
Weak Monadic Second-Order Logic on

Infinitely Branching Trees

Diplomarbeit von Elisabeth Jacobi

Betreut von Priv.-Doz. Dr. habil. Achim Blumensath

Eingereicht am

Fachbereich Mathemaik der

Technischen Universität Darmstadt

im Juli 2013

Weak Monadic Second-Order Logic on Infinitely Branching Trees

Vorgelegte Diplomarbeit von Elisabeth Jacobi

1. Gutachten: Priv.-Doz. Dr. habil. Achim Blumensath

2. Gutachten: Professor Dr. Thomas Streicher

Tag der Einreichung: 17. Juli 2013

ii

Erklärung zur Diplomarbeit

Hiermit versichere ich, die vorliegende Diplomarbeit ohne Hilfe Dritter nur mit den an-

gegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus Quellen

entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit hat in gleicher oder

ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, den 17. Juli 2013

(Elisabeth Jacobi)

iii

Danksagung

Ich danke allen Menschen, die mich bei der Entstehung dieser Arbeit unterstützt haben,

insbesondere meinem Betreuer Achim Blumensath für seinen Rat und seine Geduld. Des

weiteren danke ich Tobias für Motivation und Ablenkung, meinen Eltern für steten Druck

und Glauben, meinen besten Freunden für ihre unterstützende Gleichgültigkeit sowie all

meinen Mathefreunden für Gespräch und Mathefreuden.

iv

Contents

1 Introduction 2

2 Preliminaries 4

2.1 Trees . 4

2.2 Automata on Trees . 5

2.2.1 Weak Monadic Second-Order Logic on Trees 5

2.2.2 Tree Automata . 6

2.2.3 Games on Trees . 7

2.3 Back-And-Forth Arguments . 9

2.3.1 WMSOm-Equivalence of Structures 10

2.3.2 Composition of Trees and their Theories 11

3 Translating Formulae into Automata 15

4 Limits of WMSO 24

4.1 Tω versus Tn . 24

4.2 T∞ versus Tn . 25

5 Conversion into Büchi Automata 27

6 Translating Automata to WMSO-Formulae on Finitely Branching Trees 31

7 Equivalence of MSO and WMSO on Trees of Finite Cantor-Bendixon Rank 38

7.1 Counterexample for Infinitely Branching Trees 39

7.2 A Proof for Finitely Branching Trees . 40

1

1 Introduction

This thesis considers the expressive power of weak monadic second-order logic (WMSO)

over infinitely branching trees. To this end we mainly use alternating automata. Basically,

automata are used to specify and verify properties of structures. They have various ap-

plications in software verification, model checking, language processing, complexity theory

and decidability theory.

The connection between automata and logic has been known since the 1960s. First of

all came Büchi’s theorem [Büc60] stating that monadic second-order logic (MSO) with one

successor (S1S) is decidable and that finite automata on ω-words and MSO have the same

expressive power. He also showed that the transformation from automata to formulae and

vice versa is effective.

Later, automata on binary trees as a model for MSO with two successors (S2S) were

considered. Rabin obtained some remarkable results in that field. He showed that it is nec-

cessary to use Muller acceptance when considering automata on trees [Rab69]. Then the

correspondance between automata and MSO-formulae could be lifted from ω-words to the

domain of infinite binary trees. It has also been extended to k-ary trees. Another theorem

of Rabin, called Rabin Basis Theorem [Rab72], shows the decidability of the emptyness

problem Tω(A) = ∅? for the set of trees recognized by a Muller automaton A. Rabin’s

Tree Theorem [Rab69] shows that the family of finitely branching trees recognizable by a

Muller automaton is closed under complement.

Considering infinitely branching trees, Muchnik’s Theorem ([BB01]) is a generalisation

of Rabin’s Tree Theorem and thus one of the strongest decidability results known for MSO.

Given a structure A, one can construct its iteration A∗ which is a tree whose vertices are

finite sequences of elements of A. Muchnik’s Theorem says that model checking is decidable

for A if and only if it is decidable for A∗.

The equivalenvce of MSO and automata was subsequently studied for other logics, like

WMSO. In the 70s, Rabin considered WMSO on binary trees. He showed that a tree

language L is definable in WMSO if and only if L and its complement L̄ are recognizable

by a nondeterministic Büchi automaton [Rab70]. Muller, Schupp and Shelah [MSS92]

introduced weak alternating automata and showed their equivalence to WMSO on finitely

branching trees. McNaughton showed in [McN66] that nondeterministic automata can be

effectively transormed into deterministic ones. This has important consequences. One of

them is that MSO and WMSO are equivalent on ω-words. So far WMSO has only been

considered over finitely branching trees.

2

WMSO-

definable

recognizable by weak

alternating automata

Büchi ∩ Co-Büchi-

regognizable

Figure 1.1: The hirachy of languages of infinitely branching trees

In this thesis we investigate to which extent these results generalise to infinitely branch-

ing trees. Our motivation stems from an attempt to prove Muchnik’s Theorem for WMSO.

But since automata and logic do not match in this case, the proof for MSO can not be

transfered to WMSO.

The thesis is organized as follows. In the second chapter we give the basic definitions

and introduce some proof techniques like games on trees and back-and-forth strategies for

WMSO.

Chapter 3 presents the transformation form WMSO-formulae ϕ defining a class of trees

to weak alternating parity automata Aϕ recognizing these trees. Since these automata

run on infinitely branching trees, we define their transition functions via WMSO in the

style of the MSO-automata introduced by Walukiewicz [Wal02].

In Chapter 4, we show that WMSO cannot distinguish between a tree with an infinite

path and a tree with infinitely many finite paths which implies that alternating automata

are stronger than WMSO on infinitely branching trees.

In Chapter 5 we show that weak alternating automata on infinitely branching trees can

be converted into Büchi automata.

Chapter 6 contains a presentation of Rabin’s result [Rab70] on finitely branching trees.

It says that a tree language L is WMSO-definiable if and only if L and its complement L̄

can be recognised by a Büchi automaton.

The last chapter considers the question of on which trees MSO and WMSO are equival-

ent. Therefore, we define a topological rank for a tree that counts the nesting of infinite

branches. First, we show for infinitely branching tress that MSO and WMSO are not

equivalent, even for Cantor-Bendixon rank 1. Then we show that MSO and WMSO are

equivalent on finitely branching trees of finite Cantor-Bendixon rank.

3

2 Preliminaries

Let us start with giving some definitions that will be used for this thesis. We define

trees first and then specify the logic to talk about them. Further we introduce parity

automata, as well as acceptance via games and some graph theory. The last part deals

with Ehrenfeucht-Fräıssé techniques. The reader should be familiar with the basics of

fist-order logic and some basic automata theory.

2.1 Trees

By P(A) we denote the power set of the set A. The natural numbers are denoted by N
and contain 0.

Definition 1. Let A be a not neccessarily finite set. The set of finite sequences or finite

words is denoted by A∗ and the set of infinite words over A is denoted by Aω. Let ε ∈ A∗

be the empty word and let A∞ = A∗ ∪Aω. For two words u, v ∈ A∗ the prefix order 4 is

defined by

u 4 v if and only if there exists w ∈ A∗ such that v = uw.

A subset of A∗ is said to be prefix-closed if it contains the prefixes of all of its elements.

Definition 2. Let Σ be a non-empty finite alphabet whose elements are called labels and

let A be a set. A Σ-labelled tree over A is a map

t : dom(t)→ Σ,

where dom(t) is a nonempty subset of A∗ which is closed under the prefix order. We

denote by TA,Σ the set of all Σ-trees over A. If the context is clear, we write TΣ.

The elements of dom(t) are called the vertices or nodes of t. If x ∈ dom(t) is a vertex,

any vertex of the form xy for y ∈ dom(t) is called a successor of x. The set of successors

of a vertex x is Suc(x).

A tree is said to be finite if its domain is a finite set. If there exists a vertex with

infinitely many successors, the tree is called infinitely branching.

This thesis deals with infinitely branching labeled trees that have finite sets of labels.

The corresponding relational structure is of the form

T = (dom(t),RootT ,4T , (P Ta)a∈Σ).

4

These relations have the following meaning. RootT = {ε} only contains the root of T , 4
is the prefix order on dom(t) and P Ta contains all v ∈ dom(t) where t(v) = a holds.

Definition 3. Let Σ and ∆ be two alphabets and let η : Σ → ∆ be a map. It induces a

map, also denoted by η, from TD,Σ into TD,∆ defined by t 7→ η ◦ t. Such a map is called

a projection and η ◦ t denotes the result of replacing the label of each vertex of t by its

image under η.

2.2 Automata on Trees

2.2.1 Weak Monadic Second-Order Logic on Trees

Definition 4. Weak monadic second-order logic, in short WMSO, is an extension of first-

order logic. It allows us to quantify over set variables that range over finite sets, denoted

by capital letters X,Y,

Atomic formulae of WMSO(σ) are of the form

(i) t1 = t2 for terms t1, t2 ,

(ii) R(t1, . . . , tn) for terms t1, . . . , tn and R ∈ σ ,

(iii) x ∈ X where x is an individual and X a set variable.

Further, the set of WMSO(σ)-formulae is closed under the usual connectives ∨,¬, and

under first-order and set quantifiers.

The quantifier rank of a formula is the maximal number of nested first- and second-order

quantifiers in that formula.

In general, WMSO-formulae can contain first-order and set variables. But it is possible

to transform every WMSO-formula into a formula containing only set variables. Following

Thomas [Tho97] we call that version of weak monadic second-order logic WMSO0 and use

it throughout this thesis. Most of the time we drop the subscript 0. This translation

results in new atomic formulae

X ⊆ Y, Disj(X,Y), R(X1, . . . , Xn)

where the first says that X is a subset of Y and Disj(X,Y) means that X and Y are

disjoint. Formulae of the form R(X1, . . . , Xn) are satisfied if there exist elements x1 ∈
X1, . . . , xn ∈ Xn such that (x1, . . . , xn) ∈ R.

The set of all trees where ϕ holds is denoted by L(ϕ) and is called the tree language

defined by ϕ.

For the transition functions that are defined in the following subsection, it suffices to

use positive WMSO.

5

Definition 5. Let σ be a signature. Positive weak monadic second-order logic (WMSO+)

over σ consists of those formulae ϕ ∈WMSO(σ), where all predicates R ∈ σ occur under

an even number of negations.

2.2.2 Tree Automata

We introduce several kinds of tree automata which vary according to the allowed trans-

itions and acceptance conditions. They are all special cases of parity automata. The

acceptance condition of a parity automaton is defined by a priority function, assigning

a priority to every state and a parity condition saying that the least priority of states

occuring infinitely often has to be even.

Definition 6. An alternating parity tree automaton over the alphabet Σ is a tuple

A = (Q,Σ, δ, qI ,Ω),

where Q is a finite set of states, qI the initial state,

δ : Q× Σ→WMSO+({Pq | q ∈ Q})

is the transition function that determines the successor states for a given input tuple

(q, a) ∈ Q× Σ

and

Ω : Q→ N

is a priority function. We say that a sequence of states (qn)n<ω satisfies the parity condition

Ω if and only if

lim inf
n→∞

Ω(qn) is even.

A parity automaton is called

— weak alternating, if there exists a preorder v on Q such that q v p, for every p

appearing in δ(q, a), and p v q and q v p implies Ω(p) = Ω(q);

— Büchi, if Ω : Q→ {0, 1};

— co-Büchi, if Ω : Q→ {1, 2}.

A run of the automaton A on a tree t is a map

r : dom(t)→ P(Q×Q)

that satisfies the following conditions:

6

(i) r(ε) = {(qI , qI)};

(ii) for v ∈ dom(t) and p ∈ Q we define a structure

Dr
v,p := (Suc(v), (Pq)q∈Q), where Pq := {d ∈ Suc(v) | (p, q) ∈ r(d)}.

Every (p, q) ∈ r(v) has to satisfy Dr
v,q |= δ(q, t(v)).

A run of A on t is successful if for every path (wn)n<ω ∈ dom(t) and every sequence

(qn)n<ω ∈ Qω such that q0 = qI and (qn, qn+1) ∈ r(wn+1), the sequence (qn)n<ω satisfies

the parity condition. We say that a parity automaton A accepts a tree t, if there exists

an accepting run r on t. The set of all A-runs on t is Run(A, t). The collection of trees

defined by A is denoted by L(A).

A nondeterministic automaton is an automaton as above where a run is a map

r : dom(t)→ Q.

For every w ∈ dom(t), we define the structure

Dr
w := (Suc(w), (Pq)q∈Q),

where

Pq := {d ∈ Suc(w) | r(d) = q}.

