19 Automata for Guarded Fixed Point Logics

Dietmar Berwanger and Achim Blumensath

Mathematische Grundlagen der Informatik
RWTH Aachen

19.1 Introduction

The guarded fixed point logics uGF and pCGF introduced in the previous chap-
ter extend the guarded fragments of first-order logic GF and CGF on the one
hand and the modal p-calculus on the other hand. Thereby, the expressive power
of the underlying formalisms is increased considerably. On transition systems,
for instance, uGF already subsumes the p-calculus with backwards modalities.
Hence, the question arises, whether these logics are still manageable algorithmi-
cally. In this chapter we will study the complexity of their satisfiability problems.

As a consequence of the general criterion stated in Theorem 18.23, it fol-
lows that the satisfiability problems for uGF and pCGF are decidable. Yet, the
argument, does not allow us to derive precise complexity bounds for the deci-
sion problem. A lower bound can be obtained from the respective results for L,
and GF. For L,, the satisfiability problem is EXPTIME-complete [2], whereas for
GF it is complete for 2EXPTIME [5]. However, if we consider formulae of bounded
width, i.e., with a bounded number of variables, it becomes EXPTIME-complete
as well.

Following Gradel and Walukiewicz [6,5] we will prove that even for uCGF,
the strongest logic considered, the satisfiability problem is still in 2EXPTIME
in the general case, and in EXPTIME for formulae of bounded width. In other
words, the fixed point extensions of guarded logics are almost for free in terms
of complexity of the satisfiability problem.

Given the expressive power of these logics, this result is rather surprising. For
instance, in contrast to L, already the weakest guarded fixed point logic uGF
lacks the finite model property. An example of a formula with only infinite
models was given in the previous chapter:

(3zy.Exy) A (Vay.Ezy)(32.Eyz)[LFP; . (Vy.Eyz) Zy|(2).

A crucial model theoretic aspect of guarded logics is their (generalised) tree
model property stated in Theorem 18.16. Informally, this asserts that models
of guarded formulae can be represented as trees. In [8,4] Vardi and Gréidel em-
phasise that the tree model property seems to be the key feature responsible for
the good algorithmic behavior of modal logics because it makes them amenable
to automata-theoretic techniques for solving satisfiability and model-checking
problems. The generalised tree model property allows us to lift these techniques
to guarded logics. In order to decide whether a given formula v is satisfiable
one can construct two automata: the first one, called model checking automaton,

E. Griidel, W. Thomas, and T. Wilke (Eds.): Automata, Logics, and Infinite Games, LNCS 2500, pp.343-355, 2002
@© Springer-Verlag Berlin Heidelberg 2002

344 Dietmar Berwanger and Achim Blumensath

takes an appropriate representation of a structure as input and accepts if and
only if the structure satisfies 1; the other automaton recognises the set of all
appropriate representations. Then, the formula is satisfiable iff the product of
these automata recognises a non-empty language.

This scheme outlines the plan of the present chapter. First, we introduce
appropriate tree representations of structures in Section 19.2 together with a
suitable automata model. For a better understanding we will proceed on two
tracks. On the one hand, we define the unravelling tree of a structure. The nodes
of this tree are associated to the guarded sets of the structure, in such a way that
every node has all guarded sets represented in its successors. This rich encoding
allows checking of the encoded model by rather simple automata. Moreover,
the underlying technique was already discussed in the previous chapter, in the
proof of Theorem 18.17. On the other hand, we introduce decomposition trees
which, being more compact representations, require more sophisticated two-way
automata for model checking.

Section 19.3 is dedicated to the construction of the model checking automa-
ton. Starting from input structures encoded as unravelling trees, we define a
one-way automaton which, when viewed as a two-way automaton, still recog-
nises the same structures, but in a different encoding, as decomposition trees.
At that point, the two tracks of our exposition converge.

Finally, Section 19.4 concludes the reduction by presenting an automaton
which recognises valid decomposition trees. Putting all pieces together we are
able to derive the desired complexity bounds for the satisfiability problem.

19.2 Requisites

19.2.1 Clique guarded fixed point formulae

When speaking of formulae we always mean pCGF-formulae as introduced in
the previous chapter. To simplify our notation we will, however, omit the clique
guards, i.e., instead of (3%.clique(Z))n(Z) we will write 3Z.n(Z) and accordingly
for universal formulae.

