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—— Abstract

We consider bisimulation-invariant monadic second-order logic over various classes of finite trans-

ition systems. We present several combinatorial characterisations of when the expressive power
of this fragment coincides with that of the modal p-calculus. Using these characterisations we
prove for some simple classes of transition systems that this is indeed the case. In particular, we
show that, over the class of all finite transition systems with Cantor-Bendixson rank at most k,
bisimulation-invariant MSO coincides with L.
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1 Introduction

A characterisation of the bisimulation-invariant fragment of a given classical logic relates this
logic to a suitable modal logic. In this way, one obtains a correspondence between a family of
classical logics and a family of modal logics. Such characterisation results therefore help with
ordering the zoo of logics introduced (on both sides) over the years and with distinguishing
between natural and artificial instances of such logics.

The study of bisimulation-invariant fragments of classical logics was initiated by a result
of van Benthem [2] who proved that the bisimulation-invariant fragment of first-order logic
coincides with standard modal logic. Inspired by this work, several other characterisations
have been obtained, the most prominent among them being a characterisation of bisimula-
tion-invariant monadic second-order logic by Janin and Walukiewicz [12]. The table below
summarises the results known so far.

bisimulation-invariant fragment modal logic reference
first-order logic modal logic 2]
monadic second-order logic modal p-calculus [12]
monadic path logic CTL* (14, 15]
weak monadic second-order logic  continuous p-calculus  [5]

weak chain logic PDL [4]

1 Work supported by the Czech Science Foundation, grant No. GA17-01035S
2 Work partially supported by the Excellence Initiative of the German Federal and State Governments
and the Graduate School of Computational Engineering at Technische Universitdt Darmstadt
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Bisimulation Invariant MSO in the Finite

There are also similar characterisations for various variants of bisimulation like guarded
bisimulation [1, 9] or bisimulation for inquisitive modal logic [6].

Researchers in finite model theory started to investigate to which extent these corres-
pondences also hold when only considering finite structures, that is, whether every formula
of a given classical logic that is bisimulation-invariant over the class of all finite transition
systems is equivalent, over that class, to the corresponding modal logic. For first-order logic,
a corresponding characterisation does indeed hold. Its proof by Rosen [17] uses tools from
finite model theory and is very different to the proof by van Benthem.

The above mentioned result by Janin and Walukiewicz on bisimulation-invariant monadic
second-order logic has so far defied all attempts at a similar transfer to the realm of finite
structures. The main reason is that the original proof is based on automata-theoretic
techniques and an essential ingredient is a reduction to trees, via the unravelling operation.
As this operation produces infinite trees, we cannot use it for formulae that are only bisimu-
lation-invariant over finite transition systems.

In this paper we start a fresh attempt at a finitary version of the result of Janin and
Walukiewicz. Instead of automata-theoretic techniques we employ the composition method.
For certain classes of very simple, finite transition systems we characterise the bisimula-
tion-invariant fragments of monadic second-order logic over these classes. Although this
constitutes only modest progress towards the general case, we consider the combinatorial and
logical techniques we develop below to be the main contribution of the present article. We
isolate the combinatorial core of the problem (in form of the unravelling property (Section 2)
and the notion of a family of type functions (Section 4)) and in that way highlight the central
combinatorial problem that needs to be solved to prove the full result.

We start in Section 2 by recalling the needed material on bisimulation and by listing all
known results on bisimulation-invariant monadic second-order logic. We also collect some
low-hanging fruit by proving two new results concerning (i) finite classes and (ii) the class
of all finite trees. Finally, we lay the groundwork for the more involved proofs to follow
by characterising bisimulation-invariance in terms of a combinatorial property called the
unravelling property. In Section 3, we collect some tools from logic we will need. The emphasis
in on so-called composition lemmas. Nothing in this section is new.

Finally we start in Section 4 in earnest by developing the technical machinery our proofs
are based on. Sections 5 and 6 contain our first two applications: characterisations of bisimu-
lation-invariant monadic second-order logic over (i) the class of lassos and (ii) certain classes
of what we call hierarchical lassos. The former is already known and simply serves as an
example of our techniques and to fix our notation for the second result, which is new.

Before presenting our last characterisation result, we develop in Section 7 some additional
technical tools that allow us to reduce one characterisation result to another. This is then
applied in Section 8 to the most complex of our results. We characterise bisimulation-invariant
monadic second-order logic over the class of all transition systems of a given Cantor—Bendixson
rank.

2 Bisimulation-invariance

We consider two logics in this paper: (i) monadic second-order logic (MSO), which is the
extension of first-order logic by set variables and set quantifiers, and (ii) the modal p-calculus
(L,), which is the fixed-point extension of modal logic. A detailed introduction can be found,
e.g., in [10]. Concerning the u-calculus and bisimulation, we also refer to the survey [19].
Transition systems are directed graphs where the edges are labelled by elements of a given
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set A and vertices by elements of some set I. Formally, we consider a transition system as
a structure of the form & = (S, (E,)aca, (Pi)icr, So) where the E, C S x S are (disjoint)
binary edge relations, the P; C S are (disjoint) unary predicates, and sg is the initial state.
We write &, s to denote the transition system obtained from & by declaring s to be the
initial state.

A central notion in modal logic is bisimilarity since modal logics cannot distinguish
between bisimilar systems.

» Definition 2.1. Let & and ¥ be transition systems.
(a) A bisimulation between & and ¥ is a binary relation Z C S x T such that all pairs
s,t) € Z satisfy the following conditions.

(
(prop) s € PS iff te P*, forallicl.

(forth) For each edge (s, s’) € ES | there is some (¢,t') € EY such that (s, ') € Z.
(back) For each edge (t,t') € EX, there is some (s, s') € ES such that (s',#') € Z.

(b) Let sp and ¢y be the initial states of, respectively, & and . We say that & and ¥ are
bisimilar if there exists a bisimulation Z between & and ¥ with (sg,t9) € Z. We denote this
fact by & ~ <.

(c) We denote by U(S) the unravelling of a transition system &. a

The next two observations show that the unravelling operation is closely related to
bisimilarity. In fact, having the same unravelling can be seen as a poor man’s version of
bisimilarity.

» Lemma 2.2. Let & and ¥ be transition systems.
(a) U(G) ~ 6.
(b) & ~ T implies U(S) ~ U(T).

