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Abstract10

We consider bisimulation-invariant monadic second-order logic over various classes of finite trans-11

ition systems. We present several combinatorial characterisations of when the expressive power12

of this fragment coincides with that of the modal µ-calculus. Using these characterisations we13

prove for some simple classes of transition systems that this is indeed the case. In particular, we14

show that, over the class of all finite transition systems with Cantor–Bendixson rank at most k,15

bisimulation-invariant MSO coincides with Lµ.16

2012 ACM Subject Classification F.4.1 Mathematical Logic17

Keywords and phrases bisimulation, monadic second-order logic, composition method18

Digital Object Identifier 10.4230/LIPIcs...xx19

1 Introduction20

A characterisation of the bisimulation-invariant fragment of a given classical logic relates this21

logic to a suitable modal logic. In this way, one obtains a correspondence between a family of22

classical logics and a family of modal logics. Such characterisation results therefore help with23

ordering the zoo of logics introduced (on both sides) over the years and with distinguishing24

between natural and artificial instances of such logics.25

The study of bisimulation-invariant fragments of classical logics was initiated by a result26

of van Benthem [2] who proved that the bisimulation-invariant fragment of first-order logic27

coincides with standard modal logic. Inspired by this work, several other characterisations28

have been obtained, the most prominent among them being a characterisation of bisimula-29

tion-invariant monadic second-order logic by Janin and Walukiewicz [12]. The table below30

summarises the results known so far.31

bisimulation-invariant fragment modal logic reference

first-order logic modal logic [2]
monadic second-order logic modal µ-calculus [12]
monadic path logic CTL∗ [14, 15]
weak monadic second-order logic continuous µ-calculus [5]
weak chain logic PDL [4]
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xx:2 Bisimulation Invariant MSO in the Finite

There are also similar characterisations for various variants of bisimulation like guarded33

bisimulation [1, 9] or bisimulation for inquisitive modal logic [6].34

Researchers in finite model theory started to investigate to which extent these corres-35

pondences also hold when only considering finite structures, that is, whether every formula36

of a given classical logic that is bisimulation-invariant over the class of all finite transition37

systems is equivalent, over that class, to the corresponding modal logic. For first-order logic,38

a corresponding characterisation does indeed hold. Its proof by Rosen [17] uses tools from39

finite model theory and is very different to the proof by van Benthem.40

The above mentioned result by Janin and Walukiewicz on bisimulation-invariant monadic41

second-order logic has so far defied all attempts at a similar transfer to the realm of finite42

structures. The main reason is that the original proof is based on automata-theoretic43

techniques and an essential ingredient is a reduction to trees, via the unravelling operation.44

As this operation produces infinite trees, we cannot use it for formulae that are only bisimu-45

lation-invariant over finite transition systems.46

In this paper we start a fresh attempt at a finitary version of the result of Janin and47

Walukiewicz. Instead of automata-theoretic techniques we employ the composition method.48

For certain classes of very simple, finite transition systems we characterise the bisimula-49

tion-invariant fragments of monadic second-order logic over these classes. Although this50

constitutes only modest progress towards the general case, we consider the combinatorial and51

logical techniques we develop below to be the main contribution of the present article. We52

isolate the combinatorial core of the problem (in form of the unravelling property (Section 2)53

and the notion of a family of type functions (Section 4)) and in that way highlight the central54

combinatorial problem that needs to be solved to prove the full result.55

We start in Section 2 by recalling the needed material on bisimulation and by listing all56

known results on bisimulation-invariant monadic second-order logic. We also collect some57

low-hanging fruit by proving two new results concerning (i) finite classes and (ii) the class58

of all finite trees. Finally, we lay the groundwork for the more involved proofs to follow59

by characterising bisimulation-invariance in terms of a combinatorial property called the60

unravelling property. In Section 3, we collect some tools from logic we will need. The emphasis61

in on so-called composition lemmas. Nothing in this section is new.62

Finally we start in Section 4 in earnest by developing the technical machinery our proofs63

are based on. Sections 5 and 6 contain our first two applications: characterisations of bisimu-64

lation-invariant monadic second-order logic over (i) the class of lassos and (ii) certain classes65

of what we call hierarchical lassos. The former is already known and simply serves as an66

example of our techniques and to fix our notation for the second result, which is new.67

Before presenting our last characterisation result, we develop in Section 7 some additional68

technical tools that allow us to reduce one characterisation result to another. This is then69

applied in Section 8 to the most complex of our results. We characterise bisimulation-invariant70

monadic second-order logic over the class of all transition systems of a given Cantor–Bendixson71

rank.72

2 Bisimulation-invariance73

We consider two logics in this paper: (i) monadic second-order logic (MSO), which is the74

extension of first-order logic by set variables and set quantifiers, and (ii) the modal µ-calculus75

(Lµ), which is the fixed-point extension of modal logic. A detailed introduction can be found,76

e.g., in [10]. Concerning the µ-calculus and bisimulation, we also refer to the survey [19].77

Transition systems are directed graphs where the edges are labelled by elements of a given78
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set A and vertices by elements of some set I. Formally, we consider a transition system as79

a structure of the form S = 〈S, (Ea)a∈A, (Pi)i∈I , s0〉 where the Ea ⊆ S × S are (disjoint)80

binary edge relations, the Pi ⊆ S are (disjoint) unary predicates, and s0 is the initial state.81

We write S, s to denote the transition system obtained from S by declaring s to be the82

initial state.83

A central notion in modal logic is bisimilarity since modal logics cannot distinguish84

between bisimilar systems.85

I Definition 2.1. Let S and T be transition systems.86

(a) A bisimulation between S and T is a binary relation Z ⊆ S × T such that all pairs87

〈s, t〉 ∈ Z satisfy the following conditions.88

(prop) s ∈ PS
i iff t ∈ PT

i , for all i ∈ I.89

(forth) For each edge 〈s, s′〉 ∈ ES
a , there is some 〈t, t′〉 ∈ ET

a such that 〈s′, t′〉 ∈ Z.90

(back) For each edge 〈t, t′〉 ∈ ET
a , there is some 〈s, s′〉 ∈ ES

a such that 〈s′, t′〉 ∈ Z.91

(b) Let s0 and t0 be the initial states of, respectively, S and T. We say that S and T are92

bisimilar if there exists a bisimulation Z between S and T with 〈s0, t0〉 ∈ Z. We denote this93

fact by S ∼ T.94

(c) We denote by U(S) the unravelling of a transition system S. y95

The next two observations show that the unravelling operation is closely related to96

bisimilarity. In fact, having the same unravelling can be seen as a poor man’s version of97

bisimilarity.98

I Lemma 2.2. Let S and T be transition systems.99

(a) U(S) ∼ S .100

(b) S ∼ T implies U(S) ∼ U(T) .101

Proof. For (a), note that graph of the canonical homomorphism U(S)→ S forms a bisimu-102

lation. (b) follows by (a) since U(S) ∼ S ∼ T ∼ U(T) . J103

As already mentioned modal logics cannot distinguish between bisimilar systems. They104

are bisimulation-invariant in the sense of the following definition.105

I Definition 2.3. Let C be a class of transition systems.106

(a) An MSO-formula ϕ is bisimulation-invariant over C if107

S ∼ T implies S |= ϕ ⇔ T |= ϕ , for all S,T ∈ C .108
109

(b) We say that, over the class C, bisimulation-invariant MSO coincides with Lµ if,110

for every MSO-formula ϕ that is bisimulation-invariant over the class C, there exists an111

