
19 Automata for Guarded Fixed Point Logi
sDietmar Berwanger and A
him BlumensathMathematis
he Grundlagen der InformatikRWTH Aa
hen19.1 Introdu
tionThe guarded �xed point logi
s �GF and �CGF introdu
ed in the previous 
hap-ter extend the guarded fragments of �rst-order logi
 GF and CGF on the onehand and the modal �-
al
ulus on the other hand. Thereby, the expressive powerof the underlying formalisms is in
reased 
onsiderably. On transition systems,for instan
e, �GF already subsumes the �-
al
ulus with ba
kwards modalities.Hen
e, the question arises, whether these logi
s are still manageable algorithmi-
ally. In this 
hapter we will study the 
omplexity of their satis�ability problems.As a 
onsequen
e of the general 
riterion stated in Theorem 18.23, it fol-lows that the satis�ability problems for �GF and �CGF are de
idable. Yet, theargument does not allow us to derive pre
ise 
omplexity bounds for the de
i-sion problem. A lower bound 
an be obtained from the respe
tive results for L�and GF. For L� the satis�ability problem is Exptime-
omplete [2℄, whereas forGF it is 
omplete for 2Exptime [5℄. However, if we 
onsider formulae of boundedwidth, i.e., with a bounded number of variables, it be
omes Exptime-
ompleteas well.Following Gr�adel and Walukiewi
z [6,5℄ we will prove that even for �CGF,the strongest logi
 
onsidered, the satis�ability problem is still in 2Exptimein the general 
ase, and in Exptime for formulae of bounded width. In otherwords, the �xed point extensions of guarded logi
s are almost for free in termsof 
omplexity of the satis�ability problem.Given the expressive power of these logi
s, this result is rather surprising. Forinstan
e, in 
ontrast to L�, already the weakest guarded �xed point logi
 �GFla
ks the �nite model property. An example of a formula with only in�nitemodels was given in the previous 
hapter:(9xy:Exy) ^ (8xy:Exy)(9z:Eyz)[LFPZ;z(8y:Eyz)Zy℄(z):A 
ru
ial model theoreti
 aspe
t of guarded logi
s is their (generalised) treemodel property stated in Theorem 18.16. Informally, this asserts that modelsof guarded formulae 
an be represented as trees. In [8,4℄ Vardi and Gr�adel em-phasise that the tree model property seems to be the key feature responsible forthe good algorithmi
 behavior of modal logi
s be
ause it makes them amenableto automata-theoreti
 te
hniques for solving satis�ability and model-
he
kingproblems. The generalised tree model property allows us to lift these te
hniquesto guarded logi
s. In order to de
ide whether a given formula  is satis�ableone 
an 
onstru
t two automata: the �rst one, 
alled model 
he
king automaton,E. Gr�adel, W. Thomas, and T. Wilke (Eds.): Automata, Logi
s, and Infinite Games, LNCS 2500, pp. 343-355, 2002
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344 Dietmar Berwanger and A
him Blumensathtakes an appropriate representation of a stru
ture as input and a

epts if andonly if the stru
ture satis�es  ; the other automaton re
ognises the set of allappropriate representations. Then, the formula is satis�able i� the produ
t ofthese automata re
ognises a non-empty language.This s
heme outlines the plan of the present 
hapter. First, we introdu
eappropriate tree representations of stru
tures in Se
tion 19.2 together with asuitable automata model. For a better understanding we will pro
eed on twotra
ks. On the one hand, we de�ne the unravelling tree of a stru
ture. The nodesof this tree are asso
iated to the guarded sets of the stru
ture, in su
h a way thatevery node has all guarded sets represented in its su

essors. This ri
h en
odingallows 
he
king of the en
oded model by rather simple automata. Moreover,the underlying te
hnique was already dis
ussed in the previous 
hapter, in theproof of Theorem 18.17. On the other hand, we introdu
e de
omposition treeswhi
h, being more 
ompa
t representations, require more sophisti
ated two-wayautomata for model 
he
king.Se
tion 19.3 is dedi
ated to the 
onstru
tion of the model 
he
king automa-ton. Starting from input stru
tures en
oded as unravelling trees, we de�ne aone-way automaton whi
h, when viewed as a two-way automaton, still re
og-nises the same stru
tures, but in a di�erent en
oding, as de
omposition trees.At that point, the two tra
ks of our exposition 
onverge.Finally, Se
tion 19.4 
on
ludes the redu
tion by presenting an automatonwhi
h re
ognises valid de
omposition trees. Putting all pie
es together we areable to derive the desired 
omplexity bounds for the satis�ability problem.19.2 Requisites19.2.1 Clique guarded �xed point formulaeWhen speaking of formulae we always mean �CGF-formulae as introdu
ed inthe previous 
hapter. To simplify our notation we will, however, omit the 
liqueguards, i.e., instead of (9�x:
lique(�x))�(�x) we will write 9�x:�(�x) and a