Proof. For (a), note that graph of the canonical homomorphism U(&) — & forms a bisimu-
lation. (b) follows by (a) since U(S) ~ & ~ T ~ U(T). <

As already mentioned modal logics cannot distinguish between bisimilar systems. They
are bisimulation-invariant in the sense of the following definition.

» Definition 2.3. Let C be a class of transition systems.
(a) An MSO-formula ¢ is bisimulation-invariant over C if

S ~% implies G=p & TEe, forall6,TeC.

(b) We say that, over the class C, bisimulation-invariant MSO coincides with L, if,
for every MSO-formula ¢ that is bisimulation-invariant over the class C, there exists an
L, -formula 1 such that

SEe if G6F¢Y, foralG&eC. a

A straightforward induction over the structure of formulae shows that every L,-formula
is bisimulation-invariant over all transition systems. Hence, bisimulation-invariance is a
necessary condition for an MSO-formula to be equivalent to an L,-formula.

The following characterisations of bisimulation-invariant MSO have been obtained so far.
We start with the result of Janin and Walukiewicz.

» Theorem 2.4 (Janin, Walukiewicz [12]). Over the class of all transition systems, bisimula-
tion-invariant MSO coincides with L,,.

xx:3
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Bisimulation Invariant MSO in the Finite

The main step in this theorem’s proof consists in proving the following variant, which
implies the case of all structures by a simple reduction.

» Theorem 2.5 (Janin, Walukiewicz). Quer the class of all trees, bisimulation-invariant MSO
coincides with L,,.

There have already been two attempts at a finitary version. The first one is by Hirsch
who considered the class of all regular trees, i.e., unravellings of finite transition systems.
The proof is based on the fact that a formula is bisimulation-invariant over all trees if, and
only if, it is bisimulation-invariant over regular trees.

» Theorem 2.6 (Hirsch [11]). Over the class of all regular trees, bisimulation-invariant MSO
coincides with L.

The second result is by Dawar and Janin who considered the class of finite lassos, i.e.,
finite paths leading to a cycle. We will present a proof in Section 5 below.

» Theorem 2.7 (Dawar, Janin [8]). Over the class of all lassos, bisimulation-invariant MSO
coincides with L.

In this paper, we will extend this last result to larger classes. We start with two easy
observations. The first one is nearly trivial.

» Theorem 2.8. QOwver every finite class C of finite transition systems, bisimulation-invariant
MSO coincides with L.

Proof. As any two non-bisimilar, finite transition systems can be distinguished by an L,,-
formula (in fact, even by a formula of modal logic, see e.g. [19]), we can pick, for every pair

of non-bisimilar transition systems &,% € C, an L,-formula satisfied by &, but not by ¥.
Let © be the resulting set of formulae. The ©-theory of a transition system & € C is

To(6):={decO|6=0}.
By choice of @ it follows that
T A\To(®) iff T~6&, for&,TeC.
Given an MSO-formula ¢ that is bisimulation-invariant over C, we set
b:=\/{A\To(®)|6eC, 6 p}.

(As O is finite, this is a finite disjunction of finite conjunctions.) Then ¢ € L,, and, for each
S € C, it follows that

GEy iff 6 ~F%F forsomeTelwithTlEe iff GEp. <

The second observation is much deeper, but fortunately nearly all of the work has already
been done by Janin and Walukiewicz.

» Theorem 2.9. Over the class of all finite trees, bisimulation-invariant MSO coincides
with L.
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Proof. We adapt the proof of Janin and Walukiewicz [12] which roughly goes as follows.
For a transition system 901, let M be the tree obtained from the unravelling U (9N) by
duplicating every subtree infinitely many times. Given an MSO-formula ¢, one can use
automaton-theoretic techniques to construct an L,-formula ¢ such that

MEe iff MEY.

This is the contents of Lemma 12 of [12]. Now the claim follows by bisimulation-invariance
since

ME Y iff 53\?)290 iff  MEp.

To make this proof work for finite trees, it is sufficient to modify the construction of
the system M. A closer look at the proof of Lemma 12 reveals that it does not require
infinite branching for M. Tt is enough if we duplicate each subtree sufficiently often, where
the exact number of copies only depends on the formula ¢. (Note that there is a remark
after Corollary 14 of [12] indicating that Janin and Walukiewicz were already aware of this
fact.) <

As a preparation for the more involved characterisation results to follow, we simplify
our task by introducing the following property of a class C of transition systems, which will
turn out to be equivalent to having a characterisation result for bisimulation-invariant MSO
over C.

» Definition 2.10. We say that a class C of transition systems has the unravelling property if,
for every MSO-formula ¢ that is bisimulation-invariant over C, there exists an MSO-formula ¢
that is bisimulation-invariant over trees such that

SEe iff UG)E@, forallGel. N

Using Theorem 2.5, we can reformulate this definition as follows. This version will be our
main tool to prove characterisation results for bisimulation-invariant MSO: it is sufficient to
prove that the given class has the unravelling property.

» Theorem 2.11. A class C of transition systems has the unravelling property if, and only
if, over C bisimulation-invariant MSO coincides with L,,.

Proof. (=) Suppose that C has the unravelling property and let ¢ € MSO be bisimulation-
invariant over C. Then there exists an MSO-formula ¢ that is bisimulation-invariant over
trees and satisfies

SlEe iff UG)E¢@, forallGel.

We can use Theorem 2.5 to find an L,-formula 1 such that
TE¢ iff TEY, foralltrees T.

For & € C, it follows by bisimulation-invariance of L, that
SEe it UG Ee¢ it UG EY f GSEY.

(<) Suppose that, over C, bisimulation-invariant MSO coincides with L,,. To show that
C has the unravelling property, consider an MSO-formula ¢ that is bisimulation-invariant
over C. By assumption, there exists an L,-formula v such that

Sy iff G6EFvY, for&eC.

xx:5
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Bisimulation Invariant MSO in the Finite

Let ¢ be an MSO-formula that is equivalent to 1) over every transition system. As 1 is
bisimulation-invariant over all transition systems, the formula ¢ is bisimulation-invariant
over trees and we have

CEe it 6y ff UGS EY ff UG EP, for all G € C. <

Let us also note the following result, which allows us to extend the unravelling property
from a given class to certain superclasses.

» Lemma 2.12. Let Cy C C be classes such that every system in C is bisimilar to one in Cgp.
If Cy has the unravelling property, then so does C.

