16 The Monadic Theory of Tree-like Structures

Dietmar Berwanger and Achim Blumensath

Mathematische Grundlagen der Informatik
RWTH Aachen

16.1 Introduction

Initiated by the work of Biichi, Lauchli, Rabin, and Shelah in the late 60s,
the investigation of monadic second-order logic (MSO) has received continuous
attention. The attractiveness of MSO is due to the fact that, on the one hand, it
is quite expressive subsuming — besides first-order logic — most modal logics, in
particular the p-calculus. On the other hand, MSO is simple enough such that
model-checking is still decidable for many structures. Hence, one can obtain
decidability results for several logics by just considering MSO.

For these reasons it is an important task to classify those structures for which
MSO model-checking is decidable. So far, only partial results are known and it
seems doubtful whether a complete characterisation can be obtained.

On the one hand, a useful tool to prove undecidability is the result that MSO
model-checking for the grid w x w is undecidable. On the other hand, Rabin’s
famous tree theorem states that, for the complete binary tree, model-checking
is decidable. Since many structures can be interpreted in the binary tree this
provides a wide range of decidability results. Furthermore, we often only need
to consider trees, as many modal logics have the tree-model property.

In this chapter we present a generalisation of Rabin’s Tree Theorem. Given
a structure 2 we construct its iteration 2A* which is a tree whose vertices are
finite sequences of elements of 2. For each relation R of 2 its iteration has the
relation

R* ::{(wa07"'7wa7‘)|a’€R’ ’IUEA*}

Additionally, we include the successor relation son containing all pairs (w,wa)
for w € A*, a € A, and the clone relation cl consisting of all elements of the
form waa. Muchnik’s Theorem states that model-checking is decidable for 2 if
and only if it is so for 2*. The first published proof appears in Semenov [3]. It
generalises an unpublished result of Stupp [5] described in Shelah [4] where the
clone relation was left out. Our presentation follows Walukiewicz [6].

For the proof we employ the usual technique of translating formulae into
automata and vice versa. Since, in general, we are operating on trees of infinite
degree, a new type of automaton is needed where the transition function is
defined by MSO-formulae. Furthermore, in order to handle the clone relation,
the transition function has to depend on the current position in the input tree.

In the next section we introduce the kind of automaton we will use to prove
Muchnik’s Theorem but in a more general version than needed, and we prove
that these automata are closed under boolean operations and projection.

E. Griidel, W. Thomas, and T. Wilke (Eds.): Automata, Logics, and Infinite Games, LNCS 2500, pp. 285-301, 2002.
@© Springer-Verlag Berlin Heidelberg 2002

286 Dietmar Berwanger and Achim Blumensath

In Section 16.3 we will restrict the class of automata to those with MSO-
definable transition function and the translation between automata and MSO-
formulae is presented.

Finally, Section 16.4 contains the proof of Muchnik’s Theorem.

16.2 Automata

To fix our notation, let [n] := {0,...,n — 1}. By BT(X) we denote the set
of (infinitary) positive boolean formulae over X, i.e., all formulae constructed
from X with disjunction and conjunction. An interpretation of a formula ¢ €
B*(X) is a set I C X of atoms we consider true. A ¥-labelled A-tree is a
function T': A* — X which assigns a label T'(w) to each vertex w € A*.

The main tool used for the investigation of MSO are automata on A-trees.
Since A is not required to be finite we need a model of automaton which can
work with trees of arbitrary degree. In addition the clone relation cl makes it
necessary that the transition function depends on the current position in the
input tree. Thus, we define a very general type of automaton which we will
restrict suitably in the next section.

Definition 16.1. A tree automaton is a tuple
A = (Q7 E’ A7 67 qI7 W)

where the input is a XY-labelled A-tree,) is the set of states, ¢; is the initial
state, W C Q¥ is the acceptance condition, and

§:Qx ¥ — BHQ x AN

is the transition function which assigns to each state ¢ and input symbol ¢ a
function 6(q, c) : A* — BT(Q x A). Frequently we will write §(q, ¢, w) instead of

5(g; c)(w).-

Note that the transition function and acceptance condition of these automata
are not finite. To obtain finite automata we will represent the transition function
by an MSO-formula and consider only parity acceptance conditions in the next
section. For simplicity all results in this section are stated and proved for the
general model.

The language accepted by an automaton is defined by way of games. Recall
that a game G = (Vp, Vi, E, W) consists of sets Vo and V] of vertices associated
to the respective players, an edge relation E, and the set of winning plays W.

Definition 16.2. Let A = (Q, X, A, 5, q1, W) be an automaton and T : A* — X
a tree. The game G(A,T) is defined as follows:
(a) The set of vertices is

(QUBT(Q x 4)) x A*.

