
ω-Forest Algebras and Temporal Logics1

Achim Blumensath1
2

Masaryk University Brno3

blumens@fi.muni.cz4

Jakub Lédl2
5

Masaryk University Brno6

jakubledl@mail.muni.cz7

Abstract8

We use the algebraic framework for languages of infinite trees introduced in [5] to derive effective9

characterisations of various temporal logics, in particular, the logic EF (a fragment of CTL) and10

its counting variant cEF.11

2012 ACM Subject Classification F.4.1 Mathematical Logic12

Keywords and phrases forest algebras, wreath products, temporal logics13

Digital Object Identifier 10.4230/LIPIcs...xxx14

1 Introduction15

Among the many different approaches to language theory, the algebraic one seems to be16

particularly convenient when studying questions of expressive power. While algebraic language17

theories for word languages (both finite and infinite) have already been fully developed a long18

time ago, the corresponding picture for languages of trees, in particular infinite ones, is much19

less complete. Seminal results contributing to such an algebraic framework for languages of20

infinite trees were provided by the group of Bojańczyk [7, 8] with one article considering21

languages of regular trees only, and one considering languages of thin trees. The first complete22

framework that could deal with arbitrary infinite trees was provided in [2, 3]. Unfortunately,23

it turned out to be too complicated and technical for applications. Recently, two new general24

frameworks have been introduced [1, 5] which seem to be more satisfactory: one is based on25

the notion of a branch-continuous tree algebra, while the other uses regular tree algebras. At26

the moment it is still unclear which of these two competing approaches is the right one. The27

first one seems to be more satisfactory from a theoretical point of view, while the second one28

is more useful for applications, in particular for characterisation results.29

In this article we concentrate on the approach based on regular tree algebras from [5]30

and apply it to a few test cases to see how suitable it is for its intended purpose. While31

the definition of a regular tree algebra (given in Section 2 below) is a bit naïve and seems32

circular at first sight, it turns out that it is sufficient to guarantee the properties we need33

for applications: one can show that (i) the class of regular tree algebras forms a pseudo-34

variety and that (ii) every regular tree language has a syntactic algebra, which is in fact a35

regular tree algebra. By general category-theoretic results, such as those from [6] or [4], this36

implies that there exists a Reiterman type theorem for such algebras, i.e., the existence of37

equational characterisations for sub-pseudo-varieties. This is precisely what is needed for a38

characterisation theorem.39

1 Work supported by the Czech Science Foundation, grant No. GA17-01035S
2 Work supported by the Czech Science Foundation, grant No. GA17-01035S

© Achim Blumensath, Jakub Lédl;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:blumens@fi.muni.cz
mailto:jakubledl@mail.muni.cz
https://doi.org/10.4230/LIPIcs...xxx
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

xxx:2 ω-Forest Algebras and Temporal Logics

The applications we are looking at in the present paper concern certain temporal logics,40

in particular, the logic EF and its counting variant cEF, and we aim to derive decidable41

algebraic characterisations for them using our algebraic framework. Note that Bojanńczyk42

and Idziaszek have already provided a decidable characterisation for EF in [7], but their43

result is only partially algebraic. They prove that a regular language is definable in EF if,44

and only if, the language is bisimulation-invariant and its syntactic algebra satisfies a certain45

equation, but they were not able to provide an algebraic characterisation of bisimulation46

invariance. Due to our more general algebraic framework we are able to fill this gap below.47

We start in the next section with a short overview of the algebraic framework from [5].48

We have to slightly modify this material since it was originally formulated in the setting of49

ranked trees while, when looking at temporal logics, it is more natural to consider unranked50

trees and forests. The remainder of the article contains our various characterisation results.51

In Section 3 we derive an algebraic characterisation of bisimulation-invariance, the result52

missing in [7]. Then we turn to our main result and present characterisations for the logic cEF53

and some of its fragments, including the logic EF. The result itself and some consequences54

are presented in Section 4, while the proof is deferred to Section 5.55

2 Forest algebras56

The main topic of this article are languages of (possibly infinite) forests and the logics defining57

them. Before introducing the algebras we will use to recognise such languages, let us start58

by fixing some notation and conventions. Although our main interest is in unranked forests,59

we will use a more general version that combines the ranked and the unranked cases. As we60

will see below (cf. Theorem 3.1), the ability to use ranks will increase the expressive power61

of equations for our algebras considerably. Thus, we will work with ranked sets, i.e., sets62

where every element a is assigned an arity ar(a). Formally, we consider such sets as families63

A = (Am)m<ω, where Am is the set of all elements of A of arity m. Functions between ranked64

sets then take the form f = (fm)m<ω with fm : Am → Bm.65

We will consider (unranked, finitely branching, possibly infinite) forests where each vertex66

is labelled by an element of a given ranked set A and each edge is labelled by a natural67

number with the restriction that, if a vertex is labelled by an element of arity m, the numbers68

labelling the outgoing edges must be less than m. If an edge u → v is labelled by the69

number k, we will call v a k-successor of u. Note that a vertex may have several k-successors,70

or none at all. We assume that all k-successors of a given vertex are ordered from left to71

right, while we impose no ordering between a k-successor and an l-successor, for k 6= l. We72

write F0A for the set of all such A-labelled forests. (We shall explain the index 0 further73

below.) We write dom(s) for the set of vertices of a forest s ∈ F0A, and we will usually74

identify s with the function s : dom(s) → A that maps vertices to their labels. We denote the75

empty forest by 0 and the disjoint union of two forests s and t by s + t. We will frequently76

use term notation to denote forests such as77

a(b + c, 0, b) + b ,78
79

which denotes a forest with two components: the first one consisting of a root labelled by80

an element a of arity 3 which has two 0-successors labelled b and c, no 1-successor, and one81

2-successor; the second component consists of a singleton with label b.82

We use the symbol � for the forest ordering where the roots are the minimal elements83

and the leaves the maximal ones. For a forest s, we denote by s|v the subtree of s attached84

to the vertex v. The successor forest of v in s is the forest obtained from s|v by removing85

the root v.86

A. Blumensath, J. Lédl xxx:3

For a natural number n, set [n] := {0, . . . , n − 1}. An alphabet is a finite (unranked) set Σ87

of symbols. If we use an alphabet in a situation such as F0Σ where a ranked set is expected,88

we will consider each symbol in Σ as having arity 1. Thus, for us a forest language over an89

alphabet Σ will be a set L ⊆ F0Σ consisting of the usual unranked forests. (The power to90

have elements of various arities is useful when writing down algebraic equations, but it is91

rather unnatural when considering languages defined by temporal logics.) We denote by Σ∗
92

the set of all finite words over Σ, by Σω the set of infinite words, and Σ∞ := Σ∗ ∪ Σω.93

A family of (word, forest,. . .) languages is a function K mapping each alphabet Σ to a class94

K[Σ] of (word, forest,. . .) languages over Σ.95

Our algebraic framework to study forest languages is built on the notion of an Eilenberg–96

Moore algebra for a monad. To keep category-theoretical prerequisites at a minimum we will97

give an elementary, self-contained definition. The basic idea is that, in the same way we can98

view the product of a semigroup as an operation turning a sequence of semigroup elements99

into a single element, we view the product of a forest algebra as an operation turning a given100

forest that is labelled with elements of the algebra into a single element. The material in this101

section is taken from [5] with minor adaptions to accommodate the fact that we are dealing102

with unranked forests instead of ranked trees. We start by defining which forest we allow in103

this process.104

I Definition 2.1. (a) We denote by F the functor mapping a ranked set A to the ranked set105