Furthermore, we will assume that all formulae are well named and in negation
normal form, that is, fixed point variables are defined at most once and negation
applies to atomic formulae only. Clearly, every uCGF-formula can be rewritten
to meet these requirements.

A crucial parameter of a formula is its width which is defined as the greatest
number of free variables occurring in a subformula. Equivalently, a formula has
width k iff it can be transformed, by renaming of variables, so that it uses only
k variables. In the following we will always assume that every formula of width &
is written with the variables {zq,z1,...,Tr_1}.

19.2.2 Tree representations

In order to use tree automata for model checking and satisfiability we encode
structures by trees. Recall that every subformula of a formula of width k& can

19 Automata for Guarded Fixed Point Logics 345

Fig.19.1. A structure with relations of arity 1, 2, and 3 and its Gaifman graph

refer to at most k structure elements at the same time, which, moreover, have
to be guarded. On account of this, we associate to a given structure 2 a tree
whose nodes are labelled by the substructures of 2 induced by at most & guarded
elements. In addition, the overlap of two adjacent nodes is stored in the label of
their common edge.

Let us fix some notation for the remainder of this chapter. The set of guarded
subsets of size at most k of a o-structure 2 is denoted by

Ii(A) :={K C A| K is k-clique-guarded in 2 }.

The substructures induced by these sets are mapped onto the fixed universe
[k] = {0,...,k — 1} and then arranged to form a tree while keeping track of
overlaps along the edges. Thus, the nodes of the resulting trees are labelled by
the alphabet

XY :={¢€| Cis a g-structure over a universe C C [k] }

while the edges are labelled by subsets of [k]. We call trees labelled by these
alphabets shortly k-type trees. When we speak about a D-edge, we mean an
edge labelled with D C [k], and a D-neighbour or D-successor of a node is a
neighbour respectively a successor along some D-edge.

Definition 19.1. For a given width k&, the k-unravelling tree of a structure 2
is the k-type tree T over the set of nodes I'y(2)* labelled as follows:

(i) The root of T is labelled with the empty structure (§, o) and all outgoing
edges are labelled with ().
(ii) Every node v € I',(21)*K is labelled with an isomorphic copy € of |k, the
restriction of 2 to K € I, ().
(iii) If 7 : A|g — € and 7' : A|'x — ¢ are isomorphisms labelling, respectively,
a node v € I',(A)*K and its successor v' = vK', then 7 and 7’ agree on
K N K' and the edge (v,v") is labelled with 7(K N K').

346 Dietmar Berwanger and Achim Blumensath
Remark 19.2. Tt is easy to see that for every D-edge (v,v') of an unravelling
tree T the following conditions hold:

(i) Consistency: the labels € of v and €' of v agree on D, that is, €|p = ¢'|p.

(ii) Completeness: for any H C [k] the H-successors of v and v' agree on
DN H, i.e., there is a one-to-one map assigning to each H-successor w of v
an H-successor w' of v' such that the labels of w and w" agree on D N H.

Generally, we call a k-type tree consistent, if it satisfies the first condition.
Let us now look at the relationship between a tree representation and the encoded
structure.

Definition 19.3. Given a consistent k-type tree T', consider the disjoint sum of
its node labels,

D= U{ (€,v) | € is the label of v € T' }.

Let ~ be the least equivalence relation on the universe of © with
(i,v) ~ (i,v") if v’ is a successor of v and i is in the label of (v,v').

Then, by consistency of T', ~ is a congruence relation on . We call the quotient
® /.. the structure recovered from T

Definition 19.4. The k-unravelling A*) of a structure 2 is the structure
recovered from the k-unravelling tree of 2.

Since pCGF is invariant under guarded bisimulation (see [5]), it follows that
sentences of width up to k£ cannot distinguish between a structure 2 and its
Ek-unravelling 2A*).

Proposition 19.5. Fvery structure 2 is k-clique bisimilar to its k-unravelling
Ak . That is, for all uCGF-sentences 1) of width at most k we have

A=y iff AW .

If we recall the notion of tree decomposition of a structure introduced in the
previous chapter we can easily establish the following connection.