A run has to satisfy

Dr
w |= δ(r(w), t(w))

for every w ∈ dom(t).

A run of a nondeterministic automaton is accepting, if r(ε) = qI and for every branch

π of t the sequence r(w)w∈π satisfies the parity condition.

2.2.3 Games on Trees

We introduce a game played on trees which simulates the possible runs of an automaton

on the tree.

Definition 7. A parity game is a gameG played on a graph in which the winning condition

is a parity condition. Formally, the game is defined as

G = 〈V = V1 ∪ V2, E,Ω : V → N〉,

where V is the set of vertices, E the edge relation and Ω a priority function. V1 are the

game positions of Player I and V2 are those of Player II. The game starts at the initial

position v0 ∈ V . Each player chooses in turn a successor of the current vertex. The game

position v has the successor v′ if and only if (v, v′) ∈ E. If the current position is in V2,

7

then it is Player II’s turn to make a move, otherwise Player I makes a move. This leads

to an infinite path of game postitions.

Such a path (vn)n<ω is called a play and it is winning, if it satisfies the parity condition.

That is, if lim inf
n→∞

Ω(vn) is even. In this case, Player I wins the play, otherwise Player II

wins.

A strategy for player I is a function

f : V ∗V1 → V

from the set of words into V such that f(w) is a successor of w in G. Player I has followed

the strategy f in the play (vn)n<ω if, for all n < ω,

vn ∈ V1 implies f(v0 . . . vn) = vn+1.

A strategy for player II is, in a dual way, f : V ∗V2 → V .

If the strategy depends only on the last vertex of the path v0 . . . vn, it is called a memory-

less strategy.

A strategy f is called winning for player I if he wins all plays in which he follows f .

In [PP04, Tho97] we find this theorem:

Theorem 8. In each vertex of a parity game, one of the players has a memoryless winning

strategy.

We can define acceptance of tree automata in terms of parity games.

Definition 9. Let A = (Q, qI ,Σ, δ,Ω) be an automaton and T ∈ T (D,Σ) a tree. We

define the parity game for alternating automata G(A, t) as follows. The sets of vertices are

V1 = Q× dom(t) and V2 = {((Sd)d∈Suc(w), w) | Sd ⊆ Q,w ∈ dom(t)}.

Let

Dw((Sd)d∈Suc(w)) := (Suc(w), (Pq)q∈Q)

such that

Pq = {d ∈ Suc(w) | q ∈ Sd}.

(i) A vertex (p, w) ∈ V1 has the successor ((Sd)d∈Suc(w), w) if and only if

Dw((Sd)d∈Suc(w)) |= δ(p, t(w));

(ii) a vertex ((Sd)d∈Suc(w), w) ∈ V2 has the successors (q, d) for each d ∈ Suc(w) with

q ∈ Sd;

(iii) the initial position is (qI , ε).

8

Let (αn, wn)n<ω be a play. Let I ⊆ ω be the set of indices n such that (αn, wn) ∈ V1. The

play is winning if (αn)n∈I satisfies the parity condition.

Now we can formulate in terms of games what acceptance of a tree by an automaton

means. The proof is formulated for alternating automata but it can be adapted easily for

nondeterministic automata.

Lemma 10. Let A be a parity automaton and t a tree. A accepts t if and only if Player

I has a winning strategy for the game G(A, t).

Proof. (⇒) Let r be an accepting run of A on t. We define a memoryless strategy f :

V1 → V2 for Player I for every (q, w) ∈ V1 by

f(q, w) = ((Sqd)d∈Suc(w), w),

where

Sqd = {q′ ∈ Q | (q, q′) ∈ r(d)}.

Let (αn, wn)n<ω be a play in G(A, t) where Player I followed f . We want to show that it is

a winning play. Consider the subseqence where (α2i, w2i) = (q2i, w2i) ∈ V1. For every i, the

position (q2i+2, w2i+2) arises from the set ((Sqd)d∈Suc(w2i), w2i) which is chosen according to

r as a successor of (q2i, w2i). Thus, since (qn)n<ω with (qn, qn+1) ∈ r(d) satisfies the parity

condition, every (qn, wn)n<ω does this, too. Therefore, the play (αn, wn)n<ω is winning

for Player I.

(⇐) Let f : V1 → V2 be a memoryless winning strategy for Player I in G(A, t). We define

a run r : dom(t) → P(Q × Q) by setting r(ε) = {(qI , qI)}. For every other w ∈ dom(t)

suppose that f(q, w) = ((Sqd)d∈Suc(w), w) for each q ∈ Q. We define

r(d) =
⋃
q∈Q
{(q, q′) | q′ ∈ Sqd},

for d ∈ Suc(w).

To prove that r is successful, let (wn)n<ω be a path of t with w0 = ε and a corresponding

sequence (qn)n<ω such that (qn, qn+1) ∈ r(wn+1). By the choice of r which is according to

the winning strategy f , every (qn, wn) appears also in the play (αn, wn) and satisfies the

parity condition. Therefore, r is successful.

2.3 Back-And-Forth Arguments

This section provides some technical preparations which are needed in Chapter 4 to prove

the equivalence of tree structures of different size.

After recalling some definitions and results, we present two operations to split trees,

firstly at the root, secondly at an arbitrary vertex and prove the compatibility with WMSO.

9

2.3.1 WMSOm-Equivalence of Structures

Definition 11. Let WMSOm be the set of WMSO-formulae with quantifier rank ≤ m.

free(ϕ) is the set of free variables of ϕ ∈WMSO.

For a structure A,

Thm(A) := {ϕ ∈WMSOm | A |= ϕ, free(ϕ) = ∅}

is called the m-theory of A. Two structures A,B are said to be m-equivalent, A ≡m B, if

and only if

Thm(A) = Thm(B).

Two structures A,B of signature σ with universes A,B are isomorphic, denoted by A ∼= B,

if and only if there exists a bijection ι : A → B preserving relations and constants in σ,

i.e.

(i) for n-ary R ∈ σ and a1, . . . , an ∈ A:

RA(a1 . . . an) if and only if RB(ι(a1) . . . ι(an));

(ii) for c ∈ σ we have ι(cA) = cB.

Lemma 12. For stuctures A,B the following are equivalent:

(i) A ≡m+1 B

(ii) for every finite subset P ⊆ A there exists a finite set Q ⊆ B such that (A, P) ≡m
(B, Q) and

for every finite subset Q ⊆ B there exists a finite set P ⊆ A such that (A, P) ≡m
(B, Q).

Proof. (i)⇒(ii): Let P ⊆ A be finite and set ϕ :=
∧

Thm(A, P). Then A |= ∃Xϕ and

by assumption also B |= ∃Xϕ. Consequently, there exists a finite set Q ⊆ B such that

B |= ϕ(Q). Hence, (B, Q) ≡m (A, P). The other direction follows by symmetry of ≡m.

(ii)⇒(i): Since every formula in WMSOm+1
0 is a boolean combination of formulae of the

form ∃Xϕ with ϕ ∈ WMSOm, it is sufficient to prove that A |= ∃Xϕ ⇒ B |= ∃Xϕ, for

ϕ ∈ WMSOm. Let ϕ ∈ WMSOm
0 and A |= ∃Xϕ. Choose a set P ⊆ A with A |= ϕ(P).

There exists Q ⊆ B such that (A, P) ≡m (B, Q). Hence, A |= ϕ(P) implies B |= ϕ(Q).

Therefore, B |= ∃Xϕ(X).

Corollary 13. There is a one-to-one correspondence between m-theories Thm(A) and sets

of the form {Thm−1(A, P) | P ⊆ A}.

Lemma 14. The number of WMSOm-theories for a fixed finite signature τ is finite.

10

Proof. For a τ -structure A, we inductively define sets of theories

Th′0(A) := Th0(A) and Th′m+1(A) := {Th′m(A, P) | P ⊆ A finite}.

By Corollary 13, Thm(A) is uniquely determined by Th′m(A). Now we can see that Th′m(A)

is finite, because in every iteration step the set is included in the power set of the set before

and Th0(A) is finite due to finite signature.

2.3.2 Composition of Trees and their Theories

Now we present some lemmas showing the preservation of m-equivalence for three com-

position operations on trees.

In [EF95, p.39] we find the first one:

Lemma 15. The disjoint union preserves WMSOm-eqivalence, i.e. for trees S and T

S ≡m T, S′ ≡m T ′ =⇒ S ∪̇ S′ ≡m T ′ ∪̇ T ′.

In the remainder of the chapter, we present operations to split trees into their subtrees

such that the theories of the subtrees are preserved. Therefore we first introduce the

definition of an interpretation that translates between two structures.

Definition 16. Let τ and σ = {R1, . . . , Rm} be two vocabularies with ρ(Ri) the arity of

Ri.

A definition scheme Φ = 〈φ, ψ1, . . . ψm〉 is a list of formulae of WMSO(τ) such that

φ has exactly one free first order variable and each ψi has ρ(Ri) distinct free first order

variables.

Given a list Φ as above, the interpretation Φ∗ is a partial function from τ -structures to

σ-stuctures and is defined by Φ∗(A) = AΦ where

(i) the universe of AΦ is the set

AΦ = {a ∈ A : A |= φ(a)},

(ii) the interpretation of Ri in AΦ is the set

AΦ(Ri) = {ā ∈ Aρ(Ri)
Φ : A |= ψi(ā)}.

The image Φ∗(A) is defined, if the universe Aφ is nonempty.

The syntactic interpretation of Φ is a function Φ] : WMSO(τ) → WMSO(σ) from

WMSO(τ)-formulae to WMSO(σ)-formulae, inductively defined by the following proper-

ties:

11

(i) For Ri ∈ σ and θ = Ri(x1, . . . , xm), we put

Φ](θ) = ψi(x1, . . . , xm) ∧
∧
i

φ(xi).

For equality and a set variable Z we have

Φ](x = y) = x = y

and

Φ](Z(x)) = Z(x) ∧ φ(x).

(ii) For the boolean connectives, let θ1 and θ2 be a WMSO(τ)-formulae.

a) Φ](θ1 ∨ θ2) = Φ](θ1) ∨ Φ](θ2).

b) Φ](¬θ1) = ¬Φ](θ1).

(iii) For existential quantification of FO-variables, we put

Φ](∃yθ) = ∃y(φ(y) ∧ Φ](θ)).

(iv) For second order quantification

Φ](∃Uθ1) = ∃U [∀v(U(v)→ φ(v)) ∧ Φ](θ1)].

Lemma 17. Let Φ be an interpretation in WMSO.

(i) If θ ∈WMSO, then Φ](θ) is in WMSO.

(ii) If Φ is of quantifier rank q and θ is a formula of quantifier rank r, then the quantifier

rank of Φ](θ) is bounded by r · q.

Proof. (i) follows form property (v) of Definition 16 and (ii) follows by Definition of Φ].

Without further assumptions we obtain the fundamental property of the connection

between Φ∗ and Φ].

Theorem 18. Let Φ = 〈φ, ψ1, . . . , ψm〉 be an interpretation in WMSO form τ to σ.

Then semantic and syntactic interpretation, Φ∗ and Φ], are linked as follows: Given a

τ -structure A such that Φ∗(A) is defined and an WMSO(σ)-formula θ, then

A |= Φ](θ) iff Φ∗(A) |= θ.

Theorem 18 together with Lemma 17 gives us what is needed here:

Lemma 19. Let Φ be an interpretation of quantifier rank q and let A be a τ -structure.

Then ThWMSO
m (Φ∗(A)) depends only on ThWMSO

m·q (A).

12

In the remainder of this chapter we present various operations to divide trees that are

compatible with the theories of the respective subtrees.

First, we describe an operation on trees that takes the disjoint union of two trees and

fuses their roots.

Definition 20. For two trees T , S define

T ⊕ S = (VT⊕S ,RootT⊕S ,4T⊕S),

where

(i) VT⊕S := (VT − RootT) ∪̇ (VS − RootS) ∪̇ {r}

(ii) RootT⊕S := {r}

(iii) 4T⊕S :=4T ∪̇ 4S ∪{(r, v) | v ∈ VT⊕S}

Lemma 21.

T ≡m T ′ , S ≡m S′ ⇒ T ⊕ S ≡m T ′ ⊕ S′.

Proof. S⊕T = fuseRoot(T ∪̇S) is build up from the disjoint union of the two structures and

then fusing their roots. Both the disjoint union and the fusion operation are compatible

with the WMSO-theory, cf. Lemma 15 and [Mak04].

The next operation takes the disjoint union of the trees and fuses them at a distinguished

vertex.

