
The Expansion Problem for
Infinite Trees

Achim Blumensath

5th May 2023

We study Ramsey like theorems for infinite trees and similar com-
binatorial tools. As an applicationwe consider the expansion problem
for tree algebras.

1 Introduction
While the theory of formal languages of infinite trees is well-established by now,
it is far less developed than other formal language theories. For instance, only
in recent years work on an algebraic theory for such languages has begun [10,
4, 5, 11, 1, 12, 9, 6, 7, 3]. Further progress in this direction is currently hampered
by our lack of understanding of the combinatorial properties of infinite trees.
In particular, for many purposes the currently known Ramsey type theorems
for trees are simply not strong enough. What would be needed instead are, for
instance, analogues of Simon factorisation trees for infinite trees. Such Ramsey
arguments are ubiquitous in the study of languages of infinite objects. For instance,
in the theory of ω-words they appear in the original complementation proof for
Büchi automata, when expanding a Wilke algebra to an ω-semigroup, or in the
more recent work on distance automata and boundedness problems.

There are at least two persistent problems when trying to extend our repertoire
of combinatorial tools to infinite trees. The first one concerns the step from
arbitrary trees to regular ones: while many arguments only work if the considered
trees are regular, there are currently no known algebraic methods of reducing
a given tree to an equivalent regular one. For instance, in [10] all proofs work

1

exclusively with regular trees, and only at the very end the authors transfer their
results to arbitrary trees, which was possible in this particular case since the
languages under consideration were regular and therefore uniquely determined
by which regular trees they contain.

The second problem concerns trees that are highly-branching. Many of the
known tools from the theory of ω-semigroups can be generalised to trees that
are thin, i.e., that have only countably many infinite branches. But all attempts
to extend them to (at least some) non-thin trees have failed so far. For example,
in [11] the authors only consider languages of thin trees since their methods do not
apply to non-thin ones. Later in [1], they then successfully adapted their approach
to study unambiguous languages of non-thin trees, utilising the fact that trees in
unambiguous languages are in a certain sense governed by their thin prefixes.

The only combinatorial methods know so far that work well even in light of
the above issues are those based on automata and games since, in a certain sense,
games provide a way to reduce a problem concerning the whole tree into one only
involving a single branch. (In fact, one of the motivations for this paper stems
from a wish to deeper understand how exactly this works, in particular during
the translation of a formula into an automaton.) Unfortunately, there are many
algebraic questions that resist to being phrased in automata-theoretic terms.

In this article we start by reviewing the existing techniques to study combinat-
orial properties of infinite trees, presenting them in the unifying language of tree
algebras from [6]. We then take a look at several new approaches. We determine
how far they carry and which the problems are that prevent us from continuing.
Our contributions are mainly conceptual. We raise many open questions, but
provide few answers. None of the results below are very deep and several remain
partial. Themain purpose of the article is to draw attention to a problem I consider
central for further progress.

It seems that such progress will likely not come from abstract considerations
but by solving concrete problems. Our focus will therefore be on a particular
application, one we call the Expansion Problem: the problem of whether a given
algebra whose product is defined only for some trees can be expanded to one
whose product is defined everywhere, analogously to the expansion of a Wilke
algebra (where the product is defined only for ultimately periodic words) to an
ω-semigroup (where we can multiply arbitrary ω-words). This problem turns out
to be a good test bed for the various approaches we consider. We solve it in some
special cases, but none of our approaches is strong enough to solve the general
case.

The overview of the article is as follows. We start in Section 2 with setting up

2

the algebraic framework we will be working in. Section 3 contains a brief survey
of the existing Ramsey Theorems for trees. The Expansion Problem is defined
in Section 4, where we also recall some tools from [7] to prove uniqueness of
expansions. The main technical part of the article are Sections 5 and 6, which
contain two techniques to study expansions. The first one are so-called evaluations,
which are a weak form of a Simon tree, the second one are consistent labellings,
which are somewhat similar to automata. The final two sections (7 and 8) contain
two applications. The first one recalls results of [1] about a characterisation of
unambiguous languages in terms of consistent labellings, while the second one
uses consistent labellings to define classes of tree algebras with unique expansions.

2 Tree algebras
We start with a brief introduction to the algebraic framework we will be working
in. To make this article accessible to a wider audience, we have tried to keep the
category-theoretic prerequisites at a minimum. A more detailed account can be
found in [6, 7]. To model ranked trees, we work in a many-sorted setting where
the sort of a tree represents the set of variables or holes appearing in it. Hence, we
fix a countably infinite set X of variables and use the set Ξ ∶= ℘fin(X) of finite
subsets of X as sorts. In addition, for technical reasons we equip the labels of our
trees with an ordering. Hence, we will work with partially ordered Ξ-sorted sets
which are families A = (Aξ)ξ∈Ξ where each component Aξ is a partial ordered.
A function f ∶ A → B between two such sets is then a family f = (fξ)ξ∈Ξ of
monotone functions fξ ∶ Aξ → Bξ . In the following we will for simplicity use the
term set for ‘partially orderd Ξ-sorted set’ and the term function for a function
between such sets. Sometimes it is convenient to identify a set A = (Aξ)ξ∈Ξ with
its disjoint union A = ∑ξ∈Ξ Aξ . Then a function f ∶ A→ B corresponds to a sort-
preserving and order-preserving function between the corresponding disjoint
unions.

Given such a set A an A-labelled tree is a possibly infinite tree t where the
vertices are labelled by elements of A and the edges by variables from X in such
a way that a vertex with a label a ∈ Aξ of sort ξ as exactly one outgoing edge
labelled by x, for every x ∈ ξ (and no other edges). We identify such a tree with a
function t ∶ dom(t) → A, where dom(t) is the set of vertices of t. The root of t
is denoted by ⟨⟩ (the empty tuple). If there is an x-labelled edge from a vertex u
to v, we call v the x-successor of u.

Definition 2.1. Let A be a set.

3

(a) We set T×A ∶= (T×ξA)ξ∈Ξ where T×ξA denotes the set of all (A+ ξ)-labelled
trees t (where the elements in ξ are assumed to have sort∅) satisfying the following
conditions.
◆ Every variable x ∈ ξ appears at least once in t.
◆ The root of t is not labelled by a variable.

(b) For a function f ∶ A → B, we denote by T× f ∶ T×A → T×B the function
applying f to every label of the given tree (leaving the variables unchanged).

(c) The tree order ⪯ is the ordering on dom(t) is defined by

u ⪯ v : iff u lies on the path from the root to v .

(d) For vertices u and (vx)x∈ξ of a tree t ∈ T×A, we set

[u, v̄) ∶= {w ∈ dom(t) ∣ u ⪯ w and vx ⪯̸ w , for all x } .

We denote by t[u, v̄) the restriction of t ∶ dom(t) → A to the set [u, v̄) (where
vx is labelled by the variable x while all other vertices have the same label as in t).
We call t[u, v̄) ∈ TξA the factor of t between u and v̄. The set ξ is the sort of the
factor. In the special case where ξ = ⟨⟩, we obtain the subtree of t rooted at u,
which we usually denote by t∣u . ⌟

Remark. We can identify the vertices of a tree with words in X∗. With this conven-
tion the tree order ⪯ is just the prefix ordering. This also explains our notation ⟨⟩
for the root. ⌟

We need the following two operations on trees.

Definition 2.2. Let A be a set.
(a) The singleton operation sing ∶ A → T×A maps every letter a ∈ Aξ , to the

tree sing(a) consisting of the root with label a attached to which is one leaf with
label x, for every x ∈ ξ.

(b) The flattening operation flat ∶ T×T×A → T×A is a generalisation of term
substitution. It takes a tree t labelled by trees t(v) ∈ T×A and combines them into
a single tree as follows (see Figure 1).
◆ We take the disjoint union of all trees t(v), for v ∈ dom(t),
◆ delete from each component t(v) every vertex labelled by a variable x ∈ X,

and
◆ redirect every edge of t(v) leading to such a deleted vertex to the root of t(ux),

where ux is the x-successor of v in t. ⌟

4

a

x x y

b

x c

x

z

z

a

b z

c

z

z

b

c

z

z

u v w

u v

u

x y

x

u v w

v

u

u v

u

u

Figure 1: The flattening operation: t and flat(t)

Remark. The triple ⟨T× , flat, sing⟩ forms what is called a monad in category-
theoretical language, which means it satisfies the following three equations.

flat ○ sing = id ,
flat ○T×sing = id ,
flat ○T×flat = flat ○ flat . ⌟

There are several special classes of trees we are interested in below.

Definition 2.3. (a) A submonad of T× is a functor T○ such that, T○A ⊆ T×A, for
every set A, and T○A is closed under flat and sing, that is,

flat(t) ∈ T○A , for all t ∈ T○T○A ,
sing(a) ∈ T○A , for all a ∈ A .

We write T○ ⊆ T× to denote this fact.
(b) We are particularly interested in the following submonads.T denotes the set

of all linear trees, i.e., trees where each variable appears exactly once. Tfin denotes
the set of finite linear trees, Treg the set of regular linear trees, Tthin the set of thin
linear trees, i.e., trees with only countably many infinite branches, and Twilke ∶=
Tthin ∩Treg the set of all trees that are thin and regular. The corresponding classes
of non-linear trees are denoted by T×fin, T×reg, etc. ⌟

5

In algebraic language theory one uses algebras (usually finite ones) to recognise
languages. In our setting these algebras take the following form.

Definition 2.4. Let T○ ⊆ T×.
(a) A T○-algebra A = ⟨A, π⟩ consists of a set A and a product π ∶ T○A → A

satisfying

π ○ sing = id and π ○T○π = π ○ flat .

(b) A T○-algebra is finitary if every domain Aξ is finite. ⌟

Example. The following algebra A = ⟨A, π⟩ recognises the language K of all trees
t ∈ T×∅{a, b} that contain at least one letter a. For each sort ξ, we use two elements
0ξ , 1ξ . Hence,

Aξ ∶= {0ξ , 1ξ} .

The product is defined by

π(t) ∶=
⎧⎪⎪⎨⎪⎪⎩

1 if t contains the label 1 ,
0 otherwise .

Then K = φ−1(1∅), where φ ∶ T{a, b} → A is the morphism mapping a to 1 and
b to 0. ⌟

A complication of the theory of infinite trees is the fact that some finitary
T×-algebras recognise non-regular languages [12]. For this reason we have to
consider a smaller class of algebras.

Definition 2.5. Let T○ ⊆ T×. A T○-algebra A is MSO-definable if there exists a
finite set C ⊆ A of generators with the following property: for every a ∈ A, there
exists an MSO-formula φa such that

t ⊧ φa : iff π(t) ≥ a , for all t ∈ T○A . ⌟

Using this notionwe obtain the following characterisation (for proofs see [6, 7]).

Theorem 2.6. A T×-algebra A is MSO-definable if, and only if, every language
recognised by A is regular.

6

The definition above is not very enlightening as it is basically just a restatement
of the preceding theorem. Although a more algebraic characterisation has be
found in [6], a simpler one would be appreciated. In particular, it would be nice
to find a system of inequalities axiomatising the class of MSO-definable algebras.

Open Question. Find a concrete description of a system of inequalities that axio-
matises the class of MSO-definable T×-algebras.

By general arguments, we know that such a system of inequalities exists, although
it might be infinite and the terms in the inequalities are in general profinite (see [7]
for the details).

3 Partition theorems for trees
Let us start with a brief overview of the existing partition theorems for trees,
followed by some remarks on how they might be extended and how they might
not. The seminal partition theorem for trees is the one by Milliken.

Definition 3.1. Let t ∈ TA be a tree.
(a) For a vertex u of sort ξ and a variable x ∈ ξ, we define the relation

u ≺x v : iff v belongs to the subtree t∣w where w is the x-successor
of u .

(b) A factor [u, v̄) of t is properly embedded if v̄ = (vx)x∈ξ and u ≺x vx , for
all x ∈ ξ, where ξ is the sort of u. Similarly, we say that a set P ⊆ dom(t) is
properly embedded if, for every vertex u ∈ P that is not maximal in P and for every
x-successor vx of u, the subtree t∣vx has a unique minimal vertex that belongs
to P.

(c) A proper labelling of t is a function λ that assigns a colour to every properly
embedded factor of t.

(d) Let λ be a proper labelling of t. A set H ⊆ dom(t) is homogeneous (with
respect to λ) if

λ([u, v̄)) = λ([u′ , v̄′)) , for all u, u′ , vx , v′x ∈ H such that [u, v̄) and
[u′ , v̄′) are properly embedded. ⌟

Theorem 3.2 (Milliken [16]). Let t ∈ T∅A be an infinite tree without leaves and
C a finitary set of colours. For every proper labelling λ of t with colours from C,
there exists an infinite homogeneous set H that is properly embedded in t.

