
Bisimulation Invariant1

Monadic-Second Order Logic in the Finite2

Achim Blumensath1
3

Masaryk University Brno4

blumens@fi.muni.cz5

Felix Wolf2
6

Technische Universität Darmstadt, Institute TEMF7

Graduate School of Excellence Computational Engineering8

wolf@gsc.tu-darmstadt.de9

Abstract10

We consider bisimulation-invariant monadic second-order logic over various classes of finite trans-11

ition systems. We present several combinatorial characterisations of when the expressive power12

of this fragment coincides with that of the modal µ-calculus. Using these characterisations we13

prove for some simple classes of transition systems that this is indeed the case. In particular, we14

show that, over the class of all finite transition systems with Cantor–Bendixson rank at most k,15

bisimulation-invariant MSO coincides with Lµ.16
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1 Introduction20

A characterisation of the bisimulation-invariant fragment of a given classical logic relates this21

logic to a suitable modal logic. In this way, one obtains a correspondence between a family of22

classical logics and a family of modal logics. Such characterisation results therefore help with23

ordering the zoo of logics introduced (on both sides) over the years and with distinguishing24

between natural and artificial instances of such logics.25

The study of bisimulation-invariant fragments of classical logics was initiated by a result26

of van Benthem [2] who proved that the bisimulation-invariant fragment of first-order logic27

coincides with standard modal logic. Inspired by this work, several other characterisations28

have been obtained. The table below summarises the results known so far.29

bisimulation-invariant fragment modal logic reference

first-order logic modal logic [2]
monadic second-order logic modal µ-calculus [10]
monadic path logic CTL∗ [12, 13]
weak monadic second-order logic continuous µ-calculus [4]
weak chain logic PDL [4]

30

There are also similar characterisations for various variants of bisimulation like guarded31

bisimulation [1, 7] or bisimulation for inquisitive modal logic [5].32
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14:2 Bisimulation Invariant MSO in the Finite

Researchers in finite model theory started to investigate to which extent these corres-33

pondences also hold when only considering finite structures, that is, whether every formula34

of a given classical logic that is bisimulation-invariant over the class of all finite transition35

systems is equivalent, over that class, to the corresponding modal logic. For first-order logic,36

a corresponding characterisation does indeed hold. Its proof by Rosen [15] uses tools from37

finite model theory and is very different to the proof by van Benthem.38

The above mentioned result by Janin and Walukiewicz on bisimulation-invariant monadic39

second-order logic has so far defied all attempts at a similar transfer to the realm of finite40

structures. The main reason is that the original proof is based on automata-theoretic41

techniques and an essential ingredient is a reduction to trees, via the unravelling operation.42

As this operation produces infinite trees, we cannot use it for formulae that are only bisimu-43

lation-invariant over finite transition systems.44

In this paper we start a fresh attempt at a finitary version of the result of Janin and45

Walukiewicz. Instead of automata-theoretic techniques we employ the composition method.46

For certain classes of very simple, finite transition systems we characterise the bisimulation-47

invariant fragments of monadic second-order logic over these classes. We hope that some48

day our techniques can be extended to the general case of all finite structures, but currently49

there are still a few technical obstacles to overcome.50

We start in Section 2 by recalling the needed material on bisimulation and by listing all51

known results on bisimulation-invariant monadic second-order logic. We also collect some52

low-hanging fruit by proving two new results concerning (i) finite classes and (ii) the class53

of all finite trees. Finally, we lay the groundwork for the more involved proofs to follow54

by characterising bisimulation-invariance in terms of a combinatorial property called the55

unravelling property. In Section 3, we collect some tools from logic we will need. The emphasis56

in on so-called composition lemmas. Nothing in this section is new.57

Finally we start in Section 4 in earnest by developing the technical machinery our proofs58

are based on. Sections 5 and 6 contain our first two applications: characterisations of bisimu-59

lation-invariant monadic second-order logic over (i) the class of lassos and (ii) certain classes60

of what we call hierarchical lassos. The former is already known and simply serves as an61

example of our techniques and to fix our notation for the second result, which is new.62