Definition 22. For τ -trees S, T and a vertex l ∈ S, we define the operation

S ⊕′l T = (VS⊕′lT ,RootS⊕
′
lT ,4S⊕

′
lT),

such that

(i) VS⊕′T := VS ∪̇ VT − RootT

(ii) RootS⊕
′
lT := RootS

(iii) 4S⊕
′
lT :=4S ∪ 4T ∪{(x, y) | x 4S l, y ∈ T}

Lemma 23. Thm(S ⊕′l T) is uniquely determined by Thm(T) and Thm(〈S, l〉).

Proof. Note that S ⊕′l T = Φ∗(〈S, l〉 ∪̇ T) where

Φ := 〈φ, ψRoot(x), ψ4(x, y)〉,

13

where

φS := S(x) ∨ (T (x) ∧ ¬Root(x))

ψRoot(x) := S(x) ∧ Root(x)

ψ4(x, y) := x 4 y ∨ (S(x) ∧ T (y) ∧ x 4 l)

Lemma 19 then implies that Thm(Φ∗(〈S, l〉 ∪̇T)) depends only on Thm(〈S, l〉 ∪̇T), which,

by Lemma 15, only depends on Thm(〈S, l〉) and Thm(T).

14

3 Translating Formulae into Automata

Following the previous chapter, we use the signature σ = (Root,4, (Pa)a∈Σ) for formulae

over trees. Let ϕ be a WMSO(σ)-formula. The goal of this section is to show that for

every WMSO-definable tree language Lϕ we can construct a weak alternating automaton

recognizing that language.

Theorem 24. For every formula ϕ ∈ WMSO(σ) there exists a weak alternating auto-

maton Aϕ such that

L(Aϕ) = L(ϕ).

The proof is by induction on the structure of ϕ. For the inductive step we have to define

L(ϕ) for formulae with free variables. Let ϕ(X1, . . . , Xn) ∈WMSO(σ) with free variables

X1, . . . , Xn and t : dom(t) → Σ be a tree. To specify the values of X1, . . . , Xn ∈ dom(t),

we use an extended alphabet

ΣP̄ = Σ× P(Vϕ),

where Σ is the set of labels of t : dom(t) → Σ and Vϕ is the set of free variables of ϕ.

Thereby we can represent 〈P1, . . . , Pn〉 by the new labelling

tP̄ : dom(t)→ ΣP̄

such that for a vertex x ∈ dom(t),

tP̄ (x) = (t(x), V), where V = {Xi | x ∈ Pi}.

With the above notations we get

Lemma 25. Let T = (dom(t),Root,≤, (Pa)a∈Σ). For every atomic ϕ ∈ WMSO there

exists a weak alternating automaton Aϕ such that

T |= ϕ(P1, . . . , Pn) if and only if tP̄ ∈ L(Aϕ).

Proof. For atomic ϕ, we build Aϕ = (Q,Σ, δ,Ω) as follows.

X ⊆ Y : For every vertex x ∈ dom(t) it has to be true that x ∈ X → x ∈ Y . Let

Q = {q0}.

δ(q, (a, V)) =

{
∀xPq0(x) if X /∈ V or Y ∈ V,
⊥ else

15

For the time Aϕ stays in q0, X ⊆ Y is true and A is accepting. Thus the parity

condition is Ω(q0) = 0.

Disj(X,Y) : The automaton has to check if x /∈ X or x /∈ Y for every x ∈ T . Let the

state set be Q := {q0} and Ω(q0) = 0.

δ(q, (a, V)) =

{
∀xPq0(x) if Y /∈ V or X /∈ V
⊥ else

Root(X) : This automaton accepts or rejects immediately after reading the first letter of

t(x). There is one state q with Ω(q) = 1.

δ(q, (a, V)) =

{
> if X ∈ V
⊥ else

Suc(X,Y) : In this case Aϕ has to verify for some x ∈ X whether some successor of x is

also in Y . This requires two states, therefore Q = {q0, q1}.

δ(q0, (a, V)) =

{
∃x(Pq0(x) ∨ Pq1(x)) if X ∈ V,
∃xPq0(x) if X /∈ V

δ(q1, (a, V) =

{
> if Y ∈ V,
⊥ else

We define Ω(q) = 1 for all q ∈ Q. Aϕ stops accepting or rejecting if it ends with >
or ⊥, respectively.

Pc(X) : The automaton has to check if x is in X and t(x) = c for c ∈ Σ. Thus, we need

Q to be {q0}.

δ(q, (a, V)) =

{
> if a = c ∧X ∈ V
∃xPq0(x) else

Obviously, q0 is not accepting this time, thus Ω(q0) = 1.

To prove closure under boolean connectives we need automata that recognize those

classes of trees that came up from the negation of a formula

L(¬ϕ) = {T ∈ TΣ | T |= ¬ϕ} = L(ϕ)

16

and the disjunction of two formulas

L(ϕ ∨ ψ) = {T ∈ TΣ | T |= ϕ ∨ ψ} = L(ϕ) ∪ L(ψ).

Therefore we introduce an automaton recognizing the complement of a tree language and

one recognizing the sum of two tree languages.

For these two cases the proof is analogous to the proof already done for MSO in [BB01].

Definition 26. The sum of two weak alternating automata A1 = (Q1,Σ, δ1, q
I
1 ,Ω1) and

A2 = (Q2,Σ, δ2, q
I
2 ,Ω2) is the automaton

A1 +A2 := (Q1 ∪̇Q2 ∪̇ {qI},Σ, A, δ, qI ,Ω),

where

δ+(q, a) =

{
δi(q, a) if q ∈ Qi,
δ(qI , a) = δ1(qI1 , a) ∨ δ2(qI2 , a) if q = qI ,

and Ω : Q1 ∪Q2 ∪ {qI} → N, such that Ω(q) = Ωi(q) if q ∈ Qi.

Lemma 27. The class of tree languages recognised by weak alternating tree automata is

closed under union.

Proof. A1 +A2 satisfies the requirements of a weak alternating tree automaton since there

is a preorder on the state set as follows.

qI v p for every p ∈ Q1 ∪Q2;

p v q if p vQ1 q or p vQ2 q.

Let f1, f2 be winning strategies for player I in G(A1, t) and G(A2, t), respectively. In the

game G(A1 +A2, t), player I can choose from the initial state qI whether to play in A1 or

A2. Thus if player I follows f1, he wins G(A1 +A2, t) as well as if he follows f2.

Vice versa, a winning strategy for G(A1 +A2, t) is still a successful strategy on G(A1, t)

or G(A2, t) depending which subtree player I chooses in his first move.

Thus, for the resulting automaton A1 + A2, we have that L(A1 + A2) = L(A1) ∪
L(A2).

The automaton recognizing trees described by ¬ϕ is defined by dualisation of acceptance

condition and transition function.

The construction of the dual automaton and the proof of Lemma 30 are adapted from

[Wal02].

Definition 28. The complement of A = (Q,Σ, δ, qI ,Ω) is the automaton

Ā = (Q,Σ, δ̄, qI , Ω̄).

δ̄(q, a) = δ(q, a) is the dual of δ(q, a), where ∨ and ∧, as well as existential and universal

quantification are exchanged. The dual acceptance condition is Ω̄(q) = Ω(q) + 1.

17

Lemma 29. Let ϕ ∈WMSO+({Pq | q ∈ Q}). If (D, (Pq)q∈Q) |= ϕ and (D, (P ′q)q∈Q) |= ϕ̄,

then there are d ∈ D and q ∈ Q such that d ∈ Pq ∩ P ′q.

Proof. Set

P ′′q := D \ P ′q.

Then (D, (P ′q)q∈Q) |= ϕ̄ implies (D, (P ′′q)q∈Q) |= ¬ϕ. Since ϕ is monotone, it follows that

there is some q ∈ Q such that

Pq * P ′′q .

Hence, there is some element d ∈ Pq \ P ′′q = Pq ∩ P ′q.

Consider a play p in the game G(A, t) and a play p̄ in G(Ā, t). Note that the game

positions V1 of player I in G(A, t) are the same as those in V̄1 of G(Ā, t). The game

positions of player II, V2 and V̄2 are of the form ((Sd)d∈Suc(w), w) or ((S̄d)d∈Suc(w), w),

respectively, such that the sets Sd (respectively S̄d) contain successor states for vertex

w ∈ t. Since Sd = {q ∈ Q | d ∈ Pq}, we obtain the next statement direclty from Lemma

29.

Lemma 30. Let A be an automaton and Ā its complement. For every Σ-labelled tree t

we have

t ∈ L(A) if and only if t /∈ L(Ā).

Proof. To prove the implication from left to the right, assume t ∈ L(A). This means that

there is a winning strategy f for player I in the game G(A, t). We will show how to use

this strategy to construct a winning strategy for player II in G(Ā, t). This implies that

player I does not have a winning stragtegy in G(Ā, t), hence t is not accepted by A.

We construct the winning strategy for player II in G(Ā, t) by induction on the length

of the play. The initial postition in both plays is (qI , ε). Our induction hypothesis is that

we have two finite plays p = v0 . . . vn1 in G(A, t) and p̄ = v̄0 . . . v̄n−1 in G(Ā, t) that are of

length n, such that the subsequences of p and p̄ in V1 are the same. The play p followed

strategy f . Let (q, w) be the last position in p as well as in p̄. Now player I chooses in

G(Ā, t) the successors ((S̄d)d∈Suc(w), w) of (q, w). We are going to consult the strategy f

to find an appropriate answer for player II.

As p was obtained using strategy f we know hat f(p) is defined. Hence, let

f(p) = ((Sd)d∈Suc(w), w).

By Lemma 29, we know that there exists d ∈ Suc(w) such that

Sd ∩ S̄d 6= ∅.

Choose q′ ∈ Sd ∩ S̄d. Player II in G(Ā, t) plays (q′, d). So we put

f̄(p̄(q, w)((S̄d)d∈Suc(w), w)) = (q′, d).

18

This is also a possible choice for player I in G(A, t). The initial parts of the two plays

become

p(q, w)((Sd)d∈Suc(w), w)(q′, d) and p̄(q, w)((S̄d)d∈Suc(w), w)(q′, d).

From this point we can repeat the argument.

Whenever p̄ is a play in G(Ā, t) according to the strategy described above then we have

a play in G(A, t) such that the projections of p̄ and p on V1 are the same. We know that p

is winning for player I in G(A, t) because p was played to the winning strategy f . Hence,

by the definition of Ω̄, play p̄ is winning for player II in G(Ā, t).
The other direction follows by symmetry.

Corollary 31. The class of languages recognized by weak alternating tree automata is

closed under complementation.

The last thing to show is closure under finite projection that corresponds to the exist-

ential quantifier. Since we are dealing with alternating automata, the proof is not as easy

as for nondeterministic automata. [MSS92] proved the result for WMSO on k-ary trees.

In the previous chapter, we have already defined the projection of a tree language. In

the remainder of the current chapter, we prove that the classes of trees recognizable by

weak alternating automata are closed under finite projection, according to the following

definition.

Definition 32. Let Σ ⊆ ∆ be finite alphabet and η be a projection map from ∆ to Σ,

such that η = id for every a ∈ Σ. Let L be a language of ∆-trees. The language ηf (L)

over the alphabet Σ is called the finite projection of L and is defined by

t′ ∈ ηf (L)

if and only if there exists a tree

t ∈ TΣ such that t′ = η ◦ t

and t has only finitely many vertices labelled from ∆ \ Σ.

Now we have

L(∃Xϕ(X)) = {T ∈ TΣ | T |= ∃Xϕ(X)} = ηf (L).

Lemma 33. Let Σ ⊆ ∆ be alphabets and let ηf be the finite projection to Σ. For every

automaton A, there exists an automaton A′ such that

L(A′) = ηf (L(A)).

19

Proof. Let A = (Q,∆, δ, q0,Ω) be a weak alternating automaton recognizing L. The goal

is to find an automaton A′ recognizing the finite projection ηf (L), that is constructed as

follows. A′ has two modes, the nondeterministic mode and the alternating mode. The

nondeterministic mode simulates a nondeterministic automaton on the vertices labelled

from ∆ \ Σ. It keeps track of all the possible states of A at a given vertex, therefore we

use the power set P(Q) as state set of the nondeterministic mode of A′. The alternating

mode simulates the original automaton A, running on a copy of Q that is disjoint from

P(Q). The transition function δ′ starts in {q0} in the nondeterministic mode and in state

S ∈ P(Q) at a vertex with label a ∈ Σ, A′ guesses a preimage b ∈ η−1
f (a) and collects

every possible successor state of q arising from δ(q, b), for every q ∈ S. A′ changes in the

alternating mode if it hopes not to meet any more vertices whose preimage is in ∆ \Σ in

the subtree below the current vertex. We define the automaton

A′ = (P(Q) ∪̇Q,∆, δ′, {q0},Ω′),

where

δ′ : (P(Q) ∪̇Q)× Σ→WMSO+(P(Q) ∪̇Q);

δ′(q, a) = δ(q, a) for q ∈ Q, a ∈ Σ

δ′(S, a) =
∨

b∈η−1(a)

∧
q∈S

δ∗(q, b) for S ∈ P(Q),

where

δ∗(q, b) = ∃X[δ(q, b)[p ∨ (X ∧
∨

S:p∈S
S)/p]p∈Q].