ordinglyfor universal formulae.Furthermore, we will assume that all formulae are well named and in negationnormal form, that is, �xed point variables are de�ned at most on
e and negationapplies to atomi
 formulae only. Clearly, every �CGF-formula 
an be rewrittento meet these requirements.A 
ru
ial parameter of a formula is its width whi
h is de�ned as the greatestnumber of free variables o

urring in a subformula. Equivalently, a formula haswidth k i� it 
an be transformed, by renaming of variables, so that it uses onlyk variables. In the following we will always assume that every formula of width kis written with the variables fx0; x1; : : : ; xk�1g.19.2.2 Tree representationsIn order to use tree automata for model 
he
king and satis�ability we en
odestru
tures by trees. Re
all that every subformula of a formula of width k 
an
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ab 
de f gFig. 19.1. A stru
ture with relations of arity 1, 2, and 3 and its Gaifman graphrefer to at most k stru
ture elements at the same time, whi
h, moreover, haveto be guarded. On a

ount of this, we asso
iate to a given stru
ture A a treewhose nodes are labelled by the substru
tures of A indu
ed by at most k guardedelements. In addition, the overlap of two adja
ent nodes is stored in the label oftheir 
ommon edge.Let us �x some notation for the remainder of this 
hapter. The set of guardedsubsets of size at most k of a �-stru
ture A is denoted by�k(A) := fK � A j K is k-
lique-guarded in A g:The substru
tures indu
ed by these sets are mapped onto the �xed universe[k℄ = f0; : : : ; k � 1g and then arranged to form a tree while keeping tra
k ofoverlaps along the edges. Thus, the nodes of the resulting trees are labelled bythe alphabet�k := fC j C is a �-stru
ture over a universe C � [k℄ gwhile the edges are labelled by subsets of [k℄. We 
all trees labelled by thesealphabets shortly k-type trees. When we speak about a D-edge, we mean anedge labelled with D � [k℄, and a D-neighbour or D-su

essor of a node is aneighbour respe
tively a su

essor along some D-edge.De�nition 19.1. For a given width k, the k-unravelling tree of a stru
ture Ais the k-type tree T over the set of nodes �k(A)� labelled as follows:(i) The root of T is labelled with the empty stru
ture (;; �) and all outgoingedges are labelled with ;.(ii) Every node v 2 �k(A)�K is labelled with an isomorphi
 
opy C of AjK , therestri
tion of A to K 2 �k(A).(iii) If � : AjK ! C and �0 : Aj0K ! C0 are isomorphisms labelling, respe
tively,a node v 2 �k(A)�K and its su

essor v0 = vK 0, then � and �0 agree onK \K 0 and the edge (v; v0) is labelled with �(K \K 0).



346 Dietmar Berwanger and A
him BlumensathRemark 19.2. It is easy to see that for every D-edge (v; v0) of an unravellingtree T the following 
onditions hold:(i) Consisten
y: the labels C of v and C0 of v0 agree on D, that is, CjD = C0jD.(ii) Completeness: for any H � [k℄ the H-su

essors of v and v0 agree onD \H , i.e., there is a one-to-one map assigning to ea
h H-su

essor w of van H-su

essor w0 of v0 su
h that the labels of w and w0 agree on D \H .Generally, we 
all a k-type tree 
onsistent, if it satis�es the �rst 
ondition.Let us now look at the relationship between a tree representation and the en
odedstru
ture.De�nition 19.3. Given a 
onsistent k-type tree T , 
onsider the disjoint sum ofits node labels,D := �[f (C; v) j C is the label of v 2 T g:Let � be the least equivalen
e relation on the universe of D with(i; v) � (i; v0) if v0 is a su