Lµ-formula ψ such that112

S |= ϕ iff S |= ψ , for all S ∈ C .113
114

y115

A straightforward induction over the structure of formulae shows that every Lµ-formula116

is bisimulation-invariant over all transition systems. Hence, bisimulation-invariance is a117

necessary condition for an MSO-formula to be equivalent to an Lµ-formula.118

The following characterisations of bisimulation-invariant MSO have been obtained so far.119

We start with the result of Janin and Walukiewicz.120

I Theorem 2.4 (Janin, Walukiewicz [12]). Over the class of all transition systems, bisimula-121

tion-invariant MSO coincides with Lµ.122



xx:4 Bisimulation Invariant MSO in the Finite

The main step in this theorem’s proof consists in proving the following variant, which123

implies the case of all structures by a simple reduction.124

I Theorem 2.5 (Janin, Walukiewicz). Over the class of all trees, bisimulation-invariant MSO125

coincides with Lµ.126

There have already been two attempts at a finitary version. The first one is by Hirsch127

who considered the class of all regular trees, i.e., unravellings of finite transition systems.128

The proof is based on the fact that a formula is bisimulation-invariant over all trees if, and129

only if, it is bisimulation-invariant over regular trees.130

I Theorem 2.6 (Hirsch [11]). Over the class of all regular trees, bisimulation-invariant MSO131

coincides with Lµ.132

The second result is by Dawar and Janin who considered the class of finite lassos, i.e.,133

finite paths leading to a cycle. We will present a proof in Section 5 below.134

I Theorem 2.7 (Dawar, Janin [8]). Over the class of all lassos, bisimulation-invariant MSO135

coincides with Lµ.136

In this paper, we will extend this last result to larger classes. We start with two easy137

observations. The first one is nearly trivial.138

I Theorem 2.8. Over every finite class C of finite transition systems, bisimulation-invariant139

MSO coincides with Lµ.140

Proof. As any two non-bisimilar, finite transition systems can be distinguished by an Lµ-141

formula (in fact, even by a formula of modal logic, see e.g. [19]), we can pick, for every pair142

of non-bisimilar transition systems S,T ∈ C, an Lµ-formula satisfied by S, but not by T.143

Let Θ be the resulting set of formulae. The Θ-theory of a transition system S ∈ C is144

TΘ(S) := {ϑ ∈ Θ | S |= ϑ } .145
146

By choice of Θ it follows that147

T |=
∧
TΘ(S) iff T ∼ S , for S,T ∈ C .148

149

Given an MSO-formula ϕ that is bisimulation-invariant over C, we set150

ψ :=
∨{∧

TΘ(S)
∣∣ S ∈ C , S |= ϕ

}
.151

152

(As Θ is finite, this is a finite disjunction of finite conjunctions.) Then ψ ∈ Lµ and, for each153

S ∈ C, it follows that154

S |= ψ iff S ∼ T for some T ∈ C with T |= ϕ iff S |= ϕ .155
156 J157

The second observation is much deeper, but fortunately nearly all of the work has already158

been done by Janin and Walukiewicz.159

I Theorem 2.9. Over the class of all finite trees, bisimulation-invariant MSO coincides160

with Lµ.161
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Proof. We adapt the proof of Janin and Walukiewicz [12] which roughly goes as follows.162

For a transition system M, let M̂ be the tree obtained from the unravelling U(M) by163

duplicating every subtree infinitely many times. Given an MSO-formula ϕ, one can use164

automaton-theoretic techniques to construct an Lµ-formula ϕ∨ such that165

M̂ |= ϕ iff M |= ϕ∨ .166
167

This is the contents of Lemma 12 of [12]. Now the claim follows by bisimulation-invariance168

since169

M |= ϕ∨ iff M̂ |= ϕ iff M |= ϕ .170
171

To make this proof work for finite trees, it is sufficient to modify the construction of172

the system M̂. A closer look at the proof of Lemma 12 reveals that it does not require173

infinite branching for M̂. It is enough if we duplicate each subtree sufficiently often, where174

the exact number of copies only depends on the formula ϕ. (Note that there is a remark175

after Corollary 14 of [12] indicating that Janin and Walukiewicz were already aware of this176

fact.) J177

As a preparation for the more involved characterisation results to follow, we simplify178

our task by introducing the following property of a class C of transition systems, which will179

turn out to be equivalent to having a characterisation result for bisimulation-invariant MSO180

over C.181

I Definition 2.10. We say that a class C of transition systems has the unravelling property if,182

for every MSO-formula ϕ that is bisimulation-invariant over C, there exists an MSO-formula ϕ̂183

that is bisimulation-invariant over trees such that184

S |= ϕ iff U(S) |= ϕ̂ , for all S ∈ C .185
186

y187

Using Theorem 2.5, we can reformulate this definition as follows. This version will be our188

main tool to prove characterisation results for bisimulation-invariant MSO: it is sufficient to189

prove that the given class has the unravelling property.190

I Theorem 2.11. A class C of transition systems has the unravelling property if, and only191

if, over C bisimulation-invariant MSO coincides with Lµ.192

Proof. (⇒) Suppose that C has the unravelling property and let ϕ ∈ MSO be bisimulation-193

invariant over C. Then there exists an MSO-formula ϕ̂ that is bisimulation-invariant over194

trees and satisfies195

S |= ϕ iff U(S) |= ϕ̂ , for all S ∈ C .196
197

We can use Theorem 2.5 to find an Lµ-formula ψ such that198

T |= ϕ̂ iff T |= ψ , for all trees T .199
200

For S ∈ C, it follows by bisimulation-invariance of Lµ that201

S |= ϕ iff U(S) |= ϕ̂ iff U(S) |= ψ iff S |= ψ .202
203

(⇐) Suppose that, over C, bisimulation-invariant MSO coincides with Lµ. To show that204

C has the unravelling property, consider an MSO-formula ϕ that is bisimulation-invariant205

over C. By assumption, there exists an Lµ-formula ψ such that206

S |= ϕ iff S |= ψ , for S ∈ C .207
208
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Let ϕ̂ be an MSO-formula that is equivalent to ψ over every transition system. As ψ is209

bisimulation-invariant over all transition systems, the formula ϕ̂ is bisimulation-invariant210

over trees and we have211

S |= ϕ iff S |= ψ iff U(S) |= ψ iff U(S) |= ϕ̂ , for all S ∈ C .212
213

J214

Let us also note the following result, which allows us to extend the unravelling property215

from a given class to certain superclasses.216

I Lemma 2.12. Let C0 ⊆ C be classes such that every system in C is bisimilar to one in C0.217