Before presenting our last characterisation result, we develop in Section 7 some additional63

technical tools that allow us to reduce one characterisation result to another. This is then64

applied in Section 8 to the most complex of our results. We characterise bisimulation-invariant65

monadic second-order logic over the class of all transition systems of a given Cantor–Bendixson66

rank.67

2 Bisimulation-invariance68

We consider two logics in this paper: (i) monadic second-order logic (MSO), which is the69

extension of first-order logic by set variables and set quantifiers, and (ii) the modal µ-calculus70

(Lµ), which is the fixed-point extension of modal logic. A detailed introduction can be found,71

e.g., in [8]. Concerning the µ-calculus and bisimulation, we also refer to the survey [17].72

Transition systems are directed graphs where the edges are labelled by elements of a given73

set A and vertices by elements of some set I. Formally, we consider a transition system as74

a structure of the form S = 〈S, (Ea)a∈A, (Pi)i∈I , s0〉 where the Ea ⊆ S × S are (disjoint)75

binary edge relations, the Pi ⊆ S are (disjoint) unary predicates, and s0 is the initial state.76

We write S, s to denote the transition system obtained from S by declaring s to be the77

initial state.78
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A central notion in modal logic is bisimilarity since modal logics cannot distinguish79

between bisimilar systems.80

I Definition 2.1. Let S and T be transition systems.81

(a) A bisimulation between S and T is a binary relation Z ⊆ S × T such that all pairs82

〈s, t〉 ∈ Z satisfy the following conditions.83

(prop) s ∈ PS
i iff t ∈ PT

i , for all i ∈ I.84

(forth) For each edge 〈s, s′〉 ∈ ES
a , there is some 〈t, t′〉 ∈ ET

a such that 〈s′, t′〉 ∈ Z.85

(back) For each edge 〈t, t′〉 ∈ ET
a , there is some 〈s, s′〉 ∈ ES

a such that 〈s′, t′〉 ∈ Z.86

(b) Let s0 and t0 be the initial states of, respectively, S and T. We say that S and T are87

bisimilar if there exists a bisimulation Z between S and T with 〈s0, t0〉 ∈ Z. We denote this88

fact by S ∼ T.89

(c) We denote by U(S) the unravelling of a transition system S. y90

The next two observations show that the unravelling operation is closely related to91

bisimilarity. In fact, having the same unravelling can be seen as a poor man’s version of92

bisimilarity.93

I Lemma 2.2. Let S and T be transition systems.94

(a) U(S) ∼ S .95

(b) S ∼ T implies U(S) ∼ U(T) .96

As already mentioned modal logics cannot distinguish between bisimilar systems. They97

are bisimulation-invariant in the sense of the following definition.98

I Definition 2.3. Let C be a class of transition systems.99

(a) An MSO-formula ϕ is bisimulation-invariant over C if100

S ∼ T implies S |= ϕ ⇔ T |= ϕ , for all S,T ∈ C .101
102

(b) We say that, over the class C, bisimulation-invariant MSO coincides with Lµ if,103

for every MSO-formula ϕ that is bisimulation-invariant over the class C, there exists an104

Lµ-formula ψ such that105

S |= ϕ iff S |= ψ , for all S ∈ C .106
107

y108

A straightforward induction over the structure of formulae shows that every Lµ-formula109

is bisimulation-invariant over all transition systems. Hence, bisimulation-invariance is a110

necessary condition for an MSO-formula to be equivalent to an Lµ-formula.111

The following characterisations of bisimulation-invariant MSO have been obtained so far.112

We start with the result of Janin and Walukiewicz.113

I Theorem 2.4 (Janin, Walukiewicz [10]). Over the class of all transition systems, bisimula-114

tion-invariant MSO coincides with Lµ.115

The main part of the proof consists in proving the following variant, which implies the116

case of all structures by a simple reduction.117

I Theorem 2.5 (Janin, Walukiewicz). Over the class of all trees, bisimulation-invariant MSO118

coincides with Lµ.119

ICALP 2018



14:4 Bisimulation Invariant MSO in the Finite

There have already been two attempts at a finitary version. The first one is by Hirsch120

who considered the class of all regular trees, i.e., unravellings of finite transition systems.121