essor of v and i is in the label of (v; v0):Then, by 
onsisten
y of T , � is a 
ongruen
e relation on D. We 
all the quotientD=� the stru
ture re
overed from T .De�nition 19.4. The k-unravelling A(k) of a stru
ture A is the stru
turere
overed from the k-unravelling tree of A.Sin
e �CGF is invariant under guarded bisimulation (see [5℄), it follows thatsenten
es of width up to k 
annot distinguish between a stru
ture A and itsk-unravelling A(k).Proposition 19.5. Every stru
ture A is k-
lique bisimilar to its k-unravellingAk. That is, for all �CGF-senten
es  of width at most k we haveA j=  i� A(k) j=  :If we re
all the notion of tree de
omposition of a stru
ture introdu
ed in theprevious 
hapter we 
an easily establish the following 
onne
tion.Proposition 19.6. A k-type tree T is a tree de
omposition of some stru
ture Ai� the stru
ture re
overed from T is isomorphi
 to A.This relationship suggests tree de
ompositions as 
andidates for stru
turerepresentations.De�nition 19.7. For a given width k, a k-de
omposition tree of a stru
tureA is a k-type tree T where(i) for every K 2 �k(A) there is a node labelled with (an 
opy of) AjK ;(ii) the labels of any two nodes 
onne
ted by a D-edge agree on D;
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f1gf2gf1g

f2; 3gf1; 3g f1; 2g
f3g

f2; 3gf1; 3g f1; 2g
f3gf1gf2g
f1; 3g

1 2 3212 1123 23 13 2 1 3 2 113

21 31 2 3 321 1 3122 1 312 3Fig. 19.2. A k-de
omposition tree of the stru
ture in Fig. 19.2.2(iii) every node v is labelled with AjK for some K 2 �k(A) via an isomorphism �.Moreover, for ea
h K 0 2 �k(A) there is a node v0 labelled with AjK0 , su
hthat all edges on the path between v and v0 in
lude �(K\K 0) in their labels.Remark 19.8. (i) The k-unravelling tree of a stru
ture is also a k-de
ompositiontree of that stru
ture.(ii) Ea
h k-de
omposition tree of a stru
ture A indu
es a subtree in the k-unravelling tree of A.
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Fig. 19.3. The stru
ture re
overed from the de
omposition tree in Fig. 19.2.2It is an easy exer
ise to show that the pro
ess of k-de
omposing a stru
turepreserves its properties up to bisimulation, yielding a more 
ompa
t representa-tion than unravelling does.Proposition 19.9. Given a stru
ture A, let A0 be the stru
ture re
overed froma k-de
omposition tree of A. Then A and A0 are 
lique-k-bisimilar.19.2.3 The automata modelWe employ alternating automata that work on trees where nodes and edges arelabelled.De�nition 19.10. An alternating tree automaton over a node alphabet �and an edge alphabet � is given by a tupleA = (Q;�;�; Æ; qI; 
)where Q = Q0 �[ Q1 is the set of existential and universal states, qI designatesthe initial state, 
 : Q! ! is a parity 
ondition andÆ : Q�� !P(��Q)is the transition fun
tion. The pairs (d; q) 2 ��Q are 
alled transitions.We de�ne the behaviour of su
h automata by way of games.De�nition 19.11. Let A = (Q;�;�; Æ; qI; 
) be an automaton and T an ap-propriately labelled tree. The game G(A; T ) asso
iated to A and T is the paritygame with positions Q� T and a

eptan
e 
ondition 
 played as follows.Every play starts in state qI at the root of T . Assume that the play rea
hedsome position (q; v) where the node v is labelled with 
. If q belongs to Q0,Player 0 
an move to a position (q0; v0) if(i) there is a transition (d; q0) 2 Æ(q; 
) and(ii) v0 is a d-su

essor of v.
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s 349The moves of Player 1 are de�ned analogously.The language L(A) a

epted by a tree automaton A is the set of all trees T ,su
h that Player 0 has a winning strategy in the game G(A; T ).Usually, automata are de�ned as devi
es s
anning their input only in onedire
tion. However, for our purpose it is 
onvenient to allow them to move ba
k-wards and remain still as well.De�nition 19.12. An alternating two-way tree automaton is given in thesame way as a (one-way) alternating automaton,A2 = (Q;�;�; Æ; qI; 
)where a

eptan
e is de�ned in a di�erent way. The game G(A2; T ) asso
iatedto a two-way automaton A2 and a tree T is the parity game obtained as inDe�nition 19.11, but repla
ing rule (ii) with(ii') either v0 = v or v0 is a d-neighbour of v.The language L(A2) a

