
Boundedness of monadic second-order formulae

over finite words

A. Blumensath1, M. Otto1, and M. Weyer2

1 Fachbereich Mathematik, Technische Universität Darmstadt
2 Lehrstuhl Logik in der Informatik, Humboldt-Universität zu Berlin

Abstract. We prove that the boundedness problem for monadic second-
order logic over the class of all finite words is decidable.

1 Introduction

In applications one frequently employs tailor-made logics to achieve a balance
between expressive power and algorithmic manageability. Adding fixed-point op-
erators to weak logics turned out to be a good way to achieve such a balance.
Think, for example of the addition of transitive closure operators or more gen-
eral fixed-point constructs to database query languages, or of various fixed-point
defined reachability or recurrence assertions to logics used in verification. Fixed-
point operators introduce a measure of relational recursion and typically boost
expressiveness in the direction of more dynamic and less local properties, by
iteration and recursion based on the expressiveness that is locally or statically
available in the underlying fragment, say of first-order logic FO. We here exclu-
sively consider monadic least fixed points, based on formulae ϕ(X,x) that are
monotone (positive) in the monadic recursion variable X. Any such ϕ induces
a monotone operation Fϕ : P 7→ { a ∈ A | A |= ϕ(P, a) } on monadic relations
P ⊆ A. The least fixed point of this operation over A, denoted as ϕ∞(A), is also
the least stationary point of the monotone iteration sequence of stages ϕα(A)
starting from ϕ0(A) := ∅. The least α for which ϕα+1(A) = ϕα(A) is called the
closure ordinal for this fixed-point iteration on A.

For a concrete fixed-point process it may be hard to tell whether the recursion
employed is crucial or whether it is spurious and can be eliminated. Indeed
this question comes in two versions: (a) one can ask whether a resulting fixed
point is also uniformly definable in the base logic without fixed-point recursion
(a pure expressiveness issue); (b) one may also be interested to know whether
the given fixed-point iteration terminates within a uniformly finitely bounded
number of iterations (an algorithmic issue, concerning the dynamics of the fixed-
point recursion rather than its result).

The boundedness problem Bdd(F , C) for a class of formulae F and a class
of structures C concerns question (b): to decide, for ϕ ∈ F , whether there is a
finite upper bound on its closure ordinal, uniformly across all structures A ∈ C
(we call such fixed-point iterations, or ϕ itself, bounded over C).

Interestingly, for first-order logic, as well as for many natural fragments, the
two questions concerning eliminability of least fixed points coincide at least over
the class of all structures. By a classical theorem of Barwise and Moschovakis [1],
the only way that the fixed point ϕ∞(A) can be first-order definable for every A,
is that there is some finite α for which ϕ∞(A) = ϕα(A) for all A. The converse is
clear from the fact that the unfolding of the iteration to any fixed finite depth α
is easily mimicked in FO.

In other cases – and even for FO over other, restricted classes of structures,
e.g., in finite model theory – the two problems can indeed be distinct, and of
quite independent interest.

We here deal with the boundedness issue. Boundedness (even classically, over
the class of all structures, and for just monadic fixed points as considered above)
is undecidable for most first-order fragments of interest, e.g., [6]. Notable excep-
tions are monadic boundedness for positive existential formulae (datalog) [3],
for modal formulae [9], and for (a restricted class of) universal formulae without
equality [10].

One common feature of these decidable cases of the boundedness problem
is that the fragments concerned have a kind of tree model property (not just
for satisfiability in the fragment itself, but also for the fixed points and for
boundedness). This is obvious for the modal fragment [9], but clearly also true
for positive existential FO (derivation trees for monadic datalog programs can be
turned into models of bounded tree width), and similarly also for the restricted
universal fragment in [10].

Motivated by this observation, [7] has made a first significant step in an
attempt to analyse the boundedness problem from the opposite perspective,
varying the class of structures rather than the class of formulae. The hope is
that this approach could go beyond an ad-hoc exposition of the decidability of
the boundedness problem for individual syntactic fragments, and offer a unified
model theoretic explanation instead. [7] shows that boundedness is decidable for
all monadic fixed points in FO over the class of all acyclic relational structures.
Technically [7] expands on modal and locality based proof ideas and reductions
to the MSO theory of trees from [9, 10] that also rest on the availability of a
Barwise–Moschovakis equivalence. These techniques do not seem to extend to
either the class of all trees (where Barwise–Moschovakis fails) or to bounded tree
width (where certain simple locality criteria fail).

The present investigation offers another step forward in the alternative ap-
proach to the boundedness problem, on a methodologically very different note,
and – maybe the most important novel feature – in a setting where neither lo-
cality nor Barwise–Moschovakis are available. On the one hand, the class of for-
mulae considered is extended from first-order logic FO to monadic second-order
logic MSO – a leap which greatly increases the robustness of the results w.r.t.
interpretations, and hence their model theoretic impact. On the other hand, au-
tomata are crucially used and, for the purposes of the present treatment, the
underlying structures are restricted to just finite word structures. We expect
that this restriction can be somewhat relaxed, though. Work in progress based

on automata theoretic results recently obtained by Colcombet and Löding [2]
shows that our approach generalises from finite words to the case of finite trees.
This extension of the present results will, via MSO interpretability in trees, then
reach up at least to the finite model-theory version of the following conjecture,
which has been implicit as a potential keystone to this alternative approach to
boundedness:

Conjecture 1. The boundedness problem for monadic second-order logic over the
class of all trees (and hence over any MSO-definable class of finite tree width) is
decidable.

2 Preliminaries

We assume that the reader is familiar with basic notions of logic (see, e.g., [4] for
details). Throughout the paper we assume that all vocabularies are finite and
that they contain only relation symbols and constant symbols, but no function
symbols. We regard free variables as constant symbols.

Let ϕ and ψ be formulae over a vocabulary τ containing a unary relation
symbol X and a constant symbol x. As usual, the formula ϕ[c/x] is obtained
from ϕ by replacing all free occurrences of x by c. The formula ϕ[ψ(x)/X] is
obtained from ϕ by replacing all free occurrences of X, say Xc with constant
symbol c, by ψ[c/x]. For α < ω, we define the formula ϕα inductively as follows:

ϕ0 := ⊥ and ϕα+1 := ϕ[ϕα(x)/X] .

Note that the vocabulary of ϕα is τ r {X}. Suppose that A is a structure
of vocabulary τ r {X,x}. If ϕ is positive in X, then ϕα defines the α-th stage
of the least fixed-point induction of ϕ on A. We denote this set by ϕα(A). The
corresponding fixed point is ϕ∞(A).

Definition 1. (a) Let ϕ be a formula over τ , positive in X, and let α < ω. We
say that ϕ is bounded by α over a class C if ϕα(A) = ϕα+1(A), for all A ∈ C.
We call ϕ bounded over C if it is bounded by some α < ω.

