (%)) = a(fm(7))-

It remains to prove that h( fi; (%)) ~ h(fx(7)). We have

h(fu (%) =t la(x), . alx) In(h(x), .. h(xn)
=t [a(y), . a(yn)In(h(x), .. h(xn))
(since a(x;) = a(y;))

~a() o a(ya)n(h(n), o h(yn)
(since h(x;) ~ h(y;))

=h(fu (7))
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which completes the proof.

(b) Each set L € Equat(M) can be written L = valy;(K), for some regular set
of terms K € T(F) (see Proposition 2.4). We have remarked that there exists a
tree transducer & associated with k such that

valy(8(¢)) = h(valy(t)), forallte T(F).

Hence h(L) = valy(8(K)). Since, by Lemma 2.1, tree transducers preserve reg-
ularity it follows that i (L) is N-equational. O

Definition 2.10. Let F and G be S-signatures for some set of sorts S and M =
(M;)ses a family of domains. Let M and Mg be algebras with the same family
of domains M and signatures F and G, respectively. We say that Mz and Mg are
equivalent if

Equat(Mp) = Equat(Mg) and Rec(Mg) =Rec(Mg).

If My and Mg are understood from the context we will simply say that F and G
are equivalent signatures.

Remark. For F € G we obviously always have
Equat(F) € Equat(G) and Rec(G) < Rec(F).

Hence, when testing for equivalence we only need to check the converse inclu-
sions.

Consider an F-algebra M and let G be a signature of finite-state derived oper-
ations of F that are all based on the same M-computable mapping « (cf. Defini-
tion 2.7). It follows from the next lemma that F U G is equivalent to F.

Lemma 2.11. Let M be an F-algebra. For every M-computable function o : M —
A, the signature F3°" is equivalent to F.

Proof. If ~ is a finite F-congruence on M then the equivalence relation defined
by

x=y :iff  xand yare of the same sort, a(x) = a(y), and x ~ y
is a finite Fge'—congruence. (The proof is the same as in Lemma 2.9 (a).) Hence,

if ~ witnesses the F-recognizability of some set L then = witnesses the FI¢-re-
cognizability of L. It follows that Rec( Fd") = Rec(F).
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Suppose that L is F3-equational. Then we have L = val;(K) for some regular
subset K  T(Fd¢r). We have noted that there exists a tree transducer 8 such that

ValM(a(t)) :ValMl(t) 5 forall t e T(Fger) >

where M’ is the F3°"-algebra with same domains as M. Hence, L = valy (6(K))
and since tree transducers preserve regularity it follows that L is F-equational.
Consequently, we have Equat( Fi") = Equat(F). O

3 RELATIONAL STRUCTURES AND MONADIC
SECOND-ORDER LOGIC

A relational signature is a finite set ¥ = {R,S, T,. ..} of relation symbols each
of which is given with an arity ar(R) > 1. We denote by STR[Z] the set of all
finite Z-structures A = (A, (Ry ) res) where Ry € A*(R) The set A is called the
domain of 2. The arity of X is the maximal arity of a symbol in X. We denote it
by ar(X). The arity of a X-structure 2 is the arity of its signature X.

Intuitively, a X-structure A can be seen as a directed hypergraph where A is the
set of vertices and, for every tuple a € R, we have a hyperedge with label R and
sequence of vertices d.

For a relational X-structure 2 and a set X ¢ A, we denote by A[X] the sub-
structure of 2 induced by X. This is the structure with domain X and relations

Rypx] = Ran X*®,  forRex.

A graph G is defined as an {edg}-structure G = (Vg, edg;) where Vg is the
set of vertices of G and edg . € Vi x Vi is a binary relation representing the di-
rected edges. For undirected graphs, the relation edg . is symmetric. In particular,
graphs are always simple, i.e., without parallel edges.

A term t € T(F) where F is a finite signature of arity at most k can be seen
as a directed labelled tree. We encode such a tree by a relational structure of the
form &(t) := (N, (suc;),<i<k> It, (labs) fep) where

N is the set of nodes,

*

*

suc; (x, y) holds iff y is the i-th successor of x,
rt(x) holds iff x is the root, and
lab(x) is true iff the node x has label f.

*

*
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We denote by A(F) the signature of this structure.

We recall that monadic second-order logic extends first-order logic by set vari-
ables, quantification over set variables, and new atomic formulas of the form
x € X that express the membership of an element x in the set X. We will denote by
MSO|[Z, W] the set of all MSO-formulas over the signature X with free variables
from W. Similarly, FO[Z, W] is the set of first-order formulas and QF[X, W] de-
notes the set of quantifier-free formulas. Frequently, we will omit the parameters
% and W if their values are obvious from the context.

The quantifier height of a formula ¢, either first-order or monadic second-
order, is the maximal number of nested quantifiers in ¢. We denote it by gh(¢).
The quantifier-free formulas are those of quantifier height o.

A subset C ¢ STR[ 2] is MSO-definable if there is some formula ¢ € MSO[Z, @]
such that

C={AeSTR[Z] |AE=¢}.

3.1 TRANSDUCTIONS OF RELATIONAL STRUCTURES

We will use logic for several purposes. First, we use formulae to define trans-
formations on structures and second, we label structures by logical types that
encode properties of tuples. Let C and D be sets of structures. A transduction
g+ C — Dis abinary relation g : R € C x D that we consider as a multivalued
partial mapping associating with certain structures in C one or more structures
in D.

An MSO-transduction is a transduction specified by MSO-formulas. Given a
structure 2( and a tuple of parameters W,, ..., W,, C A it constructs a new struc-
ture B whose domain is a subset of A x [k], for some k > 1. Such a transduction g
has an associated backwards translation, a mapping that effectively transforms
an MSO-formula ¢ over B (possibly with free variables) into a MSO-formula ¢#
over 2 whose free variables correspond to those of ¢ (k times as many actually)
together with those for the parameters. The formula ¢ expresses in 2 the prop-
erty of B defined by ¢. We now give some details. See also [6, 10].

Definition 3.1. Let X and I' be two relational signatures and let W be a finite set
of set variables called parameters.
(a) A definition scheme (from X to I') is a tuple of formulas of the form

D = ((p,wl, e Uk, (SW)WETIZk)
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where k > o,

I'mk:={(Ri)|Rel, ic[k]"®},
¢ € MSO[Z, W],
v; e MSO[Z, Wu {x,}], fori=1,...,k,
and 9y €MSO[Z, WU {Xy,..., Xar(r) }] » forw=(R,i)el'Rk.

(b) Let A € STR[Z] and let y be a W-assignment in 2. We say that D defines
the I'-structure B in (2, y) if

i) Ly =9,
(ii) Bz{(a,i)eAx [k] | (2, y) t:wi(a)},
(iii) foreachReT,

Ry = { ((ay, i1)s-..,(ay,iy)) € B" | 2L,y) = O i(ay,...,an) },

wherei=1,...i, and n = ar(R).

By (A,y) = 9(ay,...,a,) we mean (,y") = 9 where y’ is the assignment
extending y such that y'(x;) = a;, for all i < n.) Note that we do not redefine
equality (in contrast to, e.g., [2]). Two elements of B are equal if they are equal
as elements of A x [k].

The structure B is uniquely determined by 2, y, and D whenever it is defined,
i.e., whenever (2, y) = ¢. Therefore, we can use functional notation and we write
B =D(2,y). The relation

{ (A, D(A,y)) | yis some W-assignment in A } € STR[Z] x STR[I]

is called the transduction defined by D.

Let L be some fragment of MSO. A transduction g € STR[Z] x STR[I'] is an L-
transduction if it is defined (up to isomorphisms) by some definition scheme D
consisting of formulas from L. In the case where W = &, we say that g is param-
eterless. (Note that parameterless transductions are functional.) We will refer to
the integer k by saying that D is k-copying. If k = 1 we will call D and D noncopy-
ing. A noncopying definition scheme has the simple form (¢, ¥, (98 )rer)-

The quantifier height of a definition scheme is the maximal quantifier height of
the formulas it consists of. Since, up to logical equivalence, there are only finitely
many MSO-formulas of a given quantifier height k € N, it follows that the number
of MSO-transductions (defined by schemes) of quantifier height k is finite.
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Note that since logical equivalence is not decidable one cannot effectively se-
lect representatives of each class of logically equivalent formulas. However, one
can replace logical equivalence by a decidable finer equivalence relation that still
has only finitely many classes. A construction is given in [17].

Example. As an example we recall from [14], Lemma 2.1, that if we have an
MSO-definable equivalence relation ~ on 2 € STR[X] then there is an MSO-
transduction mapping 2 = (A, (Ry ) rex) to its quotient structure

AU/ = (Al~, (Rauyn) rex) »

where Ry = { ([ai],--->[an]) | (G1,...,a,) € Ry } and [a] denotes the
equivalence class of a. Note that 2/~ can be defined from 2 with the help of
any set X C A containing exactly one representative of every ~-class. Therefore,
we can write down a noncopying definition scheme with one parameter X where
the formula ¢ states that X contains one representative of every ~-class and y(x)
is the formula x € X. We omit routine details.

Let F and G be finite signatures. By encoding terms as labelled trees we can
consider a mapping from T(F) to T(G) as a transduction between relational
structures. Similarly, mappings from T'(F) to STR[X] can also be given by trans-
ductions.

Every operation defined by a tree transducer can be represented by a parame-
terless MSO-transduction (see [1, 21]). The fact that we only consider linear tree
transducers is here essential.

On several occasions we will use transductions that transform a structure into
the substructure induced by a definable subset X of its domain. If y(x) is a for-
mula with a single free variable we denote by del, the transduction that elimi-
nates all elements satisfying y.

3.2 THE FUNDAMENTAL PROPERTY OF
MSO-TRANSDUCTIONS

Every definition scheme D does not only define an MSO-transduction between
structures but it also gives rise to a translation of formulas. The following proposi-
tion says that if 8 = D (2, y) then all monadic second-order definable properties
of 98 can be expressed by monadic second-order formulas over 2. The usefulness
of MSO-transductions is based on this fact.
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Let D = (¢, Y15 .- +> ¥k, (9w ) wermk ) be a definition scheme with a set of pa-
rameters W. Given a set V of set variables disjoint from W we introduce new
variables X(), for X € V and i € [k],and weset V(K == { X() | X e V, i e [K] }.

Let A € STR[Z] be a structure. For every mapping 77 : V(¥) — (A), we define
n* 2V — P(Ax [k]) by

7(X) = (X)) x {1} -0 g(X©) < (k3
Let Y = {y,,..., ¥, } be a set of first-order variables. For a mapping y : ¥ - A
and an r-tuple 7 = 4, ... i, € [k]", we denote by y; : Y — A x [k] the function
with

ui(yj) = (u(yj) i) -
If k = 1 then we identify A x [1] with A and g, ., with p.

Proposition 3.2 ([4, 8]). Let D be a k-copying definition scheme from X to I" of
quantifier height m with set of parameters W. Let V' be a finite set of set variables
and Y = {y,,..., y,} a set of first-order variables.
For every formula § € MSO[I,V U Y] and all i € [k|", one can effectively
construct a formula P € MSO[Z, V(K U Y U W] of quantifier height
qh(B7) < k- gh(B) +m
such that, for each 2 € STR[Z] and all assignments y : W — £(A), n: V() -
R(A), and u:Y - A, we have
(L, qpuyup) e Bl iff DA, y) is defined, n* U y; isa
(V U Y)-assignment in D(2,y), and
(D y), 1" ) = .

Proof. LetD = (¢, ¥, .. .» ¥k, (9 ) wermk )- For every monadic second-order for-
mula S(yy,...,¥r Xy»..., X;) and all tuples 7 € [k]”, we define a formula S}
with first-order variables y,,..., y, and set variables XJ(.l), for1 < i < k and

1 < j < s, by induction on . Wlo.g. we may assume that § does not contain
universal quantifiers and conjunctions. In the atomic case we set

(x=y)ij=x=y,
(xeX)r=xeXx®,
(R)Z‘); = '9R,i()_c) 5
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boolean operations remain unchanged

(=B)i =-p;,
(Bvy)i =Bivyi,

and for quantifiers we define

3yraB)i =V 3yra(i(yra) ABL),

jelk]
(3XB)F = 3xW ... 3x®pr

Note that in the case of a second-order quantifier X we do not need to add
the condition that every x € X(7) satisfies y; since set variables X are only used
in atomic formulas of the form y € X and we require that every y satisfies the
corresponding v;.

To conclude the proof we can set ¥ := B A ¢. The construction ensures that
qh(BP) < k- qh(B) + m. (We can slightly improve this bound to

ah(B7) < k-qh,(B) +qh,(B) + m,

by distinguishing between the quantifier heights qh, () and qh, (8) of first-order
and second-order quantifiers.) O

Note that, even if B = D(, y) is well-defined, the mapping #* is not neces-
sarily a V-assignment in B because #*(X) may not be a subset of the domain
of 'B.

We call B2 the backwards translation of f3 relative to the transduction D. If g is
the transduction defined by D then we also write 3¢ instead of 7. For k = 1and
r > 1, we abbreviate B2 | by 7. Similarly, we write 87 instead of /j’g

Proposition 3.3 ([4, 8]). (1) The inverse image of an MSO-definable class of struc-
tures under an MSO-transduction is MSO-definable. The domain of an MSO-trans-
duction is MSO-definable.

(2) The composition of two MSO-transductions is an MSO-transduction.

We prove a special case of the second statement.

Lemma 3.4. Let f : STR[I'] - STR[A] and g : STR[X] — STR[I'] be MSO-
transductions of quantifier height m and n, respectively, and suppose that g is non-
copying.
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Then f o g is an MSO-transduction of quantifier height at most m + n. Further-
more, if both f and g are parameterless and noncopying then sois f o g.

Proof. Let D = (¢, V1, ..., ¥k> (9% ) weamk ) be the definition scheme of f. We
obtain a definition scheme of f o g consisting of

(¢g, 1//1g, . ,1/1}5; (Sﬁ)weA&k) .

By Proposition 3.2, the quantifier height of these formulas is bounded by m + n.
The second claim also follows easily. O

3.3 OPERATIONS ON RELATIONAL STRUCTURES

Let us introduce the basic operations on relational structures that constitute the
standard signature QF to which we will compare other signatures.

DisjoINT UNION. The disjoint union A & B of two structures 2 € STR[Z]
and 9B € STR[I'] is the structure € € STR[X U I'| whose domain C := Au B is the
disjoint union of A and B and, for each relation R € Yul’, we have R¢ := RyURgy
where we set Ry := @ for R € '\ X, and Ry := @ for R € X \ I'. (We are only
interested in properties of structures up to isomorphism. Hence we can freely
replace structures by isomorphic copies.)

QUANTIFIER-FREE OPERATIONS. A quantifier-free definition scheme is a
parameterless noncopying definition scheme D = (¢, y, (9r)rer) where ¢ =
true and the formulas ¥ and 9, for R € I', are quantifier-free. The transduction
D : STR[X] — STR[I'] defined by such a scheme is total and functional. When
considered to be part of a signature, we will call functions of this form quantifier-
free operations. (We keep the term transduction for transformations of structures
that are, typically, encodings relating different classes of relational structures.)

Note that since we require ¢ = true not every parameterless noncopying def-
inition scheme of quantifier height o defines a quantifier-free operation. By in-
specting the proof of Lemma 3.4, one easily sees that the composition of two
quantifier-free operations is again a quantifier-free operation.

Example. The edge complement for simple, loop-free, undirected graphs can be
defined as the quantifier-free operation where

Dedg (X1, %,) 1= X, # X, A —edg(x,,%,) .
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Another edge complement could be defined for graphs with loops by deleting
X, £ x, in the above formula.

Remark. To shorten notation we will usually omit defining formulas 9y of the
form 9 = Rx (= Rx, ... X4 (r)) that do not modify the relations R.

If we have a quantifier-free definition scheme of the form D = (true, ¥, (9 ) res)

where I' = X and 9 is Rx, ... X4 (g), for all R € X, then we say that D is a
(quantifier-free) domain restriction. In this case we have D = del_, and D) is
the substructure of 2 induced by the set of elements satisfying y.

If, on the other hand, D = (true, true, (9g ) rer), then we call D nondeleting.
Then the structure D(2) has the same domain as 2 but its relations are redefined
by the formulas 9. Other examples will be given in Section 3.5 below.

