
19 Automata for Guarded Fixed Point LogisDietmar Berwanger and Ahim BlumensathMathematishe Grundlagen der InformatikRWTH Aahen19.1 IntrodutionThe guarded �xed point logis �GF and �CGF introdued in the previous hap-ter extend the guarded fragments of �rst-order logi GF and CGF on the onehand and the modal �-alulus on the other hand. Thereby, the expressive powerof the underlying formalisms is inreased onsiderably. On transition systems,for instane, �GF already subsumes the �-alulus with bakwards modalities.Hene, the question arises, whether these logis are still manageable algorithmi-ally. In this hapter we will study the omplexity of their satis�ability problems.As a onsequene of the general riterion stated in Theorem 18.23, it fol-lows that the satis�ability problems for �GF and �CGF are deidable. Yet, theargument does not allow us to derive preise omplexity bounds for the dei-sion problem. A lower bound an be obtained from the respetive results for L�and GF. For L� the satis�ability problem is Exptime-omplete [2℄, whereas forGF it is omplete for 2Exptime [5℄. However, if we onsider formulae of boundedwidth, i.e., with a bounded number of variables, it beomes Exptime-ompleteas well.Following Gr�adel and Walukiewiz [6,5℄ we will prove that even for �CGF,the strongest logi onsidered, the satis�ability problem is still in 2Exptimein the general ase, and in Exptime for formulae of bounded width. In otherwords, the �xed point extensions of guarded logis are almost for free in termsof omplexity of the satis�ability problem.Given the expressive power of these logis, this result is rather surprising. Forinstane, in ontrast to L�, already the weakest guarded �xed point logi �GFlaks the �nite model property. An example of a formula with only in�nitemodels was given in the previous hapter:(9xy:Exy) ^ (8xy:Exy)(9z:Eyz)[LFPZ;z(8y:Eyz)Zy℄(z):A ruial model theoreti aspet of guarded logis is their (generalised) treemodel property stated in Theorem 18.16. Informally, this asserts that modelsof guarded formulae an be represented as trees. In [8,4℄ Vardi and Gr�adel em-phasise that the tree model property seems to be the key feature responsible forthe good algorithmi behavior of modal logis beause it makes them amenableto automata-theoreti tehniques for solving satis�ability and model-hekingproblems. The generalised tree model property allows us to lift these tehniquesto guarded logis. In order to deide whether a given formula  is satis�ableone an onstrut two automata: the �rst one, alled model heking automaton,E. Gr�adel, W. Thomas, and T. Wilke (Eds.): Automata, Logis, and Infinite Games, LNCS 2500, pp. 343-355, 2002 Springer-Verlag Berlin Heidelberg 2002



344 Dietmar Berwanger and Ahim Blumensathtakes an appropriate representation of a struture as input and aepts if andonly if the struture satis�es  ; the other automaton reognises the set of allappropriate representations. Then, the formula is satis�able i� the produt ofthese automata reognises a non-empty language.This sheme outlines the plan of the present hapter. First, we introdueappropriate tree representations of strutures in Setion 19.2 together with asuitable automata model. For a better understanding we will proeed on twotraks. On the one hand, we de�ne the unravelling tree of a struture. The nodesof this tree are assoiated to the guarded sets of the struture, in suh a way thatevery node has all guarded sets represented in its suessors. This rih enodingallows heking of the enoded model by rather simple automata. Moreover,the underlying tehnique was already disussed in the previous hapter, in