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Chapter 1

Introduction

Starting with the famous characterisation of NPTIME by Fagin in 1974, finite
model theory has grown into a field of its own with many applications to com-
puter science, especially in complexity theory where it turned out that there
is a close correspondence between complexity classes and certain logics. But
also the investigation of query languages in database theory and the design of
model-checking algorithms for automatic verification was strongly influenced by
finite model theory.

In recent years the need of a theory covering not only finite but also infi-
nite structures became apparent in those fields. For instance, currently model-
checking of systems with infinite state space can be performed only in some very
restricted cases which do not cover most real-world problems. Another example
are geometrical databases where—for operations like intersection—it is more
convenient to treat geometric shapes as (infinite) sets of points instead of using
parametrised basic shapes.

Of course, only restricted classes of structures are meaningful for such an
approach. In order to be able to process an infinite structure by algorithmic
means it must possess a finite encoding, and the operations being performed
must be recursive.

In this thesis we will investigate several classes of possibly infinite structures
meeting those requirements. The general idea is to use finite automata to present
a given structure. Each element of the structure is encoded by one or several
words. The language of all valid encodings is required to be regular, and for
each relation, including equality, an automaton is constructed which accepts a
tuple of words iff the corresponding tuple of elements is in the relation. Instead
of normal finite automata one can also use automata over w-words, trees, etc.,
leading to several different classes of automatic structures. In each case, such
structures can be encoded by a list of automata and processed using well-known
automata constructions—which, in particular, include boolean operations and
projection so that we are able to evaluate first-order formulae.

These concepts were introduced by Cannon and Thurston [ECHT92] in group
theory—where they, e.g., solved word problems using automata—, and subse-
quently generalised to arbitrary structures by Khoussainov and Nerode [KN95].
This thesis will extend the results of the later focusing on model theoretic issues.
Automatic groups will hardly be mentioned.

One fundamental result is that each of the investigated classes contains a
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complete structure, i.e., a structure € such that any structure 2 is a member of
the given class if and only if there is an interpretation of 2 in €.

The outline of this thesis is as follows. We start in Chapter 3 with the defi-
nition of automatic presentations using languages of, respectively, finite words,
w-words, trees, and w-trees. We prove some of their basic properties such as
closure under first-order interpretations, and study decidability and complex-
ity of queries on automatic structures. We show that first-order queries are
effectively computable and that their results are again automatic, while slightly
stronger logics already become undecidable, and we present some restricted
cases in which the complexity is acceptable.

The fundamental characterisation of automatic structures in terms of first-
order interpretations which makes many methods from logic available to us is
given in the following chapter. For each class we present a structure € such
that some structure 2 belongs to the class if and only if there is a first-order
interpretation of 2 in €.

In Chapter 5 we take a closer look at the classes of structures defined so far,
determine their hierarchy, and investigate the closure under Feferman-Vaught
like products. In order to prove that some structure is not automatic we develop
methods based on the calculation of bounds on the length of the encoding of
elements.

Chapter 6 is devoted to purely logical questions. It is shown that the Com-
pactness Theorem fails if the class of models is restricted to automatic ones,
and an axiomatisation is given for the structure (N, +,|,) which plays an im-
portant role for the characterisation of automatic structures. We also construct
a non-standard model of this axiom system.

In the final chapters we consider restricted types of presentations. Chap-
ter 7 deals with the case of presentations over a unary alphabet which yields
an interesting subclass of automatic structures with many pleasant theoretical
properties and complexity results which are low enough for practical applica-
tions.

The last chapter investigates another way to encode the input which turns
out to yield a much weaker class, and the restriction to star-free and locally
threshold testable languages.

I would like to thank Erich Grédel for his guidance while I wrote this thesis,
and Eric Rosen for his valuable comments.



Chapter 2

Formal Languages and
Logic

2.1 Formal Languages

Regular languages. We assume that the reader is familiar with the funda-
mental notions of formal language theory. For an introduction see [HU79, Eil74,
RS97], readers with a background in logic are referred to [EF95, Chapter 5].
An overview of w-languages is given in [Tho90]. We use the following conven-
tions regarding automata. A finite automaton is a tuple 2 = (Q, X, A, qo, F)
with set of states (), input alphabet X, initial state qg, set of final states F,
and transition relation A C Q x X x Q. A finite w-automaton is a tuple
A= (Q, X, A,q,F) with set of states @, input alphabet X, initial state qo,
transition relation A C @ x X' x @, and Muller acceptance condition . C £(Q),
where some w-word is accepted iff the set of states appearing infinitely often in
some run is a member of .%. We call an automaton deterministic iff for every
g € Q and a € X there is at most one ¢’ € ) such that (¢,a,q') € A.
For L, W C X* we denote the left- and right-quotient by

W 'L:={x|3JyeW:yreL},
LW t:={x|JyeW:aye L}

Definition 2.1. Let L C X*. The Nerode-congruence ~, is defined by
z~py :iff 7' L=y L.

Clearly, ~ is a right-congruence, i.e., x ~p y = xz ~p yz. By the Myhill-
Nerode Theorem, ~, is of finite index if and only if L is regular. In this case the
index is equal to the number of states of the minimal deterministic automaton
for L.

Recall that the class of regular languages is closed under

(i) boolean operations: union, intersection, and complement,
(if) concatenation and star,
(iii) homomorphisms and inverse homomorphisms, and

(iv) left- and right-quotients.
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An important tool to show non-regularity which will frequently be used in
the following is the

Pumping Lemma. Let L. C X* be reqular. There exists a constant m such
that for all words uwow € X* with |v| > m there exists a factorisation vov,ve
of v with vy # € such that

uow € L iff uvgvfww € L for all k € N.

When investigating w-languages one frequently uses topological techniques.
X% is equipped with the product topology where X' is taken as discrete space.
In this topology open sets are of the form WX for some W C X*. All regular
w-languages are contained in B(Gy), the boolean closure of the second level of
the Borel hierarchy, i.e., every regular language can be written as a boolean
combination of countable intersections (), W; X* with Wy, Wy, ... C X*.

Definition 2.2. Let X be a finite alphabet and fix a linear ordering < of X
The lexicographic ordering <) and the alphabetic ordering <, induced by < are

defined as
z <y :iff y ==y, or x = zaz' and y = zby’ for some
z, 2’y € X*, and a,b € ¥ with a < b,
and

z <,y :iff x| <|y| or |z| = |y| and z <, y.

Convolution. The operation of convolution plays a central role in the follow-
ing. Ordinary finite automata take single words as their input. When repre-
senting relations of arity greater than one by automata one needs a model with
several inputs. In order to avoid having to define a new type of automaton we
introduce an operation which encodes several words into one word in such a way
that the automaton reading the new word has access to the original ones.

Definition 2.3. Let X be a finite alphabet with O ¢ X. The convolution of

X0,y Tn_1 € X* with x; = 40 - - - 2y, is defined as
oo T
To R - ® Tp1 := : : e (xu{Opnr
fén—no fén—m
where

X

;o {1‘] njs l:=max{li,...,1}.

9O otherwise,
For L, ' C ¥* we define
LeL ={zoy|lzeLyeclL},
L =L®---®L (n times).
Remark. Regular languages are closed under convolution.

For notational convenience we introduce the following functions to translate
between product and convolution. Let R C (X*)™ and L C (X*)®".

fold(R) :={zo® - - ®xp_1 | (X0,...,Zn_1) € R},
unfold(L) := {(zo,...,Tpn-1) |20 ®--- @ xp_1 € L}.
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Trees. We recall some basic definitions regarding tree languages (see [GS97],
[Tho90]).

Definition 2.4. Let X be a finite alphabet. A finite binary tree over X is a
mapping t : dom(t) — X where dom(¢) C {0,1}* is finite and satisfies the
following closure condition: wi € dom(t) for some w € {0,1}* and ¢ € {0,1}
implies w € dom(t) and wj € dom(t) for all j < i.

A binary w-tree over X' is a mapping ¢ : dom(t) — X with dom(t) = {0, 1}*.
The set of all finite trees is denoted by T's;, the set of all w-trees by T's.

To avoid cumbersome definitions we use the following notation in this sec-
tion. Let t € T'x;. By t, we denote the w-tree defined as

to(z) =

{t(m) if z € dom(t),

a otherwise.

The notion of convolution readily generalises to trees.

Definition 2.5. The convolution of finite or infinite trees to,...,t,_1 over X
is defined as

(to @ ®tp1)(@) = ((to)n(2), ..., (tn-1)0(2)) € T(zu(oy)
where dom(tp ® -+ ® tp—1) := dom(tp) U - - - U dom(tp—_1).