Lemma 3.5. Every quantifier-free operation is the composition of a quantifier-free
domain restriction and a nondeleting quantifier-free operation.

Proof. For every quantifier-free definition scheme D = (true, ¥, (9r ) rer) from
X to I'we have D = D’ o del_, where

del.y, = (true,y, (RX)res) and D' :=(true,true, (9r)ger)- O

3.4 THE MANY-SORTED ALGEBRA OF RELATIONAL
STRUCTURES

We define an algebra STR of relational structures as follows. Suppose that X, is a
fixed relational signature with countably many symbols of each arity. We assume
that every finite relational signature X is a subset of X.,. We regard every finite
signature ¥ € X, as a sort of STR. The corresponding domain (of sort X) is the
set STR[X] of all finite X-structures.

The operations consist of the disjoint union @ and all quantifier-free opera-
tions. Furthermore, we add constant symbols for all singleton structures, that
is, structures whose domain contains exactly one element. Note that every set
STR[Z] contains only finitely many of them (up to isomorphism).

This signature, which we denote by QF, will be our reference signature for the
algebra STR. We will construct alternative equivalent signatures.

If ¥ < I' we could regard structures 2( € STR[Z] as elements of STR[I'] where
all relations R € I' \ X are empty. However we will distinguish 2 from its expan-
sions, so the sets STR[ X ] are pairwise disjoint. The natural inclusion i : STR[X] —
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STR[I'] is a quantifier-free operation. In particular, i € QF. The operation sym-
bol @ is overloaded. It actually represents countably many binary operations, one
for each pair of sorts.

According to our general definitions we obtain the classes Equat(STR) and
Rec(STR) of all 9QF-equational and QF -recognizable sets. Since QF is our stan-
dard signature we will call such sets simply equational and recognizable.

Proposition 3.6 ([5, 10]). Let C € STR[Z].
(a) If C is MSO-definable then C € Rec(STR)s.
(b) IfC € Rec(STR)y and D < STR[X] is MSO-definable then CnD € Rec(STR) 5.
() If 2 c I'and i : STR[XZ] — STR[I] is the inclusion map then we have
C € Rec(STR)x iff i(C) € Rec(STR) .
Proposition 3.7 ([5, 10, 22]). Let C € STR[X]. The following statements are equiv-
alent:
(i) CeEquat(STR); .
(i) C =valsrr(K), for some K € Rec(T(QF)x).
(ili) C=1(L), for some MSO-transduction T : STR[A(F)] — STR[X] and some
regular set of terms L € T(F) (over an arbitrary finite signature F).
Corollary 3.8. Let C € Equat(STR)s.
(a) If7:STR[Z] — STR[I'] is an MSO-transduction then T(C) € Equat(STR) .
(b) If D € STR[ZX] is MSO-definable then C n D € Equat(STR) .
(¢) If 2 c I'and i : STR[Z] — STR[I] is the inclusion map then we have
C € Equat(STR) s iff i(C) € Equat(STR) .

Proof. (a) If C € Equat(STR)y then there exists a regular set of terms L and
an MSO-transduction ¢ such that C = ¢(L). Hence, 7(C) = (7 o 0)(L) and
Proposition 3.3 implies that 7(C) € Equat(STR).
(b) If D is MSO-definable then the identity function idp : D — D is an MSO-
transduction. Since C n D = idp (C) the claim follows from (a).
(c) follows immediately from (a) since i and its inverse are MSO-transductions.
|
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3.5 VR-OPERATIONS ON GRAPHS

Let us consider the special case of graphs. We recall the definitions of two alge-
bras of graphs, called VR and VRP, which are connected to certain context-free
graph grammars and to the graph complexity measure called clique width (see
[10, 11, 15]). We show that these algebras can be considered as subalgebras of STR.
In addition to the edge relation edg we fix a countable set I1., of unary relation
symbols that we will use as vertex labels. The algebra of graphs VR has domains
of the form STR[{edg} u IT], for finite IT € I1.. The corresponding structures
are labelled graphs G = ( Vg, edg ., (Pg)perr) where a vertex v has label P iff it
belongs to the set Pg. Hence a vertex may have no, one, or several labels.

We define a signature VR that, apart from the disjoint union @ and constant
symbols for the basic graphs with a single vertex, contains the following particu-
lar quantifier-free operations. The mapping renp_, changes every label P to Q,
the operation fgt, (forget P) deletes every label P, and addp,q, for P # Q, is
defined by the quantifier-free definition where

Dedg (X1, %) 1= edg(x1, %,) v (Px; A Qx,) .

Hence addp, adds a new directed edge from every vertex labelled by P to each
vertex labelled by Q - unless there exists already one (we deal with simple di-
rected graphs, possibly with loops).

A more restricted algebra of labelled graphs is VRP. A IT-graph is a structure
G = (Vg,edgg, (Pg)perr) in STR[{edg} U IT] such that the unary relations form
a partition of the domains. (The superscript p refers to this fact.) Hence every
vertex has one and only one label. The above defined operations, except fgt,,
preserve this property. (Of course, we have to omit those constant symbols which
define labelled graphs that are not IT-graphs.)

For each set IT, we denote by VR', the signature

{P,P°° @ addp o, renp,q | P,QeILP+Q},

where P is a single vertex labelled by P, and P'°°P is the same with an incident
loop. We obtain in this way the VR? -algebra of IT-graphs which was first intro-
duced in [12].

Remark. The algebra VR is obtained from STR by deleting certain sorts, the corre-
sponding domains, all operations involving them, and certain unary operations
between sorts kept in VR. For VRP, we additionally remove those structures from
the remaining domains where the relations of IT do not partition the set of ver-
tices.
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Every term t € T(VRY,) defines a IT-graph, and every II-graph is the value
of some t € T(VRY,), for a sufficiently large set ¥ 2 II. The clique width of G is
defined as the smallest cardinality of ¥ such that G is the value of some term in
T(VRPW) (see [16,15]). We recall that trees have clique width at most 3. This signa-
ture originates from context-free graph grammars defined by vertex replacement
(see [10, 12]).

To generate undirected graphs we can make the definition of addp ¢ symmet-
ric by setting

Dedg(x1,%,) = edg(x,,%,) V (Px; A Qx,) V (Px, A Qx;y) .

The notion of clique width of an undirected graph follows immediately. Every
clique has clique width 2. We recall the following result from [10, 22].

Proposition 3.9. A set of finite graphs has bounded clique width if and only if it is
contained in the image of a set of finite trees under an MSO-transduction.

We have defined a many-sorted algebra VR of graphs. The notion of a VR-
recognizable set of graphs follows from the general definitions. This notion is ro-
bust as proved in [17] Theorem 4.5: a set of graphs is VR-recognizable iff it is
recognizable w.r.t. VR (the signature consisting of the operations from VR
and all quantifier-free operations) iff it QF-recognizable. We will establish fur-
ther robustness results below.

Example. Recall that, for a finite signature F, we denote by A = A(F) the signa-
ture used to encode terms ¢ € T(F) as labelled trees G(t) € STR[A]. We show
that the function STR[A] x STR[A] — STR[A] that corresponds to the mapping
T(F)x T(F) - T(F): (t,,t,) = f(t,1t,), for fixed f € F, can be expressed in
terms of @, some quantifier-free operations, and one constant. Let rt be a con-
stant symbol denoting a single element labelled by rt and no other relation. In
addition to the relation of A we will use unary relations rt, and rt,, and a con-
stant symbol rt. If t,, t, € T(F) are represented by &(¢,), &(¢,) € STR[A] with
disjoint domains then we have

G(f( ti, tl)) = (fgtrt‘ o fgtm o addrt,rt,,sucl o addrt,rt,,sucz)
[rt @ reny_, (6(t)) ® renyi,, (6(t2))] ,

where the operation add, ;t, suc, @dds all pairs (x, y) with rt(x) and rt; (y) to the
relation suc;. This operation can be defined by the quantifier-free transduction
where

Ssuc; (X,y) = SuCi(X,)’) v (rt(x) A rti(y)) .
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4 ANNOTATED STRUCTURES

A central notion in many of our proofs is that of a type annotation which we
use to encode information about a tuple of elements of the considered structure.
We define finite sets @,, of formulas by certain syntactic restrictions such that
all formulas in @, have free variables among x,, ..., x,. With every n-tuple 4
we associate the set of those formulas in @,, that are satisfied by a. Such sets are
called logical n-types (see, e.g., [28, 26, 25]). The syntactic restrictions defining @,
(we will consider several variants) ensure that each type is finite and that there
are finitely many types of the considered form.

We enrich a relational structure 2 by adding, for every n-type, a new n-ary
relation containing all tuples of that type. This operation is called annotating the
structure 2. We will examine the relationship between annotations and MSO-
transductions and their effect on recognizability.

4.1 MONADIC TYPES

The monadic type of a tuple a is just the set of all MSO-formulas of a given maxi-
mal quantifier height satisfied by a. In particular, since it contains all quantifier-
free formulas that hold for 4, such a type completely describes, up to isomor-
phism, the substructure induced by 4.

Definition 4.1. Let 2 be a X-structure and a € A" a tuple, n > o. The monadic
n-type of quantifier height k of a is the set

tp,(a/A) = { ¢(x) eMSO[Z, {x,,...,x,}] | qh(p) <k, A= ¢(a) }.

We denote by S%¥(Z) the set of all such monadic n-types realized in some -
structure?, and we write S5 (2) = U,cpem SI¥(Z) for the union over all n
with 1 < n < m. (We need the subscript M to distinguish monadic types from
other kinds of types which we will introduce in Section 7.)

Types of quantifier height o are also called atomic or quantifier free. They con-
tain local information about the given n-tuple. For the empty tuple a = (), we
use the abbreviation tp, () := tp, (()/2).

'The reader may worry about the fact that S;‘A’k (Z) is not recursive (only recursively enumerable).

Instead of S;’A’k (Z) we could use the larger set of all sets of formulas over the signature X. This
will not affect our proofs.
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We will treat the monadic type of the empty tuple differently from the monadic
n-types with n > o. For n > o, we can introduce n-ary relations to label tuples of
the corresponding type whereas we do not allow relations of arity o. This is the
reason why we exclude the case n = o in the union defining S™¥(2). A type
tp, (2() contains a finite amount of global information concerning 2 which, ac-
cording to Lemma 4.12 below, is QF-computable.

As stated in the next lemma types are MSO-definable because we only consider
finite relational signatures. Furthermore, for finite structures we can effectively
compute the type tp, (@/2) from a and 2.

Definition 4.2. Let p € $%;¥(Z) be a monadic n-type. The Hintikka-formula of p
is defined by

vp(2):=A\p-

(By convention we do not distinguish between logically equivalent formulas so
that the above conjunction is finite, cf. Section 3.1.)

It follows immediately from the definition that a type is defined by its Hintikka-
formula.

Lemma 4.3. For every monadic n-type p € Si;*(2), we have qh(y,) = k and
AEeyyp(a) iff  tp(a/A)=p,
for every structure 2 and each tuple a € A",

Finally, let us remark that quantifier-free operations induce a map on the set
of types.

Lemma 4.4. For every quantifier-free operation f : STR[X]| — STR[I], there exist
mappings fI' : SIE*(Z) - SE*(I) such that

tp(a/f(R)) = fii (tpi (a/21)),
for every structure 2 € STR[Z] and each n-tuple a in f(2L).

Proof. For every formula ¢(x) of quantifier height at most k, we have
p(2) etp(aff(A) if Argl(a) f ¢/ (%) etp(a/A).

Note that gh(¢”/) = gh(¢), by Proposition 3.2. Therefore, f;* can be defined by

fip)={9l¢’ep}. O
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4.2 MONADIC ANNOTATIONS

Sometimes it is useful to have all monadic information available via a single rela-
tion. In order to make the full monadic type accessible we add new relations T,
for every type p. After adding all these relations T, the original relations are su-
perfluous, and we can delete them.

Definition 4.5. Let 2 be a X-structure, m > o, and k > o. The monadic annota-
tions of 2 are the structures

MZI (2[) = <A’ (Tp)pesf,(”’k(z) )

with the same domain as 2 where, for each monadic n-type p € S5™*(2), we
add the n-ary relation

Tp:={aecA"[tp(a/A)=p}

of all tuples of type p. We denote the relational signature of M7 () by
k= (T, | pesgi(D)).

For m = ar(X), we simply write M (2) and Z&,.

Definition 4.6. Let 2 be a structure. The rank of an n-tuple 4 € A" is the size of
the set {a,,...,a,}. An n-tuple is a loop if its rank is less than n.

By 2A|,, we denote the structure obtained from 2( by removing from all rela-
tions every tuple of rank greater than m. Let STR,, [ 2] be the set of all structures
2 € STR[Z] such that 2|, = 2.

Remark. If m > ar(Z) then we can reconstruct 2 from M7 (). For m < ar(X),
we can only recover the atomic information about tuples of rank at most .

Example. We consider the following vertex labelled graph & € STR[edg, P, Q]
with domain {a, b, ¢, d} and labels P and Q.

[

b d
P P,Q

29

The annotated structure M?2 (&) is the complete graph where each vertex x has
a unique label tp(x/®) and every edge (x, y) is labelled by tp,(xy/®). For
instance,

tp, (a) = {-Px, Qx, —edg(x,x),...}
tp, (b) = {Px, -Qx, —edg(x,x),...},
tp,(c) = {-Px, -Qx, edg(x,x),...}
tp,(d) = {Px, Qx, —edg(x,x),...},
tp, (ab) = {edg(x, y), edg(y,x), x #y,... } utp,(a) Utp,(b)[y/x],
tp, (ac) = {edg(x, y), ~edg(y,x), x # y,... ;U tp,(a) utp,()[y/x].

>

>

Note that every type contains a lot of redundant formulas. For the purpose of
clarity we have omitted in the above list all formulas that are logical consequences
of those shown. To improve readability we also have used the variables x and y
instead of x, and x,. Finally, [ y/x] denotes the substitution of y for x.

The Hintikka-formula y1;,_(4)(x) of a is thus equivalent to

-Px A Qx A —edg(x,x).

If we delete from M2 (®) the vertex labels we obtain a symmetric labeled 2-
structure as defined by Ehrenfeucht et al. [20]. Our results show that equational
and recognizable sets of graphs can be defined in an algebraic framework based
on vertex and edge labeled complete graphs that are quite close to 2-structures.

Monadic annotations are compatible with MSO-transductions. First of all, the
operation M}” is itself an MSO-transduction.
Lemma 4.7. Let X be a relational signature.

(a) The mapping M : STR[X] — STR[Zj*] is a noncopying parameterless
MSO-transduction of quantifier height k.

(b) There exists a quantifier-free noncopying parameterless transduction g : STR[ZI'\",[’]‘ |-

STR,, [ 2] such that

gME () =A],,,  forallAeSTR[Z].

(c) Therestriction of M! to STR, [Z] is injective. Its inverse (M) ™ : STR[ZI'\”,[”‘] -

STR,,[ 2] is an MSO-transduction.
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Proof. (a) We have already seen in Lemma 4.3 that one can define the relation T,
by the formula v, of quantifier height k.
(b) For n < m, we can write an n-ary relation R € X as

Ry={aeA"|aeT,forsomepwithRxep}.
Hence, we obtain a definition scheme for g by setting

(%0 sxn) =\ {Tpxs .. 2 | peSEH(Z),Rx, ... xn €

For n > m, we need some notation to write down 9. With an n-tuple a of
rank r we can associate a surjective function ¢ : [n] — [r] such that a; = a,
iff 6(i) = o(1). Given such a function o we set y;(0) := mino (i), for i € [r],
and

Yoo nxn)= AN\ N\ xk=x.
i€[r] k,leo(i)

Then we can define R by

(x5 s %n) = VA TpXp, (o) -+ - Xy (0) A Xo (X155 %) |
1<r<m, 0:[n] - [r] surjective with
(o) <---<u,(0), and
p e SLK(2) with RXg(1) - Xo(n) €D} -

For example, if o : [6] — [3] maps [6] to the sequence 1,2, 2,1, 2, 3 then the above
disjunction includes the formula

TpX1X2X6 N Xy =Xy AN Xa=X3 A Xy =X5 A X3 =X

if and only if we have Rx,x,x,x,x,x; € p.