epted by a two-way tree automaton A2 is the set of alltrees T su
h that Player 0 has a winning strategy in the game G(A2; T ).19.3 Model Che
kingThe results presented in Chapter 14 and 10 reveal a 
lose relationship betweenalternating automata and games on the one side, and logi
al formalisms on theother side. The automaton 
onstru
ted in Se
tion 10.3 for L� translates �rst-order operations into state transitions, while �xed point predi
ates are en
odedas priorities.In a similar way, we will 
onstru
t automata for �CGF. But unlike L�, wherea formula is evaluated at a single node of a transition system, a �CGF-formulawith several free variables may involve several stru
ture elements. Sin
e theseelements have to be 
lique-guarded, they appear together in the label of somenode in the unravelling (or, de
omposition) tree. To allow our automaton toa

ess the stru
ture in the node labels of the input tree, its states will 
ontaintwo 
omponents: a subformula, and an assignment of the variables appearingfree therein.The 
losure 
l( ) of a formula  is the set 
onsisting of all subformulae of  together with the formulae true and false.De�nition 19.13. To any formula  2 �CGF of width k we asso
iate theautomaton A = (Q;�k;P([k℄); Æ; qI; 
) over k-type trees where the state setQ := f ('; �) j ' 2 
l( ) and � : fx0 : : : xk�1g ! [k℄ gis partitioned into existential and universal states byQ0 := f ('; �) j ' = false; or ' = � _ #; or ' = 9�y:� g; andQ1 := Q nQ0:
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him BlumensathThe initial state is qI = ( ; ;) where ; stands for the void assignment.It remains to spe
ify the transition fun
tion. To simplify our notation weuse expressions hHiS with H � [k℄ and S � Q to denote the set of transitionsfD � [k℄ j H � D g � S. In parti
ular, when we refer to the universe of C wewrite h�iS instead of hCiS. Furthermore, omitting parenthesis, we simply writeÆ('; �;C) instead of Æ(('; �);C).(i) If ' = true or ' = false then Æ('; �;C) = ;.(ii) If ' is a �-atom or a negated �-atom thenÆ('; �;C) = (h�if(true; ;)g if C; � j= ';h�if(false; ;)g if C; � 6j= ':(iii) If ' = � ^ # or ' = � _ # thenÆ('; �;C) = h�if(�; �); (#; �)g:(iv) If '(�x) = FPT �y(�)(�x) thenÆ('; �;C) = h�if(�; �)g:(v) If '(�x) = T �x and FPT �y(�)(�x) is the unique de�nition of T in  thenÆ('; �;C) = h�if(�; �)g:(vi) If '(�x) = 9�y:�(�x; �y) or '(x) = 8�y:�(�x; �y) thenÆ('; �;C) =h�if (�; �0) j �0j�x = �j�x g [ h�(�x)if('; �)g:Finally, if the �xed point variables of  o

ur in the order Z1; : : : ; Zn the parity
ondition is given by
('; �) :=8>>>>>><>>>>>>:2i ' = Zi�x and Zi is a GFP-variable;2i+ 1 ' = Zi�x and Zi is an LFP-variable;2n+ 4 ' = 8�y:�;2n+ 3 ' = 9�y:�;2n+ 2 otherwise:The automaton works in a similar way as the L�-automata de�ned in Se
-tion 10.3: disjun
tions are de
omposed by Player 0, 
onjun
tions by Player 1 and�xed points are regenerated. Atomi
 statements are veri�ed lo
ally and termi-nate the run. A

eptan
e of in�nite runs is determined by the priority fun
tionwhi
h re
e
ts the nesting and type of �xed point de�nitions. Note that, ex
eptwhen dealing with quanti�ers, the automaton 
hanges only the formula 
ompo-nent of its states, while the variable assignment remains the same. Moreover,the h�i-transitions allow to move only to su

essors that retain the stru
tureinformation of the 
urrent node.
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s 351To understand the handling of quanti�
ation, 
onsider, e.g., an existentialformula '(�x) = 9�y:�(�x; �y). Player 0 may use a transition from h�(�x)if('; �)gto pro
eed to a su

essor that retains the stru
ture living on elements 
urrentlyassigned to the free variables �x. In this way, he 
an reassign the quanti�edvariables �y to elements of the 
hosen su