A (bottom-up) tree automaton is a tuple A = (Q, XY, A, F) with set of
states (), input alphabet X', set of final states F', and transition relation

ACQx T x(QU{T) x (QU{T)).
A run of A on some input tree t € Ty is a tree p € T satisfying the following
conditions:
(i) dom(t) = dom(o),
(ii) o(e) € F, and
(iii) (o(z),t(z), oo(x0), oo(x1)) € A for all € dom(t).
(

A (top-down) w-tree automaton is a tuple A = (Q, X, A, Qo, %) with set of
states (@, input alphabet X', set of initial states (Qo, Muller acceptance condi-
tion .#, and transition relation A C Q@ x X' x @ X Q. A run of 2 on some input
tree ¢ € T is a tree p € Ty satisfying the following conditions:

(i) o(e) € Qo,
(if) each path through p satisfies the Muller-condition .#, and
(iii) (o(x),t(x), o(x0), o(x1)) € A for all z € dom(t).

The tree language T'(2A) recognised by some (w-)tree automaton 2 is the set
of trees, respectively w-trees t for which there is a run of 2 on ¢.
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2.2 Logic

For an introduction to mathematical logic, see for example [EFT94]. We recall
some basic notions.

A signature 7 is a set of relation and function symbols each of which is
equipped with an arity. Constants are regarded as functions of arity 0. FO[r]
is the set of all first-order formulae using only relation and functions symbols
from 7 (and equality). A 7-structure A = (A,Rg,..., f&,...) consists of a
set A, called the universe of 2, and of one relation R* for each relation symbol R
in 7 and one function f% for each function symbol f in 7. For ¢(Z) € FO we
define

Pt ={ae A" [ Ak p@)}

First-order formulae are classified according to their quantifier-prefix. The
class ¥ contains all formulae whose prenex normal form has k alternations be-
tween existential and universal quantifiers and starts with an existential quanti-
fier. Similarly, the prenex normal form of an II;-formula begins with a universal
quantifier, and Ay denotes the class X N II;.

Besides FO[r] we consider several other logics in the following (see [EF95]).
MSO and SO are monadic second-order and second-order logic which permit
quantification over sets and relations of arbitrary arity, respectively. FO(3¢)
extends FO by the quantifier “there are infinitely many,” whereas FO(DTC)
introduces the deterministic transitive closure operator DTC.

Let 2 be a structure and § an assignment, i.e., a mapping of variables to
elements of A. We define for ¢ € FO(DTC)

(le B) |: [DTCTJ (p(fv yaz)](a7 b)

iff there are @, ...,¢, with n > 1 such that ¢ = @, ¢, = b and, for all i < n,
Cit+1 is the unique tuple with

(Qla 6[5/671: y/EiJrl]) |: p-

Finally, FO(#) is the extension of first-order logic by variables of a second
sort ranging over cardinal numbers up the the cardinality of the universe and
the cardinality operator # which is defined as

(#a02)) ™7 = |{a € A| @, Blz/a)) £ ¢ }|.

Definition 2.6. Let £ be alogic, 0 = {Ry, ..., R,} arelational signature where
the arity of R; is rj, A a o-structure, and B a 7-structure. A k-dimensional
L-interpretation of A in B is a tuple

T = (h,0(Z),e(Z,Y), Pro (Tos - -+, Trg—1)s -+« PR (T0ys -+ -3 Tr—1))
satisfying the following conditions:
(i) 4, &, ©Rys---» PR, € £ and each each tuple T consists of k variables,
(ii) h:d0® — 2 is surjective,
(iii) B = e(bo,b1) iff h(by) = h(by) for all by, by in ¥, and
(iv) B 'Z%(pRj(Eo, ooy bpy1) GfF (B(bo), ..., h(br;—1)) € R} for all by, ..., by, 1
in §°.
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Thus, an interpretation Z of 2 in 8 defines an isomorphic copy of 2 in B.
If there is some £-interpretation of 2 in B we write A <g B. If both A < B
and B <g A we say A and B are mutually interpretable and write A =¢ B.

Ezample. A standard example is the interpretation of the rationals (Q, +,-)
in the integers (Z,+,-). Fractions p/q are represented by the pair (p,q). All
pairs with non-zero second component encode a rational number. Therefore the
universe is defined by

0(xg, 1) =21 #0.
Two pairs (p, q) and (p', q") are equal if p/q = p'/q'. Thus we set

(w0, 21,%0,Y1) = To Y1 = Yo * T1-

Addition and multiplication can be defined the usual way.

04+ (7,7,%) :=e(20, 21, To - Y1 + Yo - T1,T1 - Y1),
7?7

=¢
¢.(T,7,%) = €(20,21, To " Yo, T1 * Y1)-

A stronger notion than interpretability is given by the definition of a reduct.
2 is an L£-reduct of B if both have the same universe and each relation of 2 is
L-definable in B. 2 and B are definitional £-equivalent, A =¢ B, if both, A is
an £-reduct of B and vice versa.

The following result shows that when dealing with infinite structures one
easily crosses the boundary to undecidability.

Proposition 2.7. The FO(DTC)-theory of (N,s) is undecidable where s is the
successor function.

Proof. We show how to define addition and multiplication in (N, s). Hence,
using FO(DTC)-formulae it is possible to interpret Arithmetic in (N, s) whose
theory is undecidable.

z=x+y :iff [DTCyupuv v = suAv' = sv](Oy,zz)

z=x-y :iff [DTCypuv v =suAv' =v+z](00,yz)
O

In particular, in any class of structures containing (N, s) there are structures
with undecidable FO(DTC)-theory. Thus, if one is interested in logics with
recursion, i.e., transitive closure or fixed point logics, one should look at classes
with very simple infinite structures or structures with dense orderings. All but
one of the classes we consider in the following contain (N, s).
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Chapter 3

Automatic Presentations
and Queries

3.1 Automatic Presentations

The idea of representing possibly infinite structures by finite automata can be
made precise as follows. We encode the elements of the structure by words
over some alphabet. In order to determine whether a tuple (ag,...,a,—1) be-
longs to some relation R we take the tuple (wo,...,w,—_1) of words encoding
(ao,---,an—1) and test whether the convolution wp ® - - - ® wy,—1 is accepted by
the automaton representing R.

Definition 3.1. Let 7 = {Ry,..., R} be a finite relational signature, r; the
arity of R, and let % = (4, R\, ..., R¥) be a T-structure.

0= (V,Z,L(j,LE,LRO,...,LRT)

is an automatic presentation of 2 if the following conditions are satisfied:
(i) Ly C X*, L. C (Z*)®%, and Lg, C (Z*)®" for j < r, are regular
languages.

(ii) v: Ls = A is surjective and

To®x1 € L, iff v(zo) =v(z1),
To® - QTp,—1 € LRj iff (U(Cﬂo),...,v(mrj_l)) € R?l

for all j <r.

Note the similarity between the definitions of an automatic presentation
and an interpretation. We will see in Chapter 4 that basically an automatic
presentation is an interpretation in a fixed structure.

If regular languages of w-words, trees, or w-trees are used instead of word lan-
guages we speak of w-automatic, tree-automatic, and w-tree-automatic presen-
tations, respectively. The classes of T-structures possessing a presentation of one
of the above defined types is denoted by AutStr[r], w-AutStr[r], TAutStr[r], and
w-TAutStr[r], respectively. Furthermore we use abbreviations like [T]AutStr[r]
meaning AutStr[7] or TAutStr[r].



10 3. Automatic Presentations and Queries

If the signature 7 contains functions, an automatic presentation of some
T-structure 2 is a presentation of its relational variant where each function is
replaced by its graph.

Ezample. (1) An important example of a structure with an automatic presenta-
tion is Presburger Arithmetic (N, +). Each number n € N is encoded the stan-
dard way as binary number without leading zeros, but in reversed order, i.e.,
with the least significant digit first. A presentation is 0 = (v,{0,1}, Ls, Ls, L)
with

V(bobl):zbﬂl, _{8 %}7

i<l
Ls :={0,1}*1 U {0}, L, :=L(Ay).

24 is an automaton which compares its input digit by digit and remembers the
carry at every step. Formally, 2 := ({0,1},{0,1,0}3, A,0,{0}) with
A:={(i,(a,b,c),j) | a+b+i=2j+c (counting O as 0) }.

(2) Natural candidates for structures with automatic presentation are those
consisting of words. (But note that the free monoid—with at least two genera-
tors—does not have such a presentation as we will see in Section 5.1.) Let X be
some alphabet and consider the structure (X*, (D,)qex, <) where

Dyzy :iff £ = uav for some u,v € T* with |u| = |y|,
7 <y Hiff [a] < yl.
It can be presented as 0 = (id, ¥, X*, L., (Lq)qc 5, L<) with

L. ={[?]]|ae X},
Lo o= {[*] |bee 2} [g]{[4] |be =},
Le:={[{]]abe X} {[F |beE}

Definition 3.2. Let 21 € AutStr be a structure with automatic presentation
0= (,X,Ls,Le,Lg,,.-.,Lg,). Denote by A\’ : A — N the function mapping
each element of 2 to the length of its shortest encoding.
X (a) := min{|z| | v(z) = a}
Let us start with some basic observations about automatic presentations.

First, a binary alphabet is always sufficient.

Lemma 3.3. Let A € [w-][T]AutStr. Then A has a presentation over a binary
alphabet.