We set

Ω′(q) = Ω(q) for q ∈ Q
Ω′(S) = 1 for S ∈ P(Q).

It remains to show that t ∈ L(A) if and only if ηf (t) ⊆ L(A′). Firstly, let t ∈ L(A) and

A′ running on t′ ∈ ηf (t). Then there exists a memoryless winning strategy f for player

I in G(A, t). We construct a winning strategy f ′ for player I in G(A′, t′) by induction on

the length of the play. Our induction hypothesis is that we have finite plays (pq)q and p′

satisfying the following conditions:

— Let p′ = v′0 . . . v
′
n−1. If v′n−1 = (S,w) ∈ P(Q)× dom(t), then, for every q ∈ S, there

exisits a play pq = vq1 . . . v
q
n−1 that follows strategy f . If v′n−1 = (q, w) ∈ Q×dom(t),

there exisits a play pq = vq1 . . . v
q
n−1 that follows strategy f ;

— the projections on the second component of vi and v′i, i ∈ {1, . . . , n− 1} coincide;

20

— for every uneven i ≤ n− 1 (these are the game positions of player II) either v′i = vi
or vi = (p, w) and v′i = (S,w) for p ∈ S.

We start with the plays p′ = ({q0}, ε) and pq0 = (q0, ε). To define the strategy f ′(v′n−1),

we first consider the case where v′n−1 ∈ Q× dom(t). Then player I plays according to the

strategy f , which is defined for all (q, w) ∈ Q× dom(t). In this case, we set

vn := v′n = f ′(v′n−1) = f(vn−1).

In the second case, v′n−1 = (S,w) ∈ P(Q)× dom(t). Let

I := {d ∈ Suc(w) | there exists v � d such that t(v) ∈ ∆ \ Σ}.

For d ∈ I, we set

S′d := {
⋃
q∈S

Sqd},

and, for d /∈ I, we set

S′d =
⋃
q∈S

Sqd.

Further, we set

v′n = f ′(v′n−1) := ((S′d)d∈Suc(w), w).

In both cases, this implies that (Suc(w), (S′d)d∈Suc(w)) |= δ′(S, ηf (t)(w)). For the play that

follows strategy f , we define

vn := f(vn−1).

Then, it is player II’s turn and he chooses d ∈ Suc(w) and some state in S′d. If d ∈ I, then

v′n+1 := (S′, d), if S′d = {S′},

and we set

vqn+1 := (q, d), for every q ∈ S′.

If d /∈ I,

v′n+1 := (q, d), for some q ∈ S′d,

and we set

vqn+1 := (q, d).

We continue this process and obtain infinite plays P and P ′. The play P ′ of G(A′, t)
that is played according to f ′ is accepting, since it is the same as the infinite play P in

G(A, t) that is played according to strategy f , except for finitely many positions. It follows

that Player I wins the game G(A′, t).

21

For the converse direction, let t′ ∈ L(A′). We show that this implies t ∈ L(A) for some

t ∈ T∆ with ηf (t) = t′. Let f ′ be a winning strategy for player I in G(A′, t′). We construct

t and a winning strategy f for player I in G(A, t) by induction.

As induction hypothesis, suppose that we have constructed a finite tree tf of depth n

such that ηf (tf) = t′f 4 t
′ and two finite plays p′ and p satisfying the following conditions.

— p′ = v′0 . . . v
′
n−1, p = v0 . . . vn−1 and p′ follows strategy f ′;

— the projections on the second component of vi and v′i, i ∈ {1, . . . , n− 1} coincide;

— for every uneven i ≤ n− 1, vi = (q, w) implies (q, w) = v′i or, v′i = (S,w) for q ∈ S.

We start with the plays p = (q0, ε) and p′ = ({q0}, ε). For the inductive step, let vn−1 =

(q, w) be the last position of p. To find the next move f(q, w) for player I, we consider

f ′(v′n−1). The last position v′n−1 of p′ can be of two kinds. The first one is that vn−1 =

(q, w) ∈ Q× dom(t). Then we set

vn = f(q, w) := f ′(q, w) = v′n

and we choose

t(w) := t′(w).

If the last position of p′ contains a set state such that v′n−1 = (S′, w), we consider f ′(S′, w)

which is of the form

f ′(S′, w) = ((S′d)d∈Suc(w), w).

For every d ∈ Suc(w), S′d contains those set states that are possible successor states of

every q ∈ S′. Since

(Suc(w), (P ′q′)q′∈Q′) |= δ′(S′, t′(w)) =
∨

b∈η−1(t(w))

∧
q∈S′

δ∗(q, b),

where P ′q′ := {d ∈ Suc(w) | q′ ∈ S′d}, there exists b ∈ η−1(t′(w)) such that, for every

q ∈ S′,
(Suc(w), (P ′q′)q′∈Q′) |= δ∗(q, b).

But this implies that

(Suc(w), (Pq)q∈Q) |= δ(q, b),

for every q ∈ S′, where Pq :=
⋃
{P ′S′′ | q ∈ S′′}∪P ′q. We guess the preimage t(w) := b and

choose (Sqd)d∈Suc(w) such that

Sqd := {p ∈ Q | d ∈ Pp}

for some q ∈ S′ and set

vn = f(q, w) := ((Sqd)d∈Suc(w), w) and v′n := f(v′n−1).

22

Now it is player II’s turn and he chooses

vn+1 := (q, d),

where q ∈ Sqd. We assume that the choice of player II in G(A′, t′) is

v′n+1 := (S, d) if S′d = {S} ⊆ P(Q),

v′n+1 := (q, d) if S′d ⊆ Q.

We continue this procedure to infinity and obtain infinite plays P ′ in G(A′, t′), P in

G(A, t) and a tree t : dom(t) → ∆ with finitely many vertices labelled from ∆ \ Σ. The

play P satisfies the parity condition of A since the projection ηf (t) is finite and the infinite

play P ′ in G(A′, ηf (t)) that follows f is winning. This means that game positions that

contain set states occur only finitely many times in P ′ and the remaining positions are of

the form (q, wn) for infinitely many n < ω. But P coincides with P ′ up to finitely many

exceptions and thus satisfies the parity condition, too.

Hence, we showed that t ∈ L(A) if and only if ηf (t) ∈ L(A′).

Corollary 34. The class of languages recognized by weak alternating tree automata is

closed under finite projection.

23

4 Limits of WMSO

In the previous section we showed that for every WMSO-formula there is a weak al-

ternating automaton that recognizes the correponding tree language. Here we present a

counterexample showing that the converse statement is false. The example is based on the

fact that WMSO cannot distinguish between infinitely branching trees with and without

an infinite branch. Since weak alternating automata can distinguish between such trees,

it follows that they are strictly stronger than WMSO on infinitely branching trees.

4.1 Tω versus Tn

Let us introduce the trees our counterexample is based on. The result of the whole section

is shown in two steps: first, we prove the m-equivalence of a tree of finite depth (which

depends on m) and a tree of depth ω. Another proof for this can be found in [Kus08].

Definition 35. For n ∈ N define the tree

Tn = {((a0, i0) . . . (ak, ik))|aj , ij ∈ N, n > a0 > a1 > . . . > ak and arbitrary i0, . . . ik}.

The tree Tω =
⋃
n∈N Tn is the union of all Tn.

Lemma 36. Fix m ∈ N. There exists an n0 ∈ N such that, for every n ∈ N, there is an

index k < n0 such that Tn ≡m Tk.

Proof. Consider the sequence Thm(T0),Thm(T1), Since the number of m-theories is

finite, choose n0 such that every theory has occured at least once in (Thm(Tn))n<n0 .

Lemma 37. (i) Tn ∼= Tk ⊕ Tn for all k, n ∈ N ∪ {ω}, k ≤ n.

(ii) For a finite subset P ⊆ Tω, we can find n ∈ N and a subset P ′ ⊆ Tn such that

(Tω, P) ∼= (Tn, P
′)⊕ (Tω, ∅).

Proof. by definiton of Tn and Tω.

Lemma 38. For every natural number m there exists a natural number n0 such that

Tn ≡m Tω for all n ≥ n0.

24

Proof. We prove the claim by induction on m. For m = 0 the claim is trivial.

For the inductive step assume Tn ≡m Tω for n ≥ n1. We claim that Tn ≡m+1 Tω for

n ≥ max{n0, n1} where n0 is the constant from Lemma 36. We use Lemma 12 to prove

the claim. Let P ⊆ Tn be finite. Then

(Tn, P) ∼= (Tn, ∅)⊕ (Tn, P) ≡WMSO
m (Tω, ∅)⊕ (Tn, P) ∼= (Tω, P).

To prove the other direction, select a finite set Q ⊆ Tω. By Lemma 37(b), there exists

l ∈ N andQ′ ⊆ Tl such that (Tω, Q) ∼= (Tω, ∅)⊕(Tl, Q
′). If l < n0, we set (Tk, P) := (Tl, Q

′).

If l ≥ n0, by Lemma 36 there exists k < n0 such that Tl has the same (m + 1)-theory

as Tk. By Lemma 12, {Thm(Tl, P) | P ⊆ Tl} = {Thm(Tk, Q
′) | Q′ ⊆ Tk}. Hence, select

P ⊆ Tk with Thm(Tl, Q
′) = Thm(Tk, P). Now we have

(Tω, ∅) ≡m (Tn, ∅)

by induction hypothesis; and also (Tl, Q
′) ≡m (Tk, P). Then by Lemma 21 and Lemma

37(a)

(Tω, Q) ∼= (Tω, ∅)⊕ (Tl, Q
′) ≡m (Tn, ∅)⊕ (Tk, P) ∼= (Tn, P).

4.2 T∞ versus Tn

Definition 39. Let ∞ /∈ N be a new symbol. Then

T∞ := {∞kw | k ∈ N, w ∈ Tω}

is a tree with an infinite path.

By defnition of ⊕′x, we get

Observation 40. Let x =∞k be a vertex on the infinite path of T∞. Then

T∞ ∼= 〈T+, x〉 ⊕′x T∞,

where T+ = {y ∈ T∞ | ∞k+1 � y}. We also have

T+ ∼= Tω.

Now we can prove that

Lemma 41. For every m ∈ N, we have T∞ ≡m Tω.

25

Proof. We prove the claim by induction on m. For m = 0 there is nothing to show. For

the inductive step assume T∞ ≡m Tω. First, let P be a finite subset of Tω. Then there

exists P ′ ⊆ T∞ such that (T∞, P
′) ∼= (T∞, ∅)⊕ (Tω, P). We have by induction hypothesis

and Lemma 21

(T∞, P
′) ∼= (T∞, ∅)⊕ (Tω, P) ≡m (Tω, ∅)⊕ (Tω, P) ∼= (Tω, P).

Conversely, let P ⊆ T∞. Let l be the maximal distance from the root to an element of

P . Now choose the vertex v := ∞l. We divide T∞ here and obtain by Observation 40 a

tree T+ such that

(T∞, P) ∼= (T+, v, P)⊕′v (T∞, ∅).

By Observation 40, there exists x′ ∈ Tω such that

(Tω, x
′) ∼= (T+, v),

which implies that there exists Q ⊆ Tω such that

(Tω, x
′, Q) ∼= (T+, v, P).

Together with Lemma 23 and the induction hypothesis we obtain

(T∞, P) ∼= (T+, v, P)⊕′v (T∞, ∅) ≡m (Tω, x
′, Q)⊕′x′ (Tω, ∅) ∼= (Tω, Q).

Lemma 12 gives us now T∞ ≡m+1 Tω.

Now put Lemma 38 and Lemma 41 together and obtain the desired result:

Theorem 42. For every m ∈ N there exists N ∈ N such that

T∞ ≡m Tn, for all n > N.

In terms of automata this yields the following result.

Theorem 43. On infinitely branching trees, weak alternating automata are strictly stronger

than weak monadic second order logic.