16 The Monadic Theory of Tree-like Structures 287

Vo consists of all pairs (¢,w) € @ x A* and all pairs of the form (¢, w) where
@ is either atomic or a disjunction, and V; consists of all pairs where ¢ is a
conjunction.

(b) The initial position is (qr,€).

(¢) Each node (g,w) has the successor (6(¢,T(w),w),w). The successors of
nodes (¢ o 1, w) are (p,w) and (¢, w) where o is either A or V. Finally, the
successor of nodes ((q, a), w) with atomic formulae is (g, wa).

(d) Let (&,w;)i<w be a play. Consider the subsequence (&, ,w;,)k<w Of po-
sitions where &;, = ¢ is a state. The play is winning if the sequence ¢oq; ... is
in W.

The language L(A) recognised by A is the set of all trees T' such that player 0
has a winning strategy for the game G(A,T).

Sometimes it is more convenient to use a simpler game where several moves
of the same kind are replaced by a single one. Assume that § is in disjunctive
normal form. The abridged game G (A, T) is defined by replacing (a) and (c) in
the above definition by:

(a’) The set of vertices consists of Vp := @ x A* and V; := 2(Q x A) x A*.

(c) Each node (¢,w) € Vp with (¢, T'(w),w) = \/; A\ ®; has the successors
(®;, w) for each i. The successors of some node (@, w) € V; are the nodes (g, wa)
for (g,a) € ®.

Both versions of the game are obviously equivalent. In the following sections
we will consider only parity acceptance conditions.

Definition 16.3. A parity condition is given by a function 2 : Q@ — [n]
and defines the set of all sequences (¢;)i<., € Q¥ such that the least number
appearing infinitely often in the sequence (£2(g;))i<w is even.

In the remainder of this section we will prove that automata as defined above
are closed under union, complement, and projection. This property is needed in
the next section in order to translate formulae into automata. We start with the
union.

Definition 16.4. Let A; = (Q;, ¥, A4,8;,¢,,W;), i = 1, 2, be tree automata.
Their sum is the automaton

AO + Al = (Ql L QQ 0 {q1}7 EaAa(S: q17W)
where

(q,C,'lU) for q € Qi:

6((]7 &) 'lU) = 61
(5((][,0,10) = 50(Q(I)70)w) \ 61(‘1{) ¢, ’UJ),

and W consists of all sequences ¢pq1¢> ... such that go = ¢r and qll.qlqg ...eW;
for some .

Lemma 16.5. L(AO + Al) = L(.AO) U L(Al)

288 Dietmar Berwanger and Achim Blumensath

Proof. Note that G(Ag + Ay, T) consists of disjoint copies of G(Ap,T) and
G(A1,T), and a new initial position from which player 0 has to choose one
of the two subgames. Obviously, each winning strategy for player 0 in G(Ap,T)
or G(A;1,T) is also a winning strategy in G(Aop + A1,T). On the other hand, if
o is a winning strategy for player 0 in the compound game it is also winning
in either G(Ag,T) or G(A1,T) depending on which subgame player 0 chooses in
his first move. O

Complementation is easy as well.

Definition 16.6. Let A = (Q, %X, A,0,q,W). A := (Q, %, A,0,q1, W) is the
automaton with

0(q,c,w) := (g, c,w) and W:=Q“\W.

Here @ denotes the dual of ¢, i.e., the formula where each A is replaced by Vv
and vice versa.

Lemma 16.7. T € L(A) iff T ¢ L(A).

Proof. Let G(A,T) = (Vo, Vi, E,W). Note that in G(A,T) the roles of player
0 and 1 are exchanged. Vj consists of all former Vj-nodes, and V; contains all
Vo-nodes except for the atomic ones. Since the latter have exactly one successor
it is irrelevant which player they are assigned to. Thus, each choice of player 0
in the old game is made by player 1 in the new one and vice versa. Hence, each
winning strategy o for player 0 in G(A,T) is a strategy for player 1 in G(A,T)
which ensures that the resulting play induces a sequence in W = Q“ \ W. Thus,
o is winning for 1. The other direction follows by symmetry. O

The closure under projections is the hardest part to prove. The projec-
tion TI(L) of a tree-language L is the set of all trees T' : A* — X such that
there is a tree 7' : A* —» ¥ x {0,1} in L with T"(w) = (T'(w), i) for some
iw € {0,1} and all w € A*.

The proof is split into several parts. We prove closure under projection for
non-deterministic automata, and show that each alternating automaton can be
transformed into an equivalent non-deterministic one.

Definition 16.8. An automaton A := (Q, X, A,d,q1, W) is non-determinis-
tic if each formula 6(q, ¢, w) is in disjunctive normal-form \/; A, (gix, aix) where,
for each fixed i, all the a;;, are different.