Proof. Let ¢ be bisimulation-invariant over C. Then it is also bisimulation-invariant over Cg
and we can find a formula ¢ that is bisimulation-invariant over trees such that

GEy it UG EP, forall G e(ly.

We claim that this formula has the desired properties. Thus, consider a system & € C.
By assumption, we have & ~ &g for some &y € Cy. By Lemma 2.2, it follows that
U(G) ~ U(Sp). Consequently, by bisimulation-invariance of ¢ over C and of ¢ over trees,
we have

SEp iff Goke iff UG)E¢ iff UGS)E¢. <

3 Composition lemmas

We have mentioned above that automata-theoretic methods have so far been unsuccessful
at attacking the finite version of the Janin—Walukiewicz result. Therefore, we rely on the
composition method instead. Let us recall how this method works.

» Definition 3.1. Let & and ¥ be transition systems (or general structures) and m < w a
number. The m-theory Th,,(S) of & is the set of all MSO-formulae of quantifier-rank m
that are satisfied by &. (The quantifier-rank of a formula is its nesting depths of (first-order
and second-order) quantifiers.) We write

6=, T :iff Thy(6)="Thu(T). 4

Roughly speaking the composition method provides some machinery that allows us
to compute the m-theory of a given transition system by breaking it down into several
components and looking at the m-theories of these components separately. This approach is
based on the realisation that several operations on transition systems are compatible with
m-theories in the sense that the m-theory of the result can be computed from the m-theories
of the arguments. Statements to that effect are known as composition theorems. For an
overview we refer the reader to [3] and [13]. Proofs of the following lemmas can be found, for
example, in Section 5.3 of [7]. The following basic operations and their composition theorems
will be used below. We start with disjoint unions.

» Definition 3.2. The disjoint union of two structures A = (A, RY,...,R%) and B =
(B,RE,...,R3) is the structure

AoB:=(AUB, R} URY,..., R%URY, Left, Right)

obtained by forming the disjoint union of the universes and relations of 2 and 8 and adding
two unary predicates Left := A and Right := B that mark whether an element belongs to 2
or to B. If A and B are transition systems, the initial state of A @ B is that of 2. a
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The corresponding composition theorem looks as follows. It can be proved by a simple
induction on m.

» Lemma 3.3. A=, A" and B=,B impliecs ADB =, A OB .
Two other operations we need are interpretations and fusion operations.

» Definition 3.4. An interpretation is an operation 7 on structures that is given by a list
(0(x), (¢r(Z))rex) of MSO-formulae. Given a structure 2, it produces the structure (%)
whose universe consists of all elements of 2 satisfying the formula ¢ and whose relations are
those defined by the formulae ¢r. The quantifier-rank of an interpretation is the maximal
quantifier-rank of a formula in the list. An interpretation is quantifier-free if its quantifier-rank
is 0. J

» Lemma 3.5. Let 7 be an interpretation of quantifier-rank k. Then
A=,06 A implies 7(A) =, 7(A).

» Definition 3.6. Let P be a predicate symbol. The fusion operation fusep merges in a given
structure all elements of the set P into a single element, i.e., all elements of P are replaced
by a single new element and all edges incident with one of the old elements are attached to
the new one instead. _|

» Lemma 3.7. A=, A" implies fusep(A) =, fusep(A’).

Using the composition theorems for these basic operations we can prove new theorems
for derived operations. As an example let us consider pointed paths, i.e., paths where both
end-points are marked by special colours.

» Definition 3.8. We denote the concatenation of two paths 2 and % by 2 + 9B. And we
write 2® for the expansion of a path 2l by two new constants for the end-points. J

» Corollary 3.9. Let 2, ',B,B’ be paths. Then A* =, A'* and B* =,, B'* implies
(A+B)* =, (A +DB')°.

Proof. As the end-points are given by constants, we can construct a quantifier-free inter-
pretation 7 mapping A* & B to (A + B)°. <

Note that, since the concatenation operation is associative, it in particular follows that the
set of m-theories of paths forms a semigroup.

Finally let us mention one more involved operation with a composition theorem. Let
S be a transition system and € C & a subsystem (i.e., an induced substructure of &, but
with possibly a different initial state). We say that € is attached at the state s € S if there is
a unique edge (in either direction) between a state in S\ C' and a state in C and this edge
leads from s to the initial state of €.

» Proposition 3.10. Let & be a (possibly infinite) transition system and let &' be the system
obtained from & by replacing an arbitrary number of attached subsystems by subsystems with
the same m-theories (as the corresponding replaced ones). Then & =, &’.

For a finite system & this statement can be proved in the same way as Corollary 3.9 by
expressing G as a disjoint union followed by a quantifier-free interpretation. For infinite
systems, we need a more powerful version of the disjoint union operation called a generalised
sum (see [18]).

As presented above these tools work with m-theories, which is not quite what we need
since we have to also account for bisimulation-invariance. To do so we modify the definitions
as follows.

xx:7
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Bisimulation Invariant MSO in the Finite

» Definition 3.11. Let C be a class of transition systems and m < w a number.
(a) We denote by ~p" the transitive closure of the union =,, U ~ restricted to the class C.
Formally, we define & ~7* ¥ if there exist systems €, ..., &, € C such that

=6, ¢, =%, and ¢;=,C4; or & ~ €1, foralli<n.

(b) We denote by Thg' (&) the set of all MSO-formulae of quantifier-rank m that are
bisimulation-invariant over C and that are satisfied by &, and we define

S=&  :iff Thi(6) =Thy (6.
We also set THy' := { Thg' (&) | S €C}. N

Note that, up to logical equivalence, there are only finitely many formulae of a given
quantifier-rank. Hence, each set TH¢" is finite and the relations =,,,, =§" and ~§* have finite
index.

The relation =g' is what we aim to understand when proving characterisation results.
But there is no obvious way to compute it. As an approximation we have introduced the
relation ~¢', which is defined in terms of relations that we hopefully understand much better.
Surprisingly, our approximation turns out to be exact.

» Proposition 3.12. The relations ~3' and =3* coincide.

Proof. Clearly & ~7' ¥ implies & =7 T as no bisimulation-invariant MSO-formula of
quantifier rank at most m can distinguish two ~('-equivalent transition systems. To prove
the converse we consider the formulae

e :=\/{A\Th,(6) | ¢~ &}, foreecC.