Proof. Letd = (v, ¥, Ls,Lc, LR,,-..,Lg,.) be a presentation of 2. If | ¥| = 1 we
can simply add some symbol to X. Otherwise, let ¥ = {aq, ..., a,—1}. Consider
the family of homomorphisms h,, : (X™)* — ({0,1}™)* defined by

ho @iy« yai, ) = (bin(ip),...,bin(im,—1))

where bin(i) is the binary encoding of i of fixed length [log, n]. As all words
bin(ix), k < m, in the definition above have the same length

o = (voh ', {0,1},hi(Ls), ha(Le), hyo(LRy), - - he. (LR,))

is a presentation of 2 of the required form. |
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The next result turns out to be vital in many circumstances—especially
when applying the Pumping Lemma as it guarantees that all pumped words
encode different elements. The case of AutStr is due to Khoussainov and
Nerode [KN95].

Theorem 3.4. Every 2l € [T]AutStr has an injective automatic presentation.

Proof. (AutStr) Let ® = (v, %, Ls, L., Lg,,...,LR,) be a presentation of 2 €
AutStr. Fix an ordering of X' and consider the alphabetical ordering < of X*
induced by it. This ordering is recognisable by an automaton. In order to
define an injective presentation we pick from each set v~!(a) the least word
with respect to < and obtain the injective presentation

al = (VazaLgaLEaLRoa"'aLRr)
where the language
si={rels|Vyels:z®y€l. >x =<y}

is regular.

(TAutStr) We have to define a well-ordering on the set of finite trees which
is recognisable by an automaton. Then the rest of the proof is identical to the
case above. Thus we set ty < t; if either

(i) dom(tg) # dom(¢1) and the leftmost position in the symmetric difference
of dom(tg) and dom(#;) belongs to dom(t;) or

(ii) dom(tg) = dom(t;) and at the leftmost position x where tg and #; differ
we have to(z) < t1(z).

This relation can be recognised by an automaton as follows. It guesses which
case applies and the position of the difference, and checks that to the left of this
position both trees are identical. O

In the case of w-AutStr all we can do at the moment is to classify the sets
of w-words encoding the same element.

Lemma 3.5. Let 0 be an w-automatic presentation of A and let a € A. The
set of all w-words encoding a belongs to B(Gs), the boolean closure of the second
level of the Borel hierarchy.

Proof. Let o = (v, XY, Ls,Le,Lp,,...,LR,). Take any w-word w encoding a.
The function ¢, : ¥ — (X¥)®2 = (¥ x X)¥ defined by t,(z) == 2 @ w is
continuous. As every regular w-language is in B(Gs), and since the inverse of
a continuous function leaves levels of the Borel hierarchy invariant, we obtain

v1(a) = 1} (L.) € B(Gs). O

We end this section with some simple remarks about how to construct au-
tomatic structures from other ones.

Lemma 3.6. Every automatic presentation of a structure 2 € [T]AutStr can
effectively be extended to a presentation of (A, <) € [T]AutStr for some well-
ordering <.
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Proof. (AutStr) Let ® = (v, X, Ls, Le, Lg,, - .-, Lr,.) be an injective presentation
of 2. Define

a<b :iff v (a) v (d)

where < is some fixed alphabetical ordering of X*.
(TAutStr) Take the well-ordering defined in the proof of Theorem 3.4. O

Lemma 3.7. (i) If 2 € [T]AutStr then (A,a) € [T]AutStr for any tuple @ of
finitely many elements of 2.

(i) Let A € w-AutStr with presentation 0. If there is some ultimately peri-
odic w-word encoding a € A then (A, a) € w-AutStr.

Proof. (i) Let o = (v, X, Ls, Le, Lg,, - .., Lg,) be an injective presentation of 2.
For each a € A one can construct an automaton which recognises the single
word v~ t(a).

(ii) Let ® = (v, ¥, Ls, L, LRy, - .-, LR, ) and a be encoded by uv*. Then the
presentation of a is

Ly={we X |weuw*e L.} =m (LN (m)"" (wv*)),
where 7; is the projection on the i*" component. [l

Proposition 3.8. [T]AutStr is closed under finite variations of some relation.

Proof. Let d = (v, X, Ls, L, LR,,...,LRr,) be an injective presentation of some
A = (A, Ro,...,R,) € [T]AutStr. We have to show that A’ = (A, Ry, ..., R},) is
also in [T]AutStr where R and R; differ only in finitely many tuples. Construct

o' = (), %, L5, Le, Ly, ..., L'y )
with L' := Lg; \ X; U Xf where

X7 = v (R \ R) and X]'-" = v (R} \ R;)

are finite sets. Therefore Ly is also regular. O

3.2 First-Order Queries

After having defined automatic presentations the question arises what can be
done with them. The most fundamental operation on structures is the evaluation
of a query, i.e., we are given a formula ¢(Z) and ask which elements @ of the
structure 2 satisfy ¢. Formally, we want to compute ¢* from 2 and ¢. In
case of automatic structures this operation is not only effective but—due to the
extensive closure properties of regular languages—the encoding of the resulting
set is also regular.

For ease of notation we use regular expressions instead of automata con-
structions in the definition below and in most other places. But in an actual
implementation one will usually work with automata which are easier to handle
algorithmically.
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Definition 3.9. Let 7 = {Ry,..., R} be a finite relational signature, r; the
arity of R;, and & a 7-structure with presentation

0= (V,E,LJ,LE,LRO,...,LRT).

We define the function 73 : FO[r] = (L") which maps formulae ¢ all of
whose variables are among {zg,...,2,_1} to a presentation of the set

{ (a0, an1) [ A= (@) }-

From this set an encoding of ¢® can be obtained by removing the components
of those variables which do not appear free in ¢. The corresponding function is
denoted 7° (without the index n).

To select and permute the components of a word we define the auxiliary
mapping

0.m7n .
(i0,k0)...(i1—1,k1—1) ~

2((ZH)e™) — 2((Z)%")
which takes a language L to the set
{wo ® - @wp—1 | Jug ® -+ @ Upm—1 € L: uy;, =wy, forall j <1},

i.e., component i; is moved to position k;. 0870’720) (ir_1,kn_y) DLESETVES regularity
since it can be defined as

, L * N -1 N *
U?Zofzo)---(il—1,kz—1)(L) T (E )®n N [(ﬂ-;:o---kzq) ° (71—2:...1'1_1)] (L(Dm) )
where 7 .+ 2((¥")*) = P((£')*) denotes the projection with
N
ﬂ‘Z)---il—l ((ao, e ,an—l)) = (aiov Tt ’a’il—1)'

In the above definition we had to add the factor (O0™)* because the other—
unspecified—components may be longer that those from L.

Using this function, ° can be defined in terms of n3 by

0 L ok 0
n°(p) = UZO,O),,,(ik_I’kq)(nn(‘P))

if the free variables of ¢ are x;,,..., i, _,-

Finally, n° is defined per induction on ¢. For atoms we simply return the
corresponding language of the presentation after moving the components into
the right position.

o Rn ri,n
—1) = Ld N U(O,io)n(""j*l’iv‘jfl) (LRj)7

n (i = ;) = L§" N 0(262)(1,]') (Le).

nEL(ijio [ ¥

Ti

Boolean connectives are handled by the corresponding set operations.
m(=e) = L{" \ mn(p),
(e V) =15 (9) Unp ().

Finally, for the existential quantifier we erase the component of the variable in
question.

1 (3zip) = L™ N UE})’,T(L))...(FLiA)(iH,i+1)...(n71,n71) (mm())-
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Of course, we have to show that the above construction is correct.

Proposition 3.10. Let 2 € [w-][T]AutStr have the automatic presentation 0.
For all formulae ¢ € FO it holds that v(n®(p)) = p*.

Proof. Per induction on the structure of ¢ prove that
v(m(p) ={ae A" | (A,a) E ¢}

where n is chosen large enough such that the indices of all variables x; appearing
in ¢ are below n. As an example we prove the case of ¢ = Rz;z;.
(C) Let

Wo X - QWp_1 € UZ(RJ,’ZJJJ) = L?n N 0'(262)(1’].) (LR)
Then wy, ..., wn—1 € Lg, and w; ® w; € Lr. Thus, (V(wi),v(wj)) € R and
(A, v(wo) ... v(wn—1)) = Rx;x;.

(D) If on the other hand (,@) = Rz;z; for some @ € A™ with encodings
Wo, - -.,Wn—1 € Lg, then (a;,a;) € R and thus w; ® w; € Lg. Hence,

wo @ ®wn1 € LY Nl 5y (Lr) =115 (Reizj).

In the case of word and tree languages we are able to do a bit more.

Proposition 3.11. For 2 € [T]AutStr the function n can be extended to for-
mulae of FO(I¥).

Proof. Let 0 be an injective presentation of 2. Define
i (3zip) == LF" N UEB’?))...(i—lJ—l)(i+1,i+1)...(n—17n—1) (mm (@)W, H).
where k is the index of the Nerode-congruence of the language n2(¢) and
Wy, :=e® 1 @ IF @ e®n,
We give the induction step in the proof that

v(nd(F“zn_19)) = {@ e A" | there are infinitely many a € A such that
A E plag,...,an—2,a) }.