Note that the above disjunctions are finite since there are only finitely many
types in S5"™* ().

(c) Inlight of (b) we only need to prove that the range of M} is MSO-definable.
Then we can restrict the transduction g of (b) appropriately. Let 2 € STR[Z;”,I’k ]
If2A = M7 (B), for some B € STR,, [ 2], then we have

B =Bl = g(M(B)) = ¢(2A),
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which implies that % = M}*(g(2)). Conversely, if 2 = M"(g(2)) then A is in
the range of M}". We can express that A = M (g(2)) by the formula

N\ VER(Tpx < (yp)8(%))

pesgk(s)

where v, is the Hintikka-formula for p and (v, )¢ its backwards translation via g.
This formula can be used in the definition scheme of the transduction (M}*)™" :

STR[ZM*] - STR,,[ 2] to define the domain. O

Since, by Corollary 3.8, QF-equational sets are closed under MSO-transduc-
tions it follows immediately that M}’ preserves equationality.

Corollary 4.8. A set C ¢ STR,,[X] is QF-equational if and only if M]'(C) is
QF -equational.

Each noncopying parameterless MSO-transduction of quantifier height k fac-
tors through MJ".

Lemma 4.9. Let g : STR[X] — STR[I] be a noncopying parameterless MSO-
transduction of quantifier height k and m = ar(I'). There exists a noncopying
parameterless quantifier-free transduction f : STR[Z™*] — STR[I'] such that

() = f(MP (), forall A e STR[Z] such that g(A) is defined .

Proof. Given a quantifier-free definition scheme (¢, ¥, (9r )rer) of g, we con-
struct a definition scheme (true, y', (9% )rer) for f by setting

v =\ {Tpx|pry} and 9=\ {Tpx|pr=r}.

(& is the logcial entailment relation.) O

4.3 OPERATIONS ON ANNOTATED STRUCTURES

It turns out that the mapping tp, : STR[Z] — $%*(Z) is QF-computable (cf. 2.6).
One part of the proof is given by the following (special case of a) theorem of
Shelah [33] (see also the thorough study by Makowsky [29]).

Proposition 4.10. Let k, m, n > o. For every formula ¢ € MSO[ZUIL, {X1, ..., Xm+n}]
of quantifier height k, one can effectively construct finite sequences of formulas

Yiseo s W €MSO[Z, {1, -+ X 1]
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and 9,,...,9; € MSO[T, {Xms1>--->Xmen}]

of quantifier height at most k such that, for all structures 2 € STR[X] and B €
STR[I'], and all tuples a € A™ and b € B", we have

AeBeo(ab) if Ary;(a)andBe 9;(b) forsome1<i<l.

Corollary 4.11. For all numbers k,n € N and every set I C [n], there exists a
binary function & such that

tpy (/A @B) = tp (¢l / A) @x,1 Py (Clinjar / B) »

for all structures 2 and B and all tuples ¢ € (AU B)" such that ¢|; € A and
¢lpn)~1 € B. (By ¢|r we denote the subtuple of all components c; with i € 1.)

Lemma 4.12. The function tp, : STR[Z] — S¥(2) is QF -computable.

Proof. 1t is sufficient to find operations on S%*(X) such that tp, : STR[Z] -
Sf\’,ik (2) becomes a QF-homomorphism. For the disjoint union, we can use the
operation @y ¢ introduced in Corollary 4.11. And, if g : STR[X] - STR[I] is a
quantifier-free operation then we have shown in Lemma 4.4 that

tp (g(2A)) = gr (tp (A)) for all structures 2 . O

Lemma 4.13. For every m € N, the mapping M : STR[Z] — STR[ZMF] isa
finite-state heteromorphism based on tp,.

Proof. We have to show that, for every operation f € QF of arity o < n < 2, there
exist linear terms ¢[p,, ..., pn] € T(QF, {X1. .., x5} ), fOr pry. ..y pu € STF(D),
such that

ME(f(RLs . 20)) =
£ty (), oty (A ) | (M (), s M (L))

for all structures 2,, ..., 2, € STR[Z].
First, we consider a quantifier-free operation f : STR[X] — STR[I']. Recall the
mappings f; : Si¥(Z) - SiF(I') defined in Lemma 4.4. We have

M (F() = g(ME (1))
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where the definition scheme of the quantifier-free operation g consists of the
formulas

y(x) =\ {Tx | qeS{(2), v/ eq},
STP(X) :=\/{qu | qe(f,i)“(p)}, foreverypeSli;[k(F), 1<i<m,

where y/ is the formula of the definition scheme for f that specifies the domain
of the output structure. Note that in this case the term #[tp, ()] = g(x,) does
not depend on tp, (2).

Second, we consider the case where f = ®. We define quantifier-free opera-
tions h,, h,, and g depending on tp, () and tp, (B) such that

M (U e B) = g(ho(M]'(A)) @ hi (M (B))) .-

The operations h, and h, just add a new unary relation P ¢ X to their argument
such that P = & for h, whereas, for h,, P contains every element. These functions
are only needed so we can tell the elements of the two structures apart. The main
work is done by g which updates the type annotation. Recall from Corollary 4.11,
that there exists a binary operation @ ; on S3™*(Z), for n < m and I < [n],
such that

tpy (/2 @ B) = tp (¢]/2A) @k, Py (el 1/B)
for all structures 2 and B and all tuples ¢ € (AU B)" with ¢|; € Aand ¢|[,}; € B.
Hence, we can define the definition scheme of g by the formulas
v(x) = true,
and 9, (%)= \/{ /\=Pxi A\ Pxi A Tox| A T, X[ n)a1

iel i¢l

I [n), I¢{@,[n]}, q@uir=p}
VV{ A ~PxinTy% | 4@k to(B) = p |

ie[n]

VV{ A PxinTi| w2 @rpr=p},

i€[n]

for p € SI2*(Z) . (In the case where 2 and B have different signatures the argu-
ment is adapted in the obvious way.)

Finally, we consider the case where f is a constant. Then the value of f is a
singleton structure (. Consequently, its annotation M}" () is also a singleton
structure that can be denoted by a constant. O
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Recall that we write M (2) for Mf(z) (20). As usual we set
Mi(C) = { M () |AeC},
for classes C € STR[Z].

Theorem 4.14. A set C € STR[X] is QF-recognizable if and only if My (C) is
QF-recognizable.

Proof. (<) By Lemma 4.13, M, is a finite-state derived homomorphism based
on tp,. We have seen in Lemma 4.7 that M is injective. Therefore, we have
C = (M) (Mg(C)) and, by Lemma 2.9, it follows that C is QF -recognizable.

(=) Suppose that C € STR[Z] is QF -recognizable. Let ~ be a QF-congruence
witnessing this fact.

By Lemma 4.7 (c), the range D := M (STR[Z]) € STR[ZK,] of M is MSO-
definable and, therefore, QF-recognizable by Proposition 3.6. We denote the cor-
responding QF-congruence by =.

To show that M (C) is QF-recognizable we define

A=B :iff A~BandA=~B.

Clearly, = is a finite 9 F-congruence.

It remains to show that = saturates My (C). Let A € My (C), that is, A =
M (€), for some € € C. If B = 2 then A ~ B implies that B = M (D), for
some D € STR[X]. We have seen in Lemma 4.7 (b) that there exists a left-inverse g
of M that is a quantifier-free operation. Hence, 2 ~ B implies

€= g(2)g(B)=D.
Consequently, we have © € C and B = M (D) € M (C), as desired. O

4.4 ANNOTATING THE LEAVES OF A BINARY TREE

We state some definitions and lemmas that we will use in Section 6. Let F be
a set of binary function symbols and C a set of constants. As remarked at the
beginning of Section 3 we can represented every term ¢ € T(F U C) by a tree

S(t) = (N(t),sucl,sucz,rt, (laba)aepuc> eSTR[A(FuC)],

where N(t) is the set of nodes of t. Let A := A(F u C) be the corresponding
signature. We denote the set of leaves by L(¢) € N(t) and by < the usual linear
left-right order on L(t).
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Definition 4.15. Let ¢ be a term, m > o, and k > o. A tuple a € L(¢)" is in-
creasing if a, < --- < a,. The restricted monadic annotations of S(t) are the
AT _structures

R (1) = (L(1), (Tp) pessm (a))

with domain L(t) where, for each monadic n-type p € S5™*(A), we add the
n-ary relation

T,:={aeL(t)"|aincreasing, tp,(d/&(t))=p}.

Remark. There are formulae ¢(x) and y(x, y) of quantifier height qh(¢) =1
and gh(y) = 5 such that ¢ defines the set of leaves and y defines the ordering <:

o(x) ===3y[suc,(x, y) v suc,(x, y)],
w(x,y) = 3z[Ju,(suc, (2, u,) Auy <x) A Ju,(suc,(z,u,) Au, < y)],

where the tree ordering < is defined by

x=<y it VZ[yeZA VuVv[veZAa (suc,(u,v)Vsuc,(u,v))
—ueZ
—>xeZ].
(x =< y can be read as “x is an ancestor of y”) Hence, there exists a formula
91 (%1, ...,xy,) of quantifier height 5 expressing that % is an increasing tuple of

leaves. It follows that, for k > 5, we can tell from tp, (a/&(t)) whether a is such
a tuple. Consequently, we can obtain R}"(t) from M} (&(t)) by

¢ deleting all nodes that are not leaves,
+ removing all relations T, such that p & 9,,.

For t € T(Fu C) and u € N(t), we denote by t/u € T(F u C) the subterm
of t rooted at the node u. Let * be a new constant symbol. We denote by t \ u €
T(Fu Cu {x}) the term obtained from ¢ by replacing the subterm ¢/u by the
constant *. Hence, the unique occurrence of * in t/u is u.

Lemma 4.16. Let k € N.
(a) For every f € F and all numbers o < m < n, there exists a mapping

Ot SiH(8) x SiTH(4) = S (4)
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such that we have
tp(ab/S(f(£.1.))) = tpy (3/6 (1)) O tpr (8/6(1)) .

forall t,,t, € T(Fu C) and all increasing tuples a € L(t,)™ and b e L(t,)" ™.
(b) For every f € F and all numbers o < m < n, there exists a mapping

Ol S (4) x ST (8) x Sy (8) > 3K (4)

m,n *

such that we have

9 (ab/S(1)) = &), , (10 (S (1 \ 1)), tpy(a/S(1)), 19 (B/S(12))).

foreveryt € T(FUC) suchthatt/u = f(t,,t,) and all increasing tuples a € L(t,)"
and b e L(t,)"™™.

Proof. (a) We recall from the example after Proposition 3.9 that the mapping
(6(1,),6(t,)) » &(f(t,t,)) is a QF-derived operation. Consequently, the
result follows from Lemma 4.4 and Corollary 4.11.

(b) The claim follows as in (a) since we have

&(t) = (ren,s o fgt,, ofgt, oadd, r, suc, ©adds,rt, suc, )
(&(tu) @reny, (S(t)) ® renr, (6(1,))) O

5 INVERSE MSO-TRANSDUCTIONS PRESERVE
RECOGNIZABILITY

In this section we establish the following theorem which is one of the main results
of the article.

Theorem 5.1. If L € Rec(STR)r and 7 : STR[X] — STR[I'| is an MSO-transduc-
tion then 77" (L) € Rec(STR) 5.

The special case where L is CMSO-definable (CMSO is the extension of monadic
second-order logic by counting predicates which count the cardinality of a set
modulo a fixed integer) follows from existing results. It is known that every
CMSO-definable set is recognizable [5] and the inverse image of a CMSO-defin-
able set under an MSO-transduction is CMSO-definable. The case where L is a
recognizable set of (simple) graphs of bounded tree width is a consequence of a
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result by Lapoire [27] stating that such sets are CMSO-definable if we allow quan-
tification over sets of edges (and not only on sets of vertices). It follows that L is
also CMSO-definable by a result of [8] where it is shown that, in the case of finite
graphs of bounded tree width, quantifiers over sets of edges can be eliminated.
On the other hand, in [17] it is shown that there are uncountably many VR-
recognizable sets of graphs. Hence, uncountably many of them are not definable
in monadic-second order logic or in its extensions like CMSO, because these lan-
guages are countable. This shows that Theorem 5.1 cannot be proved by reduction
to the special case of CMSO-definable sets.
The proof is based on the fact that a k-copying MSO-transduction 7 with pa-
rameters W;, ..., W, can be written as 7 = p o copy, o y where
+ pisanoncopying parameterless transduction,
+ yis a noncopying transduction guessing W,, ..., W,,, and

¢ copy, is a k-copying parameterless transduction constructing the k-fold
disjoint union of its argument, with some additional annotations to tell
apart the different copies.

We will prove the theorem separately for these three special cases.

5.1 TRANSDUCTIONS THAT REPLICATE STRUCTURES

The simplest MSO-transduction we consider is a parameterless k-copying trans-
duction denoted by copy, .. It transforms a structure 2 into the disjoint union of
k copies of 2, denoted by 2, .. ., Uy, expanded by

+ new binary relations Y; that encode the canonical isomorphisms 2(, — 2,

+ new unary relations P; that “mark” the element of the i-th copy ;.

Definition 5.2. Let Y == {P; |1 <i < k}u{Y;|1< i< k}. Weassume
that Y} is disjoint from every other relational signature X, I, 4, ... that we will
consider. For each relational signature X, we define an operation

copy, : STR[XZ] = STR[Z U Yi]

that maps a structure 2 = (A, (Ry)rex) to the structure € = copy, () with
domain C = A x [k] and relations

R¢ = { ((a151)s. .5 (Aar(r)» 1)) | (@1s...>aar(ry) € Ray, i € [K] }’
(P)e = Ax {i},
(Y)e={((a).(ai))[acA}.
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It is clear that copy, is a parameterless k-copying MSO-transduction.

Lemma 5.3. For every parameterless k-copying MSO-transduction 7 : STR[Z] —

STR[I'], there exists a parameterless noncopying MSO-transduction p : STR[ZUY]| -

STR[I'] such that T = p o copy, and p(B) is undefined if the argument B is not
of the form copy, (), for some 2.

Proof. Note that a structure € € STR[X U Yi] of the form copy, () satisfies the
following conditions:

(1) Thesets (P,)¢, ..., (Px)c¢ form a partition of the domain.

(2) Forevery R € X and all tuples a € Rg, there is some i with a € (P;)¢.

(3) Each relation (Y;)¢ defines an isomorphism between fgt, (€[P,]) and
fgtp, (C[Pi]).
Conversely, every structure € € STR[ZU Y} | satisfying these conditions is isomor-
phic to copy, () where 2 is the Z-reduct of €[P,]. The conjunction of (1)-(3)
can be expressed by a first-order formula y.

We denote the relativization of a formula « to the set P; by a(*#). Suppose that
7 is defined by

D= (‘P’ l//l’ cee )Wk> (SW)WEFIZIk) .

A definition scheme & = (¢, ¥/, (9%)rer) for p can be defined as follows. The
formula ¢ has to express in € that there is some 2 with € = copy, () and A = ¢.
We can set

¢ =xngth)

The formula ¢’ should define the set of all elements (a,i) € C such that 2 =
y;(a). This can be done by defining

k p
¥ ()= ABx = 9 ().

Finally, we must construct formulas 9%, for R € I'. We use the relations Y; to
obtain a copy of a given tuple that lies in the first copy P,. We have

((ay,i1)s--os (an,in)) € Rp () if Aeri..i,(an...,an).
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For fixed i,, ..., i,, we can express this by the formula
_ " P, -
Bi,...i, (X) =3y, EI)’n(k/\ Yi, yixi A 91(2,1'1)...1‘,. (y))

(If iy = 1then instead of Y, yx; we use the formula y; = x; A P,x.) Therefore,
we can set

R®= A (AP B ®). -

Lemma 5.4. (a) For all structures U,*B € STR[Z] and every k, we have

copy, (A& B) = copy, (A) & copy, (B).

(b) For every k and each quantifier-free operation f : STR[X] — STR[I'] there
is a quantifier-free operation f': STR[Z U Y;] — STR[I' U Y] such that we have

copy(f(%)) = f'(copy (%)), for every A e STR[Z].

