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Abstract

Conway games are a type of partisan combinatorial game between two play-
ers. We give an exposition of (possibly non-well-founded) Conway games
based on a simple graphmodel. We consider every infinite play to be a draw.
In this formalismwe prove determinacy of Conway games. We similarly for-
malise positional games – another type of game – and show how the two
types of games can be reduced to each other.
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Introduction

A Conway game is a combinatorial game between two players. The players
alternate in making a move and when a player whose turn it is cannot make
a move, he loses. It is a partisan game – in every position the possible moves
of each player can be different.

Conway gameswere first introduced by JohnHortonConway in his book
On numbers and games [1]. He studied well-founded games – that is, games
in which there can be no infinite plays. In this thesis, however, we allow the
games to be non-well-founded. The possibility of an infinite play gives rise
to a new result – we consider every infinite play to be a draw.

Conwaygames can beused tomodelmany abstract strategy board games,
such as chess or go, where the players alternate in making a move. Funda-
mental rules of these board games often allow for an infinite play by rep-
etition of positions. For instance, in chess an infinite play is considered to
be a draw and some additional rules have been introduced to stop a play
that would go indefinitely. Non-well-founded Conway games where every
infinite play is a draw are a goodmathematical model for such board games.

Admittedly, many abstract strategy board games are too complex; opti-
mal strategies cannot be found in a reasonable time by analysing a corre-
sponding combinatorial game, and machine learning algorithms are used
instead to approximate optimal strategies.

Among other possible applications, combinatorial games can be used for
model checking for various logics. The basic idea is to reduce the question
of whether a logical formula is true in a given structure to the question of
whether there exists a winning strategy for one of the players in an associ-
ated combinatorial game. For instance, a model-checking game for a first-
order logic problem is played by two players V and F. V tries to prove that
the formula is true in the given structure, her moves correspond to choos-
ing values for existentially quantified variables, whereas F chooses values
for universally quantified variables and tries to prove that the formula is
not true [2].

One of the ways to extend the theory of Conway games to non-well-
founded Conway games is by coalgebraic methods [3]. In this thesis, how-
ever, we aim to give a simpler exposition of (possibly non-well-founded)
Conway games based on a graph model.

In the first chapter we introduce Conway games as oriented graphs and
provide basic definitions. The players move between vertices along edges.
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The graphs can be arbitrary, we do not require them to be finite nor acyclic;
some graphs therefore correspond to non-well-founded games.

In the second chapter we introduce winning and losing regions (that is,
the sets of positions in which players can win, respectively cannot avoid to
lose). Then we prove a few auxiliary theorems needed in the third chapter.

In the third chapter we prove determinacy of Conway games – for every
Conway game exactly one of the following three statements holds: (i) the
starting player has a winning strategy, (ii) the other player has a winning
strategy, (iii) both players have a non-losing strategy.

In the fourth chapter we introduce another type of game between two
players – positional games. They are also defined in terms of a simple graph
model.

In the fifth chapter we connect the two types of games. We define reduc-
tions of Conway games to positional games and vice-versa.
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1 Conway games as graphs

In this chapter we introduce Conway games. We define basic terms and
show a few examples of simple Conway games.

1.1 Basic definitions

There are two players in Conway games playing against each other. Formally,
players are numbers.

Definition 1.1.1 (Players). A player p is a number from {1, 2}.

Notation. Let p be a player. We will write p for the other player.

Definition 1.1.2 (Conway game). A Conway game is a tuple (V, E1, E2, q, z)
where V is a set of positions, E1, E2 ⊆ V × V are sets of moves of Player 1,
respectively moves of Player 2, q ∈ V is the starting position, and z ∈ {1, 2} is
the starting player.

A game represents an initial setup. Given a game we can define a play
of the game. A play is a sequence of positions. It starts in the starting po-
sition, the starting player makes the first move, then both players alternate
in making a move (the possible moves of a player p are determined by the
current position and by Ep). If the play is finite, then the player whose turn
it is in the last position has no move to make (that is, a play cannot end in a
situation in which a further development is possible).

Now we give a formal definition.

Definition 1.1.3 (Play of a Conway game). Let 𝒢 = (V, E1, E2, q, z) be a
Conway game.

A play of 𝒢 is any sequence of positions (pi)
n
i=1 where n ∈ N+ ∪ {ω} 1,

such that all the following statements hold.

∙ p1 = q.
∙ for every odd m ∈ N such that m < n we have (pm, pm+1) ∈ Ez.
∙ for every even m ∈ N+ such that m < n we have (pm, pm+1) ∈ Ez.
∙ if n ∈ N, then there is no v ∈ V such that (pn, v) ∈ E((n+z) mod 2)+1.

1. N+ denotes the set of all natural numbers except zero (whereas N does include zero), ω
the least infinite ordinal.
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1. Conway games as graphs

Notation. Given a player p, when we say that it is p’s turn in a position pi in
the given play P = (pi)

n
i=1, we mean that it is p’s turn in the i-th position of

P (that is, i ≡ z + p (mod2) where z is the starting player). It can be any
player’s turn in pi when it appears in j-th position of P for some j ̸= i.

Figure 1.1: A simple well-founded Conway game 𝒢

a

b

c

d
2

1, 2

1

2

1, 2

Example. The game in Figure 1.1 is formally the following tuple.

𝒢 = ({a, b, c, d}, {(a, b), (a, c), (c, d)}, {(a, b), (b, c), (c, d)}, a, 1)

The vertices in the graphdepict the positions. The edges depict themoves.
The information of “to which player does amove belong” is conveyed by the
labels of the edges. When both players have the same move, we draw them
a common edge. Wemark the starting vertex by an arrow pointing to it with
no beginning vertex. It is labeled by the player who does not start (one can
imagine that this player makes the zeroth move to the starting vertex).

The possible plays of 𝒢 are P = (a, b, c, d) and P′ = (a, c, d).
P′ is a losing play for Player 1, as it is 1’s turn in the end. However, she

has a winning strategy. If she moves from a to b in her first move, she will
win – the winning play is P. The terms strategy,winning play, etc. are defined
later in this chapter. We took the liberty of using them here, before defining
them, as they are intuitively intelligible.
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1. Conway games as graphs

Figure 1.2: A simple non-well-founded Conway game 𝒢 ′
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Example. In Figure 1.2we added the edge (b, a) for Player 2 to Figure 1.1. The
cycle induces the possibility of an infinite play of the game 𝒢 ′. Now there are
infinitely many possible plays, among which there is P = (ab)ω. P is a draw
because it is infinite. In terms of strategies, both players have a non-losing
strategy, no player has a winning strategy.

Definition 1.1.4 (Positional strategy). Let 𝒢 = (V, E1, E2, q, z) be a Conway
game and p a player.

A positional strategy of p for 𝒢 is a partial function S : V → V such that
for every position v on which S is defined we have (v, S(v)) ∈ Ep, and for
every position v on which S is not defined, there is no position w such that
(v, w) ∈ Ep.