7

Remark. The actual theorem by Milliken is stronger than the above version, but
the extra strength is not relevant in our context. ⌟

The problem with the theorem of Milliken is that it does not give any inform-
ation about factors [u, v̄) whose end-points do not belong to the set H. For a
stronger statement we need additional assumptions on the labelling. For instance,
for labellings of finite words, there is the Factorisation Tree Theorem of Simon
which states that, if the labelling is additive (i.e., the colours form a semigroup),
we can recursively factorise the given word into homogeneous parts. This theorem
has been adapted to trees by Colcombet [14] as follows.

Definition 3.3. Let t ∈ TA be a tree andS an ω-semigroup.
(a) An S-labelling of t is a function λ that maps every edge of t to a semigroup

element. Each such function can be extended to all non-empty (finite or infinite)
paths p = (v i)i by setting

λ(p) ∶= ∏
i

λ(v i , v i+1) .

For u ≺ v, we will also use the notation

λ(u, v) ∶= λ(p) , where p is the path from u to v .

(b) Given a function σ ∶ dom(t) → [k], we define a binary relation ⊏σ on
dom(t) by

x ⊏σ y iff x ≺ y , σ(x) = σ(y) , and

σ(z) ≤ σ(x) , for all x ⪯ z ⪯ y .

As usual, ⊑σ denotes the reflexive version of ⊏σ .

(c) A weak Ramseyan split of an S-labelling λ is a function σ ∶ dom(t) → [k]
such that

λ(x , y) = λ(x , y) ⋅ λ(x′ , y′) , for all x ⊏σ y and x′ ⊏σ y′

such that y ⊑σ y′ or y′ ⊑σ y . ⌟

8

Theorem 3.4. Let t be a tree andS a finite ω-semigroup. EveryS-labelling λ of t
has a weak Ramseyan split. Furthermore, this split is MSO-definable.

As an example of how to apply this theorem, let us mention the following result
from [5] that can be used to turn arbitrary trees into regular ones.

Definition 3.5. Let S be an ω-semigroup and λ an S-labelling of some tree t.
We denote by lim λ the set

lim λ ∶= { λ(β) ∣ β a branch of t } . ⌟

Theorem3.6. LetS be a finite ω-semigroup. For everyS-labelling λ of a tree t, there
exists a regular tree t0 and a regular S-labelling λ0 of t0 such that lim λ0 = lim λ.

The proof consists in fixing a weak Ramseyan split of λ and using it to replace
certain subtrees of t by back-edges. The unravelling of the resulting graph is the
desired regular tree t0.
As a second application let us see how to use Ramseyan splits to evaluate

products in a T-algebra. Since every tree t ∈ TA can be factorised into a finite
number of (i) trees of arity 1 and (ii) singletons, we can use an edge-labelling to
reduce every product π(t) to a finite one. (Note that this does not work for trees
in T×A.) The details are as follows.

Definition 3.7. Let A be a T-algebra.
(a) The canonical edge labelling λ of a tree t ∈ TA is defined by

λ(u, v) ∶= π(t[u, v)) , for u ≺ v .

(b) Let L be a logic. We say that A is L-definable with respect to a certain type
of labelling (of edges or vertices) if A is finitary and, for every finite C ⊆ A and
every a ∈ A, there exists an L-formula φ such that

⟨t, λ⟩ ⊧ φ iff π(t) ≥ a , for all t ∈ TC ,

where λ is the labelling for t and ⟨t, λ⟩ ∶= ⟨dom(t), ⪯, (sucx)x , (Pc)c∈c , (Rs)s∈S⟩
denotes the usual encoding of t as a relational structure with additional rela-
tions Rs (unary or binary) for the labelling λ. ⌟

Proposition 3.8. Every finitary T-algebra is FO-definable with respect to the ca-
nonical edge labelling.

9

Proof. Fix a ∈ Aξ and C ⊆ A. We define the desired formula φ by induction on ∣ξ∣.
First consider the case where ξ = ∅. The formula φ checks whether the given
tree t has a leaf. If this is the case it picks one, say v, and then checks whether

λ(⟨⟩, v) ⋅ t(v) ≥ a .

Otherwise, we fix, for every sort ζ used by some element of C, some variable
z ∈ ζ . If we start at the root of t and follow the successors labelled by one of these
chosen variables, we obtain an infinite branch of t. This branch is FO-definable.
The formula φ checks that the branch contains an infinite sequence v0 ≺ v1 ≺ . . .
of vertices such that

λ(v i , vk) = λ(v0 , v1) , for all i < k < ω ,
λ(⟨⟩, v0) ⋅ λ(v0 , v1)ω ≥ a .

This can be done in first-order logic using a trick of Thomas [18].
Next suppose that ξ = {x} is a singleton. Then the formula φ guesses the leaf v

of the tree t labelled by x and checks that

λ(⟨⟩, v) ≥ a .

Finally, we consider the case where ∣ξ∣ > 1. Given a tree t, the formula guesses
the longest common prefix w of all vertices labelled by some variable in ξ. Let
w0 be the predecessor of w and let v0 , . . . , vn−1 be its successors. By inductive
hypothesis, there exist formulae computing π(t∣v i), for every i. Consequently, we
can also compute

π(t) = λ(⟨⟩,w0) ⋅ t(w)(π(t∣v0), . . . , π(t∣vn−1)) .

Definition 3.9. Let L be a logic and let τ be an edge labelling of some tree T.
(a) We say that τ is L-definable if, for every c ∈ rng τ, there exists an L-

formula φc(x , y) such that

τ(u, v) = c iff T ⊧ φc(u, v) , for every edge ⟨u, v⟩ .

The definition for labellings of vertices is analogous.
(b) We say that the product π of an algebra A is L-definable on a term t ∈ TA

in terms of a labelling τ ∶ dom(t) → C if, for every a ∈ A, there exists an L-
formula ψa(x , ȳ) such that

π(t[u, v̄)) = a iff ⟨t, τ⟩ ⊧ ψa(u, v̄) , for every factor [u, v̄) . ⌟

10

Theorem 3.10. Let A be a finitary T-algebra. For every finite set C ⊆ A, there exists
a finite set S such that every t ∈ TC has a labelling σ ∶ dom(t) → S such that the
product on t is FO-definable in terms of σ. Furthermore, if A is MSO-definable,
then so is σ.

Proof. We have shown in Proposition 3.8 that A is FO-definable with respect
to the canonical edge labelling λ. Consequently, it is sufficient to find a vertex
labelling σ such that λ is FO-definable in terms of σ .
By Theorem 3.4, there exists an MSO-definable weak Ramseyan split σ0 ∶

dom(t) → [k] for λ. Unfortunately, λ does not need to be FO-definable in terms
of σ0. Therefore, we define an extended labelling

σ ∶ dom(t) → [k] × A{x} × A{x}

as follows. For a vertex v ∈ dom(t), let p(v) be the predecessor of v (if it exists)
and let q(v) ≺ v be the maximal vertex (if it exists) such that q(v) ⊏σ0 v. Fixing
an arbitrary element a0 ∈ A{x}, we set

σ(v) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⟨σ0(v), λ(p(v), v), λ(q(v), v)⟩ if q(v) is defined,
⟨σ0(v), λ(p(v), v), a0⟩ if p(v) is defined, but q(v)

is not,
⟨σ0(v), a0 , a0⟩ otherwise.

Note that, if A is MSO-definable, then so is σ . Hence, it remains to prove that λ is
FO-definable in ⟨t, σ⟩.
Consider two vertices u ≺ v. We can compute λ(u, v) from σ as follows. We

start by defining the sequence u0 ≺ ⋅ ⋅ ⋅ ≺ um ⪯ vn ≺ ⋅ ⋅ ⋅ ≺ v0 where u0 = u, v0 = v,
u i+1 is the minimal vertex bettween u i and v such that σ0(u i+1) > σ0(u i), and
v i+1 is the maximal vertex bettween u and v i such that σ0(v i+1) > σ0(v i). Note
that this sequence if FO-definable and its length is bounded in terms of k. Since

λ(u, v) = λ(u0 , u1) ⋅ ⋯ ⋅ λ(um−1 , um)
⋅ λ(um , vn)
⋅ λ(vn , vn−1) ⋅ ⋯ ⋅ λ(v1 , v0)

(where we drop the factor λ(um , vn) in case um = vn), we can evaluate λ(u, v) in
first-order logic, provided that we can define the values λ(u i , u i+1), λ(um , vn),
and λ(v i+1 , v i).

11

Let us explain how to compute λ(u i , u i+1). The other two cases are analogous.
To do so, let m < k be a number and u′ ≺ v′ two vertices such that

σ0(w) ≤ m , for all u′ ⪯ w ≺ v′ .

By induction on m, we will construct an FO-formula computing λ(u′ , v′). Let
w0 be the minimal vertex u′ ⪯ w0 ≺ v′ with σ0(w0) = m, let w2 be the maximal
one, and let w1 be the minimal vertex w0 ≺ w1 ⪯ w2 with σ0(w2) = m. We
distinguish several cases. If v′ is the successor of u′, we can read off λ(u′ , v′)
from σ(v′). If w0 does not exist, we can use the formula from the inductive
hypothesis. If w0 = w2, we have

λ(u′ , v′) = λ(u′ ,w0) ⋅ λ(w0 , v′) ,

where both factors can be computed by inductive hypothesis. Finally, consider
the case where w0 ≺ w2. Then w0 ⊏σ0 w1 ⊑σ0 w2 implies that

λ(u′ , v′) = λ(u′ ,w0) ⋅ λ(w0 ,w2) ⋅ λ(w2 , v′)
= λ(u′ ,w0) ⋅ λ(w0 ,w1) ⋅ λ(w2 , v′) ,

where the middle factor can be read of from σ(w1) and the other two factors can
be computed by inductive hypothesis.

The problem with the above theorems is that they require access to the ca-
nonical edge-labelling λ and, in order to obtain this labelling, we need to be
able to compute products π([u, v)] where the factors [u, v) are usually infinite.
Unfortunately, in many applications we only know the products of finite factors.
For instance, we cannot combine Theorems 3.6 and 3.10 to conclude that every
tree t ∈ TA over a finitary T-algebra A can be replaced by a regular one with
the same product since we do not know whether or not the regular labelling λ0
constructed in Theorem 3.6 is a canonical edge-labelling. It seems that a good
first step towards progress would be to prove a finitary version of Theorem 3.10
like the following one.

Conjecture. Let A be a finitary Tfin-algebra. For every finite set C ⊆ A, there exists
a finite set S such that every t ∈ TC has a labelling σ ∶ dom(t) → S such that, for
every finite factor [u, v̄) of t,

π(t[u, v̄)) can be computed from σ by an FO-formula .

12

We conclude this section with a counterexample showing that some natural
ways to approach this conjecture (or a similar one) do not work. It turns out that
in general, if we want to compute π(t[u, v̄)), we need to know how the factor
[u, v̄) is embedded in the tree. Just looking at the values σ(u) and σ(v i) provided
by some labelling σ is not enough.

Definition 3.11. Let t ∈ T×A be a tree.
(a) For u, v ∈ dom(t), we denote by u ⊓ v their infimum in the tree order.
(b) The branching pattern of a tuple v̄ of vertices is the order tree consisting of

the root of t and all vertices of the form v i ⊓ v j where each edge u ≺ w is labelled
by the variable x such that sucx(u) ⪯ w.

(c) The branching type of a factor [u, v̄) of t is the isomorphism type of the
branching patterns of v̄ in the subtree t∣u . Alternatively, we can define the branch-
ing type as the atomic type of v̄ in the structure ⟨t∣u , (≺x)x ,⊓, u⟩. ⌟

Example. We construct a finitary T-algebra A such that, for every t ∈ TAwith
factors [u, v̄) and [u′ , v̄′),

π(t[u, v̄)) = π(t[u′ , v̄′)) implies [u, v̄) and [u′ , v̄′) have the same
branching type.

For ξ ∈ Ξ, let Aξ be the set of all branching types of trees of sort ξ. (Up to the
labelling of the edges, there are only finitely many of such types. We may assume
that every sort ξ appearing in t is a finite initial segment of ω.) Since we can
compute the branching type of flat(t) from the patterns of t(v), for v ∈ dom(t),
there exists a function π ∶ TA→ A such that π ○Tτ = τ ○ π, where τ ∶ TΣ → A is
the function mapping each tree to its branching type. It follows that A ∶= ⟨A, π⟩
is a finitary T-algebra with the desired property.

Let t ∈ TΣ be an infinite binary tree and let λ be the labelling mapping a factor
[u, v̄) to its branching type. We claim that there is no function σ ∶ dom(t) → C
with a finite codomain C such that the label λ([u, v̄)) only depends on the values
σ(u) and σ(vx). We fix a vertex u ∈ dom(t) such that the set

C0 ∶= { σ(v) ∣ v ⪰ u }

is minimal. Set c ∶= σ(u). Ay choice of u there are vertices v0 , v1 ∈ σ−1(c) with
u ≺0 v0 and u ≺1 v1. Similarly, we can find v′1 ∈ σ−1(c) with v0 ≺1 v′1. Then
u ≺0 v′1 implies that λ([u, v0v1)) ≠ λ([u, v0v′1)), but all four vertices have the
same colour c. ⌟

13

We conclude this section by briefly mentioning two alternative approaches.