FA = (FmA)m where FmA consists of all (A ∪ {x0, . . . , xm−1})-labelled forests such that106

the new labels x0, . . . , xm−1 have arity 0,107

each label xi appears only finitely many times, and108

no root is labelled by an xi.109

(b) The singleton function sing : A → FA maps a label a of arity m to the forest110

a(x0, . . . , xm−1).111

(c) The flattening function flat : FFA → FA takes a forest s ∈ FFA and maps it to the112

forest flat(s) obtained by assembling all forests s(v), for v ∈ dom(s), into a single large forest.113

This is done as follows. For every vertex of s(v) that is labelled by a variable xk, we take114

the disjoint union of all forests labelling the k-successors of v and substitute them for xk.115

This is done simultaneously for all v ∈ dom(s) and all variables in s(v) (see Figure 1 for an116

example.) y117

Now we can define a forest algebra to be a set A equipped with a product FA → A.118

I Definition 2.2. (a) An ω-forest algebra A = 〈A, π〉 consists of a ranked set A and a119

function π : FA → A satisfying the following two axioms:120

the associative law π ◦ Fπ = π ◦ flat and the unit law π ◦ sing = id .121
122

We will denote forest algebras by fraktur letters A and their universes by the corresponding123

roman letter A. We will usually use the letter π for the product, even if several algebras are124

involved.125

(b) A morphism of ω-forest algebras is a function ϕ : A → B that commutes with the126

products in the sense that π ◦ Fϕ = ϕ ◦ π. y127

I Remark. (a) In the following we will simplify terminology by dropping the ω and simply128

speaking of forest algebras. But note that, strictly speaking, this name belongs to the kind of129

algebras introduced by Bojańczyk and Walukiewicz in [10].130

xxx:4 ω-Forest Algebras and Temporal Logics

a

x x x

  

b c

c



c c b

x



d

b c

x

 



x x

   

 

a

d c c b b c

b c c

x x

     

  

 

Figure 1 The flattening operation

(b) One can show that the functor F together with the two natural transformations flat131

and sing forms what is called a monad in category theory. In this terminology, we can define132

forest algebras as Eilenberg-Moore algebras for this monad.133

(c) Note that a forest algebra A = 〈A, π〉 contains a monoid 〈A0, +, 0〉 and an ω-semigroup134

〈A1, A0, · 〉. We call the former the horizontal monoid and the latter the vertical ω-semigroup.135

Sets of the form FA can be equipped with a canonical forest algebra structure by using136

the flattening operation flat : FFA → FA for the product. By general category-theoretical137

considerations it follows that algebras of this form are exactly the free forest algebras138

(generated by A). In this article we consider forest languages over an alphabet Σ as subsets139

L ⊆ F0Σ. Such a language is recognised by a morphism η : FΣ → A of forest algebras if140

L = η−1[P] for some P ⊆ A0. In analogy to the situation with word languages we would like141

to have a theorem stating that a forest language is regular if, and only if, it is recognised by142

a morphism into some finite forest algebra. But this statement is wrong for two reasons. The143

first one is that every forest algebras with at least one element of positive arity has elements144

of every arity and, thus, is infinite. To fix this, we have to replace the property of being finite145

by that of having only finitely many elements of each arity. We call such algebras finitary.146

But even if we modify the statement in this way it still fails since one can find finitary147

forest algebras recognising non-regular languages. (An example for tree languages is given by148

Bojańczyk and Klin in [9].) Therefore we have to restrict our class of algebras. A simple way149

to do so is given by the class of (locally) regular algebras introduced in [5] where all of the150

following results are taken from (again in the case of trees instead of forests).151

I Definition 2.3. Let A be a forest algebra.152

(a) A subset C ⊆ A is regularly embedded if, for every element a ∈ A, the preimage153

π−1(a) ∩ FC is forms a regular (i.e., automaton recognisable) language over C.154

(b) A is locally regular if every finite subset is regularly embedded.155

(c) A is regular if it is finitary, finitely generated, and locally regular. y156

The definition of a regular forest algebra is not very enlightening. We refer the interested157

reader to [5] for a purely algebraic (but much more complicated) characterisations.158

I Theorem 2.4. Let L ⊆ F0Σ be a forest language. The following statements are equivalent.159

A. Blumensath, J. Lédl xxx:5

(1) L is regular (i.e., automaton recognisable).160

(2) L is recognised by a morphism into a locally regular forest algebra.161

(3) L is recognised by a morphism into a regular forest algebra.162

(The reason why we introduce two classes is that locally regular algebras enjoy better closure163

properties, while the regular ones are more natural as recognisers of languages.) One can164

show (see [5]) that the (locally) regular algebras form a pseudo-variety in the sense that165

locally regular algebras are closed under quotients, subalgebras, finite products, and directed166

colimits, while regular algebras are closed under quotients, finitely generated subalgebras,167

finitely generated subalgebras of finite products, and so-called ‘rank-limits’. More important168

for our current purposes is the existence of syntactic algebras and the fact that these are169

always regular.170

I Definition 2.5. Let L ⊆ FΣ be a forest language.171

(a) The syntactic congruence of L is the relation172

s ∼L t : iff p[s] ∈ L ⇔ p[t] ∈ L , for every context p ,173
174

where a context is a (Σ ∪ {�})-labelled forest and p[s] is the forest obtained from p by175

replacing each vertex labelled by � by the forest s.176

(b) The syntactic algebra of L is the quotient S(L) := FΣ/∼L. y177

I Theorem 2.6. The syntactic algebra S(L) of a regular forest language L exists, it is regular,178

and it is the smallest forest algebra recognising L. Furthermore, S(L) can be computed given179

an automaton for L.180

Regarding the last statement of this theorem, we should explain what we mean by181

computing a forest algebra. Since forest algebras have infinitely many elements, we cannot182

simply compute the full multiplication table. Instead, we say that a regular forest algebra A183

is computable if, given a number n < ω, we can compute a list 〈Aa〉a∈An
of automata such184

that Aa recognises the set π−1(a) ∩ FC, for some fixed set C of generators.185

3 Bisimulation186

To illustrate the use of syntactic algebras let us start with a simple warm-up exercise: we187

derive an algebraic characterisation of bisimulation invariance. This example also explains188

why algebras with elements of higher arities are needed (this is the reason Bojańczyk and189

Idziaszek [7], whose framework supported only arity 1, had to leave such a characterisation190

as an open problem).191

Recall that a bisimulation between two forests s and t is a binary relation Z ⊆192

dom(s) × dom(t) such that 〈u, v〉 ∈ Z implies that193

s(u) = t(v) and,194

for every k-successor u′ of u, there is some k-successor v′ of v with 〈u′, v′〉 ∈ Z and vice195

versa.196

Two trees are bisimilar if there exists a bisimulation between them that relates their roots.197

More generally, two forests are bisimilar if every component of one is bisimilar to some198

component of the other.199

xxx:6 ω-Forest Algebras and Temporal Logics

t a

a a c

c c c

  

  

t′ a

a c c

c

  



t a(x + x + x + x)

a(x + x) a(x + x) c

c c c

  

  

t′ a(x + x + x + x)

a(x + x) c c

c

  



t a

a c c

c c

a

c c

  

 



 

t′ a

a c c

c c

a

c c

  

 



 

Figure 2 Transforming bisimilar forests

I Theorem 3.1. A forest language L ⊆ F0Σ is bisimulation-invariant if, and only if, the200

syntactic algebra S(L) satisfies the following equations:201

c + c = c , a(x0 + x0) = a(x0) ,202

c + d = d + c , a(x0 + x1 + x2 + x3) = a(x0 + x2 + x1 + x3) ,203
204

for all a ∈ S1 and c, d ∈ S0.205

Proof. Let η : FΣ → S(L) be the syntactic morphism mapping a forest to its ∼L-class.206