Proof. For any alphabet Σ and Q = {q}, let Afin := (Q,Σ, q,Ω) be a a tree automaton

with transition function

δ(q, a) = ∀xPq(x)

and parity condition Ω(q) = 1.

This automaton recognizes only trees with finite branches, since every infinite run pro-

duces a sequence of states that violates the parity condition.

26

5 Conversion into Büchi Automata

In this chapter we show how to convert weak alternating automata on infinitely branching

trees into Büchi automata.

In [MSS92] the same result was shown, but for weak alternating automata on infinite

k-ary trees (k ∈ N). Earlier, Rabin had shown in [Rab70] that a language L of binary

infinte trees is definable in WMSO if and only if L and its complement L are recognised

by Büchi-automata. It follows that WMSO is expressively equivalent to weak alternating

automata on k-ary infinite trees.

Recall that an automaton A is a Büchi automaton, if the acceptance condition uses only

priorities 0, 1 and a co-Büchi automaton uses priorities 1, 2. Note that we will not add

+1 every time we take the complement of a Co-Büchi automaton; if Ω̄(Q) ∈ {1, 2}, then
¯̄Ω(Q) ∈ {0, 1}. A Büchi-automaton A accepts a tree t, if there exists a run r : dom(t) →
P(Q × Q) such that for every path (wn)n<ω of t and every sequence (qn)n<ω ∈ Qω such

that q0 = qI and (qn, qn+1) ∈ r(w′), the sequence (Ω(qn))n<ω meets 0 infinitely often.

Formally, for every i < ω, there exists j < ω such that j ≥ i and Ω(qj) is even. Co-Büchi

automata employ the dual condition that (Ω(qn))n<ω meets 2 finitely many times. That

is, for every j < ω, there exists i < ω such that j ≥ i and Ω(qj) is not even. This proves

the following lemma.

Lemma 44. The complement of a Büchi automaton is a Co-Büchi automaton and vice

versa.

Languages accepted by Büchi Automata are not closed under complement in general,

cf. [Tho97, Example 6.2.].

Theorem 45. For every weak alternating automaton A, there exists a non-deterministic

Büchi automaton A′ such that L(A) = L(A′).

Proof. Our proof follows that of [MSS92]. Let A = (Q,Σ, δ, qI ,Ω) be a weak alternating

automaton. A non-deterministic Büchi automaton A′ = (Q′,Σ, δ′, q′0,Ω
′) recognizing the

same language as A can be constructed as follows.

Let F̄ = (Q1, . . . , Qr) be the list of all strongly connected components in the transition

graph of A that contain states of uneven priority. The states of A′ are 3-tuples (S, i, T)

where

— the set S ∈ P(Q) keeps track of the copies of A running at a time;

27

— the index i ∈ {0, . . . , r − 1} indicates the strongly connected component of A in

which A′ is looking for rejecting subsets meeting the current state S;

— the set T contains the copies of A′ in Qi.

The initial state is q′0 = ({qI}, 0, ∅). Let Suc(w) be the successor set of a vertex w. To

keep track of all copies of A running at a time, we have to collect the parallel successor

states of every p ∈ S in a set P pd such that, for every p ∈ S and a ∈ Σ,

Dw((P pd)d∈Suc(w)) |= δ(p, a).

Then we have

Sd :=
⋃
p∈S

P pd

and

Td :=
⋃
p∈T

P pd ∩Qi

for every successor d ∈ Suc(w) and index i. Td only uses states which were already in T

and still belong to Sd. Thus, the transition function of A′ is

δ′ : (P(Q)× Zr × P(Q))× Σ→WMSO+(P(Q)× Zr × P(Q))

such that

δ′((S, i, T), a) =
∧
q∈S

δ∗(q, a),

where

δ∗(q, a) =


δ(q, a)[θ0(p)/p]p∈Q if q /∈ T ∧ T 6= ∅
δ(q, a)[θ1(p)/p]p∈Q if T = ∅
δ(q, a)[θ2(p)/p]p∈Q if q ∈ T,

θ0(p) =
∨

S′:p∈S′
T ′⊆Qi

P(S′,i,T ′)(x),

θ1(p) =



∨
S′:p∈S′
T ′⊆Qi+1

P(S′,i+1,T ′)(x) if p /∈ Qi+1

∨
S′:p∈S′
T ′:p∈T ′

P(S′,i+1,T ′)(x) if p ∈ Qi+1,

θ2(p) =



∨
S′:p∈S′
T ′⊆Qi

P(S′,i,T ′)(x) if p /∈ Qi

∨
S′:p∈S′
T ′:p∈T ′

P(S′,i,T ′)(x) if p ∈ Qi.

28

The priority function Ω′ : Q′ → {0, 1} is defined by

Ω′(S, i, T) =

{
0 if and only if T = ∅
1 else.

It remains to show that A′ recognizes the same language as A does. First, we prove

L(A) ⊆ L(A′). Let r : dom(t)→ P(Q×Q) be an accepting run of A on t. We construct

a run r′ : dom(t)→ Q′ of A′ on t from r by induction. Let r′(ε) = ({q0}, 0, ∅). Suppose as

induction hypothesis that r′ is defined up to vertex w and let r′(w) = (S, i, T). For every

successor w′ ∈ Suc(w), we construct r′(w′) = (S′, i′, T ′) from r(w). For every q ∈ S we

define

S′q := {q′ | (q, q′) ∈ r(w′)}

and set

S′ :=
⋃
q∈S

S′q;

i′ =

{
i+ 1 if T = ∅
i else;

T ′ := {q′ | (q, q′) ∈ r(w′), q ∈ T, q′ ∈ Qi′}.

If we continue this process to infinity, we obtain a run of A′ on t. Suppose that there

exists a branch π ⊆ t such that r′(π) does not satisfy the parity condition. This means that

there exists a sequence (Sn, in, Tn)n<ω with Tn 6= ∅, for almost every n. Then there exists

n0 and i∗ such that in = i∗ for every n ≥ n0 and a sequence (qn)n<ω such that (qn−1, qn) ∈
r(w) and qn ∈ Qi∗ for n ≤ n0. Therefore, (qn)n<ω violates the parity condition, which

contradicts our assumption that r is a successful run on t. Hence, A′ accepts t and we

have shown that L(A) ⊆ L(A′).
Now we show L(A′) ⊆ L(A) by constructing a run of A on t from a given run of A′

on t. Let r′ : dom(t) → Q be an accepting run of A′ on t. The run of A starts in

r(ε) = {(q0, q0)}. Assume as induction hypothesis that the run r is already defined on w

and furthermore that

r(w) ⊆ {(q, q′) | q′ ∈ S},

where (S, i, T) = r′(w). Let w′ be a successor of w and assume that r′(w′) = (S′, i′, T ′).

We set

r(w′) := {(q′, q′′) | q′ ∈ S, q′′ ∈ S′ and q′′ is needed by δ(q′, t(w)) at w′},

where we can say that q′′ is needed by δ at w′ if it satisfies the following condition. Since

(Suc(w), (P ′q′)q′∈Q′) |= δ′((S, i, T), t(w)),

29

where

P ′q′ = {d ∈ Suc(w) | q′ ∈ Sd},

it follows that, for every q′ ∈ S,

(Suc(w), (P ′q′)q′∈Q′) |= δ∗(q′, t(w)).

But this implies

(Suc(w), (Pq)q∈Q) |= δ(q′, t(w)), where Pq = {d ∈ Suc(w) | d ∈ P ′(S,i,T) for q ∈ S}.

If w′ ∈ Pq′′ , we say that q′′ is needed by δ(q′, (t(w))) at vertex w′.

If we continue according to this constuction, Dr
w,q |= δ(q, t(w)), for every q ∈ Q and

w ∈ t which confirms that r is a run of A on t. Since r′ is an accepting run on t, we know

that for every infinite branch π ∈ t, r(π) satisfies the parity condition Ω′, because r′(π)

contains no infinite sequence of states of uneven parity. This implies that for every π ∈ t,
r(π) also satisfies the parity condition ω. Thus, L(A′) ⊆ L(A).

From the above proof follows that

Corollary 46. The class of languages of infinitely branching trees recognized by weak

alternating automata is contained in the class of languages of infinitely branching trees

recognized by Büchi and Co-Büchi automata.

From Lemma 45 and Lemma 24 we obtain

Corollary 47. For every formula ϕ ∈ WMSO there exists a Büchi automaton and a

Co-Büchi automaton recognizing L(ϕ).

Proof. Let ϕ ∈ WMSO define the language of infinitely branching trees Lϕ. Then ¬ϕ
defines Lϕ. By Lemma 44 and Theorem 45, both Lϕ and Lϕ are recognizable by a Büchi

automaton.

30

6 Translating Automata to

WMSO-Formulae on Finitely Branching

Trees

In [Rab70], Michael O. Rabin published the proof of the equivalence between weak monadic

second-order logic over binary trees and finite non-deterministic Büchi automata. In this

chapter we present the proof of the direction from automata to WMSO for arbitray finitely

branching trees. The construction considers infinite trees as a limit of finite prefix trees,

which is of course not possible for infinitely branching trees.

In this chapter, we use only trees where every node has a finite number of successors.

Definition 48. Let t be a finitely branching labelled tree. A frontier in t is a set G ⊆
dom(t) such that |G ∩ π| = 1, for every branch π ⊆ dom(t). Obviously, if G is a frontier

in t, then G is finite. For two frontiers G1, G2 ⊆ dom(t), we say that G2 is bigger than G1

(G2 > G1) if for every y ∈ G2 there exists x ∈ G1 such that x ≺ y.

A prefix E of t is a set E = {x|x 4 y for some y ∈ G} where G is a fixed frontier in t.

We write E v t if E is a prefix of t. For E as above, G is called the frontier of E and

denoted by Ft(E).

For a tree t, let tx ⊆ t be the subtree with root x.

Definition 49. Let A be a non-deterministic Büchi automaton. The set of states with

priority 0 is denoted by F = {q ∈ Q | Ω(q) = 0} and is also called the set of accepting

states.

Let r ∈ Run(A, t). If we restrict the domain of r to a prefix E ⊆ dom(t), we obtain a

partial run r � E. The set of partial runs of A on t is denoted by pRun(A, t).

Lemma 50. For every finitely branching tree t that is recognized by a non-deterministic

Büchi automaton, there exists a sequence of prefixes En v t such that Ft(En) ⊆ F and

Ft(En) < Ft(En+1) for every n < ω.

Proof. Let A be a non-deterministic automaton and t ∈ L(A). Fix an accepting run

r ∈ Run(A, t). Then for every π ⊆ dom(t), (r(w))w∈π visits states of priority 0 infinitely

often. Let

Gn := {x ∈ t | there exists a path such that x is the n-th vertex with Ω(x) = 0}.

Let En be the prefix of t with frontier Gn.

31

We want to show that a tree language L is definable in WMSO provided that both L and

its complement L̄ are recognized by non-deterministic Büchi automata. To get closer to

our result, we need to study the question of when L(A)∩L(B) 6= ∅, for non-deterministic

Büchi automata A and B.

Let A = (Q,Σ, δ, qI ,Ω), B = (Q′,Σ, δ′, q′I ,Ω
′). If t ∈ L(A) ∩ L(B), then there are

two accepting runs r ∈ Run(A, t) and r′ ∈ Run(B, t). Hence there exists a finite prefix

E ⊆ dom(t) and two frontiers in t, G and G′, such that G,G′ < Ft(E), r(G) ⊆ F and

r′(G′) ⊆ F ′, where F and F ′, respectively, are the sets of accepting states. For every

x ∈ Ft(E) there exists a finite subtree E1 ⊆ tx, frontiers G1 and G′1 of tx such that

G1, G
′
1 < Ft(E1), r(G1) ⊆ F and r′(G′1) ⊆ F ′. And so on, for the nodes x ∈ Ft(E1).

These considerations motivate the following construction of a sequence of subsets of

Q×Q′.

— Define H0 = Q×Q′.

— Define Hi+1 inductively on i by (q, q′) ∈ Hi+1 if and only if (q, q′) ∈ Hi and there

exists a finite Σ-tree e : E → Σ, where dom(E) 6= {ε}, frontiers G,G′ < Ft(E), and

partial runs r ∈ pRun(A, e) and r′ ∈ pRun(B, e) such that :

(i) r(ε) = q, r′(ε) = q′;

(ii) r(G) ⊆ F , r′(G′) ⊆ F ′;

(iii) for every x ∈ Ft(E) we have (r(x), r(x′)) ∈ Hi.