Notation. We will abbreviate the term positional strategy and use the term
strategy instead.

Note. A strategy is a recipe for how to play. As defined in Definition 1.1.3,
no play ends when a further development is still possible. This is why we
demand in the definition of a strategy that players cannot just give up (make
no move in a position in which they can make a move).
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1. Conway games as graphs

Notation. When the Conway game 𝒢 is apparent from the context, we will
only say “a strategy of p”, instead of “a strategy of p for 𝒢”.

Note. Our terminology is not standard. A strategy usuallymeans a recipe de-
scribingwhere tomove depending on the position and the history (that is, the
sequence of already visited positions). We will call such a strategy a general
strategy2. This concept is especially important when the winning condition
is specified in such a way that some infinite plays are winning for one of the
players (in which case one of the players might have, for instance, a winning
general strategy but no winning positional strategy). In our case, however,
positional strategies are “sufficiently strong”. That is, regardless of whether
we define strategies to take into account the history or not, the existence of
winning and non-losing strategies will be the same for every Conway game.
An argument for this is given later in the proof of Theorem 3.2.2; it is a con-
sequence of determinacy of Conway games.

Definition 1.1.5 (Play conforming to a strategy). Let 𝒢 be a Conway game,
p a player, S a strategy of p, and P = (pn)n

i=1 a play of 𝒢.
We say that P conforms to S iff for every position pi in P in which it is p’s

turn we have i = n or S(pi) = pi+1.

Definition 1.1.6 (Play conforming to strategies of both players). Let 𝒢 be a
Conway game, P = (pn)n

i=1 a play of 𝒢, S a strategy of Player 1, and S′ a
strategy of Player 2.

Then S ∘ S′ = S′ ∘ S is the unique play conforming to both S and S′.

Note. It is easy to prove by induction that, given a strategy for each player,
there exists a play conforming to both strategies and that it is unique. The
first position in it is q. The even positions are uniquely determined by the
strategy of the starting player and by the previous position. The odd posi-
tions except for the first one are uniquely determined by the strategy of the
other player and by the previous position. Therefore, there cannot be several
such plays. The requirements of the two strategies do not overlap. The strat-
egy of the starting player determines only the even positions, the strategy of
the other player determines only the odd positions except for the first one,
which is q. Therefore, there exists such a play.

2. One of the ways of defining both terms is to first define a general strategy, and then define
a positional strategy as a special case of general strategy [3].
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1. Conway games as graphs

Definition 1.1.7 (Draw, losing and winning play). Let 𝒢 = (V, E1, E2, q, z)
be a Conway game, p a player, and P = (pi)

n
i=1 a play of 𝒢.

We say that P is a draw iff n = ω. P is winning for p iff n ∈ N and
p ≡ (n + z) (mod2). P is losing for p iff n ∈ N and P is not winning for p.

Note. Note that for a game 𝒢 and a play P we can decide the result of P solely
from its length. If P is infinite, the result is a draw. If the length of P is even,
the starting player wins (because it is the other player whose turn it is in the
last position). If the length of p is odd, the player who does not start wins.

Note. Clearly, a play is winning for one of the players iff it is losing for the
other one.

Definition 1.1.8 (Winning and non-losing strategy). Let 𝒢 be a Conway
game, p a player, and S a strategy of p.

We say that S is non-losing (winning) iff every play of 𝒢 conforming to S
is non-losing (winning) for p.

7



2 Winning and losing regions of Conway games

2.1 Winning and losing regions

Notation. When the game 𝒢 = (V, E1, E2, q, z) is apparent from the context,
we will use the following term for a more comfortable expression. The game
when a player p starts in a position v means the game (V, E1, E2, v, p).

For a given Conway game, the winning (losing) region of a player p is
the set of those positions v in which p has a winning (has no non-losing)
strategy when p starts in v. By determinacy (Theorem 3.1.2), the losing re-
gion of p is the set of those positions v in which p has a winning strategy
when p starts in v.

Positions in which a player p has a winning strategy are therefore in two
sets – in thewinning region of p (p canwin in these positionswhen he starts)
and in the losing region of p (p can win in these positions when p starts).
Similarly, positions in which a player has no non-losing strategy are in two
sets.

Definition 2.1.1 (Winning and losing regions of a Conway game). Let 𝒢 =
(V, E1, E2, q, z) be a Conway game and p a player. We define

W(p)
𝒢 = {v ∈ V | p has a winning strategy for (V, E1, E2, v, p)},

L(p)
𝒢 = {v ∈ V | p has no non-losing strategy for (V, E1, E2, v, p)}.

We call W(p)
𝒢 (L(p)

𝒢 ) the winning (losing) region of p.

The definition of the regions is not constructive. In the following section
we show how it is possible to construct the regions.

2.2 Constructive winning and losing regions

Wewill define a constructive version of the regions below which provides a
powerful insight for studying the existence ofwinning and non-losing strate-
gies. In particular, it will help us prove determinacy in the next chapter.

Notation. For a Conway game 𝒢 = (V, E1, E2, q, z) and a player p, we will
omit the subscript 𝒢 in the notation of the regions. Instead of L(p)

𝒢 , W(p)
𝒢 we

will write L(p), W(p). We will use the subscript for defining new sets of posi-
tions. (If 𝒢 was not clear from the context, we would need two subscripts.)
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2. Winning and losing regions of Conway games

Definition 2.2.1 (Constructive regions). Let p be a player and n ∈ ON 1.
We define

W(p)
n = {v ∈ V | there exist2 m < n and w ∈ L(p)

m such that (v, w) ∈ Ep},

L(p)
n = {v ∈ V | for every w ∈ V such that (v, w) ∈ Ep we have w ∈ W(p)

n }.

Note. Note that W(p)
0 is the empty set because there is no ordinal m < 0.

L(p)
0 is the set of those positions in which p has nomove (otherwise there

would have to be some w ∈ W(p)
0 , but W(p)

0 is empty).
For n ∈ N+, W(p)

n is the set of those positions in which p can win when
he starts, making no more than n moves. L(p)

n is the set of those positions in
which p is losing when he starts and cannot make more than n moves when
p plays to win as fast as possible.

Note. Trivially, for every Conway game 𝒢, all i, j ∈ ON such that i < j, and
every player p we have W(p)

i ⊆ W(p)
j and L(p)

i ⊆ L(p)
j .

Figure 2.1: A simple Conway game

a

b c

2

1, 2

1, 2

1

1. ON denotes the class of all ordinal numbers.
2. In similar cases we do not mention the obvious domain of m, which is ON.
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2. Winning and losing regions of Conway games

Example. We look at thewinning and losing constructive regions of the game
in Figure 2.1.

L(1)
n = ∅, W(2)

n = ∅ for every n ∈ ON,

W(1)
0 = ∅, L(2)

0 = {c}, W(1)
1 = {b}, L(2)

1 = {c, a}, W(1)
2 = {b, c},

L(2)
n = W(1)

n+1 = {a, b, c} for every n ∈ ON such that n > 1.