(⇒) Given elements c, d ∈ S1, we fix forests s ∈ η−1(c) and t ∈ η−1(d). If L is bisimulation-207

invariant, we have208

p[s] ∈ L iff p[s + s] ∈ L and p[s + t] ∈ L iff p[t + s] ∈ L ,209
210

for every context p. Consequently, s ∼L s + s and s + t ∼L t + s, which implies that c = c + c211

and c + d = d + c.212

The remaining two equations are proved similarly. Fix a ∈ S1 and s ∈ η−1(a). Setting213

s′ := s(x0 + x0), bisimulation-invariance of L implies that214

p[s] ∈ L iff p[s′] ∈ L , for every context p .215
216

Consequently s ∼L s′ and a(x0) = η(s) = η(s′) = a(x0 + x0).217

Similarly, for t := s(x0 + x1 + x2 + x3) and t′ := s(x0 + x2 + x1 + x3), we have218

p[t] ∈ L iff p[t′] ∈ L , for every context p .219
220

Hence, t ∼L t′ and a(x0 + x1 + x2 + x3) = a(x0 + x2 + x1 + x3).221

(⇐) Suppose that S(L) satisfies the four equations above and let s and s′ be bisimilar222

forests. We claim that η(s) = η(s′), which implies that s ∈ L ⇔ s′ ∈ L.223

Fix a bisimulation relation Z ⊆ dom(s) × dom(s′). W.l.o.g. we may assume that Z only224

relates vertices on the same level of the respective forests and that it only relates vertices225

whose predecessors are also related. (If not, we can always remove the pairs not satisfying226

this condition without destroying the fact that Z is a bisimulation.) Let ≈ be the equivalence227

relation on dom(s) ∪ dom(s′) generated by Z.228

We will transform the forests s and s′ in several steps while preserving their value under η229

until both forests are equal. (Note that each of these steps necessarily modifies the given230

forest at every vertex.) An example of this process can be found in Figure 2. The first step231

consists in translating the problem into the algebra S. We define two new forests t0, t′
0 ∈ F0S232

A. Blumensath, J. Lédl xxx:7

with the same domains as, respectively, s and s′ and the following labelling. If v ∈ dom(s)233

has the 0-successors u0, . . . , un−1, we set234

t0(v) := η(s(v))(x0 + · · · + xn−1)235
236

and we make ui an i-successor of v in t0. We obtain t′
0 from s′ in the same way. By associativity237

it follows that π(t0) = η(s) and π(t′
0) = η(s′).238

Next we make the shapes of the forests t0 and t′
0 the same. Let t1 and t′

1 be the forests239

with the same domains as t0 and t′
0 and the following labelling. For every vertex v of t0 with240

successors u0, . . . , un−1 and labelling241

t0(v) = a(x0 + · · · + xn−1) ,242
243

we set244

t1(v) := a(x0 + · · · + x0 + · · · + xn−1 + · · · + xn−1) ,245
246

where each variable xi is repeated mi times and the numbers mi are determined as follows.247

Let M be some number such that, for every i < n, no vertex v′ ≈ v has at more than M248

successors u′ with u′ ≈ ui. (Note that there are only finitely many such vertices.) We choose249

the constants mi such that250 ∑
k∈Ui

mk = M , where Ui := { k < n | uk ≈ ui } .251

252

We obtain the forest t′
1 in the same way from t′

0. By the top right equation above, the value253

of the product is not affected by this modification. Hence, π(t1) = π(t0) and π(t′
1) = π(t′

0).254

Finally, let t2 and t′
2 be the unravelling of, respectively, t1 and t′

1, i.e., the forest where255

for every vertex v with successors u0, . . . , un−1 and label256

t1(v) = a(x0 + · · · + x0 + · · · + xn−1 + · · · + xn−1) ,257
258

we set259

t2(v) := a(x0 + · · · + xk + · · · + xl + · · · + xm)260
261

(where we number the variables from left-to-right, e.g., a(x0 + x0 + x1 + x2 + x2) becomes262

a(x0 + x1 + x2 + x3 + x4)), and we duplicate each attached subforest a corresponding number263

of times such that the value of the product does not change. We do the same for t′
2.264

We have arrived at a situation where, for each component r of the forests t2, there is some265

component r′ of t′
2 that differs only in the ordering of successors, but not in their number.266

Consequently, there exists a bijection σ : dom(t) → dom(r′) such that, for a vertex v of r267

with successors u0, . . . , un−1,268

r′(v) = r(v)(xσv(0) + · · · + xσv(n−1)) ,269
270

where the function σv : [n] → [n] is chosen such that σ(ui) is the σv(i)-successor of σ(v).271

Let r̂ be the tree obtained from r as follows. For a vertex v with successors u0, . . . , un−1272

and labelling273

r(v) = a(x0 + · · · + xn−1) ,274
275

we set276

r̂(v) := a(xσv(0) + · · · + xσv(n−1)) ,277
278

xxx:8 ω-Forest Algebras and Temporal Logics

and we reorder the attached subtrees accordingly. By associativity and the bottom right279

equation, this does not change the value of the product. It follows that r̂ = r′. Consequently,280

π(r) = π(r′).281

We have shown that, for every component of t0 there is some component of t′
0 with the282

same product. Therefore, we can write283

π(t0) = a0 + · · · + am−1 and π(t′
0) = b0 + · · · + bn−1284

285

where the sets {a0, . . . , am−1} and {b0, . . . , bm−1} coincide. Using the equations c + c = c286

and c + d = d + c we can therefore transform π(t0) into π(t′
0). Consequently,287

η(s) = π(t0) = π(t′
0) = η(s′) .288

289

As η recognises L it follows that s ∈ L ⇔ s′ ∈ L, as desired. J290

Note that we immediately obtain a decision procedure for bisimulation-invariance from291

this theorem, since we can compute the syntactic algebra and check whether it satisfies the292

given set of equations.293

I Corollary 3.2. It is decidable whether a given regular language L is bisimulation-invariant.294

4 The Logic cEF295

Let us now proceed to the main result of this article: a characterisation of the temporal logic296

cEF. For simplicity, the following definition of its semantics only considers forests instead of297

arbitrary transition systems.298

I Definition 4.1. (a) Counting EF, cEF for short, has two kinds of formulae: tree formulae299

and forest formulae, which are inductively defined as follows.300

Every forest formula is a finite boolean combination of formulae of the form Ekϕ where301

k is a positive integer and ϕ a tree formula.302

Every tree formula is a finite boolean combination of (i) forest formulae and (ii) formulae303

of the form Pa, for a ∈ Σ.304

To define the semantics we introduce a satisfaction relation |=f for forest formulae and305

one |=t for tree formulae. In both cases boolean combinations are defined in the usual way.306

For a tree t, we define307

t |=t Pa : iff the root of t has label a ,308

t |=t ϕ : iff t′ |=f ϕ , for a forest formula ϕ , where t′ denotes the successor
forest of the root of t .