theproof of Theorem 18.17. On the other hand, we introdue deomposition treeswhih, being more ompat representations, require more sophistiated two-wayautomata for model heking.Setion 19.3 is dediated to the onstrution of the model heking automa-ton. Starting from input strutures enoded as unravelling trees, we de�ne aone-way automaton whih, when viewed as a two-way automaton, still reog-nises the same strutures, but in a di�erent enoding, as deomposition trees.At that point, the two traks of our exposition onverge.Finally, Setion 19.4 onludes the redution by presenting an automatonwhih reognises valid deomposition trees. Putting all piees together we areable to derive the desired omplexity bounds for the satis�ability problem.19.2 Requisites19.2.1 Clique guarded �xed point formulaeWhen speaking of formulae we always mean �CGF-formulae as introdued inthe previous hapter. To simplify our notation we will, however, omit the liqueguards, i.e., instead of (9�x:lique(�x))�(�x) we will write 9�x:�(�x) and aordinglyfor universal formulae.Furthermore, we will assume that all formulae are well named and in negationnormal form, that is, �xed point variables are de�ned at most one and negationapplies to atomi formulae only. Clearly, every �CGF-formula an be rewrittento meet these requirements.A ruial parameter of a formula is its width whih is de�ned as the greatestnumber of free variables ourring in a subformula. Equivalently, a formula haswidth k i� it an be transformed, by renaming of variables, so that it uses onlyk variables. In the following we will always assume that every formula of width kis written with the variables fx0; x1; : : : ; xk�1g.19.2.2 Tree representationsIn order to use tree automata for model heking and satis�ability we enodestrutures by trees. Reall that every subformula of a formula of width k an



19 Automata for Guarded Fixed Point Logis 345ab de f g
ab de f gFig. 19.1. A struture with relations of arity 1, 2, and 3 and its Gaifman graphrefer to at most k struture elements at the same time, whih, moreover, haveto be guarded. On aount of this, we assoiate to a given struture A a treewhose nodes are labelled by the substrutures of A indued by at most k guardedelements. In addition, the overlap of two adjaent nodes is stored in the label oftheir ommon edge.Let us �x some notation for the remainder of this hapter. The set of guardedsubsets of size at most k of a �-struture A is denoted by�k(A) := fK � A j K is k-lique-guarded in A g:The substrutures indued by these sets are mapped onto the �xed universe[k℄ = f0; : : : ; k � 1g and then arranged to form a tree while keeping trak ofoverlaps along the edges. Thus, the nodes of the resulting trees are labelled bythe alphabet�k := fC j C is a �-struture over a universe C � [k℄ gwhile the edges are labelled by subsets of [k℄. We all trees labelled by thesealphabets shortly k-type trees. When we speak about a D-edge, we mean anedge labelled with D � [k℄, and a D-neighbour or D-suessor of a node is aneighbour respetively a suessor along some D-edge.De�nition 19.1. For a given width k, the k-unravelling tree of a struture Ais the k-type tree T over the set of nodes �k(A)� labelled as follows:(i) The root of T is labelled with the empty struture (;; �) and all outgoingedges are labelled with ;.(ii) Every node v 2 �k(A)�K is labelled with an isomorphi opy C of AjK , therestrition of A to K 2 �k(A).(iii) If � : AjK ! C and �0 : Aj0K ! C0 are isomorphisms labelling, respetively,a node v 2 �k(A)�K and its suessor v0 = vK 0, then � and �0 agree onK \K 0 and the edge (v; v0) is labelled with �(K \K 0).