(This is well-defined since, up to logical equivalence, there are only finitely many m-theories
and each of them only contains finitely many formulae.) We start by showing that

Clearly, T ~7' € implies T |= ¢¢ by definition of ¢¢. Conversely,

TEYe = T ETh,(6) for some G with & ~;' €
= T =, 6 for some G with & ~3' €
= Top

Furthermore, note that ¢ is bisimulation-invariant over C since
G~rT = 6% = BEyYeeTEY).
Thus, ¢ is an MSO,,,-formula that is bisimulation-invariant over C, and it follows that

S='T = (VCel)[6Etee T e

= TEYs
= G %. <

Some of the above composition theorems also hold for the relation ~¢'. This is immediate
if the operation in question also preserves bisimilarity. We mention only two such results.
The second one will be needed below.
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us B Lemma 3.13. Let C be a class that is closed under disjoint unions.

246 A=A and B =B implies ADB ~F A &B'.

347

us > Proposition 3.14. Let C and D be two classes, & € C a (possibly infinite) transition
s system and let &' be the system obtained from & by replacing an arbitrary number of attached
o subsystems by subsystems which are ~-equivalent. Then & ~& &' provided that the class C
s s closed under the operation of replacing attached subsystems in D.

352 4 Types

3 Our strategy to prove the unravelling property for a class C is as follows. For every quanti-
¢ fier-rank m, we assign to each tree ¥ a so-called m-type 7,,(T). We choose the functions 7,
55 such that we can compute the theory Thg'(€) of a system € € C from the m-type 7, (U(Z))
36 of its unravelling. Furthermore, we need to find MSO-formulae checking whether a tree has a
7 given m-type. The formal definition is as follows.

s B Definition 4.1. Let C be a class of transition systems and T the class of all trees.
350 (a) A family of type functions for C is a family of functions 7,, : T — Oy, for m < w,
w0 where the co-domains ©,, are finite sets and each 7, satisfies the following two axioms.

1(S1) 7 (U(€)) = 7, (U(€")) implies Thg'(€) = Thg'(€'), for €, ¢ €C.
2(S2) T ~ % implies 7,(F) =7,(T), forall X, ¥ eT.

363 (b) A family (7,,,)m of type functions is definable if, for every 6 € ©,,, there exists an
s MSO-formula 1y such that

#(S3) T=p iff  7,(%) =6, forall trees T. -
367 Let us start by showing how to prove the unravelling property using type functions. The

e following characterisation theorem can be considered to be the main theoretical result of this
0 article.

s B Theorem 4.2. Let C be a class of transition systems and T the class of all trees. The
s following statements are equivalent.

sz (1) Ower C, bisimulation-invariant MSO coincides with L,,.

w3 (2) C has the unravelling property.

sie (3) There exists a definable family (Tp,)m of type functions for C.

w5 (4) The g(m)-theory of U(E) determines the m-theory of € in the sense that there exist
376 functions g : w = w and hy, : THgT(m) — TH¢', for m < w, such that

7 B (ThE™ (U(€))) = ThE(€),  for all€ € C.

s Proof. (1) & (2) was already proved in Theorem 2.11.
380 (2) = (4) Let m < w. For every 6 € TH{', we use the unravelling property to find an
s MSO-formula ¢y that is bisimulation-invariant over trees and satisfies

382 Qi|:/\9 iff U(Q:)':gog, for€eC.

383

s Let k be the maximal quantifier-rank of these formulae ¢g. Then

5 ThAU(€)) = ThEU(¢')) implies ThZ'(€) = ThZ'(¢').

xx:9
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Consequently, there exists a function h,, : TH];— — THg" such that
o (THE-QU(€)) = THE (@),
(4) = (3) Given h,, : THE: — THZ, we set
T (T) = By (THE™ () .

We claim that (7,,)m, is a definable family of type functions. For (S1), suppose that
Tm(Z/{(Q:)) = Tm(u(q:/))- Then

Th' (€) = hyn (ThE™ (U(€))) = i (THE™ U(E'))) = THE(E) .
For (S2), suppose that T ~ T'. Then
ThY"™ (T) = The"™(T), which implies that 7, (T) = 7 (T') .
For (S3), set
vo:=\/{NA|Aeh;'(0)}, forfec THZ.
Then
Thapp it ThI™(T) € hyl(0) i By (ThE™(T) =0 if  7,(T) = 9.

(3) = (4) Let 9y, for 6 € O,,, be the formulae given by (S3). For each m < w, let g(m) be
the maximal quantifier-rank of vy, for 6 € O,,.

We start by showing that each 1)y is bisimulation-invariant over trees: given ¥ ~ %',
(S2) implies that

Ty iff 7,()=0 iff 7.(T)=0 iff T =4y,
as desired. By the claim we have just proved, it follows that
T EgT(m) T implies 7, (%) = 7 (T').
Consequently, there exist functions f,, : THgT(m) — Oy, such that
Fon (THE™ U(@))) = 70 (U(©))
By (S1), we can find functions oy, : ©,, — TH¢' such that
om(Tm(U(€))) = The'(€).
Setting h,, := oy, o f, it follows that
B (ThE™ (U(€))) = o (fin (TRE™ U(€)))) = 0 (7 (U(€))) = THZ(C) .

(4) = (2) Let ¢ be an MSO-formula of quantifier-rank m that is bisimulation-invariant
over C. We claim that the formula

p:=\{N0|0cTHL™, weh(0))
has the desired properties. First of all,
U Ep iff ThgT(m) (U(€)) = 6 for some O with ¢ € h,,(0)
iff ¢ € by (ThE™ (U(€))) = Th(€)
iff CEe.

Hence, it remains to show that ¢ is bisimulation-invariant over trees. Let ¥ ~ %’. Then
ThgT(m)(f) = Thg-(m) (¥') and we have

The¢ iff  pehn,(Thi™(T) iff  peh,(ThI™(T)) iff TE¢. <
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5 Lassos

As an application of type functions, we consider a very simple example, the class of lassos.
Our proof is based on more or less the same arguments as that by Dawar and Janin [8], just
the presentation differs. A lasso is a transition system consisting of a directed path ending in
a cycle.

We allow the borderline cases where the initial path has length 0 or the cycle consists of only
a single edge.

To define the type of a lasso, note that we can construct every lasso £ from two finite
paths 2 and B by identifying three of their end-points.