We can also see that W(1) = L(2) = {a, b, c} and W(2) = L(1) = ∅ by
analysing the game in terms of the existence of winning and non-losing
strategies. In this simple game, every player has only one strategy. The strate-
gies are:

S1 = {(a, b), (b, c), (c, a)} for Player 1,
S2 = {(a, b), (b, c)} for Player 2.
For every player p and every position v, there is only one play conform-

ing to Sp when p starts in v, and it is winning for 1 and losing for 2.

Wehave seen an example inwhichW(p) =
⋃∞

i=0 W(p)
i and L(p) =

⋃∞
i=0 L(p)

i
for every player p. Are the sets always equal?

For finite graphs, they indeed are. But our games may have any ordinal
number of positions. A union over natural numbers does not suffice.

Figure 2.2: An infinite game

a

b00 c00

b10 c10 b11 c11

b20 c20 b21 c21 b22 c22. . .

. . .

2

1
1 1

2

2 2

1
2 1 2 1 2

Example. The starting position a in the game in Figure 2.2 is such that for
every n ∈ N we have a /∈ L(1)

n because Player 1 has amove to some w /∈ W(2)
n

(in fact, almost all the moves are such, one of them being (a, bn0)). However,
every strategy of 1 is such that there is a play conforming to it that is losing
for 1 (2 even cannot go wrong as there is always only one play conforming
to the strategy of 1), therefore a ∈ L(1).
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2. Winning and losing regions of Conway games

2.3 Ranks

In this last section of this chapter we introduce ranks of positions. For in-
stance, whenever we know that v ∈ W(p)

n , we also know that v ∈ W(p)
m for

all m > n but can only guess whether v ∈ W(p)
m for some m < n. In such a

case we aremissing an important information – what is the least m such that
v ∈ W(p)

m (in other words, when did v first appear in the ascending sequence
of constructive winning regions of p).

Definition 2.3.1 (Ranks). Let 𝒢 = (V, E1, E2, q, z) be a Conway game, p a
player, and n ∈ ON. We define

Ŵ(p)
n = W(p)

n −⋃
i<n W(p)

i , L̂(p)
n = L(p)

n −⋃
i<n L(p)

i .

We say that a position v ∈ V has a winning (losing) rank n for p iff v ∈ Ŵ(p)
n

(v ∈ L̂(p)
n ).

Note. Note that for every player p, every position has at most one winning
rank and one losing rank for p.

Also note that
⋃

i W(p)
i =

⋃
i Ŵ(p)

i and
⋃

i L(p)
i =

⋃
i L̂(p)

i
3.

Note. For every limit ordinal n and every player p we have Ŵ(p)
n = ∅. (Be-

cause when v ∈ W(p)
n , then there exists m < n such that p has a move from v

to L(p)
m , therefore v ∈ W(p)

m+1. And when n is a limit ordinal, then m + 1 < n,
therefore v /∈ Ŵ(p)

n .) However, L̂(p)
n can be non-empty, as we have seen in

Figure 2.2.

We conclude the chapter by a few theorems. Corollary 2.3.3 is useful for
the proof of determinacy in the next chapter.

Theorem 2.3.1. For every Conway game 𝒢, every player p, and every n ∈ ON

such that L̂(p)
n = ∅: L̂(p)

m = Ŵ(p)
m = ∅ for every m > n.

Proof. Let 𝒢 be a Conway game, p a player, and let n ∈ ON be such that
L̂(p)

n = ∅.
We have Ŵ(p)

m = ∅ for every limit ordinal m. We can prove the remaining
cases by induction.

3. By this notation we always mean that i ranges over all ordinals.

11



2. Winning and losing regions of Conway games

Let m > n be a successor ordinal and let v ∈ W(p)
m . Then there is some

w ∈ L(p)
k for some k < m, such that p has the move (v, w). Because all the

sets L̂(p)
i for n ≤ i < m are empty by inductive hypothesis, every such w is

in L(p)
k for some k < n. Therefore, v ∈ W(p)

l for some l ≤ n. And because
n < m, we have v /∈ Ŵ(p)

m . Therefore, Ŵ(p)
m = ∅.

Let m > n be a successor or limit ordinal. Let v ∈ L(p)
m . That is, all the

moves of p in v are to W(p)
k for some k ≤ m. Because (by inductive hypothe-

sis) Ŵ(p)
i = ∅ for n < i ≤ m, there is some k ≤ n such that all the moves of

p in v are to W(p)
k . That is, v ∈ L(p)

k for some k ≤ n. And because n < m, we
have v /∈ L̂(p)

m . Therefore, L̂(p)
m = ∅.

Theorem 2.3.2. For every Conway game 𝒢 = (V, E1, E2, q, z), there is n ∈ ON

such that for every player p and every m > n: Ŵ(p)
m = L̂(p)

m = ∅.

Proof. Let 𝒢 = (V, E1, E2, q, z) be a Conway game and p a player. Because ev-
ery v ∈ V appears in at most one L̂(p)

i , the number of non-empty sets L̂(p)
i is

limited, it is (by Dirichlet’s principle) smaller than the least cardinal greater
than |V|; let us denote this ordinal α. From this fact and from Theorem 2.3.1
it follows that L̂(p)

α = ∅ (at least one of the sets L̂(p)
i for 0 ≤ i ≤ α is empty,

and therefore by Theorem 2.3.1 we have L̂(p)
α = ∅). Then (again by Theo-

rem 2.3.1) for every ordinal m > α, L̂(p)
m = Ŵ(p)

m = ∅. Therefore, we have
Ŵ(1)

m = Ŵ(2)
m = L̂(1)

m = L̂(2)
m = ∅ for all ordinals m > α.

Corollary 2.3.3. For every Conway game 𝒢 = (V, E1, E2, q, z), every player p,
and every position v /∈ ⋃

i L(p)
i : p has a move from v to some w /∈ ⋃

i W(p)
i .

Proof. This is because if every move of p in v is to
⋃

i W(p)
i , then (by Theo-

rem 2.3.2) every move of p in v is to W(p)
n for some n ∈ ON, and therefore v

is in L(p)
n .
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3 Determinacy of Conway games

3.1 Road to determinacy

We now aim to prove determinacy of Conway games. That is, that for ev-
ery Conway game exactly one of the following 3 statements holds: 1 has a
winning strategy; 2 has a winning strategy; both players have a non-losing
strategy. If we knew that the existence of a winning strategy of one player is
equivalent to the non-existence of a non-losing strategy of the other player,
determinacy would be trivial (see the proof of Theorem 3.1.2). However,
we do not know this yet. It could be sometimes the case, for instance, that
for every strategy S of Player 1, Player 2 has a counter-strategy S′ such that
S ∘ S′ is non-losing for 2 (hence 1 does not have a winning strategy) but S′

depends on S and 2 has no non-losing strategy that would work against all
the strategies of 1. In such a case Conway games would not be determined.
In this section we show a way to proving determinacy.