Remark. When talking about partition theorems for trees, we also have to men-
tion automata. Every automaton can be seen as a prescription producing labellings
(runs) of trees. The advantage of automata is that they can be used even if we
know very little about the underlying algebra. In particular, in cases where we can
only evaluate finite trees. Their disadvantage is that runs are usually not unique
and that every run only contains a limited amount of information. For instance, in
general there is no automaton what allows us to evaluate every factor π(t[u, v̄))
of a given tree t. ⌟

Remark. The proof of Theorem 3.4 is based on semigroup-theoretic methods, in
particular, it makes heavy use of Green’s relations. It looks plausible that, in order
to prove a stronger partition theorem for trees, we have to develop a similar theory
of Green’s relations for tree algebras. As it turns out, it is rather straightforward
to generalise these relations to the setting of monoidal categories where all hom-
sets are finite. (We omit the details since the statements and proofs are virtually
identical to those for semigroups.) Furthermore, every Tfin-algebra A can be
seen as such a categoryA where the objects are the sorts ξ ∈ Ξ and the hom-sets
A(ξ, ζ) are given by (Aξ)ζ . The question is therefore how to apply these results
to the case at hand. The main problem with doing so seems to be that, in general,
a finitary Tfin-algebra can have infinitely many J-classes. ⌟

4 Expansions and dense submonads
When looking for a strengthening of the results in the previous section it is always
useful to have an application in mind that can serve as a test case and reality
check. The following problem on expansions seems to be a good candidate for
this purpose.

Definition 4.1. Let T0 ⊆ T1 ⊆ T× be submonads. We say that a T0-algebra A0 is
a reduct of a T1-algebra A1 = ⟨A, π⟩ if A0 = ⟨A, π0⟩ where π0 ∶ T0A→ A is the
restriction of π1 ∶ T1A→ A. In this case, we call A1 a T1-expansion of A0. ⌟

Expansion Problem. Given monads T0 ⊆ T1 ⊆ T, which T0-algebras have
T1-expansions? And for which algebras are these expansions unique?

We start our investigation with recalling some results from [7] that can be used
to prove the uniqueness of expansions, if not their existence.

14

Definition 4.2. A submonad T0 ⊆ T1 is dense in T1 over a class C of T1-algebras
if, for all A ∈ C, C ⊆ A, and s ∈ T1C, there exists s○ ∈ T0C with π(s○) = π(s). ⌟

We have shown in Lemma 4.13 (a) of [7] that denseness implies that expansions
are unique (if they exist).

Proposition 4.3. Let T0 ⊆ T1 be dense over some class C that is closed under binary
products. Then every T0-algebra A has at most one T1-expansion that belongs to C.

The fact that a regular language is uniquely determined by which regular trees
it contains, can be generalised to the following theorem (which is a consequence
of Theorem 10.1 of [7]).

Theorem 4.4. T×reg ⊆ T× is dense over the class of all MSO-definable T×-algebras.

We can strengthen this result to include existence.

Theorem 4.5. Every MSO-definable T×reg-algebra can be expanded to a unique
MSO-definable T×-algebra.

Proof. Uniqueness follows by Theorem 4.4 and Proposition 4.3. For existence,
consider an MSO-definable T×reg-algebra A and let C ⊆ A be a finite set of
generators. For a ∈ A, fix an MSO-formula φa defining the set π−1(a) ∩T×regC.
We define the desired expansion A+ = ⟨A, π+⟩ by as follows. As C generates A,
there exists a function σ ∶ A→ T×regC such that π(σ(a)) = a, for all a ∈ A. We
choose σ such that σ(c) = sing(c), for c ∈ C. Let σ̂ ∶= flat ○ T×σ ∶ T×A→ T×C
be its extension to T×A. We set

π+(t) ∶= a : iff σ̂(t) ⊧ φa , for t ∈ T×A .

We have to show that π+ is well-defined, that it extends π, and that it satisfies the
axioms of a T×-algebra.

To see that π+ is well-defined, we have to check that, for every tree t ∈ T×ξA,
there is exactly one element a ∈ Aξ with t ⊧ φa . For a contradiction, suppose
otherwise. Then there exists a tree t ∈ T×ξA such that

σ̂(t) ⊧ ⋀
a≠b
(φa ∧ φb) ∨ ¬ ⋁

a∈Aξ

φa .

Since every non-empty MSO-definable tree language contains a regular tree, it
follows that we can choose t ∈ T×regT×regA. By choice of the formulae φa this
means that π(t) = π(σ̂(t)) has either no value, or more than one. A contradiction.

15

Furthermore, π+ extends π since, for t ∈ T×regA, we have

π+(t) = a iff σ̂(t) ⊧ φa iff π(σ̂(t)) = a iff π(t) = a .

Hence, it remains to check the axioms of a T×-algebra. First, note that we have

π+ ○ σ̂ = π+

since

σ̂ ○ σ̂ = flat ○T×σ ○ flat ○T×σ
= flat ○ flat ○T×(T×σ ○ σ)
= flat ○ flat ○T×(T×sing ○ σ)
= flat ○T×sing ○ flat ○T×σ
= flat ○T×σ
= σ̂

implies that

π+(σ̂(t)) = a iff σ̂(σ̂(t)) ⊧ φa

iff σ̂(t) ⊧ φa iff π+(t) = a .

For the unit law, it therefore follows that

(π+ ○ sing) = (π+ ○ σ̂ ○ sing) = (π+ ○ σ) = (π ○ σ) = id .

For the associative law, let t ∈ T×T×A. For a ∈ A, let ψa be a formula stating
that

for every factorisation of the given tree, there exists a labelling of the factors
by elements of A such that
– each factor with label b satisfies the formula φb and
– the tree consisting of the guessed labels satisfies φa .

Since A is associative, we have

s ⊧ ψa → φa , for every s ∈ T×regC .

It follows that the same is true for every s ∈ T×C. In particular, it holds for the
tree s ∶= (flat ○T×σ̂)(t). Consequently, we have

(π+ ○ flat ○T×σ̂)(t) = (π+ ○T×π+ ○T×σ̂)(t) ,

16

which implies that

(π+ ○ flat)(t) = (π+ ○ σ̂ ○ flat)(t)
= (π+ ○ flat ○T×σ ○ flat)(t)
= (π+ ○ flat ○ flat ○T×T×σ)(t)
= (π+ ○ flat ○T×flat ○T×T×σ)(t)
= (π+ ○ flat ○T×σ̂)(t)
= (π+ ○T×π+ ○T×σ̂)(t) = (π+ ○T×π+)(t) .

Note that our uniqueness result in Proposition 4.3 only concerns expansions in
the given class C. It is possible that there exist additional expansions outside of C.

Example. In [12] Bojańczyk and Klin have presented an example of a finitary
T-algebra that is not MSO-definable. This algebra can be used to find an MSO-
definable Treg-algebra with several T-expansions, one of them MSO-definable.
(By the preceding theorem, there can only be one of the latter.) The construction
of this Treg-algebra A○ = ⟨A, π⟩ and two of its T-expansions Areg = ⟨A, πreg⟩
(MSO-definable) and Anon = ⟨A, πnon⟩ (not MSO-definable) is as follows.

For Anon, we take (a simplified version) of the algebra from [12]. Set Σ ∶= {a, b}
where both elements have arity 2 and let ∆ξ be the set of all finite trees in TξΣ.
As Σ contains only binary elements, every leaf of a tree t ∈ ∆ξ must be labelled by
a variable. Hence, t has at most ∣ξ∣ leaves and, therefore, at most ∣ξ∣ − 1 internal
vertices. This implies that ∆ξ is a finite set.

We call a tree t ∈ TΣ antiregular if not two subtrees of t are isomorphic. It is
densely antiregular if every subtree of t has an antiregular subtree.

The domains of all three algebras are

Aξ ∶= ∆ξ ⊍ {�, ∗} , for ξ ∈ Ξ ,

which we order such that � is the least element and all other elements are incom-
parable. For t ∈ TξA, we define the product πnon(t) of Anon by the following case
distinction.
◆ πnon(t) = � if t contains the label �.
◆ πnon(t) = flat(t) if t is finite and t ∈ Tξ∆.
◆ πnon(t) = ∗ if t is finite and t contains the label ∗.
◆ πnon(t) = ∗ if t is infinite and every infinite subtree of t contains the label ∗.

17

◆ πnon(t) = ∗ if t is infinite and, for every infinite subtree s of t with s ∈ T∆,
the tree flat(s) has a subtree without variables that is not antiregular.

◆ πnon(t) = � if t is infinite and there exists an infinite subtree s of t such that
s ∈ T∆ and every subtree of flat(s) without variables is densely antiregular.

The product πreg(t) of Areg is defined as follows.
◆ πreg(t) = � if t contains the label �.
◆ πreg(t) = flat(t) if t is finite and t ∈ Tξ∆.
◆ πreg(t) = ∗ if t is finite and t contains the label ∗.
◆ πreg(t) = ∗ if t is infinite.

Note that this product is MSO-definable and that the restrictions of πreg and πnon
toTregA coincide. Thus Areg andAnon areT-expansions of the sameTreg-algebra.

⌟

To conclude this section, let me mention one of the main open problems
concerning the relation between regular trees and arbitrary ones.

Open Question. Does there exist a system of equations modulo which every tree is
equivalent to a regular one? If so, does it have an explicit description?

Having such an equational characterisation would be invaluable for applica-
tions, where proofs frequently require a reduction to regular trees. For instance,
there exists an equational characterisation of bisimulation-invariant languages
of regular trees [10], but so far nobody was able to generalise it to languages of
arbitrary trees.

5 Evaluations
The notion of denseness seems to be only useful if we already know that the
algebra in question has an expansion. To actually prove existence we need different
techniques.We start with the following simple idea.We try to compute the product
of a tree t ∈ TA inductively bottom-up using the given T○-product. That is, we
factorise t into pieces that belong to T○, evaluate them, and then recursively
evaluate the remaining tree. If we can show that,
◆ after a finite number of such steps, the tree t is reduced to a single vertex and
◆ that the final result does not depend on the choice of which factorisation to

use in each step,

18

it follows that we can uniquely evaluate every tree inTAusing only theT○-product.
In particular, the product of A can be uniquely extended to the set of all trees.
A well-known use of this technique is given by Simon’s Factorisation Tree

Theorem. Such a factorisation tree is just a hierarchical decomposition of a given
semigroup-product using binary products and products of idempotents only.
A second example of this approach was used in [13] to prove, in our terminology,
that a certain inclusion between monads of countable linear orders is dense. The
aim of the current section is to make this idea of using an inductive approach
work for thin trees and to show that unfortunately it does not work for general
ones.

The definition below is a bit more general than the above intuitive description.
Suppose that we are given a T0-algebra, which we want to expand to a T1-algebra,
and suppose that we have already found some set S ⊇ T0A such that we can
extend the product π ∶ T0A→ A to σ ∶ S → A. To extend σ further to a function
T1A → A, consider a tree t ∈ T1A. We choose a factorisation T of t, i.e., a tree
T ∈ T1T1A with flat(T) = t, where we have already inductively assigned some
value val(T(v)) to each factor. If the reduced tree T1val(T) belongs to S, then
we can set val(t) ∶= σ(T1val(T)). The formal definition is as follows.

Definition 5.1. Let T0 ⊆ T1 ⊆ T be functors, A a T0-algebra, and σ ∶ S → A a
function with domain S ⊇ T0A.

(a) For each ordinal α, we inductively define the set Eα(σ ,T1) of σ-evaluations
and two functions

termα ∶ Eα(σ ,T1) → T1A and valα ∶ Eα(σ ,T1) → A

by

E0(σ ,T1) ∶= A ,

Eα+1(σ ,T1) ∶= Eα(σ ,T1) ∪ { γ ∈ T1Eα(σ ,T1) ∣ T1valα(γ) ∈ S } ,
Eδ(σ ,T1) ∶= ⋃

α<δ
Eα(σ ,T1) , for limit ordinals δ ,

and

term0 ∶= sing , val0 ∶= id ,
termα+1 ∶= flat ○T1termα , valα+1 ∶= σ ○T1valα ,

termδ ∶= ⋃
α<δ

termα . valδ ∶= ⋃
α<δ

valα .

19

Finally, we set

E(σ ,T1) ∶= ⋃
α
Eα(σ ,T1) , term ∶= ⋃

α
termα , and val ∶= ⋃

α
valα .

(b) We call term(γ) the underlying term of γ ∈ Eα(σ ,T1) and val(γ) its value.
If t = termα(γ), we say that γ is a σ-evaluation of t.