The paths 20 and B are uniquely determined by £. We will refer to 2 as the tail of the lasso
and to B as the loop. We introduce two kinds of types for lassos, a strong one and a weak
one.

» Definition 5.1. The strong m-type of a lasso £ with tail 2l and loop B is the pair
stp,, (L) := (a, 8), where «:=Th,,(2A°*) and J:=Th,,(B*). N
The strong m-type of a lasso uniquely determines its m-theory.
» Lemma 5.2. Let £9 and £1 be lassos.
stp,, (Lo) = stp,,(£1) implies £o = £1.
Proof. Let 2; and 9; be the tail and loop of £;. Note that we can write £; in the form
£; = fusep, ((Ql“ siti, B;) @ (B, uv;, R)) ,

where s;, t;, u;, v; are the respective end-points of 2l; and B;, P; = {¢;, u;,v;} is an additional
unary predicate marking the vertices to be identified, and fusep, is the fusion operation that
identifies all vertices in P;. Note that P; is definable by a quantifier-free formula. Hence,
there exists a quantifier-free interpretation o such that

£; = fusep, (o ((A7) ® (BY))) -

As disjoint union, quantifier-free interpretations, and fusion are compatible with m-theories,
it follows that 2§ =, A} and B =, BY implies

£ = fusep, (o (A © BY)) = fusep, (0(AT & BY)) = £ <

xx:11
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The problem with the strong type of a lasso £ is that we cannot recover it from the
unravelling of £ as the decomposition of U (£) into the parts of £ is uncertain. Therefore we
introduce another notion of a type where this recovery is possible. For this we recall some
facts from the theory of w-semigroups.

Recall that we have noted in Corollary 3.9 that the m-theories of pointed paths form
a finite semigroup with respect to concatenation. Furthermore, every element a of a finite
semigroup has an idempotent power a™, which is defined as the value a" where n is the least
natural number such that a” - a™ = a™.

» Definition 5.3. (a) A factorisation of an infinite path 2 is a sequence (2;);<,, of finite
paths whose concatenation is 2. Such a factorisation has m-type {«, 8) if

a:=Th,,(A;) and g:=Th,, (A7), fori>0.

(b) Two pairs («, 8) and (v, d) of m-theories are conjugate if there are m-theories £ and 7
such that

V0" =af"E, BT =&n, and 6T =g,

Being conjugate is an equivalence relation. We denote the equivalence class of a pair {(a, )

by [a, 3].
(¢) The weak m-type of a lasso £ with parts 2 and B is

wtp,, (L) :=[a, 5], where «a:=Th,,(A*) and S :=Th,,(B°).

(d) Let T be an infinite tree without leaves. The m-type of ¥ is

where o and [ is an arbitrary pair of m-theories such that every branch of ¥ has a factorisation
of m-type (a, ). If there is no such pair, we set 7,,,(%) := L. J

» Lemma 5.4. Let L be the class of all lassos and let £y,£1 € L.
wtp,,(Lo) = wtp,,,(£1) implies Lo =7 £;.

Proof. Let 2; and B; be the parts of the lasso £;, and set
a; :=Thy, (A7) and S, := Th,,(B}).

Since the pairs (ag, So) and (a1, 51) are conjugate, there exist m-theories £ and 7 such that
a1 ff = afg€, Py =&n, and BT =n¢.

Fix exponents kg and k; such that g = ﬁf and let € and ® be finite paths with
& =Th,(C*) and n=Th,(®D*).

We construct lassos 9y, M1, No, and Ny as follows. The lasso M; has the parts
A + B and B

Mo has the parts

Ao+ B and €+ D,
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and Ny has the parts
Ao+ B +¢ and D4C.
Then stp,, (9;) = stp,,,(9;) and it follows by Lemma 5.2 that
Lo ~ Mo =5 Mo ~ My = My ~ £4. <
To show that the functions (7)., form a family of type functions, we need the following
standard facts about factorisations and their types (see, e.g., Section I1.2 of [16]).
» Proposition 5.5. Let A be an infinite path.

(a) A has a factorisation of type («, B), for some a and 5.
(b) If 2 has factorisations of type {c, B) and (v,d), then (o, B) and {(v,d) are conjugate.

Note that these two statements imply in particular that the type 7,,(%) of a tree T is
well-defined.

» Lemma 5.6. The functions (Tm)m defined above form a definable family of type functions
for the class of all lassos.

Proof. (S1) Suppose that 7, (U(£o)) = Tm (U(L1)), for two lassos £y and £,. By Proposi-
tion 5.5 (b), it follows that

thm(SO) = Tm(u(£0>) = Tm(u(’gl» = thm(sl) .

Hence, the claim follows by Lemma 5.4.

(S2) Suppose that T ~ T’ and that every branch of ¥ has a factorisation of type (a, 3).
Then so does every branch of ¥’. Hence, 7,,(%) = 7, ().

(S3) Given two m-theories « and S, it is straightforward to write down an MSO-
formula 9, g stating that every branch of a tree has a factorisation of type («, ). For
a conjugacy class [a, (], the formula

Pla,B] = \/ wa,ﬁ
(7:0)€le,B]
then states that 7,,,(%) = [, f]. <
By Theorem 4.2, it therefore follows that the class of lassos has the unravelling property.

» Theorem 5.7. The class of all lassos has the unravelling property.

6 Hierarchical Lassos

After the simple example in the previous section, let us give a more substantial application
of the type machinery. We consider hierarchical (or nested) lassos. These are obtained from
a lasso by repeatedly attaching sublassos to some states. More precisely, a 1-lasso is just an
ordinary lasso, while inductively a (k 4 1)-lasso is obtained from a k-lasso by attaching one
or more lassos to some of the states. (Each state may have several sublassos attached.)

xx:13
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Alternatively, we can obtain a (k + 1)-lasso 9 from a 1-lasso £ by attaching k-lassos. We
will call this lasso £ the main lasso of .

The types we use for k-lassos are based on the same principles as those for simple lassos,
but we have to nest them in order to take the branching of a hierarchical lasso into account.