(D) Fix values ag, - - ., an—2- If there are infinitely many values a,,—1 for z,_1
satisfying ¢ there exists such an element a, ; € A with X°(a,_1) > k +
max{\°(ag), ..., A\’ (an_2)}. Thus

(@0, n—3, an-1) € V[ () N (572 (51 @ )],
Let = be the prefix of v~ (a,_1) of length \°(a,,_1) — k. Then
-1

v ag) @@ v Han o) @z €)@ 2F) T,

which implies that (ag,...,an—2,a) € V(nfl(ﬂ“’xn,ltp)) for all a € A.
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(C) If on the other hand there are elements (ao, . . ., an—1) € v(n3(F*Tn_1¢))
then there is some a,,—; € A with

v ag) @ - @ v (an_2) @ v (an_1) € 72(p) N (Z*)8 (B! @ Tk,

When applying the Pumping Lemma to the suffix of length & of this word we get
infinitely many words of the form v~ (ag)®- - -®@v ! (a,_2) ®x which differ only
in x as the suffix does not contain any symbols from the first n — 1 arguments.
Since the presentation is injective each x encodes a different element and thus
there are infinitely many a,,_; € A with (ag,...,an_2,an_1) € P*. O

As the definition of 1° is effective we obtain the following

Corollary 3.12.
(i) The FO(3¥)-theory of any structure in [T]AutStr is decidable.
(ii) The FO-theory of any structure in w-[T]AutStr is decidable.

Its importance lies in the fact that it yields one of the two methods known to
the author to prove that a structure is not automatic. If the first-order theory
of some structure 2 is undecidable then 2( cannot be automatic.

Ezample. As the first-order theory of Arithmetic (N, +,-) is undecidable it does
not have an automatic presentation, i.e., (N, +,-) ¢ [w-][T]AutStr.

A second important consequence of Proposition 3.10 is the following result
which yields a notion of reduction of one automatic structure to another.

Proposition 3.13.
(i) [T]AutStr is closed under (k-dimensional) FO(3¥)-interpretations.
(ii) w-[T]AutStr is closed under (k-dimensional) FO-interpretations.

Proof. We just give the proof for AutStr. Let Z = (h,d,e,¢R,,---,¢R,) be a
k-dimensional FO(3“)-interpretation of 2 in B. Let

0% = (2, 2B LY, L2 LT, .. L)

be a presentation of %. We construct an automatic presentation 3% of 2. Set
o= (W, 2% LY, LY LY, ... L})

where

o= (ZPu{my),
Vm(x) h[v® (mo(z)), ..., v (1 (2))],

= (LD 2™ (9),
LQ‘ (L= A, (e ( )s
= (L1 N0l (o).
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Some immediate consequences are summarised in

Corollary 3.14. [w-][T]AutStr is closed under
(i) expansions by definable relations,
(ii) factorisations by definable congruences,
(iii) substructures with definable universe, and
(iv) finite powers.
Before getting ones hopes too high, here is a warning that even some of the

simplest model theoretic constructions do not work for automatic structures.

Lemma 3.15. There is a structure A such that every reduct of 2 has an au-
tomatic presentation but 2 itself is not automatic.

Proof. Consider 2 := (N, +,2), the natural numbers with addition and squaring
function. Since multiplication is definable in 2 its first-order theory is undecid-
able and therefore 2 ¢ [w-][T]AutStr. What about the reducts? (N) obviously
has an automatic presentation, and we already know that (N,+) € AutStr. A
presentation of (N,?) can be constructed as follows. Let

M :=N\{k*| k€ N}

be the set of non-squares. Every natural number n € N\ {0,1} can uniquely
be written as n = m2" for some m € M and k € N. Hence, we can encode n
by (m, k). The squaring functions acts as (m, k) — (m, k + 1) on this encoding.
Therefore we set 0 := (v,{0,1,a,b}, Ls, L., L2) where

v(0) =0, Ls :={0,1}Ua*b*,
v(1) =1, L.:={[¢]|c€{0,1,a,b} Y,
v(a™) =15, Le={[§].[1]}ula]" [}]" [F].
and ly,ly,... is an enumeration of M. O

Lemma 3.16. [w-][T]AutStr is not closed under arbitrary substructures.

Proof. Consider & := (N, <, P) with P := 2N. This structure is clearly auto-
matic. Let X C N be any non-recursive set, and construct the substructure
B C A with universe

B={2n|neX}U{2n+1|n¢ X}

Then B = (B,<|s,P|s) = (N,<,X). But Th(®B) cannot be decidable for,
otherwise, X would be recursive. O

3.3 Extensions of First-Order Logic

We have seen that automatic structures are quite well behaved with regard to
first-order logic. What about stronger logics? Possible applications of automatic
structures include automatic verification where the most important problem
is REACHABILITY, and databases where one usually wants to have some sort
of recursion. Thus it is natural to consider transitive closure and fixed-point
extensions of first-order logic. Unfortunately, even slightly stronger logics than
FO, respectively FO(3“), are already undecidable.
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Proposition 3.17.
(i) [w-][T]AutStr contains structures with undecidable FO(DTC")-theory.

(ii) [w-][T]AutStr is not closed under expansion by FO(DTC')-definable rela-
tions.

Proof. This result follows immediately from Proposition 2.7 and the closure of
[w-][T]AutStr under finite powers. Nevertheless we give an explicit proof which
strengthens the claim to formulae such that in all subformulae of the form
[DTC,,y ¥(z,y)](x,y) the only free variables appearing in ¢ are z and y.

Presburger Arithmetic (N, +) is automatic. We define multiplication using
transitive closure.

z y=z :iff [DTCyhyspryr ' =z Ay +1=y A 2’ = 2+ z](zy0, 20z)

If automatic structures were closed under deterministic transitive closure there
would be an automatic presentation of Arithmetic (N, +,-) in contradiction to
the example above.

The expression above uses a 3-dimensional DTC-operator. We can replace
it by a 1-dimensional one if we take the structure consisting of Presburger
Arithmetic together with its third power, i.e., (N U N, +, my, w1, m) where
+ C N x N x N is the graph of addition and m; C N* x N is the projection
on the i*" coordinate. O

Proposition 3.18. For structures in [w-][T]AutStr, REACHABILITY is unde-
cidable.

Proof. Let M = (Q,X,I,A,qo,F) be a Turing machine. We construct an
automatic presentation of its configuration graph. A configuration (¢, w,p) is
encoded by the word woqw; with w = wow; and |wg| = p. The transition rela-
tion |/ is clearly recognisable by an automaton as it depends only on the finite
region of the word around the position of the state symbol. If REACHABIL-
ITY were decidable there would be an algorithm deciding the halting problem.
W.lo.g. assume M has an unique accepting state gy and clears its tape before
accepting. Then, given M and an input z, we could construct the presenta-
tion of its configuration graph and check whether the accepting configuration
is reachable from the starting configuration, i.e., whether (¢¢,¢,0) is reachable
from (qo,z,0). O

Proposition 3.19.
(i) [w-][T]AutStr contains structures with undecidable FO(#)-theory.
(i) [w-][T]AutStr is not closed under expansion by FO(#)-definable relations.

Proof. Consider the automatic structure (NUN?, +, 7, 7 ) where + C NxNxN
is the graph of addition and m; C N? x N is the projection on the i*" coordinate.
Multiplication can be defined as

x-y =z :iff #,(v<2)=F#,urus(movur Amvus Aug < zAus <y)
with the abbreviation
r<y:iff 2Z(z+z=y)Az#y.

Therefore there is a FO(#)-interpretation of Arithmetic in this structure and
the undecidability follows. O
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3.4 Complexity of Queries

After having seen what can be done with automatic structures we now study
the complexity of those operations. (For an introduction to complexity theory
see [HU79, Pap94, Imm98].) We investigate the following fundamental problems.

The most basic one is the model-checking problem: Given a 7-structure 2, a
formula ¢ € FO[7], and a tuple of parameters @ in 2, decide whether 2 = ¢(a)
does or does not hold.

A generalisation is the query-evaluation problem: Given a presentation
and a formula ¢, compute n°(yp).

The complexity of both problems can be investigated under three points
of view. First one can hold the formula fixed and ask how the complexity
depends on the input structure. If the complexity is measured in this way we
speak of structure complexity. On the other hand one can fix the structure and
measure the dependency on the formula. This leads to the notion of ezpression
complezity. Finally, one can look at the so called combined complexity where
both parts may vary.

Of course, statements about complexity are only meaningful if the encoding
of the input is specified. A presentation 0 is given by a mapping v and several
regular languages. v is a purely semantic object which is not part of the input
of an algorithm. There are various ways to encode regular languages, but the
representation which can be handled by algorithms most easily uses automata.
Therefore in this section we assume that 9 is given by a list of deterministic
automata. Furthermore we only consider presentations using binary alphabets.

Deterministic automata are chosen because boolean operations on them
can be performed in polynomial time whereas negation of nondeterministic au-
tomata may cause an exponential blowup. If the input is restricted to positive
formulae the results below hold for presentations given by nondeterministic au-
tomata as well.