Proposition 19.6. A k-type tree T is a tree decomposition of some structure A
iff the structure recovered from T is isomorphic to 2.

This relationship suggests tree decompositions as candidates for structure
representations.

Definition 19.7. For a given width k, a k-decomposition tree of a structure
2 is a k-type tree T where

(i) for every K € I, (%) there is a node labelled with (an copy of) |k;
(ii) the labels of any two nodes connected by a D-edge agree on D;

19 Automata for Guarded Fixed Point Logics 347

{1}| @
23] {1}

=

Fig. 19.2. A k-decomposition tree of the structure in Fig.19.2.2

(iii) every node v is labelled with 2|x for some K € I,(2) via an isomorphism 7.
Moreover, for each K' € I',(2) there is a node v’ labelled with 2|g, such
that all edges on the path between v and v' include 7 (K NK') in their labels.

Remark 19.8. (i) The k-unravelling tree of a structure is also a k-decomposition
tree of that structure.

(ii) Each k-decomposition tree of a structure 2 induces a subtree in the k-
unravelling tree of 2.

348 Dietmar Berwanger and Achim Blumensath

Fig. 19.3. The structure recovered from the decomposition tree in Fig. 19.2.2

It is an easy exercise to show that the process of k-decomposing a structure
preserves its properties up to bisimulation, yielding a more compact representa-
tion than unravelling does.

Proposition 19.9. Given a structure 2, let 2" be the structure recovered from
a k-decomposition tree of . Then A and A’ are clique-k-bisimilar.

19.2.3 The automata model

We employ alternating automata that work on trees where nodes and edges are
labelled.

Definition 19.10. An alternating tree automaton over a node alphabet X
and an edge alphabet A is given by a tuple

A=(Q,X,4,6,q,0)

where @@ = Qo U Q1 is the set of existential and universal states, q; designates
the initial state, {2 :) — w is a parity condition and

§:Qx Y= P(AxQ)
is the transition function. The pairs (d,q) € A x @ are called transitions.
We define the behaviour of such automata by way of games.

Definition 19.11. Let A = (Q, X, A,4,q1, 2) be an automaton and T an ap-
propriately labelled tree. The game G(A, T) associated to A and T is the parity
game with positions) x T" and acceptance condition (2 played as follows.

Every play starts in state gr at the root of 7. Assume that the play reached
some position (g,v) where the node v is labelled with e. If ¢ belongs to Qo,
Player 0 can move to a position (¢’,v") if

(i) there is a transition (d, ¢") € d(q,c) and
(if) v’ is a d-successor of v.

19 Automata for Guarded Fixed Point Logics 349

The moves of Player 1 are defined analogously.
The language L(A) accepted by a tree automaton A is the set of all trees T,
such that Player 0 has a winning strategy in the game G(A,T).

Usually, automata are defined as devices scanning their input only in one
direction. However, for our purpose it is convenient to allow them to move back-
wards and remain still as well.

Definition 19.12. An alternating two-way tree automaton is given in the
same way as a (one-way) alternating automaton,

A =(Q, 2, 4,6,q1,9)

where acceptance is defined in a different way. The game G(A%,T) associated
to a two-way automaton A2 and a tree T is the parity game obtained as in
Definition 19.11, but replacing rule (ii) with

(ii’) either v’ = v or v' is a d-neighbour of v.

The language L(A?) accepted by a two-way tree automaton A2 is the set of all
trees T such that Player 0 has a winning strategy in the game G(A2,T).

19.3 Model Checking

The results presented in Chapter 14 and 10 reveal a close relationship between
alternating automata and games on the one side, and logical formalisms on the
other side. The automaton constructed in Section 10.3 for L, translates first-
order operations into state transitions, while fixed point predicates are encoded
as priorities.

In a similar way, we will construct automata for yCGF. But unlike L, where
a formula is evaluated at a single node of a transition system, a yCGF-formula
with several free variables may involve several structure elements. Since these
elements have to be clique-guarded, they appear together in the label of some
node in the unravelling (or, decomposition) tree. To allow our automaton to
access the structure in the node labels of the input tree, its states will contain
two components: a subformula, and an assignment of the variables appearing
free therein.

The closure cl(1)) of a formula v is the set consisting of all subformulae of 1)
together with the formulae true and false.

