Finite Presentations of Infinite Structures:
Automata and Interpretations

Achim Blumensath * Erich Gréadel *

Abstract

We study definability problems and algorithmic issues for infinite structures that are
finitely presented. After a brief overview over different classes of finitely presentable struc-
tures, we focus on structures presented by automata or by model-theoretic interpretations.
These two ways of presenting a structure are related. Indeed, a structure is automatic if, and
only if; it is first-order interpretable in an appropriate expansion of Presburger arithmetic
or, equivalently, in the infinite binary tree with prefix order and equal length predicate. Sim-
ilar results hold for w-automatic structures and appropriate expansions of the real ordered
group. We also discuss the relationship to automatic groups.

The model checking problem for FO(3“), first-order logic extended by the quantifier
“there are infinitely many”, is proved to be decidable for automatic and w-automatic struc-
tures. Further, the complexity for various fragments of first-order logic is determined. On
the other hand, several important properties not expressible in FO, such as isomorphism or
connectedness, turn out to be undecidable for automatic structures.

Finally, we investigate methods for proving that a structure does not admit an auto-
matic presentation, and we establish that the class of automatic structures is closed under
Feferman-Vaught like products.

1 Computational Model Theory

The relationship between logical definability and computational complexity is an important issue
in a number of different fields including finite model theory, databases, knowledge representation,
and computer-aided verification. So far most of the research has been devoted to finite structures
where the relationship between definability and complexity is by now fairly well understood
(see e.g. [15, 30]) and has many applications in particular to database theory [1]. However, in
many cases the limitation to finite structures is too restrictive. Therefore in most of the fields
mentioned above, there have been considerable efforts to extend the methodology from finite
structures to suitable classes of infinite ones. In particular, this is the case for databases and
computer-aided verification where infinite structures (like constraint databases or systems with
infinite state spaces) are of increasing importance.

Computational model theory extends the research programme, the general approach and the
methods of finite model theory to interesting domains of infinite structures. From a general
theoretical point of view, one may ask what domains of infinite structures are suitable for
such an extension. More specifically, what conditions must be satisfied by a domain D of not
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necessarily finite structures such that the approach and methods of finite model theory make
sense. There are two obvious and fundamental conditions:

Finite representations. Every structure 24 € D should be representable in a finite way (e.g. by
a binary string, by an algorithm, by a collection of automata, by an axiomatisation in
some logic, by an interpretation ... ).

Effective semantics. For the relevant logics to be considered (e.g. first-order logic), the model
checking problem on D should be decidable. That is, given a sentence ¢ € L and a
representation of a structure 2 € D, it should be decidable whether 2 = 1.

These are just minimal requirements, that may need to be refined according to the context
and the questions to be considered. We may for instance also require:

Closure. For every structure 2 € D and every formula v(Z), also (2, 4*), the expansion of A
with the relation defined by %, belongs to D.

Effective query evaluation. Suppose that we have fixed a way of representing structures. Given a
representation of 20 € D and a formula v (Z) we should be able to compute a representation
of 1)* (or of the expanded structure (2, )%)).

Note that contrary to the case of finite structures, query evaluation does not necessarily reduce
to model checking. Further, instead of just effectiveness of these tasks, it may be required that
they can be performed within some complexity bounds.

After giving a brief survey on different classes of finitely presented structures in the next
section, we will focus on domains where structures are presented by two closely related methods,
namely by finite automata or by model-theoretic interpretations. While automatic groups have
been studied rather intensively in computational group theory (see [18, 20]) a general notion
of automatic structures has only been defined in [32], and their theory has been developed
in [5, 7]. These structures will be defined in Section 3. Informally, a relational structure
A = (A, Ry,...,R,) is automatic if its universe and its relations can be recognised by finite
automata reading their inputs synchronously. We believe that automatic structures are very
promising for the approach of computational model theory. Not only do automatic structures
admit finite presentations, there also are numerous interesting examples and a large body of
methods that has been developed in five decades of automata theory. Further, automatic
structures admit effective evaluation of all first-order queries and possess many other pleasant
algorithmic properties.

Automatic structures can also be defined via interpretations. As we show in Section 4
a structure is automatic if, and only if, it is first-order interpretable in an appropriate expansion
of Presburger arithmetic or, equivalently, in the infinite binary tree with prefix order and equal
length predicate. Similar results hold for w-automatic structures and appropriate expansions of
the real ordered group.

Such results suggest a very general way for obtaining other interesting classes of infinite
structures suitable for the approach of computational model theory: Fix a structure 2 (or a class
of such structures) with ‘nice’ algorithmic and/or model-theoretic properties, and consider the
class of all structures that are interpretable in 2, for instance via first-order or monadic second-
order logic. Obviously each structure in this class is finitely presentable (by an interpretation).
Further, since many ‘nice’ properties are preserved under interpretations, every structure in the



class inherits them from 2(. In particular, every class of queries that is effective on 2 and closed
under first-order operations is effective on the interpretation-closure of 2.

In Section 5 we turn to decidability and complexity issues. It is shown that the model
checking problem for FO(3¥), first-order logic extended by the quantifier “there are infinitely
many”, is decidable for automatic and w-automatic structures, and the complexity for various
fragments of first-order logic is investigated. On the other hand, we prove that several properties
not expressible in FO, such as isomorphism of automatic structures, are undecidable.

Whereas usually it is easy to show that some structure is automatic by constructing a
corresponding automatic presentation, it is a quite difficult task to prove that such a presentation
does not exists. In Section 6 we present some methods to archive this task.

In the final section, Feferman-Vaught like products are introduced, and it is shown that
every domain which can be characterised via interpretations of a certain kind is closed under
such products.

2 Finitely presentable structures

We briefly survey some domains of infinite, but finitely presentable structures which may be
relevant for computational model theory.

Recursive structures are countable structures whose functions and relations are computable
and therefore finitely presentable. They have been studied quite intensively in model theory
since the 1960s (see e.g. [2, 19]). Although recursive model theory is very different from finite
model theory, there have been some papers studying classical issues of finite model theory on
recursive structures and recursive databases [24, 27, 28, 40]. However, for most applications, the
domain of recursive structures is far too large. In general, only quantifier-free formulae admit
effective evaluation algorithms.

Constraint databases are a modern database model admitting infinite relations that are
finitely presented by quantifier-free formulae (constraints) over some fixed background structure.
For example, to store geometrical data, it is useful to have not just a finite set as the universe
of the database, but to include all real numbers ‘in the background’. Also the presence of
interpreted functions, like addition and multiplication, is desirable. The constraint database
framework introduced by Kanellakis, Kuper and Revesz [31] meets both requirements. Formally,
a constraint database consists of a context structure 2, like (R, <,+,-), and a set {p1,...,pm}
of quantifier-free formulae defining the database relations. Constraint databases are treated in
detail in [33].

Metafinite structures are two-sorted structures consisting of a finite structure 2, a back-
ground structure R (which is usually infinite, but fixed) and a class of weight functions from
the finite part to the infinite one. Simple examples are finite graphs whose edges are weighted
by real numbers. For any fixed infinite structure R, the metafinite structures with background
R are finitely presentable and admit effective evaluation of logics that make use of arithmetic
operations on fR, but do not admit full quantification over its elements. Metafinite model the-
ory has been developed in [23] and has been put to use for studying issues in database theory,
optimisation and descriptive complexity. In particular metafinite structures have provided the
basis for logical characterisations of complexity classes over the real numbers [25].



Automatic structures are structures whose functions and relations are represented by finite
automata. Informally, a relational structure 24 = (A, Ry,..., Ry,) is automatic if we can find
a regular language Ly C X* (which provides names for the elements of 2() and a function
v : Ls — A mapping every word w € Ls to the element of 2 that it represents. The function v
must be surjective (every element of 2 must be named) but need not be injective (elements can
have more than one name). In addition it must be recognisable by finite automata (reading their
input words synchronously) whether two words in Ls name the same elements, and, for each
relation R; of 2, whether a given tuple of words in Ls names a tuple in R;. Automatic structures
provide many examples of high relevance for computer science. There are also interesting
connections to computational group theory, where automatic groups have already been studied
quite intensively [18, 20]. The general notion of structures presentable by automata has been
proposed in [32] and their theory has been developed in [5, 7.