The proof is based on the fact that a formula is bisimulation-invariant over all trees if, and122

only if, it is bisimulation-invariant over regular trees.123

I Theorem 2.6 (Hirsch [9]). Over the class of all regular trees, bisimulation-invariant MSO124

coincides with Lµ.125

The second result is by Dawar and Janin who considered the class of finite lassos, i.e.,126

finite paths leading to a cycle. We will present a proof in Section 5 below.127

I Theorem 2.7 (Dawar, Janin [6]). Over the class of all lassos, bisimulation-invariant MSO128

coincides with Lµ.129

In this paper, we will extend this last result to larger classes. We start with two easy130

observations. The first one is nearly trivial.131

I Theorem 2.8. Over every finite class C of finite transition systems, bisimulation-invariant132

MSO coincides with Lµ.133

The second observation is much deeper, but fortunately nearly all of the work has already134

been done by Janin and Walukiewicz.135

I Theorem 2.9. Over the class of all finite trees, bisimulation-invariant MSO coincides136

with Lµ.137

As a preparation for the more involved characterisation results to follow, we simplify138

our task by introducing the following property of a class C of transition systems, which will139

turn out to be equivalent to having a characterisation result for bisimulation-invariant MSO140

over C.141

I Definition 2.10. We say that a class C of transition systems has the unravelling property if,142

for every MSO-formula ϕ that is bisimulation-invariant over C, there exists an MSO-formula ϕ̂143

that is bisimulation-invariant over trees such that144

S |= ϕ iff U(S) |= ϕ̂ , for all S ∈ C .145
146

y147

Using Theorem 2.5, we can reformulate this definition as follows. This version will be our148

main tool to prove characterisation results for bisimulation-invariant MSO: it is sufficient to149

prove that the given class has the unravelling property.150

I Theorem 2.11. A class C of transition systems has the unravelling property if, and only151

if, over C bisimulation-invariant MSO coincides with Lµ.152

Let us also note the following result, which allows us to extend the unravelling property153

from a given class to certain superclasses.154

I Lemma 2.12. Let C0 ⊆ C be classes such that every system in C is bisimilar to one in C0.155

If C0 has the unravelling property, then so does C.156

3 Composition lemmas157

We have mentioned above that automata-theoretic methods have so far been unsuccessful158

at attacking the finite version of the Janin–Walukiewicz result. Therefore, we rely on the159

composition method instead. Let us recall how this method works.160
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I Definition 3.1. Let S and T be transition systems (or general structures) and m < ω a161

number. The m-theory Thm(S) of S is the set of all MSO-formulae of quantifier-rank m162

that are satisfied by S. (The quantifier-rank of a formula is its nesting depths of (first-order163

and second-order) quantifiers.) We write164

S ≡m T : iff Thm(S) = Thm(T) .165
166

y167

Roughly speaking the composition method provides some machinery that allows us168

to compute the m-theory of a given transition system by breaking it down into several169

components and looking at the m-theories of these components separately. This approach170

is based on the realisation that several operations on transition systems are compatible171

with m-theories in the sense that the m-theory of the result can be computed from the172

m-theories of the arguments. Statements to that effect are known as composition theorems.173

For an overview we refer the reader to [3] and [11]. The following basic operations and their174

composition theorems will be used below. We start with disjoint unions.175

I Definition 3.2. The disjoint union of two structures A = 〈A,RA
0 , . . . , R

A
m〉 and B =176

〈B,RB
0 , . . . , R

B
m〉 is the structure177

A⊕B :=
〈
A ·∪B, RA

0 ·∪RB
0 , . . . , R

A
m ·∪RB

m, Left, Right
〉

178
179

obtained by forming the disjoint union of the universes and relations of A and B and adding180

two unary predicates Left := A and Right := B that mark whether an element belongs to A181

or to B. If A and B are transition systems, the initial state of A⊕B is that of A. y182