Definition 19.13. To any formula ¢ € uCGF of width k we associate the
automaton Ay = (Q, Xy, Z([k]), 0, q1, 12) over k-type trees where the state set

Q:={(,B) | €cl¥) and B: {zo...zp-1} = [k] }
is partitioned into existential and universal states by

Qo :={(p,B) | p =false, or p =n VI, or p =3j.n}, and
Q1 5=Q\Q0-

350 Dietmar Berwanger and Achim Blumensath

The initial state is gr = (¢,) where () stands for the void assignment.

It remains to specify the transition function. To simplify our notation we
use expressions (H)S with H C [k] and S C @ to denote the set of transitions
{D C k]| HC D} xS. In particular, when we refer to the universe of ¢ we
write (-}S instead of (C')S. Furthermore, omitting parenthesis, we simply write
d(p, B, €) instead of 6((p, B), €).

(i) If p = true or ¢ = false then §(p, 8,€) = 0.
(ii) If ¢ is a o-atom or a negated o-atom then

(H(true,)} if €, | ¢,
(M (false,0)} if €, 8 = ¢.

(iii) If o = A or ¢ =75 Vo) then
(¢, 8,€) = (H{(n,8), (¥, 8)}-
(iv) If (%) = FP7y(n)(Z) then
(¢, 8,€) = (-{(n,)}
(v) If (%) = TZ and FPr;(n)(Z) is the unique definition of T in ¢ then
(¢, 8,€) = (-{(n,)}
(vi) If (z) = Fy.n(z,y) or p(x) = Vy.n(z,y) then
3(,8,€) =({ (0, 8') | B'lz = Bla } U(BE)M{ (v, B)}-

Finally, if the fixed point variables of i) occur in the order Zy, ..., Z, the parity
condition is given by

8(p, 8,€) = {

2i ¢ = Z;% and Z; is a GFP-variable,

2i+1 ¢ =Z2;% and Z; is an LFP-variable,
2, B) :==q2n+4 ¢ =Yy,

2n+3 @ =4dy.n,

2n + 2 otherwise.

The automaton works in a similar way as the L,-automata defined in Sec-
tion 10.3: disjunctions are decomposed by Player 0, conjunctions by Player 1 and
fixed points are regenerated. Atomic statements are verified locally and termi-
nate the run. Acceptance of infinite runs is determined by the priority function
which reflects the nesting and type of fixed point definitions. Note that, except
when dealing with quantifiers, the automaton changes only the formula compo-
nent of its states, while the variable assignment remains the same. Moreover,
the (-)-transitions allow to move only to successors that retain the structure
information of the current node.

19 Automata for Guarded Fixed Point Logics 351

To understand the handling of quantification, consider, e.g., an existential
formula ¢(Z) = 3y.n(Z, 7). Player 0 may use a transition from (5(zZ)){(v,5)}
to proceed to a successor that retains the structure living on elements currently
assigned to the free variables Z. In this way, he can reassign the quantified
variables § to elements of the chosen successor. After such a move, the formula
in the new state is still ¢ and Player 0 is again in turn to move. But, as existential
formulae have odd priority, he can reiterate these moves only finitely many times
and must then take a transition of the form (-){ (n, ") | #'|z = Blz }-

Given an input tree that k-unravels a structure 2, the structures labelling
the nodes are all induced by k-cliques in 2. Moreover, from each node (a copy
of) every other k-clique of 2 is accessible within one move.

It remains to prove that our construction is correct, that is, that we can use
the automaton defined above to solve the model checking problem for uCGF.

Proposition 19.14. Given a formula ¢ of width k and a structure A, the au-
tomaton Ay accepts the k-unravelling tree of 2 iff A |= 1.

Proof. Tt is convenient to argue in terms of games. Model checking games for
pCGF were introduced in [1] as a generalisation of the model checking games
for L,,. Although defined for finite structures, the extension of these games to
the transfinite case is straightforward.

Let T be the k-unravelling tree of the structure . We will show that the
game which determines acceptance of T' by the automaton A, is essentially the
model checking game associated to 2 and).

Let G be the acceptance game G(Ay,T). We can simplify this game by col-
lapsing positions which share the same formula and map its free variables to the
same part of the structure.