(b) The boundedness problem for a logic L over a class C is the problem to
decide, given a formula ϕ ∈ L, whether ϕ is bounded over C.

Lemma 1. Let L be a logic and C a class of structures such that equivalence
of L-formulae over C is decidable. The boundedness problem for L over C is
decidable if and only if there is a computable function f : L → ω such that, if a
formula ϕ ∈ L is bounded over C, then it is bounded by f(ϕ) over C.

In this paper we consider the class of all finite words over some alphabet Σ.
We encode such words as structures in the usual way. Let τΣ be the signature
consisting of a binary relation ≤ and unary relations Pc, for every c ∈ Σ. We
represent a finite word w = a0 . . . an−1 ∈ Σ∗ as the structure whose universe
[n] := {0, . . . , n− 1} consists of all positions in w and where ≤ is interpreted by

the usual order on integers, and Pc is interpreted by the set { i ∈ [n] | ai = c }
of all positions carrying the letter c.

We denote the concatenation of two words A and B by A + B. For a struc-
ture A and a set U ⊆ A, we denote by AU the substructure induced by U .
(If A contains constants with value outside of U then we drop them from the
vocabulary when forming AU .)

We will reduce the boundedness problem to a corresponding problem for
automata. A distance automaton is a tuple A = (Σ,Q,∆0, ∆1, I, F), where A′ =
(Σ,Q,∆, I, F) for ∆ = ∆0 ∪̇∆1 is a finite nondeterministic automaton in the
usual sense with alphabet Σ, state space Q, transition relation ∆ ⊆ Q×Σ ×Q,
set of initial states I ⊆ Q, and set of final states F ⊆ Q. The language L(A)
of A is the language of A′ in the usual sense, and for w ∈ L(A), the distance
dA(w) is the minimal number of transitions from ∆1, the minimum ranging over
all accepting runs of A′ on w. For w /∈ L(A), we set dA(w) := ∞. As usual, we
set dA(L) := { dA(w) | w ∈ L }, for sets L ⊆ Σ∗. This definition is a slightly
modified version of the one in [5].

Theorem 1 (Hashiguchi [5, 8]). Let A be a distance automaton with state

space Q. If dA(L(A)) is bounded, then it is bounded by 24|Q|3 :

sup dA(L(A)) <∞ implies sup dA(L(A)) ≤ 24|Q|3 .

3 Positive types

For a vocabulary τ , we denote by MSOn[τ] the set of all MSO-formulae over τ
with quantifier rank at most n. If X ∈ τ is a unary predicate we write MSOn

X [τ]
for the subset of all formulae where the predicate X occurs only positively.
MSOn

X [τ] is finite up to logical equivalence, and we will silently assume that
all formulae are canonised in some way. For example, for Φ ⊆ MSOn

X [τ] the
conjunction

∧

Φ is always a formula from MSOn
X [τ], and it will even happen

that
∧

Φ ∈ Φ. The following result carries over from MSOn[τ] to MSOn
X [τ].

Fact 1. There exists a computable function f : ω → ω such that, up to logical
equivalence, we have

|MSOn[τ]| ≤ f
(

n+ |τ | + ar(τ)
)

.

Definition 2. Let τ be a vocabulary and X ∈ τ . The X-positive n-type of a
τ -structure A is the set

tpn
X(A) := {ϕ ∈ MSOn

X [τ] | A |= ϕ } .

We write Tpn
X [τ] for the set of all X-positive n-types of τ -structures.

Lemma 2. Let A be a structure and P ⊆ P ′ ⊆ A. Then

tpn
X(A, P) ⊆ tpn

X(A, P ′) ,

where X is interpreted by P and P ′, respectively.

Fact 2. Let B be the τ -reduct of A. Then tpn
X(B) = tpn

X(A) ∩ MSOn
X [τ].

Lemma 3. For every n < ω, there is a binary function ⊕n such that

tpn
X(A + B) = tpn

X(A) ⊕n tpn
X(B) , for all words A and B .

Furthermore, ⊕n is monotone:

s ⊆ s′ and t ⊆ t′ implies s⊕n t ⊆ s′ ⊕n t
′ .

Note that, being a homomorphic image of word concatenation +, the oper-
ation ⊕n is associative.

4 The main theorem

Let us temporarily fix a formula ϕ ∈ MSOn
X [τ] with vocabulary τ = {x,X,≤, Pa, Pb, . . . }

belonging to a word structure with one constant symbol x and one additional
unary predicate X. Let

π : Tpn
X [τ] → Tpn

X [τ r {x}]

be the canonical projection defined by π(t) := t ∩ MSOn
X [τ r {x}].

Note that, by our assumption on τ , there are exactly two X-positive n-
types of one-letter τ -words with letter a: the one not containing Xx and the one
which does contain Xx. We will at times denote these by, respectively, 0a and 1a.
Frequently, we will omit the index a if we do not want to specify the letter.

Given a word structure A of vocabulary τ r {X,x}, we consider the fixed-
point induction of ϕ. For every α < ω and every position p of A we consider
the type tp(A, ϕα(A), p). We annotate A with all these types. At each position p
we write down the list of these types for all stages α. These annotations can be
used to determine the fixed-point rank of all elements of A. A position p enters
the fixed point at stage α if the α-th entry of the list is the first one containing
a type t with Xx ∈ t.

We can regard the annotation as consisting of several layers, one for each
stage of the induction. At a position p each change between two consecutive
layers is caused by some change at some other position in the previous step. In
this way we can trace back changes of the types through the various layers.

In order to determine whether the fixed-point inductions of the formula are
bounded, we construct a distance automaton that recognises (approximations
of) such annotations. Furthermore, the distance computed by the automaton
coincides with the longest path of changes in the annotation. It follows that
the automaton is bounded if and only if the fixed-point induction is bounded.
Consequently, we can solve the boundedness problem for ϕ with the help of
Theorem 1.

Let us start by precisely defining the annotations we use. A local stage an-
notation at a position above a fixed letter of A captures the flow of information
that is relevant for stage updates in the fixed-point induction at this letter and
at some stage.

Definition 3. (a) A local stage annotation is a 6-tuple

γ =

(

<t t∧ t>

>t ∧t t<

)

of types where

– ∧t, t
∧ ∈ {0a, 1a} with ∧t ⊆ t∧, for some letter a ∈ Σ,

– >t,
<t, t>, t< ∈ Tpn

X [τ r {x}],
– <t = π(∧t⊕ t<) and t> = π(>t⊕ ∧t),
– Xx ∈ t∧ iff ϕ ∈ >t⊕ ∧t⊕ t<.