Proof. (a) is clear. (b) Let D = (true, ¥, (9 )rer) be the definition scheme of f.
We can define a definition scheme

D’ = (true, ', (9%) rer> (9, )rsichr (9%, )rcick )
of f' by
Y (x) =y () v vy (),
92 (%) = (9r) ) (%) v v (92) P (),
9p, (x) = Pix,
9%, (x,y) = Yixy,

where ¢(*) (%) denotes the relativization of ¢ (%) to P; written in such a way that
the formula ¢(?) (%) implies P;x;, for all . O

Proposition 5.5. Theorem 5.1 holds for T = copy,.

Proof. By Lemma 5.4, the mapping copy, is a derived heteromorphism for the
subsignature of QF obtained by removing all constants. Therefore, the result
follows from Lemma 2.9 and the remark that recognizability does not depend
on the constants in the signature. O
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5.2 PARAMETERLESS NONCOPYING TRANSDUCTIONS

Proposition 5.6. Theorem 5.1 holds for parameterless noncopying MSO-transduc-
tions.

Proof. Let 7: STR[Z] - STR[I'] be a noncopying parameterless MSO-transduc-
tion of quantifier height k with definition scheme (¢, ¥, (9r ) rer ). Suppose that
L € Rec(STR) and let ~ be a congruence witnessing the recognizability of L. Let
m := ar(T'). By Lemma 4.9, there is a quantifier-free operation f : STR[ZIF] —
STR[I'] such that, if 7(2) is defined then 7(2A) = f(M}*(2)). Consequently, we
have

(L) = {™AeSTR[Z] [™A =9 } 0 (M) (f7(L)).

Clearly, ~ also witnesses the recognizability of f~*(L). By Lemmas 4.13 and 2.9,
it follows that (M7}')™(f7*(L)) is also recognizable. Furthermore, by Proposi-
tion 3.6 (a) the set { A € STR[Z] | A = ¢ } is recognizable. Since recognizable
sets are closed under intersection (cf. the remark after Definition 2.2) the result
follows. O

5.3 HANDLING PARAMETERS

LetIl,, :={P,,..., P, } beasetof unary relation symbols disjoint from the other
signatures X, I', Y etc. that we will consider. Let fgt;; :STR[XUII,,] - STR[Z]
be the quantifier-free transduction that deletes all relations in IT,,. Its inverse is a
noncopying MSO-transduction with m parameters that specify the values of the
relations P,, ..., P,,.

Lemma 5.7. Every MSO-transduction T : STR[X] — STR[I']| with m parameters
can be factorized as pofgt;| where p : STR[ZUII,, ] - STR[I'| is a parameterless
MSO-transduction.

Proof. When we apply fgt;; to a structure A we obtain all possible expansions
of & by m unary relations P,,..., P, S A. The transduction p can simulate 7
by replacing the parameters by these relations. If B = (2, P) € fgt;} () isa
structure such that P does not satisfy the first formula of the definition scheme
of 7 then p(B) is undefined. O

Proposition 5.8. If L € Rec(STR)sun,, then fgt;; (L)€ Rec(STR)s.
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Proof. The following obvious facts will be used.

(1) For all structures ,, 2,, and € and every m, we have
A, & A, =fgt;; ()
if and only if there exist structures B, and B, such that
=B, 0B, Ao =fgt; (Bo), and A =fgt; (B,).

(2) For every quantifier-free operation f : STR[I'] — STR[A] and each m,
there exists a quantifier-free operation g : STR[I'U II,,] — STR[A U IT,,] such
that, for all structures 2 and B, we have

f(R) =fgty, (B)
if and only if there exists a structure € with
B=¢g(C) and A=fgt; ().

We apply a technique which was used in [7] to prove that certain operations on
hypergraphs preserve recognizability. We fix m and we will write IT instead of IT,,,.
Let ~ be a congruence witnessing the recognizability of a set L € Rec(STR) sy
In order to show that fgt; (L) is recognizable we define an equivalence relation
on each set STR[A] by

A=B :iff {[¢]|CeSTR[AUI], fgt () =2}
={[€]| € esTR[A U], fgt, (¢) =B},

where [€] denotes the equivalence class of € w.r.t. ».

Since » is an equivalence relation with finitely many classes of each sort so is =.
Furthermore, = saturates fgt;(L). If 2 = fgt,(€) with € € L and B = A then, by
definition, there is some structure © ~ € such that B = fgt; (D). Hence © € L
and B € fgt(L).

It remains to verify that = is a congruence. Suppose that A, = B, and A, = 5,.
We want to prove that 2, & A, =B, & B,.

By symmetry, it is sufficient, for each € € fgt;; (2, & 2,), to construct a
structure © € fgt,; (B, & B,) such that © ~ €. By (1), there are structures
¢, € fgt; (Ao) and €, € fgt;(2,) such that € = €, & &,. By definition of =,
we can find structures D, ~ €, and ©, ~ &, such that B, = fgt;(D,) and
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B, = fgt;(D,). Then fgt; (D@D, ) = B,@B, and, since ~isa QF-congruence,
we have €, ® €, v D, & D,, as desired.

Let f : STR[I'] — STR[A] be a quantifier-free operation and suppose that
20 = B. We want to prove that f(A) = f(B). Let € € fgt,; (f(A)). We have
to find a structure ©® € fgt; (f(B)) such that ® »~ €. By (2), there exists a
transduction g and some structure ¢’ such that € = g(¢’) and A = fgt;(¢’). By
definition of =, we can find some structure ®’ ~ ¢’ with B = fgt; (D). Hence
D = g(D') ~ g(¢') = Cand fgt;(D) = f(B). By symmetry, it follows that
fA) = f(B). O

Proof of Theorem 5.1. By Lemmas 5.3 and 5.7, it follows that every k-copying MSO-
transduction 7 : STR[Z] — STR[I'] with m parameters can be written as

7= p o copy, ofgty;

where p : STR[Z U IT,, U Y;] — STR[I'] is a parameterless noncopying MSO-
transduction and copy, : STR[X U II,,,] - STR[X U II,,, U Y ].
Let L € Rec(STR) . Then

(L) = fgtyy, (copy, ' (p7(L))) -

By Proposition 5.6, p™* (L) is recognizable. Thus, copy, ' (p~*(L)) is recognizable
by Proposition 5.5. Finally, 77 (L) € Rec(STR), by Proposition 5.8. O

6 A SMALL SIGNATURE FOR THE ALGEBRA OF
RELATIONAL STRUCTURES

Our basic signature for defining recognizable and equational sets of structures
(or hypergraphs) is QF. To show that this is a natural and robust choice we
present several other signatures that all turn out to be equivalent to QF. We
have already seen in Lemma 2.9 that the larger signatures QF°" are equivalent
to QF and in Section 7 we will introduce more interesting examples of larger
signatures. Before doing so let us try the opposite. In this section we consider a
proper subsignature that is equivalent to QF.

Let us first state some general facts that will serve as guidelines for proving
our results. We claim that, in order to prove that a subsignature G € QF 3¢ is
equivalent to QZF, it suffices to prove the following two properties:
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(p1) Ifasubset L € STR[X] is the image 7(K) of a regular set K of terms (over
any signature) under an MSO-transduction 7, then there exists a recogniz-
able subset K’ ¢ T(G) such that L = valgz (K').

(p2) Ifasubset L € STR[Z] is G-recognizable then it is QF -recognizable.

Proposition 6.1. Let G ¢ QF %"
(a) If G satisfies (p1) then Equat(G) = Equat(QF).
(b) If G satisfies (p2) then Rec(G) = Rec(QF).

In particular, any signature G € QF 3" satisfying (p1) and (p2) is equivalent to QF .
Furthermore, all signatures H with G C H%er c QF % are equivalent to QF.

Proof. Since G € QF 4T and QF is equivalent to QF " we have

Rec(QF) = Rec(QF %) ¢ Rec(G)
and Equat(G) € Equat(QF%") = Equat(QF) .

Therefore, if G satisfies (p2) then we have Rec(QF) = Rec(G).

To prove (a), suppose that L € Equat(Q.F). By Proposition 3.7 (iii), L is the im-
age of a regular set of terms under an MSO-transduction. Hence, (P1) and Propo-
sition 2.4 imply that L € Equat(G).

Finally, suppose that G € ngr c QF4er Then we have

Equat(QF) = Equat(G) ¢ Equat(H%er) ¢ Equat(QF ") = Equat(QF)
and  Rec(QF) = Rec(QF¥r) c Rec(ng') c Rec(G) = Rec(QF).

Since, by Lemma 2.9, H is equivalent to H3", the result follows. O

6.1 STRUCTURES OF SMALL RANK WITH RELATIONS OF
LARGE ARITY

We define a subsignature QF, of QF by retaining from the unary operations

particular operations that forget some relation (delete the corresponding hyper-

edges), rename some relation (relabel the corresponding hyperedges), and build

new relations from pairs of given relations of smaller arity (create new hyper-
edges by concatenation of existing ones).

Definition 6.2. The unary operations of QF, are the following ones:
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(1) The forget operation fgt, : STR[X] — STR[Z\ A] deletes all R-hyperedges,
forRe AcCX.

(2) For an arity-preserving map h : £ — I between signatures, we have the
relabelling relaby, : STR[X] — STR[I'] that replaces every hyperedge label R
by h(R).

(3) Let R,S,T € X, k = ar(R), | := ar(S), m := ar(T), and suppose that
h : [m] - [k + 1] is surjective. The hyperedge addition addg s T, has a
defining formula 97 (%) of the form

Ta v (Rxi, - xi, A Sxiy,, iy AN L% =57 | () = h(])})

where i; is the smallest element of h™* ().

Remark. This operation adds a T-hyperedge of rank m for each pair of an
R-hyperedge and an S-hyperedge (which may have loops and common
vertices). The resulting T-hyperedge may be a loop.

We denote by QF, the signature consisting of the above operations, the dis-
joint union, and all constants for singleton structures. By O.F,[X] we denote the
subsignature of all those operations that refer only to relations in X.

In the proposition below we will make use of the following normal form of
MSO-transductions.

Lemma 6.3. Given a finite signature F, a regular set of terms K € T(F), and
an MSO-transduction 7 : STR[A(F)] - STR[ZX], we can construct a finite signa-
ture F', a regular set K' € T(F'), and an MSO-transduction 1’ : STR[A(F")] -
STR[Z] such that 1(K) = ©/(K") and F', K, and 1" have the following additional
properties:

(1) F' contains only constants and binary function symbols.
(2) 7' is noncopying and parameterless.
(3) Forevery t' € K, the relational structure 1'(t'") is defined and its domain

consists only of leaves of t'.

Proof. In three steps, we transform F, 7, K into F’, 7/, K’ with the above proper-
ties. The same construction is used in the proof of Theorem 4.6 of [5]. Hence we
only sketch the different steps.

Step 1: Eliminating parameters. Suppose that the transduction 7 uses m pa-
rameters X, ..., X,,. We replace F by the signature F’ := F x {0,1}" where the
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symbol (f, b) € F’ has the same arity as f. Every term ¢’ € T(F") encodes a pair
(t,{(P,,...,P,)) where t € T(F) is the projection of ¢’ to the first component
and the set P; consists of those nodes of ¢’ that are labelled by a pair (f, b) with
b; = 1. Thus, every term in T(F’) contains an F-term and the values of the pa-
rameters X, . .., X,,. The set K, of all those terms which encode a pair (¢, P) for
which 7(t, P) is defined is regular. This is a standard construction, based on the
result by Doner, Thatcher, and Wright stating that a set of terms is regular if and
only if the corresponding set of structures encoding them is MSO-definable (see
Chapter 3 of [3]). It follows that the subset K’ € K, of all terms encoding pairs
(t, P) with t € K is also regular.

Step 2: Making T noncopying and satisfy condition (3). By the first step, we can
assume that 7 is parameterless. Suppose that it is k-copying for k > 1. We in-
crease the arity of each symbol in F by k (including constants) and we add a new
constant, say, *. Let F’ be the resulting signature. We define a transformation
T(F) - T(F'"):t~ t* of terms by

cFi=c(*,...,%),
ity eotn) =f(8 o tn %, %),

where we add k times * in each case. Since * is a tree transduction it follows by
Lemma 2.1 that the image K* € T(F’) of K is regular. The nodes corresponding
to the new constants * are all leaves, and they offer enough space to define the
domain of the output structure, without the need to use several copies of the
term. Hence, we can construct a MSO-transduction 7’ that is (still parameterless
and) noncopying such that 7(t) = 7/(¢*), for each t € K.

Note that even if 7 is noncopying we have to perform this transformation in
order to satisty the second part of condition (3).

Step 3: Removing non-binary function symbols. By the first two steps, we can
assume that conditions (2) and (3) hold. We can satisfy condition (1) as follows.
Let F' be the signature obtained from F by adding a new constant 1 and changing
the arity of all functions symbols to 2. The operation T(F) — T(F') : t — t*
with

cti=c,

F(O)F = £t 1),
o) = (2 2),
oo t) = F( S o [t 1)) .0)), fork23,
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preserves regularity. In the same way as above it follows that the image of K un-
der * is regular. O

The following result strengthens the implication (iii) = (ii) of Proposition 3.7.
Recall the notion of rank introduced in Definition 4.6.

Proposition 6.4. Let K be a regular set of terms and T an MSO-transduction with
7(K) € STR[Z]. There exists a finite set of relations I with ar(I') < ar(X) — 1 and
a regular set M € T(QF,[Z U T]) such that (K) = valgr (M).

Proof. Suppose that K € T(Fu C), A := A(Fu C), and 7 : STR[A] — STR[Z].
We assume that K, 7, and F U C satisfy conditions (1)-(3) of Lemma 6.3 where
C is a set of constants and F a set of binary function symbols. Furthermore, we
may assume that every structure in 7(K) contains at least 2 elements. Let k be the
quantifier height of T and set # := ar(X). Our aim is to construct a finite relational
signature I with ar(I') = n — 1 and a regular subset M ¢ T(QF,[Z u I']) such
that 7(K) = valgrg (M).

1. Overview of the proof. The signature I' will consist of three disjoint copies of
AZ"2F We define a function « : K - T(QF,[Z U T'|4") such that

valgrr (k(2)) =7(¢), forallteK.

The mapping « replaces every binary function symbol f at a node u of t by a
binary derived operation of the form u,(x, @ x,) where y, is a composition
of unary QF,[I']-operations. Similarly, it replaces a constant ¢ at a leaf u by a
constant y, € QF,[I']. Let us denote the set of these terms y,, and y, by IT. The
definition of 4, and y,, will depend only on f, ¢,and tp; , , (4/&(t)). This implies
that IT is finite and, by Lemma 4.3, there exist MSO-formulas ¢, (x), for « € II,
such that, for every node u of ¢,

pyory,isequaltoa iff  S(t)E @u(u).

Since the required information is expressible in MSO it follows that the transfor-
mation x can be performed by a tree transducer. Using the fact that K is regular
we conclude that x(K) is a regular subset of T(QF,[I']%"). Furthermore, we
have

7(K) = valgrr (k(K)) = valgrr (M)

where M is obtained from x(K) by replacing each derived operation by its defi-
nition. By Lemma 2.9, it follows that M is a regular subset of T(QF,[I']). This
completes the proof.
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2. Definition of «. It remains to define k. Let I' := I, U I, U T, where
I,=A'"* and T; ::{T; | Tpel,}, forie{i2}.

Let h' : I, — I be the canonical bijections T}, + T;. Note that these mappings
preserve arities. Recall that ¢/u denotes the subterm of ¢ rooted at u and that R}
denotes the restricted monadic annotation (cf. Definition 4.15). The construction
of x will ensure that, for every t € K,

(1) for every node u of ¢, we have

fgtr(vaISTR(K(t/u))) =1(t)[L(¢t)n D],
where D denotes the domain of 7(t),

(2) and, for every node u of ¢ that is not the root,

fgty (valsrr (x(t)/u)) = relab,: (Rp 7 (t/u)),
where

) {1 if u is the left successor of its parent,
i=

2 if u is the right successor of its parent.

Condition (2) specifies the values of the auxiliary relations in I" at inner nodes u
of t. We use the distinct copies I; and I, of the signature to distinguish between
left and right successors.

Note that () is obtained from ¢ by replacing constants by constants and func-
tion symbols by function symbols of the same arity. Hence, x(¢) and t have the
same underlying trees and the same set of nodes.