We use the following notations for the size of the input. For a presentation 0,
[0 denotes the maximal size of the automata belonging to 9, and we use \°(a)
as an abbreviation for the maximum of A?(a;) for all i.

Our first result is rather discouraging. A function is said to be non-elemen-
tary if it cannot be bounded from above by a function of the form

2™
92" }’“

for fixed k.

Proposition 3.20. The expression complexity of the model-checking problem
is non-elementary.

Proof. The claim follows immediately from the fact that 91, := (N, +,],) is
automatic where

alpb :iff ais a power of p and a|b,
since the theory of M, has non-elementary complexity (see [Gra90]). O

Let us hope that in some restricted cases the complexity is less devastating.
We begin by taking a closer look at the simulation of automata.
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Lemma 3.21. Given a deterministic automaton A = (Q,X,6,q0,F) and a
word w € X*, to check whether w € L(2) is in

DTIME[O(|w]|Q|log|Q])] and  DsPACE[O(log |Q| + log |w])].
Proof. We use the following algorithm:

Input: 6, F, w

q = Aqo

1 =0

m = |w|

while i < m do
a := wli]
q:=9d(q,a)
i :=i+1

end

return g € F

The space used consists of the current state, the input position, and the
length of the input.

In order to minimise the time needed to access the current symbol of the
word w we slightly modify the above algorithm such that it copies w to a separate
work tape first. Then we can leave the head of that tape on the current symbol
and do not need to go back and forth between the two parts of the input.
Therefore the first and last line of the loop can be performed in constant time.
The second line requires a lookup in § which can be done by scanning ¢ until
the state ¢ is found. This takes O(|0]log|Q]|) = O(|Q|log|Q]) steps. The loop
is executed |w| times.

The initialisations take time O(Jw|). To check whether ¢ € F' the algorithm
scans the encoding of F and looks for g. This needs time O(|F|log|Q|) =

0O(|Q|log|Q|). Putting everything together, we obtain the desired bound. O

Lemma 3.22. Given a nondeterministic automaton A = (Q, X, A, qo, F) and
a word w € X*, to check whether w € L(2l) is in

DTIME[O(|w| |A]|Q]log |Q])] and  DSPACE[O(|Q] + log|w])].

Proof. We use the following algorithm:

Input: A, F, w

P:={q}

for i =0,...,|lw|—1do
a = wli
P =0

forall (¢,a,q") € A do
if g€ Pthen P :=P U{¢}
P:.=P
end
return PNF # ()
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The space used consists of the current set of states, the input position, and
the length of the input.

If the sets are implemented using arrays of bits, the statements in the body of
the loop use time O(|Q)|) for erasing P'; O(|Q|log|Q|) for testing the condition
in the if-statement; and O(|Q|log|Q|) for the updates of P' and P.

To check whether there was a successful run takes time O(]Q|). Therefore,
the overall time used is as given above.

When considering the structure complexity of a problem, the automata of
the presentation are fixed. Therefore we also look at the non-uniform version of
the membership problem for regular languages.

Lemma 3.23. Let L C {0,1}* be regular. The problem to determine, given a
word w € {0,1}*, whether w € L, is in ALOGTIME.

Proof. Our alternating log-time algorithm is based on the characterisation of

a regular language L via its syntactic monoid M (L). It is well known that a

language L is regular if and only if there is some finite monoid M (L), a subset

P C M(L), and a homomorphism 7z, : {0,1}* — M (L) such that L = n; *(P).
Let w =ap - an—1 and e; := nr,(a;) for i < n. Thus

ap - +Qap_1 €L iff eg---e,_1 € P.

The algorithm starts by guessing eg - - - €,,—1 and verifies its guess by recursively
determining the values of e --- e, /21 and e, /5 - en_1.

Input: ag - an_1

existentially guess m € P

repeat [logn] times
existentially guess mg, my € M (L)
if m # moem, then return false
universally choose i € {0, 1}
append ¢ to the index tape

m:=m;

end

read the symbol a whose number is stored on the index tape

return 7y, (a) =m O

So far, we only dealt with relational signatures as functions can easily be
replaced by their graphs. But to do so we need to introduce additional quan-
tifiers which is not possible if we want to investigate quantifier-free formulae.
When studying quantifier-free formulae with functions we need an algorithm to
compute the value of a function whose graph is given by some automaton.

Lemma 3.24 (Epstein et al. [ECHT92]). Given a tuple W of words over ¥,
and an automaton A = (Q, X, 6, qo, F) recognising the graph of a function f,
the calculation of f(w) is in

DTvE[O(|Q[* log |Q| (|Q| + [@]))] and
DspAcE[O(|Q]log Q] + log [w])].



3.4. Complexity of Queries 21

Proof. The following algorithm simulates 2 on input wo ® - - - ® wy—1 @ x where
x is the result that we want to calculate. For every position i of the input, the
set (; of states which can be reached for various values of x is determined. At
the same time the sets @); and @;41 are connected by edges E; labelled by the
symbol of z by which the second state could be reached. When a final state is
found, x can be read off the graph.

We use the following function to compute @Q;11 and E; from @Q; and the
input symbol a.

Step(Q,a)
QR =0
E =0

forall ¢ € Q do
forall c € ¥ do
q' = d(q,ac)
if ¢ ¢ Q' then
E = EU{(g,e0)}
Q"= Q' U{q}
end
end
return (Q', E)

If E is realised as an array containing, for every ¢ € @, the values ¢’ and ¢ such
that (¢', ¢, q) € E, this function needs space (’)(|Q| log |Q|) and time

0(1Q1(1QI1og Q] + |Q[1og Q1) = O(1QI*log Q).

We use two slightly different algorithms for the time and space complexity
bounds. The first one simply computes all set @); and E; and determines z. The
second one reuses space and keeps only one set (); and E; in memory. Therefore
it has to start the computation from the beginning in order to access old values
of E; in the second part.

In the first version the function Step is invoked |z| times, and the second
part is executed in time O(|z]|Q|log|Q]).

The space needed by the second version consists of storage for @), E, and
the counters ¢ and k. Hence, O(|Q| + |Q|log |Q| + log |z|) bits are used.

Since 2 recognises a function the length of x can be at most |Q| + |[w] (see

Proposition 5.1 for a detailed proof). This yields the given bounds. O
Input: 2 = (Q, X,6,q0, F), w Input: 2= (Q,X,6,q,F), w
Qo :={qo} Q@ = {q}
1:=0 1:=0
while Q; N F = do while QN F = do

if i < |w| then if i < |w| then
@ :=wli] a = wli]
else else
a:=0 a:=0
(Qi+1a El) = Step(Qiaa) (QaE) = Step(Qaa)
1:=14+1 1:=14+1
end end
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letge @Q;NF letge @QNF

while i > 0 do while ¢ > 0 do
1:=1—1 1:=1—1
Q= {qo}

for k=0,...,2—1do
if k < |w| then

a := wlk]
else
a:=0
(@, E) := Step(Q, )
end
let (¢',¢,q) € E; let (¢',c,q) € E
zli]:==c¢ zli]:=c¢
q:=q q:=q
end end
return z return

Obviously, the formula is responsible for the high complexity of the model-
checking problem. So we consider restricted classes of formulae. It turns out that
model-checking and query-evaluation for quantifier-free and existential formulae
are still—to some extent—tractable.

Proposition 3.25. (i) Let T be a relational signature. Given the presentation 0
of a structure 2 € AutStr[r], a tuple @ in A, and a quantifier-free formula
©(Z) € FO[1], the model-checking problem for (A, a, ) is in

DTIME[O(|p| X° (@) [0]log [2])] and
DsPacE[O(log |¢| + log o] + log A°(@))].

(ii) The structure complexity of the model-checking problem for quantifier-
free formulae is LOGSPACE-complete with regard to FO-reductions.

(iii) The expression complexity is ALOGTIME-complete with regard to deter-
ministic log-time reductions.

Proof. (i) In order to check whether 2 = (@) holds, we need to know the truth
value of each atom appearing in . Then, all what remains is to evaluate a
boolean formula which can be done in DTIME[O(|¢|)] and ATIME[O (log |¢|)] C
DspacE[O(log |¢|)] (see [Bus87]). The truth value of an atom RZ can be cal-
culated by simulating the corresponding automaton on those components of @
which belong to the variables appearing in Z. According to the lemma above
this can be done in time O(X?(@) [0]log[?])) and space O(log o] + log X°(@)).

For the time complexity bound we perform this simulation for every atom,
store the outcome, and evaluate the formula. Since there are at most || atoms
the claim follows.

To obtain the space bound we cannot store the value of each atom. Therefore
we use the LOGSPACE-algorithm to evaluate ¢ and, every time the value of
an atom is needed, we simulate the run of the corresponding automaton on a
separate set of tapes.
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(ii) We reduce the LOGSPACE-complete problem DETREACH, of reachability
by deterministic paths, (see e.g. [Imm98]) to the model-checking problem. Given
a graph & = (V| E, s,t) we construct the automaton 2 = (V, {0}, 4, s, {t}) with

A= {(u,0,v) |u#t, (u,v) € E and there is no v’ # v with
(u,0") € B}
u{(£,0,1)}.