346 Dietmar Berwanger and Ahim BlumensathRemark 19.2. It is easy to see that for every D-edge (v; v0) of an unravellingtree T the following onditions hold:(i) Consisteny: the labels C of v and C0 of v0 agree on D, that is, CjD = C0jD.(ii) Completeness: for any H � [k℄ the H-suessors of v and v0 agree onD \H , i.e., there is a one-to-one map assigning to eah H-suessor w of van H-suessor w0 of v0 suh that the labels of w and w0 agree on D \H .Generally, we all a k-type tree onsistent, if it satis�es the �rst ondition.Let us now look at the relationship between a tree representation and the enodedstruture.De�nition 19.3. Given a onsistent k-type tree T , onsider the disjoint sum ofits node labels,D := �[f (C; v) j C is the label of v 2 T g:Let � be the least equivalene relation on the universe of D with(i; v) � (i; v0) if v0 is a suessor of v and i is in the label of (v; v0):Then, by onsisteny of T , � is a ongruene relation on D. We all the quotientD=� the struture reovered from T .De�nition 19.4. The k-unravelling A(k) of a struture A is the struturereovered from the k-unravelling tree of A.Sine �CGF is invariant under guarded bisimulation (see [5℄), it follows thatsentenes of width up to k annot distinguish between a struture A and itsk-unravelling A(k).Proposition 19.5. Every struture A is k-lique bisimilar to its k-unravellingAk. That is, for all �CGF-sentenes  of width at most k we haveA j=  i� A(k) j=  :If we reall the notion of tree deomposition of a struture introdued in theprevious hapter we an easily establish the following onnetion.Proposition 19.6. A k-type tree T is a tree deomposition of some struture Ai� the struture reovered from T is isomorphi to A.This relationship suggests tree deompositions as andidates for struturerepresentations.De�nition 19.7. For a given width k, a k-deomposition tree of a strutureA is a k-type tree T where(i) for every K 2 �k(A) there is a node labelled with (an opy of) AjK ;(ii) the labels of any two nodes onneted by a D-edge agree on D;
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21 31 2 3 321 1 3122 1 312 3Fig. 19.2. A k-deomposition tree of the struture in Fig. 19.2.2(iii) every node v is labelled with AjK for some K 2 �k(A) via an isomorphism �.Moreover, for eah K 0 2 �k(A) there is a node v0 labelled with AjK0 , suhthat all edges on the path between v and v0 inlude �(K\K 0) in their labels.Remark 19.8. (i) The k-unravelling tree of a struture is also a k-deompositiontree of that struture.(ii) Eah k-deomposition tree of a struture A indues a subtree in the k-unravelling tree of A.
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Fig. 19.3. The struture reovered from the deomposition tree in Fig. 19.2.2It is an easy exerise to show that the proess of k-deomposing a struturepreserves its properties up to bisimulation, yielding a more ompat representa-tion than unravelling does.Proposition 19.9. Given a struture A, let A0 be the struture reovered froma k-deomposition tree of A. Then A and A0 are lique-k-bisimilar.19.2.3 The automata modelWe employ alternating automata that work on trees where nodes and edges arelabelled.De�nition 19.10. An alternating tree automaton over a node alphabet �and an edge alphabet � is given by a tupleA = (Q;�;�; Æ; qI; 
)where Q = Q0 �[ Q1 is the set of existential and universal states, qI designatesthe initial state, 
 : Q! ! is a parity ondition andÆ : Q�� !P(��Q)is the transition funtion. The pairs (d; q) 2 ��Q are alled transitions.We de�ne the behaviour of suh automata by way of games.De�nition 19.11. Let A = (Q;�;�; Æ; qI; 
) be an automaton and T an ap-propriately labelled tree. The game G(A; T ) assoiated to A and T is the paritygame with positions Q� T and aeptane ondition 
 played as follows.Every play starts in state qI at the root of T . Assume that the play reahedsome position (q; v) where the node v is labelled with . If q belongs to Q0,Player 0 an move to a position (q0; v0) if(i) there is a transition (d; q0) 2 Æ(q; ) and(ii) v0 is a d-suessor of v.