We say that γ is an annotation of a, for the letter a in the first clause.
(b) Let A be the word structure corresponding to a0 . . . aℓ−1 ∈ Σ∗. For α < ω,

we denote the expansion of A by the α-th stage of ϕ by Aα := (A, ϕα(A)).
The annotated word An(A) is a word b0 . . . bℓ−1 where the p-th letter bp is the

sequence of local stage annotations of ap obtained by the removal of duplicates
from the sequence (γα)α<ω with

γα :=

(

tpn
X(Aα

[p,ℓ)) tpn
X(Aα+1

{p} , p) tpn
X(Aα

[0,p])

tpn
X(Aα

[0,p)) tpn
X(Aα

{p}, p) tpn
X(Aα

(p,ℓ))

)

.

Here, A
α
U denotes (Aα)U , not (AU)α.

The components of an annotation γ are called incoming from the left, outgoing
to the left, and so on. They are denoted by >γ,

<γ, We also speak of the

>•-component of γ, etc.

Example 1. Consider the formula

ϕ(X,x) := ∀y[y < x→ Xy] ∨ ∀y[y > x→ Xy] .

Figure 1 shows (the first 4 elements of) the real annotation of a word of length
at least 9. Here,

– λ denotes the type of the empty word,
– 0 denotes any type not containing the formula ∃yXy,
– 1 denotes any type containing the formula ∀yXy, and
– 01 denotes any type containing ∃yXy, but not ∀yXy.

Below we will construct an automaton that, given a word A guesses potential
annotations for A and computes bounds on the length of the fixed-point induc-
tion of ϕ on A. Unfortunately, the real annotations An(A) cannot be recognised
by automata. For instance, in the above example the real annotations of words
of even length are of the form uxnynv where ynv is the ‘mirror image’ of uxn.
This language is not regular.

So we have to work with approximations. Let us see what such approxima-
tions look like.

λ 0 0

0 1 0

λ 1 01

01 1 1

λ 1 1

1 1 1

0 0 0

0 0 0

1 0 01

01 1 01

1 1 01

01 1 1

1 1 1

1 1 1

0 0 0

0 0 0

01 0 01

01 0 01

1 0 01

01 1 01

1 1 01

01 1 1

1 1 1

1 1 1

0 0 0

0 0 0

01 0 01

01 0 01

1 0 01

01 1 01

1 1 01

01 1 1

1 1 1

1 1 1

· · ·

Fig. 1. Annotation for ϕ(X, x) := ∀y[y < x → Xy] ∨ ∀y[y > x → Xy]

Definition 4. (a) We extend the order ⊆ on X-positive n-types to local stage
annotations by requiring that ⊆ holds component-wise. A history (at a) is a
strictly increasing sequence h = (h0 (· · · (hm) of local stage annotations
(at a) such that

– ∧(h0) = 0a,
– ∧(hi+1) = (hi)

∧

, for all i < m, and
– (hm)

∧

= 1a implies ∧(hm) = 1a.

Let Στ denote the set of all histories with a ∈ Σ. An annotated word is a word
over Στ .

(b) We say that an annotated word is consistent, if it satisfies the following
conditions.

(1) If h2 is the immediate successor of h1, then the projections of h1 to the
components •> and •< coincide3 with the projections of h2 to the components

>• and <•, respectively.
(2) For the first letter: the >• components in its history are all equal to tpn

X(λ),
where λ is the empty word.

(3) Similarly, for the last letter: the •< components in its history are all equal
to tpn

X(λ).

Clearly, An(A) is a consistent annotated word. Furthermore, consistency of
annotated words can be checked by an automaton since all conditions are strictly
local. The main part of our work will consist in computing bounds on the real
fixed-point rank of an element from such a word.

For an annotated word A, we index the individual type annotations by triples
(p, i, j) where p is a position in A, i is an index for the history at position p,
and j specifies the component in the local stage annotation. We denote the type
specified in this way by tp,i,j , or by (>t)p,i, (<t)p,i for a concrete component
j = >•,

<•, etc.

3 This is coincidence as a set, i.e., with duplicates removed.

When considering the annotated word encoding the fixed-point induction
of ϕ, the indices of particular interest are those at which type changes occur.
The fixed point is reached as soon as no such changes occur anymore.

Definition 5. An index I = (p, i, j) is relevant if either

i > 0 and tp,i,j 6= tp,i−1,j , or i = 0 , j = •∧ , and Xx ∈ tp,i,j .

In the latter case, we call I initially relevant.

During the fixed-point induction changes at one index trigger changes at
other indices in the next stage. The following definition formalises this depen-
dency. We introduce three notions of dependency between indices. We have direct
dependencies, where a change at one index immediately leads to a change at an-
other one, and we have what we call lower and upper dependencies, intuitively
associated with the temporal sequence of events. However, due to the lack of
synchronisation between levels of adjacent histories (which in turn comes from
the deletion of duplicates in each history), this temporal intuition is not directly
available for dependencies linking adjacent histories. Some of the real stage de-
pendencies can only be reconstructed globally, which will eventually give us the
required bounds on ranks.

Definition 6. Let I = (p, i, j) and I ′ = (p′, i′, j′) be two relevant indices. We
say that I directly depends on I ′ if I is not initially relevant and one of the
following cases occurs:

j = >• , j′ = •> , p′ = p− 1 , and tI = tI′ ;

j = •< , j′ = <• , p′ = p+ 1 , and tI = tI′ ;

j = ∧• , j′ = •∧ , p′ = p , and i′ = i− 1 ;

j = •∧ , j′ ∈ {>•, ∧•, •<} , p′ = p , and i′ = i ;

j = <• , j′ ∈ {•<, ∧•} , p′ = p , and i′ = i ;

j = •> , j′ ∈ {>•, ∧•} , p′ = p , and i′ = i .

A direct dependency of some index (p, i, ∧•) on (p, i− 1, •∧) is called a jump.
Relaxing the equality requirement i′ = i to either i′ ≤ i or to i′ ≥ i in each of

the last three clauses (thus also allowing upward or downward steps within the
same history in those cases), we obtain dependencies from below or from above.

Note that the last three forms of direct dependencies go from outgoing to
incoming indices within the same local annotation.

Furthermore, I directly depends on I ′ if and only if it depends on I ′ both
from below and from above.

Also note that the first two clauses of (direct) dependency are the only de-
pendencies between distinct (namely adjacent) histories. In these there is no
condition on i, i′, corresponding to the lack of synchronisation discussed above.

Finally note that in the case of a jump, i.e., a (direct) dependency of (p, i, ∧•)
on (p, i− 1, •∧), we have

(∧t)p,i = (t∧)p,i−1 = 1 and (∧t)p,i−1 = 0 .

In particular, at every position p there can be at most one jump.