The notion of an automatic structure can be modified and generalised in many directions. By
using automata over infinite words, we obtain the notion of w-automatic structures (which,
contrary to automatic structures, may have uncountable cardinality). Contrary to the class of
recursive structures, automatic and w-automatic structures admit effective (in fact, automatic)
evaluation of all first-order queries.

Theorem 2.1. The model checking problem for, FO(3¥), first-order logic extended by the quan-
tifier “there are infinitely many”, is decidable on the domain of w-automatic structures.

Tree-automatic structures, which are defined by automata on finite or infinite trees, are
further natural generalisations of automatic structures. They also admit effective evaluation of
first-order formulae. The theory of tree-automatic structures has been developed in [5]. On the
other side, first-order logic is not effective on another popular extension of automatic graphs,
the so-called rational graphs [36], which are defined by asynchronous multihead automata.

Tree-interpretable structures are structures that are interpretable in the infinite binary
tree 72 = ({0,1}*, 00, 01) via a one-dimensional monadic second-order interpretation (see Sec-
tion 4 for details on interpretations). By Rabin’s Theorem, monadic second-order formulae can
be effectively evaluated on 72, and since MSO is closed under one-dimensional interpretations,
the same holds for all tree-interpretable structures. Tree-interpretable structures generalise var-
ious notions of infinite graphs that have been studied in logic, automata theory and verification.
Examples are the context-free graphs [37, 38|, which are the configuration graphs of push-
down automata; the HR-equational and VR-equational graphs [12], which are defined via
graph grammars; and the prefix-recognisable graphs [11] which can for instance be defined
as graphs of form (V| (FE,)eca) where V is a regular language and each edge relation E, is a
finite union of sets X(Y x Z) := {(ay,z2) |z € X, y € Y, z € Z}, for regular languages
XY, Z.

It has been established in a series of papers that some of these classes coincide with the
tree-interpretable graphs (see [3, 6, 11]).

Theorem 2.2. For any graph G = (V,(Eg)aca) the following are equivalent :
(i) G is tree-interpretable.
(ii) G is VR-equational.

(iii) G is prefiz-recognisable.



(iv) G is the restriction to a regular set of the configuration graph of a pushdown automaton
with e-transitions.

On the other hand the classes of context-free graphs and of HR-equational graphs are strictly
contained in the class of tree-interpretable graphs.

The question arises whether there are even more powerful domains than the tree-interpret-
able structures on which monadic-second order logic is effective. An interesting way to obtain
such domains are tree constructions that associate with any structure a kind of tree unrav-
elling. A simple variant is the unfolding of a labelled graph G from a given node v to the
tree 7(G,v). Courcelle and Walukiewicz [13, 14] show that the MSO-theory of 7 (G,v) can
be effectively computed from the MSO-theory of (G,v). A more general operation, applicable
to relational structures of any kind, has been invented by Muchnik. Given a relational struc-
ture A = (A, Ry,..., Ry), let its iteration A* = (A*, R}, ..., R}, son, clone) be the structure
with universe A*, relations R = { (wau,...,wa,) | w € A*, (a1,...,a,) € R; }, the successor
relation son = { (w,wa) | w € A*,a € A} and the predicate clone consisting of all elements
of form waa. It is not difficult to see that unfoldings of graphs are first-order interpretable in
their iterations. Muchnik’s Theorem states that the monadic theory of A* is decidable if the
monadic theory of 2 is so (for proofs, see [4, 42]). Define the domain of tree-constructible
structures to be be the closure of the domain of finite structures under (one-dimensional) MSO-
interpretations and iterations. By Muchnik’s Theorem, and since effective MSO model checking
is preserved under interpretations, the tree constructible structures are finitely presentable and
admit effective evaluation of MSO-formulae. By results of Courcelle [13] every algebraic tree is
tree-constructible. Since not all algebraic trees are tree-interpretable it follows that the domain
of tree-constructible structures forms a proper extension of the tree-interpretable ones.

Ground tree rewriting graphs are defined by tree rewriting [34]. Vertices are represented
by finite trees and edges are generated by ground rewriting rules. In this way one can obtain
graphs that are not tree-interpretable (for instance the infinite two-dimensional grid), but for
which, in addition to the first-order theory, also the reachability problem remains decidable.
While universal reachability and universal recurrence (and hence general MSO formulae) are
undecidable on ground tree rewriting graphs, Loding [34] exhibits a fragment of CTL (permitting
EF and EGF-operations, but not EG, EFG or until operations) that can be effectively evaluated
on this class.

3 Automatic structures and automatic groups

As usual in logic, we consider structures A = (A, Ry, Ro, ..., f1, f2,...) where A is a non-empty
set, called the universe of 2, where each R; C A" is a relation on A, and every f; : A% — Ais
a function on A. The names of the relations and functions of 2, together with their arities, form
the vocabulary of A. We consider constants as functions of arity 0. A relational structure is a
structure without functions. We can associate with every structure 2 its relational variant which
is obtained by replacing each function f : A* — A by its graph G := { (a,b) € A*T! | f(a) =b}.

For a structure 2 and a formula o(z), let p® := {a | 2 |= ¢(a) } be the relation (or query)
defined by ¢ on 2.

We assume that the reader is familiar with the basic notions of automata theory and regular
languages. One slightly nonstandard aspect is that, in order to present a structure by a list of



finite automata, we need a notion of regularity not just for languages L C X* but also k-ary
relations of words, for £ > 1. Instead of introducing synchronous multihead automata that
take tuples w = (wy,...,wy) of words as inputs and work synchronously on all £ components
of w, we reduce the case of higher arities to the unary one by encoding tuples w € (X*)* by a
single word w; ® - - - ® wy, over the alphabet (X U {{0})*, called the convolution of wi, ..., wy.
Here [ is a padding symbol not belonging to Y. It is appended to some of the words w; to
make sure that all components have the same length. More formally, for wq,...,wy € X*, with
w; = wj - - - wip, and £ = max {|w|, ..., |wk|},

WD ®wp = [ H] [ M] e (Zu{oph)”

Wiy Wiy
where ng = wj; for j < |w;| and ng = [0 otherwise. Now, a relation R C (X*)* is called
regular, if { w1 ®---@wy, | (wy,...,w,) € R} is a regular language. Below we do not distinguish

between a relation on words and its encoding as a language.

Definition 3.1. A relational structure 2 is automatic if there exist a regular language Ls C X*
and a surjective function v : Ly — A such that the relation

Le:={(w,w') € Ls x Ls | vw =vw' } C X* x L*
and, for all predicates R C A" of 2, the relations

Lp:={we(Ls)" | (vwr,...,vw,) € R} C(X*)"
are regular. An arbitrary (not necessarily relational) structure is automatic if and only if its
relational variant is.

We write AutStr[7] for the class of all automatic structures of vocabulary 7. Each struc-
ture 2 € AutStr[r] can be represented, up to isomorphism, by a list © = (My, M., (Mg)rer)
of finite automata that recognise Lg, L., and Lg for all relations R of . When speaking of
an automatic presentation of 2 we either mean the function v : Ly — A or such a list 0. An
automatic presentation 0 is called deterministic if all its automata are, and it is called injective
if L. = { (u,u) | w € Ls } (which implies that v : Ly — A is injective).

Ezamples. (1) All finite structures are automatic.

(2) Important examples of automatic structures are Presburger arithmetic (N, +) and its expansion
N, := (N, +,|,) by the relation

x|py :iff x is a power of p dividing y.

Using p-ary encodings (starting with the least significant digit) it is not difficult to construct automata
recognising equality, addition and |,.

(3) Natural candidates for automatic structures are those consisting of words. (But note that free
monoids with at least two generators do not have automatic presentations.) Fix some alphabet X and
consider the structure Tree(X) := (X*, (04)acs, =<, €l) where

oo(x) := xa, xRy :iff Fz(zz =), and el(z,y) :iff |z| = |y|.
Obviously, this structure is automatic as well.
The following two observations are simple, but useful.

(1) Every automatic structure admits an automatic presentation with alphabet {0,1} [5].

(2) Every automatic structure admits an injective automatic presentation [32].



Automatic Groups. The class of automatic structures that have been studied most inten-
sively are automatic groups. Let (G, -) be a group and S = {s1,...,sm} C G a set of semigroup
generators of G. This means that each g € G can be written as a product s;,-- - s;, of elements
of S and hence the canonical homomorphism v : §* — G is surjective. The Cayley graph
I'(G, S) of G with respect to S is the graph (G, S1,...,Sn) whose vertices are the group ele-
ments and where S; is the set of pairs (g, h) such that gs; = h. By definition (G, ) is automatic
if there is a finite set S of semigroup generators and a regular language Ls C S* such that the
restriction of v to Lg is surjective and provides an automatic presentation of I'(G,S). (In other
words, the inverse image of equality,

L. ={(w,w') € Ls x Ls | vw =vuw'},

and v=1(S;), for i = 1,...,m, are regular).