19 Automata for Guarded Fixed Point Logis 349The moves of Player 1 are de�ned analogously.The language L(A) aepted by a tree automaton A is the set of all trees T ,suh that Player 0 has a winning strategy in the game G(A; T ).Usually, automata are de�ned as devies sanning their input only in onediretion. However, for our purpose it is onvenient to allow them to move bak-wards and remain still as well.De�nition 19.12. An alternating two-way tree automaton is given in thesame way as a (one-way) alternating automaton,A2 = (Q;�;�; Æ; qI; 
)where aeptane is de�ned in a di�erent way. The game G(A2; T ) assoiatedto a two-way automaton A2 and a tree T is the parity game obtained as inDe�nition 19.11, but replaing rule (ii) with(ii') either v0 = v or v0 is a d-neighbour of v.The language L(A2) aepted by a two-way tree automaton A2 is the set of alltrees T suh that Player 0 has a winning strategy in the game G(A2; T ).19.3 Model ChekingThe results presented in Chapter 14 and 10 reveal a lose relationship betweenalternating automata and games on the one side, and logial formalisms on theother side. The automaton onstruted in Setion 10.3 for L� translates �rst-order operations into state transitions, while �xed point prediates are enodedas priorities.In a similar way, we will onstrut automata for �CGF. But unlike L�, wherea formula is evaluated at a single node of a transition system, a �CGF-formulawith several free variables may involve several struture elements. Sine theseelements have to be lique-guarded, they appear together in the label of somenode in the unravelling (or, deomposition) tree. To allow our automaton toaess the struture in the node labels of the input tree, its states will ontaintwo omponents: a subformula, and an assignment of the variables appearingfree therein.The losure l( ) of a formula  is the set onsisting of all subformulae of  together with the formulae true and false.De�nition 19.13. To any formula  2 �CGF of width k we assoiate theautomaton A = (Q;�k;P([k℄); Æ; qI; 
) over k-type trees where the state setQ := f ('; �) j ' 2 l( ) and � : fx0 : : : xk�1g ! [k℄ gis partitioned into existential and universal states byQ0 := f ('; �) j ' = false; or ' = � _ #; or ' = 9�y:� g; andQ1 := Q nQ0:



350 Dietmar Berwanger and Ahim BlumensathThe initial state is qI = ( ; ;) where ; stands for the void assignment.It remains to speify the transition funtion. To simplify our notation weuse expressions hHiS with H � [k℄ and S � Q to denote the set of transitionsfD � [k℄ j H � D g � S. In partiular, when we refer to the universe of C wewrite h�iS instead of hCiS. Furthermore, omitting parenthesis, we simply writeÆ('; �;C) instead of Æ(('; �);C).(i) If ' = true or ' = false then Æ('; �;C) = ;.(ii) If ' is a �-atom or a negated �-atom thenÆ('; �;C) = (h�if(true; ;)g if C; � j= ';h�if(false; ;)g if C; � 6j= ':(iii) If ' = � ^ # or ' = � _ # thenÆ('; �;C) = h�if(�; �); (#; �)g:(iv) If '(�x) = FPT �y(�)(�x) thenÆ('; �;C) = h�if(�; �)g:(v) If '(�x) = T �x and FPT �y(�)(�x) is the unique de�nition of T in  thenÆ('; �;C) = h�if(�; �)g:(vi) If '(�x) = 9�y:�(�x; �y) or '(x) = 8�y:�(�x; �y) thenÆ('; �;C) =h�if (�; �0) j �0j�x = �j�x g [ h�(�x)if('; �)g:Finally, if the �xed point variables of  our in the order Z1; : : : ; Zn the parityondition is given by
('; �) :=8>>>>>><>>>>>>:2i ' = Zi�x and Zi is a GFP-variable;2i+ 1 ' = Zi�x and Zi is an LFP-variable;2n+ 4 ' = 8�y:�;2n+ 3 ' = 9�y:�;2n+ 2 otherwise:The automaton works in a similar way as the L�-automata de�ned in Se-tion 10.3: disjuntions are deomposed by Player 0, onjuntions by Player 1 and�xed points are regenerated. Atomi statements are veri�ed loally and termi-nate the run. Aeptane of in�nite runs is determined by the priority funtionwhih reets the nesting and type of �xed point de�nitions. Note that, exeptwhen dealing with quanti�ers, the automaton hanges only the formula ompo-nent of its states, while the variable assignment remains the same. Moreover,the h�i-transitions allow to move only to suessors that retain the strutureinformation of the urrent node.