We now prove that the existence of a winning strategy of a player p is
equivalent the non-existence of a non-losing strategy of p. We also connect
the constructive regions W(p)

i , L(p)
i with the regions W(p), L(p).

Theorem 3.1.1. For every Conway game 𝒢 = (V, E1, E2, q, z), every v ∈ V, and
every player p, the following three statements are equivalent.

(IW) v ∈ W(p).

(I IW) v ∈ ⋃
i W(p)

i .
(I I IW) p has no non-losing strategy when p starts in v.

Similarly, the following three statements are equivalent.

(IL) v ∈ L(p).

(I IL) v ∈ ⋃
i L(p)

i .
(I I IL) p has a winning strategy when p starts in v.

Note. Weneed the equivalence of (I) and (I I I) for the proof of determinacy;
(I I) helps us prove this equivalence.

Proof. Let 𝒢 = (V, E1, E2, q, z) be a Conway game, v ∈ V a position, and p a
player. We first prove the equivalence of (IW), (I IW) and (I I IW).

13



3. Determinacy of Conway games

(IW) ⇒ (I I IW)
Clearly, when p has a winning strategy S, p has no non-losing strategy,

since for every strategy S′ of p, one of the plays conforming to S′ is S ∘ S′,
which is losing for p.

(I I IW) ⇒ (I IW) (We prove the contrapositive.)
Consider v /∈ ⋃

i W(p)
i . Let SN be a strategy of p such that for every

w /∈ ⋃
i L(p)

i , SN(w) = x for some x /∈ ⋃
i W(p)

i (such x always exists, see
Corollary 2.3.3). We can define the rest of SN arbitrarily.

We can easily prove by induction that every play of 𝒢 when p starts out-
side of

⋃
i W(p)

i conforming to SN is such that when it is p’s turn in some w,
then w /∈ ⋃

i W(p)
i , and when it is p’s turn in some w, then w /∈ ⋃

i L(p)
i .

Whenever p makes a move (w, x) in some w /∈ ⋃
i W(p)

i , then x /∈ ⋃
i L(p)

i

(if x were in L(p)
n for some n ∈ ON, w would be in W(p)

n+1).
Whenever pmakes amove (w, SN(w)) in somew /∈ ⋃

i L(p)
i , then SN(w) /∈⋃

i W(p)
i (from the definition of SN).

In particular, when p starts in v, no play conforming to SN contains a po-
sition pi ∈

⋃
i L(p)

i such that it is p’s turn in pi. Outside of
⋃

i L(p)
i , p always

has a move and makes a move according to SN . SN is therefore non-losing
for p when p starts in v.

(I IW) ⇒ (IW)
Let v ∈ ⋃

i W(p)
i . Then p has a winning strategy SW for 𝒢 when p starts

in v defined as follows.
For every w ∈ ⋃

i W(p)
i , let n ∈ ON be such that w ∈ Ŵ(p)

n (hence n
is a successor ordinal). Because w ∈ W(p)

n , p has a move from w to some
x ∈ L(p)

n−1. Because w /∈ W(p)
n−1, this x is not in L(p)

n−2. We can therefore put
SW(w) = x for some x ∈ L̂(p)

n−1. We can define the rest of SW arbitrarily.
SW of p is winning when p starts in

⋃
i W(p)

i since in any play conforming
to SW , the losing rank for p of the positions in which it is p’s turn decreases
(every move of p in L̂(p)

n is to Ŵ(p)
m for some successor ordinal m ≤ n, then

p makes a move according to SW to L̂(p)
m−1, therefore to L̂(p)

k for some k < n )
and every decreasing sequence of ordinals is finite and reaches 0, at which
point it will be p’s turn in a position in which p has no move. In particular,
SW of p is winning when p starts in v.
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3. Determinacy of Conway games

We can prove the equivalence of the other 3 statements similarly.

(IL) ⇒ (I IL) (We prove the contrapositive.)
Consider v /∈ ⋃

i L(p)
i . Then p has a non-losing strategy when p starts in

v that we have already described in the proof of (I I IW)⇒ (I IW) (we called
it SN). p avoids

⋃
i W(p)

i . No matter the moves of p, it will never be p’s turn
in

⋃
i L(p)

i .

(I IL) ⇒ (I I IL)
Let v ∈ ⋃

i L(p)
i . Then p has a winning strategy that we have already de-

scribed in the proof of (I IW) ⇒ (IW) (we called it SW). p always decreases
the rank (makes a move from Ŵ(p)

i to L̂(p)
i−1), it will eventually be p’s turn in

L(p)
0 .

(I I IL) ⇒ (IL)
Clearly, no strategy of p is non-losing, since p always loses against the

winning strategy of p.

Theorem 3.1.2 (Determinacy of Conway games). For every Conway game 𝒢,
exactly one of the following statements holds.

(i) Player 1 has a winning strategy.

(ii) Player 2 has a winning strategy.

(iii) Both players have a non-losing strategy.

Proof. Let 𝒢 be a Conway game.
We can prove determinacy as an easy consequence of the results above.
Suppose neither of the players has a winning strategy. By the implica-

tions (I I IW) ⇒ (IW) and (IL) ⇒ (I I IL) of Theorem 3.1.1, both players have
a non-losing strategy. Therefore, at least one of the statements (i), (ii), (iii)
holds.

Suppose at least two of the statements hold. Therefore, at least one of
the players has a winning strategy. Let p be a player with a winning strat-
egy. By the implications (IW) ⇒ (I I IW) and (I I IL) ⇒ (IL) of Theorem 3.1.1,
p has no non-losing strategy. Therefore, p does not have any winning strat-
egy, hence one of the statements (i), (ii) does not hold. Also (iii) does not
hold. This contradicts the supposition that at least two of the statements
hold. Therefore, at most one of (i), (ii), (iii) holds.
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3. Determinacy of Conway games

3.2 Some consequences of determinacy

One of the consequences of determinacy is Theorem 3.2.1. It will be useful
for the proofs of Theorem 5.1.1 and Theorem 5.2.2 in the last chapter.
Theorem 3.2.1. For every Conway game 𝒢 and every player p: p has a non-losing
(winning) strategy iff there is a strategy S of p such that for every strategy S′ of p,
S ∘ S′ is non-losing (winning) for p.
Proof. Let 𝒢 be a Conway game and p a player.

When S is a non-losing (winning) strategy of p, that is, all plays conform-
ing to S are non-losing (winning) for p, then in particular the conforming
plays S ∘ S′ for some strategy S′ of p are non-losing (winning) for p.

Let S be a strategy of p such that for every strategy S′ of p, S ∘ S′ is non-
losing (winning) for p. Therefore, for every strategy S′ of p, there is a con-
forming play to S′ – the play S ∘ S′ – that is not winning (is losing) for p.
Therefore, p has no winning (non-losing) strategy. By determinacy, p has a
non-losing (winning) strategy.