essor. After su
h a move, the formulain the new state is still ' and Player 0 is again in turn to move. But, as existentialformulae have odd priority, he 
an reiterate these moves only �nitely many timesand must then take a transition of the form h�if (�; �0) j �0j�x = �j�x g.Given an input tree that k-unravels a stru
ture A, the stru
tures labellingthe nodes are all indu
ed by k-
liques in A. Moreover, from ea
h node (a 
opyof) every other k-
lique of A is a

essible within one move.It remains to prove that our 
onstru
tion is 
orre
t, that is, that we 
an usethe automaton de�ned above to solve the model 
he
king problem for �CGF.Proposition 19.14. Given a formula  of width k and a stru
ture A, the au-tomaton A a

epts the k-unravelling tree of A i� A j=  .Proof. It is 
onvenient to argue in terms of games. Model 
he
king games for�CGF were introdu
ed in [1℄ as a generalisation of the model 
he
king gamesfor L�. Although de�ned for �nite stru
tures, the extension of these games tothe trans�nite 
ase is straightforward.Let T be the k-unravelling tree of the stru
ture A. We will show that thegame whi
h determines a

eptan
e of T by the automaton A is essentially themodel 
he
king game asso
iated to A and  .Let G be the a

eptan
e game G(A ; T ). We 
an simplify this game by 
ol-lapsing positions whi
h share the same formula and map its free variables to thesame part of the stru
ture.Re
all that any node v of T is labelled via some isomorphism �. Furthermore,at every position ('; �; v) in a play of G, the image of � in
ludes the image ofthe assignment �. Thus, we 
an de�ne a mapping from the positions of G tof ('; �) j ' 2 
l( ) and � : fx0 : : : xk�1g ! A g as follows:b� : ('; �; v) 7! ('; ��1Æ �):By the 
onstru
tion of G, we 
an easily verify that this mapping indu
es a
ongruen
e relation b� among the positions of G,('; �; v) b� ('; �; v0) i� \('; �; v) = \('; �; v0);whi
h is also a bisimulation on G.Consider now the (strong homomorphi
) image bG of G under b� . On the onehand, G and bG are bisimilar via b� and, 
onsequently, the same player has awinning strategy in both plays. On the other hand, bG is almost the model 
he
k-ing game G0 = G(A;  ) as de�ned in [1℄. The only di�eren
e arises at positions('; �) where ' is an existential or universal formula, say ' = 9�y�(�x; �y). Then,the model 
he
king game allows moves to (�; �0) with �0 su
h that(i) � and �0 agree on the values of �x and
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him Blumensath(ii) A; �0 j= 
lique(�x; �y),whereas in bG the legal moves go either to ('; �0) with �0 as above, or to (�; �).Nevertheless, we will show that the same player wins both G0 and bG. IfPlayer 0 has a winning strategy in the model 
he
king game G0, he 
an alsoplay this strategy in bG, as long as no existential formula is met. Otherwise, atpositions ('; �) as above, he 
an imitate the move to the position (�; �0) hewould perform in G0 by taking two steps:(i) move to ('; �0); this is possible sin
e, for every �0 agreeing with � on thefree variables of ', the position ('; �0) is rea
hable from ('; �) in one step.(ii) At ('; �0) it's still Player 0 turn: move to (�; �0).Towards a 
ontradi
tion, let us assume that Player 1 wins this play. Then, afterany universal formula ' = 8�y�(�x; �y) o

urring in the play, there 
an followonly �nitely many positions with ' until Player 1 
hooses some position (�; �0);otherwise he would lose with the highest even priority. But then, Player 1 alsowins by 
hoosing ('; �0) right from position ('; �) and pro
eeding with (�; �0).However, these two moves translate into one move in the 
orresponding play ofG0 whi
h leads Player 1 to a win in G despite Player 0's winning strategy, whi
his not possible. This 
on
ludes our proof that a player has a winning strategy inthe model 
he
king game i� he has one in the a

eptan
e game.The 
orre
tness of our 
onstru
tion relies on the fa
t that the input trees are
omplete in the sense of Remark 19.2 (ii). That is, if the 
urrent node is labelledby a k-
lique of the represented stru
ture, then every other k-
lique appears inthe label of some su