309

310

For a forest s, we define311

s |=f Ekϕ : iff there exist at least n vertices v, distinct from the roots, such that312

s|v |= ϕ .313
314

(b) For k, m < ω, we denote by cEFk the fragment of cEF that uses only operators El315

where l ≤ k, and cEFm
k is the fragment of cEFk where the nesting depth of the operators El316

is restricted to m. For k = 1, we set EF := cEF1 and EFm := cEFm
1 . y317

A. Blumensath, J. Lédl xxx:9

The following is our main theorem. Before giving the statement a few technical remarks318

are in order. In the equations below we make use of the ω-power aω of an element a ∈ A1319

(which is the infinite vertical product aaa . . .), and the idempotent power aπ (which is the320

defined as aπ = an for the minimal number n with anan = an). For the horizontal semigroup321

we use multiplicative notation instead: n × a for a + · · · + a and π × a for n × a with n as322

above.323

When writing an ω-power of an element of arity greater than one, we need to specify with324

respect to which variable we take the power. We use the notation aωi to indicate that the vari-325

able xi should be used. Note that, when using several ω-powers like in (a(x0, (b(x0, x1))ω1))ω0 ,326

the intermediate term after resolving the inner power can be a forest with infinitely many327

occurrences of the variable x0. But after resolving the outer ω-power, we obtain a forest328

without variables, i.e., a proper element of F0A. Consequently, the equations below are all329

well-defined. Finally, to keep notation light we will frequently write x instead of x0, if this is330

the only variable present.331

I Theorem 4.2. A forest language L ⊆ F0Σ is definable in the logic cEFk if, and only if,332

the syntactic algebra S(L) satisfies the following equations:333

c + d = d + c (a(x) + b(x))ω = (ab(x))ω
334

(ab)π = b(ab)π (a(x) + c)ω = (a(x + c))ω
335

aω + aω = aω (a(x + c + c))ω = (a(x + c))ω
336

(abb′)ω = (ab′b)ω
[
a(b(x0, x1))ω1

]ω0 = [ab(x0, x0)]ω0337

(aab)ω = (ab)ω [a(x + bc + c)]ω = [a(x + bc)]ω338

an(c, . . . , c) + (k − n) × c = an(c, . . . , c) + (k − n + 1) × c ,

[a(x + (a(k × x))π(c))]ω = k × (a(k × x))π(c)
339

340

for all a, b, b′ ∈ S1, c, d ∈ S0, an ∈ Sn, and n ≤ k.341

We defer the proof to Section 5. Let us concentrate on some of the consequences first.342

I Corollary 4.3. For fixed k, it is decidable whether a given regular language L is cEFk-343

definable.344

For the logic cEF, where we do not care about the value of k, a similar result can now be345

derived as a simple corollary. The basic argument is contained in the following lemma.346

I Lemma 4.4. Given a forest algebra A that is generated by A0 ∪ A1, we can compute a347

number K such that, if A satisfies the equations of Theorem 4.2 for some value of k, it348

satisfies them for k = K.349

Proof. Set K := m2m1
0 + m0 where m0 := |A0| and m1 := |A1|. By assumption there is some350

number k for which A satisfies the equations of Theorem 4.2. W.l.o.g. we may assume that351

k ≥ K. The only two equations depending on k are352

(1)k an(c, . . . , c) + (k − n) × c = an(c, . . . , c) + (k − n + 1) × c353

(2)k [a(x + (a(k × x))π(c))]ω = k × (a(k × x))π(c)354

We have to show that A also satisfies (1)K and (2)K .355

For (2)K , note that k ≥ K ≥ |A0| implies that K × c = π × c = k × c, for all c ∈ A0.356

Consequently,357

a(K × x)(c) = a(k × x)(c) and, therefore, (a(K × x))π(c) = (a(k × x))π(c) .358
359

xxx:10 ω-Forest Algebras and Temporal Logics

This implies the claim.360

For (1)K , fix a ∈ An and c ∈ A0. If n ≤ K − m0, then K − n ≥ m0 = |A0| implies that361

(K − n) × c = π × c. Consequently,362

a(c, . . . , c) + (K − n) × c = a(c, . . . , c) + π × c = a(c, . . . , c) + π × c + c363
364

and we are done.365

Thus, we may assume that n > K − m0 = m2m1
0 . As A is generated by A0 ∪ A1, there366

exists some forest s ∈ Fi(A0 ∪ A1) with π(s) = a. We distinguish several cases.367

If some of the variables x0, . . . , xn−1 does not appear in s, we can use (1)k to show that368

a(c, . . . , c, . . . , c) + (K − n) × c = a(c, . . . , c + · · · + c, . . . c) + (K − n) × c369

= a(c, . . . , k × c, . . . , c) + (K − n) × c370

= a(c, . . . , k × c, . . . , c) + (K − n) × c + c .371
372

Next, suppose that s is highly branching in the sense that it has the form373

s = r(t0 + · · · + tm2
0−1)374

375

where each subterm ti contains some variable. Then there are indices i0 < · · · < im0−1 such376

that π(ti0(c̄)) = · · · = π(tim0−1(c̄)) (where c̄ denotes as many copies of c as appear in the377

respective term). Hence, (1)k again implies that378

a(c̄) + (K − n) × c = π(s(c̄)) + (K − n) × c379

= π
(
r
(
t0(c̄) + · · · + tm2

0−1(c̄)
))

+ (K − n) × c380

= π
(
r
(
t0(c̄) + · · · + tm2

0−1(c̄) + k × ti0(c̄)
))

+ (K − n) × c381

= a(c̄) + (K − n) × c + c .382
383

Note that a tree of height h := m1 where every vertex has at most d := m2
0 successors has384

at most dh = m2m1
0 leaves. Hence, if s is not highly branching in the sense above, the fact385

that it contains n > m2m1
0 variables implies that there must be a chain v0 ≺ · · · ≺ vm1 of386

vertices such that, for every i < m1, there is some leaf u labelled by a variable with vi−1 ≺ u387

and vi � u. (For i = 0, we omit the first condition.) Hence, we can decompose s as388

s(c̄) = r0(c̄, r1(c̄, . . . rm1(c̄))) ,389
390

and there are two indices i < j such that391

π(r0(c̄, . . . ri(c̄, x))) = π(r0(c̄, . . . rj(c̄, x))) .392
393

Consequently, we can use pumping to obtain a term394

π(s(c̄)) = π
(
r0(c̄, . . . , ri(c̄, x))

[
ri+1(c̄, . . . , rj(c̄, x))

]k
rj+1(c̄, . . . , rm1(c̄))

)
395
396

which contains at least k occurrences of c. Therefore, the claim follows again by (1)k. J397

According to this lemma, we can check for cEF-definability of a language L, by computing398

its syntactic algebra S(L), the associated constant K, and then checking the equations for399

k = K.400

I Corollary 4.5. It is decidable whether a given regular language L is cEF-definable.401

A. Blumensath, J. Lédl xxx:11

When taking the special case of k = 1 in Theorem 4.2, we obtain the following character-402

isation of EF-definability.403

I Theorem 4.6. A forest language L ⊆ F0Σ is definable in the logic EF if, and only if, the404

syntactic algebra S(L) satisfies the following equations:405

c + d = d + c (a(x) + b(x))ω = (ab(x))ω
406

(ab)π = b(ab)π (a(x) + c)ω = (a(x + c))ω
407

(abb′)ω = (ab′b)ω (a(x + c + c))ω = (a(x + c))ω
408

(aab)ω = (ab)ω
[
a(b(x0, x1))ω1

]ω0 = [ab(x0, x0)]ω0409

ac = ac + c c = c + c [a(x + aπc)]ω = aπc ,410
411

for all a, b, b′ ∈ S1 and c, d ∈ S0.412

I Corollary 4.7. It is decidable whether a given regular language L is EF-definable.413