» Definition 6.1. Let m < w and let ¢ : dom(¢) — C be a labelled tree for some finite set C.
(a) For a branch j of ¢, we set

wtp,, (8) = [o, 7],

if 8 has a factorisation of m-type (o, 7). (By Proposition 5.5, this is well-defined.)
(b) For k < w, we define

tpy, (t) :== { wtp,,(3) | B a branch of ¢ },
tpp () = tph, (TP, (1))

where TP” (t) : T — C x P(6F)) is the tree with labelling
TP, (t)(v) := (t(v), {tpk,(t|.) | u a successor of v }).
(t(v) is the label of the vertex v and t|,, denotes the subtree attached to w.) a

We will prove that the functions tpfn form a family of type functions. Note that it follows
immediately from the definition that they satisfy Properties (S2) and (S3).

» Lemma 6.2. (a) Let M be a k-lasso and N a k'-lasso. Then
UOR) ~UN)  implies tpF, (M) = tpk (N).
(b) For every type T, there exists an MSO-formula ¢ such that
UM = iff tph (M) =7.

Thus, to prove that the class of k-lassos has the unravelling property it is sufficient to
show that tp’ﬁn also satisfies Property (S1). We will do so by induction on k. The base case
of this induction rests on the following lemma.

» Lemma 6.3. Let Ly, be the class of all k-lassos and let M be a k-lasso such that, for every
vertex v and all branches B and 7 starting at a successor of v, we have wtp,, () = wtp,,, (7).
Then M =~ N, for some 1-lasso N.

Proof. We prove the claim by induction on k. For k£ = 1, we can take 91 := 9. Hence,
suppose that £ > 1. By inductive hypothesis, every sublasso attached to the main lasso is
equivalent to some 1-lasso. Replacing them by these 1-lassos, we may assume that k = 2.

We start by getting rid of the sublassos attached to the main loop of 9. Fix a vertex v
on the main loop of M and let P be the cycle from v back to v. Let £ be a sublasso attached
to v. By Lemma 5.4, we have £ ~" 9. Hence, we can replace £ by B. Let M’ be the
2-lasso obtained by these substitutions, let & be the main loop of 9 (including all the
sublassos), and let & be the loop obtained from & by removing the sublassos. As every
sublasso attached to the main loop & is isomorphic to &, it follows that & ~ K”. Let 9M” be
the 2-lasso obtained from 9V by replacing the loop & by &”. Then

M~ M P M.



596

597

598

599

600

601

602
603

604

605

606

607
608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625
626

627

628

629

630

631

632

633

634

635

636
637

638

639

640

A. Blumensath, F. Wolf

It remains to remove the sublassos of MM attached to the tail. We prove the claim by
induction on the number of vertices of 9" that have sublassos attached. If there are none,
we are done. Otherwise, let v be the last such vertex, let £ be the part of the main lasso that

is attached to v and let & be some sublasso attached to v. By Lemma 5.4, we have & ~7" £.

Let 9" be the 2-lasso obtained from 91" by replacing all sublassos attached to v by a copy
of £ and let 9™ be the 2-lasso obtained by removing all these sublassos. Then

9ﬁ<4) ~ " 2212 m

As M™ has one less vertex with sublassos attached, we can use the inductive hypothesis to
find an 1-lasso O with 9 ~7 M) ~m 9" ~7 N, <

» Proposition 6.4. Let 9 be a k-lasso and N a k'-lasso. For m > 1,
tpk (M) = tpk (M) implies M ~7r N,
where Ly is the class of all K-lassos with K := max(k,k').

Proof. We prove the claim by induction on k. First, suppose that k = 1. Then tp} (91) =

tpl, (M) and m > 1 implies that 91 satisfies the conditions of Lemma 6.3 (since M does).
)

Therefore, we can find some 1-lasso 0 with N ~7 N. As tp,, (M) determines wtp,,(5),
where $ is the unique branch of U(90), it follows by Lemma 5.4 that 901 ~7* 9"~

For the inductive step, suppose that & > 1. Let 8 and ~ be the branches of TPf{l(Z/{ (o))
and TPE1(U/(M)) that correspond to their main lassos.

We first consider the case where wtp,, (3) = wtp,, (7). For every tp—!-type o, we pick a
representative €,. Let 9" and 91 be the k-lassos obtained by replacing every sublasso of
type o by its representative €,. By inductive hypothesis and Proposition 3.14, it follows
that M ~7' M and N ~7  N'. As the m-types of 3 and v are conjugate (including all
the information about attached sublassos), it follows by Lemma 5.4 that the two lassos
2l and B that correspond to the branches 3 and «y are ~}'-equivalent, even with the additional
labelling provided by TPﬁ;l. Note that 9V is the k-lasso obtained from 2 by attaching all

representatives €, as indicated by this labelling, and 91 is obtained from 9B in the same way.

By Proposition 3.14 it therefore follows that 90t ~7 9. Consequently,
M~ M N N

It remains to consider the case where 5 and v have different m-types. As 9t and 91 have
the same type, there exists a branch +/ of TP*~1(1/(9)) whose m-type is conjugate to that
of 3. We will construct a (k — 1)-lasso N ~}' 9 such that tpk, (M) = tpk (M) and the main
lasso of 9V has the same type as 7/. Then the claim follows from the special case proved
above.

We construct 9t by choosing a copy of 7/ as its main lasso. For every successor u of a
vertex v of 7' that does not itself belong to 7/, we attach a copy of €, to the corresponding
vertex of 9V, where o is the type of the sublasso of 91 rooted at w. By the definition of tpﬁm
it follows that

6P () = tpiy, () = tpyy, (M) ,
as desired. Furthermore, Proposition 3.14 implies that 9t ~7 . O |
Using Theorem 4.2 we now immediately obtain the following statement.

» Theorem 6.5. For every k, the class of all k-lassos has the unravelling property.

xx:15
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7 Reductions

We would like to define reductions that allow us to prove that a certain class has the
unravelling property when we already know that some other class has this property. To do
so, we encode every transition system of the first class by some system in the second one.
The main example we will be working with is a function ¢ that removes certain attached
subsystems and uses additional vertex labels to remember the m-theories of all deleted
system. Up to equivalence of m-theories, we can undo this operation by a function 7 that
attaches to each vertex labelled by some m-theory 6 some fixed system with theory 6. Let us
give a general definition of such pairs of maps.

» Definition 7.1. Let C and D be classes of transition systems and k,m < w. A function
0:C — Dis a (k,m)-encoding map if there exists a function n : D — C such that

sdE1) o(n(D)) =5 D, foral® € D.
s{E2) 0o(€) =% o(¢’) implies €~m ¢, foral €, ¢ €C.

