
16 The Monadi
 Theory of Tree-like Stru
turesDietmar Berwanger and A
him BlumensathMathematis
he Grundlagen der InformatikRWTH Aa
hen16.1 Introdu
tionInitiated by the work of B�u
hi, L�au
hli, Rabin, and Shelah in the late 60s,the investigation of monadi
 se
ond-order logi
 (MSO) has re
eived 
ontinuousattention. The attra
tiveness of MSO is due to the fa
t that, on the one hand, itis quite expressive subsuming { besides �rst-order logi
 { most modal logi
s, inparti
ular the �-
al
ulus. On the other hand, MSO is simple enough su
h thatmodel-
he
king is still de
idable for many stru
tures. Hen
e, one 
an obtainde
idability results for several logi
s by just 
onsidering MSO.For these reasons it is an important task to 
lassify those stru
tures for whi
hMSO model-
he
king is de
idable. So far, only partial results are known and itseems doubtful whether a 
omplete 
hara
terisation 
an be obtained.On the one hand, a useful tool to prove unde
idability is the result that MSOmodel-
he
king for the grid ! � ! is unde
idable. On the other hand, Rabin'sfamous tree theorem states that, for the 
omplete binary tree, model-
he
kingis de
idable. Sin
e many stru
tures 
an be interpreted in the binary tree thisprovides a wide range of de
idability results. Furthermore, we often only needto 
onsider trees, as many modal logi
s have the tree-model property.In this 
hapter we present a generalisation of Rabin's Tree Theorem. Givena stru
ture A we 
onstru
t its iteration A� whi
h is a tree whose verti
es are�nite sequen
es of elements of A. For ea
h relation R of A its iteration has therelationR� := f (wa0; : : : ; war) j �a 2 R; w 2 A� g:Additionally, we in
lude the su

essor relation son 
ontaining all pairs (w;wa)for w 2 A�, a 2 A, and the 
lone relation 
l 
onsisting of all elements of theform waa. Mu
hnik's Theorem states that model-
he
king is de
idable for A ifand only if it is so for A�. The �rst published proof appears in Semenov [3℄. Itgeneralises an unpublished result of Stupp [5℄ des
ribed in Shelah [4℄ where the
lone relation was left out. Our presentation follows Walukiewi
z [6℄.For the proof we employ the usual te
hnique of translating formulae intoautomata and vi
e versa. Sin
e, in general, we are operating on trees of in�nitedegree, a new type of automaton is needed where the transition fun
tion isde�ned by MSO-formulae. Furthermore, in order to handle the 
lone relation,the transition fun
tion has to depend on the 
urrent position in the input tree.In the next se
tion we introdu
e the kind of automaton we will use to proveMu
hnik's Theorem but in a more general version than needed, and we provethat these automata are 
losed under boolean operations and proje
tion.E. Gr�adel, W. Thomas, and T. Wilke (Eds.): Automata, Logi
s, and Infinite Games, LNCS 2500, pp. 285-301, 2002.
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286 Dietmar Berwanger and A
him BlumensathIn Se
tion 16.3 we will restri
t the 
lass of automata to those with MSO-de�nable transition fun
tion and the translation between automata and MSO-formulae is presented.Finally, Se
tion 16.4 
ontains the proof of Mu
hnik's Theorem.16.2 AutomataTo �x our notation, let [n℄ := f0; : : : ; n � 1g. By B+(X) we denote the setof (in�nitary) positive boolean formulae over X , i.e., all formulae 
onstru
tedfrom X with disjun
tion and 
onjun
tion. An interpretation of a formula ' 2B+(X) is a set I � X of atoms we 
onsider true. A �-labelled A-tree is afun
tion T : A� ! � whi
h assigns a label T (w) to ea
h vertex w 2 A�.The main tool used for the investigation of MSO are automata on A-trees.Sin
e A is not required to be �nite we need a model of automaton whi
h 
anwork with trees of arbitrary degree. In addition the 
lone relation 
l makes itne
essary that the transition fun
tion depends on the 
urrent position in theinput tree. Thus, we de�ne a very general type of automaton whi
h we willrestri
t suitably in the next se
tion.De�nition 16.1. A tree automaton is a tupleA = (Q;�;A; Æ; qI;W )where the input is a �-labelled A-tree, Q is the set of states, qI is the initialstate, W � Q! is the a

eptan
e 
ondition, andÆ : Q�� ! B+(Q�A)A�is the transition fun
tion whi
h assigns to ea
h state q and input symbol 
 afun
tion Æ(q; 
) : A� ! B+(Q�A). Frequently we will write Æ(q; 
; w) instead ofÆ(q; 
)(w).Note that the transition fun
tion and a

eptan
e 
ondition of these automataare not �nite. To obtain �nite automata we will represent the transition fun
tionby an MSO-formula and 
onsider only parity a

eptan
e 
onditions in the nextse
tion. For simpli
ity all results in this se
tion are stated and proved for thegeneral model.The language a