5 The proof of Theorem 4.2414

For the proof of Theorem 4.2, we need to set up a bit of machinery. We start by defining the415

suitable notion of bisimulation for cEFk. The difference to the standard notion is that we use416

reachability instead of the edge relation and that we also have to preserve the number of417

reachable positions.418

I Definition 5.1. Let m, k < ω.419

(a) For trees s, t ∈ FΣ, we define420

s ≈0
k t : iff the roots of s and t have the same label421

s ≈m+1
k t : iff the roots of s and t have the same label ,422

for every k-tuple x̄ in dom(s) not containing the root, there is423

some k-tuple ȳ in dom(t) not containing the root such that424

s|xi
≈m

k t|yi
for all i < k and,425

for every k-tuple ȳ in dom(t) not containing the root, there is426

some k-tuple x̄ in dom(s) not containing the root such that427

s|xi ≈m
k t|yi for all i < k .428

429

To simplify notation, we will frequently write x ≈m
k y for vertices x and y instead of the430

more cumbersome s|x ≈m
k t|y.431

(b) For forests s, t ∈ FΣ with possibly several components, we set432

s ∼m+1
k t : iff for every k-tuple x̄ in s there is some k-tuple ȳ in t such that433

s|xi
≈m

k t|yi
for all i < k and,434

for every k-tuple ȳ in t there is some k-tuple x̄ in s such that435

s|xi ≈m
k t|yi for all i < k .436

437 y438

Let us show that this notion of bisimulation captures the expressive power of cEF. The439

proof is mostly standard. We start by introducing the following notion of a type.440

xxx:12 ω-Forest Algebras and Temporal Logics

I Definition 5.2. (a) We define the type tpm
k (s) of a tree s ∈ FΣ by441

tp0
k(s) := s(〈〉)442

tpm+1
k (s) := 〈s(〈〉), θs〉443

444

where 〈〉 denotes the root of s and445

θs :=
{

〈l, σ〉
∣∣ l ≤ k , x0, . . . , xl−1 ∈ dom(s) distinct, not equal to the root ,446

σ = tpm
k (s|x0) = · · · = tpm

k (s|xl−1)
}

.447
448

(b) For an arbitrary forest s ∈ FΣ, we set449

Tpm+1
k (s) := θs ,450

451

where452

θs :=
{

〈l, σ〉
∣∣ l ≤ k , x0, . . . , xl−1 ∈ dom(s) distinct ,453

σ = tpm
k (s|x0) = · · · = tpm

k (s|xl−1)
}

.454
455 y456

I Lemma 5.3. Let k, m < ω.457

(a) For trees s, t ∈ F0Σ, the following statements are equivalent.458

(1) s ≈m
k t459

(2) tpm
k (s) = tpm

k (t)460

(3) s |= ϕ ⇔ t |= ϕ , for all ϕ ∈ cEFm
k .461

(b) For arbitrary forests s, t ∈ F0Σ, the following statements are equivalent.462

(1) s ∼m
k t463

(2) Tpm
k (s) = Tpm

k (t)464

(3) s |= ϕ ⇔ t |= ϕ , for all ϕ ∈ cEFm
k .465

Proof. (a) (2) ⇒ (1) follows by a straightforward induction on m and (1) ⇒ (3) by induction466

on ϕ. For (3) ⇒ (2) it is sufficient to show that, for every type τ , there exists a formula467

χτ ∈ EFm
k such that468

s |= χτ iff tpm
k (s) = τ , for every tree s .469

470

We proceed by induction on m. If m = 0, the type τ is of the form a ∈ Σ. Hence, we can set471

χτ := Pa. If m > 0, then τ = 〈a, θ〉 for some a ∈ Σ and some set θ of types of lower rank.472

We can set473

χτ := Pa ∧
∧

〈l,σ〉∈θ

EFlχσ ∧
∧

〈l,σ〉/∈θ

¬EFlχσ .474

475

(b) is proved in the same way. J476

I Corollary 5.4. A language L ⊆ FΣ is cEFm
k -definable if, and only if, it is regular and477

satisfies478

s ∼m
k t implies s ∈ L ⇔ t ∈ L , for all regular forests s, t ∈ F0Σ .479

480

A. Blumensath, J. Lédl xxx:13

Proof. (⇒) follows by the implication (1) ⇒ (3) of Lemma 5.3.481

(⇐) Set482

ϕ :=
∨ {

χτ

∣∣ τ = Tpm
k (s) for some regular forest s ∈ L

}
,483

484

where χτ are the formulae from the proof of Lemma 5.3. For a regular forest t ∈ F0Σ, it485

follows that486

t |= ϕ iff Tpm
k (t) = Tpm

k (s) , for some regular forest s ∈ L ,487

iff t ∼m
k s , for some regular forest s ∈ L ,488

iff t ∈ L .489
490

Let K be the language defined by ϕ. Since L and K are both regular languages that contain491

the same regular forests, it follows that L = K. Thus, L is cEFm
k -definable. J492

We want to show that an algebra recognises cEFk-definable languages if, and only if, it493

satisfies the following equations.494

I Definition 5.5. (a) A forest algebra A is an algebra for cEFk if it is finitary, generated by495

A0 ∪ A1, and satisfies the following equations.496

(G1)k an(c, . . . , c) + (k − n) × c = an(c, . . . , c) + (k − n + 1) × c497

(G2) (ab)π = b(ab)π
498

(G3) aω + aω = aω
499

(G4) c + d = d + c500

(G5) (a(x) + b(x))ω = (ab(x))ω
501

(G6) (a(x) + c)ω = (a(x + c))ω
502

(G7) (a(x + c + c))ω = (a(x + c))ω
503

(G8)
[
a(b(x0, x1))ω1

]ω0 = [ab(x0, x0)]ω0504

(G9) (abb′)ω = (ab′b)ω
505

(G10) (aab)ω = (ab)ω
506

(G11) [a(x + bc + c)]ω = [a(x + bc)]ω507

(G12)k [a(x + (a(k × x))π(c))]ω = k × (a(k × x))π(c)508

where a, b, b′ ∈ S1, c, d ∈ S0, an ∈ Sn, and n ≤ k.509

(b) A forest algebra A is an algebra for cEF if it is an algebra for cEFk, for some k ≥ 1. y510

In the proof that algebras for cEF recognise exactly the cEF-definable languages, we use511

one of the Green’s relations (suitably modified for forest algebras).512

I Definition 5.6. Let A be a forest algebra. For a, b ∈ A0, we define513

a ≤L b : iff a = c(b) or a = b + d , for some c ∈ A1 , d ∈ A0 .514
515

y516

I Lemma 5.7. Let A be an algebra for cEFk.517

(a) The relation ≤L is antisymmetric.518

(b) For a ∈ A1 , c ∈ A0, we have519

c = c + c implies ac = ac + c ,520

c = a(c, c) implies c = c + c .521
522

xxx:14 ω-Forest Algebras and Temporal Logics

Figure 3 A forest s with a convex set U (in bold) that has three close U -ends (on the left) and
five far ones (on the right). The height is h(s, U) = 2.

Proof. (a) For a contradiction, suppose that there are elements a 6= b with a ≤L b ≤L a.523

By definition, we can find elements c and d such that (1) a = c(b) or (2) a = b + c, and524

(i) b = d(a) or (ii) b = a + d. We have thus to consider four cases. In each of them we obtain525

a contradiction via (G1)k or (G2).526

(1, i) a = cb = cda = (cd)π(a) = d(cd)π(a) = da = b .527

(1, ii) a = cb = c(a + d) = (c(x + d))π(a) = (c(x + d))π(a) + d = a + d = b .528

(2, i) b = da = d(b + c) = (d(x + c))π(b) = (d(x + c))π(b) + c = b + c = a .529

(2, ii) a = b + c = a + d + c = a + k × (d + c) = a + k × (d + c) + d = a + d = b .530
531

(b) By (G1)k we have532

c = c + c implies ac = a(c + c) = a(k × c) = a(k × c) + c = ac + c ,533

c = a(c, c) implies c = a(c, c) = (a(x, c))π(c) = (a(x, c))π(c) + c = c + c .534
535

J536

Let us take a look at the following situation (see Figure 3). Let s be a forest and U a set537

of vertices. We assume that U is convex in the sense that u � v � w and u, w ∈ U implies538

v ∈ U (where � denotes the forest order). We call the maximal elements (w.r.t. �) of U the539