Lemma 4. Let I be a relevant index in a consistent annotated word. Either I is
initially relevant, or there is some relevant index on which I depends directly.

We can form a digraph consisting of all relevant indices where there is an
edge from I to I ′ if I depends on I ′ from below. We call this digraph the lower
dependency graph. Similarly, we can define the upper dependency graph by using
dependencies from above.

Lemma 5. The digraph of lower dependencies in a consistent annotated word
is acyclic.

A path in the dependency digraph is called grounded if it ends in an initially
relevant index. The rank of a path is the number of jumps it contains.

Due to acyclicity and finiteness, all maximal paths in the lower dependency
graph are grounded. The same is true also in the direct dependency graph, since
every relevant index is either initial or it directly depends on some other relevant
index by Lemma 4. For the upper dependency graph, which may have cycles, we
can only say that every maximal cycle-free path must be grounded (and there
are always such, namely in particular paths w.r.t. direct dependencies).

Let I be a relevant index and α < ω. We say that α is a lower rank of I if
in the lower dependency graph there is some grounded path from I of rank α.
Similarly, we define upper ranks of I as the ranks of grounded cycle-free paths
in the upper dependency graph. Note that I can have several different lower and
upper ranks, but at least one of each kind (due to the existence of grounded
paths w.r.t. direct dependencies, Lemma 4).

p

I

31

46

We now fix a consistent annotated word A over the underlying Σ-word B.
Let ℓ be their length. As above, we write B

α := (B, ϕα(B)) for the expansion
of B by the α-th stage of the fixed-point induction.

We say that α satisfies an outgoing index I = (p, i, j) if

j = <• and B
α
[p,ℓ) |= tI ,

or j = •∧ and (Bα+1
{p} , p) |= tI ,

or j = •> and B
α
[0,p] |= tI .

Note that Bα
[p,ℓ) |= tI just means that

tI ⊆ tpn
X(Bα

[p,ℓ)) .

Reverting the inclusion, we say that I = (p, i, <•) confines α if

tpn
X(Bα

[p,ℓ)) ⊆ tI .

For the other outgoing cases, we define confinement analogously.
The next lemma relates the real fixed-point induction of ϕ on B to the given

annotation A, through confinement. In particular, the top level of the annotation
confines all stages of the real fixed point.

Lemma 6. Let p be a position and mp the length of the history at position p.

(a) tpn
X(B0

[0,p)) = (>t)p,0 and tpn
X(B0

(p,ℓ)) = (t<)p,0.

(b) For every α < ω, we have

tpn
X(Bα

[0,p)) ⊆ (>t)p,mp
,

tpn
X(Bα

{p}, p) ⊆ (∧t)p,mp
,

tpn
X(Bα

(p,ℓ)) ⊆ (t<)p,mp
.

We can use the preceding lemma to show that the lower and upper ranks
provide bounds for the real rank of an element.

Lemma 7. Let I = (p, i, j) be a relevant outgoing index and α < ω.

(a) If α ≥ α′ for all lower ranks α′ of I, then α satisfies I.
(b) If I is not initially relevant and all upper ranks of I are larger than α, then

(p, i− 1, j) confines α.

We call a position p active if there is some i such that (p, i, •∧) is relevant;
in this case, the corresponding i is unique. We may thus define the set of upper
ranks of an active position p as the set of upper ranks of the relevant index of
the form (p, i, •∧) at p. Recall that an upper rank of a relevant index is any rank
of a grounded cycle-free upper dependency path.

Lemma 8. Let p be a position.

(a) If p ∈ ϕ∞(B), then p is active.
(b) If p is active, then p ∈ ϕ∞(B).
(c) If p ∈ ϕα(B) (and hence p is active by (a)), then some upper rank of p is at

most α.

A proposal is a pair (A, p) where A is a consistent annotated word and p is
an active position in A. In order to treat proposals as words over some alphabet
one can extend annotated letters with a mark for the special position p.

Lemma 9. There exists a computable function g : ω → ω such that, for every
formula ϕ, we can effectively construct a distance automaton A with at most
g(|ϕ|) states such that

(a) L(A) is the set of proposals;

(b) if (A, p) is a proposal then dA(A, p) is the minimum over all upper ranks
of p.

Next, let us consider annotated words that arise from the actual fixed-point
induction. Recall that An(B) is the word whose p-th letter is the history (hi)
at position p. The removal of duplicates in the definition of a history induces a
non-decreasing mapping iB,p : ω → ω from stages to history entries such that,
for example, >(hiB,p(α)) = tpα

X(B[0,p)). For I = (p, i, j), we set

αB(I) := αB,p(i) := min {α < ω | i = iB,p(α) } .

Lemma 10. Let B be a word and let I be a relevant index in An(B). Then each
upper rank of I is bounded from below by αB(I).

Theorem 2. The boundedness problem for MSO over the class of all finite
words is decidable.

Proof. Let ϕ ∈ MSO be positive in X and let g be the function from Lemma 9.
We exploit Lemma 1 and claim that, over finite words, if ϕ is bounded then it
is bounded by N := 24g(|ϕ|)3 + 1.

Assume that ϕ is bounded over finite words, say by N ′. For every proposal
(A, p), it follows from Lemma 8 (b), that p ∈ ϕ∞(A). Hence, p ∈ ϕN ′

(A).
Lemma 8 (c) then implies that some rank of p is at most N ′. Let A be the
distance automaton from Lemma 9. Then we have dA(L(A)) ≤ N ′ <∞. There-
fore, Theorem 1 implies that dA(L(A)) ≤ N − 1. Consequently, for all proposals
(A, p), some rank of p is at most N − 1. In particular, this holds if A = An(B),
for some word structure B. By Lemma 10, p enters the fixed-point induction
not later than stage N . As B and p were arbitrary, it follows that ϕ is bounded
over words by N . ⊓⊔

5 Extensions

Having obtained the decidability for the boundedness problem over the class
of all finite words we can use model theoretic interpretations to obtain further
decidability results.

Theorem 3. For all k, the boundedness problem for MSO over the class of all
finite structures of path width at most k is decidable.

Example 2. Let Cn be the class of all unranked trees (T,E, S) of height at most n
where E is the successor relation and S is the next sibling relation. This class
has path width at most 2n. By the theorem, it follows that the boundedness
problem for monadic second-order formulae over Cn is decidable.

Using similar techniques, one can extend the theorem to MSO-axiomatisable
subclasses, to guarded second-order logic GSO, and to simultaneous fixed points.
If we could show that the boundedness problem is also decidable for the class
of all (finite) trees, then it would follow in the same way that the problem is
decidable for every GSO-axiomatisable class of (finite) structures of bounded
tree width.