The corresponding composition theorem looks as follows. It can be proved by a simple183

induction on m.184

I Lemma 3.3. A ≡m A′ and B ≡m B′ implies A⊕B ≡m A′ ⊕B′ .185

Two other operations we need are interpretations and fusion operations.186

I Definition 3.4. An interpretation is an operation τ on structures that is given by a list187

〈δ(x), (ϕR(x̄))R∈Σ〉 of MSO-formulae. Given a structure A, it produces the structure τ(A)188

whose universe consists of all elements of A satisfying the formula δ and whose relations are189

those defined by the formulae ϕR. The quantifier-rank of an interpretation is the maximal190

quantifier-rank of a formula in the list. An interpretation is quantifier-free if its quantifier-rank191

is 0. y192

I Lemma 3.5. Let τ be an interpretation of quantifier-rank k. Then193

A ≡m+k A′ implies τ(A) ≡m τ(A′) .194
195

I Definition 3.6. Let P be a predicate symbol. The fusion operation fuseP merges in a given196

structure all elements of the set P into a single element, i.e., all elements of P are replaced197

by a single new element and all edges incident with one of the old elements are attached to198

the new one instead. y199

I Lemma 3.7. A ≡m A′ implies fuseP (A) = fuseP (A′) .200

Using the composition theorems for these basic operations we can prove new theorems201

for derived operations. As an example let us consider pointed paths, i.e., paths where both202

end-points are marked by special colours.203

ICALP 2018



14:6 Bisimulation Invariant MSO in the Finite

I Definition 3.8. We denote the concatenation of two paths A and B by A + B. And we204

write A• for the expansion of a path A by two new constants for the end-points. y205

I Corollary 3.9. Let A,A′,B,B′ be paths. Then A• ≡m A′• and B• ≡m B′• implies206

(A + B)• ≡m (A′ + B′)• .207

Proof. As the end-points are given by constants, we can construct a quantifier-free inter-208

pretation τ mapping A• ⊕B• to (A + B)•. J209

Note that, since the concatenation operation is associative, it in particular follows that the210

set of m-theories of paths forms a semigroup.211

Finally let us mention one more involved operation with a composition theorem. Let212

S be a transition system and C ⊆ S a subsystem. We say that C is attached at the state213

s ∈ S if there is a unique edge (in either direction) between a state in S \C and a state in C214

and this edge leads from s to the initial state of C.215

I Proposition 3.10. Let S be a (possibly infinite) transition system and let S′ be the system216

obtained from S by replacing an arbitrary number of attached subsystems by subsystems with217

the same m-theories (as the corresponding replaced ones). Then S ≡m S′.218

For a finite system S this statement can be proved in the same way as Corollary 3.9 by219

expressing S as a disjoint union followed by a quantifier-free interpretation. For infinite220

systems, we need a more powerful version of the disjoint union operation called a generalised221

sum (see [16]).222

As presented above these tools work with m-theories, which is not quite what we need223

since we have to also account for bisimulation-invariance. To do so we modify the definitions224

as follows.225

I Definition 3.11. Let C be a class of transition systems and m < ω a number.226

(a) We denote by 'mC the transitive closure of the union ≡m ∪ ∼ restricted to the class C.227

Formally, we define S 'mC T if there exist systems C0, . . . ,Cn ∈ C such that228

C0 = S , Cn = T , and Ci ≡m Ci+1 or Ci ∼ Ci+1 , for all i < n .229
230

(b) We denote by ThmC (S) the set of all MSO-formulae of quantifier-rank m that are231

bisimulation-invariant over C and that are satisfied by S, and we define232

S ≡mC S′ : iff ThmC (S) = ThmC (S′) .233
234

We also set THm
C := {ThmC (S) | S ∈ C } . y235

Note that, up to logical equivalence, there are only finitely many formulae of a given236

quantifier-rank. Hence, each set THm
C is finite and the relations ≡m, ≡mC and 'mC have finite237

index.238

I Lemma 3.12. If ϕ is a MSO-formula of quantifier-rank m that is bisimulation-invariant239

over C, then S 'mC T implies S |= ϕ⇔ T |= ϕ .240

Some of the above composition theorems also hold for the relation 'mC . This is immediate241

if the operation in question also preserves bisimilarity. We mention only two such results.242