19 Automata for Guarded Fixed Point Logis 351To understand the handling of quanti�ation, onsider, e.g., an existentialformula '(�x) = 9�y:�(�x; �y). Player 0 may use a transition from h�(�x)if('; �)gto proeed to a suessor that retains the struture living on elements urrentlyassigned to the free variables �x. In this way, he an reassign the quanti�edvariables �y to elements of the hosen suessor. After suh a move, the formulain the new state is still ' and Player 0 is again in turn to move. But, as existentialformulae have odd priority, he an reiterate these moves only �nitely many timesand must then take a transition of the form h�if (�; �0) j �0j�x = �j�x g.Given an input tree that k-unravels a struture A, the strutures labellingthe nodes are all indued by k-liques in A. Moreover, from eah node (a opyof) every other k-lique of A is aessible within one move.It remains to prove that our onstrution is orret, that is, that we an usethe automaton de�ned above to solve the model heking problem for �CGF.Proposition 19.14. Given a formula  of width k and a struture A, the au-tomaton A aepts the k-unravelling tree of A i� A j=  .Proof. It is onvenient to argue in terms of games. Model heking games for�CGF were introdued in [1℄ as a generalisation of the model heking gamesfor L�. Although de�ned for �nite strutures, the extension of these games tothe trans�nite ase is straightforward.Let T be the k-unravelling tree of the struture A. We will show that thegame whih determines aeptane of T by the automaton A is essentially themodel heking game assoiated to A and  .Let G be the aeptane game G(A ; T ). We an simplify this game by ol-lapsing positions whih share the same formula and map its free variables to thesame part of the struture.Reall that any node v of T is labelled via some isomorphism �. Furthermore,at every position ('; �; v) in a play of G, the image of � inludes the image ofthe assignment �. Thus, we an de�ne a mapping from the positions of G tof ('; �) j ' 2 l( ) and � : fx0 : : : xk�1g ! A g as follows:b� : ('; �; v) 7! ('; ��1Æ �):By the onstrution of G, we an easily verify that this mapping indues aongruene relation b� among the positions of G,('; �; v) b� ('; �; v0) i� \('; �; v) = \('; �; v0);whih is also a bisimulation on G.Consider now the (strong homomorphi) image bG of G under b� . On the onehand, G and bG are bisimilar via b� and, onsequently, the same player has awinning strategy in both plays. On the other hand, bG is almost the model hek-ing game G0 = G(A;  ) as de�ned in [1℄. The only di�erene arises at positions('; �) where ' is an existential or universal formula, say ' = 9�y�(�x; �y). Then,the model heking game allows moves to (�; �0) with �0 suh that(i) � and �0 agree on the values of �x and



352 Dietmar Berwanger and Ahim Blumensath(ii) A; �0 j= lique(�x; �y),whereas in bG the legal moves go either to ('; �0) with �0 as above, or to (�; �).Nevertheless, we will show that the same player wins both G0 and bG. IfPlayer 0 has a winning strategy in the model heking game G0, he an alsoplay this strategy in bG, as long as no existential formula is met. Otherwise, atpositions ('; �) as above, he an imitate the move to the position (�; �0) hewould perform in G0 by taking two steps:(i) move to ('; �0); this is possible sine, for every �0 agreeing with � on thefree variables of ', the position ('; �0) is reahable from ('; �) in one step.(ii) At ('; �0) it's still Player 0 turn: move to (�; �0).Towards a ontradition, let us assume that Player 1 wins this play. Then, afterany universal formula ' = 8�y�(�x; �y) ourring in the play, there an followonly �nitely many positions with ' until Player 1 hooses some position (�; �0);otherwise he would lose with the highest even priority. But then, Player 1 alsowins by hoosing ('; �0) right from position ('; �) and proeeding with (�; �0).However, these two moves translate into one move in the orresponding play ofG0 whih leads Player 1 to a win in G despite Player 0's winning strategy, whihis not possible. This onludes our proof that a player has a winning strategy inthe model heking game i� he has one in the aeptane game.The orretness of our onstrution relies on the