3. Definition of y,. It is straightforward to define the constants y, such that
condition (2) is satisfied. If u does not belong to the domain of the structure 7(¢)
then we set y, = &, where & is a new constant denoting the empty structure
(which we also denote by @ without risk of ambiguity). This constant is not in
the signature QF,[X U I'| and we will eliminate it at the very last stage of our
proof.

Otherwise, let y,, be the constant that denotes the structure

7(t)[u] Urelaby: (RE T (t/u))

where i = 1if u is a left successor and i := 2 if u is a right successor. This
structure consists of the single element u, the incident 2-hyperedges of rank 1
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of 7(t) (they are defined by 7(t)[u]) together with the I'-hyperedge of arity 1
that defines the (i-copy of the) monadic 1-type of u in & (¢t/u) (this is defined by
relaby,: (R} 7' (t/u))). It is the unique structure 2 € STR[X U I'] such that

fgt (A) = 7(t)[u] and fgt (A) = relab,: (Ry ™ (t/u)).

Note that the structure &(#/u) consists of a single node labelled by some con-
stant ¢. Hence, tp, (4/S(t/u)) can be computed from c. The Z-hyperedges of
rank 1 are determined by tp, (u/S&(t)).

4. Definition of . To define the mappings y,, we recall that, by Lemma 4.16,

there are functions Q{n,n and (:){n)n such that

o forallt,, t, € T(FUC) and all increasing tuples @ € L(t,)™ and b € L(t,)",
we have

() tp(ab/S(f (1, 12))) = 9 (a/S(1)) O tpe(B/S (1))

¢ forevery t € T(F u C) such that t/u = f(t,, ,) and all increasing tuples
aeL(t,)™"and beL(t,)", we have

(%) tp, (ab/& (1)) = 67, (P (St~ w)), 19 (a/S(1)), tp(B/S(1))).

In order to satisfy condition (2) we define the operation y,, such that, for all
terms t, and ¢,,

relaby, ('R,’(‘_l(f(tl, t2))) = yu(relabhl (Ri'(h)) @ relabhz('RZ_l(tz))) ,

where i is either 1 or 2 depending on whether u is a left successor or a right
successor. (The case where u is the root will be treated separately below.)

Letae L(t,)™ and be L(t,)™ be increasing with m,, m, > o and m, + m, <
n — 1. The operation y, has to compute the type of @b in &(f(t,, t,)) from the
types tp, (3/6(t,)) and tp, (b/S(t,)). This can be done with the help of the
operation @{n“mz. Let ADDy be the composition (in any order) of the operations
addr, 12,1, where p € Sk (A), ge St (A)and r = p Q{n,,m q.

Furthermore, y,, also has to update the type of tuples a € L(¢;)", j € {1,2}.
Note that

P (a/S(f (1 12))) = tp(a/S (1)) Oo tpy(S(1)),  foraeL(t)",

P(@/S(f (1)) = tpe(6(1)) ©Fm 19 (a/S(1)),  foraeL(t,)".
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Let g : I3 U I, — I be the mapping with

g(T3) =Ty with g=po0tp(6(t:)),

g(17) =Ty with q:=tp(&(1)) O p-
We can define

py, = relaby: o relabg 0 ADD 0 ADD3,

where the term ADDjy is defined below to satisfy condition (1), and i is either
1 0r 2 depending on whether u is a left successor or a right successor.

Note that ADDr depends on f but not on tp, (u/&(t)). The mapping g de-
pends on tp, (&(t,)) and tpx(S(#,)) and, hence, on tp; ,, (u/&(t)). (Since the
tree ordering relation is expressed by an MSO-formula of quantifier height 3 (see
Section 4.4) it follows that tp, (&(t/u)) can be computed from tp, . (u/&(t))
by relativization to the formula defining the nodes below u in ¢.)

5. Satisfying condition (1). The incomplete definitions of y,, and y,, given above
result in a structure x(¢) € STR[I' U X] with I'-hyperedges of arity and rank at
most n — 1 where the only Z-hyperedges are those of 7(¢) € STR[X] that have
rank 1. In order to complete the definition of y,, we have to define the term ADD3;
which adds the missing 2-hyperedges.

Suppose that a € L(#)" has rank s < n. There exists a unique surjective map
o : [r] - [s] and a unique increasing s-tuple b such that a; = b,(;), for all
1< i < r. We will denote this tuple by a° := b.

Let 9y(x,,...,x,) be the formula of the definition scheme of 7 that defines
the relation U € X and set 97 (x,, ..., Xs) = 9u(Xo(1)» - - > Xo(r) ). We have

GeUyy iff  &(t) = 9y(a)
iff  S(t) F 99(a°)
it (a°/S(1)) E 95

Suppose that t/u = f(#,t,). The operation ADDy will create all 2-hyper-
edges a with a n L(t,) # @ and a n L(¢t,) # @. Note that, for such a tuple a,
we have 4% = ¢d where ¢ is an increasing tuple in L(t,) and d is an increasing
tuple in L(¢,).

For each U € X and o, we have to choose pairs p, g of types such that the op-
eration addr; 72 u,, adds the right tuples to U. Hence, the situation is similar to
that of ADD with the exception that we are interested in the type tp, (a°/S(t))
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and notintp, (a°/S(t/u)). We can compute this type with the help of the opera-
tion é{n,,mz' Thus, we define ADDy as the composition (in any order) of all opera-
tions addT;,T;,Uﬁ where p € S;Z“k(A), qe Sﬁ”k(A), My, My > 0, m,+m, <n—1,
o:[ar(U)] — [m, + m,] is surjective, and

éfn.,mz(tpk(g(t \u)),p.q) E 9.

Note that the definition of ADDy depends on tp, (&(#\ u)). Since the tree or-
dering can be defined by an MSO-formula of quantifier height 3 (see Section 4.4)
it follows that tp, (& (¢ \ u)) can be computed from tp, ,, (u/&(t)) (by relativiz-
ing all formulas to the set of those nodes that are not below u).

6. Final steps. We have not yet defined y, when u is the root. In this case we
set u,, = fgt, o ADDs where ADDj is defined as above. After these operations are
performed all 2-tuples are in the right place. The relations in I" are not needed
anymore and we remove them with fgt .

We have constructed a regular set

K" :=x(K)c T(QF,[ZuT]* u{az})

with 7(K) = valgrg (K”). It remains to remove the constant &. Note that f (&) =
@, for every quantifier-free operation f, and A @ & = @ @ A = 2, for every
structure 2. Using these equations we can eliminate all occurrences of & in the
terms of K'. (Since every structure in 7(K) is nonempty there is no term in K’
which denotes the empty structure.) This is an easy task for a tree transducer.
Hence K’ can be replaced by a regular set K" € T(QF,[Z u I']%"). Finally, we
transform K" into a set M € T(QF,[2 U I']) as explained in part 1 above. This
completes the proof. O

Definition 6.5. We denote by QF,[Z, I'] the subsignature of QF,[2 u I'] that
consists of

¢ the operations fgt,, for A € T,

+ only those relabellings relaby, where h is the identity on %,

o the operations addg s 1, with R,SeI'and T € I'U %, and

¢ all constants.

Let QF2 be the union of all signatures of the form QF,[Z, T].
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Remark. Note that the proof of the preceding proposition uses only the opera-
tions of QF,[Z, I']. The set M we construct is a subset of T(QF,[2,T]). We
have thus shown that we can construct every structure in STR[X] with the help
of a set I' of auxiliary symbols of arity ar(I') < ar(X).

6.2 THE CASE OF GRAPHS

As an example we apply the above result to graphs. Let X = {edg}. Since edyg is a
binary relation every equational set of graphs can be defined by a system of equa-
tions over a signature of the form QF,[edg, IT| where II contains only unary
symbols. We compare such signatures with the signature V'R reviewed in Sec-
tion 3.5.

The operations in QF , [edg, II] are the disjoint union, constants, and the quan-
tifier-free operations:

* fgt,,for 11,
o relaby, for h : II — II, and
. addp,Q,edg,h, with P, Q € I1.

The mapping fgt,,, is the composition of the mappings fgt,, for P € ®. A map-
ping relab, is a composition of mappings renp_, . Depending on 4, the mapping
addp,,edg,n is either addp o or addq,p. Hence, the signature QF C{,edg}
some details of writing, the one considered in Section 3.5.

We obtain Corollary 4.9 of [5] which states that equational sets of graphs need
not be defined with operations that use relation symbols of arity more than 2 or
operations that label edges. Only vertices must be labelled. More about this in

Section 6.4.

is, up to

6.3 THE RECOGNIZABLE SETS ARE ALSO THE SAME

Our objective is now to establish the result that both signatures Q> and QF
lead to the same notion of recognizability for subsets of STR[X]. Recall Section 4
where we defined monadic types tp, (4/2) and monadic annotations M}" ().
In particular, k denotes the quantifier height and m is the maximal size of anno-
tated tuples. We will make use of the following lemma which follows immediately
from Lemma 4.4.

Lemma 6.6. For every nondeleting quantifier-free transduction f : STR[Z] —
STR[I'] and each m > o, there exists a mapping f™ : Z3° — Iy"° such that, for
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all structures A € STR[Z] and all D € A, we have
MG (f(A)[D]) = relabm (M (A[D])).-
Proof. Note that we have
fAD]) = f(=)[D],
MG (RA[D]) = MG (A)[D],
and relabsm (A[D]) = relabsm (A)[D].

Since f is nondeleting the mapping M2 () — M2 (f(2)) only manipulates
the relations. For p € §};°(Z) with n < m, we can define the relabelling by

f(Ty) = Trapy »
where f7 is the function from Lemma 4.4. O
Proposition 6.7. Every QF Z-recognizable set L < STR[Z] is QF -recognizable.

Before giving the proof let us state the following consequence of Propositions
6.4 and 6.7.

Theorem 6.8. The signatures QF> and QF yield the same equational sets and the
same recognizable sets of structures in STR[Z].

Proof of Proposition 6.7. Suppose that L € STR[X] is QFZ-recognizable and let
m := ar(Z). There exists a finite QF>-congruence saturating L. We denote the
corresponding finite equivalence relations on STR[ZUI'] by ~ where I'is a finite
relational signature with ar(I') < m.

For a relational signature A, let f(A) = A}"™°. With each quantifier-free op-
eration f : STR[A] — STR[Z] we associate the function f : STR[A] — STR[ZUB(A)]
with

f(2) = £(2) M (W)[D]

where D C A is the domain of f(21). Note that the union above is not a disjoint
one. The domain of f(21) is that of f(21) and the relations are those of f(2) and
those of MZ7*(2)[D]. We assume that $(4) is disjoint from X so there is no
confusion. f is obviously a quantifier-free operation.

53

For 2, B € STR[A] we define
A~B  :iff tp,(A)=tp,,(B),
and A=,B :iff A~ ‘B and, for every quantifier-free operation
f:STR[A] > STR[X], we have f(2) ~4(4y f(B).
We claim that =, is a finite QF-congruence, for all A, and that =y saturates L.
Clearly, =, is an equivalence relation. It is also finite since ~ and ~4,) are finite
and there are only finitely many quantifier-free operations STR[A] — STR[Z]

(because A and X are finite).
To see that =5 saturates L assume that 2 € L and 2 =5 B. Set f := fgts (). We

have f(2) ~p(5) f(B), which implies that
A= f(f(A) 5 f(f(B))=B.

Since ~ saturates L it follows that B € L.

Next we check that ~ is a congruence. In Corollary 4.11 we have shown this for
the disjoint union. It is easy to see for quantifier-free domain restrictions, and
for nondeleting quantifier-free operations it can be derived from Lemma 4.4.

It remains to verify that =, is a congruence. Let g : STR[A] — STR[A’] be a
quantifier-free transduction and suppose that A =, 9B. Since ~ is a congruence
we have g() ~ g(B). Let f : STR[A’] - STR[Z] be a quantifier-free operation.
By definition, we have

(fog)(®) = (fog)(@)uMs™(g(A))[D],
and  (feg)" () =(feg)(A) u M (A)[D],

where D is the domain of the structure (f o g)(2). Therefore, it follows from
Lemma 6.6 that there is some function h : X u $(A) - Zu f(A") such that

(f 0 g) () = relaby ((f 0 g)"(2A))
and h is the identity on Z. Since relab;, € QF> and

(f 2 8)" () =p(a) (f 2 8)"(B)

we have

F(g(A)) = relaby, ((f 0 &)"(2A))
~g(ar) relab, ((f )" (B)) = f(g(B)).
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which implies that g(2) =5 g(*B).

It remains to consider the case of disjoint union. Suppose that 2, =4 B, and
A, =5 B,. We have to prove that A, & 2, =4 B, & B,. We already know that
A, @A, » B, & B,. Let f : STR[A] - STR[Z] be a quantifier-free operation
such that (2, ®2l,) € STR[Z].

Claim. Let 8'(A) be a disjoint copy of B(A) and let h be the relabelling mapping
ReB(A)toR" € B'(A). There existsa QF o[ Z, f(A)uB'(A)]-derived operation g
such that

f(AeB)=g(f(A) @ h(f(B))), forall structures A and B .

Assuming the claim to be true we continue the proof as follows. Since 2, =
B, and A, =4 B, we have

F(@o) 2pay f(Bo) and  h(f(A)) =p(a) h(f(B))) -
As gisa QF,[Z, B(A) u B'(A)]-derived operation it follows that
f(mO) @ h(f(Qll)) =B(AYUB(A) f(%O) ® h(f(%l)) >
and f@ @) = g(F(2) @ h(F(21)))
~p(a) 8(f(Bo) @ h(f(B.)))
= f(B,®B,).
This completes the main proof.

Proof of the claim. To define g let us consider the action of f on 2 @ B. Since f is

quantifier-free it adds tuples @ € A to arelation Rifand only if we have d € R ;o).

The same holds for tuples b < B. Therefore, we have
fAeB)[A]=f(%) and f(AeB)[B]=f(B),
and the desired operation g only needs to add those tuples ¢ to relations R that

contain elements of both A and B. Since f is quantifier-free we can tell whether
such a tuple ¢ should be added to R by looking at the quantifier-free types

P, (Cla/A®B) = tpy(¢la/2A) and  tp,(¢]s/2A & B) = tp,(¢ls/B) .

(By ¢|4 we denote the subtuple of ¢ contained in A.) This information is available
in MZ27' () and M2 (B). Hence, g can be written as g = relaby o CREATE
where k is the canonical projection (A) u f/(4) — B(A) and CREATE is a
composition of operations of the form addp s 7., with R € f(A), S € B/(A), and
TeXup(A)uB'(A). This completes the proof of the claim. O
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6.4 OPTIMALITY

These results prove that when dealing with equational or recognizable sets of
hypergraphs of rank at most #, auxiliary relation symbols (like the labels from
sets IT for dealing with graphs) can be limited to be of arity at most n — 1.

The next example shows that, for equational sets, this bound is optimal. We
define a structure of rank 3 that cannot be defined without auxiliary symbols of
arity 2.

Example. Let R be a ternary relation symbol and IT a set of unary predicates as
in Section 3.5. Consider the signature

Fr:= {@,l‘el’lp_,Q,fgtA,addN)p,Q,P | N,P,Qell, Ac H}

where @, renp_.q, fgt,, and P are the usual VR-operations of Section 3.5 and
addn,p,q is the quantifier-free operation defined by the formula

9r(x,y,2) == Rxyzv (Nx APy AQz).

Every structure 2 € STR[R] is of the form 2 = valgrz(¢), for some t € T(Fp),
provided IT is large enough (say, |II| = |A|). Let 2, € STR[R] be the structure
with domain A = [n] and relation

R:={(a,b,c)e[n]P|la<b<c},

and denote the set of all structures 2(,, by C. There exists an MSO-transduction 7
such that C = 7(K), where K is the set of all terms of the form g"(c), n € N,
for some unary function symbol g and a constant c. Since K is regular it follows
by Proposition 3.7 that C is equational. We claim that C & val(T(F)), for any
finite set I1.

Fix a finite set IT and set 7 := 2!, We will prove that 20,,,,, ¢ val(T(Fpn)).
Suppose that there exists a term ¢ € T(Fp) with value val(t) = 2,,.,. Then
t = f(t, ®t,) where f is a composition of unary operations that has to add all
necessary hyperedges between 9B, := val(¢,) and 9B, = val(t,).

For a, b € val(t,), we define

a~b :iff forallPell, aePy, < bePy,.