If C0 has the unravelling property, then so does C.218

Proof. Let ϕ be bisimulation-invariant over C. Then it is also bisimulation-invariant over C0219

and we can find a formula ϕ̂ that is bisimulation-invariant over trees such that220

S |= ϕ iff U(S) |= ϕ̂ , for all S ∈ C0 .221
222

We claim that this formula has the desired properties. Thus, consider a system S ∈ C.223

By assumption, we have S ∼ S0 for some S0 ∈ C0. By Lemma 2.2, it follows that224

U(S) ∼ U(S0). Consequently, by bisimulation-invariance of ϕ over C and of ϕ̂ over trees,225

we have226

S |= ϕ iff S0 |= ϕ iff U(S0) |= ϕ̂ iff U(S) |= ϕ̂ .227
228

J229

3 Composition lemmas230

We have mentioned above that automata-theoretic methods have so far been unsuccessful231

at attacking the finite version of the Janin–Walukiewicz result. Therefore, we rely on the232

composition method instead. Let us recall how this method works.233

I Definition 3.1. Let S and T be transition systems (or general structures) and m < ω a234

number. The m-theory Thm(S) of S is the set of all MSO-formulae of quantifier-rank m235

that are satisfied by S. (The quantifier-rank of a formula is its nesting depths of (first-order236

and second-order) quantifiers.) We write237

S ≡m T : iff Thm(S) = Thm(T) .238
239

y240

Roughly speaking the composition method provides some machinery that allows us241

to compute the m-theory of a given transition system by breaking it down into several242

components and looking at the m-theories of these components separately. This approach is243

based on the realisation that several operations on transition systems are compatible with244

m-theories in the sense that the m-theory of the result can be computed from the m-theories245

of the arguments. Statements to that effect are known as composition theorems. For an246

overview we refer the reader to [3] and [13]. Proofs of the following lemmas can be found, for247

example, in Section 5.3 of [7]. The following basic operations and their composition theorems248

will be used below. We start with disjoint unions.249

I Definition 3.2. The disjoint union of two structures A = 〈A,RA
0 , . . . , R

A
m〉 and B =250

〈B,RB
0 , . . . , R

B
m〉 is the structure251

A⊕B :=
〈
A ·∪B, RA

0 ·∪RB
0 , . . . , R

A
m ·∪RB

m, Left, Right
〉

252
253

obtained by forming the disjoint union of the universes and relations of A and B and adding254

two unary predicates Left := A and Right := B that mark whether an element belongs to A255

or to B. If A and B are transition systems, the initial state of A⊕B is that of A. y256
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The corresponding composition theorem looks as follows. It can be proved by a simple257

induction on m.258

I Lemma 3.3. A ≡m A′ and B ≡m B′ implies A⊕B ≡m A′ ⊕B′ .259

Two other operations we need are interpretations and fusion operations.260

I Definition 3.4. An interpretation is an operation τ on structures that is given by a list261

〈δ(x), (ϕR(x̄))R∈Σ〉 of MSO-formulae. Given a structure A, it produces the structure τ(A)262

whose universe consists of all elements of A satisfying the formula δ and whose relations are263

those defined by the formulae ϕR. The quantifier-rank of an interpretation is the maximal264

quantifier-rank of a formula in the list. An interpretation is quantifier-free if its quantifier-rank265

is 0. y266

I Lemma 3.5. Let τ be an interpretation of quantifier-rank k. Then267

A ≡m+k A′ implies τ(A) ≡m τ(A′) .268
269

I Definition 3.6. Let P be a predicate symbol. The fusion operation fuseP merges in a given270

structure all elements of the set P into a single element, i.e., all elements of P are replaced271

by a single new element and all edges incident with one of the old elements are attached to272

the new one instead. y273

I Lemma 3.7. A ≡m A′ implies fuseP (A) ≡m fuseP (A′) .274

Using the composition theorems for these basic operations we can prove new theorems275

for derived operations. As an example let us consider pointed paths, i.e., paths where both276

end-points are marked by special colours.277

I Definition 3.8. We denote the concatenation of two paths A and B by A + B. And we278

write A• for the expansion of a path A by two new constants for the end-points. y279

I Corollary 3.9. Let A,A′,B,B′ be paths. Then A• ≡m A′• and B• ≡m B′• implies280

(A + B)• ≡m (A′ + B′)• .281

Proof. As the end-points are given by constants, we can construct a quantifier-free inter-282

pretation τ mapping A• ⊕B• to (A + B)•. J283

Note that, since the concatenation operation is associative, it in particular follows that the284

set of m-theories of paths forms a semigroup.285

Finally let us mention one more involved operation with a composition theorem. Let286

S be a transition system and C ⊆ S a subsystem (i.e., an induced substructure of S, but287

with possibly a different initial state). We say that C is attached at the state s ∈ S if there is288

a unique edge (in either direction) between a state in S \ C and a state in C and this edge289

leads from s to the initial state of C.290

I Proposition 3.10. Let S be a (possibly infinite) transition system and let S′ be the system291

obtained from S by replacing an arbitrary number of attached subsystems by subsystems with292

the same m-theories (as the corresponding replaced ones). Then S ≡m S′.293

For a finite system S this statement can be proved in the same way as Corollary 3.9 by294

expressing S as a disjoint union followed by a quantifier-free interpretation. For infinite295

systems, we need a more powerful version of the disjoint union operation called a generalised296

sum (see [18]).297

As presented above these tools work with m-theories, which is not quite what we need298

since we have to also account for bisimulation-invariance. To do so we modify the definitions299

as follows.300
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I Definition 3.11. Let C be a class of transition systems and m < ω a number.301

(a) We denote by 'mC the transitive closure of the union ≡m ∪ ∼ restricted to the class C.302

Formally, we define S 'mC T if there exist systems C0, . . . ,Cn ∈ C such that303

C0 = S , Cn = T , and Ci ≡m Ci+1 or Ci ∼ Ci+1 , for all i < n .304
305

(b) We denote by ThmC (S) the set of all MSO-formulae of quantifier-rank m that are306

bisimulation-invariant over C and that are satisfied by S, and we define307

S ≡mC S′ : iff ThmC (S) = ThmC (S′) .308
309

We also set THm
C := {ThmC (S) | S ∈ C } . y310

Note that, up to logical equivalence, there are only finitely many formulae of a given311

quantifier-rank. Hence, each set THm
C is finite and the relations ≡m, ≡mC and 'mC have finite312

index.313

The relation ≡mC is what we aim to understand when proving characterisation results.314

But there is no obvious way to compute it. As an approximation we have introduced the315

relation 'mC , which is defined in terms of relations that we hopefully understand much better.316

Surprisingly, our approximation turns out to be exact.317

I Proposition 3.12. The relations 'mC and ≡mC coincide.318

Proof. Clearly S 'mC T implies S ≡mC T as no bisimulation-invariant MSO-formula of319

quantifier rank at most m can distinguish two 'mC -equivalent transition systems. To prove320

the converse we consider the formulae321

ψC :=
∨{∧

Thm(S)
∣∣ C 'mC S

}
, for C ∈ C .322

323

(This is well-defined since, up to logical equivalence, there are only finitely many m-theories324

and each of them only contains finitely many formulae.) We start by showing that325