epted by an automaton is de�ned by way of games. Re
allthat a game G = (V0; V1; E;W ) 
onsists of sets V0 and V1 of verti
es asso
iatedto the respe
tive players, an edge relation E, and the set of winning plays W .De�nition 16.2. Let A = (Q;�;A; Æ; qI;W ) be an automaton and T : A� ! �a tree. The game G(A; T ) is de�ned as follows:(a) The set of verti
es is�Q [ B+(Q�A)��A�:
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 Theory of Tree-like Stru
tures 287V0 
onsists of all pairs (q; w) 2 Q � A� and all pairs of the form (';w) where' is either atomi
 or a disjun
tion, and V1 
onsists of all pairs where ' is a
onjun
tion.(b) The initial position is (qI; ").(
) Ea
h node (q; w) has the su

essor �Æ(q; T (w); w); w�. The su

essors ofnodes (' Æ  ;w) are (';w) and ( ;w) where Æ is either ^ or _. Finally, thesu

essor of nodes �(q; a); w� with atomi
 formulae is (q; wa).(d) Let (�i; wi)i<! be a play. Consider the subsequen
e (�ik ; wik )k<! of po-sitions where �ik = qk is a state. The play is winning if the sequen
e q0q1 : : : isin W .The language L(A) re
ognised by A is the set of all trees T su
h that player 0has a winning strategy for the game G(A; T ).Sometimes it is more 
onvenient to use a simpler game where several movesof the same kind are repla
ed by a single one. Assume that Æ is in disjun
tivenormal form. The abridged game �G(A; T ) is de�ned by repla
ing (a) and (
) inthe above de�nition by:(a0) The set of verti
es 
onsists of V0 := Q�A� and V1 :=P(Q�A)�A�.(
0) Ea
h node (q; w) 2 V0 with Æ(q; T (w); w) = WiV�i has the su

essors(�i; w) for ea
h i. The su

essors of some node (�;w) 2 V1 are the nodes (q; wa)for (q; a) 2 �.Both versions of the game are obviously equivalent. In the following se
tionswe will 
onsider only parity a

eptan
e 
onditions.De�nition 16.3. A parity 
ondition is given by a fun
tion 
 : Q ! [n℄and de�nes the set of all sequen
es (qi)i<! 2 Q! su
h that the least numberappearing in�nitely often in the sequen
e (
(qi))i<! is even.In the remainder of this se
tion we will prove that automata as de�ned aboveare 
losed under union, 
omplement, and proje
tion. This property is needed inthe next se
tion in order to translate formulae into automata. We start with theunion.De�nition 16.4. Let Ai = (Qi; �;A; Æi; qIi ;Wi), i = 1; 2, be tree automata.Their sum is the automatonA0 +A1 := �Q1 �[Q2 �[ fqIg; �;A; Æ; qI;W �whereÆ(q; 
; w) := Æi(q; 
; w) for q 2 Qi;Æ(qI; 
; w) := Æ0(qI0; 
; w) _ Æ1(qI1; 
; w);and W 
onsists of all sequen
es q0q1q2 : : : su
h that q0 = qI and qIiq1q2 : : : 2 Wifor some i.Lemma 16.5. L(A0 +A1) = L(A0) [ L(A1).



288 Dietmar Berwanger and A
him BlumensathProof. Note that G(A0 + A1; T ) 
onsists of disjoint 
opies of G(A0; T ) andG(A1; T ), and a new initial position from whi
h player 0 has to 
hoose oneof the two subgames. Obviously, ea
h winning strategy for player 0 in G(A0; T )or G(A1; T ) is also a winning strategy in G(A0 + A1; T ). On the other hand, if� is a winning strategy for player 0 in the 
ompound game it is also winningin either G(A0; T ) or G(A1; T ) depending on whi
h subgame player 0 
hooses inhis �rst move. utComplementation is easy as well.De�nition 16.6. Let A = (Q;�;A; Æ; qI;W ). �A := (Q;�;A; �Æ; qI; �W ) is theautomaton with�Æ(q; 
; w) := Æ(q; 
; w) and �W := Q! nW:Here ' denotes the dual of ', i.e., the formula where ea
h ^ is repla
ed by _and vi
e versa.Lemma 16.7. T 2 L( �A) i� T =2 L(A).Proof. Let G( �A; T ) = ( �V0; �V1; �E; �W ). Note that in G( �A; T ) the roles of player0 and 1 are ex
hanged. �V0 
onsists of all former V1-nodes, and �V1 
ontains allV0-nodes ex
ept for the atomi
 ones. Sin
e the latter have exa
tly one su

essorit is irrelevant whi
h player they are assigned to. Thus, ea
h 
hoi
e of player 0in the old game is made by player 1 in the new one and vi
e versa. Hen
e, ea
hwinning strategy � for player 0 in G(A; T ) is a strategy for player 1 in G( �A; T )whi
h ensures that the resulting play indu
es a sequen
e in W = Q! n �W . Thus,� is winning for 1. The other dire
tion follows by symmetry. utThe 
losure under proje
tions is the hardest part to prove. The proje
-tion �(L) of a tree-language L is the set of all trees T : A� ! � su
h thatthere is a tree T 0 : A� ! � � f0; 1g in L with T 0(w) = (T (w); iw) for someiw 2 f0; 1g and all w 2 A�.The proof is split into several parts. We prove 
losure under proje
tion fornon-deterministi
 automata, and show that ea
h alternating automaton 
an betransformed into an equivalent non-deterministi
 one.De�nition 16.8. An automaton A := (Q;�;A; Æ; qI;W ) is non-determinis-ti
 if ea
h formula Æ(q; 
; w) is in disjun
tive normal-form WiVk(qik ; aik) where,for ea
h �xed i, all the aik are di�erent.De�nition 16.9. Let A = (Q;� � f0; 1g; A; Æ; qI;W ) be a non-deterministi
automaton. De�ne A� := (Q;�;A; Æ�; qI;W ) whereÆ�(q; 
; w) := Æ(q; (
; 0); w) _ Æ(q; (
; 1); w):Lemma 16.10. L(A�) = �(L(A))