Note that it is not the group structure (G, -) itself that is automatic in the sense of Defi-
nition 3.1, but the Cayley graph. There are many natural examples of automatic groups (see
[18, 20]). The importance of this notion in computational group theory comes from the fact that
an automatic presentation of a group yields (efficient) algorithmic solutions for computational
problems that are undecidable in the general case.

w-automatic structures. The notion of an automatic structure can be modified and gener-
alised in a number of different directions (see [5, 32]). In particular, we obtain the interesting
class w-AutStr of w-automatic structures. The definition is analogous to the one for automatic
structures except that the elements of an w-automatic structure are named by infinite words
from some regular w-language and the relations of the structure are recognisable by Biichi
automata.

Ezamples. (1) All automatic structures are w-automatic.

(2) The real numbers with addition, (R, +), and indeed the expanded structure R, := (R, +, <, |, 1)
are w-automatic, where

zlpy :iff Ink€Z: x=p" and y = kz.

(3) The tree automatic structures Tree(X) extend in a natural way to the (uncountable) w-automatic
structures Tree” (X)) := (X%, (04)aco, =, el).

4 Characterising automatic structures via interpretations

Interpretations constitute an important tool in mathematical logic. They are used to define a
copy of a structure inside another one, and thus permit to transfer definability, decidability, and
complexity results among theories.

Definition 4.1. Let L be a logic, and let 2 = (A, Ry, ..., R,) and B be relational structures.
A (k-dimensional) L-interpretation of 2 in B8 is a sequence

T =(6(2), e(Z,7), Pro(T1, - Tp)s-, PR (T1,.. ., Ts))

of L-formulae of the vocabulary of B (where each tuple Z, §, Z; consists of k variables), such
that

A=T(B) := (6%, 90?0,..., go?n)/s%.



To make this expression well-defined we require that ® is a congruence relation on the structure

(5%, cp%o, cee gp?ﬂ). We denote the fact that Z is an L-interpretation of 2l in B by 7 : A < B.
If A <p B and B <p, A we say 2 and B are mutually L-interpretable.
The epimorphism (5B, 90%0, cees cp%n) — A is called coordinate map and is also denoted

by Z. If it is the identity function, i.e., 2 = Z(B), we say that 2 is L-definable in B.

Ezamples. (1) Recall that we write a |, b to denote that a is a power of p dividing b. Let V, : N - N
be the function that maps each number to the largest power of p dividing it. It is very easy to see that
the structures (N, +, |, ) and (N, +,V},) are mutually first-order interpretable. Indeed we can define the
statement = V,(y) in (N,+, |,) by the formula x |, y AVz(z |, y — 2 |p ). In the other direction,
Vo(z) =2 AJz(z+ 2z = V,(y)) is a definition of x |, y.

(2) For every p € N we write Tree(p) for the tree structure Tree({0,...,p — 1}). The structures M,
and Tree(p) are mutually interpretable, for each p > 2 (see [5, 22]).

If7 : A <po B then every first-order formula ¢ over the vocabulary of 2 can be translated to
a formula @7 over the vocabulary of 98 by replacing every relation symbol R by its definition ¢g,
by relativising every quantifier to d, and by replacing equalities by &.

Lemma 4.2 (Interpretation Lemma). IfZ : A <po B then
A= p(Z(d) iff B E= L) for all ¢ € FO and b C §®.

This lemma states the most important property of interpretations. For any logic L, a notion
of interpretation is considered suitable if a similar statement holds. Note that in the case of
MSO, arbitrary k-dimensional MSO-interpretations are to strong since they translate sets to
relations of arity k. On the other hand, the Interpretation Lemma does hold for one-dimensional
MSO-interpretations.

Interpretations provide a general and powerful method to obtain classes of finitely presented
structures with a set of desired properties. One fixes some structure 8 having these properties
and chooses a kind of interpretation that preserves them. Then one considers the class of all
structures which can be interpreted in 8. Each structure 2 of this class can be represented by
an interpretation 7 : % <pp B which is a finite object, and model checking and query evaluation
for such structures can be reduced to the corresponding problem for B. If 7 : A <pp B then
Lemma 4.2 implies that

pt={a|AE @} ={I0)|BE 0}

Hence, the desired representation of ¢ can be constructed by extending the interpretation 7
to (Z,¢%) : (A, o*) <o B.
Automatic structures are closed under first-order interpretations.

Proposition 4.3. If 2A <po B and B is (w-)automatic, then so is A.

Proof. Since B is automatic there are regular languages L for the universe, L. for equality, and
L, for each relation R of 8. By the closure of regular languages under boolean operations and
projections it follows that, for each first-order formula ¢, the language encoding the relation %
is also regular. O

Corollary 4.4. The classes of automatic, resp. w-automatic, structures are closed under (i) ex-
tensions by definable relations, (ii) factorisations by definable congruences, (iii) substructures
with definable universe, and (iv) finite powers.



As stated above the class of automatic structures can be characterised via first-order inter-
pretations.

Theorem 4.5. For every structure A, the following are equivalent :

(i) A is automatic.
(ii) A <po N, for some (and hence all) p > 2.
(iii) A <po Tree(p) for some (and hence all) p > 2.

Proof. The facts that (ii) and (iii) are equivalent and that they imply (i) follow immediately
from the mutual interpretability of M, and Tree(p), from the fact that these structures are
automatic, and from the closure of automatic structures under interpretation.

It remains to show that every automatic structure is interpretable in 91, (or Tree(p)). Sup-
pose that 0 is an automatic presentation of 2 with alphabet [p] := {0,...,p — 1} for some
p > 2 (without loss of generality, we could take p = 2). For every word w € [p]*, let val(w)
be the natural number whose p-ary encoding is w, i.e., val(w) := Zi<\w\ w;p'. By a classical
result, sometimes called the Biichi-Bruyere Theorem, a relation R C NF is first-order definable
in (N,+,V,) if and only if

{ (val Y (x1),...,val "t (zp)) | (21,...,21) € R}

is regular. (See [9] for a proof of this fact and for more information on the relationship between
automata and definability in expansions of Presburger arithmetic.) The formulae that define
in this sense the regular language and the regular relations in an automatic presentation of 2
provide an interpretation of A in (N, +,V},). Hence also A <po N,. O

For automatic groups we are not free to change the coordinate map. Indeed, the definition
of an automatic group requires that the function v : Ly — G is the restriction of the canonical
homomorphism from S* to G. Hence the arguments used above give us a characterisation of
automatic groups in terms of definability rather than interpretability.

Theorem 4.6. (G,-) is an automatic group if and only if there exists a finite set S C G of
semigroup generators such that I'(G,S) is FO-definable in Tree(S).

By definition, if G is an automatic group, then for some set S of semigroup generators, the
Cayley graph I'(G, S) is an automatic structure. Contrary to a claim in [32] the converse does
not hold. A counterexample, which has been pointed out by Senizergues, is the Heisenberg
group $ which is the group of affine transformations of Z3 generated by the maps

a : (x7y7z) = (x—"_ ]‘7y72+y)7
/8: (x7y7z) — (x7y+ ]‘72)7
Vi (@Y, 2) = (2,y,2 4 1),
Using this matrix representation of ), it is not difficult to construct a (3-dimensional) interpre-

tation of I'($,S) in (N, +), which implies that I'($,S) € AutStr. However, in [18] it is shown
that § is not automatic.

Proposition 4.7. There exist groups G with a set of semigroup generators S such that the
Cayley graph I'(G,S) is an automatic structure without G being an automatic group.



We now turn to w-automatic structures. To provide a similar characterisation we can use an
equivalent of the Biichi-Bruyere Theorem for encodings of w-regular relations. One such result
has been obtained by Boigelot, Rassart and Wolper [8]. Using natural translations between w-
words over [p] and real numbers, they prove that a relation over [p]* can be recognised by a Biichi
automaton if an only if its translation is first-order definable in the structure (R, +, <,Z, X},)
where X, C R3 is a relation that explicitly represents the translation between [p]* and R.
X,(x,y, z) holds iff there exists a representation of « by a word in [p]* such that the digit at the
position specified by y is z. A somewhat unsatisfactory aspect of this result is the assumption
that the encoding relation X, must be given as a basic relation of the structure. It would be
preferable if more natural expansions of the additive real group (R, +) could be used instead.