T |= ψC iff T 'mC C .326
327

Clearly, T 'mC C implies T |= ψC by definition of ψC. Conversely,328

T |= ψC ⇒ T |= Thm(S) for some S with S 'mC C329

⇒ T ≡m S for some S with S 'mC C330

⇒ T 'mC C .331
332

Furthermore, note that ψC is bisimulation-invariant over C since333

S ∼ T ⇒ S 'mC T ⇒ (S |= ψC ⇔ T |= ψC) .334
335

Thus, ψC is an MSOm-formula that is bisimulation-invariant over C, and it follows that336

S ≡mC T ⇒ (∀C ∈ C)[S |= ψC ⇔ T |= ψC]337

⇒ T |= ψS338

⇒ S 'mC T .339
340

J341

Some of the above composition theorems also hold for the relation 'mC . This is immediate342

if the operation in question also preserves bisimilarity. We mention only two such results.343

The second one will be needed below.344
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I Lemma 3.13. Let C be a class that is closed under disjoint unions.345

A 'mC A′ and B 'mC B′ implies A⊕B 'mC A′ ⊕B′ .346
347

I Proposition 3.14. Let C and D be two classes, S ∈ C a (possibly infinite) transition348

system and let S′ be the system obtained from S by replacing an arbitrary number of attached349

subsystems by subsystems which are 'mD -equivalent. Then S 'mC S′ provided that the class C350

is closed under the operation of replacing attached subsystems in D.351

4 Types352

Our strategy to prove the unravelling property for a class C is as follows. For every quanti-353

fier-rank m, we assign to each tree T a so-called m-type τm(T). We choose the functions τm354

such that we can compute the theory ThmC (C) of a system C ∈ C from the m-type τm(U(C))355

of its unravelling. Furthermore, we need to find MSO-formulae checking whether a tree has a356

given m-type. The formal definition is as follows.357

I Definition 4.1. Let C be a class of transition systems and T the class of all trees.358

(a) A family of type functions for C is a family of functions τm : T → Θm, for m < ω,359

where the co-domains Θm are finite sets and each τm satisfies the following two axioms.360

(S1) τm(U(C)) = τm(U(C′)) implies ThmC (C) = ThmC (C′) , for C,C′ ∈ C .361

(S2) T ∼ T′ implies τm(T) = τm(T′) , for all T,T′ ∈ T .362

(b) A family (τm)m of type functions is definable if, for every θ ∈ Θm, there exists an363

MSO-formula ψθ such that364

(S3) T |= ψθ iff τm(T) = θ , for all trees T .365 y366

Let us start by showing how to prove the unravelling property using type functions. The367

following characterisation theorem can be considered to be the main theoretical result of this368

article.369

I Theorem 4.2. Let C be a class of transition systems and T the class of all trees. The370

following statements are equivalent.371

(1) Over C, bisimulation-invariant MSO coincides with Lµ.372

(2) C has the unravelling property.373

(3) There exists a definable family (τm)m of type functions for C.374

(4) The g(m)-theory of U(C) determines the m-theory of C in the sense that there exist375

functions g : ω → ω and hm : THg(m)
T → THm

C , for m < ω, such that376

hm
(
Thg(m)
T (U(C))

)
= ThmC (C) , for all C ∈ C .377

378

Proof. (1) ⇔ (2) was already proved in Theorem 2.11.379

(2) ⇒ (4) Let m < ω. For every θ ∈ THm
C , we use the unravelling property to find an380

MSO-formula ϕθ that is bisimulation-invariant over trees and satisfies381

C |=
∧
θ iff U(C) |= ϕθ , for C ∈ C .382

383

Let k be the maximal quantifier-rank of these formulae ϕθ. Then384

ThkT (U(C)) = ThkT (U(C′)) implies ThmC (C) = ThmC (C′) .385
386
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Consequently, there exists a function hm : THk
T → THm

C such that387

hm
(
ThkT (U(C))

)
= ThmC (C) .388

389

(4) ⇒ (3) Given hm : THk
T → THm

C , we set390

τm(T) := hm
(
Thg(m)
T (T)

)
.391

392

We claim that (τm)m is a definable family of type functions. For (S1), suppose that393

τm(U(C)) = τm(U(C′)). Then394

ThmC (C) = hm
(
Thg(m)
T (U(C))

)
= hm

(
Thg(m)
T (U(C′))

)
= ThmC (C′) .395

396

For (S2), suppose that T ∼ T′. Then397

Thg(m)
T (T) = Thg(m)

T (T′) , which implies that τm(T) = τm(T′) .398
399

For (S3), set400

ψθ :=
∨{∧

∆
∣∣ ∆ ∈ h−1

m (θ)
}
, for θ ∈ THm

C .401
402

Then403

T |= ψθ iff Thg(m)
T (T) ∈ h−1

m (θ) iff hm
(
Thg(m)
T (T)

)
= θ iff τm(T) = θ .404

405

(3)⇒ (4) Let ψθ, for θ ∈ Θm, be the formulae given by (S3). For each m < ω, let g(m) be406

the maximal quantifier-rank of ψθ, for θ ∈ Θm.407

We start by showing that each ψθ is bisimulation-invariant over trees: given T ∼ T′,408

(S2) implies that409

T |= ψθ iff τm(T) = θ iff τm(T′) = θ iff T′ |= ψθ ,410
411

as desired. By the claim we have just proved, it follows that412

T ≡g(m)
T T′ implies τm(T) = τm(T′) .413

414

Consequently, there exist functions fm : THg(m)
T → Θm such that415

fm
(
Thg(m)
T (U(C))

)
= τm(U(C)) .416

417

By (S1), we can find functions σm : Θm → THm
C such that418

σm(τm(U(C))) = ThmC (C) .419
420

Setting hm := σm ◦ fm it follows that421

hm
(
Thg(m)
T (U(C))

)
= σm

(
fm
(
Thg(m)
T (U(C))

))
= σm

(
τm(U(C))

)
= ThmC (C) .422

423

(4) ⇒ (2) Let ϕ be an MSO-formula of quantifier-rank m that is bisimulation-invariant424

over C. We claim that the formula425

ϕ̂ :=
∨{∧

θ
∣∣ θ ∈ THg(m)

T , ϕ ∈ h−1
m (θ)

}
426
427

has the desired properties. First of all,428

U(C) |= ϕ̂ iff Thg(m)
T (U(C)) = θ for some θ with ϕ ∈ hm(θ)429

iff ϕ ∈ hm
(
Thg(m)
T (U(C))

)
= ThmC (C)430

iff C |= ϕ .431
432

Hence, it remains to show that ϕ̂ is bisimulation-invariant over trees. Let T ∼ T′. Then433

Thg(m)
T (T) = Thg(m)

T (T′) and we have434

T |= ϕ̂ iff ϕ ∈ hm
(
Thg(m)
T (T)