Definition 16.9. Let A = (Q, X x {0,1}, 4,5, q;,W) be a non-deterministic
automaton. Define An := (Q, X, A, ém, g1, W) where

61'[(‘17 ¢, w) = (5((], (Ca 0)7 UJ) v §(Qa (C, 1)7 w)'

Lemma 16.10. L(Ap) = II(L(A))

16 The Monadic Theory of Tree-like Structures 289

Proof. (D) Let o be a winning strategy for player 0 in G(A,T). G(An, I(T))
contains additional vertices of the form (pg V ¢1,w) where ¢; = §(q, (¢,7),w).
By defining

o(po V @1,w) :=; for the i with T'(w) = (¢, 1)

we obtain a strategy for player 0 in the new game. This strategy is winning since,
if one removes the additional vertices from a play according to the extended
strategy, a play according to ¢ in the original game is obtained which is winning
by assumption.

(C) Let o be a winning strategy for player 0 in G(Ay, T). We have to define
atree T' € L(A) with T = II(T"). Since Aq is non-deterministic the game has
the following structure: At each position ((g,a),w) with

6(q7 T(w)7 ’U}) = Vz /\k(qika aik)

player 0 chooses some conjunction A, (gi,a) out of which player 1 picks a
successor (q;x, aix). Thus, for each word w € A* there is at most one state ¢ such
that a play according to o reaches the position (g, w). Let (o V1, w) = (p;, w)
where ¢g V 1 = 0(q, T'(w), w). We define T' by T'(w) := (T'(w),). a

It remains to show how to translate alternating automata to non-determin-
istic ones. To do so we need some notation to modify transition relations.

Definition 16.11. Let ¢ € BT (Q x A).
(a) The collection of ¢ is defined as follows. Let \/; A, (qir,air) be the
disjunctive normal-form of .

collect(p) := \/ /\ (Qi(a),a) € B (2(Q) x A)

i a€A

where Q;(a) := {qix | air = a}.

(b) Let ¢' € Q'. The shift of ¢ by ¢ is the formula sh, p € BT(Q' x Q x A)
obtained from ¢ by replacing all atoms (g,a) by (¢',q, a).

(c) For S C @ x @ let

()2 == {a| (¢') € S for some ¢'}.

The translation is performed in two steps. First, the alternating automaton is
transformed into a non-deterministic one with an obscure non-parity acceptance
condition. Then, the result is turned into a normal non-deterministic parity
automaton. The construction used for the first step is the usual one. For each
node of the input tree the automaton stores the set of states of the original
automaton from which the corresponding subtree must be accepted. That is, for
universal choices of the alternating automaton, all successors are remembered,
whereas for existential choices, only one successor is picked non-deterministically.
What makes matters slightly more complicated is the fact that, in order to define
the acceptance condition, the new automaton has to remember not only the set
of current states but their predecessors as well, i.e., its states are of the form
(¢', q) where ¢ is the current state of the original automaton and ¢’ is the previous
one.

290 Dietmar Berwanger and Achim Blumensath

Definition 16.12. Let A = (Q, X, A, 6, g1, W) be an alternating automaton.

AH = (‘@(Q X Q)a 27 Aa 611) {(qla ql)}a Wn)
is the automaton where

0n (S, c,w) := collect /\ shy 0(g, ¢, w).
q€(S)2

A sequence (¢;)icw € Q¥ is called a trace of (S;)i<w € Z(Q xQ)* if (¢;,qir1) €
S; for all i < w. W, consists of all sequences (S;)i<, € Z(Q X Q)* such that
every trace of (S;)i<, isin W.

Lemma 16.13. A, is a non-deterministic automaton with L(A,) = L(A).

Proof. The definition of collect ensures that A, is non-deterministic.

(D) Let T € L(A) and let o be the corresponding winning strategy for
player 0 in G(A,T). To define a strategy o, in G(An,T) consider a position
(S,w) € G(A,T). Let o(q,w) = (P4, w) for ¢ € (S)2. We define o, (S,w) :=
(collect A &, w) where

o= | sh,®,
a€(5)2

This is valid since (collect A @, w) is a successor of (g, w).

To show that o, is a winning strategy consider the result (S;);<. of a play
according to on. If (P, w) € 0, (S;,w) and (S;11,a) € &, then for each (¢q,q¢') €
Si+1 it holds that (¢',a) € ®,. Thus, all traces of (S;);<, are plays according
to o and therefore winning.

(C) Let oy, be a — not necessarily memoryless — winning strategy for player 0
in G(Ayn, T). We construct a winning strategy for player 0 in G(A, T) as follows.
Let p, be a play according to o, in G(Ay,T) with last position (S,w), and let p
be the play according to ¢. By induction we ensure that the last position in p is
of the form (g, w) for some ¢ € (S)s. Let (Pn,w) = on(pn) and define

&:={(q,a) | (5',a) € B, and ((q,q'),) € §' for some S'}.