U -ends. An U -end u is close if u′ ∈ U , for all u′ � u. Otherwise, it is far. We would like to540

know how many of the U -ends are close.541

I Lemma 5.8. Let m ≥ 0 and k ≥ 1, let s ∼m+k+2
k t be two forests, U ⊆ dom(s) a convex542

set that is closed under ≈m
k , and set543

V := { v ∈ dom(t) | u ≈m
k v for some u ∈ U } .544

545

(a) V is convex and closed under ≈m
k .546

(b) The numbers of ends of U and V are the same, or both numbers are at least k.547

(c) If U has less than k ends, then U is finite if, and only if, V is finite.548

(d) If U is finite and has less than k ends, then U and V have the same numbers of close549

ends and of far ends.550

Proof. (a) If V is not convex, there are vertices v ≺ v′ ≺ v′′ of t with v, v′′ ∈ V and v′ /∈ V .551

Fix vertices u ≺ u′ ≺ u′′ with u ≈m+2
k v, u′ ≈m+1

k v′, and u′′ ≈m
k v′′. By definition of V , we552

have u, u′′ ∈ U and u′ /∈ U . This contradicts the fact that U is convex.553

To see that V is closed under ≈m
k , suppose that v ∈ V and v ≈m

k v′. By definition of V ,554

there is some u ∈ U with u ≈m
k v. Hence, u ≈m

k v ≈m
k v′. As ≈m

k is transitive, this implies555

that v′ ∈ V .556

(b) For a contradiction, suppose that U has n < k ends while V has more than n ends.557

(The other case follows by symmetry.) Choose n + 1 ends v0, . . . , vn ∈ V . Since s ≈m+2
k t,558

A. Blumensath, J. Lédl xxx:15

there are vertices u0, . . . , un in s with ui ≈m+1
k vi. By definition of V , we have ui ∈ U . By559

assumption, there is some index j such that uj is not an end. Hence, we can find a vertex560

u′ � uj with u′ ∈ U . Fix a vertex v′ � vj of t with u′ ≈m
k v′. Then v′ ∈ V and vj is not an561

end. A contradiction.562

(c) For a contradiction, suppose that U is finite, but V is not. (The other case follows563

by symmetry.) By (b), V has only finitely many ends. Hence, there is some element v ∈ V564

such that v � v′ for every end v′ of V . Since s ≈m+3
k t, we can find a vertex u of s with565

u ≈m+2
k v. This implies that u ∈ U . As U is finite, we can find some end u′ of U with u � u′.566

Fix some v′ � v with u′ ≈m+1
k v′. Then u′ ∈ U implies v′ ∈ V . By choice of v, there is some567

v′′ � v′ with v′′ ∈ V . Choose u′′ � u′ with u′′ ≈m
k v′′. By choice of u′, we have u′′ /∈ U . This568

contradicts the fact that v′′ ∈ V .569

(d) By (b), we only need to prove that the number of close ends is the same. Let Û and V̂570

be the sets of U -ends and V -ends, respectively. We denote by N(s, U) the number of close571

U -ends and by F (s, U) the set of all proper subforests s′ of s that are attached to some572

vertex v that does not belong to U but where at least one root belongs to U . (A forest s′ is573

a proper subforest of s attached at v if s′ can be obtained from the subtree s|v by removing574

the root v.) We define the following equivalence relation.575

〈s, U〉 �0 〈t, V 〉 : iff N(s, U) = N(t, V) ,576

〈s, U〉 �i+1 〈t, V 〉 : iff N(s, U) = N(t, V) and577

#τ (s, U) = #τ (t, V) , for every �i-class τ ,578
579

where #τ (s, U) denotes the number of subforests s′ ∈ F (s, U) that belong to the class τ .580

We define the U -height of s by581

h(s, U) :=
{

0 if F (s; U) = ∅
1 + max { h(s′, U) | s′ ∈ F (s, U) } otherwise.

582

583

By induction on l, we will prove the following claim:584

(∗) s ∼m+l+2
k t and h(s, U) ≤ l implies h(s, U) = h(t, V) and 〈s, U〉 �l 〈t, V 〉 .585

586

As h(s, U) ≤ |Û | < k, it then follows that 〈s, U〉 �k 〈t, V 〉. In particular, N(s, U) = N(t, V),587

as desired.588

It thus remains to prove (∗). First, consider the case where l = 0. If h(t, V) > 0, there589

is some V -end v that is not close. Fix some vertex v′ ≺ v with v′ /∈ V . Since s ∼m+2
k t, we590

can find vertices u′ ≺ u of s with u′ ≈m+1
k v′ and u ≈m

k v. By definition of V , it follows that591

u′ /∈ U and u ∈ U . As U is finite, we can find some U -end w � u. But u′ ≺ u � w implies592

that w is not close. Hence, h(s, U) > 0. A contradiction.593

For the second part, suppose that 〈s, U〉 6�0 〈t, V 〉, that is, N(s, U) 6= N(t, V). By594

symmetry, we may assume that m := N(s, U) < N(t, v). Pick m + 1 distinct close V -ends595

v0, . . . , vm. Since m + 1 ≤ k and s ∼m+2
k t, there are elements u0, . . . , um ∈ dom(s) with596

ui ≈m+1
k vi. There must be some index j such that uj is not a close U -end. As U is closed597

under ≈m
k and uj ≈m

k vj ≈m
k u, for some u ∈ U , it follows that uj ∈ U . Furthermore,598

uj ≈m+1
k vj and the fact that vj is a V -end implies that u′ /∈ U , for all u′ � uj . Thus, uj is599

a U -end. But h(s, U) = 0 implies that all U -ends of s are close. A contradiction.600

For the inductive step, suppose that s ∼m+(l+1)+2
k t holds but we have h(s, U) 6= h(t, V)601

or 〈s, U〉 6�l+1 〈t, V 〉. We distinguish several cases.602

xxx:16 ω-Forest Algebras and Temporal Logics

(i) Suppose that h(s, U) > h(t, V). By definition of h, there is a subforest s′ ∈ F (s, U)603

with h(s′, U) = h(s, U) − 1. Then there is some subforest t′ of t with s′ ∼m+l+2
k t′. By604

inductive hypothesis it follows that605

h(s, U) = h(s′, U) + 1 = h(t′, V) + 1 < h(t, V) + 1 ≤ h(s, U) .606
607

A contradiction.608

(ii) Suppose that h(s, U) < h(t, V). By definition of h, there is a subforest t′ ∈ F (t, V)609

with h(t′, V) = h(t, V) − 1. Fix a subforest s′ of s with s′ ∼m+l+2
k t′. By inductive hypothesis,610

it follows that611

h(s, U) > h(s′, U) = h(t′, V) = h(t, V) − 1 ≥ h(s, U) .612
613

A contradiction.614

(iii) Suppose that N(s, U) 6= N(t, v) and there is no �l-class τ with #τ (s, U) 6= #τ (t, V).615

Then we have |Û |−N(s, U) = |V̂ |−N(t, V). Since |Û | = |V̂ | it follows that N(s, U) = N(t, V).616

A contradiction.617

(iv) Finally, suppose that there is some �l-class τ with #τ (s, U) 6= #τ (t, V). By symmetry,618

we may assume that m := #τ (s, U) < #τ (t, V). We choose m + 1 vertices v0, . . . , vm of t619

such that the attached subforests have class τ . Since s ∼m+(l+1)+2
k t and m + 1 ≤ k, there620

are vertices u0, . . . , um of s such that ui ∼m+l+2
k vi, for all i ≤ m. Let si be the subforest621

of s attached to ui, and ti the subforest of t attached to vi. By inductive hypothesis, it622

follows that si �l ti, for i ≤ m. Thus, s has at least m + 1 different subforest in the class τ .623