We show here that this is indeed possible if, as in the case of 91,, we use a restricted variant
of the divisibility relation. Recall that the structures $R, and Tree”(p) (introduced at the end
of Section 3) are w-automatic. As a first step we show that the behaviour of Biichi automata
recognising regular relations over [p|“ can be simulated by first-order formulae in Tree”(p).
Secondly we show that Tree”(p) and R, are mutually interpretable. As a result we obtain the
following model-theoretic characterisation of w-automatic structures.

Theorem 4.8. For every structure A, the following are equivalent :

(i) A is w-automatic.
(ii) A <po R, for some (and hence all) p > 2.
(iii) A <po Tree”(p) for some (and hence all) p > 2.

Proof. In order to construct interpretations of Tree”(p) in R, and vice versa we define formulae
which allow to access the digits of, respectively, some number in R, and some word in Tree”(p).
In the later case we set

dig, (z,y) := Jz(el(z,y) A oz = x)

which states that the digit of = at position |y| is k. For R, the situation is more complicated
as some real numbers admit two encodings. The following formula describes that there is one
encoding of x such that the digit at position y is k. (This corresponds to the predicate X of [8].)

digy(z,y) :=3sTt(|z| =s+k-y+t Ap-ylps NO<sAN0<t<y)

For R, <po Tree”(p) we represent each number as a pair of words. The first one is finite
and encodes the integer part, the other one is infinite and contains the fractional part. In the
other direction we map finite words a; - - - a, € [p|* to the interval [2, 3] via

T
p T4 Z aip ' +2¢€[2,3].
=1

Infinite words ajasg - - - € [p]* are mapped to two intervals [—1,0] and [0, 1] via
£ ap e [-1,1].
7
This is necessary because some words, e.g., 0(p — 1) and 10*, would be mapped to the same

number otherwise. Now the desired interpretations can be constructed easily using the formulae
dig;, defined above.
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It remains to prove that if R C ([p|*)" is w-regular then it is definable in Tree®(p). Let
M = (Q,[p]™, 4, q0, F) be a Biichi-automaton for R. W.l.o.g. assume @ = [p]™ for some m and
g0 = (0,...,0). We prove the claim by constructing a formula 15;(Z) € FO stating that there is
a successful run of M on 1 ® - - - ® x,,. The run is encoded by a tuple (q1,...,qn) € ([p|*)™ of
w-words such that the symbols of ¢1, ..., ¢, at some position equal k1, ..., ky, iff the automaton
is in state (ki, ..., k;,) when scanning the input symbol at that position. 15;(Z) has the form

Jq1 - - Jgm[ADM(q, 7) A START(g, z) A RUN(q, z) A ACC(q, 7))

where the admissibility condition ADM(Z, q) states that all components of Z and g are infinite,
START(7,q) says that the first state is 0, ACC(Z, ) that some final state appears infinitely
often, and RUN(z, §) ensures that all transitions are correct.

Define the following auxiliary formulae. To access the digits of a tuple of words at some
position we define Sym,(z, z) := A, dig,, (%, 2), and to characterise the w-words of [p]=* we set

Inf(x) :=Vy(z 2y — x =y).

ADM and START are defined as

m n
ADM(q,z) = /\Inf(q;) A /\ Inf (),
i=1 i=1
START(q, T) := Symg(,¢),
RUN states that at every position a valid transition is used

RUN(q, z) :==Vz \/ (Symy(q, z) A Symg(, 2) A Symy, (g, 002)),
(k,a,k")eA
and ACC says that there is one final state which appears infinitely often in ¢

ACC(q,z) := \/ V232 (|2 > |2| A Symg(q, 2)).
keF

5 Model-checking and query-evaluation

In this section we study decidability and complexity issues for automatic structures. Two
fundamental algorithmic problems are:

Model-checking. Given a (presentation of a) structure 2, a formula ¢(Z), and a tuple of param-
eters a in 2, decide whether 2 |= ¢(a).

Query-evaluation. Given a presentation of a structure 20 and some formula ¢(Z), compute a
presentation of (2, gom). That is, given automata for the relations of 2, construct an
automaton that recognises gom.

11



Decidability. We first observe that all first-order queries on (w-)automatic structures are
effectively computable since the construction in Proposition 4.3 is effective. In fact, this is the
case not only for first-order logic but also for formulae containing the quantifier 3 meaning
“there are infinitely many”. To prove this result for the case w-automatic structures we require
some preparations.

Lemma 5.1. Let R C X% ® I'Y be reqular. There is a reqular relation R’ C R such that such
that

(i) if (x,y) € R then there is some y' such that (z,y’) € R/, and
(i) for all x there is at most one y with (x,y) € R’.

Proof. W.l.o.g. assume that R # (). First we introduce some notation. By v[i, k) we denote
the factor v;...vg_1 of v = vovy ... € X¥. Similarly, v[i,w) is equal to v;vi11 ..., and v[i] :=
vfi,i+1).

Let A = (Q, X x I'| A, qo, F) be a Biichi-automaton recognising R. Fix an ordering C of Q
such that all final states are less than non-final ones. For a run (sequence of states) o € Q¥
define

Inf(p) := { ¢ € Q | there are infinitely many 4 such that g[i] = ¢ },
p(0) := min Inf(p).

Let fi(0) be the greatest number such that o[k, f;(0)) contains exactly i times the state p(o)
where k is the least position such that all states appearing only finitely often are contained in

0[0, k).
Denote the lexicographically least run of 2 on x ® y by pe(x,y). Fix x € X“ and set

1(y) == plo(z,y)), fi(y) = fi(o(z,y)). We define an order on I by

y <y iff ply) < p),
or u(y) = p(y') and there is some n such that
faly) < fu(y) and fi(y) = fi(y/) for all i < n,
or u(y) = uy'), fily) = fi(y') for all i, and
y is lexicographically less than or equal to y/'.

It should be obvious that the relation < is regular. Finally, R’ is defined by
R’ :={(z,y) € R | there is no 3 < y such that (z,y') € R}.

Clearly, R’ is regular, contained in R and satisfies (ii). Hence, it remains to prove (i). We
directly construct the minimal element of V := {y | (z,y) € R} as follows. Let Y_1 C V be the
subset of those y with minimal p(y). We define a sequence of sets Y_1 DYy D Y; D .- by

Yii={yeYi|/fily) < fiy) forall y € Y;_1 }.

For i > 0, fix some element y; € Y; such that y;[0, f;) is laxicographically minimal. Hence,
Yo > y1 > ---. Define § by

g[n] := limg, yg[n].

12



We claim that ¢ is the minimal element of V.
(a) y exists. Set f, := limg fr(yx) = fu(yn). The pointwise limit of y; exists since
Yn+110, fn) = ynl0, fr) for all n. For, otherwise, there is some k < f,, such that

ynJrl[Oa k) = yn[O, k) and yn+1[k] - yn[k]

Since Y, Yn+1 € Yy, it follows that y,[k] < yn+1[k]. On the other hand, ¥ := vy, [0, fn)Yn+1[fn,w)
isin V and thus in Y, 11, as o(z, yn)[fn] = 0(2, Yn+1)[fn]- Thus, ynt1[k] < ¢'[k] = yn|k] by choice
of y,4+1. Contradiction.

(b) y € V. An accepting run of 2 on z ® y is given by ¢ where

@[fn—h fn) = Q(%‘, yn)[fn—la fn)

since o[ fn] = pu(yo) € F for all n.

(¢c) ¢ is minimal. Suppose 3’ < y for some y' € V. Then u(y') < p(y) and, by induction
on n, one can show that y' € Y,, since f,(y') < fn(9). Thus by construction u(y") = p(g) and
fn(¥) = fn(9). Suppose 3y’ < y. Then 3y’ must be lexicographically less than § and there exists
some k such that y'[0,k) = y[0, k) and y'[k] < g[k]. Choose n such that f,—1 < k < f,. Then
yn < 3 by construction. But y,[0, f,) = 9[0, f») and hence y,[0,k) = ¥'[0, k) which implies
that y'[k] > ynlk] = y[k]. Contradiction. O

Proposition 5.2. Every (w-)automatic structure has an injective presentation.