That is, we remove all edges originating at vertices with out-degree greater
than 1 and add a loop at ¢t. Then there is a deterministic path from s to ¢ in &
iff A accepts some word 0" iff 01V € L(A). Thus,

(V,E,s,t) € DETREACH iff B = POl

where 8 = (B, P) is the structure presented by (v, {0}, {0}*, L(2)).

A closer inspection reveals that the above transformation can be defined in
first-order logic.

(iii) The third part follows immediately from Lemma 3.23 and the fact that
the evaluation of boolean formulae is ALOGTIME-complete (see [Bus87]). O

It was remarked above that for quantifier-free formulae the question whether
functions are allowed does make a difference.

Proposition 3.26. (i) Let T be a signature containing functions. Given the
presentation 0 of a structure A € AutStr[r], a tuple @ in A, and a quantifier-
free formula o(Z) € FO[r], the model-checking problem for (A, a, ) is in
DTIME[O (|| [0 log [2] (¢ [o] + X°(@)))] and
DspPace[O([¢] (¢] o + X (@) + [2]log [0])]-
(ii) The structure complexity of the model-checking problem for quantifier-
free formulae with functions is in NLOGSPACE.

iii) The expression complexity is PTIME-complete with regard to <1°8-re-
(i) D plezity D g <m
ductions.

Proof. (i) Our algorithm proceeds in two steps. First the values of all functions
appearing in @ are calculated starting with the innermost one. Then all func-
tions can be replaced by their values and a formula containing only relations
remains which can be evaluated as above.

We need to evaluate at most || functions. If they are nested the result can
be of length |¢| [o] + A°(@). Thus, by Lemma 3.24, we need space

O([o[log|o] +log(l¢l [o] + A°(@)))
for the evaluation of a function, space
O(lel (Il ol + X (@)))
to store the results, and space
O (log | + log o] + log (|| [o] + A°(@)))

for the final evaluation of (. This yields the bound given above.



24 3. Automatic Presentations and Queries

The evaluation of |p| functions takes time

O(lel [oI” log [o| (Il [o] + X°(@))),

the evaluation of ¢ time

O(lel (Il Pl + A% (@)) [o]og o]).

(ii) It is sufficient to present a nondeterministic log-space algorithm for eval-
uating a single fixed atom containing functions. The algorithm simultaneously
simulates the automata of the relation and of all functions on the given input.
Components of the input corresponding to values of functions are guessed non-
deterministically. Each simulation only needs counters for the current state and
the input position which both use logarithmic space.

(iii) Let M be a p(n) time-bounded deterministic Turing Machine for some
polynomial p. A configuration (g, w,p) of M can be coded as word woqw; with
w = wow; and |wy| = p. Using this encoding both the function f mapping one
configuration to its successor and the predicate P for configurations containing
accepting states can be recognised by automata. We assume that f(c) = ¢ for
accepting configurations c. Let gy be the starting state of M. Then M accepts
some word w if and only if the configuration fP(I%D(gow) is accepting if and
only if A = PfPUwDgow where 2 = (A, P, f) is automatic. Hence, the mapping
taking w to the pair gow and P f?(*D g is the desired reduction which can clearly
be computed in logarithmic space. [l

Proposition 3.27. (i) Let T be a fized relational signature. Given the presenta-
tion 0 of a structure A € AutStr[r], a tuple @ in A, and a formula o(T) € Tq[1],
the model-checking problem for (A,a,p) is in

NTIME[O(Jg| [o] X (@) + [0]°1#))] and
NsPACE[O(|¢| (]o] + log |¢]) + log A% (a))].

(ii) The structure complexity of the model-checking problem for ¥1-formulae
is NPTIME-complete with regard to <Y.-reductions.

(iii) The expression complexity is PSPACE-complete with regard to <!98-
reductions.

Proof. (i) As above we can run the corresponding automaton for every atom
appearing in ¢ on the encoding of @. But now there are some elements of the
input missing which we have to guess. Since we have to ensure that the guessed
inputs are the same for all automata, the simulation is performed simultaneously.

Inplm: 07 6, Y= ElyO e Hykflw(fa y)
Let A; = (Q;, X, 6,0, F;), for i < n, be the automata belonging
to the atoms of .
7:=(0,...,0)
m := \°(a)
for:=0,...,m—1do
b := ali]
guess ¢ € X*
for j=0,...,n—1do ¢q; :=§;(q;,b0)
end
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repeat at most [Qp X -+ X Qp_1]| times

guess ¢ € XF

for j=0,...,n—1do g¢; :=4;(¢g;,0---0c)
end
evaluate ¢ with values determined by g

The algorithm needs the following space:

e for each atom the number of the relation and the numbers of the variables:
O(l|log l¢l),

e P and P": O(|¢||d]) (note that 7 is fixed),

e i and m: O(log \°(a)), and

e band @ O(|y)|).

The initialisation can be performed in time O(|¢|+ A?(a@)). The while-loop
is executed X°(@) times. Its body requires O(|¢| + |¢|[o]) = O(|¢| [0]) steps.
The body of the repeat-loop uses time O(|¢|[9]). Therefore the total time is

O(lgl + X @) + X (@) |l [0] + ol [0] [0]'¢)
= O(J¢| | X (@) + [0°14D).

(ii) We reduce the NPTIME-complete non-universality problem for nondeter-
ministic automata over a unary alphabet (see [MS73, HRS76]), given such an
automaton check whether it does not recognise the language 0*, to the given
problem. This reduction is performed in two steps. First the automaton must
be simplified and transformed into a deterministic one, then we construct an
automatic structure and a formula ¢(z) such that ¢(a) holds for several values
of a if and only if the original automaton recognises 0*. As the model-checking
has to be performed for more than one parameter this yields not a many-to-one
but a Turing-reduction.

Let 2 = (@, {0}, A, qo, F') be a nondeterministic finite automaton over the
alphabet {0}. We construct an automaton 2’ such that there are at most two
transitions outgoing at every state. This is done be replacing all transition form
some given state by a binary tree of transitions with new states as internal
nodes. Of course, this changes the language of the automaton. Since in 2 every
state has at most || successors, we can take trees of fixed height &k := [log|Q|].
Thus, L(2A') = h(L(2)) where h is the homomorphism taking 0 to 0*. Note that
the size of 2’ is polynomial in that of 2.

A’ still is nondeterministic. To make it deterministic we add a second com-
ponent to the labels of each transitions which is either 0 or 1. This yields an au-
tomaton A" such that 2 accepts the word 0™ iff there is some word y € {0, 1}*?
such that A" accepts 0" @ y.

2" can be used in a presentation. Let 0 = (v,{0,1},{0,1}*, L(A")) be the
presentation of some {R}-structure 8. Then

B = Jy ROFy  iff  0Freye L") iff 0" e L(A).
It follows that

L) =0* iff B =3y ROy for all n < 2|Q].
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The part (=) is trivial. To show (<) let n be the least number such that
0™ ¢ L(2A). By assumption n > 2|Q|. But then we can apply the Pumping
Lemma and find some n' < n with 0" ¢ L(2). Contradiction.

(iii) Let M be a p(n) space-bounded Turing machine for some polynomial p.
As above we encode configurations as words, but this time we append enough
spaces to increase their length to p(n) + 1. Let L := {coy®¢1 | co F ¢1 } be the
transition relation of M. The run of M on input w is encoded as sequence of
configurations separated by some marker #. Lo can be used to check whether
some word z represents a run of M. Let y be the suffix of 2 obtained by removing
the first configuration. The word z ® y has the form

Co # C1 # # Cs—1 # Cs
Cc1 # Co # # Cs #

Thus z encodes a valid run iff z ® y € L1 where
Ly = (LF [ﬁ]) (Z* ®e).

Clearly, the language Lp of all runs whose last configuration is accepting is
regular. Finally, we need two additional relations. Both, the prefix relation <
and the shift s are regular where s(az) := z for @ € ¥ and z € X*. Therefore,
the structure A := (A, T, F, s, X) is automatic, and it should be clear that

w € L(M) iff A=y, (g 1"1#),

where k := p(Jw|) and

Puw(z) = Tyo - - Ykt (/\ sYiYir1 N = Yo N TYoYr41 A Fyo)-
i<k

vw(x) states that there is an accepting run yo of M starting with configuration z.
Y1, .-+, Ye+1 are used to remove the first configuration from yq, so we can use T'
to check whether g is valid.

Clearly, the mapping of w to ¢, and gowd*~1%I# can be computed in log-
arithmic space. O

Proposition 3.28. (i) Let T be a relational signature. Given the presentation d
of a structure A € AutStr[r] and a quantifier-free formula o(T) € FO[r], the
language n°(p) can be computed in time O(|O|O(|‘p‘)) and space O(|¢|log[d]).
In particular, the structure complezity is in LOGSPACE and the expression
complezity in PSPACE.
(ii) This result is optimal in the sense that there exist presentations d and
formulae @ such that the output is of size O(|D|O(“p|)).