(c) We say that the algebra A has σ-evaluations if term ∶ E(σ ,T1) → T1A is
surjective, and we say that it has essentially unique σ-evaluations if furthermore

term(γ) = term(γ′) implies val(γ) = val(γ′) .

(d) In the special case where σ = π, we also write E(A,T1) ∶= E(π,T1) and we
call the elements of E(A,T1) simple T0-evaluations. ⌟

Let us start by explaining how to use σ-evaluations to construct T1-expansions.
The proof makes use of the following glueing operation for evaluations.

Lemma 5.2. Let γ ∈ T1E(σ ,T1) and let β be a σ-evaluation of the tree t ∶=
T1val(γ). There exists a σ-evaluation β∣γ of the tree (flat ○T1term)(γ) such that
val(β∣γ) = val(β).

Proof. We define β∣γ by induction on the ordinal α with β ∈ Eα(σ ,T1). If α = 0,
then β = a ∈ A and γ = sing(γ0), for some γ0 ∈ E(σ ,T1) with val(γ0) = a.
Setting β∣γ ∶= γ0 we obtain val(β∣γ) = val(γ0) = a = val(β).

Suppose that β ∈ Eα+1(σ ,T1) ∖ Eα(σ ,T1). Then β ∈ T1Eα(σ ,T1). Let γ′ ∈
T1T1E(σ ,T1) be the tree with the same domain as β where γ′(v) is the restriction
of γ to dom(term(β(v))) ⊆ dom(γ). We choose for β∣γ the tree with the same
domain as β that is given by

(β∣γ)(v) ∶= β(v)∣γ′(v) , for v ∈ dom(s) .

By inductive hypothesis, it follows that

term((β∣γ)(v)) = term(β(v)∣γ′(v)) = (flat ○T1term)(γ′(v)) ,
val((β∣γ)(v)) = val(β(v)∣γ′(v)) = val(β(v)) .

20

Consequently, we have

term(β∣γ) = (flat ○T1term)(β∣γ)
= (flat ○T1(flat ○T1term))(γ′)
= (flat ○ flat ○T1T1term)(γ′)
= (flat ○T1term ○ flat)(γ′)
= (flat ○T1term)(γ) ,

val(β∣γ) = (σ ○T1val)(β∣γ)
= (σ ○T1val)(β) = val(β) .

Furthermore, note that β∣γ really is an evaluation since

T1val(β∣γ) = T1val(β) ∈ dom(σ) .

Finally, if β ∈ Eδ(σ ,T1), for some limit ordinal δ, then there is some α < δ
with β ∈ Eα(σ ,T1). Hence, the claim follows by inductive hypothesis.

Theorem 5.3. Let T0 ⊆ T1 ⊆ T be submonads. Every T0-algebra A with essentially
unique σ-evaluations has a T1-expansion ⟨A, π+⟩ such that

π+ ○ term = val .

Proof. For t ∈ T1A, we define

π+(t) ∶= val(γ) , for some γ ∈ term−1(t) .

As σ-evaluations are essentially unique, it does not matter which evaluation γ we
choose. Hence, this function is well-defined. We claim that A+ ∶= ⟨A, π+⟩ is the
desired T1-expansion of A.

The equation π+ ○ term = val follows immediately from the definition of π+.
Since every tree t ∈ T0A = E1(A,T1) is its own evaluation, we further have

π+(t) = val1(t) = σ(t) = π(t) , for t ∈ T0A .

Consequently, π+ is an extension of π and it remains to check the axioms of a
T1-algebras.

For the unit law, we have π+(sing(a)) = π(sing(a)) = a since sing(a) ∈ T0A.
For associativity, let t ∈ T1T1A. Then there exists a tree of σ-evaluations γ ∈
T1E(A,T1) such that t = T1term(γ). Furthermore, we can fix an evaluation

21

β ∈ E(A,T1) of the tree T1val(γ). Let β∣γ be the σ-evaluation from Lemma 5.2.
Then

(π+ ○ flat)(t) = (π+ ○ flat ○T1termn)(γ)
= (π+ ○ term)(β∣γ)
= val(β∣γ)
= val(β)
= (π+ ○ term)(β)
= (π+ ○T1valn)(γ)
= (π+ ○T1π+ ○T1termn)(γ) = (π+ ○T1π+)(t) .

The theorem tells us how to use evaluations to construct expansions. Next, let
us see where the limits of this method are.

Proposition 5.4. Let A = ⟨A, π⟩ be a T0-algebra with a T1-expansion A+ =
⟨A, π+⟩, and suppose that σ ∶ S → A is the restriction of π+ to some set S ⊇ T0A.
Then

val(γ) = (π+ ○ term)(γ) , for every σ-evaluation γ .

Proof. We prove that valα = π+ ○ termα by induction on α. For α = 0, we have

val0(γ) = γ = π+(sing(γ)) = π+(term0(γ)) , for γ ∈ E0(σ ,T1) = A .

For the successor step, suppose that the equation holds for α and consider γ ∈
Eα+1(σ ,T1). Then

valα+1(γ) = σ(T1valα(γ))
= σ(T1(π+ ○ termα)(γ))
= π+(T1π+(T1termα(γ)))
= π+(flat(T1termα(γ)))
= π+(termα+1(γ)) .

Finally, for a limit ordinal α, the claim follows immediately from the inductive
hypothesis.

Corollary 5.5. Let A be a T0-algebra.

22

(a) If A has several T1-expansions, there exist trees t ∈ T1A without a simple
T0-evaluation.

(b) If A has simple T0-evaluations that are not essentially unique, it has no T1-
expansion.

Example. Before using these results to study thin trees, let us quickly recall the
results of [13] about countable chains. We denote by CA the set of all countable
A-labelled linear orders and by CregA ⊆ CA the subset of all regular linear orders.
By definition, a linear order is regular if it can be denoted by a finite term using
the following operations: (i) constants for singletons, (ii) binary ordered sums,
(iii) multiplication by ω and ωop (ω with the reverse ordering), and (iv) dense
shuffles. In [13] it is shown that every finite Creg-algebra has essentially unique
Creg-evaluations. This fact can be used to prove the following results (for the
proofs, see [13, 8, 7]).
◆ Creg ⊆ C is dense over the class of all finite C-algebras.
◆ Every finite Creg-algebra has a unique C-expansion.
◆ Every finite C-algebra is MSO-definable.
◆ A language K ⊆ CΣ of countable chains is MSO-definable if, and only if it is

recognised by some finite C-algebra.
◆ Every MSO-definable language K ⊆ CΣ has a finite syntactic algebra. ⌟

5.1 Thin trees
As an application of simple evaluations we consider thin trees, where we can use
the Theorem of Ramsey and other tools from semigroup-theory.

Proposition 5.6. Every finitary Twilke-algebra has essentially unique simple Twilke-
evaluations for trees in Tthin.

Proof. Let A be a finitary Twilke-algebra and t ∈ TthinA a thin tree. We construct
the desired simple evaluation of t by induction on the Cantor-Bendixson rank α
of t. By inductive hypothesis, every subtree t∣v of rank less than α has a simple
evaluation γv ∈ E(A,Tthin). Let s be tree obtained from t by replacing every such
subtree t∣v by val(γv). It is sufficient to find a simple evaluation of s. Then we can
use the glueing operation from Lemma 5.2 to construct the desired evaluation
of t.
By construction, s has only finitely many infinite branches. We distinguish

three cases.

23

(i) If s is finite, it is its own evaluation.
(ii) Next, suppose that s has a single infinite branch. By the theorem of Ramsey,

we can find a factorisation s = p0p1 p2 . . . such that π(p i) = π(p j), for all i , j > 0.
As each factor p i is finite, we obtain simple evaluations β i of p i by (i). The path
ρ ∶= π(p0), π(p1), π(p2), . . . is of the form aeω for a ∶= π(p0) and e ∶= π(p1).
In particular, it is regular. Let β∗ be the path β0 , β1 , β2 , Then

Tthinval(β∗) = aeee⋯ ∈ TregA and term(β∗) = p0p1 p2⋯ = s .

Hence, β∗ is the desired simple evaluation of s.
(iii) Finally, suppose that s has at least two infinite branches. Then we can

factorise s into a finite prefix and finitely many trees with a single infinite branch.
By (i) and (ii), each of these factors has a simple evaluation. Let β be the finite
tree consisting of these evaluations. Then β is an simple evaluation of s.

Corollary 5.7. Twilke ⊆ Tthin is dense over the class of all finitary Tthin-algebras.

Corollary 5.8. Every finitary Twilke-algebra has a unique Tthin-expansion.

It follows that the step from a Twilke-algebra to a Tthin-expansion is fairly
well understood. The inclusion Tfin ⊆ Twilke is slightly more complicated since
expansions are no longer unique.

Proposition 5.9. Let A = ⟨A, π⟩ be a finitary Tfin-algebra. There exists a bijection
between all Twilke-expansions of A and all functions −ω ∶ A1 → A0 satisfying the
axioms of a Wilke algebra.

Proof. Clearly, every Twilke-expansion A+ = ⟨A, π+⟩ of A induces an ω-power
operation by

aω ∶= π+(aaa . . .) .

This operation satisfies the axioms of a Wilke algebra since π+ is associative. It
therefore remains to show that this correspondence is bijective.

Note that every tree t ∈ TwilkeA is the unravelling of a finite graph all of which
strongly connected components are either singletons or induced cycles.

For injectivity, suppose that there are two expansions A0 = ⟨A, π0⟩ and A1 =
⟨A, π1⟩ of A with the same associated ω-power. Let t ∈ TwilkeA be the unravelling
of a graphGwith n strongly connected components. By induction on n, we prove
that

π0(t) = π1(t) .

24

Let C be the strongly connected component of G containing the root of t. For
every vertex v ∉ C, it follows by inductive hypothesis that

π0(t∣v) = π1(t∣v) .

Hence, replacing these subtrees by their product we may assume that G has a
single strongly connected componentC. IfC is a single vertex, we have t = sing(a)
and

π0(t) = a = π1(t) .

Otherwise, C is a cycle and there exists a finite path p such that t = pω . This
implies that

π0(t) = π(p)ω = π1(t) .

For surjectivity, suppose that −ω ∶ A1 → A0 is an ω-power operation. We
construct an expansion A+ = ⟨A, π+⟩ of A as follows. Let t ∈ TwilkeA be the
unravelling of a graph G with n strongly connected components. We define π(t)
by induction on n. LetC be the strongly connected component ofG containing the
root of t. For every vertex v ∉ C, we can compute π(t∣v) by inductive hypothesis.
Let t′ be the tree obtained from t by replacing every such subtree by its product.
If t′ = sing(a), we set

π+(t) ∶= a .

Otherwise, there exists a finite path p such that t = pω and we set

π+(t) ∶= π(p)ω .

It remains to check that the function π+ defined this way satisfies the axioms of a
Twilke-algebra and that the associated ω-operation coincides with the given one.
We start with the latter. Let a ∈ A1. By definition of π+, there are numbers

m, n < ω such that

π+(aaa . . .) = π(am) ⋅ π(an)ω = am ⋅ (an)ω = aω ,

as desired.
For the unit law, it follows directly by definition that

π+(sing(a)) = a .

25

Next, let us show that π+ is well-defined. Let G andH be two finite graphs with
the same unravelling t. We have to show that we obtain the same result when
defining π+(t) in terms of G and in terms of H. SinceH andG×H have the same
unravelling, we may assume that G is a quotient of H. We prove the claim by
induction on the number of strongly connected components of H. Let C be the
strongly connected component of H containing the root. For v ∉ C, let Gv andHv
the subgraphs of G and H, respectively, reachable from the vertex v, and let
t∣v be their unravelling. By inductive definition, the values of π(t∣v) unravelling
defined using these two graphs coincide. Hence, replacing each such subgraph by
its product, we may assume that H has a single strongly connected component.
Then so does G. If these components are singletons, the products are the same.
Otherwise, there is some finite path p and numbers m, k such that G is a cycle
consisting of m copies of p, and H consists of km copies. Setting a ∶= π(p), it
follows that the product defined in terms of G is equal to (am)ω , while the one
defined via H is (akm)ω . Since these values coincide, the claim follows.

Finally for associativity, fix t ∈ TwilkeTwilkeA and let G be a finite graph with
unravelling t. For each vertex v ofG, we fix a finite graphHv with unravelling t(v).
Then flat(t) is the unravelling of the graph obtained from the disjoint union of
all Hv by adding edges according to G. We prove that

π+(flat(t)) = π+(Twilkeπ+(t))

by induction on the number of strongly connected components of the graph for
flat(t). Let C be the strongly connected component of G containing the root. For
every vertex v ∉ C, it follows by inductive hypothesis that

π+(flat(t∣v)) = π+(Twilkeπ+(t∣v)) .

