
16 The Monadi Theory of Tree-like StruturesDietmar Berwanger and Ahim BlumensathMathematishe Grundlagen der InformatikRWTH Aahen16.1 IntrodutionInitiated by the work of B�uhi, L�auhli, Rabin, and Shelah in the late 60s,the investigation of monadi seond-order logi (MSO) has reeived ontinuousattention. The attrativeness of MSO is due to the fat that, on the one hand, itis quite expressive subsuming { besides �rst-order logi { most modal logis, inpartiular the �-alulus. On the other hand, MSO is simple enough suh thatmodel-heking is still deidable for many strutures. Hene, one an obtaindeidability results for several logis by just onsidering MSO.For these reasons it is an important task to lassify those strutures for whihMSO model-heking is deidable. So far, only partial results are known and itseems doubtful whether a omplete haraterisation an be obtained.On the one hand, a useful tool to prove undeidability is the result that MSOmodel-heking for the grid ! � ! is undeidable. On the other hand, Rabin'sfamous tree theorem states that, for the omplete binary tree, model-hekingis deidable. Sine many strutures an be interpreted in the binary tree thisprovides a wide range of deidability results. Furthermore, we often only needto onsider trees, as many modal logis have the tree-model property.In this hapter we present a generalisation of Rabin's Tree Theorem. Givena struture A we onstrut its iteration A� whih is a tree whose verties are�nite sequenes of elements of A. For eah relation R of A its iteration has therelationR� := f (wa0; : : : ; war) j �a 2 R; w 2 A� g:Additionally, we inlude the suessor relation son ontaining all pairs (w;wa)for w 2 A�, a 2 A, and the lone relation l onsisting of all elements of theform waa. Muhnik's Theorem states that model-heking is deidable for A ifand only if it is so for A�. The �rst published proof appears in Semenov [3℄. Itgeneralises an unpublished result of Stupp [5℄ desribed in Shelah [4℄ where thelone relation was left out. Our presentation follows Walukiewiz [6℄.For the proof we employ the usual tehnique of translating formulae intoautomata and vie versa. Sine, in general, we are operating on trees of in�nitedegree, a new type of automaton is needed where the transition funtion isde�ned by MSO-formulae. Furthermore, in order to handle the lone relation,the transition funtion has to depend on the urrent position in the input tree.In the next setion we introdue the kind of automaton we will use to proveMuhnik's Theorem but in a more general version than needed, and we provethat these automata are losed under boolean operations and projetion.E. Gr�adel, W. Thomas, and T. Wilke (Eds.): Automata, Logis, and Infinite Games, LNCS 2500, pp. 285-301, 2002. Springer-Verlag Berlin Heidelberg 2002



286 Dietmar Berwanger and Ahim BlumensathIn Setion 16.3 we will restrit the lass of automata to those with MSO-de�nable transition funtion and the translation between automata and MSO-formulae is presented.Finally, Setion 16.4 ontains the proof of Muhnik's Theorem.16.2 AutomataTo �x our notation, let [n℄ := f0; : : : ; n � 1g. By B+(X) we denote the setof (in�nitary) positive boolean formulae over X , i.e., all formulae onstrutedfrom X with disjuntion and onjuntion. An interpretation of a formula ' 2B+(X) is a set I � X of atoms we onsider true. A �-labelled A-tree is afuntion T : A� ! � whih assigns a label T (w) to eah vertex w 2 A�.The main tool used for the investigation of MSO are automata on A-trees.Sine A is not required to be �nite we need a model of automaton whih anwork with trees of arbitrary degree. In addition the lone relation l makes itneessary that the transition funtion depends on the urrent position in theinput tree. Thus, we de�ne a very general type of automaton whih we willrestrit suitably in the next setion.De�nition 16.1. A tree automaton is a tupleA = (Q;�;A; Æ; qI;W )where the input is a �-labelled A-tree, Q is the set of states, qI is the initialstate, W � Q! is the aeptane ondition, andÆ : Q�� ! B+(Q�A)A�is the transition funtion whih assigns to eah state q and input symbol  afuntion Æ(q; ) : A� ! B+(Q�A). Frequently we will write Æ(q; ; w) instead ofÆ(q; )(w).Note that the transition funtion and aeptane ondition of these automataare not �nite. To obtain �nite automata we will represent the transition funtionby an MSO-formula and onsider only parity aeptane onditions in the nextsetion. For simpliity all results in this setion are stated and proved for thegeneral model.The language aepted by an automaton is de�ned by way of games. Reallthat a game G = (V0; V1; E;W ) onsists of sets V0 and V1 of verties assoiatedto the respetive players, an edge relation E, and the set of winning plays W .De�nition 16.2. Let A = (Q;�;A; Æ; qI;W ) be an automaton and T : A� ! �a tree. The game G(A; T ) is de�ned as follows:(a) The set of verties is�Q [ B+(Q�A)��A�:



16 The Monadi Theory of Tree-like Strutures 287V0 onsists of all pairs (q; w) 2 Q � A� and all pairs of the form (';w) where' is either atomi or a disjuntion, and V1 onsists of all pairs where ' is aonjuntion.(b) The initial position is (qI; ").() Eah node (q; w) has the suessor �Æ(q; T (w); w); w�. The suessors ofnodes (' Æ  ;w) are (';w) and ( ;w) where Æ is either ^ or _. Finally, thesuessor of nodes �(q; a); w� with atomi formulae is (q; wa).(d) Let (�i; wi)i<! be a play. Consider the subsequene (�ik ; wik )k<! of po-sitions where �ik = qk is a state. The play is winning if the sequene q0q1 : : : isin W .The language L(A) reognised by A is the set of all trees T suh that player 0has a winning strategy for the game G(A; T ).Sometimes it is more onvenient to use a simpler game where several movesof the same kind are replaed by a single one. Assume that Æ is in disjuntivenormal form. The abridged game �G(A; T ) is de�ned by replaing (a) and () inthe above de�nition by:(a0) The set of verties onsists of V0 := Q�A� and V1 :=P(Q�A)�A�.(0) Eah node (q; w) 2 V0 with Æ(q; T (w); w) = WiV�i has the suessors(�i; w) for eah i. The suessors of some node (�;w) 2 V1 are the nodes (q; wa)for (q; a) 2 �.Both versions of the game are obviously equivalent. In the following setionswe will onsider only parity aeptane onditions.De�nition 16.3. A parity ondition is given by a funtion 
 : Q ! [n℄and de�nes the set of all sequenes (qi)i<! 2 Q! suh that the least numberappearing in�nitely often in the sequene (
(qi))i<! is even.In the remainder of this setion we will prove that automata as de�ned aboveare losed under union, omplement, and projetion. This property is needed inthe next setion in order to translate formulae into automata. We start with theunion.De�nition 16.4. Let Ai = (Qi; �;A; Æi; qIi ;Wi), i = 1; 2, be tree automata.Their sum is the automatonA0 +A1 := �Q1 �[Q2 �[ fqIg; �;A; Æ; qI;W �whereÆ(q; ; w) := Æi(q; ; w) for q 2 Qi;Æ(qI; ; w) := Æ0(qI0; ; w) _ Æ1(qI1; ; w);and W onsists of all sequenes q0q1q2 : : : suh that q0 = qI and qIiq1q2 : : : 2 Wifor some i.Lemma 16.5. L(A0 +A1) = L(A0) [ L(A1).



288 Dietmar Berwanger and Ahim BlumensathProof. Note that G(A0 + A1; T ) onsists of disjoint opies of G(A0; T ) andG(A1; T ), and a new initial position from whih player 0 has to hoose oneof the two subgames. Obviously, eah winning strategy for player 0 in G(A0; T )or G(A1; T ) is also a winning strategy in G(A0 + A1; T ). On the other hand, if� is a winning strategy for player 0 in the ompound game it is also winningin either G(A0; T ) or G(A1; T ) depending on whih subgame player 0 hooses inhis �rst move. utComplementation is easy as well.De�nition 16.6. Let A = (Q;�;A; Æ; qI;W ). �A := (Q;�;A; �Æ; qI; �W ) is theautomaton with�Æ(q; ; w) := Æ(q; ; w) and �W := Q! nW:Here ' denotes the dual of ', i.e., the formula where eah ^ is replaed by _and vie versa.Lemma 16.7. T 2 L( �A) i� T =2 L(A).Proof. Let G( �A; T ) = ( �V0; �V1; �E; �W ). Note that in G( �A; T ) the roles of player0 and 1 are exhanged. �V0 onsists of all former V1-nodes, and �V1 ontains allV0-nodes exept for the atomi ones. Sine the latter have exatly one suessorit is irrelevant whih player they are assigned to. Thus, eah hoie of player 0in the old game is made by player 1 in the new one and vie versa. Hene, eahwinning strategy � for player 0 in G(A; T ) is a strategy for player 1 in G( �A; T )whih ensures that the resulting play indues a sequene in W = Q! n �W . Thus,� is winning for 1. The other diretion follows by symmetry. utThe losure under projetions is the hardest part to prove. The proje-tion �(L) of a tree-language L is the set of all trees T : A� ! � suh thatthere is a tree T 0 : A� ! � � f0; 1g in L with T 0(w) = (T (w); iw) for someiw 2 f0; 1g and all w 2 A�.The proof is split into several parts. We prove losure under projetion fornon-deterministi automata, and show that eah alternating automaton an betransformed into an equivalent non-deterministi one.De�nition 16.8. An automaton A := (Q;�;A; Æ; qI;W ) is non-determinis-ti if eah formula Æ(q; ; w) is in disjuntive normal-form WiVk(qik ; aik) where,for eah �xed i, all the aik are di�erent.De�nition 16.9. Let A = (Q;� � f0; 1g; A; Æ; qI;W ) be a non-deterministiautomaton. De�ne A� := (Q;�;A; Æ�; qI;W ) whereÆ�(q; ; w) := Æ(q; (; 0); w) _ Æ(q; (; 1); w):Lemma 16.10. L(A�) = �(L(A))