The second one will be needed below.243

I Lemma 3.13. Let C be a class that is closed under disjoint unions.244

A 'mC A′ and B 'mC B′ implies A⊕B 'mC A′ ⊕B′ .245
246
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I Proposition 3.14. Let C and D be two classes, S ∈ C a (possibly infinite) transition247

system and let S′ be the system obtained from S by replacing an arbitrary number of attached248

subsystems by subsystems which are 'mD -equivalent. Then S 'mC S′ provided that the class C249

is closed under the operation of replacing attached subsystems in D.250

4 Types251

Our strategy to prove the unravelling property for a class C is as follows. For every quanti-252

fier-rank m, we assign to each tree T a so-called m-type τm(T). We choose the functions τm253

such that we can compute the theory ThmC (C) of a system C ∈ C from the m-type τm(U(C))254

of its unravelling. Furthermore, we need to find MSO-formulae checking whether a tree has a255

given m-type. The formal definition is as follows.256

I Definition 4.1. Let C be a class of transition systems and T the class of all trees.257

(a) A family of type functions for C is a family of functions τm : T → Θm, for m < ω,258

where the co-domains Θm are finite sets and each τm satisfies the following two axioms.259

(S1) τm(U(C)) = τm(U(C′)) implies ThmC (C) = ThmC (C′) , for C,C′ ∈ C .260

(S2) T ∼ T′ implies τm(T) = τm(T′) , for all T,T′ ∈ T .261

(b) A family (τm)m of type functions is definable if, for every θ ∈ Θm, there exists an262

MSO-formula ψθ such that263

(S3) T |= ψθ iff τm(T) = θ , for all trees T .264 y265

Let us start by showing how to prove the unravelling property using type functions. The266

following characterisation theorem can be considered to be the main theoretical result of this267

article.268

I Theorem 4.2. Let C be a class of transition systems and T the class of all trees. The269

following statements are equivalent.270

(1) Over C, bisimulation-invariant MSO coincides with Lµ.271

(2) C has the unravelling property.272

(3) There exists a definable family (τm)m of type functions for C.273

(4) There exist functions g : ω → ω and hm : THg(m)
T → THm

C , for m < ω, such that274

hm
(
Thg(m)
T (U(C))

)
= ThmC (C) , for all C ∈ C275

276

(in other words, the g(m)-theory of U(C) determines the m-theory of C).277

5 Lassos278

As an application of type functions, we consider a very simple example, the class of lassos.279

Our proof is based on more or less the same arguments as that by Dawar and Janin [6], just280

the presentation differs. A lasso is a transition system consisting of a directed path ending in281

a cycle.282

283

ICALP 2018



14:8 Bisimulation Invariant MSO in the Finite

We allow the borderline cases where the initial path has length 0 or the cycle consists of only284

a single edge.285

To define the type of a lasso, note that we can construct every lasso L from two finite286

paths A and B by identifying three of their end-points.287

A
Bs t

v
u

288

The paths A and B are uniquely determined by L. We will refer to A as the tail of the lasso289

and to B as the loop. We introduce two kinds of types for lassos, a strong one and a weak290

one.291

I Definition 5.1. The strong m-type of a lasso L with tail A and loop B is the pair292

stpm(L) := 〈α, β〉 , where α := Thm(A•) and β := Thm(B•) .293
294

y295

The strong m-type of a lasso uniquely determines its m-theory.296

I Lemma 5.2. Let L0 and L1 be lassos.297

stpm(L0) = stpm(L1) implies L0 ≡m L1 .298
299

The problem with the strong type of a lasso L is that we cannot recover it from the300