Replacing such subtrees by their respective products, we may therefore assume
that G consists of a single strongly connected component C. If C is a singleton,
we have t = sing(s) and

π+(flat(t)) = π+(s) = π+(Twilkeπ+(t)) .

Hence, suppose that C is a cycle. Each graph Hv consists of a finite path pv to
which are possibly attached additional trees. By inductive hypothesis, associativity
holds for these subtrees. Again, replacing each such subtree by its product, we
may assume that Hv is equal to pv . Consequently, flat(t) is a single infinite path
consisting of the concatenation of all pv , while Twilkeπ+(t) is the infinite path
labelled by the products π(pv). The product of these two paths is the same.

26

Corollary 5.10. Let A = ⟨A, π⟩ be a finitary Tfin-algebra. There exists a bijection
between all Tthin-expansions of A and all functions −ω ∶ A1 → A0 satisfying the
axioms of a Wilke algebra.

Note that every Tthin-algebra A = ⟨A, π⟩ induces an associated ω-semigroup
⟨A{x} ,A∅⟩ (for some arbitrary variable x). Using this observation, we can reph-
rase the above corollary as follows.

Corollary 5.11. Every Tthin-algebra A is uniquely determined by (i) its Tfin-reduct
and (ii) the associated ω-semigroup.

5.2 Evaluations with merging
When we try to go beyond Tthin our machinery breaks down since we cannot use
the results for semigroups anymore. The following counterexample shows that a
naïve generalisation of our definitions does not work.

Lemma 5.12. There exists an MSO-definable Treg-algebra A and a tree t ∈ TA that
has no simple Treg-evaluation.

Proof. Let A be the Treg-reduct of the Bojańczyk-Klin algebra from the example
on page 17. Then the claim follows immediately from Corollary 5.5 (a). Neverthe-
less we give an explicit proof to seewhat exactly is goingwrong. Set∆ ∶= Tfin{a, b}
and recall that ∆ ⊆ A. We will prove by induction on α that

t ∉ rng termα , for all t ∈ T∆ where every subtree has vertices of
arbitrarily high arity.

For a contradiction, suppose otherwise. Let α be the minimal ordinal such that
there is some simple evaluation γ ∈ Eα(A,T)where every subtree of term(γ) has
vertices of arbitrarily high arity. If α = 0, then term(γ) = sing(a) in contradiction
to our choice of γ. Hence, α = β + 1, for some β. Fix v ∈ dom(γ). Note that
every subtree s of termβ(γ(v)) has a simple evaluation in Eβ(A,T) which, by
inductive hypothesis, means that s has a subtree where the arity of the vertices
is bounded. We claim that this implies that tv ∶= term(γ(v)) is finite. Suppose
otherwise. Since tv has only finitely many variables, it has some infinite subtree s
without variables. But s is also a subtree of term(γ). By choice of γ this implies
that the arities of the vertices of s are unbounded. A contradiction.

Hence, we have term(γ(v)) ∈ Tfin∆, which implies implies that val(γ(v)) =
π(term(γ(v))) = term(γ(v)). Furthermore, term(γ(v)) being finite its arity is

27

at least as high as the maximal arity of a vertex in dom(γ(v)). It follows that,
for every n < ω, there is some v ∈ dom(γ) such that val(γ(v)) has arity at
least n. But γ ∈ Eα+1(A,T) implies that Tval(γ) ∈ TregA. In particular, Tval(γ)
uses only finitely many different labels. This implies that their arity is bounded.
A contradiction.

A closer look at the above proof reveals two possible reasons making simple
evaluations impossible. Firstly, our counterexample uses a tree with infinitely
many different labels. It still might be possible that trees with only finitely many
different labels always have simple evaluations. Secondly, we made essential use
of the fact that every factor of an infinite binary tree has a subtree that is itself
an infinite binary tree. To be able to use factorisations of trees into pieces that
are significantly simpler, we will probably have to allow more general factors,
which then necessarily have infinitely many variables. Unfortunately, it is hard
to combine these two modifications since factors with infinitely many variables
usually give rise to infinitely many different elements of the algebra. What seems
to be missing is some technique that, given a tree with infinitely many different
labels, allows us to bound their arity by merging different variables (e.g., replacing
a(x , y, z) by, say, a(x , x , z)).

This observation leads to the following attempt to allow for evaluations where
variables aremerged. To make our definitions precise we need a bit of terminology.
First, as we want to identify variables, we need to work in T× instead of T. We
also need a set of labels telling us which variables to identify.

Definition 5.13. Let σ ∶ ζ → ξ.
(a) For t ∈ T×ζ A, we denote by σ t ∈ T×ξA the tree obtained from t by replacing

every variable z by σ(z).
If T○ ⊆ T× is closed under the operation σ− we can extend this operation to

T○-algebras A by setting

σa ∶= π(σ sing(a)) , for a ∈ Aζ .

(b) For a sort ξ ∈ Ξ, we set Γ(ξ) ∶= (Γζ(ξ))ζ∈Ξ where

Γζ(ξ) ∶= { σ ∣ σ ∶ ζ → ξ } . ⌟

Given a tree t ∈ T×Awe can choose some sort ξ ∈ Ξ and functions σv ∈ Γ(ξ),
for every v ∈ dom(t), and then replace every label t(v) by σv t(v). The problem
is that the resulting tree is not well-formed since the sorts do not match anymore.

28

For instance, in the tree a(b, c)with a = a(z0 , z1)we can replace z0 and z1 by the
same variable x. This produces the label a′ ∶= a(x , x) of arity {x}. Consequently,
we need to produce a tree where the corresponding vertex has a single successor.
Given the tree a(b, c) the only obvious choices for such a tree would be a′(b) or
a′(c). This idea can be generalised as follows.

Definition 5.14. Let A be a T0-algebra where T0 ⊆ T× is closed under the opera-
tions σ−, let p ∶ Γ(ξ) × A→ Γ(ξ) and q ∶ Γ(ξ) × A→ A be the two projections,
and let s ∈ T×(Γ(ξ) × A) be a tree. For v ∈ dom(s), we set σv ∶= p(s(v)).

(a) A choice function for s is a family µ = (µv)v∈dom0(s) of functions µv ∶
rng σv → dom σv such that σv ○ µv = id.

(b) Given a choice function µ for s, we define the tree s ∥ µ ∈ T×A as follows.
For every v ∈ dom(s),
◆ we delete from s all subtrees s∣u where u is a x-successor of v with x ∉ rng µv ,

and
◆ for x ∈ rng µv , we change the x-successor of v to a σv(x)-successor.
◆ we replace every label s(v) = ⟨σ , a⟩ by σa. ⌟

We can produce well-formed trees s ∥ µ using a choice function µ. But which
one do we take? The easiest case is if all choice functions produce the same result
(cf. [17]), then it does not matter. (A more general construction will be presented
further below.)

Definition 5.15. Let T0 ⊆ T1 ⊆ T× be functors and A a T0-algebra.
(a) We say that a tree s ∈ T×(Γ(ξ) × A) is uniform if

s ∥ µ = s ∥ µ′ , for all choice functions µ, µ′ .

(b) A uniform T0-condensation of t ∈ T1A is a uniform tree s ∈ T1(Γ(ξ) × A)
such that

T1q(s) = t and s ∥ µ ∈ T0A , for some/all µ .

(c) We set

πu(t) ∶= π(s ∥ µ) , where s is some uniform T0-condensation of t and
µ is an arbitrary choice function .

If there is no condensation s, we let πu(t) be undefined. We call πu-evaluations
T0-evaluations with uniform merging, and we denote the corresponding set by

Eu
α(A,T1) ∶= Eα(πu ,T1) . ⌟

29

Remark. Note that, in general, the value of πu(t) does depend on the condensa-
tion s we have chosen, but it is obviously independent from µ. In the following,
whenever we use πu we tacitly assume some fixed choice of condensation for
every term t where such a condensation exists. ⌟

Example. T×reg-evaluations with uniform merging were introduced in [17] where
they were used to derive decidability results for trees. To do so Puppis considers
trees t ∈ T×X such that (in our terminology), for every MSO-definable T×reg-
algebra A and every function β ∶ X → A, the image T×β(t) has an evaluation
γ ∈ Eu

n(A,T×), for some fixed n < ω independent of β and A, and for some
particular choice of condensations based on the runs of the automata recognising
the product (see the proof of Proposition 5.19 below for a similar construction).
Let us call such trees reducible.
By induction on n, we can transform every reducible tree t into a regular

tree t0 with the same value as t. Puppis considers reducible trees t where this
transformation is computable using a particular algorithm. (We omit the details.)
Let us call such trees effectively reducible. [17] contains the following results.
◆ Every regular tree is effectively reducible.
◆ More generally, every deterministic tree in the Caucal hierarchy is effectively

reducible.
◆ The class of effectively reducible trees is closed under a number of natural

operations.
◆ Every effectively reducible tree has a decidable MSO-theory. ⌟

The main technical result of [17] is the following recipe of how to evaluate
products in an MSO-definable T×-algebra using uniform evaluations.

Proposition 5.16 (Puppis). Given MSO-definable T×-algebra A and a sort ξ ∈ Ξ,
there exists an MSO-definable T×-algebra B, a morphism ρ ∶ T×A → B, and
MSO-formulae φa , for a ∈ Aξ, such that, given a tree T ∈ T×ξT

×A and a uniform
T×-condensation s of T×ρ(T), we have

π(flat(T)) = a iff s ∥ µ ⊧ φa , for all a ∈ Aξ and all choice
functions µ .

The proof uses similar techniques as that of Proposition 5.19 below.
Since evaluations with uniform merging generalise simple evaluations, they

allow us to decompose more trees. Unfortunately, there are still trees left without

30

an evaluation. We can generalise our evaluations even further by not requiring
that all choice functions lead to the same tree, but only to one that is ‘equivalent’.

Definition 5.17. Let s ∈ T×(Γ(ξ) × A) and let π ∶ T○A → A be a function. We
call s π-consistent if

s∣v ∥ µ ∈ T○A , for every choice function µ of s∣v and each
vertex v ∈ dom(s) ,

π(s∣v ∥ µ) = π(s∣v ∥ µ′) , for all choice functions µ, µ′ of s∣v and each
vertex v ∈ dom0(s) . ⌟

Definition 5.18. Let T0 ⊆ T1 ⊆ T be functors, A = ⟨A, π⟩ a T0-algebra, and
t ∈ T1A.

(a) A consistent T0-condensation of t is a π-consistent tree s ∈ T1(Γ(ξ) × A)
such that T1q(s) = t.

(b) We set

πc(t) ∶= π(s ∥ µ) , where s is some consistent T0-condensation of t
and µ is an arbitrary choice function .

If there is no condensation s, we let πc(t) be undefined. We call πc-evaluations
T0-evaluations with consistent merging, and we denote the corresponding set by

Ec
α(A,T1) ∶= Eα(πc ,T1) . ⌟

Clearly, consistent merging generalises uniform merging. While T×reg-eval-
uations with uniform merging seem to exist only in special cases, our hope is
that T×reg-evaluations with consistent merging always exist (at least for MSO-
definable algebras). At the moment we are only able to prove the existence of
T×-evaluations. Note that this statement is non-trivial since trees can contain
labels of arbitrarily high arity while everyT×-condensation produces a tree where
these arities are bounded.

Proposition 5.19. Let A be an MSO-definable T×-algebra. Every tree t ∈ T×A has
a consistent T×-condensation s such that

π(t) = π(s ∥ µ) , for all choice functions µ .

31

Proof. Let C ⊆ A be a finite set of generators and let ϑ ∶ A→ T×C be the function
mapping every a ∈ A to some tree ϑ(a) whose product is a. Given t ∈ T×ξA, we
consider the tree T ∶= T×ϑ(t). By choice of ϑ, it follows that T×π(T) = t. Hence,

π(t) = π(T×π(T)) = π(flat(T)) .

Furthermore, for every w ∈ dom(T), there is some factor [u, v̄) of flat(T) such
that

T(w) = flat(T)[u, v̄) .

Let φ ∶ dom(T) → dom(flat(T)) be the function mapping every vertex w to the
root u of the corresponding factor.
We recall a few needed notions and facts from automata theory (for details,

we refer the reader to [19, 15]). A non-deterministic tree automaton is a tuple
A = ⟨Q , Σ, ∆, q0 ,Ω⟩ where Q is the set of states, Ω ∶ Q → ω a priority function,
and ∆ the transition relation which consists of triples of the form ⟨p, a, (qx)x∈ξ⟩
for states p, qx ∈ Q and a letter a ∈ Σξ . LetA be such an automaton evaluating
products of trees in T×ξC, that is, an automaton such that, for every a ∈ Aξ , there
is some state qa ∈ Q such that for all t′ ∈ T×ξC,

π(t′) = a iff A accepts t′ when starting in the state qa ,

and let G be the corresponding Automaton-Pathfinder game for the input tree
flat(T). Recall that this is a parity game where the positions for player Automaton
are the pairs in dom(flat(T)) × Q while the positions for player Pathfinder are
those in dom(flat(T)) × ∆. In a position ⟨v , q⟩ Automaton chooses a transition
⟨p, a, r̄⟩ ∈ ∆ with p = q and a = flat(T)(v) ; Pathfinder replies with some x-
successor ux of v ; and the game continues in the position ⟨ux , rx⟩. Automaton
wins a play in this game if he either manoevres Pathfinder into a position where
the latter cannot make a move, or if the play is infinite and the corresponding
sequence (q i)i<ω of states from the Automaton positions satisfies the parity
condition:

lim inf
n<ω Ω(qn) is even.