If f adds the tuple (a,b,c) to R, for a ~ b in B, and ¢ € B,, then it must also
add the tuple (b, g, ¢). This is not possible. Therefore, each ~-class of B, contains
only one element and we have

B,| = [B,/~] <2/ = n.
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By symmetry, it follows that |B,| < n in contradiction to |B, U B,| = 21 + 1.

7 RICH SIGNATURES WITH OPERATIONS BASED
ON LOCAL INFORMATION

7.1 THE GENERAL FRAMEWORK

After investigating small signatures we will now look at the opposite problem of
defining signatures that are as rich as possible while still being equivalent to QF.
Let F be a signature equivalent to QF. We are interested in finding a set G of
new operations on STR[ 2] that satisfy the following conditions:

(c1) Every (F uG)-equational subset of STR[X] is F-equational.
(c2) Every F-recognizable subset of STR[ 2] is (F U G)-recognizable.

Lemma 7.1. If G satisfies (c1) and (c2) then F U G is equivalent to QF.

Proof. Since F ¢ F UG, we have
Rec(FuG) cRec(F) and Equat(F)<Equat(Fug).

By (c2), it follows that Rec(FuUG) = Rec(F) = Rec(QF), while (c1) impies that
Equat(F uG) = Equat(F) = Equat(QF). O

Our approach is as follows. Suppose that, for each signature %, we have defined
an injective mapping

N:STR[Z] —» STR[Z] : A — A
from Y-structures to 3-structures, for some signature 3. Natural conditions im-

plying both (c1) and (c2) are the following ones.

(1) The family of functions * : STR[X] - STR[2] forms a finite-state hetero-
morphism from the (F u G)-algebra STR to the QF-algebra STR.

(M) The mapping " has a left-inverse 2l + 2 that is an MSO-transduction.
Furthermore, for every X, there is an MSO-formula defining the image
Dy = (STR[Z])" € STR[ 2] of STR[Z] under ".

Remark. By Definition 2.8, to verify (1) we have to find
¢ a (Fu@G)-computable mapping « : STR - A, and
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o for every n-ary operation f € F UG, QF-terms t/ [a], for a € A", that
“emulate” f.
Note that the second step can be performed independently for every operation f.

Below we will sometimes split it into two or more parts each dealing only with a
subset of FUG.

Lemma 7.2. Let C € STR[Z] be a set of structures and C its image under ". If (1)
and (M) hold then the following conditions are equivalent:
(i) Cis QF-equational.
(i) Cis QF -equational.
(iii) Cis (F uG)-equational.
In particular, (8) and (M) imply (c1).

Proof. (iii) = (ii) follows from Lemma 2.9 and (#), and (ii) = (i) follows from
Corollary 3.8 (a) and (m).

For (i) = (iii), suppose that C is Q F-equational. Since F is equivalent to QF it
isalso F-equational. Finally, F ¢ Fug implies that C is (FUG )-equational. [

Lemma 7.3. Let C € STR[X] be a set of structures and Cits image under . If (1)
and (M) hold then the following conditions are equivalent:

(i) Cis QF-recognizable.
(i) CisQF -recognizable.
(ili) Cis (F uG)-recognizable.
In particular, (H) and (M) imply (c2).

Proof. (i) = (ii) Since C=Dsn (")7*(C) this direction follows from (m), Propo-
sition 3.6 (b), and Theorem 5.1.

(ii) = (iii) follows from Lemma 2.9 and (H).

(iii) = (i) Suppose that C is (F U G)-recognizable. Since F € F u G it is also
F-recognizable. By assumption, F is equivalent to QF which implies that C is
QF-recognizable. O

Example. (a) We can apply the above machinery to the mapping 91 := MP(L).
Condition (M) follows from Lemma 4.7, and in Lemma 4.13 we proved (1) for
the case that G = @ and F = QF. It follows that a class C is QF-equational
or QF-recognizable if and only if its annotated version M}"(C) is. Hence, our
framework provides an alternative proof of Corollary 4.8 and Theorem 4.14.
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(b) It is not easy to find nontrivial signatures G that satisfy condition (1) for
the annotation MJ’. We give an example of a simple operation that, for k > o,
violates condition (). Consider the square operation G ~ G* where G? is the
graph with the same vertices as G and edge relation

edgqc. = {(x,y) | (x,y) €edg or (x,2), (2, y) € edg, for somez } .

The mapping M, (G) ~ G* is a quantifier-free operation. To satisfy () we have
to lift it to a map M, (G) = M, (G?). But this cannot be done. We have

G* = Jz(edg(x,z) Nedg(z,y))
iff Gk 3z|(edg(x,z) v u(edg(x,u) Aedg(u,z)))
A (edg(z,y) v Ju(edg(z,u) A edg(u,y)))] .

By looking only at tp, (xy/G) we cannot decide whether this formula holds in G.

(c) We give a last counterexample consisting of an operation defined by a very
weak form of quantification that violates condition (c1). Let P, Q, R be unary
relations and suppose that our signature contains the operations g and h where

h(x) := (relabg..q o relabg,.p 0 addq r,edq) (x ® R)

is a derived Q{4 -operation, and g labels every vertex a by Q that has a neigh-
bor labelled Q while the other relations remain unchanged. The term t,,, =
g"h"(Q) describes a path of length m where the last n + 1 vertices are labelled
by Q and the remaining ones are labelled by P.

P—i—5P—5Q——0Q

We claim that the function val mapping a term t,,, to its value is not an MSO-
transduction. Note that the set

T :={val(ty,) |m<n},

which consists of all finite paths where all vertices are labelled by Q, is MSO-
definable and, hence, recognizable. If val were an MSO-transduction then the set

val ™ (T) N {tmn | mneN}={ty,|m<n}

would be recognizable as well. But, using pumping arguments, one can easily see
that this is not the case.
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7.2 FUSION AND LOCAL TYPES

Our main application of the approach described in the previous section concerns
the fusion operation that merges all elements of a structure satisfying a given
quantifier-free formula into a single element. We will show that one can aug-
ment the signature QF, of Section 6.1 by this operation without changing the
notions of recognizability and equationality. Let us first introduce the appropri-
ate operation 2 ~ 9l on structures. Similarly to the operation M of Section 4.2,
we use a labelling by a certain kind of types but with a more restricted form of
quantification.

Definition 7.4. (a) Let n € N. A formula ¢(x,, ..., x,) is monadically existential,
me.e. for short, if

O(x e xn) =30 Y (Ryy e Yy AP A AYy)
or © =3Iy,

where each v; is either the Hintikka-formula (cf. Definition 4.2) of a quantifier-
free 1-type with free variable y;, or it is of the form y; = xi, for some k. (Note
that we do not require every variable x; to appear in ¢.)

(b) Let A be a structure and a € A", for n € N. The local n-type of a is the set

Itp(a/A) ={p(x)| pisme,AE=¢p(a)}.

The set of all local n-types realized in some X-structure is denoted by S/ (Z) and
we set 7 (2) = Uicnar(x) ST (Z). As usual, we abbreviate Itp({)/2() by Itp(1).
Note that Itp(2() is included in all local n-types with n > o.

Example. SupposethatX = {R, P} where R is 4-ary and P is unary. The following
formula is m.e.

P(x,x,) = 3y13y23Y33)’4(R)’1)’2)’3y4 A (Py, A =Ry y1y:91)
AYa=X A Yy =X
A (=Py, A _‘R)’4)’4)’4J’4)) .

Remark. Note that the local type Itp(a/2l) of a tuple uniquely determines its
quantifier-free type tp, (a/2l) since we have

Rxj, ...x;, €tp,(a/A)
it Ay Ayw(RyAYy =xi, Ao Ay, =x;,) €ltp(a/d).

60



As for monadic types we can annotate a structure with local types. This anno-
tation is an FO-transduction which satisfies condition (m).

Definition 7.5. Let [ be a X-structure. The local annotation of 2 is the structure

L) = (4 (Tp) pesi ()
with the same domain as 2 where, for each local n-type p € Sf (£),1< n < ar(2),
we add an n-ary relation
Tp:={aecA" |ltp(a/A)=p}.
We denote the signature of L(21) by Xy.
The following lemma is the analogue of Lemma 4.7.
Lemma 7.6. Let X be a relational signature.
(a) The mapping L : STR[Z] — STR[ZL] is an injective FO-transduction of
quantifier height ar(Z).
(b) The function L has a left-inverse that is a quantifier-free FO-transduction.
(c) L satisfies condition (m).
Proof. (a) We can define the relation T, by the formula

APAN{-¢lpisme,pép}.

This formula has quantifier height gh(y,) = ar(X).
(b) Conversely, we can write an n-ary relation R € X as

Ry ={aeA"|aeT, for some p with
IP(RIAY, =X A Ayp=X,)€EP}.

Since S; (Z) is finite this definition is equivalent to a finite disjunction of atomic
formulas.

(c) Having proved (b) it remains to show that £L(STR[Z]) is MSO-definable.
By composing the transductions of (a) and (b) we can construct a first-order
formula ¢ such that A & ¢ if and only if A = L(B), for some structure B. [

We have seen in Theorem 6.8 that the signature F := QF, is equivalent to QF.
Using the methods of Section 7.1 we extend it in two steps to a larger signature
that is still equivalent to Q. First, we add all domain restrictions del,, (cf. the
end of Section 3.1). Let QF . be the resulting signature. We claim that £ satisfies
condition (H). We start by proving an analogue to Lemma 4.4 for local types.
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Lemma 7.7. For every unary operation f € QF , of type X — I, there exist func-
tions f, : S{(2) — S]'(I'), n €N, such that

ltp(a/f(A)) = fu(ltp(a/2A)),
for all structures 2 and every n-tuple a in f(2L).

Proof. Letg = f3: 8,7 (2) = Sy (I') be the function from Lemma 4.4. If y is the
Hintikka-formula of an atomic 1-type g we denote by g() the Hintikka-formula
of g(q), and, if y equals y; = x, then we set g(y) = y.

Let p € S} (2). For an m.e. formula of the form ¢ = Iyy(y) we have

yy(y) e fulp) i 3yy'(y)ep forsomey’ eg™(y).
Consider an m.e. formula of the form
O(xps X)) =3y Y Ry Y AV A AWy

In order to define f,(p) we consider the following cases.
(1) f = fgt,.If R € A then ¢ ¢ f,(p). Otherwise, ¢ € f,(p) iff there are
formulas v € g7 (y;), i < m, such that

39 Iym(RYs . ym AVL A AL ) €D,

(2) f =relaby,. Weset ¢ € f,,(p) iff thereare arelation S € h™*(R) and formulas
vi e g (yi), i <m,such that

3y Iy (Syre e Y AYL A AYL) €D

(3) f = addg ,u,n- If R # U then we define ¢ € f,(p) iff there are formulas
yi e g (yi), i <m,such that

3y Iym(Ryy e ym NY A AYL) €D

For R = U, we have ¢ € f,,(p) iff one of the following two cases holds.
Case 1. There are formulas v} € g7 (y;), i < m, such that

3y 3ym(Uys e ym AYLA - AY,) €.
Case 2. Otherwise, for all 7, j with h(i) = h(j), we have either
* Y =l//]', or
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¢ y;equals y; = x and y; is the Hintikka-formula of the type tp, (ax/f (1)) =

g(tpO (ak/Ql)) (note that this type is determined by p), or
* vice versa.
Furthermore, there are formulas ', ..., v}, ;, where k := ar(S), [ := ar(T), such
that
By ISy ye AV A Ay €p
and 3y, 3y (Tyr oy AV (0) A A v () € ps
and, for all i, we either have
¢ 1; is a Hintikka-formula and '/’;1,(1‘) €g " (yi),or
* i equals y; =x;, for some j, and y/ ;y is ya(i) = X;.

(4) f=delg. Wehave g € f,(p) iff pe pand y; &= 9(y;), foralli<m. O
Example. Let us illustrate the case f = addg 7,y ». Suppose that the arities of
S, T,and U are 2, 3, and 7, respectively. Let & : [7] — [5] be the function mapping
1,...,7tothesequencei, 2,3, 4, 4,5, 5. We consider a formula ¢(x,, x,, x; ) of the
form

F(UF Ay = Ay (92) A3 =X Ayy =2
AYs(95) AYs(6) A7 (37)) -
For a € A%, we have f(21) = ¢(a) iff either

AEJ(UGA Yy = AV (1) Ay =X A Yy = X5
As(ys) Ave(y6) A (7))

forsome v € g7 (v;),i € {2,5, 6,7}, 0r y, is the Hintikka-formula of g(tp, (a;/2)),

we have y§ =y, and there are y} € g7*(v;), i € {2, 6}, such that

A 33,3y,(Sy192 Ay =5 A, (92))
A 3y:39:3y5(Tyyp5 A ys =% A Yo = x5 AY6(3)) -
The next lemma is analogous to Corollary 4.11.

Lemma 7.8. Let A and B be structures and a € A¥, b € B! with k,1 > o.
Itp(ab/A @ B) =1ltp(a/A) U p,

where p is the type obtained from ltp(b/9B) by replacing every variable x; by xy.;.
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Corollary 7.9. Every operation f € QF , satisfies condition (H).

Proof. We claim that the function £ is a finite-state heteromorphism based on Itp.
The proof is analogous to that of Lemma 4.13. For unary operations the claim
follows immediately from Lemma 7.7. It remains to consider the disjoint union.
Lemma 7.8 implies that there exist QF-terms t[p, q], for p, q € SY(Z), such that

L(AoB) = t[ltp(A),1tp(B)] (L(A), L(B)).

(Note that the local type of a tuple a determines the type of any permutation of 4.
Therefore, we only need Lemma 7.8 for tuples ab with 4 € A and b € B, not for
arbitrary interleavings of elements of A and B.)

From Lemmas 7.7 and 7.8 we can deduce that the local o-type of a structure
is QF .-computable (cf. Definition 2.6). Consequently, the £ is a finite-state de-
rived operation based on ltp. O

In the second step we extend QF, by all fusion operations which are defined
as follows. Recall the definition of quotient structures at the end of Section 3.1.

Definition 7.10. Let 2 be a structure and ¢(x) a quantifier-free formula. We set
fuse, () = A/~ where ~ is the equivalence relation

a~b :iff a=b or AEg(a)re(d).
By Fuse we denote the signature consisting of all operations of the form fuse,.

We have seen that every operation of QF, satisfies (H). In order to do the same
for Fuse it therefore remains to prove (H) for fusion operations.

Lemma 7.11. Let ¢(x) be a quantifier-free formula and g : A — fuse, () the
canonical mapping. There exist functions f, : S{'(Z) - S} (Z), for n € N, such
that

Itp(g(a)/fuse,(A)) = f,(ltp(a/A)), forallde A"

Proof. Let p,,..., ps € S\ (2) be an enumeration of all quantifier-free 1-types p
with p = ¢ that are realized in . Let q € Sy’ (2) be the quantifier-free 1-type
with

Rx,...x,eq iff Rx,...x,€p;, forsomei<s.
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If b € A is some element of type tp (b/2) = p; then g(b) has the type

tp, (g(b)/fuse,(A)) =q.

To simplify notation we define a function f : §;7°(2) - $;;°(2) by

r otherwise.

£r) ::{q ifre{p,....ps}»

For Hintikka-formulas v, we set f(y,) := ¥4(,), and for formulas y of the form
yi =X weset f(y) = y.

For m.e. formulas of the form 9 = Jyy(y) we have

Iyy(y) elip(g(a)/fuse, (1))
it  3yy'(y)eltp(a/A) forsomey € f'(v).

Let 9(xp, .5 xn) =3y1 - Ay m(RY1 ... Y AWy A= Ay, ) be amee. formula. We
have

9 eltp(g(a)/fuse, (A))

if and only if

3y, Iym(Ryy o ym AV A Ay ) eltp(a/A),

for some formulas ¥} € ™ (y;), 1 < i < m. Since the types p,, ..., p, can be
determined from Itp(a /L) this gives the desired definition of f,. O

Corollary 7.12. The signature QF . U Fuse satisfies condition (H).

Proof. For the operations of QF ., we have already shown in Corollary 7.9 that
L is a finite-state heteromorphism based on ltp. It remains to consider the oper-
ations fuse, € Fuse. The preceding lemma implies that there exists a QF-term ¢
such that

L(fusey (A)) =t(L(A)).