16 The Monadi
 Theory of Tree-like Stru
tures 289Proof. (�) Let � be a winning strategy for player 0 in G(A; T ). G(A�;�(T ))
ontains additional verti
es of the form ('0 _ '1; w) where 'i = Æ(q; (
; i); w).By de�ning�('0 _ '1; w) := 'i for the i with T (w) = (
; i)we obtain a strategy for player 0 in the new game. This strategy is winning sin
e,if one removes the additional verti
es from a play a

ording to the extendedstrategy, a play a

ording to � in the original game is obtained whi
h is winningby assumption.(�) Let � be a winning strategy for player 0 in G(A�; T ). We have to de�nea tree T 0 2 L(A) with T = �(T 0). Sin
e A� is non-deterministi
 the game hasthe following stru
ture: At ea
h position ((q; a); w) withÆ(q; T (w); w) = WiVk(qik ; aik)player 0 
hooses some 
onjun
tion Vk(qik ; aik) out of whi
h player 1 pi
ks asu

essor (qik ; aik). Thus, for ea
h word w 2 A� there is at most one state q su
hthat a play a

ording to � rea
hes the position (q; w). Let �('0_'1; w) = ('i; w)where '0 _ '1 = Æ(q; T (w); w). We de�ne T 0 by T 0(w) := (T (w); i). utIt remains to show how to translate alternating automata to non-determin-isti
 ones. To do so we need some notation to modify transition relations.De�nition 16.11. Let ' 2 B+(Q�A).(a) The 
olle
tion of ' is de�ned as follows. Let WiVk(qik; aik) be thedisjun
tive normal-form of '.
olle
t(') :=_i â2A�Qi(a); a� 2 B+(P(Q)�A)where Qi(a) := f qik j aik = a g.(b) Let q0 2 Q0. The shift of ' by q0 is the formula shq0 ' 2 B+(Q0�Q�A)obtained from ' by repla
ing all atoms (q; a) by (q0; q; a).(
) For S � Q�Q let(S)2 := f q j (q0; q) 2 S for some q0 g:The translation is performed in two steps. First, the alternating automaton istransformed into a non-deterministi
 one with an obs
ure non-parity a

eptan
e
ondition. Then, the result is turned into a normal non-deterministi
 parityautomaton. The 
onstru
tion used for the �rst step is the usual one. For ea
hnode of the input tree the automaton stores the set of states of the originalautomaton from whi
h the 
orresponding subtree must be a

epted. That is, foruniversal 
hoi
es of the alternating automaton, all su

essors are remembered,whereas for existential 
hoi
es, only one su

essor is pi
ked non-deterministi
ally.What makes matters slightly more 
ompli
ated is the fa
t that, in order to de�nethe a

eptan
e 
ondition, the new automaton has to remember not only the setof 
urrent states but their prede
essors as well, i.e., its states are of the form(q0; q) where q is the 
urrent state of the original automaton and q0 is the previousone.



290 Dietmar Berwanger and A
him BlumensathDe�nition 16.12. Let A = (Q;�;A; Æ; qI;W ) be an alternating automaton.An := �P(Q�Q); �;A; Æn; f(qI; qI)g;Wn�is the automaton whereÆn(S; 
; w) := 
olle
t ^q2(S)2 shq Æ(q; 
; w):A sequen
e (qi)i<! 2 Q! is 
alled a tra
e of (Si)i<! 2P(Q�Q)! if (qi; qi+1) 2Si for all i < !. Wn 
onsists of all sequen
es (Si)i<! 2 P(Q � Q)! su
h thatevery tra
e of (Si)i<! is in W .Lemma 16.13. An is a non-deterministi
 automaton with L(An) = L(A).Proof. The de�nition of 
olle
t ensures that An is non-deterministi
.(�) Let T 2 L(A) and let � be the 
orresponding winning strategy forplayer 0 in �G(A; T ). To de�ne a strategy �n in �G(An; T ) 
onsider a position(S;w) 2 �G(A; T ). Let �(q; w) = (�q ; w) for q 2 (S)2. We de�ne �n(S;w) :=(
olle
tV�;w) where� = [q2(S)2 shq �q :This is valid sin
e (
olle
tV�;w) is a su

essor of (q; w).To show that �n is a winning strategy 
onsider the result (Si)i<! of a playa

ording to �n. If (�;w) 2 �n(Si; w) and (Si+1; a) 2 �, then for ea
h (q; q0) 2Si+1 it holds that (q0; a) 2 �q . Thus, all tra
es of (Si)i<! are plays a

ordingto � and therefore winning.(�) Let �n be a { not ne
essarily memoryless { winning strategy for player 0in �G(An; T ). We 
onstru
t a winning strategy for player 0 in �G(A; T ) as follows.Let pn be a play a