Recall that any node v of T' is labelled via some isomorphism 7. Furthermore,
at every position (@, 3,v) in a play of G, the image of 7 includes the image of
the assignment 3. Thus, we can define a mapping from the positions of G to
{(o,x) | @ €cl(®) and x : {zo...zx—1} = A} as follows:

T (0, B,0) B (o, o B).

By the construction of G, we can easily verify that this mapping induces a
congruence relation ~ among the positions of G,

(9, 8,0) R (9, 8,0") iff (2, B,0) = (19,8, 0"),

which is also a bisimulation on G. R

Consider now the (strong homomorphic) image G of G under ~. On the one
hand, G and G are bisimilar via = and, consequently, the same player has a
winning strategy in both plays. On the other hand, G is almost the model check-
ing game G' = G(A,) as defined in [1]. The only difference arises at positions
(p,x) where @ is an existential or universal formula, say ¢ = 3gn(z, 7). Then,
the model checking game allows moves to (1, x’) with x’ such that

(i) x and x' agree on the values of Z and

352 Dietmar Berwanger and Achim Blumensath

(ii) =, x" [clique(z,y),

whereas in G the legal moves go either to (p,x") with x' as above, or to (1, X)-

Nevertheless, we will show that the same player wins both G’ and G. If
Player 0 has a winning strategy in the model checking game G', he can also
play this strategy in G, as long as no existential formula is met. Otherwise, at
positions (p,x) as above, he can imitate the move to the position (n,x’') he
would perform in G' by taking two steps:

(i) move to (ip,x’); this is possible since, for every x' agreeing with y on the
free variables of ¢, the position (¢, x') is reachable from (¢, x) in one step.
(ii) At (p,x") it’s still Player O turn: move to (1, x").

Towards a contradiction, let us assume that Player 1 wins this play. Then, after
any universal formula ¢ = Vyn(Z,§y) occurring in the play, there can follow
only finitely many positions with ¢ until Player 1 chooses some position (1, x');
otherwise he would lose with the highest even priority. But then, Player 1 also
wins by choosing (¢, x') right from position (p, x) and proceeding with (n, x').
However, these two moves translate into one move in the corresponding play of
G’ which leads Player 1 to a win in G despite Player 0’s winning strategy, which
is not possible. This concludes our proof that a player has a winning strategy in
the model checking game iff he has one in the acceptance game.

The correctness of our construction relies on the fact that the input trees are
complete in the sense of Remark 19.2 (ii). That is, if the current node is labelled
by a k-clique of the represented structure, then every other k-clique appears in
the label of some successor node. Unfortunately, it is very hard to check whether
a given tree satisfies this property. By letting 4, run as a two-way automaton
A2, we can relax this requirement and claim instead that every k-clique shall be
reachable via a finite path from the current node.

Proposition 19.15. Given a formula ¢ of width k and a structure 2, let T be
a k-decomposition tree of 2. Then the automaton Ai accepts T iff A |= .

Proof. The idea is to show that A2 runs on T in a similar way as its one-way
variant does on the k-unravelling tree 7" of 2. Towards this we will transform
the acceptance game g(Ai,T) by introducing shortcuts into a game which is
bisimilar to the acceptance game G(A,T") of the one-way automaton.

Let G* be the least game extending G := G(A2, T) by new transitions in such
a way that, whenever there are two transitions

(¢, B,0) = (¢, 8,0") = (,8,v")

in G*, the shortcut (¢, 3,v) = (¢, 3,v") is also a transition in G*.

Observe that the new transitions just shortcut a sequence of steps in the
original game, all performed by the same player. To see that this does not change
the winning partitions, assume, towards a contradiction, that Player 1 has a
winning strategy for G* while Player 0 has one for G. All moves in G are still

19 Automata for Guarded Fixed Point Logics 353

available in G*, so Player 0 can apply his winning strategy for G in the play 7
of G* against the winning strategy of Player 1. Let us now look at the play
in G in which both players move like in 7 except at positions (p, 3,v) where
Player 1 used a shortcut to, say (p,3,v"), for ¢ a universal formula. At that
point, Player 1 can move step by step via finitely many positions (¢, 8, w) along
the path leading to the destination of the shortcut. From there, the play proceeds
like in 7. Clearly, Player 1 wins this play in G in contradiction to our assumption
on Player 0’s winning strategy.