unravelling of L as the decomposition of U(L) into the parts of L is uncertain. Therefore we301

introduce another notion of a type where this recovery is possible. For this we recall some302

facts from the theory of ω-semigroups.303

Recall that we have noted in Corollary 3.9 that the m-theories of pointed paths form304

a finite semigroup with respect to concatenation. Furthermore, every element a of a finite305

semigroup has an idempotent power aπ, which is defined as the value an where n is the least306

natural number such that an · an = an.307

I Definition 5.3. (a) A factorisation of an infinite path A is a sequence (Ai)i<ω of finite308

paths whose concatenation is A. Such a factorisation has m-type 〈α, β〉 if309

α := Thm(A•0) and β := Thm(A•i ) , for i > 0 .310
311

(b) Two pairs 〈α, β〉 and 〈γ, δ〉 of m-theories are conjugate if there are m-theories ξ and η312

such that313

γδπ = αβπξ , βπ = ξη , and δπ = ηξ .314
315

Being conjugate is an equivalence relation. We denote the equivalence class of a pair 〈α, β〉316

by [α, β].317

(c) The weak m-type of a lasso L with parts A and B is318

wtpm(L) := [α, β] , where α := Thm(A•) and β := Thm(B•) .319
320

(d) The m-type of an infinite tree T is321

τm(T) := [α, β] ,322
323

where α and β is an arbitrary pair ofm-theories such that every branch of T has a factorisation324

of m-type 〈α, β〉. If there is no such pair, we set τm(T) := ⊥. y325
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I Lemma 5.4. Let L be the class of all lassos and let L0,L1 ∈ L.326

wtpm(L0) = wtpm(L1) implies L0 'mL L1 .327
328

To show that the functions (τm)m form a family of type functions, we need the following329

standard facts about factorisations and their types (see, e.g., Section II.2 of [14]).330

I Proposition 5.5. Let A be an infinite path.331

(a) A has a factorisation of type 〈α, β〉, for some α and β.332

(b) If A has factorisations of type 〈α, β〉 and 〈γ, δ〉, then 〈α, β〉 and 〈γ, δ〉 are conjugate.333

Note that these two statements imply in particular that the type τm(T) of a tree T is334

well-defined.335

I Lemma 5.6. The functions (τm)m defined above form a definable family of type functions336

for the class of all lassos.337

By Theorem 4.2, it therefore follows that the class of lassos has the unravelling property.338

I Theorem 5.7. The class of all lassos has the unravelling property.339

6 Hierarchical Lassos340

After the simple example in the previous section, let us give a more substantial application341

of the type machinery. We consider hierarchical (or nested) lassos. These are obtained from342

a lasso by repeatedly attaching sublassos to some states. More precisely, a 1-lasso is just an343

ordinary lasso, while inductively a (k + 1)-lasso is obtained from a k-lasso by attaching one344

or more lassos to some of the states. (Each state may have several sublassos attached.)345

346

Alternatively, we can obtain a (k + 1)-lasso M from a 1-lasso L by attaching k-lassos. We347

will call this lasso L the main lasso of M.348

The types we use for k-lassos are based on the same principles as those for simple lassos,349

but we have to nest them in order to take the branching of a hierarchical lasso into account.350

I Definition 6.1. Let t : dom(t)→ C be a labelled tree and m < ω.351

(a) For a branch β of t, we set352

wtpm(β) := [σ, τ ] ,353
354

if β has a factorisation of m-type 〈σ, τ〉. (By Proposition 5.5, this is well-defined.)355

(b) For k < ω, we define356

tp0
m(t) :=

{
wtpm(β)