)
iff ϕ ∈ hm

(
Thg(m)
T (T′)

)
iff T′ |= ϕ̂ .435

436
J437
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5 Lassos438

As an application of type functions, we consider a very simple example, the class of lassos.439

Our proof is based on more or less the same arguments as that by Dawar and Janin [8], just440

the presentation differs. A lasso is a transition system consisting of a directed path ending in441

a cycle.442

We allow the borderline cases where the initial path has length 0 or the cycle consists of only443

a single edge.444

To define the type of a lasso, note that we can construct every lasso L from two finite445

paths A and B by identifying three of their end-points.446

A
Bs t

v
u

The paths A and B are uniquely determined by L. We will refer to A as the tail of the lasso447

and to B as the loop. We introduce two kinds of types for lassos, a strong one and a weak448

one.449

I Definition 5.1. The strong m-type of a lasso L with tail A and loop B is the pair450

stpm(L) := 〈α, β〉 , where α := Thm(A•) and β := Thm(B•) .451
452

y453

The strong m-type of a lasso uniquely determines its m-theory.454

I Lemma 5.2. Let L0 and L1 be lassos.455

stpm(L0) = stpm(L1) implies L0 ≡m L1 .456
457

Proof. Let Ai and Bi be the tail and loop of Li. Note that we can write Li in the form458

Li = fusePi

(
〈Ai, siti, Pi〉 ⊕ 〈Bi, uivi, Pi〉

)
,459

460

where si, ti, ui, vi are the respective end-points of Ai and Bi, Pi = {ti, ui, vi} is an additional461

unary predicate marking the vertices to be identified, and fusePi
is the fusion operation that462

identifies all vertices in Pi. Note that Pi is definable by a quantifier-free formula. Hence,463

there exists a quantifier-free interpretation σ such that464

Li = fusePi

(
σ
(
〈A•i 〉 ⊕ 〈B•i 〉

))
.465

466

As disjoint union, quantifier-free interpretations, and fusion are compatible with m-theories,467

it follows that A•0 ≡m A•1 and B•0 ≡m B•1 implies468

L0 = fuseP0

(
σ
(
A•0 ⊕B•0

))
≡m fuseP1

(
σ
(
A•1 ⊕B•1

))
= L1 .469

470
J471
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The problem with the strong type of a lasso L is that we cannot recover it from the472

unravelling of L as the decomposition of U(L) into the parts of L is uncertain. Therefore we473

introduce another notion of a type where this recovery is possible. For this we recall some474

facts from the theory of ω-semigroups.475

Recall that we have noted in Corollary 3.9 that the m-theories of pointed paths form476

a finite semigroup with respect to concatenation. Furthermore, every element a of a finite477

semigroup has an idempotent power aπ, which is defined as the value an where n is the least478

natural number such that an · an = an.479

I Definition 5.3. (a) A factorisation of an infinite path A is a sequence (Ai)i<ω of finite480

paths whose concatenation is A. Such a factorisation has m-type 〈α, β〉 if481

α := Thm(A•0) and β := Thm(A•i ) , for i > 0 .482
483

(b) Two pairs 〈α, β〉 and 〈γ, δ〉 of m-theories are conjugate if there are m-theories ξ and η484

such that485

γδπ = αβπξ , βπ = ξη , and δπ = ηξ .486
487

Being conjugate is an equivalence relation. We denote the equivalence class of a pair 〈α, β〉488

by [α, β].489

(c) The weak m-type of a lasso L with parts A and B is490

wtpm(L) := [α, β] , where α := Thm(A•) and β := Thm(B•) .491
492

(d) Let T be an infinite tree without leaves. The m-type of T is493

τm(T) := [α, β] ,494
495

where α and β is an arbitrary pair ofm-theories such that every branch of T has a factorisation496

of m-type 〈α, β〉. If there is no such pair, we set τm(T) := ⊥. y497

I Lemma 5.4. Let L be the class of all lassos and let L0,L1 ∈ L.498

wtpm(L0) = wtpm(L1) implies L0 'mL L1 .499
500

Proof. Let Ai and Bi be the parts of the lasso Li, and set501

αi := Thm(A•i ) and βi := Thm(B•i ) .502
503

Since the pairs 〈α0, β0〉 and 〈α1, β1〉 are conjugate, there exist m-theories ξ and η such that504

α1β
π
1 = α0β

π
0 ξ , βπ0 = ξη , and βπ1 = ηξ .505

506

Fix exponents k0 and k1 such that βπi = βki
i and let C and D be finite paths with507

ξ = Thm(C•) and η = Thm(D•) .508
509

We construct lassos M0, M1, N0, and N1 as follows. The lasso Mi has the parts510

Ai + Bki
i and Bki

i ,511
512

N0 has the parts513

A0 + Bk0
0 and C + D ,514

515
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and N1 has the parts516

A0 + Bk0
0 + C and D + C .517

518

Then stpm(Mi) = stpm(Ni) and it follows by Lemma 5.2 that519

L0 ∼ M0 ≡m N0 ∼ N1 ≡m M1 ∼ L1 .520
521

J522

To show that the functions (τm)m form a family of type functions, we need the following523

standard facts about factorisations and their types (see, e.g., Section II.2 of [16]).524

I Proposition 5.5. Let A be an infinite path.525

(a) A has a factorisation of type 〈α, β〉, for some α and β.526

(b) If A has factorisations of type 〈α, β〉 and 〈γ, δ〉, then 〈α, β〉 and 〈γ, δ〉 are conjugate.527

Note that these two statements imply in particular that the type τm(T) of a tree T is528

well-defined.529

I Lemma 5.6. The functions (τm)m defined above form a definable family of type functions530

for the class of all lassos.531

Proof. (S1) Suppose that τm(U(L0)) = τm(U(L1)), for two lassos L0 and L1. By Proposi-532

tion 5.5 (b), it follows that533

wtpm(L0) = τm(U(L0)) = τm(U(L1)) = wtpm(L1) .534
535

Hence, the claim follows by Lemma 5.4.536

(S2) Suppose that T ∼ T′ and that every branch of T has a factorisation of type 〈α, β〉.537

Then so does every branch of T′. Hence, τm(T) = τm(T′).538

(S3) Given two m-theories α and β, it is straightforward to write down an MSO-539

formula ψα,β stating that every branch of a tree has a factorisation of type 〈α, β〉. For540

a conjugacy class [α, β], the formula541

ϕ[α,β] :=
∨

〈γ,δ〉∈[α,β]

ψα,β542

543

then states that τm(T) = [α, β]. J544

By Theorem 4.2, it therefore follows that the class of lassos has the unravelling property.545