16 The Monadi Theory of Tree-like Strutures 289Proof. (�) Let � be a winning strategy for player 0 in G(A; T ). G(A�;�(T ))ontains additional verties of the form ('0 _ '1; w) where 'i = Æ(q; (; i); w).By de�ning�('0 _ '1; w) := 'i for the i with T (w) = (; i)we obtain a strategy for player 0 in the new game. This strategy is winning sine,if one removes the additional verties from a play aording to the extendedstrategy, a play aording to � in the original game is obtained whih is winningby assumption.(�) Let � be a winning strategy for player 0 in G(A�; T ). We have to de�nea tree T 0 2 L(A) with T = �(T 0). Sine A� is non-deterministi the game hasthe following struture: At eah position ((q; a); w) withÆ(q; T (w); w) = WiVk(qik ; aik)player 0 hooses some onjuntion Vk(qik ; aik) out of whih player 1 piks asuessor (qik ; aik). Thus, for eah word w 2 A� there is at most one state q suhthat a play aording to � reahes the position (q; w). Let �('0_'1; w) = ('i; w)where '0 _ '1 = Æ(q; T (w); w). We de�ne T 0 by T 0(w) := (T (w); i). utIt remains to show how to translate alternating automata to non-determin-isti ones. To do so we need some notation to modify transition relations.De�nition 16.11. Let ' 2 B+(Q�A).(a) The olletion of ' is de�ned as follows. Let WiVk(qik; aik) be thedisjuntive normal-form of '.ollet(') :=_i â2A�Qi(a); a� 2 B+(P(Q)�A)where Qi(a) := f qik j aik = a g.(b) Let q0 2 Q0. The shift of ' by q0 is the formula shq0 ' 2 B+(Q0�Q�A)obtained from ' by replaing all atoms (q; a) by (q0; q; a).() For S � Q�Q let(S)2 := f q j (q0; q) 2 S for some q0 g:The translation is performed in two steps. First, the alternating automaton istransformed into a non-deterministi one with an obsure non-parity aeptaneondition. Then, the result is turned into a normal non-deterministi parityautomaton. The onstrution used for the �rst step is the usual one. For eahnode of the input tree the automaton stores the set of states of the originalautomaton from whih the orresponding subtree must be aepted. That is, foruniversal hoies of the alternating automaton, all suessors are remembered,whereas for existential hoies, only one suessor is piked non-deterministially.What makes matters slightly more ompliated is the fat that, in order to de�nethe aeptane ondition, the new automaton has to remember not only the setof urrent states but their predeessors as well, i.e., its states are of the form(q0; q) where q is the urrent state of the original automaton and q0 is the previousone.



290 Dietmar Berwanger and Ahim BlumensathDe�nition 16.12. Let A = (Q;�;A; Æ; qI;W ) be an alternating automaton.An := �P(Q�Q); �;A; Æn; f(qI; qI)g;Wn�is the automaton whereÆn(S; ; w) := ollet ^q2(S)2 shq Æ(q; ; w):A sequene (qi)i<! 2 Q! is alled a trae of (Si)i<! 2P(Q�Q)! if (qi; qi+1) 2Si for all i < !. Wn onsists of all sequenes (Si)i<! 2 P(Q � Q)! suh thatevery trae of (Si)i<! is in W .Lemma 16.13. An is a non-deterministi automaton with L(An) = L(A).Proof. The de�nition of ollet ensures that An is non-deterministi.(�) Let T 2 L(A) and let � be the orresponding winning strategy forplayer 0 in �G(A; T ). To de�ne a strategy �n in �G(An; T ) onsider a position(S;w) 2 �G(A; T ). Let �(q; w) = (�q ; w) for q 2 (S)2. We de�ne �n(S;w) :=(olletV�;w) where� = [q2(S)2 shq �q :This is valid sine (olletV�;w) is a suessor of (q; w).To show that �n is a winning strategy onsider the result (Si)i<! of a playaording to �n. If (�;w) 2 �n(Si; w) and (Si+1; a) 2 �, then for eah (q; q0) 2Si+1 it holds that (q0; a) 2 �q . Thus, all traes of (Si)i<! are plays aordingto � and therefore winning.(�) Let �n be a { not neessarily memoryless { winning strategy for player 0in �G(An; T ). We onstrut a winning strategy for player 0 in �G(A; T ) as follows.Let pn be a play aording to �n in �G(An; T ) with last position (S;w), and let pbe the play aording to �. By indution we ensure that the last position in p isof the form (q; w) for some q 2 (S)2. Let (�n; w) = �n(pn) and de�ne� := f (q0; a) j (S0; a) 2 �n and ((q; q0); a) 2 S0 for some S0 g:Then V� is a onjuntion in Æ(q; T (w); w), by de�nition of Æn, and we an set�(p) := (�;w). The answer of player 0 to this move onsists of some position(q0; wa) for (q0; a) 2 �. Suppose that in �G(An; T ) player 1 hooses the position(Sa; wa) where Sa is the unique state suh that (Sa; a) 2 �n. Sine (q; q0) 2 Sathe indution hypothesis is satis�ed for the extended plays p(�;w)(q0; wa) andpn(�n; w)(Sa; a).It follows that eah play p aording to � in �G(A; T ) is a trae of some play pnaording to �n and therefore winning by onstrution of An. utThe automaton An onstruted above does not have a parity aeptaneondition. Sine we intend to onsider only parity automata in the next setion,