We conclude this chapter by proving the proposition mentioned in the
first chapter where we claimed that (positional) strategies are “sufficiently
strong” with respect to the existence of winning and non-losing strategies.
Recall that we call strategies taking into account the history (that is, making
a move based on the current position and all the already visited positions)
general strategies. To avoid an unnecessary confusion, in the rest of this sec-
tion we do not abbreviate the term positional strategy.
Theorem 3.2.2. For every Conway game 𝒢 and every player p: there is a winning
(non-losing) general strategy1 of p iff there is a winning (non-losing) positional
strategy of p.
Proof. Let 𝒢 be a Conway game and p a player.

Clearly, when p has a winning (non-losing) positional strategy, then p
also has a winning (non-losing) general strategy – the one mirroring the
positional strategy, disregarding the history.

If p does not have a winning positional strategy, then p has a non-losing
positional strategy S by determinacy. Therefore, p does not have a winning
general strategy (for any general strategy S′ of p, the play conforming to
both S and S′2 is not winning for p).

1. Analogously to the definition of a winning (non-losing) positional strategy, a winning
(non-losing) general strategy of a player p is a general strategy such that every play conforming
to it is winning (non-losing) for p.
2. We have not written S ∘ S′ because this is strictly speaking not defined (one of the strategies
is positional, the other one is general).
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3. Determinacy of Conway games

Analogously, if p does not have a non-losing positional strategy, then p
has a winning positional strategy. Therefore, p does not have a non-losing
general strategy.

Note. The same way we distinguish between positional strategies and gen-
eral strategies, we can distinguish between positional determinacy and gen-
eral determinacy. We have proved positional determinacy – Theorem 3.1.2
and abbreviated it to determinacy, the same way we have abbreviated posi-
tional strategies to strategies.

Because of Theorem 3.2.2, general determinacy does indeed hold as well.

Note. For every position v, a player playing by a positional strategy makes
the samemove every time he is in v. Therefore, a positional strategy does not
formalize the notion of a person playing the game (spontaneously deciding
where to move whenever it is their turn). On the other hand, a general strat-
egy does. Every play of a Conway game is equal to S ∘ S′ for some general
strategies S of Player 1 and S′ of Player 2. This is because every time it is
1’s turn in the given play (pi)

n
i=1, the history is unique. We can define the

general strategy S of 1 such that whenever it is 1’s turn in some pi (for some
i < n), S gives pi+1 on the position pi and the history p1, p2, ..., pi−1; S on
other arguments can be arbitrary. We can define S′ of 2 analogously.

For the same reason, a general strategy S of p is winning (non-losing) iff
for every general strategy S′ of p, S ∘ S′ is winning (non-losing) for p.

17



4 Positional games

A similar type of game to Conway games are positional games. In this chap-
ter we briefly introduce them. In the fifth chapter, we show how it is possible
to reduce Conway games to positional games and vice-versa.

4.1 Basic definitions

As in Conway games, in positional games there are two players 1 and 2 play-
ing against each other, moving between positions. In positional games, how-
ever, every position belongs to one of the players, whose turn it is every time
a play gets to this position.

The following definitions are similar to their counterparts for Conway
games and therefore do not require explanations.

Definition 4.1.1 (Positional game). A positional game is a tuple (V1, V2, E, q)
where V1, V2 are disjoint sets of positions of Player 1, respectively positions of
Player 2, E ⊆ (V1 ∪V2)× (V1 ∪V2) is a set ofmoves, q ∈ V1 ∪V2 is the starting
position. We call a player p the starting player iff q ∈ Vp.

Definition 4.1.2 (Play of a positional game). Let 𝒢 = (V1, V2, E, q) be a po-
sitional game.

A play of 𝒢 is any sequence of positions (pi)
n
i=1 where n ∈ N+ ∪ {ω},

such that all the following statements hold.

∙ p1 = q.
∙ for every i ∈ N+ such that i < n we have (pi, pi+1) ∈ E.
∙ if n ∈ N, then there is no v ∈ V1 ∪ V2 such that (pn, v) ∈ E.

Definition 4.1.3 (Positional strategy). Let 𝒢 = (V1, V2, E, q) be a positional
game and p a player.

A positional strategy of p for 𝒢 is a partial function S : Vp → V1 ∪V2 such
that for every position v ∈ Vp on which S is defined we have (v, S(v)) ∈ E,
and for every position v ∈ Vp on which S is not defined, there is no position
w such that (v, w) ∈ E.

Note. The word positional in the term positional strategy does not come from
the term positional game but from the fact that every move is determined by
the position alone (disregarding the history), analogously to the terminol-
ogy for Conway games.
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4. Positional games

Notation. Wewill abbreviate the term positional strategy to strategy, the same
way we do for Conway games.

Figure 4.1: A simple positional game

a

b

c

Example. Positions are depicted by vertices, moves by edges. In positional
games we only have one set of moves, hence no need to label the edges. On
the other hand, we have two sets of positions – we depict the positions of
Player 1 by diamonds and the positions of Player 2 by circles. We mark the
starting position by an extra arrow.

The set of all possible plays of the game in Figure 4.1 can be described
as {anbc | n ∈ N} ∪ {aω}. Player 1 has a non-losing strategy – he loops in a
and never lets the other player move.

Definition 4.1.4 (Play conforming to a strategy). Let 𝒢 be a positional game,
p a player, S a strategy of p, and P = (pn)n

i=1 a play of 𝒢.
We say that P conforms to S iff for every position pi in P such that pi ∈ Vp

we have i = n or S(pi) = pi+1.

Definition 4.1.5 (Play conforming to strategies of both players). Let 𝒢 be a
positional game, P = (pn)n

i=1 a play of 𝒢, S a strategy of Player 1, and S′ a
strategy of Player 2.

Then S ∘ S′ = S′ ∘ S is the unique play conforming to both S and S′.
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4. Positional games

Definition 4.1.6 (Draw, losing and winning play). Let 𝒢 = (V1, V2, E, q) be
a positional game, p a player, and P = (pi)

n
i=1 a play of 𝒢.

We say that P is a draw iff n = ω. P iswinning for p iff n ∈ N and pn ∈ Vp.
P is losing for p iff n ∈ N and P is not winning for p.

Definition 4.1.7 (Winning and non-losing strategy). Let 𝒢 be a positional
game, p a player, and S a strategy of p.

We say that S is non-losing (winning) iff every play of 𝒢 conforming to S
is non-losing (winning) for p.

4.2 Regions and determinacy

Definition 4.2.1 (Winning and losing regions of a positional game). Let 𝒢 =
(V1, V2, E, q) be a positional game and p a player. We define

W(p) = {v ∈ Vp | p has a winning strategy for (V1, V2, E, v)},

L(p) = {v ∈ Vp | p has no non-losing strategy for (V1, V2, E, v)}.

Note. The constructive version of the regions of positional games can be con-
structed in a similar fashion to Conway games. For every n ∈ ON we can
define

W(p)
n = {v ∈ Vp | there exists m < n and a position w ∈ L(p)

m ∪ W(p)
m

such that (v, w) ∈ E},

L(p)
n = {v ∈ Vp | for every w such that (v, w) ∈ E : there is m < n

such that w ∈ W(p)
m ∪ L(p)

m }.