Then A @ is a conjunction in §(g, T (w),w), by definition of d,, and we can set
o(p) := (@,w). The answer of player 0 to this move consists of some position
(¢',wa) for (¢',a) € &. Suppose that in G(A,,T) player 1 chooses the position
(Sa,wa) where S, is the unique state such that (S,,a) € &,. Since (¢,q¢’) € S,
the induction hypothesis is satisfied for the extended plays p(®,w)(q¢’,wa) and
Do (Pn, w)(S,,a). §

It follows that each play p according to o in G(A, T) is a trace of some play p,
according to o, and therefore winning by construction of A,. O

The automaton A, constructed above does not have a parity acceptance
condition. Since we intend to consider only parity automata in the next section,

16 The Monadic Theory of Tree-like Structures 291

we have to construct a non-deterministic automaton with such an acceptance
condition. It is easy to see that, provided that the original automaton does have

a parity acceptance condition, there is some parity automaton on infinite words
B=(P,2(Q % Q),5,p°) which recognises W,, C Z(Q x Q)*. Let A, be the
product automaton of A, and B, that is,

A= (Px2@QxQ), T, A &, 0°,a),)
where
Op((p, S), ¢, w) = shy 6n(S,c,w) for p' :=0(p, S)
and 2,(p,S) = 2(p).
Lemma 16.14. A, is a parity automaton with L(A,) = L(Ap).

Proof. Let o be a winning strategy for player 0 in G(An,T). We define a corre-
sponding strategy o’ in G(Ap,T) by

o'((p,S),w) := (shy &, w)

where (&, w) = o(S,w) and p’ = §(p, S). That way every play
((Po; o) wo) (B, wo) ((p1, S1)swi) (B1,w1) -

in G(A,,T) according to o' is induced by a play
(S0, wo) (o, wo)(S1, w1)(Py,w1). ..

in G(An,T) according to o. Further, (p;)i<. is the run of B on (S;);<,,. Since
the second play is winning, the first one is so as well, by definition of 5. Hence,
o' is a winning condition. The other direction is proved analogously. O

In the next section we will define a restricted class of automata where we
only allow transition-functions which are MSO-definable. In order to transfer
the results of this section we need to extract the required closure properties of
the set of allowed transition-functions from the above proofs.

Theorem 16.15. Let T be a class of functions f : A* — BT(Q x A) where
A and Q may be different for each f € T. If T is closed under disjunction,
conjunction, dual, shift, and collection then the class of automata with transition
functions § : Q x X — T is closed under union, complement, and projection.

16.3 Tree-like Structures

The type of automata defined in the previous section is much too powerful. In
order to prove Muchnik’s Theorem we have to find a subclass which corresponds
exactly to MSO on the class of trees obtained from relational structures by the
operation of iteration.

292 Dietmar Berwanger and Achim Blumensath

Definition 16.16. Let 2 = (A, Ry, ...) be a 7-structure. The iteration of 2
is the structure A* := (A* son, cl, R, ...) of signature 7* := 7 U {son, cl} where

son :={ (w,wa) |w € A*, a € A},
cl:={waa|we A", a€ A},
R} .= {(wao,...,wa,) |w e A", a € R;}.

For simplicity we will use a variant of monadic second-order logic where all
first-order variables are eliminated. That is, formulae are constructed from atoms
of the form X C Y and RXj ... X, by boolean operations and set quantification.
Using slightly non-standard semantics we say that RX holds if @ € R for some
elements a; € X;. Note that we do not require the X; to be singletons. Obviously,
each MSO-formula can be brought into this form.

Ezample 16.17. The iteration &* := (V* son,cl, E*) of a graph & = (V, E)
consists of all finite sequences w € V* of vertices. We will construct an MSO-
definition of those sequences which are paths in the original graph &. A word
w € V*is a path in & if for all prefixes of the form uab with u € V* and a,b € V
there is an edge (a,b) € E. The prefix relation < is MSO-definable being the
transitive closure of the son relation. Given a prefix y := uab the word z := uaa
can be obtained using the clone relation as follows:

¥(y,) := Ju(son(u,y) Ason(u, z) A cl(z)).
Thus, the set of paths in & can be defined by
p(z) = VyVz(y <z A(y,2) = E"yz).

In order to evaluate MSO-formulae over the iteration of some structure we
translate them into automata where the transition function is defined by MSO-
formulae. This is done in such a way that the resulting class of automata is
expressively equivalent to monadic second-order logic.

Definition 16.18. Let 2 be a structure and fix some n € w. The function
(P = A = BH([n] x A)

induced by ¢(C, Q) € MSO on 2 is defined by

(PDale) = \/{ A{(@b) | be s, ‘ Soy- -+, Sn_1 C A such that

2 = 9(0,5) 3
(o) (wa) == \/{ A{(ab) [b€ S,} ‘ Soy. .+ Sn_1 C A such that
A = o({a}, 9) }

Let Ty be the set of all such functions.