The salient fact about the Automaton-Pathfinder gameG is that player Automaton
has a winning strategy for G when starting in position ⟨v , q⟩ if, and only if, the
automatonA accepts the subtree flat(T)∣v when starting in the state q. Since G is

32

a parity game, there exists a single positional strategy τ that is winning for all
these starting positions.
We use this strategy τ to define a labelling χ of dom(t) as follows. For a vertex v

of t with parent u, we set

χ(v) ∶= ⟨P, κ⟩ ,

where P ⊆ Q is the set of states p such that A accepts the subtree flat(T)∣φ(v)
when starting in state p, and κ ∶ Q → rng Ω is the function defined as follows. For
q ∈ Q, let πq be the play of G that results from Automaton using the strategy τ
when starting in position ⟨φ(u), q⟩ and when Pathfinder chooses the vertices on
the path from u to v. (We do not care about Pathfinder’s choices after the play has
reached the vertex v.) Then κ maps each state q ∈ Q to the least priority k seen in
the prefix of πq between the vertices u and v.
We can use the labelling χ to define the desired condensation s as follows. We

use ξ ∶= rng χ for the variables (or rather, some set ξ ∈ Ξ isomorphic to it). For a
vertex v ∈ dom(t) of sort ζv , we set

s(v) ∶= ⟨σv , t(v)⟩ ,

where the function σv ∶ ζv → ξ is defined as

σv(z) ∶= χ(uz) , where uz is the z-successor of v .

We will prove below that

π(s∣v ∥ µ∣v) = π(t∣v) , for all v ∈ dom(t) and every choice function µ .

This implies that s is consistent since

π(s∣v ∥ µ∣v) = π(t∣v) = π(s∣v ∥ µ′∣v) , for all choice functions µ, µ′ .

Hence, the lemma follows for v = ∅.
To prove the claim, fix a choice function µ for s and set S ∶= T×ϑ(s ∥ µ).

Replacing t, s, and µ by, respectively, t∣v , s∣v , and µ∣v , we may assume without
loss of generality that v = ⟨⟩. Note that

π(s ∥ µ) = π(T×π(S)) = π(flat(S)) .

Hence, it is sufficient to show that

π(flat(T)) = π(flat(S)) ,

33

i.e., thatA accepts flat(T) when staring in some state q if, and only if, it accepts
flat(S) when starting in q.

Let H be the Automaton-Pathfinder game for the tree flat(S) and let ψ ∶
dom(S) → dom(flat(S)) be the function mapping each vertex of S to the corres-
ponding one of flat(S) (cf. the definition of φ above). Note that flat(S) can be
obtained from flat(T) by
◆ for each v ∈ dom(S) with successors (ux)x∈ξ , redirecting the edge leading

to ψ(ux) to ψ(uy) where y = µv(σv(x)),
◆ unravelling the resulting graph (thereby deleting unreachable vertices).

In particular, there exists a canonical function ι ∶ dom(flat(S)) → dom(flat(T))
which restricts to a function dom(s ∥ µ) → dom(t). We define a strategy ρ for
Automaton in the game H by

ρ(⟨v , q⟩) ∶= τ(⟨ι(v), q⟩) .

To prove the above statement it is sufficient to show that, for every branch β of
flat(S), there is a branch γ of flat(T) such that the least priority seen infinitely
often in the play of H following ρ along the branch β is the same as the least
priority seen infinitely often in the play of G following τ along γ. The image ι[β]
of a given branch β under ι consists of a sequence p0 , p1 , p2 , . . . of disconnected
paths with the following properties.
◆ For every i < ω, there is some vertex v i ∈ dom(T) such that p i corresponds

to a path in T(v i) from the root to some variable.
◆ The vertices v0 , v1 , . . . form a branch of T .

34

γ β

ι

p′0

p′1

p′2

p′3

p0

p1

p2

p3

φ(v0)

φ(v1)

φ(v2)

φ(v3)

φ(v4)

It follows that the starting points of the paths p i lie on some branch γ of flat(T)
which contains the vertices φ(v0), φ(v1), Let p′i be the part of γ between
φ(v i) and φ(v i+1). By definition of s it follows that, for every i, the least priorities
seen along p′i and along p i are the same. Let us call this priority k i . By definition
of ρ it follows that k i is also the least priority seen in the part of β corresponding
to p i . Consequently, the least priorities seen infinitely often along β and along γ
are both equal to lim inf i k i .

Our hope is that a more elaborate version of the construction from the preced-
ing proof can be used to construct a T×reg-condensation instead of a T×-one, or
at least that we can iterate such a construction to obtain a T×reg-evaluation.

Conjecture. Let A be an MSO-definable T×reg-algebra. Then every tree t ∈ TA has
a T×reg-evaluation with consistent merging.

6 Consistent labellings
As we have seen in the previous section we can construct expansions with the
help of evaluations if the two monads in question are sufficiently well-behaved.
What do we do if they are not? Let us turn to a second idea of how to prove
that a T○-algebra A has a T-expansion: when we want to define the product of
t ∈ TA, we first annotate t with additional information that makes it easier to

35

determine the value of the product. For instance, for each vertex v, we can guess
the value π(t∣v) of the corresponding subtree and the check that these guesses
are correct.

Definition 6.1. Let T○ ⊆ T be a submonad, A○ = ⟨A, π○⟩ a T○-algebra, and
t ∈ TξA.

(a) A labelling of t is a function σ ∶ dom(t) → A (not necessarily arity-
preserving) such that, for every vertex v,

σ(v) ∈ Aζ iff ζ is the set of variables appearing in t∣v .

(b) A labelling σ ∶ dom(t) → A is weakly T○-consistent if, for every factor
[u, v̄) with t[u, v̄) ∈ T○A,

σ(u) = π(t[u, v̄))(σ(v0), σ(v1), . . .) . ⌟

We have noted in the previous section that using factors with only finitely many
variables can cause pathological behaviour. For this reason, we introduce a more
general notion of consistency where we also allow factors with infinitely many
variables.

Definition 6.2. Let T○ ⊆ T be a submonad, A○ = ⟨A, π○⟩ a T○-algebra, and
t ∈ TξA.

(a) Given a factor [u, v̄) of t, possibly with infinitely many holes v̄, we denote by
t[u, v̄)(a0 , a1 , . . .) the tree obtained from t[u, v̄) by replacing each leaf labelled
by a variable x i by the tree sing(a i).

(b) A labelling σ ∶ dom(t) → A is strongly T○-consistent if, for every factor
[u, v̄), possibly with infinitely many holes v̄, with t[u, v̄)(σ(v0), σ(v1), . . .) ∈
T○A, we have

σ(u) = π(t[u, v̄)(σ(v0), σ(v1), . . .)) . ⌟

We start with the following easy observation.

Lemma 6.3. Let A be a finitary Tfin-algebra. Every tree t ∈ TA has a strongly
Tfin-consistent labelling.

Proof. We call a labelling σ of some tree t locally consistent if

σ(v) = t(v)(σ(u0), . . . , σ(un−1)) ,

36

for every vertex v with successors u0 , . . . , un−1. Fix an increasing sequence P0 ⊂
P1 ⊂ ⋅ ⋅ ⋅ ⊂ dom(t) of finite prefixes of t with ⋃i Pi = dom(t), and let Λ i be the
set of all locally consistent labellings of Pi , for i < ω. Then Λ ∶= ⋃i Λ i ordered
by ⊂ forms a finitely-branching tree. By Kőnig’s Lemma, there exists an infinite
branch σ0 ⊂ σ1 ⊂ Let σ be its limit. Then σ is locally consistent.

It therefore, remains to prove that every locally consistent labelling of t is Tfin-
consistent. Consider a finite factor H of t with root v and leaves u0 , . . . , um−1. By
induction on ∣H∣ it follows that

σ(v) = π((t ↾ H)(σ(u0), . . . , σ(um−1)) .

Next, let us show how use consistent labellings to characterise possible T-
expansions of a given T○-algebra. We need the following additional property.

Definition 6.4. Let T○ ⊆ T.
(a) A weak labelling scheme for a T○-algebraA is a function σ assigning to each

tree t ∈ TA a weakly T○-consistent labelling σ(t) of t. Similarly, a strong labelling
scheme σ assigns to each tree t ∈ TA a strongly T○-consistent labelling σ(t).

(b) A labelling scheme σ for A is associative if, for every tree T ∈ TTA, we have

σ(t) = σ(flat(T)) ○ µ ,

where µ ∶ dom(T) → dom(flat(T))maps each vertex v ∈ dom(T) to the vertex
of flat(T) corresponding to the root of T(v), and t ≃sh T is the tree such that

t(v) ∶= σ(T(v))(⟨⟩) , for v ∈ dom(T) . ⌟

Example. There are algebras with several associative strong labelling schemes.
Let A be the Tthin-algebra with domains Aξ ∶= [n], for some fixed number n < ω,
where the product is just the maximum

π(t) ∶= max { t(v) ∣ v ∈ dom(t) } .

For every k < n, we obtain an associative labelling scheme σk defined by

σk(t)(v) ∶=
⎧⎪⎪⎨⎪⎪⎩

π(t∣v) if t∣v ∈ TthinA ,
max ({k} ∪ { t(u) ∣ u ⪰ v } , otherwise . ⌟

There is a tight connection between T-expansions and associative labelling
schemes (weak or strong, it does not matter).

37

Proposition 6.5. Let T○ ⊆ T and let A be a T○-algebra.
(a) Every associative weak labelling scheme for A is strong.
(b) There exists a bijective correspondence between associative labelling schemes σ

and T-expansions of A.

Proof. We define two mutually-inverse functions mapping (i) every associative
weak labelling scheme to a T-expansion of A and (ii) every such expansion to an
associative strong labelling scheme.

(i) Given a weak scheme σ we define the corresponding function π+ by

π+(t) ∶= σ(t)(⟨⟩) , for t ∈ TA .

Then π+ extends π since weak T○-consistency of σ implies that

π(t) = σ(t)(⟨⟩) = π+(t) , for t ∈ T○A .

Hence, it remains to show that π+ is associative. Fix T ∈ TTA. By the definition
of associativity, we have

σ(Tπ+(T)) = σ(flat(T)) ○ µ ,

which in particular implies that

π+(Tπ+(T)) = σ(Tπ+(T))(⟨⟩)
= σ(flat(T))(⟨⟩) = π+(flat(T)) .

(ii) Conversely, given a product π+ ∶ TA→ Awe define a strong scheme σ by

σ(t)(v) ∶= π+(t∣v) , for t ∈ TA and v ∈ dom(t) .

To show that this function σ is strongly T○-consistent, fix a factor [u, v̄) of some
tree t ∈ TA. Then

σ(u) = π+(t∣u)
= π+(t[u, v̄)(π+(t∣v0), π∗(t∣v1), . . .))
= π+(t[u, v̄)(σ(v0), σ(v1), . . .)) ,

38

as desired. To show that σ is associative, let T ∈ TTA, v ∈ dom(T), and let t be
the tree from the definition of associativity. Then

σ(t)(v) = π+(t∣v)
= π+(Tπ+(t)∣v)
= π+(flat(T ∣v))
= π+(flat(T)∣µ(v)) = σ(flat(T))(µ(v)) .

Finally, note that the mappings σ ↦ π+ and π+ ↦ σ are clearly inverse to each
other.

In particular, if labellings are unique, so is the expansion. In fact, we do not
need to assume associativity here.

Proposition 6.6. Let T○ ⊆ T and let A be a T○-algebra satisfying at least one of
the following two conditions.

(i) Every tree t ∈ TA has a unique weak T○-consistent labelling.
(ii) Every tree t ∈ TA has a unique strong T○-consistent labelling.

Then A has a unique T-expansion.

Proof. Let σ be the unique labelling scheme (weak or strong). By Proposition 6.5,
it is sufficient to prove that σ is associative. Hence, fix a tree T ∈ TTA and let
t and µ be as in the definition of associativity. We claim that the labelling

τ ∶= σ(flat(T)) ○ µ

is a T○-consistent labelling of t. Then uniqueness of labellings implies that

σ(t) = τ = σ(flat(T)) ○ µ ,

as desired.
For the proof, fix a factor [u, v̄) of t. We have to show that

τ(u) = π(t[u, v̄)(τ(v0), τ(v1), . . .)) .