I Theorem 5.7. The class of all lassos has the unravelling property.546

6 Hierarchical Lassos547

After the simple example in the previous section, let us give a more substantial application548

of the type machinery. We consider hierarchical (or nested) lassos. These are obtained from549

a lasso by repeatedly attaching sublassos to some states. More precisely, a 1-lasso is just an550

ordinary lasso, while inductively a (k + 1)-lasso is obtained from a k-lasso by attaching one551

or more lassos to some of the states. (Each state may have several sublassos attached.)552
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Alternatively, we can obtain a (k + 1)-lasso M from a 1-lasso L by attaching k-lassos. We553

will call this lasso L the main lasso of M.554

The types we use for k-lassos are based on the same principles as those for simple lassos,555

but we have to nest them in order to take the branching of a hierarchical lasso into account.556

I Definition 6.1. Let m < ω and let t : dom(t)→ C be a labelled tree for some finite set C.557

(a) For a branch β of t, we set558

wtpm(β) := [σ, τ ] ,559
560

if β has a factorisation of m-type 〈σ, τ〉. (By Proposition 5.5, this is well-defined.)561

(b) For k < ω, we define562

tp0
m(t) :=

{
wtpm(β)

∣∣ β a branch of t
}
,563

tpk+1
m (t) := tp0

m(TPkm(t)) ,564
565

where TPkm(t) : T → C × P(Θkm) is the tree with labelling566

TPkm(t)(v) :=
〈
t(v), { tpkm(t|u) | u a successor of v }

〉
.567

568

(t(v) is the label of the vertex v and t|u denotes the subtree attached to u.) y569

We will prove that the functions tpkm form a family of type functions. Note that it follows570

immediately from the definition that they satisfy Properties (S2) and (S3).571

I Lemma 6.2. (a) Let M be a k-lasso and N a k′-lasso. Then572

U(M) ∼ U(N) implies tpkm(M) = tpkm(N) .573
574

(b) For every type τ , there exists an MSO-formula ϕ such that575

U(M) |= ϕ iff tpkm(M) = τ .576
577

Thus, to prove that the class of k-lassos has the unravelling property it is sufficient to578

show that tpkm also satisfies Property (S1). We will do so by induction on k. The base case579

of this induction rests on the following lemma.580

I Lemma 6.3. Let Lk be the class of all k-lassos and let M be a k-lasso such that, for every581

vertex v and all branches β and γ starting at a successor of v, we have wtpm(β) = wtpm(γ).582

Then M 'mLk
N, for some 1-lasso N.583

Proof. We prove the claim by induction on k. For k = 1, we can take N := M. Hence,584

suppose that k > 1. By inductive hypothesis, every sublasso attached to the main lasso is585

equivalent to some 1-lasso. Replacing them by these 1-lassos, we may assume that k = 2.586

We start by getting rid of the sublassos attached to the main loop of M. Fix a vertex v587

on the main loop of M and let P be the cycle from v back to v. Let L be a sublasso attached588

to v. By Lemma 5.4, we have L 'mL1
P. Hence, we can replace L by P. Let M′ be the589

2-lasso obtained by these substitutions, let K′ be the main loop of M′ (including all the590

sublassos), and let K′′ be the loop obtained from K′ by removing the sublassos. As every591

sublasso attached to the main loop K′ is isomorphic to K′′, it follows that K′ ∼ K′′. Let M′′ be592

the 2-lasso obtained from M′ by replacing the loop K′ by K′′. Then593

M′′ ∼M′ 'mL1
M .594

595
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It remains to remove the sublassos of M′′ attached to the tail. We prove the claim by596

induction on the number of vertices of M′′ that have sublassos attached. If there are none,597

we are done. Otherwise, let v be the last such vertex, let L be the part of the main lasso that598

is attached to v and let K be some sublasso attached to v. By Lemma 5.4, we have K 'mL1
L.599

Let M′′′ be the 2-lasso obtained from M′′ by replacing all sublassos attached to v by a copy600

of L and let M(4) be the 2-lasso obtained by removing all these sublassos. Then601

M(4) ∼M′′′ 'mL2
M′′ .602

603

As M(4) has one less vertex with sublassos attached, we can use the inductive hypothesis to604

find an 1-lasso N with N 'mL2
M(4) 'mL2

M′′ 'mL2
M. J605

I Proposition 6.4. Let M be a k-lasso and N a k′-lasso. For m ≥ 1,606

tpkm(M) = tpkm(N) implies M 'mLK
N ,607

608

where LK is the class of all K-lassos with K := max(k, k′).609

Proof. We prove the claim by induction on k. First, suppose that k = 1. Then tp1
m(M) =610

tp1
m(N) and m ≥ 1 implies that N satisfies the conditions of Lemma 6.3 (since M does).611

Therefore, we can find some 1-lasso N′ with N′ 'mLK
N. As tp1

m(M) determines wtpm(β),612

where β is the unique branch of U(M), it follows by Lemma 5.4 that M 'mLK
N′ 'mLK

N.613

For the inductive step, suppose that k > 1. Let β and γ be the branches of TPk−1
m (U(M))614

and TPk−1
m (U(N)) that correspond to their main lassos.615

We first consider the case where wtpm(β) = wtpm(γ). For every tpk−1
m -type σ, we pick a616

representative Cσ. Let M′ and N′ be the k-lassos obtained by replacing every sublasso of617

type σ by its representative Cσ. By inductive hypothesis and Proposition 3.14, it follows618

that M 'mLK
M′ and N 'mLK

N′. As the m-types of β and γ are conjugate (including all619

the information about attached sublassos), it follows by Lemma 5.4 that the two lassos620

A and B that correspond to the branches β and γ are 'mL -equivalent, even with the additional621

labelling provided by TPk−1
m . Note that M′ is the k-lasso obtained from A by attaching all622

representatives Cσ as indicated by this labelling, and N′ is obtained from B in the same way.623

By Proposition 3.14 it therefore follows that M′ 'mLK
N′. Consequently,624

M 'mLK
M′ 'mLK

N′ 'mLK
N .625

626

It remains to consider the case where β and γ have different m-types. As M and N have627

the same type, there exists a branch γ′ of TPk−1
m (U(N)) whose m-type is conjugate to that628

of β. We will construct a (k− 1)-lasso N′ 'mLK
N such that tpkm(N′) = tpkm(M) and the main629

lasso of N′ has the same type as γ′. Then the claim follows from the special case proved630

above.631

We construct N′ by choosing a copy of γ′ as its main lasso. For every successor u of a632

vertex v of γ′ that does not itself belong to γ′, we attach a copy of Cσ to the corresponding633

vertex of N′, where σ is the type of the sublasso of N rooted at u. By the definition of tpkm634

it follows that635

tpkm(N′) = tpkm(N) = tpkm(M) ,636
637

as desired. Furthermore, Proposition 3.14 implies that N′ 'mLK
N. J638

Using Theorem 4.2 we now immediately obtain the following statement.639

I Theorem 6.5. For every k, the class of all k-lassos has the unravelling property.640
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7 Reductions641

We would like to define reductions that allow us to prove that a certain class has the642

unravelling property when we already know that some other class has this property. To do643

so, we encode every transition system of the first class by some system in the second one.644

The main example we will be working with is a function % that removes certain attached645

subsystems and uses additional vertex labels to remember the m-theories of all deleted646

system. Up to equivalence of m-theories, we can undo this operation by a function η that647

attaches to each vertex labelled by some m-theory θ some fixed system with theory θ. Let us648

give a general definition of such pairs of maps.649

I Definition 7.1. Let C and D be classes of transition systems and k,m < ω. A function650