16 The Monadic Theory of Tree-like Structures 293

Definition 16.19. An MSO-automaton is a tuple A = (Q, X, 0, g1, {2) where
Q = [n] for some n € wand § : Q@ x ¥ — MSO. A accepts a X-labelled
structure A* if the automaton Ay = (Q, X, A, du, q1, 2) does so, where § :
Q x X — Ty is defined by d9(g, ¢) := {d(g,¢)).

In order to translate formulae into automata, the latter must be closed under
all operations available in the respective logic.

Proposition 16.20. MSO-automata are closed under boolean operations and
projection.

Proof. By Theorem 16.15 it is sufficient to show closure under or, and, dual,
shift, and collection. To do so we will frequently need to convert between inter-
pretations I C Q x A of boolean formulae (@Yo (w) € BT(Q x A) and sets Q
such that 2 = ¢(C, Q). Given I C Q x A define

Qi(I) :=={a€Al(q,a) €T}

for i < n, and given Qo, ..., Qn_1 C A define
I(Q) = {(gi,a) |a € Q;, i <n}.

Note that I(Q(I)) = I and Q;(I(Q)) = Q;. Then
I'E (phu(w) iff A o(C,Q))

and vice versa. (Here and below C' denotes the set consisting of the last element
of w.)

(or) For the disjunction of two MSO-definable functions we can simply take
the disjunction of their definitions since

I'E (poha(w) v (o1 ha(w)
iff TE (¢i)a(w) for some i

iff A = ¢i(C,

/'\/\

(I)) for some i
iff A = ¢o(C,Q(I)) V ¢1(C,Q(I))
iff T (o Verha(w).

(dual) The definition of the dual operation is slightly more involved.

I'E (ehalw)
iff @x A\TE (pha(w)
iff JE (p)a(w) implies JNT #

iff 2= ¢(C,P) implies P; N Q;(I) # B for some i

~6 @\ @I

(and) follows from (or) and (dual).

294 Dietmar Berwanger and Achim Blumensath

(shift) For a shift we simply need to renumber the states. If the pair (g;, i)
is encoded as number ni + k we obtain

(,0(0, Qni+0: ceey Qni+n71)-

(collection) The collection of a formula can be defined the following way:

I = collect () o (w)

iff there are Qs C Qs(I) such that Q' partitions A and 2 |= p(C, P)
where a € P; :iff i € S for the unique S C [n] with a € Q'

iff there are Q' partitioning A such that 2 = (C, P) where
P = Us:igs Q'

iff A = (C, P) for some P; C Jg,;c5 @s with
PiNnQs=0forall S withig¢S

iff A |: 5”3(9‘7(0’ P) A /\i<n P; C US:ieS Q@s A /\sg[n] /\i¢S PiNQs = 0)-5

Using the preceding proposition we can state the equivalence result. We
say that an automaton A is equivalent to an MSO-formula ¢(Xo,..., X;m—1)
if L(A) consists of those structures whose labelling encode sets U such that
©(U) holds. The encoding of U is the & ([m])-labelled tree T such that

Tw)y={ie[m]|weX;}
for all w € {0,1}*.

Theorem 16.21. For every formula ¢ € MSO there is an equivalent MSO-au-
tomaton and vice versa.
Proof. (=) By induction on ¢(X) we construct an equivalent MSO-automaton
A= (Q, #([m]), 0, qo, 2). Since or corresponds to union, negation to comple-
ment, and existential quantifiers to projection, and MSO-automata are closed
under all of those operations we only need to construct automata for atomic
formulae.

(X; € X;) We have to check for every element w of the input tree T that
i ¢ T(w) or j € T(w). Thus, we set Q := {go} with 2(go) := 0 and define the
transition function such that

Nuea(@,a) ifigcorjec,
6)) - G’GA
(0, ¢,w) {false otherwise.

for each input structure 2*. This can be done by setting

false otherwise.

VrQox ifidcorj€ec,
6<qo,c)::{ Qor L1 cor)

16 The Monadic Theory of Tree-like Structures 295

(R*(Xiy,---,X4,)) Set Q := {qo,.-.,qr} and 2(g;) := 1. The automaton
guesses a node in the input tree while in state go and checks whether its children
are in the relation R. That is,

Sau(qo, c;w) = \/ (q0,0) vV \/{ (q1,01) A+~ A (qr,ax) | @ € R*},

a€EA
true ifjec
Sa(q:, c,w) = ’ for1 <j<k.
2(gj, ¢, w) {false otherwise, =7

The corresponding MSO-definition is

6(q07 C) = 3ZEQOZE \% Ei.(Rj A Qlwl ARERNAY kak)a

true ifi; € c
5(qi,c) = e for 1 <j<k.
(45, ¢) {false otherwise, =7 =

(son(X;, X;)) Let @ := {qo,q1} and 2(¢g;) := 1. We guess some element
w € X; having a successor in X;.

da(qo, c,w) = Vaea(a,a) if i ¢ c,.
Vaea((@0,a) V (q1,a)) otherwise,
true if j €c

S (qr,c,w) = ,

a(qi,c,w) {false otherwise.