Since every tree T(w) only contains finitely many variables, we can replace
in T(w) some subtrees T(w)∣w′ (without variables) by the corresponding con-
stant σ(T(w))(w′). Let P(w) be a finite tree obtained in this way from T(w).

39

Using the consistency of σ(P(w)) and σ(T(w)), we can show by induction onw′
(starting at the leaves) that

σ(P(w))(w′) = σ(T(w))(w′) , for all w′ ∈ dom(P(w)) .

Consequently,

π(P(w)) = σ(P(w))(⟨⟩) = σ(T(w))(⟨⟩) = t(w) .

We regard the family (P(w))w as a tree P ∈ TTAwith domain

dom(P) = [u, v̄) ∪ {v0 , v1 , . . . } ,

where, for the leaves v i , we choose

P(v i) ∶= τ(v i) .

Then the domain of P belongs to aT○-tree. Hence, we have P ∈ T○TfinA ⊆ T○T○A.
This implies that flat(P) ∈ T○A and

σ(flat(P))(⟨⟩) = π(flat(P)) = π(T○π(P))
= π(t[u, v̄)(τ(v0), τ(v1), . . .))) ,

where the last step follows by the fact that

π(P(w)) =
⎧⎪⎪⎨⎪⎪⎩

t(w) if w ∈ [u, v̄) ,
τ(v i) if w = v i .

Hence,

π(t[u, v̄)(τ(v0), τ(v1), . . .))
= σ(flat(P))(⟨⟩)
= σ(flat(T))(µ(u))
= τ(u) ,

where the second step follows by the uniqueness of labellings.

As an application let us show how to use consistent labellings to prove that an
algebra is definable

40

Proposition 6.7. Every finitary Tthin-algebra is MSO-definable.

Proof. Let A be a Tthin-algebra and t ∈ TthinA. We construct a formula guessing
the labelling λ ∶ dom(t) → A induced by the product λ(v) ∶= π(t∣v) and then
verifying the correctness of its guess by checking for each vertex v that
◆ λ(v) = t(v)(λ(u0), . . . , λ(un−1)), where u0 , . . . , un−1 are the successors of v,
◆ λ(v) = π(sβ), for every branch β starting at v, where sβ is the path obtained

from t∣v by replacing every vertex u not belonging to β by the constant λ(u).
The latter condition can be expressed in MSO since this logic can evaluate products
in ω-semigroups. By induction on the Cantor-Bendixson rank of t it follows that
the above checks ensure that the guessed labelling coincides with the intended
one.

Corollary 6.8. Let A be a finitary T-algebra where every tree t ∈ TA has exactly
one Tthin-consistent labelling. Then A is MSO-definable.

Proof. It follows by Proposition 6.7 that being Tthin-consistent can be expressed
in MSO. To evaluate a given product π(t) in MSO, we can therefore guess a
Tthin-consistent labelling of t and take the label at the root.

7 Unambiguous algebras
InCorollary 5.10, we have obtained a complete classification of allTthin-expansions
of a Tfin-algebra. In the present section, we use consistent labellings to study the
inclusion Tthin ⊆ T. First let us remark that it not dense.

Lemma 7.1. There exists a Tthin-algebra A with two different MSO-definable T-
expansions.

Proof. Let A be the set with two elements 0ξ , 1ξ for every sort ξ. We consider two
different products π0 , π1 ∶ TA→ A on this set. The first one is just the maximum
operation:

π0(t) ∶= max { t(v) ∣ v ∈ dom(t) } , for t ∈ TA .

The second one is given by

π1(t) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if t ∈ TthinC ,
1 if t ∈ TC ∖TthinC ,
1 if t ∉ TC ,

41

where C ⊆ A is the subset consisting of the elements 0ξ , ξ ∈ Ξ. Since there exists
an MSO-formula expressing that a given tree is thin, both products are MSO-
definable. Furthermore, π0 is clearly associative. To show that so is π1, fix a tree
t ∈ TTA. We distinguish four cases.
◆ If t(v) ∉ TC, for some v, then π1(Tπ1(t)) = 1 = π1(flat(t)).
◆ If t ∈ TthinTthinC, then flat(t) ∈ TthinC and π1(Tπ1(t)) = 0 = π1(flat(t)).
◆ If there is some v ∈ dom(t) with t(v) ∉ TthinC, we have flat(t) ∉ TthinC and

π1(Tπ1(t)) = 1 = π1(flat(t)).
◆ Finally, suppose that t ∈ TTthinC ∖TthinTthinC. Then flat(t) ∈ TC ∖TthinC

and π1(Tπ1(t)) = 1 = π1(flat(t)).

Consistent labellings have been used in [1] to study unambiguous tree languages.
Let us give a brief overview over these results. The central notion is the following
one.

Definition 7.2. Let T○ ⊆ T. A T○-algebra A is unambiguous if every tree t ∈ TA
has at most one strongly T○-consistent labelling. ⌟

Remarks. (a) For T○ = Tthin these algebras were introduced in [1] under the name
prophetic thin algebras.

(b) The fact that a given tree has a unique strongly Tthin-consistent labelling
is expressible in MSO. And so are the facts that every tree has a unique Tthin-
consistent labelling and that the corresponding labelling scheme is associative. ⌟

First, note that there exist Tthin-algebras which are not unambiguous.

Example. Let A be the Tthin-algebra generated by the elements 0, 1 (of arity 0),
b0 , b1 , c0 , c1 (of arity 1), and a (of arity 2) subject to the following equations.

b i(j) = j , a(x , i) = b i(x) ,
b ib j(x) = bmax{i , j}(x) , a(i , x) = c i(x) ,

c i(j) = i , bωi = 1 − i ,
c i(b j(x)) = c i(x) , cωi = i ,
c i(c j(x)) = c i(x) ,

for i , j ∈ {0, 1}. This algebra is not unambiguous since the (unique) tree t ∈ T{a}
has several consistent labellings, including

λ(w) ∶= ∣w∣1 mod 2 and µ(w) ∶= (∣w∣1 + 1) mod 2 . ⌟

42

The connection between unambiguous Tthin-algebras and unambiguous tree
languages is given by the following theorem.

Definition 7.3. (a) A tree automaton is unambiguous if it has at most one accepting
run on each given input tree.

(b) A language K ⊆ TξΣ is called bi-unambiguous if both K and TξΣ ∖ K are
recognised by unambiguous automata. ⌟

Theorem 7.4 (Bilkowski, Skrzypczak [1]). A language K ⊆ TξΣ is bi-unambiguous
if, and only if, it is recognised by a Tthin-morphism φ ∶ TΣ → A to a finitary
unambiguous Tthin-algebra.

Unfortunately, the existence of Tthin-consistent labellings is still an open prob-
lem, one which turns out to be equivalent to the existence of the following kind
of choice functions.

Definition 7.5. The Thin Choice Conjecture states that there does not exist an MSO-
formula φ(x; Z) such that, for every thin (unlabelled) tree t and every non-empty
set P ⊆ dom(t) of parameters, the formula φ(x; P) defines a unique element
of P. ⌟

Theorem 7.6 (Bilkowski, Skrzypczak [1]). The following statements are equivalent.
(1) The Thin Choice Conjecture holds.
(2) All trees have strongly Tthin-consistent labellings, for every finitary Tthin-

algebra A.
(3) The unique tree in T∅{a} has a strongly Tthin-consistent labelling, for every

Tthin-algebra A and every a ∈ A.
(4) For every morphism φ ∶ A → B of Tthin-algebras and every strongly Tthin-

consistent labelling β of some tree t ∈ TB, there exists a stronglyTthin-consistent
labelling α with φ ○ α = β.

Theorem 7.7 (Bilkowski, Skrzypczak [1]). Suppose that the Thin Choice Conjecture
holds.
(a) Every finitary unambiguous Tthin-algebra A has a unique T-extension. Fur-

thermore, this extension is MSO-definable.
(b) The class of unambiguous Tthin-algebras forms a pseudo-variety.
(c) A language K ⊆ TΣ is bi-unambiguous if, and only if, (the Tthin-reduct of) its

syntactic algebra Syn(K) is unambiguous.

43

8 Branch-continuous algebras
In this final section, we take a look at a few other natural classes of Tthin-algebras
where unique T-expansions exist. The simplest example consists of algebras that
are constructed from an ω-semigroup as follows.

Definition 8.1. (a) Let S = ⟨S , Sω⟩ be an ω-semigroup. We denote by TA(S)
the T-algebra ⟨A, π⟩ with domains

Aξ ∶= Sω + S × ξ , for ξ ∈ Ξ .

For elements ⟨a, x⟩ ∈ S × ξ, we will use the more suggestive notation a(x). The
product is defined as follows. Given t ∈ TξA, let β = (v i)i be the path defined
as follows. We start with the root v0 of t. Having chosen v i , we take a look at
its label t(v i). If t(v i) = a i(z i) ∈ S × ζ i , we chose for v i+1 the z i-successor of v i .
Otherwise, the path ends at v i . Let (a i)i be the corresponding sequence of labels.
(If the path is finite, the last label an is either an element of Sω or a variable.) We
set

π(t) ∶= ∏
i
a i .

Note that this product can be of one the following forms:
◆ an infinite product a0 ⋅ a1 ⋅ ⋯ ∈ Sω with a i ∈ S,
◆ a finite product a0 ⋅ ⋯ ⋅ an ∈ Sω with a0 , . . . , an−1 ∈ S and an ∈ Sω ,
◆ a finite product ⟨a0 ⋅ ⋯ ⋅ an−1 , an⟩ ∈ S × ξ with a0 , . . . , an−1 ∈ S and an ∈ ξ is

a variable.
(b) A T-algebra A is semigroup-like if it is isomorphic to TA(S), for some

ω-semigroup S. Similarly, for a subfunctor T○ ⊆ T, we call a T○-algebra A
semigroup-like if it is the T○-reduct of a semigroup-like T-algebra. ⌟

Lemma 8.2. Every semigroup-like Tthin-algebra is unambiguous and has a unique
T-expansion. This expansion is again semigroup-like.

Proof. Let A be a semigroup-like Tthin-algebra and let S be the ω-semigroup
such that A ≅ TA(S)∣Tthin . First, note that A has a semigroup-like T-expansion:
the algebra TA(S). Hence, we can use Proposition 6.5 (b) to find a strong labelling
scheme for A. It therefore remains to prove that this labelling scheme is unique.
Fix a tree t ∈ TA and let λ and µ be two strongly Tthin-consistent labellings of t.

44

Given a vertex v ∈ dom(t), let β be the path starting at v that we construcgted in
the definition of π+(t∣v). We choose a thin factor p of t∣v containing this path.
Then Tthin-consistency implies that λ(v) = π(p) = µ(v). Hence, λ = µ.

This lemma is hardly surprising, since the product of a semigroup-like algebra
only depends on a single branch of the given tree. We can extend this result to
more complicated classes of algebras as follows. So far, we have mostly ignored
the fact that our algebras are ordered. The next two classes of examples on the
other hand make essential use of the ordering. We start by introducing some
notation concerning meets and joins.

Definition 8.3. Let A be a Ξ-sorted partially ordered set.
(a) For X ⊆ A, we set

⇑X ∶= { a ∈ A ∣ a ≥ x for some x ∈ X } ,
⇓X ∶= { a ∈ A ∣ a ≥ x for some x ∈ X } .

(b) We define two functors U and D as follows. For sets A, we set

UA ∶= { I ⊆ A ∣ I is upwards closed} ,
DA ∶= { I ⊆ A ∣ I is downwards closed} .

For functions f ∶ A→ B, we define

U f (I) ∶= ⇑{ f (a) ∣ a ∈ I } ,
D f (I) ∶= ⇓{ f (a) ∣ a ∈ I } .

(c) For t ∈ TA and T ∈ TUA or T ∈ TDA, we write

t ∈T T : iff t and T have the same domain and if
t(v) ∈ T(v) , for all vertices v .

(d) Let C ⊆ A. We denote by ⟪C⟫inf the closure of C under arbitrary meets
and by ⟪C⟫sup its closure under joins. C is a set of meet-generators if ⟪C⟫inf = A
and a set of join-generators if ⟪C⟫sup = A. ⌟

The next, more interesting class of algebras we take a look at is the class of
deterministic algebras, which was introduced in [6] to give an algebraic charac-
terisation of the class of MSO-definable T-algebras. Here, we are interested in
the fact that their product is determined by its Tthin-reduct. The definition is as
follows.

45

Definition 8.4. (a) We define dist ∶ TUA→ UTA by

dist(t) ∶= { s ∈ TA ∣ s ∈T t } .

(b) A function g ∶ A→ B from a T-algebra A to a completely ordered set B is
meet-distributive if there exists a function σ ∶ T⟪rng g⟫inf → B such that

σ ○T(inf ○Ug) = inf ○Uπ ○ dist ○TUg .