ording to �n in �G(An; T ) with last position (S;w), and let pbe the play a

ording to �. By indu
tion we ensure that the last position in p isof the form (q; w) for some q 2 (S)2. Let (�n; w) = �n(pn) and de�ne� := f (q0; a) j (S0; a) 2 �n and ((q; q0); a) 2 S0 for some S0 g:Then V� is a 
onjun
tion in Æ(q; T (w); w), by de�nition of Æn, and we 
an set�(p) := (�;w). The answer of player 0 to this move 
onsists of some position(q0; wa) for (q0; a) 2 �. Suppose that in �G(An; T ) player 1 
hooses the position(Sa; wa) where Sa is the unique state su
h that (Sa; a) 2 �n. Sin
e (q; q0) 2 Sathe indu
tion hypothesis is satis�ed for the extended plays p(�;w)(q0; wa) andpn(�n; w)(Sa; a).It follows that ea
h play p a

ording to � in �G(A; T ) is a tra
e of some play pna

ording to �n and therefore winning by 
onstru
tion of An. utThe automaton An 
onstru
ted above does not have a parity a

eptan
e
ondition. Sin
e we intend to 
onsider only parity automata in the next se
tion,
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tures 291we have to 
onstru
t a non-deterministi
 automaton with su
h an a

eptan
e
ondition. It is easy to see that, provided that the original automaton does havea parity a

eptan
e 
ondition, there is some parity automaton on in�nite wordsB = (P;P(Q�Q); Æ; p0; 
) whi
h re
ognises Wn �P(Q�Q)!. Let Ap be theprodu
t automaton of An and B, that is,Ap = �P �P(Q�Q); �; A; Æp; (p0; qIn); �p�whereÆp((p; S); 
; w) = shp0 Æn(S; 
; w) for p0 := Æ(p; S)and 
p(p; S) = 
(p).Lemma 16.14. Ap is a parity automaton with L(Ap) = L(An).Proof. Let � be a winning strategy for player 0 in �G(An; T ). We de�ne a 
orre-sponding strategy �0 in �G(Ap; T ) by�0((p; S); w) := �shp0 �;w�where (�;w) = �(S;w) and p0 = Æ(p; S). That way every play�(p0; S0); w0���00; w0��(p1; S1); w1���01; w1� : : :in �G(Ap; T ) a

ording to �0 is indu
ed by a play(S0; w0)(�0; w0)(S1; w1)(�1; w1) : : :in �G(An; T ) a

ording to �. Further, (pi)i<! is the run of B on (Si)i<! . Sin
ethe se
ond play is winning, the �rst one is so as well, by de�nition of B. Hen
e,�0 is a winning 
ondition. The other dire
tion is proved analogously. utIn the next se
tion we will de�ne a restri
ted 
lass of automata where weonly allow transition-fun
tions whi
h are MSO-de�nable. In order to transferthe results of this se
tion we need to extra
t the required 
losure properties ofthe set of allowed transition-fun
tions from the above proofs.Theorem 16.15. Let T be a 
lass of fun
tions f : A� ! B+(Q � A) whereA and Q may be di�erent for ea
h f 2 T . If T is 
losed under disjun
tion,
onjun
tion, dual, shift, and 
olle
tion then the 
lass of automata with transitionfun
tions Æ : Q�� ! T is 
losed under union, 
omplement, and proje
tion.16.3 Tree-like Stru
turesThe type of automata de�ned in the previous se
tion is mu
h too powerful. Inorder to prove Mu
hnik's Theorem we have to �nd a sub
lass whi
h 
orrespondsexa
tly to MSO on the 
lass of trees obtained from relational stru
tures by theoperation of iteration.



292 Dietmar Berwanger and A
him BlumensathDe�nition 16.16. Let A = (A;R0; : : : ) be a � -stru
ture. The iteration of Ais the stru
ture A� := (A�; son; 
l; R�0; : : : ) of signature �� := � �[ fson; 
lg whereson := f (w;wa) j w 2 A�; a 2 A g;
l := fwaa j w 2 A�; a 2 A g;R�i := f (wa0; : : : ; war) j w 2 A�; �a 2 Ri g:For simpli
ity we will use a variant of monadi
 se
ond-order logi
 where all�rst-order variables are eliminated. That is, formulae are 
onstru
ted from atomsof the form X � Y and RX0 : : : Xr by boolean operations and set quanti�
ation.Using slightly non-standard semanti
s we say that R �X holds if �a 2 R for someelements ai 2 Xi. Note that we do not require the Xi to be singletons. Obviously,ea
h MSO-formula 
an be brought into this form.Example 16.17. The iteration G� := (V �; son; 
l; E�) of a graph G = (V;E)
onsists of all �nite sequen
es w 2 V � of verti
es. We will 
onstru
t an MSO-de�nition of those sequen
es whi
h are paths in the original graph G. A wordw 2 V � is a path in G if for all pre�xes of the form uab with u 2 V � and a; b 2 Vthere is an edge (a; b) 2 E. The pre�x relation � is MSO-de�nable being thetransitive 
losure of the son relation. Given a pre�x y := uab the word z := uaa
an be obtained using the 
lone relation as follows: (y; z) := 9u�son(u; y) ^ son(u; z) ^ 
l(z)�:Thus, the set of paths in G 
an be de�ned by'(x) := 8y8z(y � x ^  (y; z)! E�yz):In order to evaluate MSO-formulae over the iteration of some stru
ture wetranslate them into automata where the transition fun
tion is de�ned by MSO-formulae. This is done in su
h a way that the resulting 
lass of automata isexpressively equivalent to monadi
 se
ond-order logi
.De�nition 16.18. Let A be a stru
ture and �x some n 2 !. The fun
tionhh'iiA : A� ! B+([n℄�A)indu
ed by '(C; �Q) 2 MSO on A is de�ned byhh'iiA(") :=_n^f (q; b) j b 2 Sq g ��� S0; : : : ; Sn�1 � A su
h thatA j= '(;; �S) o;hh'iiA(wa) :=_n^f (q; b) j b 2 Sq g ��� S0; : : : ; Sn�1 � A su
h thatA j= '(fag; �S) o:Let T nA be the set of all su
h fun
tions.