However, we do not need a definition of constructive regions of posi-
tional games anywhere in this thesis.

Notation. We will again use the terminology “a game in which p starts in v”
as we did for Conway games. When we use this terminology for positional
games, we have to make sure that v ∈ Vp, because p cannot start in v ∈ Vp.

It is a well-known fact that positional games, too, are determined. See,
e.g., [4].
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4. Positional games

Theorem 4.2.1 (Determinacy of positional games). For every positional game
𝒢, exactly one of the following statements holds.

(i) Player 1 has a winning strategy.
(ii) Player 2 has a winning strategy.
(iii) Both players have a non-losing strategy.

Theorem 4.2.2 is an analogy of Theorem 3.2.1 for positional games and
can be proved analogously; it is a consequence of determinacy of positional
games.

Theorem 4.2.2. For every positional game 𝒢 and every player p: p has a non-losing
(winning) strategy iff there is a strategy S of p such that for every strategy S′ of p,
S ∘ S′ is non-losing (winning) for p.
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5 Connecting Conway games and positional games

We now describe reductions of Conway games to positional games and vice-
versa. In both cases we require that the reduction preserves the existence
of winning and non-losing strategies. That is, to every Conway (positional)
game 𝒢, we assign a positional (Conway) game R(𝒢) such that for every
player p, p has a winning strategy for 𝒢 iff p has a winning strategy for R(𝒢),
and p has a non-losing strategy for 𝒢 iff p has a non-losing strategy for R(𝒢).

We might sometimes be interested not only in the existence of winning
and non-losing strategies when the starting player starts in the starting posi-
tion but also in their existence in any position when any of the players starts
(to answer questions like “What would happen if the game started in an-
other position?”, “What if the other player starts?”, “What positions should
a player avoid?”). For this reason we choose reductions such that there is a
simple correspondence between the winning and losing regions of the orig-
inal game and those of the reduced game.

Whenwe have such reductions, we can, given a game of one kind, reduce
it to a game of the other kind and study the reduced game, giving us answers
about the original game.

5.1 Reducing Conway games to positional games

We now define a reduction R of Conway games to positional games.
We split every original position v in two – v1 ∈ V1 and v2 ∈ V2, one for

each player. The position vp in the reduced game corresponds to the position
v when it is p’s turn in the original game.

Because the players alternate in moves in every Conway game 𝒢 and we
want R(𝒢) to mirror 𝒢, every move in the reduced game is from Vp to Vp for
one of the players p. Therefore, the players alternate in making moves in the
positional game R(𝒢) as well.

Definition 5.1.1 (Reduction R of Conway games to positional games). Let
𝒢 = (V, E1, E2, q, z) be a Conway game. We define R(𝒢) = (V1, V2, E, (q, z))
where

Vi = V × {i} for every i ∈ {1, 2},

E = {((l, 1), (r, 2)) | (l, r) ∈ E1} ∪ {((r, 2), (l, 1)) | (r, l) ∈ E2}.

Notation. For a player p we will write vp instead of (v, p) for better readabil-
ity.
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5. Connecting Conway games and positional games

Figure 5.1: A Conway game 𝒢

a

b c

W(1)
𝒢 = {b},

W(2)
𝒢 = {a},

L(1)
𝒢 = {c},

L(2)
𝒢 = {c}.1

1, 2

2 2

1

Example. The game 𝒢 in Figure 5.1 is reduced to R(𝒢) in Figure 5.2.

Figure 5.2: The positional game R(𝒢)

a1

b1

c1

a2

b2

c2

W(1)
R(𝒢) = {b1},

W(2)
R(𝒢) = {a2},

L(1)
R(𝒢) = {c1},

L(2)
R(𝒢) = {c2}.

Notation. Given two or more games of one kind (Conway or positional), we
will say that the games have the same arena iff they have the same sets of
positions and moves.

Note. Note that games with the same arena have the same strategies. Given
a strategy S of p for 𝒢, we consider S to also be a strategy of p for any other
game with the arena of 𝒢.
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5. Connecting Conway games and positional games

We aim to prove that the reduction R preserves the existence of winning
and non-losing strategies.We also aim to show how the regions of a Conway
game 𝒢 correspond to the regions of R(𝒢). Theorem 5.1.1 is instrumental.

Theorem 5.1.1. For every Conway game 𝒢 = (V, E1, E2, q, z), every player p, and
every position v ∈ V:

v ∈ W(p)
𝒢 iff vp ∈ W(p)

R(𝒢) ,

v ∈ L(p)
𝒢 iff vp ∈ L(p)

R(𝒢) .

Proof. Let 𝒢 = (V, E1, E2, q, z) be a Conway game.
We first describe an obvious bijection f between strategies for 𝒢 and

strategies for R(𝒢). For every strategy S of a player p for 𝒢, the strategy f (S)
is a strategy of p for R(𝒢) defined on vp ∈ Vp iff S is defined on v, in which
case it gives f (S)(vp) = S(v)p.

We now prove that v ∈ W(p)
𝒢 iff vp ∈ W(p)

R(𝒢), and v /∈ L(p)
𝒢 iff vp /∈ L(p)

R(𝒢).

Let v ∈ W(p)
𝒢 (v /∈ L(p)

𝒢 ), that is, p has a winning (non-losing) strategy
for 𝒢 when p starts in v. Then, by Theorem 3.2.11, there is a strategy S of p
for 𝒢 such that for every strategy S′ of p for 𝒢, S ∘ S′ is winning (non-losing)
for p when p starts in v. Let S be such a strategy.

Now, let S′ be any strategy of p for R(𝒢). Because f is surjective, S′ =
f (T) for some strategy T of p for 𝒢. Let T be such a strategy.

The plays S ∘ T of 𝒢 ′ when p starts in v and f (S) ∘ f (T) of R(𝒢 ′) when
p starts in vp have the same starting player, same length and in both plays
the players alternate inmaking amove2. And because S ∘ T is winning (non-
losing) for p when p starts in v, f (S) ∘ f (T)= f (S) ∘ S′ is also winning (non-
losing) for p when p starts in vp.

S′ was an arbitrary strategy of p for R(𝒢). Therefore, f (S) is such that
for every strategy S′ of p for R(𝒢), f (S) ∘ S′ is winning (non-losing) for p
when p starts in vp.

By Theorem 4.2.2, p has a winning (non-losing) strategy for R(𝒢)when
p starts in vp.

Analogously we can go in the opposite direction and for a winning (non-
losing) strategy S of p for R(𝒢) prove that the strategy f−1(S) of p is also
winning (non-losing).

1. This is the trivial part of the theorem. It is still the same strategy.
2. It is easy to prove by induction that f (S) ∘ f (T) = (pi, ((p + i) mod 2) + 1)n

i=1 where
(pi)

n
i=1 = S ∘ T.
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5. Connecting Conway games and positional games

There are two important consequences of Theorem 5.1.1. Corollary 5.1.2
states that R preserves the existence of winning and non-losing strategies.
Corollary 5.1.3 gives the correspondence between the regions of a Conway
game 𝒢 and the regions of the positional game R(𝒢).