essor node. Unfortunately, it is very hard to 
he
k whethera given tree satis�es this property. By letting A run as a two-way automatonA2 , we 
an relax this requirement and 
laim instead that every k-
lique shall berea
hable via a �nite path from the 
urrent node.Proposition 19.15. Given a formula  of width k and a stru
ture A, let T bea k-de
omposition tree of A. Then the automaton A2 a

epts T i� A j=  .Proof. The idea is to show that A2 runs on T in a similar way as its one-wayvariant does on the k-unravelling tree T 0 of A. Towards this we will transformthe a

eptan
e game G(A2 ; T ) by introdu
ing short
uts into a game whi
h isbisimilar to the a

eptan
e game G(A; T 0) of the one-way automaton.Let G� be the least game extending G := G(A2 ; T ) by new transitions in su
ha way that, whenever there are two transitions('; �; v)! ('; �; v0)! ('; �; v00)in G�, the short
ut ('; �; v) ! ('; �; v00) is also a transition in G�.Observe that the new transitions just short
ut a sequen
e of steps in theoriginal game, all performed by the same player. To see that this does not 
hangethe winning partitions, assume, towards a 
ontradi
tion, that Player 1 has awinning strategy for G� while Player 0 has one for G. All moves in G are still
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s 353available in G�, so Player 0 
an apply his winning strategy for G in the play �of G� against the winning strategy of Player 1. Let us now look at the playin G in whi
h both players move like in � ex
ept at positions ('; �; v) wherePlayer 1 used a short
ut to, say ('; �; v0), for ' a universal formula. At thatpoint, Player 1 
an move step by step via �nitely many positions ('; �; w) alongthe path leading to the destination of the short
ut. From there, the play pro
eedslike in �. Clearly, Player 1 wins this play in G in 
ontradi
tion to our assumptionon Player 0's winning strategy.The mapping b� whi
h was de�ned in the proof of Proposition 19.14 
an beapplied to the positions of G�. It indu
es a 
ongruen
e relation on G� and, assu
h, a bisimulation between G� and its strong homomorphi
 image bG�. Thisimage is pre
isely the game bG(A ; T 0) whi
h is bisimilar to G(A ; T 0).A

ordingly, the automaton A2 a

epts the k-de
omposition tree T i� A a

epts the k-unravelling tree T 0.19.4 Satis�abilityThe model 
he
king automata introdu
ed above operate 
orre
tly on inputswhi
h represent stru
tures. But in order to solve the satis�ability problem thisdoes not suÆ
e. We need to make sure that all inputs whi
h do not representstru
tures are reje
ted.Che
king representation validity. From a given a k-type tree T , we 
anre
over a stru
ture a