References

1. J. Barwise and Y. N. Moschovakis, Global inductive definability, The Journal
of Symbolic Logic, 43 (1978), pp. 521–534.

2. T. Colcombet and C. Löding, The nesting-depth of disjunctive µ-calculus for

tree languages and the limitedness problem, in Proc. 17th EACSL Annual Confer-
ence on Computer Science Logic, CSL 2008, 2008.

3. S. S. Cosmadakis, H. Gaifman, P. C. Kanellakis, and M. Y. Vardi, Decidable

optimization problems for database logic programs, in Proc. 20th Annual ACM
Symposium on Theory of Computing, STOC 1988, 1988, pp. 477–490.

4. H.-D. Ebbinghaus and J. Flum, Finite Model Theory, Springer Verlag, 1995.
5. K. Hashiguchi, Improved limitedness theorems on finite automata with distance

functions, Theoretical Computer Science, 72 (1990), pp. 72–38.
6. G. Hillebrand, P. Kanellakis, H. Mairson, and M. Vardi, Undecidable

boundedness problems for datalog programs, The Journal of Logic Programming,
25 (1995), pp. 163–190.

7. S. Kreutzer, M. Otto, and N. Schweikardt, Boundedness of monadic FO

over acyclic structures, in Automata, Languages and Programming, Proc. 34th
Int. Colloquium, ICALP 2007, no. 4596 in LNCS, 2007, pp. 571–582.

8. H. Leung and V. Podolskiy, The limitedness problem on distance automata:

Hashiguchi’s method revisited, Theoretical Computer Science, 310 (2004), pp. 147–
158.

9. M. Otto, Eliminating recursion in the µ-calculus, in STACS 1999, Proc. 16th An-
nual Symposium on Theoretical Aspects of Computer Science, no. 1563 in LNCS,
1999, pp. 531–540.

10. , The boundedness problem for monadic universal first-order logic, in Proc.
21th IEEE Symposium on Logic in Computer Science, LICS 2006, 2006, pp. 37–46.

A Appendix

Proof (Proof of Lemma 1). (⇒) We need to show how to compute a bound f(ϕ)
from ϕ, under the condition that we know that ϕ is bounded over C. This is done
by simply checking, for α = 0, 1, . . . , whether ϕα and ϕα+1 are equivalent over C.
This process must stop after finitely many steps with the desired bound f(ϕ).

(⇐) We can check boundedness by checking whether ϕf(ϕ) and ϕf(ϕ)+1 are
equivalent over C. ⊓⊔

Proof (Proof of Lemma 2). Positive formulae are monotone, that is, for all ϕ ∈
MSOn

X [τ], we have that (A, P) |= ϕ implies (A, P ′) |= ϕ. ⊓⊔

Proof (Proof of Lemma 3). We proceed by induction on n, simultaneously for
all vocabularies.

For n = 0, we can write each formula ϕ ∈ MSO0
X [τ] as a positive boolean

combination of literals. To compute tp0
X(A + B) it is therefore sufficient to

determine which literals it contains. Most of these are already determined by
tp0

X(A) or tp0
X(B). The only exceptions are atoms of the form c = d, d = c,

c ≤ d, and d ≤ c (and their negations) where c ∈ A and d ∈ B. In these cases
we always have

c 6= d, d 6= c, c ≤ d, ¬(d ≤ c) ∈ tp0
X(A + B) .

For monotonicity, consider structures A
′ and B

′ with tpn
X(A) ⊆ tpn

X(A′)
and tpn

X(B) ⊆ tpn
X(B′). We have to show that ϕ ∈ tpn

X(A + B) implies
ϕ ∈ tpn

X(A′ + B′). Since the claim is preserved under positive boolean com-
binations of formulae ϕ, we can assume that ϕ is a literal. Literals formed of
the four exceptional atoms above are included or excluded without regard to the
structures involved. By symmetry, we may therefore assume that ϕ is a literal
that is determined by A. In this case we have

ϕ ∈ tpn
X(A + B) iff ϕ ∈ tpn

X(A)

andϕ ∈ tpn
X(A′ + B

′) iff ϕ ∈ tpn
X(A′) .

Since tpn
X(A) ⊆ tpn

X(A′) the claim follows.
For the inductive step, let ϕ ∈ MSOn+1

X [τ]. Then ϕ is a positive boolean
combination of formulae of quantifier rank at most n, and of formulae of the form
∃yψ, ∀yψ, ∃Y ψ, and ∀Y ψ with ψ ∈ MSOn

X [τ]. As above, it suffices to define ⊕n+1

and to prove its monotonicity for such basic formulae. For formulae in MSOn
X [τ],

we can apply the induction hypothesis. Hence, we only need to consider basic
formulae of quantifier rank n+1. Such formulae talk about expansions of A+B

by either a new constant c ∈ A∪B, or by a unary predicate C ⊆ A∪B. For the
first case, note that

(A + B, c) =

{

(A, c) + B if c ∈ A ,

A + (B, c) if c ∈ B .

In the second case we have

(A + B, C) = (A, C ∩A) + (B, C ∩B) .

For D ∈ {A,B}, let us set

T1(D) := { tpn
X(D, c) | c ∈ D } ,

T2(D) := { tpn
X(D, C) | C ⊆ D }

Let us start with the formula ∃yψ. By induction hypothesis, we have

∃yψ ∈ tpn+1
X (A + B)

iff ψ ∈ tpn
X((A, c) + B) , for some c ∈ A ,

or ψ ∈ tpn
X(A + (B, c)) , for some c ∈ B ,

iff ψ ∈ tpn
X(A, c) ⊕n tpn

X(B) , for some c ∈ A ,

or ψ ∈ tpn
X(A) ⊕n tpn

X(B, c) , for some c ∈ B ,

iff ψ ∈ t⊕n tpn
X(B) , for some t ∈ T1(A) ,

or ψ ∈ tpn
X(A) ⊕n t , for some t ∈ T1(B) .

We claim that

(1) ψ ∈ t⊕n tpn
X(B), for some t ∈ T1(A),

is equivalent to

(2) ψ ∈ t⊕n tpn
X(B), for some t ∈ T ′

1(A), where

T ′
1(A) :=

{

t ∈ Tpn
X [τ ∪ {y}]

∣

∣ ∃y
∧

t ∈ tpn+1
X (A)

}

.

Clearly T1(A) ⊆ T ′
1(A) and (1) ⇒ (2). But note that the inclusion may be

strict, as t ∈ T ′
1(A) need not be a (full) positive type of any element of A.