Proof. For automatic structures this result is due to Khoussainov and Nerode [32].
Let v : D — A be a presentation of an w-automatic structure 2. By the preceding lemma
applied to the kernel of v there is a function e such that

(i) vx = vex for all z € X, and
(ii) va = vy implies ex = ey.

Thus we obtain a regular subset D’ C D containing exactly one representation for each element
of A by defining D" :={z € D |ex =z }. O

We say that a logic L effectively collapses to Ly C L on a structure 2 if, given a formula
¢(7) € L, one can compute a formula ¢o(Z) € Lo such that ¢f = o=,

Proposition 5.3. (1) FO(3¥) effectively collapses to FO on Tree(p).
(2) FO(3¥) effectively collapses to FO on Tree”(p).

Proof. (1) In case of automatic structures the quantifier 3* can be handled using a pumping
argument. Consider for simplicity the formula F*z¢(z,y). By induction the formula 1 is
equivalent to some first-order formula and, hence, there is some automaton recognising the
relation defined by 1. There are infinitely many x satisfying ) iff for any m there are infinitely
many elements x whose encoding is at least m symbols longer than that of y. If we take m
to be the number of states of the automaton for ¢ then, by the Pumping Lemma, the last
condition is equivalent to the existence of at least one such z. Thus F¥z¢(z,y) = Jz(Y(z,y) A
“r is long enough”) for which we can obviously construct an automaton.

(2) For w-automatic structures the proof is more involved.

Let M be a deterministic Muller automaton with s states recognising the language L(M) C
I'*@X“ Forwel¥letV(w):={veX¥|lweveL(lM)}

Let v, w € X and define v &* w iff v[n,w) = wln,w) for some n. Let [v], := {v' € V(w) |
v ~* v} be the ~*-class of v in V(w).
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Claim. V(w) is infinite if and only if there is some v € X* such that [v], € V(w)/~* is infinite.

Proof. (<) is trivial and (=) is proved by showing that V/~* contains at most s finite ~*-
classes.

Assume there are words v, ...,vs € V(w) belonging to different finite ~*-classes. Denote
the run of M on w ® v; by g;. Define I;; := {k < w | 0;[k] = o;[k]}. Since there are only
s states, for each k < w there have to be indices 4, j such that k € [;;, i.e., Ui,j I;; = w. Thus,
at least one I;; is infinite. For each [v;]. there is a position n; such that v[n;,w) = v'[n;,w) for
all v,v" € [v;]«. Let m be the maximum of ng,...,ns. Fix ¢,7 such that [;; is infinite. Since
v; #* v; there is a position m’ > m such that v;[m, m’) # vj[m,m’). Choose some m” € I;;
with m” > m’. Let u := v;[0, m)v;[m, m")v;[m",w). Then, w ® v; € L(M) iff w®u € L(M)
which implies that u € [v;]«. But u[m,w) # v;[m,w) in contradiction to the choice of m. O

To finish the proof let p(z) := I¥y1(Z, y) and A be w-automatic. One can express that [v]s
is finite by

finite(z,v) := InVo'[(Z,v") A v ~* v — equal(v,v’,n)],
where
equal(v,v',n) :=n = 10 A v[i,w) = v'[i,w).

Clearly, ~* and equal can be recognised by w-automata. By the claim above,

©(Z) = Fu(Y(Z,v) A —finite(z, v)).

Hence, we can construct an automaton recognising ¢>. ]
Corollary 5.4. The FO(3¥)-theory of any (w)-automatic structure is decidable.

Proof. Note that FO(3%) is closed under injective interpretations, that is, if Z : A <po Tree(p)
is an injective interpretation, then 2 = o(Z(w)) iff Tree(p) |= ¢t (w) for every ¢ € FO(I¥). O

As an immediate consequence we conclude that full arithmetic (N, +,-) is neither auto-
matic, nor w-automatic. For most of the common extensions of first-order logic used in finite
model theory, such as transitive closure logics, fixed point logics, monadic second-order logic,
or first-order logic with counting, the model-checking problem on automatic structures becomes
undecidable.

Complexity. The complexity of model-checking can be measured in three different ways.
First, one can fix the formula and ask how the complexity depends on the input structure. This
measure is called structure complexity. The expression complezrity on the other hand is defined
relative to a fixed structure in terms of the formula. Finally, one can look at the combined
complezity where both parts may vary.

Of course, the complexity of these problems may very much depend on how automatic
structures are presented. Since the decision methods for N, and Tree(p) are automaton based, a
presentation 0 consisting of a list of automata, is more suitable for practical purposes than using
an interpretation. Here, we focus on presentations by deterministic automata because these
admit boolean operations to be performed in polynomial time, whereas for nondeterministic
automata, complementation may cause an exponential blow-up.
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Structure-Complexity —Expression-Complexity

Model-Checking

o LoGSPACE-complete ALOGTIME-complete
Yo + fun NLOGSPACE PTIME-complete
1 NPTIME-complete PspPACE-complete

Query-Evaluation
>0 LOGSPACE PspPACE
Y1 PspACE EXPSPACE

In the following we always assume that the vocabulary of the given automatic structures and
the alphabet of the automata we deal with are fixed. Furthermore the vocabulary is assumed to
be relational when not stated otherwise. For a (deterministic) presentation 9 of an automatic
structure 2, we denote by [0| the maximal size of the automata in 9, and, fixing some surjective
function v : L(Mj) — A, we define A : A — N to be the function

Aa) :=min{ |z| | v(z) =a}

mapping each element of 2 to the length of its shortest encoding. Finally, let A(ay,...,a,) be
an abbreviation for max{ A(a;) |1 =1,...,7}.

While we have seen above that query-evaluation and model-checking for first-order formulae
are effective on AutStr, the complexity of these problems is non-elementary, i.e., it exceeds any
fixed number of iterations of the exponential function. This follows immediately from the fact
the the complexity of Th(91,) is non-elementary (see [22]).

Proposition 5.5. There exist automatic structures such that the expression complexity of the
model-checking problem is non-elementary.

It turns out that model-checking and query-evaluation for quantifier-free and existential
formulae are still — to some extent — tractable. As usual, let 3y and ¥, denote, respectively the
class of quantifier-free and the class of existential first-order formulae.

Theorem 5.6. (i) Given a presentation 0 of a relational structure 2 € AutStr, a tuple a in 2,
and a quantifier-free formula p(z) € FO, the model-checking problem for (A, a, ) is in

DTIME[O(|¢|A(a)[2|log[o])] and
DsPACE [O(log|p| + log[d| + log A(a@))].

(ii) The structure complezity of model-checking for quantifier-free formulae is LOGSPACE-
complete with respect to FO-reductions.

(iii) The expression complexity is ALOGTIME-complete with regard to deterministic log-time
reductions.

Proof. (i) To decide whether 2 |= ¢(a) holds, we need to know the truth value of each atom
appearing in . Then, all what remains is to evaluate a boolean formula which can be done
in DTIME[O(|¢])] and ATIME[O(log|g|)] € Dsrace|[O(log|e|)] (see [10]). The value of an
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atom RZ can be calculated by simulating the corresponding automaton on those components
of @ which belong to the variables appearing in Z. The naive algorithm to do so uses time
O(A(a)[o|log[o])) and space O(log[o| + log A(a)).

For the time complexity bound we perform this simulation for every atom, store the outcome,
and evaluate the formula. Since there are at most || atoms the claim follows.

To obtain the space bound we cannot store the value of each atom. Therefore we use the
LoGspacEg-algorithm to evaluate ¢ and, every time the value of an atom is needed, we simulate
the run of the corresponding automaton on a separate set of tapes.

(ii) We present a reduction of the LOGSPACE-complete problem DETREACH, reachability by
deterministic paths, (see e.g. [30]) to the model-checking problem. Given a graph & = (V, E, s, )
we construct the automaton M = (V, {0}, A, s, {t}) with

A:={(u,0,v) |u#t, (u,v) € E and there is nov’ # v with (u,v’) € E'}
U {(t,0,1)}.