∣∣ β a branch of t
}
,357

tpk+1
m (t) := tp0

m(TPkm(t)) ,358
359

where TPkm(t) : T → C × P(Θkm) is the tree with labelling360

TPkm(t)(v) :=
〈
t(v), { tpkm(t|u) | u a successor of v }

〉
.361

362
y363

ICALP 2018



14:10 Bisimulation Invariant MSO in the Finite

We will prove that the functions tpkm form a family of type functions. Note that it follows364

immediately from the definition that they satisfy Properties (S2) and (S3). Hence, it only365

remains to check (S1).366

I Lemma 6.2. (a) Let M be a k-lasso and N a k′-lasso. Then367

U(M) ∼ U(N) implies tpkm(M) = tpkm(N) .368
369

(b) For every type τ , there exists an MSO-formula ϕ such that370

U(M) |= ϕ iff tpkm(M) = τ .371
372

Thus, to prove that the class of k-lassos has the unravelling property it is sufficient to373

show that tpkm also satisfies Property (S1). We will do so by induction on k. The base case374

of this induction rests on the following lemma.375

I Lemma 6.3. Let Lk be the class of all k-lassos and let M be a k-lasso such that, for every376

vertex v and all branches β and γ starting at a successor of v, we have wtpm(β) = wtpm(γ).377

Then M 'mLk
N, for some 1-lasso N.378

I Proposition 6.4. Let M be a k-lasso and N a k′-lasso. For m ≥ 1,379

tpkm(M) = tpkm(N) implies M 'mLK
N ,380

381

where LK is the class of all K-lassos with K := max(k, k′).382

Using Theorem 4.2 we now immediately obtain the following statement.383

I Theorem 6.5. For every k, the class of all k-lassos has the unravelling property.384

7 Reductions385

We would like to define reductions that allow us to prove that a certain class has the386

unravelling property when we already know that some other class has this property. To do387

so, we encode every transition system of the first class by some system in the second one.388

The main example we will be working with is a function % that removes certain attached389

subsystems and uses additional vertex labels to remember the m-theories of all deleted390

system. Up to equivalence of m-theories, we can undo this operation by a function η that391

attaches to each vertex labelled by some m-theory θ some fixed system with theory θ. Let us392

give a general definition of such pairs of maps.393

I Definition 7.1. Let C and D be classes of transition systems and k,m < ω. A function394

% : C → D is a (k,m)-encoding map if there exists a function η : D → C such that395

(E1) %(η(D)) 'kD D , for all D ∈ D .396

(E2) %(C) 'kD %(C′) implies C 'mC C′ , for all C,C′ ∈ C .397

In this case, we call the function η a (k,m)-decoding map for %. y398

These two axioms imply dual axioms with the functions % and η exchanged.399

I Lemma 7.2. Let η : D → C be a (k,m)-decoding map for % : C → D.400

(E3) η(%(C)) 'mC C , for all C ∈ C .401

(E4) D 'kD D′ implies η(D) 'mC η(D′) , for all D,D′ ∈ D .402
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The axioms of an encoding map were chosen to guarantee the property stated in the403

following lemma. It will be used below to prove that encoding maps can be used to transfer404

the unravelling property from one class to another.405

I Lemma 7.3. Let % : C → D a (k,m)-encoding map and η : D → C a (k,m)-decoding map406

for %. For every MSO-formula ϕ of quantifier-rank m that is bisimulation-invariant over C,407

there exists an MSO-formula ϕ̂ of quantifier-rank k that is bisimulation-invariant over D408

such that409

C |= ϕ iff %(C) |= ϕ̂ , for all C ∈ C .410
411

It remains to show how to use encoding maps to transfer the unravelling property. Just412

the existence of such a map is not sufficient. It also has to be what we call definable.413

I Definition 7.4. Let C be a class of transition systems.414

(a) A (k,m)-encoding map % : C → D is definable if, for every MSO-formula ϕ that is415

bisimulation-invariant over trees, there exists an MSO-formula ϕ̂ that is bisimulation-invariant416

over trees such that417

U(%(C)) |= ϕ iff U(C) |= ϕ̂ , for all C ∈ C .418
419

(b) We say that C is reducible to a family (Dm)m<ω of classes if there exist a map420

g : ω → ω and, for each m < ω, functions %m : C → Dm and ηm : Dm → C such that %m is a421

definable (g(m),m)-encoding map and ηm a corresponding (g(m),m)-decoding map. y422