Corollary 5.1.2. For every Conway game 𝒢 and every player p: p has a winning
(non-losing) strategy for 𝒢 iff p has a winning (non-losing) strategy for R(𝒢).

Proof. Theorem 5.1.1 shows that the reduction R preserves the existence of
winning and non-losing strategies for the starting player. Then, by determi-
nacy of both positional and Conway games, R also preserves the existence
of winning and non-losing strategies of the other player.

Corollary 5.1.3. For every Conway game 𝒢 and every player p:
W(p)

R(𝒢) = W(p)
𝒢 × {p},

L(p)
R(𝒢) = L(p)

𝒢 × {p}.

Proof. Let 𝒢 = (V, E1, E2, q, z) be a Conway game, R(𝒢) = (V1, V2, E, qz) the
corresponding positional game, and p a player.

Let w ∈ W(p)
R(𝒢). From Definition 4.2.1, w ∈ Vp, therefore w = (v, p) for

some v ∈ V. By Theorem 5.1.1, v ∈ W(p)
𝒢 . Hence (v, p) ∈ W(p)

𝒢 × {p}.
Let (v, p) ∈ W(p)

𝒢 × {p}. By Theorem 5.1.1, (v, p) ∈ W(p)
R(𝒢).

The proof of the other equality is analogous. It is a consequence of the
other equivalence in Theorem 5.1.1.

When knowing the regions of R(𝒢), we can easily recover the regions
of 𝒢 by forgetting the second components of the positions in the regions of
R(𝒢).

5.2 Reducing positional games to Conway games

Now we describe a reduction of positional games to Conway games. It is
similar to the reduction of Conway games to positional games in that it splits
every position of the original game in two. We call one of them the main
position and the other one the auxiliary position. We need auxiliary positions
in the Conway game because in the original positional game there can be a
play in which one player makes several moves in succession. A move from
a player p’s position x to p’s position y corresponds, in the Conway game,
to a move from the main position of x to the auxiliary position of y. There
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5. Connecting Conway games and positional games

is only one possible move for the other player in the auxiliary position of y
– to the main position of y. Therefore, when p chooses to go from x to y, she
will have guaranteed that she will make her next move in y, as is the case in
the positional game.

Notation. In the following definition we describe that for every position x
in the original game, we have the main position (x, M) and the auxiliary
position (x, A) in the reduced game. We will write xM, xA instead of (x, M),
(x, A) for better readability3.

Note. In the following definition, it might be convenient for the reader to
read m as ’me’ and o as ’opponent’ (viewed from the perspective of p).

Definition 5.2.1 (Reduction R of positional games to Conway games). Let
𝒢 = (V1, V2, E, q) be a positional game. We define R(𝒢) = (V, E1, E2, qM, z)
where

V = (V1 ∪ V2)× {M, A},

z ∈ {1, 2} is such that q ∈ Vz,

for every player p:

Ep ={(mM, oM) | (m, o) ∈ E and m ∈ Vp and o ∈ Vp}∪
{(mM, m′

A) | (m, m′) ∈ E and m, m′ ∈ Vp} ∪ {(oA, oM) | o ∈ Vp}.

Figure 5.3: A positional game 𝒢

a

b

c

d

W(1)
𝒢 = {a},

L(2)
𝒢 = {b, c},

W(2)
𝒢 = L(1)

𝒢 = ∅.

3. M and A are elementary symbols, not variables.
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5. Connecting Conway games and positional games

Figure 5.4: The Conway game R(𝒢)

aM

bM

cA

dA

aA

bA

cM

dM

W(1)
R(𝒢) = {aM, cA, bA},

W(2)
R(𝒢) = ∅,

L(1)
R(𝒢) = {aA, bM, dA, cM},

L(2)
R(𝒢) =

{bM, cM, aA, bA, cA, aM, dM}.

2

1

1

1

1

1

2

2

2

Example. The game in Figure 5.3 is reduced to the game in Figure 5.4.

Now we turn our attention to winning and losing regions.
In every auxiliary position vA in R(𝒢), one player has nomove, therefore

vA belongs to their losing region. The other player p has exactly one move
in vA – to vM. Therefore, vA ∈ W(p)

R(𝒢) iff vM ∈ L(p)
R(𝒢), and vA ∈ L(p)

R(𝒢) iff

vM ∈ W(p)
R(𝒢).

In everymain position vM, one player has nomove, therefore vM belongs
to their losing region. The other player can have any number of moves in vM,
corresponding to the moves of this player in v in 𝒢.

There is one problem with regards to the regions of R(𝒢). They do not
correspond nicely to the regions of 𝒢 (see the example above).

For a position v ∈ Vp in 𝒢, the plays of R(𝒢) when p starts in vM or p
starts in vA (and has to make a move to vM) correspond to the plays of 𝒢
when p starts in v. However, the plays of R(𝒢) when p starts in vA or when
p starts in vM do not correspond to any of the plays of any of the games with
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5. Connecting Conway games and positional games

the arena of 𝒢 because 𝒢 is a positional game and a player p cannot start in
Vp. These plays add positions to the regions of R(𝒢) that are not relevant to
what the regions of 𝒢 are.

We therefore define a new reduction r such that all the plays of games
with the arena of r(𝒢) that do not correspond to any of the plays of any of the
games with the arena of 𝒢 are draws, while all the plays that do correspond
remain the same as in R(𝒢). This simplifies the regions of the reduced game
while they still give us all the information about the regions of 𝒢.

Figure 5.5: The Conway game r(𝒢)
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The game r(𝒢) extends R(𝒢) – it has an additional position and addi-
tional moves related to this position.

r(𝒢) contains a position L (for “LOOP”) in which both players have to
loop (make the move (L, L)). For every position v ∈ Vp in the original posi-
tional game, p has a move from vM to L and p has a move from vA to L.
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5. Connecting Conway games and positional games

Definition 5.2.2 (Reduction r of positional games to Conway games). Let
𝒢 = (V1, V2, E, q) be a positional game. We define r(𝒢) = (V, E1, E2, qM, z)
where

V = ((V1 ∪ V2)× {M, A}) ∪ {L},

z ∈ {1, 2} is such that q ∈ Vz,

for every player p:

Ep ={(mM, oM) | (m, o) ∈ E and m ∈ Vp and o ∈ Vp}∪
{(mM, m′

A) | (m, m′) ∈ E and m, m′ ∈ Vp} ∪ {(oA, oM) | o ∈ Vp}∪
{(L, L)} ∪ {(oM, L) | o ∈ Vp} ∪ {(mA, L) | m ∈ Vp}.

Example. Figure 5.5 depicts the game r(𝒢) for the positional game 𝒢 in Fig-
ure 5.3.