For (2) ⇒ (1) suppose that t is a witness for (2) and let c be an element with
(A, c) |=

∧

t. Setting t′ := tpn
X(A, c) we have t ⊆ t′. By induction hypothesis

we know that ⊕n is monotone. Hence, ψ ∈ t⊕n tpn
X(B) implies that ψ ∈ t′ ⊕n

tpn
X(B). As t′ ∈ T1(A), (1) follows.
So the given conditions are equivalent, and an analogous statement holds

with A and B interchanged. Hence, we have

∃yψ ∈ tpn+1
X (A + B)

iff ψ ∈ t⊕n tpn
X(B) , for some t ∈ Tpn

X [τ] such that ∃y
∧

t ∈ tpn+1
X (A)

or ψ ∈ tpn
X(A) ⊕n t , for some t ∈ Tpn

X [τ] such that ∃y
∧

t ∈ tpn+1
X (B) .

This last statement clearly depends only on tpn+1
X (A) and tpn+1

X (B), and it does
so in a monotone way.

Let us consider ∀Y ψ next. We call a pair (S, S′) of subsets of Tpn
X [τ ∪ {Y }]

good, if

A |= ∀Y
∨

{
∧

t | t ∈ S } ,

B |= ∀Y
∨

{
∧

t′ | t′ ∈ S′ } ,

and ψ ∈ t⊕n t
′ , for all t ∈ S and t′ ∈ S′ .

Similarly to the previous case one can show that

∀Y ψ ∈ tpn+1
X (A + B)

iff ψ ∈ t⊕n t
′ , for all t ∈ T2(A), t′ ∈ T2(B) . (∗)

Let us compare (∗) to the existence of a good pair. Clearly, (∗) implies that
(T2(A), T2(B)) is good. Conversely, suppose that (S, S′) is good, and let t ∈
T2(A) and t′ ∈ T2(B) be types as in (∗). We have to show that ψ ∈ t⊕n t

′. Let
P ⊆ A be such that t = tpn

X(A, P) and let s ∈ S be a type with (A, P) |=
∧

s.
Then

∧

s ∈ t, so s ⊆ t. Analogously, we obtain some s′ ∈ S′ such that s′ ⊆ t′.
Since (S, S′) is good, it follows that ψ ∈ s ⊕n s

′. By monotonicity of ⊕n, we
therefore have ψ ∈ t⊕n t

′.
The claim follows since the existence of a good pair is clearly determined by

tpn+1
X (A) and tpn+1

X (B), and since this dependence is monotone.
The remaining cases ∀yψ and ∃Y ψ use similar techniques. ⊓⊔

Proof (Proof of Lemma 4). Suppose that I = (p, i, j) is not initially relevant.
Hence, we have i > 0 and tp,i,j 6= tp,i−1,j .

If j = ∧• then (∧t)p,i = (t∧)p,i−1 implies that the index I ′ := (p, i− 1, •∧)
also is relevant. Hence, I directly depends on I ′.

If j = >•, then p is not the leftmost position, because otherwise (>t)p,i

and (>t)p,i−1 both are the unique type of the empty word, in contradiction to
(>t)p,i 6= (>t)p,i−1. So p − 1 exists. Since the word is consistent, there must
be some i′ such that (t>)p−1,i′ = (>t)p,i and (t>)p−1,i′−1 = (>t)p,i−1. Hence,
I ′ := (p− 1, i′, •>) is relevant and I directly depends on I ′.

The case that j = •< is similar. So we are left with the outgoing cases. If
j = •∧ then we have (t∧)p,i = 1 and (t∧)p,i−1 = 0. Consequently,

ϕ ∈ (>t)p,i ⊕ (∧t)p,i ⊕ (t<)p,i and ϕ /∈ (>t)p,i−1 ⊕ (∧t)p,i−1 ⊕ (t<)p,i−1 .

Hence, at least one of

(>t)p,i 6= (>t)p,i−1 , (∧t)p,i 6= (∧t)p,i−1 , or (t<)p,i 6= (t<)p,i−1

must hold. For the sake of argument, let us assume the first inequation. Then
I ′ := (p, i, >•) is relevant and I directly depends on I ′. The other inequations
can be handled similarly.

If j = •>, then

π((>t)p,i ⊕ (∧t)p,i) = (t>)p,i 6= (t>)p,i−1 = π((>t)p,i−1 ⊕ (∧t)p,i−1) .

Hence, at least one of

(>t)p,i 6= (>t)p,i−1 or (∧t)p,i 6= (∧t)p,i−1

must hold. Therefore, we have a direct dependence of I on (p, i, >•) or on
(p, i, ∧•).

The last case, of j = <•, is analogous. ⊓⊔

Proof (Proof of Lemma 5). We first prove an auxiliary claim: whenever (Ik)k≤m

is a sequence of relevant indices Ik = (pk, ik, jk), where each Ik depends on Ik+1

from below and we have

p0 = pm , j0 = >• , jm = <• , and pk < p0 , for all 0 < k < m ,

then it follows that im < i0.

The proof is by induction on p0 from left to right. If p0 is the leftmost position
there is nothing to do since no relevant index can be of the form (p0, i, >•). For
the inductive step, note that, by definition of dependence, we have j1 = •>,
jm−1 = •<, and p1 = pm−1 = p0 − 1. Let us consider the set K of all k such
that pk = p0 − 1. We have just seen that 1 and m − 1 belong to K. The set K
consists of subsequences that are interspersed with parts of the sequence of lower
dependencies where pk < p0−1. For one such part with endpoints k1 < k2 in K,
we can use the induction hypothesis to obtain ik2

< ik1
.

Let us consider a subsequence inside of K with endpoints k1 and k2. This
subsequence consists of jumps and lower dependencies of outgoing on incoming
indices. Both cannot increase the i-component of the indices. Hence, ik2

≤ ik1
.

If a jump occurs we even have ik2
< ik1

. Since the full sequence must contain
at least one jump in K or visit positions left of p− 1, it follows that im−1 < i1.
Consistency of the annotation then implies that im < i0.

By a symmetric argument we obtain a corresponding claim for an analysis
that looks to the right of some position p0 = pm that is visited twice.

p p + 1

From these two claims, we can prove the lemma as follows. Consider some cycle
in the lower dependency graph. Clearly, it cannot stay at only one position.
So, it must span at least two adjacent positions p and p + 1. Cutting the cycle
into (a positive number of) sequences left of p + 1 with endpoints (p+ 1, i, >•)
and (p+ 1, i′, <•), and into sequences right of p with endpoints (p, i, •<) and
(p, i′, •>), we can apply the claim to derive a contradiction. ⊓⊔

Proof (Proof of Lemma 6). (a) follows from Lemma 3 by induction on p (from
left to right for the first equation, and from right to left for the second one) since

(>t)p,0 = π((>t)p−1,0 ⊕ (∧t)p,0) ,

(t<)p,0 = π((∧t)p,0 ⊕ (t<)p+1,0) ,

and (∧t)p,0 = 0 = tpn
X(B0

{p}, p) .