16 The Monadi Theory of Tree-like Strutures 291we have to onstrut a non-deterministi automaton with suh an aeptaneondition. It is easy to see that, provided that the original automaton does havea parity aeptane ondition, there is some parity automaton on in�nite wordsB = (P;P(Q�Q); Æ; p0; 
) whih reognises Wn �P(Q�Q)!. Let Ap be theprodut automaton of An and B, that is,Ap = �P �P(Q�Q); �; A; Æp; (p0; qIn); �p�whereÆp((p; S); ; w) = shp0 Æn(S; ; w) for p0 := Æ(p; S)and 
p(p; S) = 
(p).Lemma 16.14. Ap is a parity automaton with L(Ap) = L(An).Proof. Let � be a winning strategy for player 0 in �G(An; T ). We de�ne a orre-sponding strategy �0 in �G(Ap; T ) by�0((p; S); w) := �shp0 �;w�where (�;w) = �(S;w) and p0 = Æ(p; S). That way every play�(p0; S0); w0���00; w0��(p1; S1); w1���01; w1� : : :in �G(Ap; T ) aording to �0 is indued by a play(S0; w0)(�0; w0)(S1; w1)(�1; w1) : : :in �G(An; T ) aording to �. Further, (pi)i<! is the run of B on (Si)i<! . Sinethe seond play is winning, the �rst one is so as well, by de�nition of B. Hene,�0 is a winning ondition. The other diretion is proved analogously. utIn the next setion we will de�ne a restrited lass of automata where weonly allow transition-funtions whih are MSO-de�nable. In order to transferthe results of this setion we need to extrat the required losure properties ofthe set of allowed transition-funtions from the above proofs.Theorem 16.15. Let T be a lass of funtions f : A� ! B+(Q � A) whereA and Q may be di�erent for eah f 2 T . If T is losed under disjuntion,onjuntion, dual, shift, and olletion then the lass of automata with transitionfuntions Æ : Q�� ! T is losed under union, omplement, and projetion.16.3 Tree-like StruturesThe type of automata de�ned in the previous setion is muh too powerful. Inorder to prove Muhnik's Theorem we have to �nd a sublass whih orrespondsexatly to MSO on the lass of trees obtained from relational strutures by theoperation of iteration.



292 Dietmar Berwanger and Ahim BlumensathDe�nition 16.16. Let A = (A;R0; : : : ) be a � -struture. The iteration of Ais the struture A� := (A�; son; l; R�0; : : : ) of signature �� := � �[ fson; lg whereson := f (w;wa) j w 2 A�; a 2 A g;l := fwaa j w 2 A�; a 2 A g;R�i := f (wa0; : : : ; war) j w 2 A�; �a 2 Ri g:For simpliity we will use a variant of monadi seond-order logi where all�rst-order variables are eliminated. That is, formulae are onstruted from atomsof the form X � Y and RX0 : : : Xr by boolean operations and set quanti�ation.Using slightly non-standard semantis we say that R �X holds if �a 2 R for someelements ai 2 Xi. Note that we do not require the Xi to be singletons. Obviously,eah MSO-formula an be brought into this form.Example 16.17. The iteration G� := (V �; son; l; E�) of a graph G = (V;E)onsists of all �nite sequenes w 2 V � of verties. We will onstrut an MSO-de�nition of those sequenes whih are paths in the original graph G. A wordw 2 V � is a path in G if for all pre�xes of the form uab with u 2 V � and a; b 2 Vthere is an edge (a; b) 2 E. The pre�x relation � is MSO-de�nable being thetransitive losure of the son relation. Given a pre�x y := uab the word z := uaaan be obtained using the lone relation as follows: (y; z) := 9u�son(u; y) ^ son(u; z) ^ l(z)�:Thus, the set of paths in G an be de�ned by'(x) := 8y8z(y � x ^  (y; z)! E�yz):In order to evaluate MSO-formulae over the iteration of some struture wetranslate them into automata where the transition funtion is de�ned by MSO-formulae. This is done in suh a way that the resulting lass of automata isexpressively equivalent to monadi seond-order logi.De�nition 16.18. Let A be a struture and �x some n 2 !. The funtionhh'iiA : A� ! B+([n℄�A)indued by '(C; �Q) 2 MSO on A is de�ned byhh'iiA(") :=_n^f (q; b) j b 2 Sq g ��� S0; : : : ; Sn�1 � A suh thatA j= '(;; �S) o;hh'iiA(wa) :=_n^f (q; b) j b 2 Sq g ��� S0; : : : ; Sn�1 � A suh thatA j= '(fag; �S) o:Let T nA be the set of all suh funtions.