A contradiction. J624

Bevor presenting our main technical result, let us quickly recall how to solve a system of625

equations using a fixed-point operator. Suppose we are given a system of the form626

x0 = r0(x0, . . . , xn−1) ,627

...628

xn−1 = rn−1(x0, . . . , xn−1) ,629
630

where r0, . . . , rn−1 ∈ FnA. Inductively defining631

si(x0, . . . , xi−1) := (ri(x0, . . . , xi, si+1, . . . , sn−1))ωi ,632
633

we obtain the new system634

x0 = s0 ,635

x1 = s1(x0) ,636

...637

xn−1 = sn−1(x0, . . . , xn−2) ,638
639

which can now be solved by substitution.640

I Proposition 5.9. Let A be an algebra for cEFk. Then641

s ≈(k+3)(|A0|+1)
k t implies π(s) = π(t) , for all regular trees s, t ∈ F0(A0 ∪ A1) .642

643

A. Blumensath, J. Lédl xxx:17

Proof. Let m be the number of L-classes above b := π(s) (including that of b itself). We will644

prove by induction on m that645

s ≈f(m)
k t implies π(t) = b ,646

647

where f(m) := (m + 1)(k + 3). Set648

S := { x ∈ dom(s) | π(s|x) = b } ,649

T := { y ∈ dom(t) | x ≈f(m−1) y for some x ∈ S } .650
651

As t is regular it is the unravelling of some finite graph G. For each y ∈ T , we will prove652

that π(t|y) = b by induction on the number of strongly connected components of G that653

are contained in T and that are reachable from y. Hence, fix y ∈ T , let C be the strongly654

connected component of G containing y, and choose some x ∈ S with x ≈f(m)−1
k y. We655

distinguish two cases.656

(a) Let us begin our induction with the case where C is trivial, i.e., it consists of the657

single vertex y without self-loop. Then658

t|y = a(t0 + · · · + tn−1 + t′
0 + · · · + t′

q−1)659
660

where a := t(y) and the subtrees ti lie outside of T while the t′
i contain vertices in T . Set661

di := π(ti). By our two inductive hypotheses, we already know that π(t′
i) = b and that662

b <L di. Hence,663

π(t|y) = a(d0 + · · · + dn−1 + q × b) .664
665

We have to show that this value is equal to b. Suppose that666

s|x = a(s0 + · · · + sl−1 + s′
0 + · · · + s′

p−1) ,667
668

where again the trees si lie outside of S, while the s′
i contain vertices of S. Setting ci := π(si)669

it follows that670

π(s|x) = a(c0 + · · · + cl−1 + p × b) .671
672

Since x ∈ S, we already know that this value is equal to b. Hence, it remains to show that673

a(c0 + · · · + cl−1 + p × b) = a(d0 + · · · + dn−1 + q × b) .674
675

We start by proving that676

c0 + · · · + cl−1 = d0 + · · · + dn−1 .677
678

By (G4) it is sufficient to prove that, for every c ∈ A0, the number of occurrences of the679

value c in the sum on the left-hand side is either the same as that on the right-hand side,680

or that we can add an arbitrary number of c on both sides without changing the respective681

values. Hence, consider some element c ∈ A0 where these numbers are different. Let U be682

the set of all vertices u � x such that π(s|u) = c and let V be the set of vertices v � y with683

π(t|v) = c. As ≤L is antisymmetric, these two sets are convex. Furthermore, by inductive684

hypothesis on m, they are also closed under ≈f(m−1)
k . Since f(m) − 1 = f(m − 1) + k + 2,685

we can therefore apply Lemma 5.8 and we obtain one of the following cases.686

(i) U and V both have at least k ends. Then we can write s0 + · · ·+sl−1 as r(s′
0, . . . , s′

k−1)687

with π(s′
i) = c. Hence, it follows by (G1)k that688

c0 + · · · + cl−1 = π(r)(c, . . . , c) = π(r)(c, . . . , c) + π × c = c0 + · · · + cl−1 + π × c .689
690

xxx:18 ω-Forest Algebras and Temporal Logics

For t it follows in the same way that691

d0 + · · · + dn−1 = d0 + · · · + dn−1 + π × c .692
693

Consequently, we can add an arbitrary number of terms c to both sides of the above equation694

and thereby make their numbers equal.695

(ii) Both U and V are infinite, but each has less than k ends. Thus, U contains an696

infinite path and we can use Ramsey’s Theorem (or the fact that s is regular) to write697

π(s0 + · · · + sl−1) as a′eω where ec = c = eω. By (G3) and (G1)k it follows that698

c0 + · · · + cl−1 = a′eω = a′(eω + · · · + eω) = a′(c + · · · + c)699

= a′(c + · · · + c) + π × c700

= c0 + · · · + cl−1 + π × c .701
702

For t|y, we similarly obtain703

d0 + · · · + dn−1 = d0 + · · · + dn−1 + π × c ,704
705

and we can equalise the number of c as in Case (i).706

(iii) The last remaining case is where both U and V are finite and they have the same707

number of close ends. Then the sums c0 + · · · + cl−1 and d0 + · · · + dn−1 contain the same708

number of terms with value c and there is nothing to prove.709

We have thus shown that710

c0 + · · · + cl−1 = d0 + · · · + dn−1 .711
712

If p = q, we are done. Hence, we may assume that p 6= q. To conclude the proof, we set713

U := { u ∈ S | x ≺ u } and V := { v ∈ T | y ≺ v } .714
715

If p > 0, then x ≈f(m)−1
k y and U 6= ∅ implies V 6= ∅. Hence, q > 0. In the same way, q > 0716

implies p > 0. Consequently, we have p, q > 0. We consider several cases.717

(i) If b + b = b, then718

a(d0 + · · · + dn−1 + q × b) = a(c0 + · · · + cl−1 + q × b) = a(c0 + · · · + cl−1 + p × b) = b ,719
720

as desired.721

(ii) If U is not a chain, we obtain b = a′(b, b), for some a′, and Lemma 5.7 implies that722

we are in Case (i).723

(iii) If U contains an infinite chain, we can use Ramsey’s Theorem (or the fact that s is724

regular), to obtain a factorisation b = eω, which implies that b + b = b by (G3). Hence, we725

are in Case (i) again.726

(iv) If U is a finite chain, then so is V , by Lemma 5.8. Hence, p = 1 = q and we are done.727

(b) It remains to consider the case where C is not trivial. Then we can factorise728

t|y = r(t0, . . . , tn−1, t′
0, . . . , t′

q−1) ,729
730

where r ∈ FA is the unravelling of C, the subtrees ti lie outside of T , while the subtrees t′
i731

contain vertices in T . Setting di := π(ti), it follows by the two inductive hypotheses that732

di >L b and π(t′
i) = b. Consequently,733

π(t|y) = π(r)(d0, . . . , dn−1, b, . . . , b) .734
735

A. Blumensath, J. Lédl xxx:19

Let us simplify the term r. Introducing one variable xv, for every vertex v ∈ C, we can736

write r as a system of equations737

xv = av(xu0 + · · · + xul−1 + c0 + · · · + cq−1) , for v ∈ C ,738
739

where u0, . . . , ul−1 are the successors of v that belong to C and c0, . . . , cq−1 are constants740

from {d0, . . . , dn−1, b} that correspond to successors outside of C. Solving this system of741

equations in the way we explained above, we obtain a finite term r0 built up from elements742

of A0 ∪ A1 using as operations the horizontal product, the vertical product, and the ω-power743

operation, such that744

π(t|y) = π(r0)(d0, . . . , dn−1, b) .745
746

With the help of the equations (G5)–(G10), we can transform r0 in several steps (while747

preserving its product) until it assumes the form748 [
a0 · · · aj−1

(
x + d0 + · · · + dn−1 + b

)]ω
749

or
[
a0 · · · aj−1

(
x + d0 + · · · + dn−1

)]ω
750
751

where a0, . . . , aj−1 are the labels of the vertices in C.752

We distinguish two cases. First suppose that there is no term with value b in the above753

sum. This means that every subtree attached to C lies entirely outside of the set T . Then754

x ≈f(m)−1
k y implies that we can factorise s|x as755

s|x = r′(s0, . . . , sl−1)756
757

where758

{π(s0), . . . , π(sl−1)} = {d0, . . . , dn−1} ,759

all labels of r′ are among a0, . . . , aj−1,760

every vertex of r′ has, for every i < k, some descendant labelled ai.761

As above we can transform s|x into762 [
a0 · · · aj−1

(
x + c0 + · · · + cl−1

)]ω
763
764

where ci := π(si). Since {c0, . . . , cl−1} = {d0, . . . , dn−1} it follows that765