654

655

656

657

658

663

In this case, we call the function n a (k, m)-decoding map for o. J

Example. Let T be the class of all trees and C D 7 any class containing it. The unravelling
operation U : C — T is an (m, m)-encoding map and the identity function id : 7 — C the
corresponding (m, m)-decoding map. For (E1), it is sufficient to note that ¢ (id(%)) = %, for
every tree . For (E2), consider two systems &,&’ € C. Then

UB) ~F U(S') implies & ~US)~p UG ) ~E .

Let us note that the two axioms of an encoding map imply dual axioms with the functions
o and n exchanged.

» Lemma 7.2. Letn: D — C be a (k,m)-decoding map for o:C — D.

wd E3) n(o(€)) =@ €, forallCeC.
o B4) D =~k D implies n(D) =2 n(D'), forall D,D' €D.

666

667
668

669

L6
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674

675

676
677
678

679

Proof. (E3) By (E1) and (E2),
o(n(0(€))) ~p 0(€) implies n(o(€)) ~¢' €.
(E4) By (E1) and (E2),
o(n(®)) ~p D ~p D' =4, o(n(D)) implies (D) =g (D). <

The axioms of an encoding map were chosen to guarantee the property stated in the
following lemma. It will be used below to prove that encoding maps can be used to transfer
the unravelling property from one class to another.

» Lemma 7.3. Let 9:C — D a (k,m)-encoding map and n: D — C a (k,m)-decoding map
for o. For every MSO-formula ¢ of quantifier-rank m that is bisimulation-invariant over C,
there exists an MSO-formula ¢ of quantifier-rank k that is bisimulation-invariant over D
such that

CEe it 0@ ¢, foradl€eCl.
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2 Proof. By (E2) and Proposition 3.12,

683 0o(@) =K o(¢) = o(€) ~K o(¢)
684 = ¢ Zén Cl = ¢ Egl Cl .

es Hence, there exists a function h on MSO-theories such that

g THE(Q) = h(Thh(e(@))).

688

60 We set
90 ¢:=\/h'O,],

s2  where O, is the set of all MSO,,,-theories containing ¢. Note that ¢ is bisimulation-invariant
63 over D since bisimulation-invariant formulae are closed under boolean operations. Furthermore,
ss » has quantifier-rank k& and

o€ E¢ iff  h(Th(e(€))) €O,
%0 iff € h(Thi(o(@))) = Th(¢) iff € Eo. <«

697
699 It remains to show how to use encoding maps to transfer the unravelling property. Just

w0 the existence of such a map is not sufficient. It also has to be what we call definable.

o1 » Definition 7.4. Let C be a class of transition systems.

702 (a) A (k,m)-encoding map ¢ : C — D is definable if, for every MSO-formula ¢ that is
703 bisimulation-invariant over trees, there exists an MSO-formula ¢ that is bisimulation-invariant
74 over trees such that

705 Z/{(g(Qi)) ': © iff Z/[(Qﬁ) ': p, forall€eC.

706

707 (b) We say that C is reducible to a family (Dp,)m<. of classes if there exist a map
08 ¢ :w — w and, for each m < w, functions g, : C = D,,, and 1., : Dy, — C such that g, is a
w0 definable (g(m), m)-encoding map and 7, a corresponding (g(m), m)-decoding map. J

7m0 (The only reason why we use a family of classes to reduce to, instead of a single one is so
m  that we can have the labellings of systems in D,,, depend on the quantifier-rank m.)

n2 » Theorem 7.5. Suppose that C is reducible to (Dy)m<w- If every class Dy, has the unrav-
ns  elling property, so does C.

na  Proof. Let ¢ be bisimulation-invariant over C and let m be its quantifier-rank. By Lemma 7.3,
715 there exists an MSO-formula v that is bisimulation-invariant over D,, such that

7 CkE¢ iff 0n(¢) v, forall€eC.

ns  Using the unravelling property of D,,,, we can find an MSO-formula v that is bisimulation-
79 invariant over trees such that

720 DEy iff UD)EY, forall® eD,,.

721

72 Finally, definability of p,, provides an MSO-formula ¢ that is bisimulation-invariant over
723 trees such that

s Ulom(€) =1 iff  UQ) =@, forall¢eC.

26 Consequently, we have € |= ¢ if, and only if, U () = ¢, for all € € C. <
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8 Finite Cantor—Bendixson rank

One common property of k-lassos is that the trees we obtain by unravelling them all have
finite Cantor-Bendixson rank. In this section we will generalise our results to cover transition
systems with this more general property. The proof below consists in a two-step reduction to
the class of k-lassos.

» Definition 8.1. Let ¥ be a finitely branching tree. The Cantor—Bendixson derivative of
is the tree T’ obtained from T by removing all subtrees that have only finitely many infinite
branches. The Cantor-Bendizson rank of a tree ¥ is the least ordinal a such that applying
a + 1 Cantor—Bendixson derivatives to ¥ results in an empty tree. The Cantor—Bendizson
rank of a transition system & is equal to the Cantor—-Bendixson rank of its unravelling.

We can go from the class of k-lassos to that of systems with bounded Cantor—Bendixson
rank in two steps.

» Definition 8.2. (a) A transition system is a generalised k-lasso if it is obtained from a
finite tree by attaching (one or several) k-lassos to every leaf.

(b) A transition system ¥ is a tree extension of & if T is obtained from & by attaching
an arbitrary number of finite trees to some of the vertices. a

With these two notions we can characterise the property of having bounded Cantor—
Bendixson rank as follows.

» Proposition 8.3. Let G be a finite transition system.
(a) For every k < w, the following statements are equivalent.

(1) & has Cantor—Bendizson rank at most k.
(2) & is bisimilar to a tree extension of a generalised (k + 1)-lasso.

(b) The following statements are equivalent.

(1) & has finite Cantor—Bendizson rank.
(2) 6 is bisimilar to a tree extension of a generalised k-lasso, for some k < w.
(3) Ewery strongly connected component of & is either a singleton or an induced cycle.

Proof. (a) follows by induction on k. For k = 0, note that a transition system & has Cantor—
Bendixson rank 0 if, and only if, its unravelling consists of finitely many infinite branches
and attached finite subtrees. This is the case if, and only if, & is bisimilar to a tree extension
of a generalised 1-lasso.