Proof. (i) Use the naive algorithm:

Input: 9, p(zo,.-.,T1—1)
Let %A; = (Q;, X, 6,0, F;), for i < n, be the automata belonging
to the atoms of .
forallge Qo x --- X Q,_1 do
forall g € X! do
for j =0,...,n—1do g :=6;(q;,a)
output “4(g,a) =7"
end
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forallg € Qg X --- X Q-1 do
if ¢ with values determined by G evaluates to true then
output “ge F”

The claim follows as |Qo X -+ X Qp_1] = (9(|D|O(|‘p‘)).
(ii) Let @ be a presentation of a structure with a single unary relation R
which is represented by the language

L:={uuv||ul=n}.
Let 20 be a minimal automaton recognising L. It has
2" 142" —1+4+1=3-2" -1

states (2¢ states for i < n to store the prefix of length i, 2! states for i < n to
store the remaining suffix of length 7, and one failure state). Define ¢ as

o(zo, ..., Tr—1) = Reo AN - ANRxj_q.

Since the run of the resulting automaton on all components is independent it is
easy to see that at least (32" — 2)* + 1 states are needed (the failure state can
be shared). O

Proposition 3.29. Let T be a relational signature. Given the presentation 0
of a structure A € AutStr[r] and a formula ©(T) € Ly[7], the language n°(p)

can be computed in time O(Q‘a‘owl)) and space O(|D|O(“p|)).
In particular, the structure complexity is in PSPACE and the expression com-
plexity in EXPSPACE.

Proof. Analogous to above with the state-space Z(Q1 X --- X Q). O

The complexity results of this section are summarised in the following table.

Structure-Complexity —Expression-Complexity

Model-Checking 3o LoasPACE-complete ALOGTIME-complete
Yo + fun NLOGSPACE PTIME-complete
P NPTIME-complete PsPACE-complete
Query-Evaluation Yo LOGSPACE PSPACE

¥ PspPACE EXPSPACE
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Chapter 4

Complete Structures

We have seen that [w-][T]AutStr is closed under FO-interpretations. Those in-
terpretations can be regarded as reductions in the sense of complexity theory.
A natural question is whether [w-][T]AutStr contains any complete structures
with regard to this reduction, i.e., structures 2 such that all other structures
in [w-][T]AutStr can be interpreted in 2. The following theorem gives an affir-
mative answer. (The structures 9, Ry, Py, and Py are defined below.)
Theorem 4.1. Let A be a T-structure.
(i) A € AutStr[r] iff A <po M, for some/all p > 2.

(ii) A € w-AutStr[r] iff A <po R, for some/all p > 2.

(iii) A € TAutStr[r] iff A <po P, for some/all p > 2.

(iv) 2 € w-TAutStr[7] iff A <po Py for some/all p > 2.
The proof will take the rest of this chapter. We will show for each type of
language (finite words, trees, etc.) that there are structures 2 with presentations

of this type whose universe consists of (an encoding of) X* for some alphabet X'
such that a subset of 2 is FO-definable if and only if its encoding is regular.

4.1 Word Languages

Logical definability of regular languages of finite words was investigated already
in the 60’s by Biichi, Trakhtenbrot and others. We present one classical result
(see [BHMV94] for an overview). The structures we are looking at are

N, = (N, +,|p) and W(E) := (X", (04)acy, 3,€l),
where + is addition, p € N\ {0,1}, and

zlpy :iff 3In, ke Nz =p" and y = kx,
oo(z) = za,

x =y :iff 22z =y,

el(z,y) :iff |z| = |yl.

First we show that both are equivalent. Thus we can choose whichever fits out
momentary needs. While 91, is more convenient to work with, 20(X) is much

29
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closer to formal languages thereby simplifying some proofs. Actually, in this
section we will only be concerned with 9,, but in the case of w-languages an
adapted version of 20(X) will save a lot of work.

Proposition 4.2 (cf. [Grd90]). N5 =ro W(Y).
Proof. W.l.o.g. assume X = Z,:={0,...,p — 1} for some p > 1.
(W(Zp) <ro N,) Let val,(w) denote the value of the word w € Zj, viewed as
a p-adic number with the least significant digit first. We cannot just map every
word w € Zj, to val,(w), for w may end with zeros which would be discarded.
Therefore we encode words w € Zj, by the number valy(w1).
We introduce some abbreviations. In order to access the digits of a number
we define
digi(z,y) :=3sTH(z =s+k-y+t ANt<y Ap-ylps)
which says that the digit of x at position y is k. Powers of p can be defined by
P,z := x|, . The last digit of z is characterised by
end(z,2):=Ppz A z2<x <2 2.
The desired interpretation of 20(X) in N, is
o(z) := Jzend(z, 2),
Po, (7,y) = Fz(end(z,2) Ay =p-2+a 2+ (z - 2)),

p<(z,y) = 3z [end(:c,z) A

Ve (# < 2o\ (digyle,2) © digu(y,2)]

k<p
Pel(2,y) = Jz(end(z,2) Aend(y, 2)).

(N, <po W(Z,)) Here, every word w can simply be seen as p-adic encoding
of the number val,(w). Again, we define some abbreviations. The length of
words can be compared with |z| < |y| :iff Jz(el(z,2) A z < y). The digit of
valy(z) at position |y| is

digy (z,y) := Fz(|z| = |y| A orz < ).
In case k = 0 we have to consider the case |y| > |z| as well.
digg(,y) := Fz(|z] = [y[ Aoz 2 2) V [y| > ||

The universe of the interpretation consists of all words. Two words are equal if
they have the same digits.

d(x) :=true,
e(z,y) :=Vz /\ (digy, (z, 2z) < dig,(y, 2)).
k<p

z|pyholdsif £ =0---010--- and y =0---0y'.

), (z,y) := 32[dig, (z, 2) AV(|2'] # |2] = digy(, 2'))
A2 (2] < |z] — digy(y,2')]-
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Addition is slightly more involved. Let
A:={(a,b,c,d,d)|a+b+d=dp+c, a,bc€Lydd € {0,1}}

be the set of digits valid for addition. ¢4 (z,y, z) says that there is some word u
encoding the carry such that at all positions the digits of z, y, z, and u are in A.

oy (2,y,2) = Ju(Vo(digy(u,v) V dig, (u,v))
AV \/ (dig,(z,v) Adigy(y,v) A dig.(2,v)
(ab.e,d,d)EA A digy(u,v) A digg (u, Uov))).

O

As the universe of 20(X) is X* one can ask which languages are definable
in 20(X). We want to use 9, instead, so we have to use some sort of encoding.
Since numbers may have arbitrarily many leading zeros we can take 0 as the
blank symbol [0 used by the convolution.

The following result was first proved by Biichi in 1960 where it is stated in a
different, but equivalent way using weak monadic second-order logic. In the form
below it was first proved by Bruyéere. A detailed overview is given in [BHMV94].

Theorem 4.3. R C N" s FO-definable in M, if and only if fold(val;l(R)) is
reqular.

Proof. (=) We construct an automatic presentation of 9, using the p-adic
encoding. Let 0 := (valp,Zp, L(;,LE,L(QQ),L‘;,) where

Ls =13,
L.:={[i] | i€z},
L, = [§] {11 i e Z,}{[}] | i € 2y},

and 2, := ({0,1},Z3, A,0,{0}) just needs to keep track of the carry.
A= {(i,(a,b,¢),4) |pj+c=a+b+i}

(«) Let A = (Q,7Z}, A, qo, F') be an automaton recognising fold(val;l(R)).
W.lo.g. assume @ = Z, for some m and go = (0, ...,0). We prove the claim by
constructing a formula ¢y (T) € FO stating that there is a successful run of 2
on some word w € fold(val;l(f))). By assumption, if 2 accepts one such word
it accepts all words regardless of the number of leading zeros. The run of A
is encoded by a tuple (qo,.-.,qm—1) € N™ of numbers such that the digits of
qo, - - -, Gm—1 at some position equal ko, ..., kn—1 iff the automaton is in state
(ko, ..., km—1) when scanning the input symbol at that position. Additionally,
we have to find a position s to the right of all positions carrying non-zero digits
that we can take as length of the input. 19 (Z) has the form

Y (o, ...y Tp_1) := Iqo - - - Igm—1Is[ADM(Z, q, s) A START(Z,q, s) A
R‘UN(Ea 67 S) A ACC(E7§7 S)]:
where the admissibility condition ADM(Z,q, s) states that s is some position

greater than each x;, START(Z,q, s) says that the first state is 0, ACC(Z,q, s)
that the last one is final, and RUN(Z, g, s) ensures that all transitions are correct.
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We use the abbreviation Symg(T, z) := A, dig,, (%, 2) stating that the digits
of T at position z are a. ADM(Z,q, s) must express that s is a power of p which
is greater than any of the z;.

ADM(Z,q, s) :== P,s A /\ x; < 8
i<n

START(z,q, s) and ACC(q, 7, s) simply say that the first symbol of g is 0 and
that the last symbol of g is in F', respectively.