(b) We proceed by induction on α, simultaneously for all p. For fixed α, the
first and third inclusion follow from the second one by a similar induction as
in (a), additionally using monotonicity of ⊕ and π. So it suffices to show that
tpn

X(Bα
{p}, p) ⊆ (∧t)p,mp

.

For α = 0, this follows from tpn
X(B0

{p}, p) = 0. Suppose that α > 0. By
Lemma 3 and the induction hypothesis, we have

tpn
X(Bα−1, p) ⊆ t := (>t)p,mp

⊕ (∧t)p,mp
⊕ (t<)p,mp

.

To show that tpn
X(Bα

{p}, p) ⊆ (∧t)p,mp
we have to prove that p ∈ ϕα(B) implies

(∧t)p,mp
= 1. Hence, suppose that (Bα−1, p) |= ϕ. Then ϕ ∈ t and it follows,

by definition of an annotation, that (t∧)p,mp
= 1. By definition of a history, this

implies that (∧t)p,mp
= 1, as desired. ⊓⊔

Proof (Proof of Lemma 7). The proof is by induction on α. For fixed α, we
distinguish the cases j = <•, j = •∧, and j = •>.

For j = •>, we proceed by induction on p from left to right. So, assume
that both claims hold for all p′ < p. For (a), assume that α ≥ α′, for all lower
ranks α′ of I. By the definition of an annotation, we have tI = π(t1 ⊕ t2),
where t1 := (>t)p,i and t2 := (∧t)p,i. Let i1 be minimal such that t1 = tI1

for
I1 := (p, i1, >•). We consider two cases.

If i1 = 0 then we have t1 = tpn
X(B0

[0,p)) ⊆ tpn
X(Bα

[0,p)) by Lemma 6 and
monotonicity.

Otherwise, I1 is relevant and I depends on I1 from below. In particular, p is
not the leftmost position. In turn, I1 depends on I ′1 := (p− 1, i′1, •

>) from below
for some i′1 and tI′

1
= tI1

= t1. Then, each lower rank of I ′1 is also a lower rank of
I. It follows that α ≥ α′ for all lower ranks α′ of I ′1. By the induction hypothesis
on p, we may conclude that t1 = tI′

1
⊆ tpn

X(Bα
[0,p−1]) = tpn

X(Bα
[0,p)).

So, in both cases we have

t1 ⊆ tpn
X(Bα

[0,p)) .

Next, we prove that t2 ⊆ tpn
X(Bα

{p}, p). If t2 = 0, this holds since 0 is the
minimal type. Otherwise, let i2 be minimal such that t2 = tI2

where I2 :=
(p, i2, ∧•). Then I2 is relevant, I depends on I2 from below, and I2 depends on
I ′2 := (p, i2 − 1, •∧) from below by a jump. Hence, for every lower rank α′ of I ′2,
α′ + 1 is a lower rank of I. Thus, α′ ≤ α− 1. By the induction hypothesis on α,
it follows that

t2 = tI2
= tI′

2
⊆ tpn

X(Bα−1+1
{p} , p) = tpn

X(Bα
{p}, p) .

Since t1 ⊆ tpn
X(Bα

[0,p)) and t2 ⊆ tpn
X(Bα

{p}, p), it follows by Lemma 3 that

tI ⊆ tpn
X(Bα

[0,p]). Consequently, α satisfies I.

Next, let us consider (b), still for j = •>. The proof is dual to the previous
one. We assume that α < α′ for all upper ranks α′ of I = (p, i, •>). Set I− :=
(p, i− 1, •>) and analogously for other indices. We now have the equality tI− =
π(t1 ⊕ t2) with t1 = (>t)p,i−1 and t2 = (∧t)p,i−1. This time, choose i1 and i2
maximal, such that t1 = tI−

1

and t2 = tI−

2

with I1 and I2 as above. In the

same way we proved that t1 ⊆ tpn
X(Bα

[0,p)) we can show that tpn
X(Bα

[0,p)) ⊆ t1.

It remains to prove that tpn
X(Bα

{p}, p) ⊆ t2. The case t2 = 1 is trivial. For
t2 = 0, if I2 is relevant, the proof is again dual to the corresponding proof above.
Otherwise, we have i2 = mp where mp is the maximal annotation in the history
at the position p. Then Lemma 6 implies tpn

X(Bα
{p}, p) ⊆ t2.

This concludes the case of indices outgoing to the right.

The case of j = <• is symmetric.

It remains to consider the case that j = •∧. So let I = (p, i, •∧) be relevant.
Then (t∧)p,i = 1 and (∧t)p,i = 0 (this holds both if I is initially relevant and if
it is non-initially relevant). For (a), assume that α ≥ α′ for all lower ranks α′

of I. As tI = 1, we have ϕ ∈ t1 ⊕ 0 ⊕ t2 where t1 := (>t)p,i and t2 := (t<)p,i.
Let i1 be minimal such that t1 = tI1

for I1 = (p, i1, >•). If i1 = 0 then Lemma 6
and monotonicity imply that t1 ⊆ tpn

X(Bα
[0,p)). If i1 > 0 then we have i > 0, I is

not initially relevant, I1 is relevant, and I depends on I1 from below. As I1 is
relevant, p is not the leftmost position. Hence, there is some i′1, such that t1 = tI′

1

for I ′1 = (p− 1, i′1,
<•). In the same way as in the case of j = •>, we conclude

that t1 ⊆ tpn
X(Bα

[0,p)). Symmetrically, we obtain that t2 ⊆ tpn
X(Bα

(p,ℓ)). The fact

that 0 ⊆ tpn
X(Bα

{p}, p) follows from 0 being the minimal type. Consequently,

Lemma 3 implies that ϕ ∈ t1 ⊕ 0⊕ t2 ⊆ tpn
X(Bα, p). Hence, Xx ∈ tpn

X(Bα+1
{p} , p)

and tI = 1 = tpn
X(Bα+1

{p} , p).

For (b), we can assume that I is non-initially relevant. Then we have i > 0,
(t∧)p,i−1 = 0, and (∧t)p,i−1 = 0. It follows that ϕ /∈ t1 ⊕ 0 ⊕ t2 where t1 :=
(>t)p,i−1 and t2 := (t<)p,i−1. From here we can proceed in a manner dual to the
above. ⊓⊔

Proof (Proof of Lemma 8). (a) follows from Lemma 6 (b).

(b) Let i be such that I := (p, i, •∧) is relevant. Then we have tI = 1. From
the finiteness of B and the fact that lower dependency paths are acyclic, it follows
that I has only a finite number of lower ranks. Let α be a bound on them. From
Lemma 7 (a), we conclude that p ∈ ϕα+1(B).