16 The Monadi
 Theory of Tree-like Stru
tures 293De�nition 16.19. An MSO-automaton is a tuple A = (Q;�; Æ; qI; 
) whereQ = [n℄ for some n 2 ! and Æ : Q � � ! MSO. A a

epts a �-labelledstru
ture A� if the automaton AA := (Q;�;A; ÆA; qI; 
) does so, where Æ :Q�� ! T nA is de�ned by ÆA(q; 
) := hhÆ(q; 
)iiA.In order to translate formulae into automata, the latter must be 
losed underall operations available in the respe
tive logi
.Proposition 16.20. MSO-automata are 
losed under boolean operations andproje
tion.Proof. By Theorem 16.15 it is suÆ
ient to show 
losure under or, and, dual,shift, and 
olle
tion. To do so we will frequently need to 
onvert between inter-pretations I � Q � A of boolean formulae hh'iiA(w) 2 B+(Q � A) and sets �Qsu
h that A j= '(C; �Q). Given I � Q�A de�neQi(I) := f a 2 A j (qi; a) 2 I gfor i < n, and given Q0; : : : ; Qn�1 � A de�neI( �Q) := f (qi; a) j a 2 Qi; i < n g:Note that I( �Q(I)) = I and Qi(I( �Q)) = Qi. ThenI j= hh'iiA(w) i� A j= '(C; �Q(I))and vi
e versa. (Here and below C denotes the set 
onsisting of the last elementof w.)(or) For the disjun
tion of two MSO-de�nable fun
tions we 
an simply takethe disjun
tion of their de�nitions sin
eI j= hh'0iiA(w) _ hh'1iiA(w)i� I j= hh'iiiA(w) for some ii� A j= 'i(C; �Q(I)) for some ii� A j= '0(C; �Q(I)) _ '1(C; �Q(I))i� I j= hh'0 _ '1iiA(w):(dual) The de�nition of the dual operation is slightly more involved.I j= hh'iiA(w)i� Q�A n I 6j= hh'iiA(w)i� J j= hh'iiA(w) implies J \ I 6= ;i� A j= '(C; �P ) implies Pi \Qi(I) 6= ; for some ii� A j= 8 �P�'(C; �P )! Wi<n Pi \Qi 6= ;�(and) follows from (or) and (dual).



294 Dietmar Berwanger and A
him Blumensath(shift) For a shift we simply need to renumber the states. If the pair (qi; qk)is en
oded as number ni+ k we obtain'(C;Qni+0; : : : ; Qni+n�1):(
olle
tion) The 
olle
tion of a formula 
an be de�ned the following way:I j= 
olle
t hh'iiA(w)i� there are Q0S � QS(I) su
h that �Q0 partitions A and A j= '(C; �P )where a 2 Pi : i� i 2 S for the unique S � [n℄ with a 2 Q0Si� there are �Q0 partitioning A su
h that A j= '(C; �P ) wherePi := SS:i2S Q0Si� A j= '(C; �P ) for some Pi � SS:i2S QS withPi \QS = ; for all S with i =2 Si� A j= 9 �P �'(C; �P ) ^Vi<n Pi � SS:i2S QS ^VS�[n℄Vi=2S Pi \QS = ;�:utUsing the pre
eding proposition we 
an state the equivalen
e result. Wesay that an automaton A is equivalent to an MSO-formula '(X0; : : : ; Xm�1)if L(A) 
onsists of those stru
tures whose labelling en
ode sets �U su
h that'( �U) holds. The en
oding of �U is the P([m℄)-labelled tree T su
h thatT (w) = f i 2 [m℄ j w 2 Xi gfor all w 2 f0; 1g�.Theorem 16.21. For every formula ' 2 MSO there is an equivalent MSO-au-tomaton and vi
e versa.Proof. ()) By indu
tion on '( �X) we 
onstru
t an equivalent MSO-automatonA := (Q;P([m℄); Æ; q0; 
). Sin
e or 
orresponds to union, negation to 
omple-ment, and existential quanti�ers to proje
tion, and MSO-automata are 
losedunder all of those operations we only need to 
onstru
t automata for atomi
formulae.(Xi � Xj) We have to 
he
k for every element w of the input tree T thati =2 T (w) or j 2 T (w). Thus, we set Q := fq0g with 
(q0) := 0 and de�ne thetransition fun
tion su
h thatÆA(q0; 
; w) = (Va2A(q0; a) if i =2 
 or j 2 
;false otherwise:for ea
h input stru
ture A�. This 
an be done by settingÆ(q0; 
) := (8xQ0x if i =2 
 or j 2 
;false otherwise:
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tures 295(R�(Xi1 ; : : : ; Xik )) Set Q := fq0; : : : ; qkg and 
(qi) := 1. The automatonguesses a node in the input tree while in state q0 and 
he
ks whether its 
hildrenare in the relation R. That is,ÆA(q0; 
; w) = _a2A(q0; a) __f (q1; a1) ^ � � � ^ (qk; ak) j �a 2 RA g;ÆA(qj ; 
; w) = (true if j 2 
;false otherwise; for 1 � j � k:The 
orresponding MSO-de�nition isÆ(q0; 
) := 9xQ0x _ 9�x(R�x ^Q1x1 ^ � � � ^Qkxk);Æ(qj ; 
) = (true if ij 2 
;false otherwise; for 1 � j � k:(son(Xi; Xj)) Let Q := fq0; q1g and 
(qi) := 1. We guess some elementw 2 Xi having a su