Together Lemmas 7.7, 7.8, and 711 show that the local o-type of a structure is
(QF . U Fuse)-computable. Hence, the claim follows. O
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By the results of the previous section, we immediately obtain the following
theorem which is one of our main results.

Theorem 7.13. The signatures QF and QF ., U Fuse are equivalent.

Let us compare this result with those of Courcelle and Makowsky [14] who
show that the signature F consisting of the disjoint union &, of certain restricted
quantifier-free operations, and of the operations fusep, satisfies the following
properties. For every finite subsignature F, € F,

(1) the value mapping valgrg : T(F,)s — STR[Z] is an MSO-transduction,
(2) every F,-equational set is QF-equational, and

(3) each MSO-definable set of (hyper-)graphs contained in valgr (T (Fp ) ) is
Fo-recognizable.

The restrictions imposed in [14] on quantifier-free operations and relational
structures are the following ones:

+ the sets Py form a partition of A,

+ the only quantifier-free operations allowed to modify the vertex labellings
are operations of the form renp_, g as described in Section 6, and

+ no quantifier-free operation restricts the domain of its argument.

In the present section we were able to remove the first and third restriction by
using 1-types instead of vertex labels. Furthermore, we have shown that both sig-
natures lead to the same notion of recognizability. Unfortunately, to do so we had
to modify the second restriction by only allowing the quantifier-free operations
of QF,. By the results of [14] and Theorem 7.13 we have

Equat(QF) = Equat( QF . u Fuse) = Equat(QF u Fuse),
and  Rec(QF) =Rec(QF, UFuse) 2Rec(QF uFuse).
We currently do not know whether the last inclusion can be strengthened to an

equality.

7.3 FUSION AND COMPLETE LOCAL TYPES FOR GRAPHS

For graphs - or more generally for structures of arity at most 2 — we can improve
the above result by showing that the signatures QF and QF u Fuse are equivalent.
One would expect that this holds for arbitrary arities, but so far we have neither
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been able to prove such a statement, nor could we construct a counterexample.
For the remainder of this section, we fix a signature X of arity ar(X) < 2.

The reason why the above proof works only for QF, is the fact that, if we
use the labelling £ then arbitrary quantifier-free operations do not satisfy con-
dition (u). For arity 2, we are able to modify the notion of a local type such
that all QF-operations satisty (1). The basic idea is to replace in an m.e. for-
mula 39(Ry Ay, A-+ Ay, ) the atom Ry by the Hintikka-formula of a quantifier-
free 2-type. Though, to simplify notation we will not use such formulas but the
quantifier-free 2-types themselves.

Definition 7.14. Let 2 be a structure and a, b € A. The complete local 2-type of a
pair ab in 2 is its quantifier-free type

ctp(ab/A) :=tp, (ab/2A).

The complete local 1-type of a single element a in 2 is the set of all complete local
2-types of pairs extending a

ctp(a/A) = {ctp(ac/A) | ceA}.

Finally, we will also need the complete local o-type of the empty tuple () which is
the set of all realized 1-types.

ctp(()/2) = {ctp(a/A) [acA}.

As usual, we abbreviate ctp(()/2() by ctp(2(). For o < n < 2, we denote by S%(2)
the set of all possible complete local n-types and we set S&(2) = SE(Z)USE(Z).

Remark. Since satisfiability is decidable for the 2-variable fragment of first-order
logic it follows that the sets S2(Z), St (Z), and SZ(Z) are decidable.

Asin the case of the other types one can define Hintikka formulas for complete
local types.

Lemma 7.15. For every complete local n-type p € SE(Z), o < n < 2, there exists a
first-order formula y,(x) of quantifier height 2 — n such that

Aeyy(a) if ctp(a/A)=p,

for all structures A and every tuple a € A”.
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Proof. We define y, by reverse induction on #. The construction is analogous to
that of Definition 4.2. For n = 2, we define

Wp(xvxz) = /\P-

For n = 1, we have to express the back-and-forth property (cf. [26, 19]). The
formula

Vo (%) = N\ I g (x %) AV, \ yg(x,x,)

qep qep

states that every type q € p is realized and every realized type is contained in p.
Similarly, for n = o, we have

vy = /\ Elxll//q(xl) AV x, \/ V/q(xl) . O
qep qep

Corollary 7.16. The o-type ctp(2l) is QF -computable.

Proof. The claim follows immediately from Lemmas 4.12 and 7.15 since tp, () &
Yetp(2)- =

We use Hintikka formulas to define the logical consequences of a local type.
Definition 7.17. For p € S#(Z) and ¢ € FO[Z], we write p £ ¢ iff = v, — ¢.

Remark. It follows that p = ¢ if and only if we have 2 = ¢(a), for every struc-
ture A and all tuples a € A of type ctp(a/A) = p.

Following the usual lines of our approach we annotate structures by types and
we show that these annotations satisfy conditions (M) and ().

Definition 7.18. Let 2 be a -structure with ar(X) < 2. The complete local anno-
tation of 2 is the structure

C(A) = (A, (Tp) pesz())

with the same domain as 2 where, for each local n-type p € S&(Z), n € {1,2},
we add the relation

Tp:={acA"|ctp(a/A)=p}.

We denote the signature of C(21) by Zc.
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Lemma 7.19. Let X be a relational signature.

(a) The mapping C : STR[Z] — STR[Z(] is an injective FO-transduction of
quantifier height 1.

(b) C has a left-inverse that is a quantifier-free transduction.

(c) C satisfies condition (M).

Proof. (a) The formula y,(x) from Lemma 7.15 can be used to define the rela-
tion T},. For p € S{(2), this formula has quantifier height qh(y,) = 2 — n.
(b) Conversely, we can write an n-ary relation R € X as

Ry ={acA"|aeT,forsomepwith pE Rx,...x, }.

Since S¢(Z) is finite this definition is equivalent to a finite disjunction of atomic
formulas.

(c) Finally, by composing the transductions of (a) and (b) we can construct an
FO-formula that defines the set C(STR[X]). O

It remains to check condition (1). We start by considering the operations
of QF.

Lemma7.20. Let 7 : STR[Z]| — STR[I'] be a quantifier-free operation withar(I') <
2. There exist functions f, : SE(Z) = SE(I'), 0 < n <2, such that

ctp(a/z(A)) = fulctp(a/2)),
for all structures 2 and every tuple a in ().

Proof. We decompose 7 = ¢ o del, into a domain restriction and a nondeleting
quantifier-free operation (cf. Lemma 3.5), and we deal with the two cases sepa-
rately. For 7 = del, and a, b € del, (A), we have

ctp(ab/del, (2A)) = ctp(ab/A),
ctp(a/dely (%)) = { p e ctp(a/) | p = ~¢(x.) },
ctp(()/dely, () = { £(p) | p € ctp(()/2A), p = =p(x) }

where f, in the last line is the function given by the second equation.
It remains to consider the case that 7 = 0. By Lemma 4.4, there exists a func-
tion g such that

tp, (ab/a(A)) = g(tp, (ab/2)) .
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Hence, we can set f, := g. The functions f, and f, are defined by

ctp(a/a(A)) = {g(p) | pectp(a/A) },
ctp(()/a(A)) = { /i(p) | p € ctp((}/2) }. O

We are interested in the fusion operation. It turns out that the annotation C
can be used to treat an even stronger operation which we call the gluing of two
structures.

Definition 7.21. A gluing function is a mapping
g:8c(Z) x Se(Z) = Se(2),

such that, for all types p, g € St.(X) and every quantifier-free formula ¢(x) with
one free variable, we have

p(x)eg(pq) it proln),
and  ¢(x,) eg(pq) if  qFp(x).
For such a gluing function g and structures %A,B € STR[Z], we denote by

2A®, B the following structure. Its domain is the disjoint union A w B. For unary
relations P, we have

Pﬂ®g% = PQ[ @] P% 5
while binary relations R are defined by
RQ[@gsB = RgiURwy
u{(a,b) e AxB| g(ctp(a/2), ctp(b/B)) & Rx,x, }
u { (b,a)eBx A | g(ctp(a/Q(), ctp(b/%)) E Rx,x, }
Finally, we extend ®, to an operation STR[X] x STR[I'] - STR[Z U] on
structures of different signatures by defining A ®, B = A’ ®, B’ where 2’ is
the (X u I')-structure obtained from 2 by adding empty relations Ry := @, for

every R e I' \ X, and B’ is defined analogously.
By Glue we denote the signature consisting of all operations of the form ®,.

Remark. (a) Note that A ®, B = A & B if we have ~Rx,x,, -Rx,x, € g(p, ),
for all p, g € St.(Z) and every binary relation symbol R.
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(b) The conditions on a gluing function g ensure that

ctp(ab/A®,B) = g(ctp(a/?l), ctp(b/%)) ,

for all structures 2 and B and all elements a € A and b € B. For instance, we
have

Rx,x, ectp(ab/A @, B) iff (a,b)€ Rog,»
iff  g(ctp(a/A),ctp(b/B)) = Rx,x,,
and  Px, ectp(ab/A®,B) iff aePy
iff  ctp(a/A) = Px,
ifft  g(ctp(a/A),ctp(b/B)) = Px,.

Example. Cunningham [18] studies graph decompositions, called split decompo-
sition, that are based on the following operation (see also [11]). Given two undi-
rected, simple, loop-free graphs & and §) in STR[{edg } UII] with labelled vertices
as in Section 3.5 and some relations P € II, one forms the graph

B op 9 = delp, (G ®, H)
where delp, deletes all vertices labelled P and g is the gluing function such that

g(p, p.) Eedg(x,,x,) it p; = 3y(edg(x,,y) A Py) forboth i,

that is, ®, creates an edge (a,b) between a vertex a of & and a vertex b of §
if and only if both a and b have a neighbour labelled P. Actually, in [18] this
operation is used only on graphs where P contains a unique vertex.

The next lemma is analogous to Corollary 4.1 and Lemma 7.8.

Lemma 7.22. Let g be a gluing function. There exist functions f,, 0 < n <2, such
that

ctp(a/2A ®g B) = fu(ctp(als / A), ctp(als / B)),

for all structures 2 and B and every tuple a € (AU B)", where a|x denotes the
subtuple of a consisting of all elements a; € X.

Proof. We start with the case n =2.1f a, b € A then

ctp(ab/A®, B) = ctp(ab/A) .
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The case that a, b € B is similar. If a € A and b € B then

ctp(ab/A ®; B) = g(ctp(a/2A), ctp(b/B))
and ctp(ba/A®; B) = og(ctp(a/A), ctp(b/B)),
where o(p) interchanges the variables x, and x, in every formula of p. (We have
proved the first equation in the remark above. The second one follows from the
fact that ctp(ba/A ®, B) = o(ctp(ab/A®, B)).)
For a € A, we have

ctp(a/A®g B) = ctp(a/A) u{ g(ctp(a/2), p) | p e ctp(B) },

and, for b € B,

ctp(b/A®gB) = ctp(b/B) u {og(p, ctp(b/B)) | pectp(A) }

Finally, for n = o, we have

ctp(A®; B) = { fi(p.ctp(B)) | p e ctp(A) }
U{ filetp(), p) [ pectp(B) }. O

Together with Corollary 7.16 it follows that ctp is (QF U Glue)-computable.

Corollary 7.23. If we only consider structures of arity at most 2 then the signature
OF U Glue satisfies condition (H).

Proof. We claim that the function C is a finite-state heteromorphism based on ctp.
For quantifier-free operations and the gluing operation ®, this follows from the
preceding lemmas. For the disjoint union @, it is sufficient to note that ® = ®,,
for a suitable gluing function g (cf. the Remark after Definition 7.21).

It remains to show that ctp is (QF U Glue)-computable. We have already seen
that it is QF-computable in Corollary 7.16. Hence, Lemma 7.22 implies that ctp
is (QF u Glue)-computable. O

By the results of Section 7.1, it follows that, for structures of arity at most 2,
the signature QF u Glue is equivalent to QF, i.e., the corresponding subalgebras
of STR are equivalent.

Corollary 7.24. For structures of arity at most 2, the signatures QF UGlue and QF
are equivalent.
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The signature we are actually interested in is QF U Glue U Fuse. The following
theorem, which is one of our main results, states that it is equivalent to Q.F.

Theorem 7.25. For structures of arity at most 2, the signatures QF U Glue U Fuse
and QF are equivalent.

Proof. By Corollary 7.24 and Lemma 2.13, it is sufficient to show that
QF U Glue U Fuse € (QF U Glue)®r .

We can express the operation fuse, as a derived (QF u Glue)-operation as
follows. We add a new element ¢ satisfying ¢ (x) to the given structure by a suit-
able gluing operation that creates an R-edge from some element a to c iff there
exists an R-edge (a,b) ending in an element b satisfying ¢ (x). Then we delete
all elements satisfying ¢(x) except for c. Formally, we have

fuse, (x) = (fgtp o dely) (x ®¢ 0(c))

where

& cis a constant denoting a singleton structure whose only element b satis-
fies ¢,

& 0 creates a new unary relation P ¢ ¥ and it adds all elements to it,

o g creates an R-edge between an element a and o(¢) iff there is some ele-
ment b satisfying ¢ such that (a, b) € R. That is,

8(p,q) = {Rx\x, | p = Iy(Rx,y Ay(y)) for some y € ¥}
U{Rx,x, | p = Ay(Ryx; Ay(y)) for some y e ¥}
U{w(x,) ]| pEw(x),y quantifier free }
u{w(x,) | g =w(x,),w quantifier free },
where ¢ is the complete local 1-type of the single element of the struc-

ture o(c) and YV is the set of all Hintikka-formulas y,, r € S (Z), with
rE @,

* 9= ¢ A-Pxy, ie, delg deletes all elements satistying ¢ except for the new
one which is labelled by P, and

¢ fgt, deletes the auxiliary relation P again. O
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8 SOURCES IN HYPERGRAPHS ARE NOT
NECESSARY

Equipping graphs and hypergraphs with distinguished vertices is useful for defin-
ing operations like series composition or parallel composition that generalize
concatenation. These distinguished vertices are called sources. In terms of rela-
tional structures such distinguished elements can be defined as values of nullary
symbols which are also called constants. They have been defined in this way in
the general logical and algebraic framework of [5] which is further developed
in [17]. Constants can be eliminated if one replaces them by unary relations con-
taining single elements. However, the quantifier height of the definition scheme
of a given transduction usually increases under this transformation. Take for ex-
ample the quantifier-free definition

Rxy :ift SxaATyb

where a and b are constants. If we encode a and b by unary relations P, and Py,
this definition becomes

Rxy :iff  JuIv(Sxun Tyv A Pau A Ppv),

which is no longer quantifier-free. Hence, after the transformation the signa-
ture QF may contain fewer operations. In this section, we show that quantifier-
free operations using constants can be emulated by quantifier-free operations on
relational structures without them. We will prove that the signature of quantifier-
free operations using constants, denoted by QF¢, is “equivalent” to the signa-
ture QF on relational structures without constants (for the precise meaning of
“equivalent” cf. Proposition 8.1 and Theorem 8.8).

8.1 RELATIONAL STRUCTURES WITH CONSTANTS

We recall definitions from [5, 17]. We fix a countable set Co, of constant symbols.
For a relational signature X and a finite subset C € C, we denote by STR[Z, C]
the set of all finite structures of the form

A= (A, (RQL)REEa (CQl)CEC>

where (A, (Ry)rex) € STR[Z] and ¢y € A, for every c € C.
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By A[C] we denote the substructure of 2 induced by the set of all elements
that are denoted by some constant ¢ € C.

We call quantifier-free transductions between structures with constants QF°¢-
transductions, for short (the superscript © indicates that we allow constants). A def-
inition scheme for such a transduction STR[Z, C] — STR[I, D] is of the form

D= (§0, ¥, (9R)Rer» (ch)cec,deD)

where
+ ¢ = true (cf. Section 3.3),
¢ YeQF[ZUC,{x}]
¢ 9ReQF[ZUC,{xy,...,Xy(r)}], for Re T, and
¢ k.4 €QF[ZUC,g],foreachce Candd e D.

As usual, the formula y defines the domain of the new structure and the for-
mulas 9 define the new relations R. The new constants are determined by the
formulas «.4. Given a structure 2 we define the constant d in the new structure
to denote that element cg such that x4 holds in 2I.