(c) Let us assume that all upper ranks of I exceed α. Using Lemma 7 (b) it
follows that p /∈ ϕα(B). Contradiction. ⊓⊔

Proof (Proof of Lemma 9). To simplify the exposition we describe A informally.
The automaton nondeterministically guesses a grounded cycle-free upper depen-
dency path from the relevant index I = (p, i, •∧) and calculates the number of
jumps on this path.

For a given ϕ, let τ be the vocabulary of ϕ and let N := f(|ϕ|), where f is the
function from Fact 1. Then |MSOn

X [τ]| ≤ N , which implies that |Tpn
X [τ]| ≤ 2N .

Each history can be encoded as a set of 6-tuples of types. Consequently, there

are at most 226N

histories, and the input alphabet of our automaton has twice
this size containing an additional bit marking the position of the proposal.

Let us describe the behaviour of the automaton and the amount of memory
it needs. The automaton has to check that the input word is a proposal, i.e., a
consistent annotated word with exactly one marked position. The existence of
exactly one mark can be checked easily requiring only a single bit of memory.
Consistency can be also be checked by an automaton since it is a local condition:
each pair of consecutive letters must satisfy a certain coherence condition. This
can be done by remembering the last letter and comparing it with the current
one, thus requiring 26N bits of memory.

The second task of our automaton is to compute the minimum of the upper
ranks of the marked position. To do so it guesses a grounded, cycle-free path in
the upper dependency graph to the marked position, and it counts the number
of jumps the path contains. This can be done by first guessing a labelling of all
indices that tells us whether an index belongs to our path and which index is the
next one along the path. Since the length of a history is bounded it follows that
every path can cross a given position of the word only a bounded number of times.
Therefore, the guessed labelling contains only a finite amount of information per
input letter. Again the consistency of the labelling for consecutive input letters
is a local condition and can be checked by an automaton. Furthermore, the
automaton can count the number of jumps by putting those transitions into ∆1

that witness a jump on the path. (As there is at most one jump per position,
a weight of 1 suffices.) We put the other transitions into ∆0. To compute the
required memory, note that we can use 22N bits to mark those pairs of types
whose indices belong to the path. In addition, we need to remember which of
these pairs are connected by the part of the path already seen to the left. This
is a binary relation that we can store in 24N bits.

Summing the memory bounds from above, we see that A can make do with

at most 21+22N+24N+26N

states. This gives the desired function g. ⊓⊔

Proof (Proof of Lemma 10). The proof is by induction on the length of grounded
cycle-free paths in the upper dependency digraph. We show that, along each such
path In, In−1, . . . , I0 (where I0 is initial), the rank γi of the path Ii, . . . , I0 bounds
αB(Ii).

For n = 0, I0 is initially relevant and αB(I)0 = 0, and the claim is trivial.
For the inductive step we assume γi ≥ αB(Ii) for all i < n and need to show

that also γn ≥ αB(In). Let In := (p, i, j) = I and In−1 := (p′, i′, j′) = I ′.
If I is outgoing then p′ = p and i′ ≥ i. As αB,p = αB,p′ is monotone, we

conclude that αB(I) ≤ αB(I ′). Since γn = γn−1, the claim follows.
Next, let us consider the case that j = >• and j′ = •>. Since this is not a

jump, the ranks of the paths are equal. It is therefore sufficient to show that
αB(I) ≤ αB(I ′). In fact we even show that αB(I) = αB(I ′). For this we use
the fact that I and I ′ are relevant. By the former, we know that αB(I) is the

unique α such that tI = tpn
X(Bα

[0,p)) and such that tpn
X(Bα

[0,p)) 6= tpn
X(Bα−1

[0,p)).

The same holds for αB(I ′) and tI′ = tI . The case that I is incoming from the
right is symmetric.

Finally, suppose that j = ∧• and j′ = •∧. This is a jump and the rank
increases by 1. Hence, it suffices to show that α = α′ + 1 where α := αB(I) and
α′ := αB(I ′). As I is relevant and i′ = i−1, we have (∧t)p,i = 1 and (∧t)p,i′ = 0.
By the definition of a history, it follows that (t∧)p,i′ = 1. This implies that

tpn
X(Bα

{p}, p) = 1 , tpn
X(Bα′

{p}, p) = 0 , and tpn
X(Bα′+1

{p} , p) = 1 .

Minimality of α further gives tpn
X(Bα−1

{p} , p) = ∧(tp,i−1) = 0. Hence, α is the

stage at which p enters the fixed point. Consequently, α = α′ + 1. ⊓⊔

Proof (Proof of Theorem 3). For ease of presentation, we restrict the proof to
finite digraphs of path width less than k. Set Σ := P([k]) × [k + 1]. We can
encode every graph G of path width less than k as a Σ-word as follows. Suppose
that (Ui)i≤n is a path decomposition of G with |Ui| = k, for i < n, and m :=
|Un| ≤ k. Such a path decomposition always exists. For every i ≤ n, we fix
a bijection µi : Ui → [|Ui|]. We encode G as a word a0 . . . akn+m of length
kn +m =

∑

i≤n|Ui| where the (ik + l)-th letter represents the element v of Ui

with µi(v) = l. By construction, such an element always exists, and the set of
word positions can be thought of as a disjoint union of all Ui. The letters have to
encode two pieces of information. We have to record when two elements u ∈ Ui

and v ∈ Ui+1 represent the same element of G and we have to record whether
two elements u, v ∈ Ui are adjacent in G. Suppose that µi(u) = l. We choose the
letter aik+l = (X, y) ∈ Σ such that

X := {µi(v) | (u, v) ∈ E } and y :=

{

µi+1(u) if u ∈ Ui+1 ,

k otherwise .

Observe that, conversely, every Σ-word A encodes in this way a path decom-
position of some graph G of path width less than k.

Furthermore, given such a Σ-word there exists an MSO-formula ψ(x, y) stat-
ing that the elements represented by position x and by position y coincide, and
there is an MSO-formula ϑ(x, y) stating that the elements represented by, re-
spectively, x and y are adjacent.

Let ϕ be a formula of vocabulary {E,X, x}. Replacing in ϕ all equality and
edge atoms by ψ and ϑ, respectively, we obtain a formula ϕ′ such that, for all
graphs G encoded by a word A, we have

(G, P, v) |= ϕ iff (A, Q, i) |= ϕ′ , where i and Q represent v and P.

It follows that (ϕ′)α(A) represents ϕα(G), for all α. (In particular, every set
(ϕ′)α(A) is closed under the equivalence relation given by ψ.) Consequently, ϕ is
bounded if and only if ϕ′ is.

Thus, the boundedness question for the class of all finite digraphs can be
reduced to the boundedness question for the class of all finite words over Σ. ⊓⊔