fat that the input trees areomplete in the sense of Remark 19.2 (ii). That is, if the urrent node is labelledby a k-lique of the represented struture, then every other k-lique appears inthe label of some suessor node. Unfortunately, it is very hard to hek whethera given tree satis�es this property. By letting A run as a two-way automatonA2 , we an relax this requirement and laim instead that every k-lique shall bereahable via a �nite path from the urrent node.Proposition 19.15. Given a formula  of width k and a struture A, let T bea k-deomposition tree of A. Then the automaton A2 aepts T i� A j=  .Proof. The idea is to show that A2 runs on T in a similar way as its one-wayvariant does on the k-unravelling tree T 0 of A. Towards this we will transformthe aeptane game G(A2 ; T ) by introduing shortuts into a game whih isbisimilar to the aeptane game G(A; T 0) of the one-way automaton.Let G� be the least game extending G := G(A2 ; T ) by new transitions in suha way that, whenever there are two transitions('; �; v)! ('; �; v0)! ('; �; v00)in G�, the shortut ('; �; v) ! ('; �; v00) is also a transition in G�.Observe that the new transitions just shortut a sequene of steps in theoriginal game, all performed by the same player. To see that this does not hangethe winning partitions, assume, towards a ontradition, that Player 1 has awinning strategy for G� while Player 0 has one for G. All moves in G are still



19 Automata for Guarded Fixed Point Logis 353available in G�, so Player 0 an apply his winning strategy for G in the play �of G� against the winning strategy of Player 1. Let us now look at the playin G in whih both players move like in � exept at positions ('; �; v) wherePlayer 1 used a shortut to, say ('; �; v0), for ' a universal formula. At thatpoint, Player 1 an move step by step via �nitely many positions ('; �; w) alongthe path leading to the destination of the shortut. From there, the play proeedslike in �. Clearly, Player 1 wins this play in G in ontradition to our assumptionon Player 0's winning strategy.The mapping b� whih was de�ned in the proof of Proposition 19.14 an beapplied to the positions of G�. It indues a ongruene relation on G� and, assuh, a bisimulation between G� and its strong homomorphi image bG�. Thisimage is preisely the game bG(A ; T 0) whih is bisimilar to G(A ; T 0).Aordingly, the automaton A2 aepts the k-deomposition tree T i� A aepts the k-unravelling tree T 0.19.4 Satis�abilityThe model heking automata introdued above operate orretly on inputswhih represent strutures. But in order to solve the satis�ability problem thisdoes not suÆe. We need to make sure that all inputs whih do not representstrutures are rejeted.Cheking representation validity. From a given a k-type tree T , we anreover a struture aording to De�nition 19.3, only if T is onsistent, that is,if every node agrees with its D-neighbours on the D-part of its label.Provided T is onsistent, let A be the reovered struture. Now T is a k-deomposition tree of A i� every node label of T indues a lique in A. This isruial, sine the model-heking automaton assumes that all elements appear-ing in the label of its input represent lique-guarded elements of the struture.Another way to formulate this ondition is: For every node v and every pair ofelements fi; jg � [k℄ in its label, there is a node v0 in whih i and j are guardedby an atom and all edges on the path between v and v0 inlude fi; jg in theirlabels.Now, we build an automaton that heks the above two onditions.De�nition 19.16. For every width k, we onstrut a two-way automaton A2k =(Q;�k;P([k℄); Æ; hek; 
) over k-type trees whose set of states is partitionedintoQ0 = ffalseg [ [k℄2 andQ1 = ftrue; hekg [ fR�a j R 2 �; �a � [k℄ g:In state hek the automaton allows Player 1 to move freely on the inputtree to reah a node where either the onsisteny or the guardedness onditionmay be violated. At that event, state R�a reords the loss of the atom R�a along