For k£ > 0, note that & has Cantor-Bendixson rank at most k if, and only if, in its
unravelling we can choose finitely many branches such that all subtrees that do not contain
any of them have Cantor-Bendixson rank at most £ — 1. By inductive hypothesis, this is the
case if, and only if, the unravelling is bisimilar to a tree with finitely many infinite branches
to which tree extensions of generalised k-lassos are attached at arbitrary vertices. Such a
structure is bisimilar to a tree extension of a generalised (k + 1)-lasso.

(b) (1) & (2) follows by (a).

(3) = (2) Suppose that every strongly connected component of & is either a singleton or
an induced cycle. In the partial order formed by all strongly connected components of &
(ordered by the reachability relation), fix a chain of maximal length that consists only of
components that are cycles and let k be its length. By induction on k it follows that we can
partially unravel G into a tree extension of a generalised k-lasso.
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(1) = (3) Suppose that & has a strongly connected component that is not a cycle nor a
singleton. This component contains a state s with two distinct paths v and v from s back
to s. (These paths may share vertices.) Consequently, the unravelling of & contains a copy
{u,v}* of the complete binary tree. In particular, it has infinite Cantor-Bendixson rank. <

To prove the unravelling property for the transition systems of bounded Cantor—Bendixson
rank, we proceed in two steps. First we consider generalised k-lassos and then their tree
extensions.

» Theorem 8.4. For fized k, the class of all generalised k-lassos has the unravelling property.

Proof. We show that the class is reducible to a certain class of finite trees. Let ©F, be the
set of all tpX -types. It follows by Proposition 6.4 that the tp® -type of a k’-lasso determines
whether or not it is in fact a k-lasso. Let AX, C OF be the subset of all types that correspond
to k-lassos and let 7,X be a certain class of finite trees labelled by subsets of A* that we will
define below.

We start by defining an (m, m)-encoding map o,, : Hp — T,F as follows. Given a
generalised k-lasso M, 0., (9N) is the finite tree obtained from the unravelling U (M) by
removing all subtrees whose type belongs to A% . We label each vertex v by the set of all
types belonging to one of the removed subtrees attached to v. To define the corresponding

(m, m)-decoding map n,, : T,¥ — H;, we fix, for every 7 € A¥ some k-lasso €, of type 7.

Given a labelled tree T the map n,, attaches to every vertex with label {7y, ..., 7,_1} copies
of €,,...,¢, . Finally, we chose for T,* the image of the map g,,.

We claim that the maps g,, and 7, form a definable family of encoding and decoding
maps. There are three conditions to check.

(E1) By definition, o, (nm (%)) = T, for every tree T. (We have to be careful to check
that o,, does not remove more vertices than those added by 7,,. But this cannot happen, as
T €Tk ie., Tis of the form g, (M), for some M.)

(E2) Let 2 and N be generalised k-lassos with g,, (90) z% 0m (7). Then there exists a
finite sequence Ty, ..., T, of trees such that

To=0m(M), Tpn=0,nM), and T ~F;1;orT; =, Tigr,

for all 4 < n. Set £y := M, £, :=N, and £; := 0, (T;), for 0 < i < n. Then it follows that
L~ Liv1or £ =, £i41, for all i < n. Consequently, 90t ~3, N

(definability) Note that o,,(9%) is a subtree of U (90). Since the tp¥ -type of a subtree is
definable in monadic second-order logic, there exists an MSO-formula ¢ (z) defining g, (9M)
inside of U (). Given an MSO-formula ¢ we can therefore use the formula 1 to construct a
new MSO-formula ¢ such that

om(M) E@ i U 0.
Furthermore, if ¢ is bisimulation-invariant over the class of all trees, so is ¢. |

Using this intermediate step, we obtain the following proof for transition systems with
bounded Cantor-Bendixson rank.

» Theorem 8.5. The class of all finite transition systems of Cantor—Bendizson rank at
most k has the unravelling property.

Proof. First note that according to Lemma 2.12 it is sufficient to prove that the class & of
all tree extensions of generalised k-lassos has the unravelling property. Let H}* be the class
of all generalised k-lassos where the vertices are labelled by sets of m-theories.
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Bisimulation Invariant MSO in the Finite

To do so, we present a reduction to the class of generalised k-lassos. Our (m, m)-encoding
maps o, : & — H}' map a tree extension 91 to the generalised k-lasso gy, (9) obtained by
removing all attached finite trees. To remember what was deleted, we label every vertex v
with the set of m-theories of the subtrees that were attached to v. The corresponding (m, m)-
decoding map n,, : H* — & simply adds a representative of every m-theory to all vertices
labelled by this theory.

To see that g, and 7, form a definable family of encoding and decoding maps, we have
to check three conditions.

(E1) We have gy, (7, (9)) = 9N, for every generalised k-lasso 9.

(E2) Suppose that g, (90N) 22? 0m (7). As in the previous proof we can take a sequence
of generalised k-lassos witnessing this fact and modify it by reattaching the removed subtrees
to obtain a sequence witnessing that 9t ~g 9.

(definability) As the m-theory of a subtree is definable in MSO, we can construct an
MSO-formula () defining o, (90) inside of 9. This formula can be used to define U (9., (9M))
inside U (91). <

» Corollary 8.6. Over the class of all finite transition systems with Cantor—Bendizson rank
at most k, bisimulation-invariant MSO coincides with L, .

9 Conclusion

We have shown in several simple examples how to characterise bisimulation-invariant MSO
in the finite. In particular, we have proved that it coincides with L, over

every finite class (Theorem 2.8),

the class of all finite trees (Theorem 2.9),

the classes of all lassos, k-lassos, and generalised k-lassos (Theorems 5.7, 6.5, and 8.4),
the class of all systems of Cantor—Bendixson rank at most k (Theorem 8.5).

Our main tool in these proofs was the unravelling property (Theorem 2.11). It will be
interesting to see how far our methods can be extended to more complicated classes. For
instance, can they be used to prove the following conjecture?

Conjecture. If a class C of transition systems has the unravelling property, then so does
the class of all subdivisions of systems in C.

A good first step seems to be the class of all finite transition systems that have Cantor—
Bendixson rank k, for some k < w that is not fixed.

In this paper we have considered only transition systems made out of paths with very
limited branching. To extend our techniques to classes allowing for more branching seems
to require new ideas. A simple test case that looks promising is the class of systems with
a ‘lasso-decomposition’ of width k, i.e., something like a tree decomposition but where the
pieces are indexed by a lasso instead of a tree.
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