The corresponding MSO-definition is

5(do,) = JzQox ifi ¢ e,
1) = Jz(Qox V Q1) otherwise,

5() true ifj €c,
b) c = .
N false otherwise.

(cl(X;)) Let @ := {qo,q1 } and £2(g;) := 1. We guess some element wa such
that its successor waa is in Xj;.

V (q07 a’) ifw= g,
5 ,c, — a€A
alo, 0] {VQEA(qo,co V@) ifw=wb

true if i € ¢,

5%[(‘11,0,711) = {

false otherwise.
The corresponding MSO-definition is
d(qo,c) :== FzQoz V Iz(Cx A Q12),

true ifi € ¢,
0(qr,c) == {

false otherwise.

296 Dietmar Berwanger and Achim Blumensath

Note that this is the only place where the transition function actually depends
on the current vertex.

(<) Let A = (Q,X,4,0,) be an MSO-automaton and fix an input struc-
ture 2A*. W.l.o.g. assume that A is non-deterministic. 2* is accepted by A if
there is an accepting run g : A* — @ of A on 2*. This can be expressed by an
MSO-formula, (X) in the following way: we quantify existentially over tuples
encoding o (i.e., Q; = 07'(i)), and then check that at each position w € A*
a valid transition is used and that each path in p is accepting. O

Before proceeding to the proof of Muchnik’s Theorem let us take a look at
the case of empty signature. A structure with empty signature is simply a set A.
Its iteration is the tree (A*,son,cl). The clone relation is not very useful in this
case, so we drop it. Hence, the transition formulae of MSO-automata do not
depend on C' and the following lemma implies that we can restrict our attention
to MSO-automata with monotone formulae.

Lemma 16.22. For every MSO-automaton there is an equivalent one where the
formulae p(C, Q) := d(q,c¢) are monotone in Qo, ..., Qn—1-

Proof. Suppose that ¢(C, Q) is not monotone. We can replace it by
¢'(C,Q) =3P(\ P CQiAw(C,P)).
i<n

¢’ is obviously monotone. Further it is easy to see that the automaton obtained
in this way is equivalent to the original one by constructing an accepting run of
the former from one of the latter and vice versa. O

Let z be a first-order variable and Xy, ..., X,,_1 set variables. A type of z over X
is a formula of the form

(2, X) := /\ Xiz A /\ -X;z
i€s i¢s
for some S C [n]. Further, define
dlﬂ‘(i‘) = /\ €; 75 Tk
i<k

The next lemma provides a normalform for MSO-automata over the empty sig-
nature.

Lemma 16.23. Every monotone MSO-formula o(X) over the empty signature
is equivalent to a disjunction of FO-formulae of the form

Eig(diff(g)) /\Vz(diff(g,z) -\ 19’(z)))

i<n i<m

where the ¥; and ¥} are the positive part of some type.

16 The Monadic Theory of Tree-like Structures 297

Proof. Using Ehrenfeucht-Fraissé games it is easy to show that two structures
are n-equivalent, i.e., indistinguishable by formulae of quantifier rank at most n,
if, for every type 7(z; X), the number of elements satisfying 7 are equal or both

are greater than n. Thus, every first-order formula ¢(X) with n-quantifiers is
equivalent to a disjunction of formulae of the form

Elg(diff(g) AN\ i) Az (diff(g,z) -V T'(z)))

each of which defines one of those n-equivalence classes where ¢ holds. If ¢(X) is
monotone we can drop all negative atoms of the 7, 7/.
Analogously, one can show the claim also for MSO-formulae

QOYO T anlynfﬂp(x, Y)

with ¢ € FO, since the effect of set quantifiers amounts to splitting each type
into two. a

16.4 Muchnik’s Theorem

We are now ready to prove the main result of this chapter.

Theorem 16.24 (Muchnik). For every sentence ¢ € MSO one can effectively
construct a sentence ¢ € MSO such that

AEg iff A g
for all structures 2.
Corollary 16.25. Let 2 be a structure. MSO model-checking is decidable for 2
if and only if it is so for A*.

Before giving the proof let us demonstrate how Rabin’s Tree Theorem follows
from Muchnik’s Theorem.

Ezample 16.26. Consider the structure 2 with universe {0,1} and two unary
predicates L = {0} and R = {1}. MSO model-checking for 2 is decidable since
2 is finite. According to Muchnik’s Theorem, model-checking is also decidable
for A*. A* is similar to the binary tree. The universe is {0,1}*, and the relations
are

L*={w0|we{0,1}"},
R*={wl|we{0,1}"},

son = { (w,wa) |a € {0,1}, w € {0,1}*},
cl={waa|ae{0,1}, we {0,1}"}.