% : C → D is a (k,m)-encoding map if there exists a function η : D → C such that651

(E1) %(η(D)) 'kD D , for all D ∈ D .652

(E2) %(C) 'kD %(C′) implies C 'mC C′ , for all C,C′ ∈ C .653

In this case, we call the function η a (k,m)-decoding map for %. y654

Example. Let T be the class of all trees and C ⊇ T any class containing it. The unravelling655

operation U : C → T is an (m,m)-encoding map and the identity function id : T → C the656

corresponding (m,m)-decoding map. For (E1), it is sufficient to note that U(id(T)) = T, for657

every tree T. For (E2), consider two systems S,S′ ∈ C. Then658

U(S) 'mT U(S′) implies S ∼ U(S) 'mC U(S′) ∼ S′ .659
660

Let us note that the two axioms of an encoding map imply dual axioms with the functions661

% and η exchanged.662

I Lemma 7.2. Let η : D → C be a (k,m)-decoding map for % : C → D.663

(E3) η(%(C)) 'mC C , for all C ∈ C .664

(E4) D 'kD D′ implies η(D) 'mC η(D′) , for all D,D′ ∈ D .665

Proof. (E3) By (E1) and (E2),666

%(η(%(C))) 'kD %(C) implies η(%(C)) 'mC C .667
668

(E4) By (E1) and (E2),669

%(η(D)) 'kD D 'kD D′ 'kD %(η(D′)) implies η(D) 'mC η(D′) .670
671

J672

The axioms of an encoding map were chosen to guarantee the property stated in the673

following lemma. It will be used below to prove that encoding maps can be used to transfer674

the unravelling property from one class to another.675

I Lemma 7.3. Let % : C → D a (k,m)-encoding map and η : D → C a (k,m)-decoding map676

for %. For every MSO-formula ϕ of quantifier-rank m that is bisimulation-invariant over C,677

there exists an MSO-formula ϕ̂ of quantifier-rank k that is bisimulation-invariant over D678

such that679

C |= ϕ iff %(C) |= ϕ̂ , for all C ∈ C .680
681
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Proof. By (E2) and Proposition 3.12,682

%(C) ≡kD %(C′) ⇒ %(C) 'kD %(C′)683

⇒ C 'mC C′ ⇒ C ≡mC C′ .684
685

Hence, there exists a function h on MSO-theories such that686

ThmC (C) = h
(
ThkD(%(C))

)
.687

688

We set689

ϕ̂ :=
∨
h−1[Θϕ] ,690

691

where Θϕ is the set of all MSOm-theories containing ϕ. Note that ϕ̂ is bisimulation-invariant692

overD since bisimulation-invariant formulae are closed under boolean operations. Furthermore,693

ϕ̂ has quantifier-rank k and694

%(C) |= ϕ̂ iff h
(
Thk(%(C))

)
∈ Θϕ695

iff ϕ ∈ h
(
Thk(%(C))

)
= ThmC (C) iff C |= ϕ .696

697
J698

It remains to show how to use encoding maps to transfer the unravelling property. Just699

the existence of such a map is not sufficient. It also has to be what we call definable.700

I Definition 7.4. Let C be a class of transition systems.701

(a) A (k,m)-encoding map % : C → D is definable if, for every MSO-formula ϕ that is702

bisimulation-invariant over trees, there exists an MSO-formula ϕ̂ that is bisimulation-invariant703

over trees such that704

U(%(C)) |= ϕ iff U(C) |= ϕ̂ , for all C ∈ C .705
706

(b) We say that C is reducible to a family (Dm)m<ω of classes if there exist a map707

g : ω → ω and, for each m < ω, functions %m : C → Dm and ηm : Dm → C such that %m is a708

definable (g(m),m)-encoding map and ηm a corresponding (g(m),m)-decoding map. y709

(The only reason why we use a family of classes to reduce to, instead of a single one is so710

that we can have the labellings of systems in Dm depend on the quantifier-rank m.)711

I Theorem 7.5. Suppose that C is reducible to (Dm)m<ω. If every class Dm has the unrav-712

elling property, so does C.713

Proof. Let ϕ be bisimulation-invariant over C and letm be its quantifier-rank. By Lemma 7.3,714

there exists an MSO-formula ψ that is bisimulation-invariant over Dm such that715

C |= ϕ iff %m(C) |= ψ , for all C ∈ C .716
717

Using the unravelling property of Dm, we can find an MSO-formula ψ̂ that is bisimulation-718

invariant over trees such that719

D |= ψ iff U(D) |= ψ̂ , for all D ∈ Dm .720
721

Finally, definability of %m provides an MSO-formula ϕ̂ that is bisimulation-invariant over722

trees such that723

U(%m(C)) |= ψ̂ iff U(C) |= ϕ̂ , for all C ∈ C .724
725

Consequently, we have C |= ϕ if, and only if, U(C) |= ϕ̂, for all C ∈ C. J726



xx:18 Bisimulation Invariant MSO in the Finite

8 Finite Cantor–Bendixson rank727

One common property of k-lassos is that the trees we obtain by unravelling them all have728

finite Cantor–Bendixson rank. In this section we will generalise our results to cover transition729

systems with this more general property. The proof below consists in a two-step reduction to730

the class of k-lassos.731

I Definition 8.1. Let T be a finitely branching tree. The Cantor–Bendixson derivative of T732

is the tree T′ obtained from T by removing all subtrees that have only finitely many infinite733

branches. The Cantor-Bendixson rank of a tree T is the least ordinal α such that applying734

α+ 1 Cantor–Bendixson derivatives to T results in an empty tree. The Cantor–Bendixson735

rank of a transition system S is equal to the Cantor–Bendixson rank of its unravelling. y736

We can go from the class of k-lassos to that of systems with bounded Cantor–Bendixson737

rank in two steps.738

I Definition 8.2. (a) A transition system is a generalised k-lasso if it is obtained from a739

finite tree by attaching (one or several) k-lassos to every leaf.740

(b) A transition system T is a tree extension of S if T is obtained from S by attaching741

an arbitrary number of finite trees to some of the vertices. y742

With these two notions we can characterise the property of having bounded Cantor–743

Bendixson rank as follows.744

I Proposition 8.3. Let S be a finite transition system.745

(a) For every k < ω, the following statements are equivalent.746

(1) S has Cantor–Bendixson rank at most k.747

(2) S is bisimilar to a tree extension of a generalised (k + 1)-lasso.748

(b) The following statements are equivalent.749

(1) S has finite Cantor–Bendixson rank.750

(2) S is bisimilar to a tree extension of a generalised k-lasso, for some k < ω.751

(3) Every strongly connected component of S is either a singleton or an induced cycle.752

Proof. (a) follows by induction on k. For k = 0, note that a transition system S has Cantor–753