The mapping = which was defined in the proof of Proposition 19.14 can be
applied to the positions of G*. It induces a congruence relation on G* and, as
such, a bisimulation betweer}\ G* and its strong homomorphic image G*. This
image is precisely the game G(,,T") which is bisimilar to G(y,T").

Accordingly, the automaton Ai accepts the k-decomposition tree T iff Ay,
accepts the k-unravelling tree T".

19.4 Satisfiability

The model checking automata introduced above operate correctly on inputs
which represent structures. But in order to solve the satisfiability problem this
does not suffice. We need to make sure that all inputs which do not represent
structures are rejected.

Checking representation validity. From a given a k-type tree T, we can
recover a structure according to Definition 19.3, only if T is consistent, that is,
if every node agrees with its D-neighbours on the D-part of its label.

Provided T' is consistent, let 2 be the recovered structure. Now T is a k-
decomposition tree of 2 iff every node label of T" induces a clique in 2. This is
crucial, since the model-checking automaton assumes that all elements appear-
ing in the label of its input represent clique-guarded elements of the structure.
Another way to formulate this condition is: For every node v and every pair of
elements {7,j} C [k] in its label, there is a node v’ in which ¢ and j are guarded
by an atom and all edges on the path between v and v include {i,j} in their
labels.

Now, we build an automaton that checks the above two conditions.

Definition 19.16. For every width k, we construct a two-way automaton A2 =
(Q, X, Z([k]), 0, check, 2) over k-type trees whose set of states is partitioned
into

Qo = {false} U[k]> and
Q1 = {true,check} U{Ra | R € o, a C [k] }.
In state check the automaton allows Player 1 to move freely on the input

tree to reach a node where either the consistency or the guardedness condition
may be violated. At that event, state Ra records the loss of the atom Ra along

354 Dietmar Berwanger and Achim Blumensath

an edge that preserves a while the states (i,7) € [k]? indicate the search for
witnesses to the guardedness of ¢ and j. The transitions are as follows.

§(check, €) = (#){check} U | J{ (@){Ra} | ¢ |= Ra}
U (M (5,5) | € clique(i, j) }.

At a node where the elements i and j are not guarded, Player 1 can challenge
his opponent to find a node where {i,j} appear guarded, along a path where
these elements persist in the edge labels.

.. S{true ¢ = clique(s, j),
(). ¢) = LAt € = cliauelig)
(i, iH{(@,j)} otherwise.
Also, Player 1 may pick a currently valid atomic fact to check whether it is indeed
preserved along the edges that contain all involved elements in their label.

(R, €) {(-){true} ¢ - Ra,
(-y{false} otherwise.
If the player agree on a local test, the run is finite: §(true) = §(false) = 0.

On an infinite run, the automaton assumes forever either the state check or
some state (i, 7). Since in the first case Player 0 should win, we set £2(check) = 0.
In the second case, instead, Player 0 should lose, because he does not provide a
witness to the guardedness of ¢ and j after a finite number of steps. To enforce

that, we set 2((i,7)) = 1 for all (i,5) € [k]>.

It is easy to see that the above checks ensure the consistency and the guard-
edness of the input tree.

Lemma 19.17. The automaton A3 recognises the set of k-decomposition trees
of all o-structures.

Reduction to the emptiness problem. After having constructed an automa-
ton Afb for the model checking of a tree representation and an automaton A?
to check the validity of the input tree, we can build the product automaton
B} := A7 x Aj which recognises precisely the set of k-decomposition trees of
all models of . In this way, the satisfiability problem for ¢ is reduced to the
emptiness problem for pr.

Proposition 19.18. A uCGF formula 1) is satisfiable iff L(Bi) # 0.

Emptiness of two-way automata. In order to establish the complexity of
the emptiness problem for our automata model we will reduce it to the two-way
automata introduced by Vardi [9] defined for input trees of bounded branching
degree.

19 Automata for Guarded Fixed Point Logics 355

Lemma 19.19. Any two-way automaton recognising a non-empty language, ac-
cepts some tree whose degree is bounded by the size of its state set.