A completely ordered T-algebra A is meet-distributive if the identity id ∶ A→ A
is meet-distributive. Join-distributivity is defined analogously.

(c) A Tthin-algebra A is deterministic if it is meet-distributive and it has a semi-
group-like subalgebra C such that C forms a set of meet-generators of A and the
inclusion C → A is meet-distributive. ⌟

We start with two technical lemmas. The first one is trivial.

Lemma 8.5. A completely ordered T-algebra A is meet-distributive if, and only if,

π ○Tinf = inf ○Uπ ○ dist .

Proof. (⇐) In the definition of meet-distributivity, we can take σ ∶= π.
(⇒) Let σ be the function from the definition of meet-distributivity. Given a

tree t ∈ TA, let T ∈ TUA be the tree with labels T(v) = { a ∈ A ∣ a ≥ t(v) }. Then

σ(t) = σ(T inf(T)) = inf { π(s) ∣ s ∈T T } = inf {π(t)} = π(t) .

Hence, we have

π ○Tinf = σ ○T(inf ○Uid)
= inf ○Uπ ○ dist ○TUid = inf ○Uπ ○ dist .

Lemma 8.6. Let φ ∶ C → A be a meet-distributive function such that rng φ is a
set of meet-generators of A. There exists a unique function σ ∶ TA→ A such that
⟨A, σ⟩ is a meet-distributive T-algebra and φ a morphism of T-algebras.

Proof. To make our proof more concise, we use some properties of the function
dist ∶ TU ⇒ UT. We have shown in [3] that dist is what is called a distributive
law, which means it is a natural transformation satisfying the equations

dist ○ flat = Uflat ○ dist ○Tdist , dist ○ sing = Using ,
dist ○Tunion = union ○Udist ○ dist , dist ○Tpt = pt ,

46

where union ∶ UUA → U maps a set of sets to its union and pt ∶ A → UA is
defined by pt(a) ∶= ⇑{a}.

Let σ ∶ TA→ A be the function from the definition of meet-distributivity. To
see that ⟨A, σ⟩ is a T-algebra, note that

σ ○ sing ○ (inf ○Uφ) = σ ○T(inf ○ pt) ○ sing ○ (inf ○Uφ)
= σ ○T(inf ○ pt) ○T(inf ○Uφ) ○ sing
= σ ○Tinf ○TU(inf ○Uφ) ○Tpt ○ sing
= inf ○Uπ ○ dist ○TU(inf ○Uφ) ○Tpt ○ sing
= inf ○Uπ ○ dist ○ sing ○U(inf ○Uφ) ○ pt
= inf ○Uπ ○ dist ○ sing ○ pt ○ (inf ○Uφ)
= inf ○Uπ ○Using ○ pt ○ (inf ○Uφ)
= inf ○ pt ○ (inf ○Uφ)
= inf ○Uφ ,

σ ○Tσ ○TT(inf ○Uφ) = σ ○T(inf ○Uπ ○ dist ○TUφ)
= σ ○T(inf ○Uπ ○UTφ ○ dist)
= σ ○T(inf ○Uφ ○Uπ ○ dist)
= inf ○Uπ ○ dist ○TUφ ○T(Uπ ○ dist)
= inf ○Uπ ○UT(φ ○ π) ○ dist ○Tdist
= inf ○U(π ○T(π ○Tφ)) ○ dist ○Tdist
= inf ○U(π ○ flat ○TTφ) ○ dist ○Tdist
= inf ○U(π ○Tφ ○ flat) ○ dist ○Tdist
= inf ○U(π ○Tφ) ○ dist ○ flat
= inf ○Uπ ○ dist ○TUφ ○ flat
= inf ○Uπ ○ dist ○ flat ○TTUφ
= σ ○Tinf ○ flat ○TTUφ
= σ ○ flat ○TT(inf ○Uφ) .

Since inf ○Uφ is surjective and T preserves surjectivity, it follows that

σ ○ sing = id and σ ○Tσ = σ ○ flat .

47

To see that A is meet-distributive, note that

σ ○T(inf ○Uid) ○TU(inf ○Uφ)
= σ ○T(inf ○Uinf ○UUφ)
= σ ○T(inf ○ union ○UUφ)
= σ ○T(inf ○Uφ ○ union)
= inf ○Uπ ○ dist ○TUφ ○Tunion
= inf ○Uπ ○ dist ○T(union ○UUφ)
= inf ○Uπ ○ union ○Udist ○ dist ○TUUφ
= inf ○Uπ ○ union ○Udist ○UTUφ ○ dist
= inf ○ union ○U(Uπ ○ dist ○TUφ) ○ dist
= inf ○Uinf ○U(Uπ ○ dist ○TUφ) ○ dist
= inf ○U(σ ○T(inf ○Uφ)) ○ dist
= inf ○Uσ ○ dist ○TU(inf ○Uφ))
= inf ○Uσ ○ dist ○TUid ○TU(inf ○Uφ) .

By surjectivity of TU(inf ○Uφ), this implies that

σ ○T(inf ○Uid) = inf ○Uσ ○ dist ○TUid .

To see that φ is a morphism of T-algebras, note that

σ ○Tφ = σ ○T(inf ○ pt ○ φ)
= σ ○T(inf ○Uφ ○ pt)
= inf ○Uπ ○ dist ○TUφ ○Tpt
= inf ○Uπ ○UTφ ○ dist ○Tpt
= inf ○U(φ ○ π) ○ dist ○Tpt
= inf ○U(φ ○ π) ○ pt
= inf ○ pt ○ φ ○ π
= φ ○ π .

Finally, for uniqueness suppose that σ ′ ∶ TA→ A is another function like this.
Then we have

σ ○T(inf ○Uφ) = inf ○Uπ ○ dist ○TUφ = σ ′ ○T(inf ○Uφ) ,

and the fact that T(inf ○Uφ) is surjective implies that σ = σ ′.

48

Theorem 8.7. Every deterministic Tthin-algebra has a unique meet-distributive
T-expansion.

Proof. Let A = ⟨A, π⟩ be a deterministic Tthin-algebra and let C ⊆ A be the
corresponding semigroup-like subalgebra.We can use Lemma 8.2 to find a unique
T-expansion C+ of C, and Lemma 8.6 to find a unique meet-distributive algebra
A+ = ⟨A, π+⟩ with universe A that contains C+ as a subalgebra.

It therefore remains to prove that A is the Tthin-reduct of this algebra A+.
Hence, let t ∈ TthinA and fix a tree T ∈ TthinUC such that t = Tthin inf(T). By
meet-distributivity and the fact that the products π and π+ agree on trees in
TthinC, it follows that

π+(t) = inf { π+(s) ∣ s ∈T T } = inf { π(s) ∣ s ∈T T } = π(t) ,

as desired.

Corollary 8.8. Every deterministic T-algebra is uniquely determined by its Tthin-
reduct.

We can generalise deterministic algebras by also allowing joins. The resulting
algebras are called branch-continuous. They were introduced in [2] as an algebraic
analogue to tree automata.

Definition 8.9. A Tthin-algebra A is branch-continuous if it is join-distributive
and it has a deterministic subalgebra C such that C forms a set of join-generators
of A and the inclusion C → A is join-distributive. ⌟

Using join-distributivity and meet-distributivity, one can show that a product
π(t) in a branch-continuous algebra can be computed by taking a join over meets
over products along single branches of t (see [2] for details). In particular, a
product of this form is MSO-definable. Together with the translation of auto-
mata into branch-continuous T-algebras, this leads to the following two results
from [2].

Proposition 8.10. Every finitary branch-continuous T-algebra is MSO-definable.

Theorem 8.11. A language K ⊆ TΣ is regular if, and only if, it is recognised by a
morphism into a finitary branch-continuous T-algebra.

Thus branch-continuous algebras play a similar role as the MSO-definable
ones. The reason we usually work with the latter is that the former do not form

49

a pseudo-variety: the class of branch-continuous algebras is not closed under
finitely-generated subalgebras.

Here, we are more interested in the fact that branch-continuous algebras have
unique expansions.

Theorem 8.12. Every branch-continuous Tthin-algebra has a unique join-distribu-
tive T-expansion.

Proof. LetA be a branch-continuousTthin-algebra and letC be the corresponding
deterministic subalgebra. By Theorem 8.7, C has a unique meet-distributive T-
expansion C+. By the dual version of Lemma 8.6, it follows that there exist a
unique join-distributive T-algebra A+ extending C+. By the same argument as in
the proof of Theorem 8.7, it follows that A+ is a T-expansion of A.

Corollary 8.13. Every branch-continuous T-algebra is uniquely determined by its
Tthin-reduct.

9 Conclusion
We have presented several approaches to the expansion problem for tree algebras.
In each cases, we could use the existing combinatorial theory for ω-semigroups to
solve the problem for Tthin-expansions, but we always hit a wall when considering
the problem for expansions to non-thin trees.

In particular, the methods we developed seem to work well if there exists a
unique expansion (or at least a unique expansion with a certain property, like a
unique MSO-definable expansion, or a unique branch-continuous one), but there
is currently no approach to prove the existence of several expansions.

Promising next steps towards further progress seem to include
◆ trying to generalise some of our existing tools to general trees; and/or
◆ finding counterexamples delineating the parameter space where such general-

isations do not exist any more.
The most promising approach to do so appears to be to flesh out the theory of
Green’s relations for tree algebras, in the hope of it enabling the transfer of the
proof Simon’s Factorisation-Tree Theorem to this new setting. But this seems to
be a very hard problem.

50

References
[1] M. Bilkowski and M. Skrzypczak, Unambiguity and uniformization problems on

infinite trees, in Computer Science Logic 2013 (CSL 2013), CSL 2013, September 2–5,
2013, Torino, Italy, vol. 23 of LIPIcs, Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2013, pp. 81–100.

[2] A. Blumensath, Branch-Continuous Tree Algebras. arXiv:1807.04568, unpublished.

[3] , The Power-Set Operation for Tree Algebras. submitted.

[4] , Recognisability for algebras of infinite trees, Theoretical Computer Science,
412 (2011), pp. 3463–3486.

[5] , An Algebraic Proof of Rabin’s Tree Theorem, Theoretical Computer Science,
478 (2013), pp. 1–21.

[6] , Regular Tree Algebras, Logical Methods in Computer Science, 16 (2020),
pp. 16:1–16:25.

[7] , Algebraic Language Theory for Eilenberg–Moore Algebras, Logical Methods in
Computer Science, 17 (2021), pp. 6:1–6:60.

[8] M. Bojaczyk, Languages Recognises by Finite Semigroups and their generalisations
to objects such as Trees and Graphs with an emphasis on definability in Monadic
Second-Order Logic. lecture notes, arXiv:2008.11635, 2020.

[9] M. Bojaczyk, F. Cavallari, T. Place, and M. Skrzypczak, Regular tree
languages in low levels of the Wadge Hierarchy, Log. Methods Comput. Sci., 15 (2019),
pp. 27:1–27:61.

[10] M. Bojaczyk and T. Idziaszek, Algebra for Infinite Forests with an Application to
the Temporal Logic EF, in Proc. 20th International Conference on Concurrency
Theory, CONCUR, LNCS 5710, 2009, pp. 131–145.

[11] M. Bojaczyk, T. Idziaszek, and M. Skrzypczak, Regular languages of thin trees,
in Proc. 30th International Symposium on Theoretical Aspects of Computer Science,
STACS 2013, 2013, pp. 562–573.

[12] M. Bojaczyk and B. Klin, A non-regular language of infinite trees that is
recognizable by a finite algebra, Logical Methods in Computer Science, 15 (2019).

[13] O. Carton, T. Colcombet, and G. Puppis, An Algebraic Approach to
MSO-Definability on Countable linear Orderings, J. Symb. Log., 83 (2018),
pp. 1147–1189.

[14] T. Colcombet, The Factorisation Forest Theorem, in Handbook of Automata Theory,
J.-É. Pin, ed., European Mathematical Society, 2021, pp. 653–693.

[15] C. Löding, Automata on infinite trees, in Handbook of Automata Theory, J.-É. Pin,
ed., European Mathematical Society, 2021, pp. 265–302.

51

[16] K. R. Milliken, A Ramsey theorem for trees, Journal of Combinatorial Theory,
Series A, 26 (1979), pp. 215–237.

[17] G. Puppis, Automata for Branching and Layered Temporal Structures: An
Investigation into Regularities of Infinite Transition Systems, vol. 5955 of Lecture Notes
in Computer Science, Springer, 2010.

[18] W. Thomas, A combinatorial approach to the theory of ω-automata, Information and
Control, 48 (1981), pp. 261–283.

[19] , Languages, Automata, and Logic, in Handbook of Formal Languages,
G. Rozenberg and A. Salomaa, eds., vol. 3, Springer, New York, 1997, pp. 389–455.

52