That is, we remove all edges originating at vertices with out-degree greater than 1 and add a
loop at t. Then there is a deterministic path from s to ¢t in & iff M accepts some word 0™ iff
0Vl e L(M). Thus,

(V,E,s,t) € DETREACH iff 2 = POV

where 2 = (B, P) is the structure with the presentation ({0}*, L(M)). A closer inspection
reveals that the above transformation can be defined in first-order logic.
(iii) Evaluation of boolean formulae is ALOGTIME-complete (see [10]). O

For most questions we can restrict attention to relational vocabularies and replace functions
by their graphs at the expense of introducing additional quantifiers. When studying quantifier-
free formulae we will not want do to this and hence need to consider the case of quantifier-free
formulae with function symbols separately. This class is denoted g +fun. The following lemma
is essentially due to Epstein et al. [18].

Lemma 5.7. Given a tuple W of words over X, and an automaton A = (Q, X, 9, qo, F') recog-
nising the graph of a function f, the calculation of f(w) is in

DTiME[O(|Q|? log|Q|(|Q| + |w]))] and Dspace[O(|Q|log|Q| + log|w])].

Proof. The following algorithm simulates 2 on input wg ® - - - ® wy—1 ® x where «x is the result
that we want to calculate. For every position ¢ of the input, the set @Q; of states which can
be reached for various values of x is determined. At the same time the sets ); and Q;11 are
connected by edges FE; labelled by the symbol of & by which the second state could be reached.
When a final state is found, x can be read off the graph.

We use the function Step(Q,a) depicted on the next page to compute Q;+1 and F; from Q;
and the input symbol @. If F is realised as an array containing, for every ¢ € @, the values
¢’ and ¢ such that (¢, ¢,q) € E, this function needs space (’)(|Q| log]Q\) and time

O(1QI(1Q/og|Q| + |Q| log|Q])) = O(IQI*10g|Q]).

Two slightly different algorithms are used to obtain the time and space complexity bounds.
The first one simply computes all set (J; and E; and determines x. The second one reuses space
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Step(Q,a)
Q=10
E =0
forall ¢ €  do
forall c € X' do
q = d(q,ac)
if ¢ ¢ @' then
E =FEU{(q,cq)}
Ql — Q/ U {q/}
end
end
return (Q', F)

Input: A = (Q,X,4d,q, F), w
Qo = {qo}
1:=0
while Q; N F = () do
if i < |w| then

a = wli]
else
a:=0

(Qit1, E;) := Step(Q;, @)
=1+ 1

end

let e Q;NF

while ¢ > 0 do
1:=1—1

let (q/’ c, Q) € El
x[i] == ¢
q:=d

end

return z
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Input: A= (Q,X,6,q0, F), w
Q = {q}
1:=0
while QN F = () do
if ¢ < |w| then

a := wli]
else
a:=0

(Q7E) = Step(Qva)
1:=1+1
end
letqe @QNF
while ¢ > 0 do
1:=1—1
Q@ = {qo}
for k=0,...,1—1do
if k < |w| then

a = wlk]
else
a:=0
(Q, E) := Step(Q, a)
end
let (¢',c,q) € E
x[i] == ¢
q:=4q
end
return



and keeps only one set (); and E; in memory. Therefore it has to start the computation from
the beginning in order to access old values of FE; in the second part.

In the first version the function Step is invoked |z| times, and the second part is executed
in time O(|z||Q]log|Q)).

The space needed by the second version consists of storage for ), F, and the counters
i and k. Hence, O(|Q| + |Q|log|Q| + log|z|) bits are used.

Since 2 recognises a function the length of x can be at most |Q| + |w| (see Proposition 6.1
for a detailed proof). This yields the given bounds. O

Theorem 5.8. (i) Let 7 be a vocabulary which may contain functions. Given the presentation 0
of a structure 2 in AutStr[r], a tuple a in A, and a quantifier-free formula p(z) € FOIr], the
model-checking problem for (2, a, y) is in

DTME[O(|¢|[0]* log|d|(|¢[[d] + A(@)))] and
Dspack [O(Jo| (l¢]]d] + A(@)) + [o]log[o])].

(ii) The structure complezity of the model-checking problem for quantifier-free formulae with
functions is in NLOGSPACE.
(iii) The expression complexity is PTIME-complete with regard to S}ﬁg—reductions.

Proof. (i) Our algorithm proceeds in two steps. First the values of all functions appearing in ¢
are calculated starting with the innermost one. Then all functions can be replaced by their
values and a formula containing only relations remains which can be evaluated as above. We
need to evaluate at most || functions. If they are nested the result can be of length |¢|[o|+A(a).
This yields the bounds given above.

(ii) It is sufficient to present a nondeterministic log-space algorithm for evaluating a single
fixed atom containing functions. The algorithm simultaneously simulates the automata of the
relation and of all functions on the given input. Components of the input corresponding to
values of functions are guessed nondeterministically. Each simulation only needs counters for
the current state and the input position which both use logarithmic space.

(iii) Let M be a p(n) time-bounded deterministic Turing machine for some polynomial p.
A configuration (g, w,p) of M can be coded as word woqw; with w = wow; and |wgy| = p.
Using this encoding both the function f mapping one configuration to its successor and the
predicate P for configurations containing accepting states can be recognised by automata. We
assume that f(c) = ¢ for accepting configurations c. Let gy be the starting state of M. Then
M accepts some word w if and only if the configuration fPI%D(gow) is accepting if and only
if A = PfPUwD(gow) where A = (A, P, f) is automatic. Hence, the mapping taking w to the
pair gow and PfPU*Dz is the desired reduction which can clearly be computed in logarithmic
space. ]

Remark. Theorem 5.8 says that, on any fixed automatic structure, quantifier-free formulae can
be evaluated in quadratic time. This extends the result of [18] that the word problem for every
automatic group is solvable in quadratic time. Indeed, for every automatic group G generated
by $1,...,8m, the structure (G,e,g +— gs1,...,9 — gSn) is just a functional way of presenting
the Cayley graph and therefore automatic. Each instance of the word problem is described by
a quantifier-free sentence (a term equation) on this structure.
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Theorem 5.9. (i) Given a presentation 0 of a structure 2 in AutStr, a tuple a in A, and a
formula () € 31, the model-checking problem for (A, a, ) is in

NtivE[O(Je|[p|A@) + [0/°U¢D)] and
NSPACE[(’)(\¢|(\D| + log|p|) + log )\(EL))].

(ii) The structure complezity of model-checking for ¥i-formulae is NPTIME-complete with
respect to <y -reductions.
(iii) The expression complexity is PSPACE-complete with regard to Slﬁg—reductions.

Proof. (i) As above we can run the corresponding automaton for every atom appearing in ¢
on the encoding of a. But now there are some elements of the input missing which we have
to guess. Since we have to ensure that the guessed inputs are the same for all automata, the
simulation is performed simultaneously.

The algorithm determines which atoms appear in ¢ and simulates the product automaton
constructed from the automata for those relations. At each step the symbol for the quantified
variables is guessed nondeterministically. Note that the values of those variables may be longer
than the input so we have to continue the simulation after reaching its end for at most the car-
dinality of the state-space number of steps. Since this cardinality is O([0| “f") a closer inspection
of the algorithm yields the given bounds.

(ii) We reduce the NPTIME-complete non-universality problem for nondeterministic au-
tomata over a unary alphabet (see [35, 29]), given such an automaton check whether it does not
recognise the language 0%, to the given problem. This reduction is performed in two steps. First
the automaton must be simplified and transformed into a deterministic one, then we construct
an automatic structure and a formula p(x) such that ¢(a) holds for several values of a if and
only if the original automaton recognises 0*. As the model-checking has to be performed for
more than one parameter this yields not a many-to-one but a truth-table reduction.

Let M = (Q, {0}, 4, qo, F') be a nondeterministic finite automaton over the alphabet {0}. We
construct an automaton M’ such that there are at most two transitions outgoing at every state.
This is done be replacing all transition form some given state by a binary tree of transitions
with new states as internal nodes. Of course, this changes the language of the automaton. Since
in M every state has at most |@Q| successors, we can take trees of fixed height k := [log|Q|].
Thus, L(M') = h(L(M)) where h is the homomorphism taking 0 to 0*. Note that the size of M’
is polynomial in that of M.

M’ still is nondeterministic. To make it deterministic we add a second component to the
labels of each transitions which is either 0 or 1. This yields an automaton M” such that
M accepts the word 0" iff there is some y € {0, 1}*" such that M" accepts 0" ® y.

M" can be used in a presentation d := ({0,1}*, L(M")) of some {R}-structure B. Then

B Iy ROy if 0Meye (M) iff 0" € L(M).
It follows that
L(M) = 0" iff B = 3y R0*y for all n < 2|Q).