Also, if Hi = Hi+1, then Hi = Hi+k for every k < ω. Since Hi+1 ⊆ Hi, it follows that if

|Q| · |Q′| = m, then certainly Hm = Hm+k for k < ω. With the above notations we have

the following.

Lemma 51. Let t be a Σ-tree, A and B nondeterministic Büchi automata and runs

r ∈ Run(A, t) and r′ ∈ Run(B, t). If there exists a strictly increasing sequence (Ei)i≤m
of finite prefixes of t, where E0 = {ε} and, for each i < m, there are two frontiers (of t)

Gi, G
′
i satisfying

Ft(Ei) ≤ Gi < Ft(Ei+1), r(Gi) ⊆ F

and

Ft(Ei) ≤ G′i < Ft(Ei+1), r′(G′i) ⊆ F ′,

then (qI , q
′
I) ∈ Hm.

Proof. We claim that (r(x), r′(x)) ∈ Hk for every x ∈ Ft(Ei) with i ≤ m − k. We prove

this by induction on k ≤ m.

The base case is trivial, since H0 = Q×Q′, (r(x), r′(x)) ∈ H0 for every x ∈ t.
As induction hypothesis, assume k ≤ m−1 and (r(x), r′(x)) ∈ Hk, for every x ∈ Ft(Ei),

i ≤ m− k.

32

E0

E1

E2

G0

G′0

G1

G′1

...

Figure 6.1: The construction of finte prefixes with accepting frontiers of Lemma 51.

Now let k + 1 ≤ m and therefore i ≤ m − (k + 1) and x ∈ Ft(Ei). Consider the finite

tree E = tx ∩ Ei+1. Note that Ft(E) = tx ∩ Ft(Ei+1) and that Gi ∩ tx and G′i ∩ tx are

frontiers in E (and in tx). Now r � E and r′ � E are, respectively, partial A- and B-runs on

t. Also, r(Gi ∩ tx) ⊆ F and r′(G′i ∩ tx) ⊆ F ′. By induction hypothesis, r((y), r′(y)) ∈ Hk

for every x ∈ Ft(Ei), i ≤ k. Thus, (r(x), r′(x)) satifies the criteria to be in Hk+1. Since

ε ∈ Ft(E0) we have, in particular, (qI , q
′
I) = (r(ε), r′(ε)) ∈ Hm.

Theorem 52. L(A) ∩ L(B) 6= ∅ if and only if (qI , q
′
I) ∈ Hm, for m = |Q| · |Q′| .

Proof. (⇒) Assume t ∈ L(A) ∩ L(B). There exist runs r ∈ Run(A, t) and r′ ∈ Run(B, t)
such that r(ε) = qI , r

′(ε) = q′I and for every branch π ∈ dom(t), r(π) and r′(π) satisfy

the parity condition. By Lemma 50, this implies the existence of two strictly increasing

sequences (Gi)i≤m and (G′i)i≤m of frontiers in t such that r(Gi) ⊆ F and r′(G′i) ⊆ F ′.

Define µ : N→ N increasing and Ei v t as follows. Let E0 = ∅ and if En is already defined,

choose µ(n) minimal such that Ft(En) < Gµ(n), Gµ(n) and En+1 such that Gµ(n), G
′
µ(n) <

Ft(En+1). The construction satisfies the requirements of Lemma 51. Hence, we have

(qI , q
′
I) ∈ Hm.

(⇐) To prove the converse assertion, let (qI , q
′
I) ∈ Hm. Because Hm = Hm+1, we have

for every (q, q′) ∈ Hm a finite Σ-tree e(q, q′), where dom(e) = E(q, q′) 6= {ε}, partial

runs r(q, q′) ∈ pRun(A, e(q, q′)) and r′(q, q′) ∈ pRun(B, e(q, q′)) and frontiers G,G′ <

Ft(E(q, q′)) satisfying

(i) r(q, q′)(ε) = q, r′(q, q′)(ε) = q′;

(ii) r(q, q′)(G) ⊆ F , r′(q, q′)(G′) ⊆ F ′;

33

(iii) x ∈ Ft(E(q, q′)) implies (r(q, q′)(x), r′(q, q′)(x)) ∈ Hm.

To get accepting runs of A and B on an infinite tree, we construct a sequence of fused

finite trees and runs as follows. Start with e(qI , q
′
I) and define a partial A-run r1(x) =

r(qI , q
′
I)(x), x ∈ E(qI , qI). Note that for x ∈ Ft(E(qI , q

′
I)), (r1(x), r′1(x)) ∈ Hm.

Denote e(qI , q
′
I) = e1. Now fuse E1 and E(r1(x), r′1(x)) at every x ∈ Ft(E1) to obtain

E2 := E1 ∪
⋃

x∈Ft(E1)

xE(r1(x), r′1(x)).

Let e2 : E2 → Σ, where e2(x) = e1(x) for x ∈ E1 and e2(z) = e(q, q′)(y) for y = xz,

where x ∈ Ft(E1), z ∈ E(q, q′) and q = r1(x) and q′ = r′1(x). Since e2(x) = e1(x) for

x ∈ Ft(E1), e2 extends e1. Extend r1 and r′1 to partial runs r2 ∈ pRun(A, E2) and

r′2 ∈ pRun(B, E2) as follows. If y ∈ (E2 −E1) ∪ Ft(E1) then there is a unique x ∈ Ft(E1)

such that y ∈ xE(q, q′), where r1(x) = q and r′1(x) = q′. Assume y = xz, z ∈ E(q, q′)

and set r2(y) = r(q, q′)(z), r′2(y) = r′(q, q′)(z). Note that for y ∈ Ft(E1), we have

r1(y) = r2(y), r′1(y) = r′2(y). Thus r2 and r′2 indeed extend r1 and r′1, respectively. Also,

for x ∈ Ft(E2) we have (r2(x), r′2(x)) ∈ Hm. Thus this process can be continued to infinity

which results in a sequence of partial Σ-trees (ei)i<ω and of runs (ri)i<ω and (r′i)i<ω. Let

t = limi→∞ ei; r = limi→∞ ri ; r′ = limi→∞ r
′
i. Then r ∈ Run(A, t), r′ ∈ Run(B, t), r(ε) =

qI , r
′(ε) = q′I . Our construction implies that for every x ∈ Ft(Ei), r � (dom(tx)∩Ei+1) and

r′ � (dom(tx)∩Ei+1) coincide with some r(q, q′) and r′(q, q′), respectively. This entails the

existence of two frontiersGi, G
′
i of t with Ft(Ei) ≤ Gi < Ft(Ei+1), Ft(Ei) ≤ Gi < Ft(Ei+1)

such that r(Gi) ⊆ F, r′(G′i) ⊆ F ′. Thus r is a successful A-run for t and r′ is a successful

B-run for t. Hence t ∈ L(A) ∩ L(B).

Let t be a labelled tree accepted byA. We want to express this fact by certain statements

that are WMSO-definable in the structure t = (dom(t),4,Root, P̄). On t there exists

a run r ∈ Run(A, t) and an infinite sequence of prefixes (Gi)i<ω such that r(ε) = qI ,

r(Ft(Gi)) ⊆ F , i < ω. This implies that for every finite subtree E ⊆ dom(t) there exists a

subtree g : G→ Σ such that E ⊆ G ⊆ dom(t) and a partial run r′ ∈ Run(A, g) such that

r′(ε) = qI , r
′(Ft(G)) ⊆ F . Namely, G = Gi for an appropriate i, and r′ = r � G. This r′

has the property that for every x ∈ Ft(G), there exists a finite tree G′ ⊆ dom(tx) and a

run r′′ ∈ Run(A, g′) for a labelled tree g′ : G′ → Σ such that r′′(ε) = qI , r
′′(Ft(G′)) ⊆ F .

Namely, G′ = Gj ∩ dom(tx) for an appropriate j > i and r′′ = r � G′. And so on. These

facts can now be formalized by an inductive definition. Let t : dom(t)→ Σ be a Σ-tree.

– Define K0(t) = Q× dom(t).

– Let q ∈ Q, x ∈ dom(t), t a Σ-tree. (q, x) ∈ Ki+1(t) if and only if

(i) for every finite subtree E ⊆ dom(tx), there exists a finite subtree G such that

E v G v t;

34

(ii) for g : G → Σ there exists a run r ∈ pRun(A, t) such that r(x) = q and

r(Ft(G)) ⊆ F ;

(iii) for all y ∈ Ft(G), (r(y), y) ∈ Ki(t).

For every fixed i < ω and fixed q ∈ Q let Kq
i (t) := {x ∈ dom(t) | (q, x) ∈ Ki(t)}.

Lemma 53. Kq
i (t) is WMSO-definable, i.e. there exists ϕ ∈WMSO such that

t |= ϕ(x) iff x ∈ Kq
i (t),

where t is the tree structure encoding t.

Proof. We check definability in WMSO for each point of the above definition of Kq
i .

Ad (i). The finite trees G,E are represented by finite sets. The tree tx can be defined

by

ϑ(x, v) := x 4 v

and the prefix relation is defined by

A v B := ∀x∀y(A(y) ∧ x 4 y → A(x)) ∧ ∀x(A(x)→ B(x)).

The formula ϕ1 says that, if E is a finite subtree of tx, we have E ⊂ G v tx;

ϕ1(E,G) := E v tx → E ⊆ G v tx.

Ad (ii). Let r : dom(t)→ Q be a run of a Büchi automaton on t. A run r is represented

via finite sets (Sq)q∈Q, where Sq = {x ∈ dom(t) | r(x) = q}. We are able to interpret

(Dw, (Pq)q∈Q) in T . Let the definition scheme be

Φw := (φw, (ψPq)q∈Q),

where

φw(x) := Suc(w, x)

and

ψPq(x) := Sq(x).

By theorem 18, we have that

T |= Φ]
w(δ′q,t(w)) if and only if Φ∗w(T) |= δ′q,t(w)

for every w ∈ dom(t) and q ∈ Q.

F is a frontier of G if and only if

∀x∃y(G(x)→ F (y) ∧ x 4 y) ∧ ∀x(F (x)→ G(x)) ∧ ¬∃x∃y(F (x) ∧G(y) ∧ x ≺ y).

35

The formula ϕ2(S,G) says “(Sq)q encodes a partial run r such that r(x) = q and r(Ft(G)) ⊆
F”:

ϕ2(S,G) :=
∧
q∈Q
∀x(G(x) ∧ Sq(x)→ Φ]

x(δ′(q, t(x))) ∧ Sq(x) ∧ ∀z[Ft(G)(z)→
∨
q∈F

Sq(z)].

Ad (iii). We define ϕ3(G, S̄) saying that, for all y ∈ Ft(G), (r(y), y) ∈ Ki−1(t),

ϕ3(G, S̄) := ∀y(Ft(G)(y)→
∧
p∈Q

[Sp(y)→ Kp
i−1(y)]),

where we asssume that we have already defined a formula for Kp
i−1 by induction. Thus

we obtain the formula

ϕ(x) := ∀E∃G∃S̄(ϕ1(E,G) ∧ ϕ2(G, S̄) ∧ ϕ3(G, S̄)).

Hence, x ∈ Kq
i (t) if and only if t |= ϕ.

Theorem 54. Let L be a language of finitely branching trees. If L and its complement L̄

are recognizable by non-deterministic Büchi automata, then L is WMSO-definable.

Proof. Let L be recognized by A = (Q,Σ, δ, qI ,Ω) and let B = (Q′,Σ, δ′, q′I ,Ω
′) be the

automaton recognizing L̄. Let |Q| · |Q′| = m. Thus L(A) ∩ L(B) = ∅. We claim that

t ∈ L(A), if and only if (qI , ε) ∈ Km(t). Since this last relation is definable in WMSO,

this will prove our theorem.

(⇒) If t ∈ L(A) and r an accepting run, then (r(x), x) ∈ Ki(t) for every i < ω,

x ∈ dom(t), by the remarks preceding the definition of Ki. Hence, (qI , ε) ∈ Km(t).

(⇐) Assume by way of contradiction that (qI , ε) ∈ Km(t) for t : dom(t) → Σ but

t /∈ L(A), i.e. t ∈ L(B). Let r′ ∈ Run(B, t) be an accepting run of B on t. We show by

induction on 0 ≤ k ≤ m−1 that there exists a sequence of trees and runs of A that satisfy

the conditions of Lemma 51. Define E0 = {ε} and let G′0 be a frontier of t such that

r′(G0) ⊆ F ′. Since (qI , ε) ∈ Km(t), there exsits a finite tree Ḡ0 and an A-run r0 : Ḡ0 → Q

on ḡ0 : Ḡ0 → Σ such that r0(ε) = qI and, for G0 = Ft(Ḡ0),

(1) r0(G0) ⊆ F and

(2) (r0(x), x) ∈ Km−1(t) for all x ∈ G0.