essor in Xj .ÆA(q0; 
; w) = (Wa2A(q0; a) if i =2 
;Wa2A�(q0; a) _ (q1; a)� otherwise;ÆA(q1; 
; w) = (true if j 2 
;false otherwise:The 
orresponding MSO-de�nition isÆ(q0; 
) := (9xQ0x if i =2 
;9x(Q0x _Q1x) otherwise;Æ(q1; 
) := (true if j 2 
;false otherwise:(
l(Xi)) Let Q := fq0; q1g and 
(qi) := 1. We guess some element wa su
hthat its su

essor waa is in Xi.ÆA(q0; 
; w) = (Wa2A(q0; a) if w = ";Wa2A(q0; a) _ (q1; b) if w = w0b;ÆA(q1; 
; w) = (true if i 2 
;false otherwise:The 
orresponding MSO-de�nition isÆ(q0; 
) := 9xQ0x _ 9x(Cx ^Q1x);Æ(q1; 
) := (true if i 2 
;false otherwise:
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him BlumensathNote that this is the only pla
e where the transition fun
tion a
tually dependson the 
urrent vertex.(() Let A = (Q;�; Æ; 0; 
) be an MSO-automaton and �x an input stru
-ture A�. W.l.o.g. assume that A is non-deterministi
. A� is a

epted by A ifthere is an a

epting run % : A� ! Q of A on A�. This 
an be expressed by anMSO-formula '( �X) in the following way: we quantify existentially over tuples �Qen
oding % (i.e., Qi = %�1(i)), and then 
he
k that at ea
h position w 2 A�a valid transition is used and that ea
h path in % is a

epting. utBefore pro
eeding to the proof of Mu
hnik's Theorem let us take a look atthe 
ase of empty signature. A stru
ture with empty signature is simply a set A.Its iteration is the tree (A�; son; 
l). The 
lone relation is not very useful in this
ase, so we drop it. Hen
e, the transition formulae of MSO-automata do notdepend on C and the following lemma implies that we 
an restri
t our attentionto MSO-automata with monotone formulae.Lemma 16.22. For every MSO-automaton there is an equivalent one where theformulae '(C; �Q) := Æ(q; 
) are monotone in Q0; : : : ; Qn�1.Proof. Suppose that '(C; �Q) is not monotone. We 
an repla
e it by'0(C; �Q) := 9 �P�î<nPi � Qi ^ '(C; �P )�:'0 is obviously monotone. Further it is easy to see that the automaton obtainedin this way is equivalent to the original one by 
onstru
ting an a

epting run ofthe former from one of the latter and vi
e versa. utLet z be a �rst-order variable andX0; : : : ; Xn�1 set variables. A type of z over �Xis a formula of the form�(z; �X) := î2SXiz ^ î =2S :Xizfor some S � [n℄. Further, de�nedi�(�x) := î<k xi 6= xk:The next lemma provides a normalform for MSO-automata over the empty sig-nature.Lemma 16.23. Every monotone MSO-formula '( �X) over the empty signatureis equivalent to a disjun
tion of FO-formulae of the form9�y�di�(�y) ^ î<n#i(yi) ^ 8z�di�(�y; z)! _i<m#0(z)��where the #i and #0i are the positive part of some type.
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tures 297Proof. Using Ehrenfeu
ht-Fra��ss�e games it is easy to show that two stru
turesare n-equivalent, i.e., indistinguishable by formulae of quanti�er rank at most n,if, for every type �(z; �X), the number of elements satisfying � are equal or bothare greater than n. Thus, every �rst-order formula '( �X) with n-quanti�ers isequivalent to a disjun
tion of formulae of the form9�y�di�(�y) ^ î<n �i(yi) ^ 8z�di�(�y; z)! _i<m � 0(z)��ea
h of whi
h de�nes one of those n-equivalen
e 
lasses where ' holds. If '( �X) ismonotone we 
an drop all negative atoms of the �i, � 0i .Analogously, one 
an show the 
laim also for MSO-formulaeQ0Y0 � � �Qn�1Yn�1'( �X; �Y )with ' 2 FO, sin
e the e�e
t of set quanti�ers amounts to splitting ea
h typeinto two. ut16.4 Mu
hnik's TheoremWe are now ready to prove the main result of this 
hapter.Theorem 16.24 (Mu
hnik). For every senten
e ' 2 MSO one 
an e�e
tively
onstru
t a senten
e '̂ 2 MSO su
h thatA j= '̂ i� A� j= 'for all stru
tures A.Corollary 16.25. Let A be a stru
ture. MSO model-
he
king is de
idable for Aif and only if it is so for A�.Before giving the proof let us demonstrate how Rabin's Tree Theorem followsfrom Mu
hnik's Theorem.Example 16.26. Consider the stru
ture A with universe f0; 1g and two unarypredi
ates L = f0g and R = f1g. MSO model-
he
king for A is de
idable sin
eA is �nite. A