Bendixson rank 0 if, and only if, its unravelling consists of finitely many infinite branches754

and attached finite subtrees. This is the case if, and only if, S is bisimilar to a tree extension755

of a generalised 1-lasso.756

For k > 0, note that S has Cantor–Bendixson rank at most k if, and only if, in its757

unravelling we can choose finitely many branches such that all subtrees that do not contain758

any of them have Cantor–Bendixson rank at most k − 1. By inductive hypothesis, this is the759

case if, and only if, the unravelling is bisimilar to a tree with finitely many infinite branches760

to which tree extensions of generalised k-lassos are attached at arbitrary vertices. Such a761

structure is bisimilar to a tree extension of a generalised (k + 1)-lasso.762

(b) (1) ⇔ (2) follows by (a).763

(3) ⇒ (2) Suppose that every strongly connected component of S is either a singleton or764

an induced cycle. In the partial order formed by all strongly connected components of S765

(ordered by the reachability relation), fix a chain of maximal length that consists only of766

components that are cycles and let k be its length. By induction on k it follows that we can767

partially unravel S into a tree extension of a generalised k-lasso.768
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(1) ⇒ (3) Suppose that S has a strongly connected component that is not a cycle nor a769

singleton. This component contains a state s with two distinct paths u and v from s back770

to s. (These paths may share vertices.) Consequently, the unravelling of S contains a copy771

{u, v}∗ of the complete binary tree. In particular, it has infinite Cantor–Bendixson rank. J772

To prove the unravelling property for the transition systems of bounded Cantor–Bendixson773

rank, we proceed in two steps. First we consider generalised k-lassos and then their tree774

extensions.775

I Theorem 8.4. For fixed k, the class of all generalised k-lassos has the unravelling property.776

Proof. We show that the class is reducible to a certain class of finite trees. Let Θkm be the777

set of all tpkm-types. It follows by Proposition 6.4 that the tpkm-type of a k′-lasso determines778

whether or not it is in fact a k-lasso. Let Λkm ⊆ Θkm be the subset of all types that correspond779

to k-lassos and let T km be a certain class of finite trees labelled by subsets of Λkm that we will780

define below.781

We start by defining an (m,m)-encoding map %m : Hk → T km as follows. Given a782

generalised k-lasso M, %m(M) is the finite tree obtained from the unravelling U(M) by783

removing all subtrees whose type belongs to Λkm. We label each vertex v by the set of all784

types belonging to one of the removed subtrees attached to v. To define the corresponding785

(m,m)-decoding map ηm : T km → Hk we fix, for every τ ∈ Λkm some k-lasso Cτ of type τ .786

Given a labelled tree T the map ηm attaches to every vertex with label {τ0, . . . , τn−1} copies787

of Cτ0 , . . . ,Cτn−1 . Finally, we chose for T km the image of the map %m.788

We claim that the maps %m and ηm form a definable family of encoding and decoding789

maps. There are three conditions to check.790

(E1) By definition, %m(ηm(T)) = T, for every tree T. (We have to be careful to check791

that %m does not remove more vertices than those added by ηm. But this cannot happen, as792

T ∈ T km, i.e., T is of the form %m(M), for some M.)793

(E2) Let M and N be generalised k-lassos with %m(M) 'mT k
m
%m(N). Then there exists a794

finite sequence T0, . . . ,Tn of trees such that795

T0 = %m(M) , Tn = %m(N) , and Ti ∼ Ti+1 or Ti ≡m Ti+1 ,796
797

for all i < n. Set L0 := M, Ln := N, and Li := ηm(Ti), for 0 < i < n. Then it follows that798

Li ∼ Li+1 or Li ≡m Li+1, for all i < n. Consequently, M 'mHk
N.799

(definability) Note that %m(M) is a subtree of U(M). Since the tpkm-type of a subtree is800

definable in monadic second-order logic, there exists an MSO-formula ψ(x) defining %m(M)801

inside of U(M). Given an MSO-formula ϕ we can therefore use the formula ψ to construct a802

new MSO-formula ϕ̂ such that803

%m(M) |= ϕ iff U(M) |= ϕ̂ .804
805

Furthermore, if ϕ is bisimulation-invariant over the class of all trees, so is ϕ̂. J806

Using this intermediate step, we obtain the following proof for transition systems with807

bounded Cantor–Bendixson rank.808

I Theorem 8.5. The class of all finite transition systems of Cantor–Bendixson rank at809

most k has the unravelling property.810

Proof. First note that according to Lemma 2.12 it is sufficient to prove that the class Ek of811

all tree extensions of generalised k-lassos has the unravelling property. Let Hmk be the class812

of all generalised k-lassos where the vertices are labelled by sets of m-theories.813
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To do so, we present a reduction to the class of generalised k-lassos. Our (m,m)-encoding814

maps %m : Ek → Hmk map a tree extension M to the generalised k-lasso %m(M) obtained by815

removing all attached finite trees. To remember what was deleted, we label every vertex v816

with the set of m-theories of the subtrees that were attached to v. The corresponding (m,m)-817

decoding map ηm : Hmk → Ek simply adds a representative of every m-theory to all vertices818

labelled by this theory.819

To see that %m and ηm form a definable family of encoding and decoding maps, we have820

to check three conditions.821

(E1) We have %m(ηm(M)) = M, for every generalised k-lasso M.822

(E2) Suppose that %m(M) 'mHm
k
%m(N). As in the previous proof we can take a sequence823

of generalised k-lassos witnessing this fact and modify it by reattaching the removed subtrees824

to obtain a sequence witnessing that M 'mEk
N.825

(definability) As the m-theory of a subtree is definable in MSO, we can construct an826

MSO-formula ψ(x) defining %m(M) inside of M. This formula can be used to define U(%m(M))827

inside U(M). J828

I Corollary 8.6. Over the class of all finite transition systems with Cantor–Bendixson rank829

at most k, bisimulation-invariant MSO coincides with Lµ.830

9 Conclusion831

We have shown in several simple examples how to characterise bisimulation-invariant MSO832

in the finite. In particular, we have proved that it coincides with Lµ over833

every finite class (Theorem 2.8),834

the class of all finite trees (Theorem 2.9),835

the classes of all lassos, k-lassos, and generalised k-lassos (Theorems 5.7, 6.5, and 8.4),836

the class of all systems of Cantor–Bendixson rank at most k (Theorem 8.5).837

Our main tool in these proofs was the unravelling property (Theorem 2.11). It will be838

interesting to see how far our methods can be extended to more complicated classes. For839

instance, can they be used to prove the following conjecture?840

Conjecture. If a class C of transition systems has the unravelling property, then so does841

the class of all subdivisions of systems in C.842

A good first step seems to be the class of all finite transition systems that have Cantor–843

Bendixson rank k, for some k < ω that is not fixed.844

In this paper we have considered only transition systems made out of paths with very845

limited branching. To extend our techniques to classes allowing for more branching seems846

to require new ideas. A simple test case that looks promising is the class of systems with847

a ‘lasso-decomposition’ of width k, i.e., something like a tree decomposition but where the848

pieces are indexed by a lasso instead of a tree.849
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