π(t|y) = (a0 · · · aj−1(x + d0 + · · · + dn−1))ω
766

= (a0 · · · aj−1(x + c0 + · · · + cl−1))ω = π(s|x) = b .767
768

It thus remains to consider the case where some term has value b. Using (G7) and (G11)769

and the fact that b <L di, it then follows that770

π(t|y) =
[
a0 · · · aj−1

(
x + d0 + · · · + dn−1 + b

)]ω =
[
a0 · · · aj−1(x + b)

]ω
.771

772

For every i < j, we fix some zi ∈ S with label ai such that x ≺ zi and some successor of zi773

also belongs to S. Then774

π(s|zi
) = ai(ci

0 + · · · + ci
li−1 + b + · · · + b) ,775

776

for some ci
0, . . . , ci

li−1 >L b. Since777

b = π(s|zi) = ai(ci
0 + · · · + ci

li−1 + b + · · · + b) ≤L ci
0 + · · · + ci

li+1 + b + · · · + b ≤L b778
779

xxx:20 ω-Forest Algebras and Temporal Logics

it follows by asymmetry of ≤L that780

ci
0 + · · · + ci

li+1 + b + · · · + b = b and ai(b) = ai(ci
0 + · · · + ci

li+1 + b + · · · + b) = b .781
782

Consequently, a0 · · · aj−1b = b, which implies that aπb = b where a := a0 · · · aj−1. We claim783

that b + b = b. It then follows that784

b = a(b) = a(k × x)(b) = (a(k × x))π(b) ,785
786

which, by (G12)k, implies that787

π(t|y) = [a(x + b)]ω = [a(x + a(k × x)π(b))]ω = k × a(k × x)π(b) = k × b = b ,788
789

as desired.790

Hence, it remains to prove our claim that b + b = b. By our assumption on y and C, there791

is some vertex u ∈ C that has some successor v /∈ C with v ∈ T . Since s|x ≈f(m)−1
k t|y and792

f(m) ≥ f(m − 1) + k + 1, there are vertices x � u0 ≺ · · · ≺ uk−1 each of which has some793

successor vi ∈ S with vi � ui+1. Consequently, we can write794

π(s|x) = a′a′′(b, . . . , b) and π(s|u0) = a′′(b, . . . , b) ,795
796

where a′ ∈ A1 and a′′ ∈ Ak. Hence, it follows by (G1)k that797

b + b = π(s|u0) + b = a′′(b, . . . , b) + b = a′′(b, . . . , b) = π(s|u0) = b .798
799

J800

I Theorem 5.10. A regular forest algebra A is an algebra for cEFk if, and only if, there801

exists a number m < ω such that802

s ∼m
k t implies π(s) = π(t) , for all regular forests s, t ∈ F(A0 ∪ A1) .803

804

Proof. (⇐) In each of the equations (G1)k–(G12)k, the two terms on both sides are ∼m
k -805

equivalent.806

(⇒) By Proposition 5.9, there is some number m such that807

s ≈m
k t implies π(s) = π(t) , for regular trees s, t ∈ F(A0 ∪ A1) .808

809

Let s, t ∈ F(A0 ∪ A1) be regular forests. We claim that810

s ∼m+k+2
k t implies π(s) = π(t) .811

812

Suppose that s = s0 + · · · + sl−1 and t = t0 + · · · + tn−1, for trees si and ti, and set ci := π(si)813

and di := π(ti). Analogous to Part (a) of the proof of Proposition 5.9, we can use Lemma 5.8814

to show that815

π(s) = c0 + · · · + cl−1 = d0 + · · · + dn−1 = π(t) .816
817

J818

We complete the proof of Theorem 4.2 as follows.819

I Theorem 5.11. A regular language L ⊆ F0Σ is cEFk-definable if, and only if, its syntactic820

algebra S(L) is an algebra for cEFk.821

Proof. (⇐) Suppose that S(L) is an algebra for cEFk. By Theorem 5.10, every language822

recognised by S(L) is invariant under ∼m
k , for some m (when considering regular forests823

only). Consequently, the claim follows by Corollary 5.4.824

A. Blumensath, J. Lédl xxx:21

(⇒) If L is cEFk-definable, it follows by Corollary 5.4 that L is ∼m
k -invariant, for825

some m. Thus ∼m
k is contained in the syntactic congruence of L, which means that the826

syntactic morphism η : FΣ → S(L) maps ∼m
k -equivalent forests to the same value. Given827

forests s, t ∈ F(S0 ∪ S1) with s ∼m
k t, we can choose forests s′, t′ ∈ FΣ with s′ ∼m

k t′ and828

s(v) = η(s′(v)) and t(v) = η(t′(v)). Thus,829

s ∼m
k t implies π(s) = η(s′) = η(t′) = π(t) .830

831

By Theorem 5.10, it follows that S(L) is an algebra for cEFk. J832

References833

1 A. Blumensath, Branch-Continuous Tree Algebras. arXiv:1807.04568, unpublished.834

2 , Recognisability for algebras of infinite trees, Theoretical Computer Science, 412835

(2011), pp. 3463–3486.836

3 , An Algebraic Proof of Rabin’s Tree Theorem, Theoretical Computer Science, 478837

(2013), pp. 1–21.838

4 , Algebraic Language Theory for Eilenberg-Moore Algebras. unpublished, 2020.839

5 , Regular Tree Algebras, Logical Methods in Computer Science, 16 (2020),840

pp. 16:1–16:25.841

6 M. Bojańczyk, Recognisable languages over monads. unpublished note,842

arXiv:1502.04898v1.843

7 M. Bojańczyk and T. Idziaszek, Algebra for Infinite Forests with an Application to844

the Temporal Logic EF, in Proc. 20th International Conference on Concurrency Theory,845

CONCUR, LNCS 5710, 2009, pp. 131–145.846

8 M. Bojańczyk, T. Idziaszek, and M. Skrzypczak, Regular languages of thin trees, in847

Proc. 30th International Symposium on Theoretical Aspects of Computer Science, STACS848

2013, 2013, pp. 562–573.849

9 M. Bojańczyk and B. Klin, A non-regular language of infinite trees that is recognizable850

by a finite algebra, Logical Methods in Computer Science, 15 (2019).851

10 M. Bojańczyk and I. Walukiewicz, Forest Algebras, in Logic and Automata: History852

and Perspectives, J. Flum, E. Grädel, and T. Wilke, eds., Amsterdam University Press,853

2007, pp. 107–132.854

	Introduction
	Forest algebras
	Bisimulation
	The Logic cEF
	The proof of Theorem 4.2