(The only reason why we use a family of classes to reduce to, instead of a single one is so423

that we can have the labellings of systems in Dm depend on the quantifier-rank m.)424

I Theorem 7.5. Suppose that C is reducible to (Dm)m<ω. If every class Dm has the unrav-425

elling property, so does C.426

8 Finite Cantor–Bendixson rank427

One common property of k-lassos is that the trees we obtain by unravelling them all have428

finite Cantor–Bendixson rank. In this section we will generalise our results to cover transition429

systems with this more general property. The proof below consists in a two-step reduction to430

the class of k-lassos.431

I Definition 8.1. Let T be a finitely branching tree. The Cantor–Bendixson derivative of T432

is the tree T′ obtained from T by removing all subtrees that have only finitely many infinite433

branches. The Cantor-Bendixson rank of a tree T is the least ordinal α such that applying434

α+ 1 Cantor–Bendixson derivatives to T results in an empty tree. The Cantor–Bendixson435

rank of a transition system S is equal to the Cantor–Bendixson rank of its unravelling. y436

We can go from the class of k-lassos to that of systems with bounded Cantor–Bendixson437

rank in two steps.438

I Definition 8.2. (a) A transition system is a generalised k-lasso if it is obtained from a439

finite tree by attaching (one or several) k-lassos to every leaf.440

(b) A transition system T is a tree extension of S if T is obtained from S by attaching441

an arbitrary number of finite trees to some of the vertices. y442

With these two notions we can characterise the property of having bounded Cantor–443

Bendixson rank as follows.444
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I Proposition 8.3. Let S be a finite transition system.445

(a) For every k < ω, the following statements are equivalent.446

(1) S has Cantor–Bendixson rank at most k.447

(2) S is bisimilar to a tree extension of a generalised (k + 1)-lasso.448

(b) The following statements are equivalent.449

(1) S has finite Cantor–Bendixson rank.450

(2) S is bisimilar to a tree extension of a generalised k-lasso, for some k < ω.451

(3) Every strongly connected component of S is either a singleton or a cycle.452

To prove the unravelling property for the transition systems of bounded Cantor–Bendixson453

rank, we proceed in two steps. First we consider generalised k-lassos and then their tree454

extensions.455

I Theorem 8.4. For fixed k, the class of all generalised k-lassos has the unravelling property.456

Using this intermediate step, we obtain the following proof for transition systems with457

bounded Cantor–Bendixson rank.458

I Theorem 8.5. The class of all finite transition systems of Cantor–Bendixson rank at459

most k has the unravelling property.460

I Corollary 8.6. Over the class of all finite transition systems with Cantor–Bendixson rank461

at most k, bisimulation-invariant MSO coincides with Lµ.462

9 Conclusion463

We have shown in several simple examples how to characterise bisimulation-invariant MSO464

in the finite. In particular, we have proved that it coincides with Lµ over465

every finite class (Theorem 2.8),466

the class of all finite trees (Theorem 2.9),467

the classes of all lassos, k-lassos, and generalised k-lassos (Theorems 5.7, 6.5, and 8.4),468

the class of all systems of Cantor–Bendixson rank at most k (Theorem 8.5).469

Our main tool in these proofs was the unravelling property (Theorem 2.11). It will be470

interesting to see how far our methods can be extended to more complicated classes. For471

instance, can they be used to prove the following conjecture?472

Conjecture. If a class C of transition systems has the unravelling property, then so does473

the class of all subdivisions of systems in C.474

A good first step seems to be the class of all finite transition systems that have Cantor–475

Bendixson rank k, for some k < ω that is not fixed.476

In this paper we have considered only transition systems made out of paths with very477

limited branching. To extend our techniques to classes allowing for more branching seems478

to require new ideas. A simple test case that looks promising is the class of systems with479

a ‘lasso-decomposition’ of width k, i.e., something like a tree decomposition but where the480

pieces are indexed by a lasso instead of a tree.481
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