When we are interested only in main positions, the regions of r(𝒢) are
W ′(1)

r(𝒢) = {aM}, W ′(2)
r(𝒢) = L′(1)

r(𝒢) = ∅, L′(2)
r(𝒢) = {bM, cM}.

We now aim to prove how, in general, the regions of a Conway game 𝒢
correspond to the regions of r(𝒢). We start with Lemma 5.2.1.

Lemma 5.2.1. For every positional game 𝒢 = (V1, V2, E, q), there is a bijection f
between strategies for 𝒢 and strategies for r(𝒢) such that for every player p, every
strategy S of p, every strategy S′ of p, and every v ∈ Vp, the following statements
hold.

(i) f (S) is a strategy of p and f (S′) is a strategy of p.
Let (pi)

n
i=1 denote the play S ∘ S′ of 𝒢 when p starts in v and (qi)

m
i=1 denote

the subsequence of all main positions in f (S) ∘ f (S′) of r(𝒢) when p starts
in vM.

(ii) (qi)
m
i=1 = (piM)n

i=1
4.

(iii) for every finite i ≤ n, it is p’s turn in pi iff it is p’s turn in qi.

Proof. Let 𝒢 be a positional game.
We first describe the bijection f . Let S be a strategy of a player p for 𝒢. For

every w ∈ Vp, p has exactly one move in the positions wM and wA in r(𝒢).
For every w ∈ Vp, p has exactly one move in wA. Therefore, the strategies

4. piM = (pi, M)
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of p for r(𝒢) differ only on positions wM for w ∈ Vp. In every such wM, p
has either the move (wM, S(w)M) (when S(w) ∈ Vp) – in which case we put
f (S)(w) = S(w)M, or p has the move (wM, S(w)A) (when S(w) ∈ Vp) – in
which case we put f (S)(w) = S(w)A. f is clearly a bijection.

It is easy to prove (ii) and (iii) by induction. p starts in v in S ∘ S′ (re-
spectively in vM in f (S) ∘ f (S′)). Whenever it is a player’s turn twice in suc-
cession in some pi and pi+1, there are piM, p(i+1)A, p(i+1)M in f (S) ∘ f (S′).
Whenever pi and pi+1 do not belong to the same player, f (S) ∘ f (S′) con-
tains piM, p(i+1)M. In both cases qi+1 = p(i+1)M and it is p’s turn in pi+1 iff it
is p’s turn in qi+1.

Theorem 5.2.2. For every player p, every positional game 𝒢, and every position
v ∈ Vp:

v ∈ W(p)
𝒢 iff vM ∈ W(p)

r(𝒢),

v ∈ L(p)
𝒢 iff vM ∈ L(p)

r(𝒢).

Proof. We prove the first equivalence.
Let 𝒢 = (V1, V2, E, q) be a positional game, p a player, v ∈ Vp a position.
Suppose that p has a winning strategy for 𝒢 when p starts in v. Then let

S be a strategy of p for 𝒢 such that for every strategy S′ of p for 𝒢, S ∘ S′

when p starts in v is winning for p (such S exists by Theorem 4.2.2). That is,
S is such that for every strategy S′ of p for 𝒢, S ∘ S′ when p starts in v ends
when it is p’s turn.

Now let S′ be any strategy of p for r(𝒢). Because f is surjective, S′ = f (T)
for some strategy T of p for 𝒢. Let T be such a strategy. Let w ∈ Vp be the
last position of S ∘ T when p starts in v. By Lemma 5.2.1, it is p’s turn in the
last main position wM of f (S) ∘ f (T) = f (S) ∘ S′. Because p has no move in
w, p has no move in wM (by the definition of r). Therefore, wM is the last
position of f (S) ∘ S′ when p starts in vM. Therefore, f (S) ∘ S′ is losing for p
when p starts in vM. S′ was an arbitrary strategy of p for r(𝒢); therefore, by
Theorem 3.2.1, p has a winning strategy for r(𝒢) when p starts in vM.

An analogous argument works in the other direction as well. When a
strategy S for r(𝒢) is winning, f−1(S) for 𝒢 is winning.

The other equivalence (or rather the contrapositives) can be proved sim-
ilarly (using Lemma 5.2.1 to claim that when S ∘ T is infinite or ends when it
is p’s in w, then f (S) ∘ f (T) is infinite or ends when it is p’s turn in wM).

A direct consequence of Theorem 5.2.2 and determinacy is the fact that
r preserves the existence of winning and losing strategies (Corollary 5.2.3).
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5. Connecting Conway games and positional games

Corollary 5.2.3. For every positional game 𝒢 and every player p: p has a winning
(non-losing) strategy for 𝒢 iff p has a winning (non-losing) strategy for r(𝒢).

Proof. Theorem 5.2.2 shows that the reduction r preserves the existence of
winning and non-losing strategies for the starting player. Then, by determi-
nacy of both positional and Conway games, r also preserves the existence of
winning and non-losing strategies of the other player.

Theorem 5.2.4 is the last result we present. It describes the correspon-
dence between the regions of a positional game 𝒢 and the regions of the
Conway game r(𝒢).

Theorem 5.2.4. For every positional game 𝒢 and every player p:
W(p)

r(𝒢) = {vM | v ∈ W(p)
𝒢 } ∪ {vA | v ∈ L(p)

𝒢 },

L(p)
r(𝒢) = {vM | v ∈ L(p)

𝒢 } ∪ {vA | v ∈ W(p)
𝒢 }.

Proof. We prove the first equality.
Let 𝒢 be a positional game and p a player. p clearly has no winning strat-

egy when p starts in L in r(𝒢).
Every other position in r(𝒢) is either vM or vA where either v ∈ Vp or

v ∈ Vp. We look at all four cases.
Let v ∈ Vp.
p has only one move in vA – to L. Therefore, vA /∈ W(p)

r(𝒢). vA is not in

{vM | v ∈ W(p)
𝒢 } ∪ {vA | v ∈ L(p)

𝒢 } either.
By Theorem 5.2.2, vM ∈ W(p)

r(𝒢) iff v ∈ W(p)
𝒢 . vM is either in both sets or in

neither of them.
Let v ∈ Vp.
p has only one move in vM – to L. Such vM is in neither of the sets.
p has only one move in vA – to vM. Therefore, p has a winning strategy

when p starts in vA iff p has a winning strategy when p starts in vM iff (by
determinacy) p has no non-losing strategy when p starts in vM . That is,
vA ∈ W(p)

r(𝒢) iff vM ∈ L(p)
r(𝒢). By Theorem 5.2.2, vM ∈ L(p)

r(𝒢) iff v ∈ L(p)
𝒢 . Hence

vA ∈ W(p)
r(𝒢) iff v ∈ L(p)

𝒢 . vA is either in both sets or in neither of them.
Therefore, the sets in the first equation are equal.
The other equality can be proved analogously. The most interesting case

is the one with vA when v ∈ Vp. As in the last case of the proof of the other
equality, we need the fact that p has only one move in vA – to vM, determi-
nacy, and Theorem 5.2.2.
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