Proof. Let A% be a two-way automaton accepting some input tree T'. Hence,
Player 0 has a winning strategy in the parity game G(A?,T) and, by [3,7], even
a memoryless one: f: Qo xT — @ x T. For any node v € T', let S(v) be the set
of nodes targeted by f at some position with v:

Sw):={v' €T | f(g,v) € Q x {v'} for some ¢q € Qo }.

Consider now the tree T' obtained from T by discarding at every node v
those successors which are not in S(v). Since |S(v)| < |Qol, this yields a tree of
branching degree bounded by |Qo| < |@]. Moreover, f is still a winning strategy
in G(A%, T"). In other words, the automaton A2 also accepts 7".

19.5 Complexity

Since Vardi’s automata work on trees with unlabelled edges, we have to remove
the edge labels and place them into their target node. Then, our automaton has
to verify the validity of taken transitions, thus, requiring a blow-up of its state
set by the size of the edge alphabet. Taking into account this modification, we
can transfer the complexity of the emptiness test of Vardi’s automata to our
model.

Theorem 19.20. The emptiness of a two-way altemgtmg automaton with s
states and t edge symbols can be decided in time 2°0((59)7),

For the computations in the remainder of this chapter, let us fix a formula 1)
of size n and width k. Note that, the number of states of the automata Ai and
Ay is bounded by O(n-k¥). Accordingly, their product B}, has at most O (n*k*)
states. From Lemma 19.19 we can now infer a stronger variant of the tree model
property for uCGF.

Proposition 19.21. Any satisfiable uCGF-formula of width k has a model with
a tree decomposition of width at most k — 1 and branching degree bounded by
O(n’k?*).

By Theorem 19.20, the reduction of the satisfiability problem for ¢ to the
emptiness of B?p yields the following complexity bounds:

20((nkk)4) _ 20(n424k Ing) _ 220(71)-

When k is bounded by a constant, the above expression boils down to 20(n*),
Since the complexity results on CGF quoted in the introduction of this chap-
ter imply hardness of this bounds, we can state:

Theorem 19.22. The satisfiability problem for uCGF is 2EXPTIME-complete
in the general case. For clique guarded fized point sentences of bounded width it
is EXPTIME-complete.

Literature

1. D. BERWANGER AND E. GRADEL, Games and model checking for guarded logics, in
Proceedings of the 8th International Conference on Logic for Programming, Artifi-
cial Intelligence and Reasoning, LPAR 2001, vol. 2250 of Lecture Notes in Artificial
Intelligence, Springer-Verlag, 2001, pp. 70-84.

2. E. A. EMERSON AND C. S. JuTtLA, The complezity of tree automata and logics
of programs (exteded abstract), in Proceedings of the 29th Annual Symposium on
Foundations of Computer Science, FoCS 88, IEEE Computer Society Press, 1988,
pp. 328-337.

3. ——, Tree automata, mu-calculus and determinacy (eztended abstract), in Proceed-
ings of the 32nd Annual Symposium on Foundations of Computer Science, FoCS ’91,
IEEE Computer Society Press, 1991, pp. 368-377.

4. E. GRADEL, On the restrainning power of guards, Journal of Symbolic Logic, 64
(1999), pp. 1719-1742.

5. ———, Guarded fized point logics and the monadic theory of countable trees, Theo-
retical Computer Science, 288 (2002), pp. 129 — 152.

6. E. GRADEL AND I. WALUKIEWICZ, Guarded fized point logic, in Proceedings of
the 4th Annual IEEE Symposium on Logic in Computer Science, LICS ’99, IEEE
Computer Society Press, 1999, pp. 45-54.

7. A. W. MosTowsKl, Games with forbidden positions, Tech. Rep. 78, Instytut
Matematyki, Uniwersytet Gdariski, Poland, 1991.

8. M. Y. VARDI, Why is modal logic so robustly decidable?, in Descriptive Complex-
ity and Finite Models: Proceedings of a DIMACS Workshop, vol. 31, American
Mathematical Society, 1996, pp. 149-184.

9. —— Reasoning about the past with two-way automata., in Proceedings of the 25th
International Colloquium on Automata, Languages and Programming, ICALP ’98,
vol. 1443 of Lecture Notes in Computer Science, Springer-Verlag, 1998, pp. 628—641.