In order that a definition scheme defines a total mapping, the formulas x4
must satisfy the following conditions, for every structure in 2 € STR[Z, C] and
alld € D:

¢ d denotes an element of the new structure, thatis, 2 = A.cc(x.q = v(c)).
+ d has some value, that is, A £ V cc Kcd -
o disunique, thatis, A= A, vec(Keg Akerg > c=c").

These conditions are given by quantifier-free formulas without free variables.
Hence, theyhold in a structure 2 € STR[Z, C] iff they hold in [ C]. It is therefore
decidable whether they are valid in every structure because we only need to check
their validity in the finitely many structures of the form A[C].

A definition scheme D as above defines a total mapping D : STR[Z,C] —
STR[T, D] where the domain and the relations of B := D (%) are defined in the
same way as for structures without constants and, additionally, we have dg = cq
whenever 2 E k4.

We obtain thus an algebra STR® of structures with constants where each pair
(2, C) isasort. The operations are the QF°-transductions and the disjoint union &
which we apply only to structures with disjoint sets of constants. (For structures
A € STR[X,C] and B € STR[[, D] with C n D = @, the structure A & B €
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STR[Z U T, Cu D] is well-defined). We denote by QF° the corresponding signa-
ture.

We could define MSO-transductions between structures with constants in the
same way as QF-transductions. But when we allow quantifiers then the formu-
las k.4 are not needed. Therefore, we choose a simpler approach by reducing such
transductions to MSO-transductions without constants.

Let IIc := {P. | ¢ € C} be a set of unary relations in bijection with C and
disjoint from 2. For 2 € STR[ X, C|, we denote by Ay € STR[ZUII] the structure
with the same domain as 2 and the same X-relations. For every constant ¢ € C,
we add a new unary relation P, := {cy } to Aj;. Clearly, the mapping

STR[X,C] - STR[Z U Ilc] : A~ Ay

is an injective QF¢-transduction. (We identify STR[ZUIl¢, @] and STR[ZUTl].)

We define an MSO-transduction (of structures with constants) as a transduc-
tion 7 : STR[Z, C] — STR[[, D] such that the relation { (%7, Br) | B e 7(A) }
is an MSO-transduction. Routine arguments show that the composition of two
MSO-transductions is an MSO-transduction, also when they use constants.

We now recall from [5] the following result, formulated with the terminology
of the present article. It is the analogue of Proposition 3.7 for structures with
constants.

Proposition 8.1. Let L € STR[Z, C]. The following statements are equivalent:
(i) L is the image of a regular set of terms under an MSO-transduction.
(ii) L is QF -equational.
(ili) Theset Ly :={Ay |2A €L} is QF -equational.
Proof. The equivalence (i) <> (ii) is proved in [5]. Let us sketch the equivalence

of (i) and (iii). With routine manipulations of MSO-transductions one can show
that (i) is equivalent to the statement

Ly is the image of a regular set of finite terms under an MSO-transduction.
Hence, the equivalence (i) <> (iii) follows from Proposition 3.7. O
Our objective is to obtain a similar characterization of QF°-recognizability
of L € STR[Z, C] in terms of the QF-recognizability of Lj;. Theorem 8.8 below
archives this goal. Following our general framework we will introduce a con-

struction on structures that makes it possible to emulate the operations of QF¢
in terms of QF-operations.
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8.2 A SECOND WAY OF ELIMINATING CONSTANTS

The basic idea is to replace a structure 2 by the structure 9l obtained by deleting
all elements that are denoted by some constant and by adding new relations that
memorize links with the deleted elements. For example, an edge from x (where
x is not the value of any constant) to cg will be represented by a new unary rela-
tion edg[*c]. An essential fact is that 2/ can be reconstructed from ¥ and 2[C].
(Note that, up to isomorphism, there are only finitely many structures 2[C] for
A eSTR[Z, C].)

Definition 8.2. (a) For every n-ary relation R € X and each word w € (Cu{*})",
we introduce a new relation symbol R[w] whose arity is the number of sym-
bols * occurring in w. Let X(C) be the set of these symbols where we identify R
with R[*...*], hence £(C) contains X.

(b) For 2A = (A, (Ret)Rres> (cat)cec) € STR[Z, C], we define a Z(C)-structure
3 = (A, (Rg)res(c)y) with domain A := A\ {cq | ¢ € C} and the following
relations. For w = w *w, ... wi*wi,, with w,,w,, ..., wr,, € C*, we have

R{wlg ={(an...,ak) | W@, ... Wxapwis, € Ry },
where ; is the sequence of elements of A denoted by the constants in w; € C*.

Note that the substructure of 2 induced by A is a substructure of 9. The fol-
lowing statements follow immediately from the definitions.

Lemma 8.3. (1) The structure 2 can be reconstructed from 9 and A[C].

(2) The mapping " : STR[Z, C] - STR[Z(C)] is a QF -transduction.

(3) For each structure € € STR[Z, C] with € = €[C], there exists a (|C| + 1)-
copying MSO-transduction of quantifier height o that maps every nonempty struc-
ture B € STR[Z(C)] to the unique structure A € STR[Z, C] such that A[C] = €
and U = B,

Definition 8.4. Let L € STR[X, C] and suppose that € € STR[Z, C] is a structure
with € = €[C]. We denote by L x € the set of structures 2 € L such that A[C] = €
and 2 # € (so 2 contains at least one element not denoted by a constant).

Proposition 8.5. A set L € STR[Z, C] is QF “-equational iff (L« €)" is QF -equa-
tional for each €.

Proof. Let L be QF-equational. Since, for fixed €, the condition 2A[C] = €
is MSO-definable (even FO-definable) it follows by Proposition 8.1 and Corol-
lary 3.8 (b) that each set L x € is QF-equational. Hence, it is the image of a
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regular set of terms under an MSO-transduction and so is (L x €)", by Proposi-
tion 8.1 and Lemma 8.3 (2).

Conversely, since L is a finite union of sets L x € and singletons {€}, it suffices
to prove that each L x € is QF°-equational. This follows from Lemma 8.3 (3) by
a similar argument as above. U

We will improve Lemma 8.3 (2) in order to have statements like the above
corollary relating QF- and QF°-recognizability. Let us first state an immediate
corollary of Lemma 8.3 (3) and Proposition 3.2.

Corollary 8.6. Let € € STR[X, C] be a structure such that € = €[C]. For every
formula ¢(x,,...,x,) € QF[Z U C], one can construct a formula ¢(x,,...,x,) €
QF[2(C)], such that we have

Aegpla) iff Ak pa),
for every structure A € STR[ 2, C] with A[C] = € and all @ € A"

Proof. Let T : STR[Z(C)] — STR[Z, C] be the transduction of Lemma 8.3 (3).
We can set ¢ = ¢". O

Among the QF°-operations, it will be convenient to single out particular ones.
If d € C, we denote by fgt,; the operation STR[X, C] - STR[Z, C \ {d}] that
“forgets” the constant d. Nothing is changed except that some element of the
domain is no longer denoted by d.

Proposition 8.7. The function " : STR[Z, C] — STR[Z(C)] is a finite-state de-
rived heteromorphism based on the mapping A — A[C].

Proof. We recall that on STR[Z, C| we use the disjoint union and the QF*-trans-
ductions as unary operations. We first observe that the mapping 2 ~ A[C] is
QF°-computable. This follows from the following obvious facts.

(1) For all structures 2 € STR[Z, C] and B € STR[I', D] with Cn D = &, we
have

(AeWB)[CuD]=A[C]® B[D].
(2) For every QF-operation f : STR[Z, C] - STR[I, D], we have

fRO[D] = f(A[C)[D].

(This is true because Dy € Cy.)
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Going back to the main proof, we consider the various operations. First it is
clear that

AeB) =deB.

The case of a QF“-operation f : STR[Z, C] - STR[I, D] is more involved.

Suppose that f is defined by the definition scheme
D= ((P, v, (9R)Rel“> (ch)cec,deD) .

We consider a structure 21. Our objective is to express f(2)" as t(2) for some
QF-term t that may depend on A[C]. Let Cy be the set of all elements of 2
denoted by some constant ¢ € C. We denote by N € Cy the set of all elements
that are not deleted by f (i.e., that satisfy y) but that are not denoted by any
constant d € D in f(2). (Note that we can compute N from 2[C].) The set
Cy is thus partitioned into D (g(), N, and the set of all elements deleted by the
transduction f. The domain of f(2)" consists of N and all elements of A =
AN Cgy that are not deleted by f. We distinguish several cases.

(a) First, suppose that N = @&. The domain of f(2)" is the set of elements of A
that satisfy y in 2. By Corollary 8.6, these are the elements that satisfy ¢ in 9.

Now we consider a relation in I'(D), say R[*cx*ddx] to take a representative
example. We have

(%, 9, 2) € R[*cxdd*] (ayn
iff (o cpeay 2o dpy dyean» 2) € Rycan
iff A= r(x,c,y,d d2) Ay(x) Aw(y) Av(2) Akere Akarg s
for some ¢’,d’ € C
iff A& 9. 4 forsomec’,d eC
iff 9 = 9 = \/ 951,,1/ ,
c,d’
where 951, 4+ is the formula associated with
Ir(x,c'sy,d,d",2) nu(x) Ay () Aw(2) Akere AKgrg

according to Corollary 8.6.

The formula  which defines the domain of f(2)" and the formulas 9 as
above yield a definition scheme for the transformation 20 — f(2)". Hence, t is
a quantifier-free operation.
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(b) Next, we consider the case that N # @ and f = fgt,. Then N = {d} and
there is no ¢ € C ~ {d} such that cyq = dg(. The domain of f(2)" is that of 9
augmented with dy. Hence we have f(2)" = t'(% @ ®) where t' and ® are
defined as follows.

® is a structure with the single element dg. The relations of © either are empty
or consist solely of the tuple (dy, . . ., dy ) depending on whether the correspond-
ing relation of 2A[C] contains this tuple. For example, if (dy, o, car, day, day ) €
Ry, for b, ¢ € C, then we put the tuple (dg(, dg(, do) € R[*bc**]on. We also use
a special new unary relation symbol to “mark” dy, that is, to distinguish it from
the elements of 3 .

Let us call a relation R[w] a d-relation if d occurs in w. The mapping ' is a
quantifier-free operation that performs the following transformations:

(1) It preserves those relations of 9 and © that are not d-relations.
(2) It removes all d-relations (they are all in 90).

(3) For every tuple in a d-relation, like (x, y,z) € R[**abdd=*d], it creates
a corresponding tuple (x, y, dy, dy, 2, dg() in the relation R[**abx % x].
The marking of dy is useful here.

(4) Finally, it removes the “marking” unary relation.

Hence, in this case we can take for t the QF-term t'(x & D).

(c) For the general case, we show that every QF -operation can be expressed
as the composition of a bounded number of transformations of the above two
forms.

Fix an enumeration a,, ..., ax of N. (If it is empty case (a) applies.) Let E =
{e1,...,er} € Co be aset of constants disjoint from C and D.

Let g be the QF-transduction that maps a structure € with €[C] = A[C] to
the structure g(€) € STR[X, DUE] obtained from f () by assigning the value a;
to the new constant e;, for i < k.

The definition scheme of g can be constructed by adding to D the formulas
Kce; ‘= true where, for each i, ¢ is some element of C such that cyq = a;. This
choice can be made depending only on 2[C]. The resulting QF*-transduction g
is of the type considered in case (a). Furthermore, for every structure B with
B[C] =2A[C], we have

f(B) = (fgt,, o~ o fgt,, ) (¢(B)) -

Hence the general case follows by combining the constructions of (a) and (b).
O
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The main result of this section is the following theorem.

Theorem 8.8. Let L € STR[Z, C|. The following statements are equivalent:
(i) Lis QF -recognizable.
(ii) Ly is QF-recognizable.
(iii) (L w €)" is QF -recognizable, for every € with €[C] = €.

Proof. (ii) <> (iil) Note that, by Lemma 8.3, for every €, the sets (L x €)" and
(L % €) g are in bijection by an MSO-transduction the inverse of which is also an
MSO-transduction. It follows from Theorem 5.1 that one is QF-recognizable if
and only if the other is. Furthermore, the set {2 | 2 = 2[C] } is MSO-definable
and hence recognizable. This proves (iii) = (ii) since

Lp={A|A=2A[C] or, A e (LxC)", for some €}

and a finite union of recognizable sets is recognizable.

For the other direction, note that, if L7 is QF-recognizable then sois (Lx &)
because the conditions A[C] = € and 2 # € are MSO-definable.

(iii) = (i) Suppose that (L x €)" is QF-recognizable, for every €. Then L x €
is the inverse image of (L x €)” under the finite-state derived homomorphism *
(Proposition 8.7). Hence it is QF“-recognizable, by Lemma 2.9. It follows that
L is QF°-recognizable since L is a finite union of recognizable sets.

(i) = (iii) We now assume that L is QF-recognizable. Let ~ be a finite congru-
ence saturating L. By replacing it if necessary by a finer one, one can assume that
A ~ A’ implies that A[C] = A'[C] and the same relations from X are nonempty
in 2 and in 2’. Hence this congruence saturates each set L x €.

Consider now the inverse mapping (*)™ : STR[Z(C)] - STR[Z, C]. For ev-
ery € € STR[Z, C] such that € = €[C], one can construct a QF°-term ¢, using
both the relations of 2(C) (this set contains X) and the constants of C such that,
for every structure 2 € STR[X, C] » €, we have 2 = t(A & €).

The effect of applying ¢ to 9 ® € must be to replace a tuple like (x, y, u, v, w)
in a relation R[**ab*xcx] by the tuple (x, y, ag, be, u, v, ce,w) € R. This can
be done by a QF®-transduction 7 : STR[Z(C)] - STR[Z, C]. Hence, we can set
t:=1(x).

The restriction of the congruence ~ to the sets STR[X] is a QF-congruence
since QF is a subsignature of QF°. It remains to check that it saturates (L = )",
Consider a structure 2 € (L x )", and suppose that A’ ~ 2. Let B € L x € be
such that 2 = B. Since 2'[C] = A[C] = A, A[C] % ¢, and the same relations
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from 2(C) occur in 2 and 2, there exists a structure B’ € STR[Z, C] x € such
that 2" = $B’. Applying the term ¢ defined above we obtain B = (2 ® ¢) and
B’ = t(A & ). Hence B ~ B’. But the congruence ~ saturates L x €. Hence
B’ belongs to L x € and A’ belongs to (L x €)*. It follows that each set (L x €)"
is recognizable. O

Some variants of the operations of QF°¢ are considered in [17] where it is
shown that one can use the following generalization of disjoint union. If % and ‘B
have a common set of constants C then their parallel composition 2 /[ 9B is de-
fined from their disjoint union by fusing those elements in 2 and in B that are
denoted by the same constant. The results of this section extend to the corre-
sponding variant of QF°.

9 CONCLUSION

The main results we have established above (Theorem 5.1, Theorem 6.8, Theo-
rems 7.13 and 725, and Theorem 8.8) tighten even more the relationships be-
tween recognizability for algebras of relational structures, monadic second-order
transductions, and operations on relational structures defined in terms of logi-
cal formulas — quantifier-free or with a limited form of quantification. We have
extended older results on the fusion operation and we gave new uniform proofs
in a wider algebraic setting.

Some questions remain open though. In particular, a uniform treatment of the
fusion operation for relational structures would be desirable.

Open Question. Are the signatures QF and QF U Fuse equivalent?

Let us mention some other possible future research directions.

(1) Which quantifier-free operations on relational structures preserve recog-
nizability?

(2) Is it true that, if a set of graphs of clique width at most k is VR -recogniz-
able, for some set IT of size at most k (or f(k), for some fixed function f), then
it is recognizable?

(3) Using the signature QF> and its distinction between auxiliary relations
and those of X, one can define a complexity measure on relational structures
that generalizes the notion of clique width: Given a structure 2 € STR[X], let
w(2) be the minimal number 7 such that there exists a signature I and a term
t € T(QF,[Z,I']) with 2 = valgrr(¢) and Y gerar(R) < n. By Proposition 6.4,
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it follows that a set L < STR[Z] is the image of a set of terms under an MSO-
transduction if and only if w(L) is bounded.

For the case of the so-called HR-operations and HR-recognizability, questions
related to (1) and (2) have been considered in [7, 13]. A measure similar to (3) but
based on a different signature is investigated in [2].
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