354 Dietmar Berwanger and Ahim Blumensathan edge that preserves �a while the states (i; j) 2 [k℄2 indiate the searh forwitnesses to the guardedness of i and j. The transitions are as follows.Æ(hek;C) = h;ifhekg [[f h�aifR�ag j C j= R�a g[ h�if (i; j) j C 6j= lique(i; j) g:At a node where the elements i and j are not guarded, Player 1 an hallengehis opponent to �nd a node where fi; jg appear guarded, along a path wherethese elements persist in the edge labels.Æ((i; j);C) = (h�iftrueg C j= lique(i; j);hfi; jgif(i; j)g otherwise:Also, Player 1 may pik a urrently valid atomi fat to hek whether it is indeedpreserved along the edges that ontain all involved elements in their label.Æ(R�a;C) = (h�iftrueg C j= R�a;h�iffalseg otherwise:If the player agree on a loal test, the run is �nite: Æ(true) = Æ(false) = ;.On an in�nite run, the automaton assumes forever either the state hek orsome state (i; j). Sine in the �rst ase Player 0 should win, we set 
(hek) = 0.In the seond ase, instead, Player 0 should lose, beause he does not provide awitness to the guardedness of i and j after a �nite number of steps. To enforethat, we set 
((i; j)) = 1 for all (i; j) 2 [k℄2.It is easy to see that the above heks ensure the onsisteny and the guard-edness of the input tree.Lemma 19.17. The automaton A2k reognises the set of k-deomposition treesof all �-strutures.Redution to the emptiness problem. After having onstruted an automa-ton A2 for the model heking of a tree representation and an automaton A2kto hek the validity of the input tree, we an build the produt automatonB2 := A2 � A2k whih reognises preisely the set of k-deomposition trees ofall models of  . In this way, the satis�ability problem for  is redued to theemptiness problem for B2 .Proposition 19.18. A �CGF formula  is satis�able i� L(B2 ) 6= ;.Emptiness of two-way automata. In order to establish the omplexity ofthe emptiness problem for our automata model we will redue it to the two-wayautomata introdued by Vardi [9℄ de�ned for input trees of bounded branhingdegree.



19 Automata for Guarded Fixed Point Logis 355Lemma 19.19. Any two-way automaton reognising a non-empty language, a-epts some tree whose degree is bounded by the size of its state set.Proof. Let A2 be a two-way automaton aepting some input tree T . Hene,Player 0 has a winning strategy in the parity game G(A2; T ) and, by [3,7℄, evena memoryless one: f : Q0� T ! Q� T . For any node v 2 T , let S(v) be the setof nodes targeted by f at some position with v:S(v) := f v0 2 T j f(q; v) 2 Q� fv0g for some q 2 Q0 g:Consider now the tree T 0 obtained from T by disarding at every node vthose suessors whih are not in S(v). Sine jS(v)j � jQ0j, this yields a tree ofbranhing degree bounded by jQ0j � jQj. Moreover, f is still a winning strategyin G(A2; T 0). In other words, the automaton A2 also aepts T 0.19.5 ComplexitySine Vardi's automata work on trees with unlabelled edges, we have to removethe edge labels and plae them into their target node. Then, our automaton hasto verify the validity of taken transitions, thus, requiring a blow-up of its stateset by the size of the edge alphabet. Taking into aount this modi�ation, wean transfer the omplexity of the emptiness test of Vardi's automata to ourmodel.Theorem 19.20. The emptiness of a two-way alternating automaton with sstates and t edge symbols an be deided in time 2O((st)2).For the omputations in the remainder of this hapter, let us �x a formula  of size n and width k. Note that, the number of states of the automata A2 andA2k is bounded by O(n �kk). Aordingly, their produt B2 has at most O(n2k2k)states. From Lemma 19.19 we an now infer a stronger variant of the tree modelproperty for �CGF.Proposition 19.21. Any satis�able �CGF-formula of width k has a model witha tree deomposition of width at most k � 1 and branhing degree bounded byO(n2k2k).By Theorem 19.20, the redution of the satis�ability problem for  to theemptiness of B2 yields the following omplexity bounds:2O((n�kk)4) = 2O(n424k log k) = 22O(n) :When k is bounded by a onstant, the above expression boils down to 2O(n4).Sine the omplexity results on CGF quoted in the introdution of this hap-ter imply hardness of this bounds, we an state:Theorem 19.22. The satis�ability problem for �CGF is 2Exptime-ompletein the general ase. For lique guarded �xed point sentenes of bounded width itis Exptime-omplete.
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