ording to Mu
hnik's Theorem, model-
he
king is also de
idablefor A�. A� is similar to the binary tree. The universe is f0; 1g�, and the relationsare L� = fw0 j w 2 f0; 1g� g;R� = fw1 j w 2 f0; 1g� g;son = f (w;wa) j a 2 f0; 1g; w 2 f0; 1g� g;
l = fwaa j a 2 f0; 1g; w 2 f0; 1g� g:In order to prove that model-
he
king for the binary tree is de
idable it is suÆ-
ient to de�ne its relations in A�:S0xy := son(x; y) ^ L�y; S1xy := son(x; y) ^ R�y:
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him BlumensathSimilarly the de
idability of S!S 
an be obtained dire
tly without the need tointerpret the in�nitely bran
hing tree into the binary one.Example 16.27. Let A := (!;�). The iteration A� has universe !� and relations�� = f (wa;wb) j a � b; w 2 !� g;son = f (w;wa) j a 2 !; w 2 !� g;
l = fwaa j a 2 !; w 2 !� g:The proof of Mu
hnik's Theorem is split into several steps. First, let A =(Q;�; Æ; qI; 
) be the MSO-automaton equivalent to '. W.l.o.g. assume that
(i) = i for all i 2 Q = [n℄. Note that the input alphabet � = f;g of A isunary sin
e ' is a senten
e. We 
onstru
t a formula '̂ stating that player 0 hasa winning strategy in the game �G(A;A). Hen
e,A j= '̂ i� A� 2 L(A) i� A� j= ':A �-
al
ulus formula de�ning the winning set is given in Example 10.8 of Chap-ter 10. Translated into monadi
 �xed point logi
 it looks likeLFPZn;x � � �GFPZ1;x _i�n �i(x; �Z)with�i := Six ^ [V0x! 9y(Exy ^ Ziy)℄ ^ [V1x! 8y(Exy ! Ziy)℄:The game stru
ture. In order to evaluate the above formula we need to embed�G(A;A) in the stru
ture A. First, we redu
e the se
ond 
omponent of a position(X;w) from w 2 A� to a single symbol a 2 A. Let G0(A;A) be the game obtainedfrom �G(A;A�) by identifying all nodes of the form (q; wa) and (q; w0a), i.e.:(a) Let V0 := Q � A. The verti
es of player 0 are V0 [ f(q0; ")g, those ofplayer 1 are V1 :=P(Q�A).(b) The initial position is (q0; ").(
) Let hhÆ(q; ;)iiA(a) = WiV�i for a 2 A[f"g. The node (q; a) 2 V0 has thesu