In order to prove that model-checking for the binary tree is decidable it is suffi-
cient to define its relations in 2*:

Soxy = son(z,y) A L*y, Syxy = son(z,y) A R*y.

298 Dietmar Berwanger and Achim Blumensath

Similarly the decidability of SwS can be obtained directly without the need to
interpret the infinitely branching tree into the binary one.

Ezample 16.27. Let A := (w, <). The iteration 2* has universe w* and relations

< ={(wa,wd) |a < b, wew"},
son = {(w,wa) | a € w, w € W*},

cd={waa|a€w, wew}.

The proof of Muchnik’s Theorem is split into several steps. First, let A =
(Q,X,0,q1,1) be the MSO-automaton equivalent to ¢. W.l.o.g. assume that
(i) =i for all i € Q@ = [n]. Note that the input alphabet ¥ = {0} of A is
unary since ¢ is a sentence. We construct a formula ¢ stating that player 0 has
a winning strategy in the game G(A,2). Hence,

AE¢ iff A e L(A) iff A E o

A p-calculus formula defining the winning set is given in Example 10.8 of Chap-
ter 10. Translated into monadic fixed point logic it looks like

LFPy, o+ GFPz, . \/ mi(z, Z)
i<n
with

0 = Siz A [Vox = Jy(Ezxy A Ziy)] A [Viz = Yy(Exy — Z;y)].

The game structure. In order to evaluate the above formula we need to embed
G(A,) in the structure 2. First, we reduce the second component of a position
(X, w) from w € A* to a single symbol a € A. Let G'(A,) be the game obtained
from G(A,2*) by identifying all nodes of the form (¢, wa) and (¢, w'a), i.e.:

(a) Let Vo := @ x A. The vertices of player 0 are Vo U {(qo,€)}, those of
player 1 are V; := 22(Q x A).

(b) The initial position is (qo, €).

(c) Let (0(q, D)pa(a) =\, A @i for a € AU{e}. The node (g,a) € Vj has the
successors @; for all i. Nodes ¢ € V} have their members (q,a) € & as successors.

(d) A play (go,a0), o, (q1,a1),P1,. .. is winning if the sequence (¢;)i<. sat-
isfies the parity condition (2.

Lemma 16.28. Player 0 has a winning strategy from the vertex (g, wa) in the
game G(A,2*) if and only if he has one from the vertex (q,a) in the game
G'(A,).

Proof. The unravelings of G(A, 2*) and G'(A,2l) from the respective vertices are
isomorphic. O

In the second step we encode the game G'(A, %) as the structure

@(A,Ql) = (%le, E, €eqs, Vo, Vl, (Sq)qu,Ro,...)

16 The Monadic Theory of Tree-like Structures 299

where (Vp, Vi, E) is the graph of the game,
eqs(g,a)(q’, a’) Hiff o =d,
Se(q',a) iff ¢ =,
Ri(q07a’0)"'(qr7a7”) Hiff ((7/0,...,0,7-) GR?{

Note that these relations only contain elements of V5. Let &(A,)|y, denote the
restriction of &(A,2) to V.
Finally, we can embed &(A,)|y, in 2 via an interpretation.

Definition 16.29. Let A = (A, Ro, ..., R;) and B be structures. An interpre-
tation of 2 in B is a sequence

7= (k, (0)r1)
where, given R of arity r, the indices 7 range over [k]", such that
(i) A=B x|k,
(i) Rj2{((ar,ir),...,(ar,ir)) | B =95 (@) }.
The use of interpretations is made possible by the following property.

Lemma 16.30. Let 7 be an interpretation and ¢ € MSO. There is a formula o
such that

I Ee iff AR’
for every structure 2.

To construct ¢’ one simply replaces each relation in ¢ by its definition.

Lemma 16.31. There is an interpretation T with &(A,2A)|v, = Z(A) for all
structures 2.

Proof. Let 7 be defined by
IR (X,Y):=X =Y,

19,?1' (X) — true ifi= k‘,
false otherwise,
- RX ifko=---=kF
I (X) = R "
k false otherwise. 0

In order to speak about all of (A, () in its restriction to V we treat elements
P eV =P(Vp) as sets & C Vp. All we have to do is to define the edge relation.
We split E into three parts

EyCVoxVi, E CVixVy, and FE>C{(q,e)} xW

which we have to define separately by formulae eo(z,Y"), £1(X,y), and e2(Y").

300 Dietmar Berwanger and Achim Blumensath

Lemma 16.32. There are formulae eo(2,Y), €1(X,y), and e2(Y") defining the
edge relations Ey, Ey and Ey respectively.