16 The Monadi Theory of Tree-like Strutures 293De�nition 16.19. An MSO-automaton is a tuple A = (Q;�; Æ; qI; 
) whereQ = [n℄ for some n 2 ! and Æ : Q � � ! MSO. A aepts a �-labelledstruture A� if the automaton AA := (Q;�;A; ÆA; qI; 
) does so, where Æ :Q�� ! T nA is de�ned by ÆA(q; ) := hhÆ(q; )iiA.In order to translate formulae into automata, the latter must be losed underall operations available in the respetive logi.Proposition 16.20. MSO-automata are losed under boolean operations andprojetion.Proof. By Theorem 16.15 it is suÆient to show losure under or, and, dual,shift, and olletion. To do so we will frequently need to onvert between inter-pretations I � Q � A of boolean formulae hh'iiA(w) 2 B+(Q � A) and sets �Qsuh that A j= '(C; �Q). Given I � Q�A de�neQi(I) := f a 2 A j (qi; a) 2 I gfor i < n, and given Q0; : : : ; Qn�1 � A de�neI( �Q) := f (qi; a) j a 2 Qi; i < n g:Note that I( �Q(I)) = I and Qi(I( �Q)) = Qi. ThenI j= hh'iiA(w) i� A j= '(C; �Q(I))and vie versa. (Here and below C denotes the set onsisting of the last elementof w.)(or) For the disjuntion of two MSO-de�nable funtions we an simply takethe disjuntion of their de�nitions sineI j= hh'0iiA(w) _ hh'1iiA(w)i� I j= hh'iiiA(w) for some ii� A j= 'i(C; �Q(I)) for some ii� A j= '0(C; �Q(I)) _ '1(C; �Q(I))i� I j= hh'0 _ '1iiA(w):(dual) The de�nition of the dual operation is slightly more involved.I j= hh'iiA(w)i� Q�A n I 6j= hh'iiA(w)i� J j= hh'iiA(w) implies J \ I 6= ;i� A j= '(C; �P ) implies Pi \Qi(I) 6= ; for some ii� A j= 8 �P�'(C; �P )! Wi<n Pi \Qi 6= ;�(and) follows from (or) and (dual).



294 Dietmar Berwanger and Ahim Blumensath(shift) For a shift we simply need to renumber the states. If the pair (qi; qk)is enoded as number ni+ k we obtain'(C;Qni+0; : : : ; Qni+n�1):(olletion) The olletion of a formula an be de�ned the following way:I j= ollet hh'iiA(w)i� there are Q0S � QS(I) suh that �Q0 partitions A and A j= '(C; �P )where a 2 Pi : i� i 2 S for the unique S � [n℄ with a 2 Q0Si� there are �Q0 partitioning A suh that A j= '(C; �P ) wherePi := SS:i2S Q0Si� A j= '(C; �P ) for some Pi � SS:i2S QS withPi \QS = ; for all S with i =2 Si� A j= 9 �P �'(C; �P ) ^Vi<n Pi � SS:i2S QS ^VS�[n℄Vi=2S Pi \QS = ;�:utUsing the preeding proposition we an state the equivalene result. Wesay that an automaton A is equivalent to an MSO-formula '(X0; : : : ; Xm�1)if L(A) onsists of those strutures whose labelling enode sets �U suh that'( �U) holds. The enoding of �U is the P([m℄)-labelled tree T suh thatT (w) = f i 2 [m℄ j w 2 Xi gfor all w 2 f0; 1g�.Theorem 16.21. For every formula ' 2 MSO there is an equivalent MSO-au-tomaton and vie versa.Proof. ()) By indution on '( �X) we onstrut an equivalent MSO-automatonA := (Q;P([m℄); Æ; q0; 
). Sine or orresponds to union, negation to omple-ment, and existential quanti�ers to projetion, and MSO-automata are losedunder all of those operations we only need to onstrut automata for atomiformulae.(Xi � Xj) We have to hek for every element w of the input tree T thati =2 T (w) or j 2 T (w). Thus, we set Q := fq0g with 
(q0) := 0 and de�ne thetransition funtion suh thatÆA(q0; ; w) = (Va2A(q0; a) if i =2  or j 2 ;false otherwise:for eah input struture A�. This an be done by settingÆ(q0; ) := (8xQ0x if i =2  or j 2 ;false otherwise:



16 The Monadi Theory of Tree-like Strutures 295(R�(Xi1 ; : : : ; Xik )) Set Q := fq0; : : : ; qkg and 
(qi) := 1. The automatonguesses a node in the input tree while in state q0 and heks whether its hildrenare in the relation R. That is,ÆA(q0; ; w) = _a2A(q0; a) __f (q1; a1) ^ � � � ^ (qk; ak) j �a 2 RA g;ÆA(qj ; ; w) = (true if j 2 ;false otherwise; for 1 � j � k:The orresponding MSO-de�nition isÆ(q0; ) := 9xQ0x _ 9�x(R�x ^Q1x1 ^ � � � ^Qkxk);Æ(qj ; ) = (true if ij 2 ;false otherwise; for 1 � j � k:(son(Xi; Xj)) Let Q := fq0; q1g and 
(qi) := 1. We guess some elementw 2 Xi having a suessor in Xj .ÆA(q0; ; w) = (Wa2A(q0; a) if i =2 ;Wa2A�(q0; a) _ (q1; a)� otherwise;ÆA(q1; ; w) = (true if j 2 ;false otherwise:The orresponding MSO-de�nition isÆ(q0; ) := (9xQ0x if i =2 ;9x(Q0x _Q1x) otherwise;Æ(q1; ) := (true if j 2 ;false otherwise:(l(Xi)) Let Q := fq0; q1g and 
(qi) := 1. We guess some element wa suhthat its suessor waa is in Xi.ÆA(q0; ; w) = (Wa2A(q0; a) if w = ";Wa2A(q0; a) _ (q1; b) if w = w0b;ÆA(q1; ; w) = (true if i 2 ;false otherwise:The orresponding MSO-de�nition isÆ(q0; ) := 9xQ0x _ 9x(Cx ^Q1x);Æ(q1; ) := (true if i 2 ;false otherwise:



296 Dietmar Berwanger and Ahim BlumensathNote that this is the only plae where the transition funtion atually dependson the urrent vertex.(() Let A = (Q;�; Æ; 0; 
) be an MSO-automaton and �x an input stru-ture A�. W.l.o.g. assume that A is non-deterministi. A� is aepted by A ifthere is an aepting run % : A� ! Q of A on A�. This an be expressed by anMSO-formula '( �X) in the following way: we quantify existentially over tuples �Qenoding % (i.e., Qi = %�1(i)), and then hek that at eah position w 2 A�a valid transition is used and that eah path in % is aepting. utBefore proeeding to the proof of Muhnik's Theorem let us take a look atthe ase of empty signature. A struture with empty signature is simply a set A.Its iteration is the tree (A�; son; l). The lone relation is not very useful in thisase, so we drop it. Hene, the transition formulae of MSO-automata do notdepend on C and the following lemma implies that we an restrit our attentionto MSO-automata with monotone formulae.Lemma 16.22. For every MSO-automaton there is an equivalent one where theformulae '(C; �Q) := Æ(q; ) are monotone in Q0; : : : ; Qn�1.Proof. Suppose that '(C; �Q) is not monotone. We an replae it by'0(C; �Q) := 9 �P�î<nPi � Qi ^ '(C; �P )�:'0 is obviously monotone. Further it is easy to see that the automaton obtainedin this way is equivalent to the original one by onstruting an aepting run ofthe former from one of the latter and vie versa. utLet z be a �rst-order variable andX0; : : : ; Xn�1 set variables. A type of z over �Xis a formula of the form�(z; �X) := î2SXiz ^ î =2S :Xizfor some S � [n℄. Further, de�nedi�(�x) := î<k xi 6= xk:The next lemma provides a normalform for MSO-automata over the empty sig-nature.Lemma 16.23. Every monotone MSO-formula '( �X) over the empty signatureis equivalent to a disjuntion of FO-formulae of the form9�y�di�(�y) ^ î<n#i(yi) ^ 8z�di�(�y; z)! _i<m#0(z)��where the #i and #0i are the positive part of some type.



16 The Monadi Theory of Tree-like Strutures 297Proof. Using Ehrenfeuht-Fra��ss�e games it is easy to show that two struturesare n-equivalent, i.e., indistinguishable by formulae of quanti�er rank at most n,if, for every type �(z; �X), the number of elements satisfying � are equal or bothare greater than n. Thus, every �rst-order formula '( �X) with n-quanti�ers isequivalent to a disjuntion of formulae of the form9�y�di�(�y) ^ î<n �i(yi) ^ 8z�di�(�y; z)! _i<m � 0(z)��eah of whih de�nes one of those n-equivalene lasses where ' holds. If '( �X) ismonotone we an drop all negative atoms of the �i, � 0i .Analogously, one an show the laim also for MSO-formulaeQ0Y0 � � �Qn�1Yn�1'( �X; �Y )with ' 2 FO, sine the e�et of set quanti�ers amounts to splitting eah typeinto two. ut16.4 Muhnik's TheoremWe are now ready to prove the main result of this hapter.Theorem 16.24 (Muhnik). For every sentene ' 2 MSO one an e�etivelyonstrut a sentene '̂ 2 MSO suh thatA j= '̂ i� A� j= 'for all strutures A.Corollary 16.25. Let A be a struture. MSO model-heking is deidable for Aif and only if it is so for A�.Before giving the proof let us demonstrate how Rabin's Tree Theorem followsfrom Muhnik's Theorem.Example 16.26. Consider the struture A with universe f0; 1g and two unaryprediates L = f0g and R = f1g. MSO model-heking for A is deidable sineA is �nite. Aording to Muhnik's Theorem, model-heking is also deidablefor A�. A� is similar to the binary tree. The universe is f0; 1g�, and the relationsare L� = fw0 j w 2 f0; 1g� g;R� = fw1 j w 2 f0; 1g� g;son = f (w;wa) j a 2 f0; 1g; w 2 f0; 1g� g;l = fwaa j a 2 f0; 1g; w 2 f0; 1g� g:In order to prove that model-heking for the binary tree is deidable it is suÆ-ient to de�ne its relations in A�:S0xy := son(x; y) ^ L�y; S1xy := son(x; y) ^ R�y:



298 Dietmar Berwanger and Ahim BlumensathSimilarly the deidability of S!S an be obtained diretly without the need tointerpret the in�nitely branhing tree into the binary one.Example 16.27. Let A := (!;�). The iteration A� has universe !� and relations�� = f (wa;wb) j a � b; w 2 !� g;son = f (w;wa) j a 2 !; w 2 !� g;l = fwaa j a 2 !; w 2 !� g:The proof of Muhnik's Theorem is split into several steps. First, let A =(Q;�; Æ; qI; 
) be the MSO-automaton equivalent to '. W.l.o.g. assume that
(i) = i for all i 2 Q = [n℄. Note that the input alphabet � = f;g of A isunary sine ' is a sentene. We onstrut a formula '̂ stating that player 0 hasa winning strategy in the game �G(A;A). Hene,A j= '̂ i� A� 2 L(A) i� A� j= ':A �-alulus formula de�ning the winning set is given in Example 10.8 of Chap-ter 10. Translated into monadi �xed point logi it looks likeLFPZn;x � � �GFPZ1;x _i�n �i(x; �Z)with�i := Six ^ [V0x! 9y(Exy ^ Ziy)℄ ^ [V1x! 8y(Exy ! Ziy)℄:The game struture. In order to evaluate the above formula we need to embed�G(A;A) in the struture A. First, we redue the seond omponent of a position(X;w) from w 2 A� to a single symbol a 2 A. Let G0(A;A) be the game obtainedfrom �G(A;A�) by identifying all nodes of the form (q; wa) and (q; w0a), i.e.:(a) Let V0 := Q � A. The verties of player 0 are V0 [ f(q0; ")g, those ofplayer 1 are V1 :=P(Q�A).(b) The initial position is (q0; ").() Let hhÆ(q; ;)iiA(a) = WiV�i for a 2 A[f"g. The node (q; a) 2 V0 has thesuessors �i for all i. Nodes � 2 V1 have their members (q; a) 2 � as suessors.(d) A play (q0; a0); �0; (q1; a1); �1; : : : is winning if the sequene (qi)i<! sat-is�es the parity ondition 
.Lemma 16.28. Player 0 has a winning strategy from the vertex (q; wa) in thegame �G(A;A�) if and only if he has one from the vertex (q; a) in the gameG0(A;A).Proof. The unravelings of �G(A;A�) and G0(A;A) from the respetive verties areisomorphi. utIn the seond step we enode the game G0(A;A) as the strutureG(A;A) := �V0 [ V1; E; eq2; V0; V1; (Sq)q2Q; R0; : : :�



16 The Monadi Theory of Tree-like Strutures 299where (V0; V1; E) is the graph of the game,eq2(q; a)(q0; a0) : i� a = a0;Sq(q0; a) : i� q = q0;Ri(q0; a0) : : : (qr; ar) : i� (a0; : : : ; ar) 2 RAi :Note that these relations only ontain elements of V0. Let G(A;A)jV0 denote therestrition of G(A;A) to V0.Finally, we an embed G(A;A)jV0 in A via an interpretation.De�nition 16.29. Let A = (A;R0; : : : ; Rr) and B be strutures. An interpre-tation of A in B is a sequeneI := 
k; (#R�{ )R;�{�where, given R of arity r, the indies �{ range over [k℄r, suh that(i) A �= B � [k℄;(ii) Rj �= � �(a1; i1); : : : ; (ar; ir)� �� B j= #Rj�{ (�a)	:The use of interpretations is made possible by the following property.Lemma 16.30. Let I be an interpretation and ' 2 MSO. There is a formula 'Isuh thatI(A) j= ' i� A j= 'Ifor every struture A.To onstrut 'I one simply replaes eah relation in ' by its de�nition.Lemma 16.31. There is an interpretation I with G(A;A)jV0 = I(A) for allstrutures A.Proof. Let I be de�ned by#eq2ik (X;Y ) := X = Y;#Sik (X) := (true if i = k;false otherwise;#Ri�k ( �X) := (R �X if k0 = � � � = kr;false otherwise: utIn order to speak about all ofG(A;A) in its restrition to V0 we treat elements� 2 V1 =P(V0) as sets � � V0. All we have to do is to de�ne the edge relation.We split E into three partsE0 � V0 � V1; E1 � V1 � V0; and E2 � f(q0; ")g � V1whih we have to de�ne separately by formulae "0(x; Y ), "1(X; y), and "2(Y ).