essors �i for all i. Nodes � 2 V1 have their members (q; a) 2 � as su

essors.(d) A play (q0; a0); �0; (q1; a1); �1; : : : is winning if the sequen
e (qi)i<! sat-is�es the parity 
ondition 
.Lemma 16.28. Player 0 has a winning strategy from the vertex (q; wa) in thegame �G(A;A�) if and only if he has one from the vertex (q; a) in the gameG0(A;A).Proof. The unravelings of �G(A;A�) and G0(A;A) from the respe
tive verti
es areisomorphi
. utIn the se
ond step we en
ode the game G0(A;A) as the stru
tureG(A;A) := �V0 [ V1; E; eq2; V0; V1; (Sq)q2Q; R0; : : :�
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tures 299where (V0; V1; E) is the graph of the game,eq2(q; a)(q0; a0) : i� a = a0;Sq(q0; a) : i� q = q0;Ri(q0; a0) : : : (qr; ar) : i� (a0; : : : ; ar) 2 RAi :Note that these relations only 
ontain elements of V0. Let G(A;A)jV0 denote therestri
tion of G(A;A) to V0.Finally, we 
an embed G(A;A)jV0 in A via an interpretation.De�nition 16.29. Let A = (A;R0; : : : ; Rr) and B be stru
tures. An interpre-tation of A in B is a sequen
eI := 
k; (#R�{ )R;�{�where, given R of arity r, the indi
es �{ range over [k℄r, su
h that(i) A �= B � [k℄;(ii) Rj �= � �(a1; i1); : : : ; (ar; ir)� �� B j= #Rj�{ (�a)	:The use of interpretations is made possible by the following property.Lemma 16.30. Let I be an interpretation and ' 2 MSO. There is a formula 'Isu
h thatI(A) j= ' i� A j= 'Ifor every stru
ture A.To 
onstru
t 'I one simply repla
es ea
h relation in ' by its de�nition.Lemma 16.31. There is an interpretation I with G(A;A)jV0 = I(A) for allstru
tures A.Proof. Let I be de�ned by#eq2ik (X;Y ) := X = Y;#Sik (X) := (true if i = k;false otherwise;#Ri�k ( �X) := (R �X if k0 = � � � = kr;false otherwise: utIn order to speak about all ofG(A;A) in its restri
tion to V0 we treat elements� 2 V1 =P(V0) as sets � � V0. All we have to do is to de�ne the edge relation.We split E into three partsE0 � V0 � V1; E1 � V1 � V0; and E2 � f(q0; ")g � V1whi
h we have to de�ne separately by formulae "0(x; Y ), "1(X; y), and "2(Y ).
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him BlumensathLemma 16.32. There are formulae "0(x; Y ), "1(X; y), and "2(Y ) de�ning theedge relations E0, E1 and E2 respe
tively.Proof. Sin
e ��; (q; a)� 2 E1 i� (q; a) 2 � we set"1(Y; x) := Y x:The de�nition of "0 is more involved. Let Æq(C; �Q) := hhÆ(q; ;)iiA. We have((q; a); �) 2 E0 i� A j= Æq(fag; �Q)where Qi := f b j (i; b) 2 � g. In order to evaluate Æq we need to de�ne A in-side G(A;A). Sin
e the latter 
onsists of jQj 
opies of A with universes (Sq)q2Q,we pi
k one su
h 
opy and relativise Æq to it. For simpli
ity we 
hoose Sq 
orre-sponding to the �rst 
omponent of (q; a).((q; a); �) 2 E0 i� G(A;A)jV0 j= ÆSqq �f(q; a)g; �Q0�where Q0i := f (q; b) j (i; b) 2 � g. This 
ondition 
an be written asG(A;A)jV0 j= 9C9 �Q�ÆSqq (C; �Q) ^ C = f(q; a)g^ î2QQi = f (q; b) j (i; b) 2 � g�:Thus, we de�ne"0(x; Y ) := _q2Q�Sqx ^ "q0(x; Y )�where"q0(x; Y ) := 9C9 �Q�ÆSqq (C; �Q) ^ C = fxg ^ î2QQi = f (q; b) j (i; b) 2 Y g�:Obviously, Qi = f (q; b) j (i; b) 2 Y g 
an be expressed by an MSO-formulausing eq2.In the same way we de�ne"2(Y ) := 9 �Q�ÆSq0q0 (;; �Q) ^ î2QQi = f (q0; b) j (i; b) 2 Y g�: utThe winning set. It remains to evaluate the formulaLFPZ1;x � � �GFPZn;x _i�n �i(x; �Z)with�i := Six ^ [V0x! 9y(Exy ^ Ziy)℄ ^ [V1x! 8y(Exy ! Ziy)℄whi
h de�nes the winning set in the original game graph G0(A;A). Sin
e in thegiven game the nodes of V0 and V1 are stri
tly alternating, we remain in V0 ifwe take two steps ea
h time.�0i := Six ^ V0x ^ 9y�V1x ^ Exy ^ 8z(Eyz ! Ziz)�It is easy to prove the following result:
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tures 301Lemma 16.33. The formulaeGFPZ1;xWi�n �i and GFPZ1;xWi�n �0ide�ne the same subset of V0 in G(A;A) for ea
h assignment of the free variables.Finally, interpreting elements of V1 by subsets of V0, as explained above, weobtain�00i := Six ^ V0x ^ 9Y �Y � V0 ^ "0(x; Y ) ^ 8z("1(Y; z)! Ziz)�Again, the equivalen
e of �0i and �00i is 
he
ked easily. Thus, we 
an state thatplayer 0 has a winning strategy in G0(A;A) from position (q0; ") by'̂ := 9Y �"2(Y ) ^ 8x�"0(Y; x)! LFPZ1;x � � �GFPZn;xWi�n �00i ��:This 
on
ludes the proof of Theorem 16.24.We end this 
hapter with an appli
ation of Mu
hnik's Theorem to algebrai
trees. Trees are represented as stru
tures T = (T; (Ea)a2� ; (P
)
2� ) where � isa �nite alphabet, T � ��, P
 � T are unary predi
ates, and the edge relationsare Ea := f (w;wa) j w 2 T g:Su
h a tree is 
alled algebrai
 if the setfw
 2 ��� j w 2 T;w 2 P
 g � ���is a deterministi
 
ontext-free language.Algebrai
 trees 
an be obtained using a variant of iterations. The unravelingof a graph G = (V; (Ea)a2� ; (P
)
2� ) is the tree bG := (T; ( bEa)a2� ; ( bP
)
2� )where T 
onsists of all paths of G and the relations are de�ned bybEa := fwuv 2 T j (u; v) 2 Ea; w 2 V � g;bP
 := fwv 2 T j v 2 P
; w 2 V � g:We have already seen that the set T of paths is de�nable in the iteration of agraph. Obviously, the predi
ates bEa and bP
 are also de�nable. Thus, the unrav-eling of a graph 
an be interpreted in its iteration.The following 
hara
terisation of algebrai
 trees was given by Cour
elle [1,?℄.Proposition 16.34. Every algebrai
 tree is the unraveling of an HR-equationalgraph.We omit the de�nition of HR-equational graphs. Their only property that isimportant in this 
ontext is that MSO-model-
he
king is de
idable for them.Thus, we obtain the following result:Theorem 16.35. MSO-model-
he
king is de
idable for algebrai
 trees.
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