The part (=) is trivial. To show (<) let n be the least number such that 0" ¢ L(M). By
assumption n > 2|@|. But then we can apply the Pumping Lemma and find some number n’ < n
with 0% ¢ L(M). Contradiction.
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(iii) Let M be a p(n) space-bounded Turing machine for some polynomial p. As above we
encode configurations as words, but this time we append enough spaces to increase their length
to p(n) + 1. Let L := {co®c1 | co F 1} be the transition relation of M. The run of M
on input w is encoded as sequence of configurations separated by some marker #. L can be
used to check whether some word z represents a run of M. Let y be the suffix of x obtained by
removing the first configuration. The word x ® y has the form

co # ¢ # # ocs1 H#HCs
L H oo # # Cs #

Thus x encodes a valid run iff z ® y € Ly where

Ly = (LF {ﬁ})*(g*w).

Clearly, the language L of all runs whose last configuration is accepting is regular. Finally,
we need two additional relations. Both, the prefix relation < and the shift s are regular where
s(ax) := z for a € ¥ and x € X*. Therefore, the structure A := (A,T, F,s, =) is automatic,
and it should be clear that

w € L(M) iff A @y (qouwF %),

where k := p(Jw|) and
puw(x) :==Jyo- - 3yk+1( N\ sviyir1 Az <y
i<k

A Tyoyg+1 N Fyo)-

ow(x) states that there is an accepting run yg of M starting with configuration x. y1,..., Y1
are used to remove the first configuration from g, so we can use T" to check whether yq is valid.
Clearly, the mapping of w to ¢,, and qowIF~1wl4 can be computed in logarithmic space. [

We now turn to the query-evaluation problem for these formula classes.

Theorem 5.10. Given a presentation 0 of a structure 2 in AutStr and a formula ¢(Z), an
automaton representing @m can be computed

(i) in time O(|D|O(|“’D) and space O(||log|d]) in the case of quantifier-free p(Z), and
(ii) n time O(Q‘D‘O(M)) and space (’)(\D|O(|‘P‘)) in the case of existential formulae ¢(Z).

In particular, the structure complexity of query-evaluation is in LOGSPACE for quantifier-free
formulae and in PSPACE for existential formulae. The expression complexity is in PSPACE for
quantifier-free formulae and in EXPSPACE for existential formulae.

Proof. Enumerate the state space of the product automaton and output the transition function.
O
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Undecidability. In the remainder of this section we present some undecidability results.
Lemma 5.11. Every configuration graph of a Turing maching is automatic.

Proof. We encode a configuration with state ¢, tape contents w, and head position p by the
word woqw; where w = wow; and |wg| = p. At every transition woquwi Fpn, wiq'w], only the
symbols around the state are changed. This can be checked by an automaton. O

An immediate consequence is:
Proposition 5.12. REACHABILITY is undecidable for automatic structures.
The proofs below are based on the following normal form for Turing machines:

Lemma 5.13. For any deterministic 1-tape Turing machine M one can effectively construct a
deterministic 2-tape Turing machine M’ such that the configuration graph of M’ consists of a
disjoint union of

(a) a countably infinite number of infinite acyclic paths with a first but without last element;

(b) for each word x € L(M), one path starting at an initial configuration and ending in a
loop.

Proof. We slightly modify the construction of a reversible Turing machine. While simulating M
on its first tape the machine M’ appends to the second tape the transitions performed at each
step. That way it is ensured that each configuration of M’ has a unique predecessor. Further,
we define M’ such that, if M terminates without accepting, then M’ enters an infinite loop
while moving its head to the right. Thus, if 2 ¢ L(M) then the run of M’ on input = consists
of an infinite path of type (a).

The construction as presented so far does not suffice since there exist configurations that
cannot be reached from an initial configuration. We have to ensure that every path containing
such a configuration is of type (a). Clearly, every such path must have a first element since the
contents of the second tape never decreases. To ensure that the path does not end we modify M’
such that, if M accepts, then M’ restarts the simulation of M with the initial configuration
but without erasing the contents of the second tape. Instead, at every step M’ checks that the
symbol it normally would write to this tape is already present. That way, if the path starts at
an unreachable configuration, a discrepancy is detected and M’ can enter an infinite loop as
above.

Finally, note that with this modification the run of M’ on inputs z with x € L(M) is of
type (b). O

Theorem 5.14. It is undecidable whether two automatic structures are isomorphic.

Proof. Let M be a deterministic 1-tape Turing machine. We construct a Turing machine M’
as in the preceding lemma. The configuration graph G of M’ is automatic. Let H be the
graph consisting of R copies of (w,suc). Then, G = H iff L(M) = (). The latter question is
undecidable. O

Theorem 5.15. It is undecidable whether an automatic graph is connected.
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Proof. We modify the proof above. Again construct the Turing machine M’ with configuration
graph G. This time, we modify M’ such that it enters a distinguished configuration cq if an
error is detected in the second phase. Let T" be the set of configurations with two predecessors.
We add edges from ¢ to ¢g for every ¢ € T'. Since T  is FO-definable it follows that the resulting
graph G’ is still automatic. Furthermore, G’ is connected iff every run of M reaches an accepting
configuration, i.e., iff L(M) = X*. O

6 Structures that are not automatic

To prove that a structure is automatic, we just have to find a suitable presentation. But how
can we prove that a structure is not automatic? The main difficulty is that a priori, nothing
is known about how elements of an automatic structure are named by words of the regular
language.!

Besides the two obvious criteria, namely that automatic structures are countable and that
their first-order theory is decidable, not much is known. The only non-trivial criterion that is
available at present use growth rates for the length of the encodings of elements of definable
sets.

Proposition 6.1 (Elgot and Mezei [17]). Let 2 be an automatic structure with injective pre-
sentation (v,0), and let f : A™ — A be a function of 2. Then there is a constant m such that
A f(a)) < Xa)+m for alla € A™.

The same is true if we replace f by a relation R where for all a there are only finitely many

values b such that Rab holds.

This result deals with a single application of a function or relation. In the remaining part
of this section we will study the effect of applying functions iteratively, i.e., we will consider
some definable subset of the universe and calculate upper bounds on the length of the encodings
of elements in the substructure generated by it. First we need bounds for the (encodings of)
elements of some definable subsets. The following lemma follows easily from classical results in
automata theory (see, e.g., [16, Proposition V.1.1}).

Lemma 6.2. Let A be a structure in AutStr with presentation 0, and let B be an FO(3¥)-
definable subset of A. Then A(B) is a finite union of arithmetical progressions.

In the process of generating a substructure we have to count the number of applications of
functions.

Definition 6.3. Let 2 € AutStr with presentation 0, let f1,..., f, be finitely many operations
of 2 with arities r1,...,r,, respectively, and let E = {ej,ea,...} be some subset of A with
Aer) < Mez) < ---. Then G, (E), the n'' generation of E, is defined inductively by

G1(E) = {ei},
Gn(E) :={en} UGn_1(E)U{ fi(a) |a € G _|(E),1<i<r}.

Putting everything together we obtain the following result. The case of finitely generated
substructures already appeared in [32].

'In the case of automatic groups, where the naming function is fixed, more techniques are available such as
the k-fellow traveller property, see [18].
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Proposition 6.4. Let 0 an injective presentation of an automatic structure U, let fi,..., fr
be finitely many definable operations on 2 and let E be a definable subset of A. Then there is
a constant m such that \(a) < mn for all a € G,,(E). In particular, |G, (E)| < |X|™ ! where
2 is the alphabet of 0.

The proof consists of a simple induction on n.

Theorem 6.5. None of the following structures has an automatic presentation.

(i) Any trace monoid M = (M, -) with at least two non-commuting generators a and b.
(i1) Any structure A in which a pairing function f can be defined.

(iii) The divisibility poset (N, |).

(iv) Skolem arithmetic (N, ).

Proof. (i) We show that {a,b}<?" C G,11(a,b) by induction on n. We have {a, b} C {a,aa,b} =
Ga(a,b) for n =1, and for n > 1

Gnri(a,b) = {w | u,v € Gu(a,b) }
D {wv | u,v e {a, b}§2n_1 }
= {a,b}=*".

Therefore, |G, (a,b)| > 22" and the claim follows.

(ii) is analogous to (i), and (iv) immediately follows from (iii) as the divisibility relation is
definable in (N, -).