For some 1 ≤ k ≤ m − 2, assume as induction hypothesis that there exists finite trees

Ek and Ḡk such that Ek ⊆ dom(t) and Ek ⊆ Ḡk, the labelled tree ḡk : Gk → Σ and an

A-run rk on Ḡk such that, for Gk = Ft(Ḡk)

(1) rk(Gk) ⊆ F and

(2) (rk(x), x) ∈ Km−(k+1)(t) for all x ∈ Gk.

36

Now let Ek+1 ⊆ dom(t) a finite tree such that Gk, G
′
k < Ft(Ek+1). There exists a

frontier G′k+1 of t such that Ft(Ek+1) ⊆ F ′. Applying the above statement (2) to each

x ∈ Gk and the finite subtree dom(tx) ∩ Ek+1 of tx, we get the existence of a finite tree

Ek+1 ⊆ Ḡk+1 and an extension rk+1 : Ḡk+1 → Q of rk such that rk+1 is an A-run on

ḡk+1 : Ḡk+1 → Σ and, for Gk+1 = Ft(Ḡk+1),

(1) rk+1(Gk+1) ⊆ F and

(2) (rk(x), x) ∈ Km−k+2(t) for all x ∈ Gk+1.

Extend the run rm−1 : Ḡm−1 → Q in some way to a run r ∈ Run(A, t). Then (Ei)i<m,

r and r′ satisfy the conditions of Corollary 51. Hence L(A) ∩ L(B) 6= ∅, a contradiction.

Thus (qI , ε) ∈ Km(t) if and only if t ∈ L(A).

37

7 Equivalence of MSO and WMSO on Trees

of Finite Cantor-Bendixon Rank

In this chapter we consider the question for which kind of trees can we define MSO-

definable tree languages also in WMSO. To this end we need a topological characterisation

of infintely branching trees for which we can define the notion of a rank that depends on

the number of nested infinite branches in a tree. It was shown in [BIS13] that MSO-

definable languages of finitely branching thin trees are WMSO-definable if and only if the

rank is bouded by a natural number. First, we show that this result does not hold for

infinitely branching trees. Then we present a proof for finitely branching trees without

algebraic methods.

The notion of Cantor-Bendixon rank stems from a topological setting, cf. [Kec95]. Since

it is possible to think of a tree as the topological space of its infinite branches (consult

[PP04] for details), we have the following definition. For a given tree, delete those nodes

x whose subtree Tx has only finitely many infinite branches. Repeat the procedure until

a tree without infinite branches is left. The least number of repetitions is the Cantor

Bendixon rank of the tree. Formally,

Definition 55. For a tree T define

T ′ := T \ {x ∈ T : Tx has finitely many infinite branches}.

For α ∈ ORD, let

T 0 := T,

Tα+1 := (Tα)′,

T δ :=
⋂
α<δ

Tα, if δ is limit.

The Cantor-Bendixon rank is defined by

CB(T) = min{α | Tα has no infinite branches}.

In a tree T , we say that node x is of rank n if CB(T�x) = n for the subtree T�x ⊆ T .

38

7.1 Counterexample for Infinitely Branching Trees

The first lemma presents a couterexample to the equivalence of MSO and WMSO on trees

of Cantor Bendixon rank 1, which have finitely many infinite paths.

Lemma 56. There exist trees T and T ′ such that CB(T) = CB(T ′) = 1 and

T ≡WMSO T ′, but T 6≡MSO T ′.

Proof. We consider two trees with one infinite branch together with a unary predicate P .

In one of the trees the infinite branch is colored by P and in the other tree it is not. More

precisely, we define

T := 〈Tω, ∅〉 ⊕ 〈T∞, T∞〉 ∼= 〈T∞, P 〉 and T ′ := 〈Tω, Tω〉 ⊕ 〈T∞, ∅〉 ∼= 〈T∞, P ′〉,

where Tω and T∞ are the trees defined in Chapter 4.

To prove that T 6≡MSO T ′, we can directly write an MSO-formula that distinguishes the

trees. Define

Branch(X) := (∀x ∈ X)(∀y ∈ X)(x 4 y ∨ y 4 x) ∧ ¬∃z((∀x ∈ X)(x 4 z)).

Then,

T |= ∃X(Branch(X) ∧X ⊆ P))

and

T ′ 2 ∃X(Branch(X) ∧X ⊆ P)).

It remains to prove that T ≡WMSO T ′. By Lemma 41, we have

Tω ≡WMSO T∞,

which implies that

〈Tω, ∅〉 ≡WMSO 〈T∞, ∅〉

and

〈Tω, Tω〉 ≡WMSO 〈T∞, T∞〉.

Thus, we obtain

〈Tω, ∅〉 ⊕ 〈T∞, T∞〉 ≡WMSO 〈Tω, Tω〉 ⊕ 〈T∞, ∅〉

by using the preservation of ≡WMSO under ⊕ (Lemma 21).

Hence, T ≡WMSO T ′.

39

7.2 A Proof for Finitely Branching Trees

The goal of the remainder of the chapter is to prove that for a finitely branching tree T of

Cantor Bendixon rank n < ω and a given MSOm-theory, we are able to define in WMSO

that ThMSO
m (T) = θ and CB(T) = n. The fact is stated in the following theorem.

Theorem 57. Let θ be an MSOm-theory and n < ω. There exists a WMSO-formula

ϕnθ (x) such that T |= ϕnθ (x) if and only if Thm(T�x) = θ, for every finitely branching tree

T of rank n and every x ∈ T .

The first step is to show that CB(T) = n is definable in WMSO.

Lemma 58. There exists a formula ϕn(x) ∈WMSO such that T |= ϕn(x) if and only if

CB(T�x) ≤ n, for every finitely branching tree T with vertex x ∈ T .

Proof. We prove the claim by induction on n.

Let n = 0. Finitely branching trees with CB(T) = 0 are finite. Then

ϕ0(x) := ∃X∀y[(x 4 y)→ (y ∈ X)].

If T |= ϕ0(x), then every node below x is contained in a finite set, hence T�x is finite.

If T�x ⊆ T is finite then there exists a finite set that contains every node of T�x, thus

T |= ϕ0(x).

Assume that we have already defined the formula ϕn. A WMSO-formula for n+ 1 has

to say that there exists a finite antichain C such that

— every node of rank > n is comparable with C

— below every node of C there is only one path whose nodes have rank > n.

This can be formalized in WMSO. We use the abbreviation for “C is a finite antichain”

Antichain(C) := (∀x ∈ C)(∀y ∈ C)((x 4 y ∨ y 4 x)→ x = y)

to obtain the formula

ϕn+1(x) :=∃C[Antichain(C) ∧ (∀c ∈ C)(x 4 c)

∧ ∀z[x 4 z ∧ ¬ϕn(z)→ (∃y ∈ C)(z 4 y ∨ y 4 z)]
∧ (∀x ∈ C)(∀y∀z)[x 4 y ∧ x 4 z ∧ ¬ϕn(y) ∧ ¬ϕn(z)→ (y 4 z ∨ z 4 y)]].

Assume CB(T�x) = n + 1 for T�x ⊆ T . By definition, the Cantor Bendixon derivative

(T�x)n consists of finitely many infinite branches, where every node is of rank 1. For every

infinite branch β fix a vertex x ∈ β such that no other infinite branch contains a vertex

y � x. Let C be the set of those vertices x. Then T |= ϕn+1(x).

40

Now assume T |= ϕn+1(x). Then there exists a finite antichain C such that for every

node y of rank > n there exists a path that contains y and a node of C. Any of these

paths do not branch anymore below C. Thus we have finitely many infinite branches that

contain only nodes of rank > n. Assume that these nodes were of rank > n + 1. Hence,

(T�x)n has only finitely many infinite branches and (T�x)n−1 = ∅. Thus CB(T�x) = n+ 1.

To conclude the proof of Theorem 57, we need a few more steps. First, we show the

claim for trees that consist only of one branch of Cantor Bendixon rank n.

Assume that T has exactly one branch π whose nodes are of CB–rank n. Let

S(x) := {y ∈ T : Suc(x, y) ∧ ¬ϕn−1(y)}

be the successor of x that is also in π. We define

A(x) = T�x \ T�S(x)

and obtain the decomposition

T :=
∑
x∈π

A(x).

Now we state a composition lemma that shows the conditions to preserve the MSO-

theory of a branch of T from the MSO-theory in the interpreted labelled linear ordering.

Lemma 59. There exists a function f with the following property. Let T =
∑
Tn

n<ω
and

T ′ =
∑
n<ω

T ′n be trees and m < ω. For every MSOm-theory τ , we define

Hτ := {n ∈ ω : Thm(Tn) = τ} and H ′τ := {n ∈ ω : Thm(T ′n) = τ}.

Then

〈ω,≤, (Hτ)τ 〉 ≡MSO
f(m) 〈ω,≤, (H

′
τ)τ 〉

implies ∑
n<ω

Tn ≡MSO
m

∑
n<ω

T ′n.

Proof. Define the function f inductively by

f(0) = 0, f(m+ 1) = f(m) + k,

where k is number of MSOm+1-theories. We apply Lemma 12 saying that∑
n<ω

Tn ≡MSO
m

∑
n<ω

T ′n

if and only if

41

— for every P there exists P ′ such that (
∑
n<ω

Tn, P) ≡MSO
m−1 (

∑
n<ω

T ′n, P
′)

— and for every P ′ there exists P such that (
∑
n<ω

Tn, P) ≡MSO
m−1 (

∑
n<ω

T ′n, P
′).

By symmetry, it is sufficient to show that for every P ⊆
∑
n<ω

Tn, we find P ′ ⊆
∑
n<ω

T ′n such

that

(
∑
n<ω

Tn, P) ≡MSO
m−1 (

∑
n<ω

T ′n, P
′).

Assume 〈ω,≤, (Hτ)τ 〉 ≡f(m) 〈ω,≤, (H ′τ)τ 〉. Adding P to
∑
n<ω

Tn we obtain a new labelling

(Iσ)σ in 〈ω,≤, (Hτ)τ 〉 where

Iσ = {n ∈ ω | ThMSO
m−1(Tn, Pn) = σ},

with Pn = Tn ∩ P , for each MSOm−1-theory σ. Since 〈ω,≤, (Hτ)τ 〉 ≡f(m) 〈ω,≤, (H ′τ)τ 〉,
we find for every Iσ ⊆ ω a set I ′σ ⊆ ω such that

(ω,≤, (Hτ)τ , (Iσ)σ) ≡f(m)−k (ω,≤, (H ′τ)τ , (I
′
σ)σ),

where k is the number of MSOm−1-theories σ. Given n < ω, fix σ and τ such that n ∈ Hτ

and n ∈ Iσ. Then there exists a fomula ϕσ ∈ τ saying that there exists a predicate P such

that ThMSO
m−1(Tn, Pn) = σ. For every n < ω, choose P ′l ⊆ T ′l such that ThMSO

m−1(T ′l , P
′
l) = σn,

where σn is the MSOm−1-theory such that n ∈ I ′σn . Then

P ′ :=
⋃
l<ω

P ′l

has the desired properties.

Corollary 60. For every MSO-formula ϕ, there exists an MSO-formula ϕ′ such that∑
n<ω

Tn |= ϕ, if and only if 〈ω,≤, (Hτ)τ 〉 |= ϕ′.

Proof. By Lemma 59, there exists a function h mapping

ThMSO
f(m)(〈ω,≤, (Hτ)τ 〉) to ThMSO

m (
∑
n<ω

Tn).

Thus, we have∑
n<ω

Tn |= ϕ iff ϕ ∈ h(Thf(m)(〈ω,≤, (Hτ)τ 〉))

iff Thf(m)(〈ω,≤, (Hτ)τ 〉) ∈ h−1({θ | θ MSOm -theory, ϕ ∈ θ})

iff 〈ω,≤, (Hτ)τ 〉 |=
∨
{
∧
η | ηMSOf(m) -theory, ϕ ∈ h(η)} := ϕ′.

42

The same idea of composing trees and describing their theory through a labelling of the

natural numbers is applied in the following lemma. This time we compose the trees at

their root and do not need an ordering on [n]. The definition of the function f as well as

the proof method is the same as in the proof of Lemma 60.

Lemma 61. Let n < ω. For each MSOm-theory η, we define unary predicates

Hη := {i ∈ [n] | Ti |= η} and H ′η := {i ∈ [n] | T ′i |= η}.