Proof. Since (¥, (q,a)) € Ei iff (¢,a) € & we set
e1(Y,z) :=Yu.
The definition of &g is more involved. Let d,(C, Q) := (J(q, ®))a. We have
(¢,0),) € By iff %= 6,({a}, Q)

where Q; := {b| (i,b) € #}. In order to evaluate §, we need to define 2 in-
side &(A,2). Since the latter consists of |@Q| copies of 2 with universes (Sy)4eq,
we pick one such copy and relativise d, to it. For simplicity we choose S, corre-
sponding to the first component of (g, a).

((g,0),2) € By iff &(AA)y, 577 ({(g,0)}, Q")
where Q) := {(g,b) | (i,b) € & }. This condition can be written as
(A W)y, = 3ICIQ(552(C,Q) A C = {(g,0)}
AN Qi={(@b)](i.b)ed}).

i€Q
Thus, we define

eo(z,Y) := \/ (Sqz Aed(z,Y))

where 1eQ
eh(z,7) =3I (55 (C, QA AC = {2} A \ Qi ={ (@) | (i,b) € V' }).
i€Q
Obviously, @; = {(g,b) | (i,b) € Y } can be expressed by an MSO-formula
using eqs.

In the same way we define
= (S, = .
e(V) =3Q(51° (0,Q) A A\ Qi ={(a0,b) | (i-b) € V' }).
ieQ
The winning set. It remains to evaluate the formula

LFPy, o GFPg, o \/ mi(x, Z)
i<n
with B
ni = Siz A [Vor = y(Exy A Ziy)] A [Viz = Vy(Ezy — Ziy)]

which defines the winning set in the original game graph G'(A,2l). Since in the
given game the nodes of Vy and V; are strictly alternating, we remain in Vj if
we take two steps each time.

ni = Siz AVoz ATy (le A Exy AVz(Eyz — le))

It is easy to prove the following result:

16 The Monadic Theory of Tree-like Structures 301

Lemma 16.33. The formulae

GFPz,,2\Vicnmi and GFPz V., m
define the same subset of Vo in &(A,A) for each assignment of the free variables.

Finally, interpreting elements of V7 by subsets of V4, as explained above, we
obtain

n! =S AVox AIY (Y C Vo Aeo(z,Y) AVz(e1(Y,2) = Z;2))

Again, the equivalence of 7} and n}' is checked easily. Thus, we can state that
player 0 has a winning strategy in G'(A, %) from position (go,€) by

¢ = 3Y [e2(Y) AVa(eo(Y,2) = LFPz, 4 ---GFPz, . V.,)]

This concludes the proof of Theorem 16.24.

We end this chapter with an application of Muchnik’s Theorem to algebraic
trees. Trees are represented as structures T = (T, (Ey)aex, (Pe)cer) where X is
a finite alphabet, T C X*, P, C T are unary predicates, and the edge relations
are

E, :={(w,wa) |weT}.
Such a tree is called algebraic if the set
{wee XTI |weT,we P}y C XTI

is a deterministic context-free language.

Algebraic trees can be obtained using a variant of iterations. The unraveling
of a graph & = (V,(E,)eex, (P:)eer) is the tree S - = (T (Ea)aeg,(Pc)cep)
where T consists of all paths of & and the relations are deﬁned by

Eo:={wuw €T | (u,v) € Eg,w € V*},

P.:={wweT|veP,weV*}.
We have already seen that the set 7' of paths is definable in the iteration of a
graph. Obviously, the predicates E, and P, are also definable. Thus, the unrav-

eling of a graph can be interpreted in its iteration.
The following characterisation of algebraic trees was given by Courcelle [1,7].

Proposition 16.34. Every algebraic tree is the unraveling of an HR-equational
graph.

We omit the definition of HR-equational graphs. Their only property that is
important in this context is that MSO-model-checking is decidable for them.
Thus, we obtain the following result:

Theorem 16.35. MSO-model-checking is decidable for algebraic trees.

Literature

1. B. COURCELLE, The monadic second order logic of graphs, II: Infinite graphs of
bounded width, Mathematical System Theory, 21 (1989), pp. 187-222.

2. ——, The monadic second order logic of graphs, IX: Machines and their behaviours,
Theoretical Computer Science, 151 (1995), pp. 125-162.

3. A. L. SEMENoOV, Decidability of monadic theories, in Proceedings of the 11th Inter-
national Symposium on Mathematical Foundations of Computer Science, MFCS ’84,
vol. 176 of Lecture Notes in Computer Science, Springer-Verlag, 1984, pp. 162-175.

4. S. SHELAH, The monadic second order theory of order, Annals of Mathematics, 102
(1975), pp. 379-419.

5. J. StupP, The lattice-model is recursive in the original model., tech. rep., Institute
of Mathematics, The Hebrew University, Jerusalem, Israel, 1975.

6. I. WALUKIEWICZ, Monadic second-order logic on tree-like structures, Theoretical
Computer Science, 275 (2002), pp. 311-346.