(iii) Suppose (N, |) € AutStr. We define the set of primes

Pz :iff 2 #1AVy(y|lze —y=1Vy=ux),
the set of powers of some prime
Qz :iff Jy(PyAVz(z|azANz#1—y|z)),
and a relation containing all pairs (n, pn) where p is a prime divisor of n
Sy :iff 2|y AT 2(QzA-PzAz|yA—-z|z).
The least common multiple of two numbers is
lem(z,y) =z :iff z|zAy|zA-"TFu(u#zAz|uAy|lunulz).

For every n € N there are only finitely many m with Snm. Therefore S satisfies the conditions
of Proposition 6.1. Consider the set generated by P via S and lem, and let y(n) := |G (P)| be
the cardinality of G,,(P). If (N,]|) is in AutStr then (N, |, P,Q,S) € AutStr and ~(n) € 200
by Proposition 6.4. Let P = {p1,p2,...}. For n = 1 we have G1(P) = {p1}. Generally,
G, (P) consists of

(1) numbers of the form plfl,

(
(

2) numbers of the form p§2 - .phnand

3) numbers of a mixed form.
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In n steps we can create

(1) p1,. - 7p? (Via’ S)a
(2) v(n — 1) numbers with k; = 0, and

(3) for every 0 < k1 < n, y(n —2) — 1 numbers of a mixed form (via lcm).

All in all we obtain

() Zn+yn—1)+ (-1 -2)-1)
=vyn—-1)+Mn—-1)y(n—-2)+1

>ny(n—2) (as y(n = 1) > 7(n = 2))
>n(n—2)---3y(1) (w.l.o.g. assume that n is odd)
=nn—2)---3
> ((n+1)/2)!
& 220nogn)

Contradiction. O

Remark. (1) Since it is easy to construct a tree-automatic presentation of Skolem arithmetic
this result implies that the class of structures with tree-automatic presentation strictly includes
the class of automatic structures (see [5]).

(2) The structure (N, L) where L stands for having no common divisor is automatic.

7 Composition of structures

The composition method developed by Feferman and Vaught [21], and by Shelah [39] (see also
[26, 41]) considers compositions (products and sums) of structures according to some index
structure and allows one to compute — depending on the type of composition — the first-order
or monadic second-order theory of the whole structure from the respective theories of its com-
ponents and the monadic theory of the index structure.

The characterisation given in the previous section can be used to prove closure of automatic
structures under such compositions of finitely many structures. A generalised product — as it is
defined below — is a generalisation of a direct product, a disjoint union, and an ordered sum. We
will prove that, given a finite sequence (2;); of structures FO-interpretable in some structure €,
all their generalised products are also FO-interpretable in €.

The definition of such a product is a bit technical. Its relations are defined in terms of the
types of the components of its elements. The atomic n-type atpy(a) of a tuple (ag,...,an—1)
in a structure 2 is the conjunction of all atomic and negated atomic formulae ¢(z) such that
©(a) holds in 2.

Let us first look at how a direct product and an ordered sum can be defined using types.

Ezample. (1) Let A := R x Ay where »A; = (A;, R;), for i € {0,1}, and R is a binary relation. The
universe of 2 is Ag x Aj. Some pair (a,b) belongs to R iff (ag,by) € Ro and (a1,b;) € Ry. This is
equivalent to the condition that the atomic types of agby and of a;b; both include the formula Rxgx;.

24



(2) Let 2 := Ay + A3 where A; = (A;, <), for i € {0,1}, and <g, <y are partial orders. The universe
of Ais Ag U A3 = Ag x {0} U{0} x A1, and we have

b= (bo, <>) and ag <g bo,
or a = (<>,G1), B = (O;bl) and a1 <q bl,
b= (0,b1).

Again, the condition a; <; b; can be expressed using types.

Definition 7.1. Let 7 = {Ry, ..., Rs} be a finite relational vocabulary, r; the arity of R;, and

7 := max{rg,...,7s}. Let (2;);er be a sequence of T-structures, and J be an arbitrary relational
o-structure with universe I.
Fix for each k£ < # an enumeration {tlg, . ,tﬁ(k)} of the atomic k-types and set

ok ::aU{DO,...,Dkfl}U{Tlm|m§k>l§n(m)}'

The oy-expansion J(b) of J belonging to a sequence b € (I[;c;(A; U {0}))* is given by

D = {ie | (b)i# 0},
(1) = {i e I | atpg((bjo)i- - - (bj_y)i) = " and
{7 1) # 0} ={jo,- - dm-1} }-

For D C B! and 83; € FO[o.,], C == (3,D,fo,...,Bs) defines the generalised product
C(Ai)ier == (A, Ro, ..., Rs) of (U;);er where

A= U HXdi({O};Ai)a
deD i€l
Ri:={bec A" | 3(b) | B },
and xp(ao,a1) == ap.

Ezample. (continued)
(1) For the direct product of 2y x 2y we would set J := (I) with I = {0,1}, D := {(1,1)}, and

B=\/TP0N\/ 171,

leL leL

where L is the set of atomic types containing the formula Rzgzx;.
(2) In this case we would set J:= (I) with I ={0,1}, D :={(1,0),(0,1)}, and

8= (DOO/\Dl()/\ \/ Tﬁo) v (DO1 ADiIA\/ Tﬁ1) V (D0 A Dy 1),
leL leL

where L is the set of atomic types containing the formula zg < x;.

Theorem 7.2. Let 7 be a finite relational vocabulary, K a class of T-structures containing all
finite T-structures, and a structure € such that I C {2 | A <po € }.

Let 3 be a finite relational o-structure, let (A;)icr be a sequence of structures in K, and
C = (3,D,f3) a generalised product. Then C(;)icr € K, and an interpretation C(2;)icr <ro €
can be constructed effectively from the interpretations A; <po € and J <po €.
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Proof. Let 7 = {Ry,...,Rs}. W.lo.g. assume that I = {0,...,|I| — 1} and that € contains
constants 0 and 1. We have to construct an interpretation of 2 := C(2;);cr in €. Let r; be the
arity of ?;. Consider n;-dimensional interpretations

I' = (h',6"(Z"), (T, "), 0 (Zlys - - s Thy 1)y ooy LTy -, T 1))
of ?; in €. We represent an element a of 2 by a tuple of (|I| +ng + - -+ nj7—1) elements
7= (d,z°,...,7z"171)
where d € D determines which components are empty and Z* encodes the i*" component of a.
The desired interpretation is constructed as follows.
1:= <h7 5('%)7 €(j7 g)v QDO(E(M s 7'T7"0*1)7 SRR QOS<'T0> s 7£‘7’s*1)>

where
h(J, jO’ o 7;5”‘_1) — (Xdo (<>, hO(jO)), o 7de71 (<>’ h\f|—1(j|l\—1)))7
5(d,2°,..., a1 = \/ (J: cn N 6"(3?”')),

ceD i:ci=1
and !

2@ a1 e gl g = d = e n (=1 = ).

~

. . . a<|L ~ . . .
In order to define ¢; we consider an mterpretatloln ‘jl of J in €. Since J is finite such an

interpretation exists. Let o := ﬁjII be the formula defining R;. Note that (; contains additional
relations D; and T;™ which are not in 0. Thus «; is a sentence over the vocabulary 7 extended
by the symbols D; and T;™ for appropriate [ and m. We have to be replace them in order to
obtain a definition of p;. Let Zo,...,Zr;—1 be the parameters of ¢; where

_ 7 - _|I]—-1
mk:(dk,xg,...,x‘kl )

for k <r;. D; and T}]™ can be defined by
Dji = (dl)z =1 and Tlmz = (t}n)Ii (.f'%, ce 7'%3'"]*71)'

Note that those definitions are only valid because ¢ ranges over a finite set. ¢; can now be
defined as o with D; and T;™ replaced by the above definitions.
Obviously, all steps in the construction above are effective. O

Corollary 7.3. Both, AutStr and w-AutStr are effectively closed under finitary generalised
products.
As promised we immediately obtain closure under several types of compositions.
Corollary 7.4. Let g, ...,24,_1 € AutStr. Then there exists automatic presentations of
(i) the direct product [],_,, 2,
(ii) the disjoint union \J; ., A, and
(iii) the w-fold disjoint union w -2y of Ap.

Corollary 7.5. Let 2y, ..., 2,1 € AutStr be ordered structures. There exists automatic pre-
sentations of

(i) the ordered sum ), U; and
(ii) the w-fold ordered sum > ._ Ao of Ap.

<w
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