There exists a function f such that

〈[n], (Hη)η〉 ≡MSO
f(m) 〈[n], (H ′η)η〉

implies

⊕
i≤n

Ti ≡MSO
m ⊕

i≤n
T ′i .

Corollary 62. For every MSO-formula ϕ, there exists an MSO-formula ϕ′ such that

⊕
i<n

Tn |= ϕ, if and only if 〈[n], (Hη)η〉 |= ϕ′.

To transform the result from Lemma 59 to Corollary 62 to WMSO, we need a theorem of

McNaughton that was first stated in terms of automata, but is equivalent to the following

formulation. Consider [PP04] for details.

Theorem 63 (McNaughton). For every ϕ ∈ MSO there exists a ϕ′ ∈WMSO such that

〈ω,≤, P 〉 |= ϕ if and only if 〈ω,≤, P 〉 |= ϕ′.

Lemma 64. Let θ be an MSOm-theory and n < ω. For every tree T of rank n that is of

the form

T�x :=
∑
y∈π
x≤y

A(y) with CB(A(y)) < n,

for some path π, there exists a WMSO-formula ϕnθ (x) such that

T |= ϕnθ (x) if and only if Thm(T�x) = θ.

Proof. To prove the above lemma, we need to interpret the path π in the tree structure

T . Such a structure is given by 〈ω,≤, (Hτ)τ 〉, where τ stands for an MSOm-theory and

Hτ := {x ∈ π : Thm(A(x)) = τ}.

For an MSOm-theory τ we set

ϕnτ (x) := ϕn(x) ∧
∧
τ.

43

We define the interpretation

I : T → 〈ω,≤, (Hτ)τ 〉

by the definition scheme

〈φω, ψ≤, (ψHτ)τ 〉,

where

φω(x) := ¬ϕn−1(x),

ψ≤(x, y) := x 4 y ∧ ¬ϕn−1(x) ∧ ¬ϕn−1(y),

ψHτ (x) := (ϕn−1
τ)(A(x))(x),

where A(x, y) := x 4 y ∧ ∀z[x ≺ z 4 y =⇒ ¬ϕn−1(z)].

Now we can create the formula that is needed to prove Lemma 64. We want ϕnθ (x) ∈
WMSO to say that

— CB(T�x) = n and

— T�x |= θx.

By Lemma 58, the first formula is already in WMSO. To define the second part, we know

that

T�x =
∑
y∈π
x≤y

A(y).

We use Corollary 60 and McNaughton’s Theorem and obtain a formula θ′′x ∈WMSO such

that

〈ω,≤, (Hτ)τ 〉 |= θ′′x if and only if
∑
y∈π
x≤y

A(y) |= θ′′

and use the interpretation I to get that

T�x |= I(θ′′) if and only if 〈ω,≤, (Hτ)τ 〉 |= θ′′x.

Thus we obtain the desired formula ϕnθ (x) := ϕn(x) ∧ I(θ′′x).

To prove Theorem 57, we introduce composition operations ⊕l and ⊕′. ⊕l and ⊕′ are

almost the same as ⊕′l and ⊕ (that were presented in Chapter 2.3.2), they compose two

trees once at the root and once at a leaf l, but this time with a new edge between the

trees instead of fusing them.

Definition 65. Let S and T be trees. We define the composed structure S ⊕′ T by

S ⊕′ T := 〈VS⊕′T ,RootS⊕
′T ,4S⊕

′T 〉,

44

where

VS⊕′T := VS ∪̇ VT ∪̇ {r}

RootS⊕
′T := {r}

4S⊕
′T :=4S ∪̇ 4T ∪{(r, x) | x ∈ VT ∪̇ VS}.

The structure S ⊕l T is defined as

S ⊕l T := 〈VS⊕lT ,RootS⊕lT ,4S⊕lT 〉,

where

VS⊕lT := VS ∪̇ VT ,
RootS⊕lT := RootT ,

4S⊕lT :=4S ∪̇ 4T ∪{(v, w) | v 4 l, w ∈ S}

Lemma 66. The MSOm-theory of S ⊕′ T is uniquely determined by the MSOm-theories

of S and T and the theory of S ⊕l T is uniquely determined by the MSOm-theories of S

and 〈T, l〉.

Proof. Let U be the singleton tree. We have S⊕′T = Φ∗⊕′(S ∪̇T ∪̇U), where the definition

scheme Φ⊕′ is

φ(x) = >;

ψRoot(x) = U(x);

ψ4(x, y) = x 4 y ∨ U(x).

Further, S ⊕l T = Φ∗⊕l(S ∪̇ T), where the definition scheme Φ⊕l is defined through

φ′(x) = >;

ψ′Root(x) = Root(x) ∧ T (x);

ψ′4(x, y) = x 4 y ∨ (x 4 l ∧ S(y)).

Like in the proof of Lemma 23 the claim follows from Lemma 19 and Lemma 15.

Definition 67. Let ∗ ∈ {⊕,⊕′,⊕l,⊕′l}. We define the composition of theories

η ∗ ζ := ThMSO
m (A ∗B)

for some structures A,B with ThMSO
m (A) = η and ThMSO

m (B) = ζ.

45

Proof of Theorem 57. We prove the claim by induction on the Cantor-Bendixon rank of

T .

For CB(T) = 0, the tree is finite and the claim is trivial since for finite trees, we have

ThMSO
m (T) = ThWMSO

m (T). The induction hypothesis is that for an MSOm-theory θ and

a fixed number n ∈ N, there exists a WMSO-formula ϕnθ (x) such that T |= ϕnθ (x) if and

only if Thm(T�x) = θ and CB(T�x) = n, for every finitely branching tree T of rank n.

To prove the claim for trees of rank n+ 1, we need to define those vertices in T where

branches of rank n+1 are branching into further paths of rank n+1. We call those vertices

branching points and define them by the formula ϑn+1(x) saying “x is a branching point

of rank n+ 1”.

ϑn+1(x) :=∃y∃z[¬ϕn(x) ∧ ¬ϕn(y) ∧ ¬ϕn(z) ∧ ((Suc(x, y) ∧ Suc(x, z) ∧ y 6= z)

∨ (Suc(y, x) ∧ Suc(y, z) ∧ y 6= x))] ∨ Root(x).

Of course it happens that in such a branching point there are also successors of rank

< n+ 1. To define those points y in relation to the respective branching point x, we have

the formula

ψn+1(x, y) := x 4 y ∧ ϕn(y) ∧ ¬∃z[x ≺ z ≺ y ∧ ¬ϕn(z)].

To describe the theory of T at the root, we guess a theory ξx for every branching point

x, that is composed of the theories of the subtrees of T�x. We start this composition of

theories at the biggest branching points with respect to 4 and proceed up to the root of

T .

The WMSO-formula guesses the predicates

Pξ := {x ∈ T | ThMSO
m (T�x) = ξ}.

During this process we encounter three diffrent types of branching points with different

kinds of composed subtrees.

(i) The first one is the easiest case, where the branching point x is on a unique branch

of Tn. By Lemma 64, the theory ξx of T�x is defined by ϕnξ (x).

x

Thus the formula defining this situation is

ϕ†(x) := ¬∃y[x ≺ y ∧ ϑ(y)] ∧
∧
ξ

(ϕnξ (x)↔ Pξ(x)).

46

(ii) The branching point x is of the second type, if x is followed by a single path of rank

< n+ 1 that is followed by another branching point y. Let

A(x) := T�x \ T�y.

x

y A(x)

Then we have

T�x := T�y ⊕l A(x),

where l is the vertex such that T�x |= Suc(l, y). This is defined in WMSO by

α(x) := ϑn+1(x) ∧ ∃y(x ≺ y ∧ ∀z(x ≺ z ∧ ϑn+1(z)→ y 4 z) ∧ ϑn+1(y)).

The WMSO-formula defining ThMSO
m (T�x) is

ϕ](x) = α(x) ∧
∨

(η,ζ)

[Pη⊕lζ(x) ∧ Pη(y) ∧ (ϕnζ)(A(x))].

(iii) The branching point x can also be of a third type, where x has more than one

successor y0, . . . , yk of CB-rank n+ 1. Then

T�x = (T�y0 ⊕ . . .⊕ T�yk)⊕x B(x),

where

B(x) := T�x \
⋃
{T�y | Suc(x, y) ∧ ¬ϕn(y)}.

x

y0 y1 y2 B(x)

47

This is defined by the formula

β(x) := ∃y1∃y2[y1 6= y2 ∧ Suc(x, y1) ∧ Suc(x, y2) ∧ ¬ϕn(y1) ∧ ¬ϕn(y2)].

Let T1 = T�y0 ⊕ . . .⊕ T�yk−1
. We define the interpretation

I : T1 → 〈[n], (Hη)η〉

by the definition scheme

〈φ[n], (ψHη)η〉,

where

φ[n](x, y) := Suc(x, y) ∧ ¬ϕn(y),

ψHη(y) := Pη(y).

Let χζ :=
∧
ζ. By Corollary 62 we know that for χζ , there exists χ′ζ ∈ MSO such

that

⊕
i<n

Ti |= χζ if and only if 〈[n], (Hη)η〉 |= χ′ζ .

Since [n] is finite, χ′ζ is also in WMSO. By the interpretation I we obtain that

〈[n], (Hη)η〉 |= χ′ζ if and only if T1 |= I(χ′ζ).

The formula to define the m-theory of T�x, if β(x) holds, is then

ϕ∗(x) := β(x) ∧
∨

(η,ζ)

[Pη⊕lζ(x) ∧ I(χ′ζ) ∧ (ϕnη)(B(x))(x)].

Now, the WMSO-formula to describe the MSOm-theory at every branching point x ∈ T
is

ϕn+1
θ (x) := ∃(Pξ)ξ[∀y(ϑn+1(y)→ ϕ†(y) ∨ ϕ∗(y) ∨ ϕ](y)) ∧ Pθx](T�x).

48

Bibliography

[BB01] Dietmar Berwanger and Achim Blumensath. The monadic theory of tree-like

structures. In Automata, Logics, and Infinite Games, pages 285–302, 2001.

[BIS13] Miko laj Bojańczyk, Tomasz Idziaszek, and Micha l Skrzypczak. Regular lan-

guages of thin trees. STACS, 2013.

[Büc60] J. Richard Büchi. Weak second-order arithmetic and finite automata. Z. Math.

Logik und Grundl. Math., 6:66–92, 1960.

[EF95] Heinz-Dieter Ebbinghaus and Jörg Flum. Finite model theory. Perspectives in

Mathematical Logic. Springer, 1995.

[Kec95] A.S. Kechris. Classical Descriptive Set Theory. Graduate Texts in Mathematics.

Springer, 1995.

[Kus08] Dietrich Kuske. Compatibility of shelah and stupp’s and muchnik’s iteration

with fragments of monadic second order logic. In STACS, pages 467–478, 2008.

[Mak04] J. A. Makowsky. Algorithmic uses of the feferman-vaught theorem. Annals of

Pure and Applied Logic, 126:159–213, 2004.

[McN66] Robert McNaughton. Testing and generating infinite sequences by a finite auto-

maton. Information and Control, 9(5):521–530, 1966.

[MSS92] David E. Muller, Ahmed Saoudi, and Paul E. Schupp. Alternating automata,

the weak monadic theory of trees and its complexity. Theor. Comput. Sci.,

97(2):233–244, 1992.

[PP04] D. Perrin and J.É. Pin. Infinite Words: Automata, Semigroups, Logic and

Games. Number Bd. 141 in Pure and Applied Mathematics. Elsevier, 2004.

[Rab69] Michael O. Rabin. Decidability of second-order theories and automata on infinite

trees. Trans. Amer. Soc., 141:1–35, 1969.

[Rab70] Michael O. Rabin. Weakly definable relations and special automata. In Yehoshua

Bar-Hillel, editor, Proceedings of the Symposium on Mathematical Logic and

Foundations of Set Theory (SMLFST’70), pages 1–23. North-Holland, 1970.

49

[Rab72] Michael O. Rabin. Automata on infinite objects and Church’s problem. CBMS

Regional Conference Ser. in Mathematics Series. Conference Board of the Math-

ematical Sciences, 1972.

[Tho97] Wolfgang Thomas. Languages, automata and logics. In Grzegorz Rozenberg and

Arto Salomaa, editors, Handbook of Formal Languages, volume 3, pages 389–455.

Springer-Verlag, 1997.

[Wal02] Igor Walukiewicz. Monadic second-order logic on tree-like structures. Theor.

Comput. Sci., 275(1-2):311–346, 2002.

50