ording to De�nition 19.3, only if T is 
onsistent, that is,if every node agrees with its D-neighbours on the D-part of its label.Provided T is 
onsistent, let A be the re
overed stru
ture. Now T is a k-de
omposition tree of A i� every node label of T indu
es a 
lique in A. This is
ru
ial, sin
e the model-
he
king automaton assumes that all elements appear-ing in the label of its input represent 
lique-guarded elements of the stru
ture.Another way to formulate this 
ondition is: For every node v and every pair ofelements fi; jg � [k℄ in its label, there is a node v0 in whi
h i and j are guardedby an atom and all edges on the path between v and v0 in
lude fi; jg in theirlabels.Now, we build an automaton that 
he
ks the above two 
onditions.De�nition 19.16. For every width k, we 
onstru
t a two-way automaton A2k =(Q;�k;P([k℄); Æ; 
he
k; 
) over k-type trees whose set of states is partitionedintoQ0 = ffalseg [ [k℄2 andQ1 = ftrue; 
he
kg [ fR�a j R 2 �; �a � [k℄ g:In state 
he
k the automaton allows Player 1 to move freely on the inputtree to rea
h a node where either the 
onsisten
y or the guardedness 
onditionmay be violated. At that event, state R�a re
ords the loss of the atom R�a along
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him Blumensathan edge that preserves �a while the states (i; j) 2 [k℄2 indi
ate the sear
h forwitnesses to the guardedness of i and j. The transitions are as follows.Æ(
he
k;C) = h;if
he
kg [[f h�aifR�ag j C j= R�a g[ h�if (i; j) j C 6j= 
lique(i; j) g:At a node where the elements i and j are not guarded, Player 1 
an 
hallengehis opponent to �nd a node where fi; jg appear guarded, along a path wherethese elements persist in the edge labels.Æ((i; j);C) = (h�iftrueg C j= 
lique(i; j);hfi; jgif(i; j)g otherwise:Also, Player 1 may pi
k a 
urrently valid atomi
 fa
t to 
he
k whether it is indeedpreserved along the edges that 
ontain all involved elements in their label.Æ(R�a;C) = (h�iftrueg C j= R�a;h�iffalseg otherwise:If the player agree on a lo
al test, the run is �nite: Æ(true) = Æ(false) = ;.On an in�nite run, the automaton assumes forever either the state 
he
k orsome state (i; j). Sin
e in the �rst 
ase Player 0 should win, we set 
(
he
k) = 0.In the se
ond 
ase, instead, Player 0 should lose, be
ause he does not provide awitness to the guardedness of i and j after a �nite number of steps. To enfor
ethat, we set 
((i; j)) = 1 for all (i; j) 2 [k℄2.It is easy to see that the above 
he
ks ensure the 
onsisten
y and the guard-edness of the input tree.Lemma 19.17. The automaton A2k re
ognises the set of k-de
omposition treesof all �-stru
tures.Redu
tion to the emptiness problem. After having 
onstru
ted an automa-ton A2 for the model 
he
king of a tree representation and an automaton A2kto 
he
k the validity of the input tree, we 
an build the produ
t automatonB2 := A2 � A2k whi
h re
ognises pre
isely the set of k-de
omposition trees ofall models of  . In this way, the satis�ability problem for  is redu
ed to theemptiness problem for B2 .Proposition 19.18. A �CGF formula  is satis�able i� L(B2 ) 6= ;.Emptiness of two-way automata. In order to establish the 
omplexity ofthe emptiness problem for our automata model we will redu
e it to the two-wayautomata introdu
ed by Vardi [9℄ de�ned for input trees of bounded bran
hingdegree.
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s 355Lemma 19.19. Any two-way automaton re
ognising a non-empty language, a
-
epts some tree whose degree is bounded by the size of its state set.Proof. Let A2 be a two-way automaton a

epting some input tree T . Hen
e,Player 0 has a winning strategy in the parity game G(A2; T ) and, by [3,7℄, evena memoryless one: f : Q0� T ! Q� T . For any node v 2 T , let S(v) be the setof nodes targeted by f at some position with v:S(v) := f v0 2 T j f(q; v) 2 Q� fv0g for some q 2 Q0 g:Consider now the tree T 0 obtained from T by dis
arding at every node vthose su

essors whi
h are not in S(v). Sin
e jS(v)j � jQ0j, this yields a tree ofbran
hing degree bounded by jQ0j � jQj. Moreover, f is still a winning strategyin G(A2; T 0). In other words, the automaton A2 also a

epts T 0.19.5 ComplexitySin
e Vardi's automata work on trees with unlabelled edges, we have to removethe edge labels and pla
e them into their target node. Then, our automaton hasto verify the validity of taken transitions, thus, requiring a blow-up of its stateset by the size of the edge alphabet. Taking into a

ount this modi�
ation, we
an transfer the 
omplexity of the emptiness test of Vardi's automata to ourmodel.Theorem 19.20. The emptiness of a two-way alternating automaton with sstates and t edge symbols 
an be de
ided in time 2O((st)2).For the 
omputations in the remainder of this 
hapter, let us �x a formula  of size n and width k. Note that, the number of states of the automata A2 andA2k is bounded by O(n �kk). A

ordingly, their produ
t B2 has at most O(n2k2k)states. From Lemma 19.19 we 
an now infer a stronger variant of the tree modelproperty for �CGF.Proposition 19.21. Any satis�able �CGF-formula of width k has a model witha tree de
omposition of width at most k � 1 and bran
hing degree bounded byO(n2k2k).By Theorem 19.20, the redu
tion of the satis�ability problem for  to theemptiness of B2 yields the following 
omplexity bounds:2O((n�kk)4) = 2O(n424k log k) = 22O(n) :When k is bounded by a 
onstant, the above expression boils down to 2O(n4).Sin
e the 
omplexity results on CGF quoted in the introdu
tion of this 
hap-ter imply hardness of this bounds, we 
an state:Theorem 19.22. The satis�ability problem for �CGF is 2Exptime-
ompletein the general 
ase. For 
lique guarded �xed point senten
es of bounded width itis Exptime-
omplete.
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