300 Dietmar Berwanger and Ahim BlumensathLemma 16.32. There are formulae "0(x; Y ), "1(X; y), and "2(Y ) de�ning theedge relations E0, E1 and E2 respetively.Proof. Sine ��; (q; a)� 2 E1 i� (q; a) 2 � we set"1(Y; x) := Y x:The de�nition of "0 is more involved. Let Æq(C; �Q) := hhÆ(q; ;)iiA. We have((q; a); �) 2 E0 i� A j= Æq(fag; �Q)where Qi := f b j (i; b) 2 � g. In order to evaluate Æq we need to de�ne A in-side G(A;A). Sine the latter onsists of jQj opies of A with universes (Sq)q2Q,we pik one suh opy and relativise Æq to it. For simpliity we hoose Sq orre-sponding to the �rst omponent of (q; a).((q; a); �) 2 E0 i� G(A;A)jV0 j= ÆSqq �f(q; a)g; �Q0�where Q0i := f (q; b) j (i; b) 2 � g. This ondition an be written asG(A;A)jV0 j= 9C9 �Q�ÆSqq (C; �Q) ^ C = f(q; a)g^ î2QQi = f (q; b) j (i; b) 2 � g�:Thus, we de�ne"0(x; Y ) := _q2Q�Sqx ^ "q0(x; Y )�where"q0(x; Y ) := 9C9 �Q�ÆSqq (C; �Q) ^ C = fxg ^ î2QQi = f (q; b) j (i; b) 2 Y g�:Obviously, Qi = f (q; b) j (i; b) 2 Y g an be expressed by an MSO-formulausing eq2.In the same way we de�ne"2(Y ) := 9 �Q�ÆSq0q0 (;; �Q) ^ î2QQi = f (q0; b) j (i; b) 2 Y g�: utThe winning set. It remains to evaluate the formulaLFPZ1;x � � �GFPZn;x _i�n �i(x; �Z)with�i := Six ^ [V0x! 9y(Exy ^ Ziy)℄ ^ [V1x! 8y(Exy ! Ziy)℄whih de�nes the winning set in the original game graph G0(A;A). Sine in thegiven game the nodes of V0 and V1 are stritly alternating, we remain in V0 ifwe take two steps eah time.�0i := Six ^ V0x ^ 9y�V1x ^ Exy ^ 8z(Eyz ! Ziz)�It is easy to prove the following result:



16 The Monadi Theory of Tree-like Strutures 301Lemma 16.33. The formulaeGFPZ1;xWi�n �i and GFPZ1;xWi�n �0ide�ne the same subset of V0 in G(A;A) for eah assignment of the free variables.Finally, interpreting elements of V1 by subsets of V0, as explained above, weobtain�00i := Six ^ V0x ^ 9Y �Y � V0 ^ "0(x; Y ) ^ 8z("1(Y; z)! Ziz)�Again, the equivalene of �0i and �00i is heked easily. Thus, we an state thatplayer 0 has a winning strategy in G0(A;A) from position (q0; ") by'̂ := 9Y �"2(Y ) ^ 8x�"0(Y; x)! LFPZ1;x � � �GFPZn;xWi�n �00i ��:This onludes the proof of Theorem 16.24.We end this hapter with an appliation of Muhnik's Theorem to algebraitrees. Trees are represented as strutures T = (T; (Ea)a2� ; (P)2� ) where � isa �nite alphabet, T � ��, P � T are unary prediates, and the edge relationsare Ea := f (w;wa) j w 2 T g:Suh a tree is alled algebrai if the setfw 2 ��� j w 2 T;w 2 P g � ���is a deterministi ontext-free language.Algebrai trees an be obtained using a variant of iterations. The unravelingof a graph G = (V; (Ea)a2� ; (P)2� ) is the tree bG := (T; ( bEa)a2� ; ( bP)2� )where T onsists of all paths of G and the relations are de�ned bybEa := fwuv 2 T j (u; v) 2 Ea; w 2 V � g;bP := fwv 2 T j v 2 P; w 2 V � g:We have already seen that the set T of paths is de�nable in the iteration of agraph. Obviously, the prediates bEa and bP are also de�nable. Thus, the unrav-eling of a graph an be interpreted in its iteration.The following haraterisation of algebrai trees was given by Courelle [1,?℄.Proposition 16.34. Every algebrai tree is the unraveling of an HR-equationalgraph.We omit the de�nition of HR-equational graphs. Their only property that isimportant in this ontext is that MSO-model-heking is deidable for them.Thus, we obtain the following result:Theorem 16.35. MSO-model-heking is deidable for algebrai trees.
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