START(Z,q, s) := Sym,_,(q,1)

ACC(Z,7,5) := \/ Symg(7,9)
keF

Finally, RUN(Z,q, s) states that at every position a valid transition is used.

RUN(z,q,s) :=Vz (sz Nz<s— \/ Trans, (7, q, s))

TEA

where Trans, (T, q, z) describes a single transition 7.

T‘rans(ﬁ’ﬁj’) (Eaaa 2) = Symﬁ(aa 2) A Symﬁ(ja Z) A SymE’ (qap . Z) n

Using this theorem twice we can transform every formula ¢ into an automaton 2
and back to g. Hence, in N, every formula ¢ is equivalent to a formula of the
form g for some automaton 2A. We call ¢y the automaton normal form of .

Corollary 4.4. In N, every FO(3¥)-formula is equivalent to some Az-formu-
la.

Proof. Let 19 be the automaton normal form of the given formula. We have to
count its quantifier nesting. 0 and 1 can be defined as

DEF(0,1):=0+0=0
AVeVy(z+y=1—=(x=0Ay=1)V(z=1Ay=0))
which is in II;. Furthermore

$<y 621, ADM 621, ACCeEl,
dig,(z,y) €51, START€¥,, RUN ¢ L.

Therefore, if 1y is written as
Jg3s3031[DEF A ADM A START A RUN A ACC]

we see that g € X3. In order to obtain the stronger claim we have to rewrite
RUN to some II;-formula. This can be done by expressing that all invalid
transitions do not occur instead of listing all valid transitions.

RN 0 (7 5+, T 5.0
T¢EA

g, as constructed above, is in 3. Since we can take 2 to be deterministic,
an equivalent definition is

VgvsYOV1[DEF A ADM A START A RUN' — ACC]
which is in II,. O
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The last corollary can be strengthened to give an explicit bound on the num-
ber of quantifiers which depends only on the number of free variables appearing
in the formula. For w € {3,V}* let [w] denote the class of all first-order formulae
which are equivalent to some FO-formula with the quantifier prefix w.

Corollary 4.5. In M, every FO(3¥)-formula ¢(xo, . .., xn_1) is in [FOV3"+10]
and in [V733n+10],

Proof. We use the same idea as in the previous corollary but have to encode
the run in only one variable g. Let A = (Q,Z2, A,{0},{m — 1}) be a non-
deterministic automaton belonging to ¢ with states @ = {0,...,m — 1}. We
store only every (m + 1) state in ¢. Thus we can use m + 1 digits of ¢ for each
state k € Q. We encode k as sequence 1¥T10™~*_ Note that there is always at
least one 1 and one 0. First, we define a generalisation of dig, (z, y) to sequences
of digits.

digsy, ., (@,y) == EIsEit(a: =s+ (Z piki) cy+t

i<r
NE<yAD ylys) €]

Furthermore, we have DEF € [V?] and, using that

r<y=(x+z=yAz#y) =Vzy+z#2z)€[FN[V],
we obtain

START(fa q, S) = digsl()m (Qa 1) € [33]5

Acc(fa q, 8) = digsl”O(Qa 8) € [33]
ADM has to ensure that ¢ is of the right form.

ADM(7, ¢, s) =

P,s A /\ ;<8
i<n
A=z \/{digw(q,z) | lw] =m + 1 and w is not a factor of
1iHtom=igittom=i for all 4,5 < m} € [V4].

In order to define RUN we need a formula describing the effect of a sequence of
m + 1 transitions

Trans(k,ﬁg...ﬁm,k’) (Ea q, Z) =
digsyk+1gm-r (4, 2) A digsyn1gm - (¢,p"*" - 2)
A /\ digs (ao);...(am): (T35 2) € [F7F],

i<n
and a formula defining those positions where the encoding of a state starts

POS(Q: 2) = sz A \/ digsle(Qa 2) € [33]
we{0,1}m—-1
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Let A™*! denote the set of all tuples (k, @ . . . G, k') € @XZ7"' x Q describing
sequences of m + 1 transitions permitted by A. Setting

RUN(7,q,5) := ¥2(POS(g,2) & /\  ~Trans,(7,q,2)) € [V*"*1"]
TgAm+L

we obtain

J¢353031[DEF A ADM A START A RUN A ACC] € [3*33 33 +10])
Vq¥sYOV1[DEF A ADM A START A RUN — ACC] € V4332 10],

4.2 w-Languages

In this and the following sections we repeat the program of the last one for,
respectively, w-, tree, and w-tree languages. In the case of w-languages the
structures corresponding to 91, and 20(X) are

R, =R +,<,|p,1) and WD) = (5, (04)aes, <, el),
where +, <, and 1 have their usual meaning, p € N\ {0,1}, and

zlpy iff In,k €Z:x =p" and y = kx,

(2) ra if z € X,
o.(x) =
rz ifzxeXv,

x <y :iff Fz:zz =y,
ela,y) :iff |z] = y|.

Again, the first step is to prove their equivalence. In order to simplify one
direction we additionally introduce the structure R := (R2°, +,],,1).

What makes matters slightly more complicated in the case of reals is the
fact that some real numbers have two encodings. For instance, in base 10 the
numbers 0.999... and 1.000... are the same. The first case is called the low
encoding, the second the high encoding.

Proposition 4.6. R, =ro R} =ro W (Z,).

Proof. (R, <ro ER;) The interpretation represents non-negative numbers z € R
by the pair (0,z) and non-positive numbers z by (1, —z).

o(T) =x0=0Vzo =1,

e(F,7) = (ro=yoAr1=y1)V (1 =0Ay =0),
01(T) =xzo=0A2 =1,

@, (@,7) =x0=0Az1 |py1,

0<(Z,7) = (xo=1Ayo=0)V(z1 =0Ay; =0)

V(zo=0Ayo=0A3z(z1 + 2 =41))
V(zo=1Ayo=1A3z(y; + 2z = 21)).
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To define addition we have to handle each combination of signs separately.

2o=0Ayo=0A20=0A21 +y1 = 21)
2o=1Ayo=1Nz0=1A21+y1 = 21)
20=0Ayo=1A20=0Az1 =y1 + 21)
To=1Ayo=0Azo=1Am =y; +21)
2o=1Ayo=0A20=0Ay; =x1 + 21)
2o=0Ayo=1A20=1Ay; =x1 + 21)

(R} <ro 2W“(Z,)) We represent, a number Y, m;p’ (in high encoding) by
the pair (mg...m,,m_ym_o...) and define, using the same abbreviations as
in the previous section,

Inf(z) =Vy(z <y -z =y), e V(e X)),
Fin(z) := —Inf(z), 0% : Inf(0%) A Vz digy (0¥, z).

€

The universe of the interpretation consists of all pairs whose fractional part does
not end with (p — 1)“.

§(T) := Fin(zo) A Inf(z1) A =FyV2(|2] > |y| — dig, (21,2))

Two pairs are equal if their fractional parts are identical and their integer parts
differ only by the number of initial zeros.

e(Z,y) ==z =y1 AVz /\ (dig (xo, 2) + digg(yo, 2))
k<p

v1(T) :=e(x, (01€,0%))

For z |, y we have to check whether z is an integer or less than 1, and handle
both cases separately.

1, (T, 7) := [1 = y1 = 0“ Ay (0, 40)] V 20 X 09 A (1,11)]

¢|1p (z,y) == Jz(dig, (2, 2) AVZ'(|2'| # |2| = digy(z,2")) A
V(|2 < |2| — digo(y, 2')))

’(/J|2p (z,y) == Fz(dig, (z,2) AVZ'(|2'| # |2| = digy(z,2")) A
V2 (|2'] > |2| — digo(y, "))

Unsurprisingly, addition is the most complicated part. Again there has to be a
number % encoding the carry.

wi_ and 1/13_ handle, respectively, the integer and fractional part of the addition
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and check whether each digit is correct using the set A defined above.

1/1_1‘_ (Z,7,Zz,u) .= Yo \/ (diga(xo, v) A dig, (Yo, v) A dig.(20,v)

(a,b,c.d,d")€A A digy(uo, v) A digg (uo, oov))

1/11 (Z,7,Z,u) := Yv \/ (diga(xl,v) A digy(y1,v) A dig.(21,v)
(a,b,c,d,d')EA A dig,(u1,v)
A3s(lv] = |s| + 1 Adigg (u1,8)) V
(v = & A digg (0,))])

(W (Zp) <ro MR,) Finite words m; ...m,. € Z; are encoded by the number
r .
p Tt 4 Z mip ' +2€2,3].
i=1

We cannot, just map infinite words mimsy... € Z% to ), m;p~* € [0,1] be-
cause, e.g., the words O(p — 1)¥ and 10 would be mapped to the same number.
Therefore we choose the encoding as

+ Zmip_i € [-1,1]
i

such that numbers in [0, 1] encode the word corresponding to their high encoding
and numbers in [—1, 0] encode words corresponding to the low encoding of their
absolute value. This results in most words having two encodings. Set

LastDigit(z,y) :=y [z AD-y fp,

Inf(x) =—-1<z <1,
Fin(z) =2 < x <3 A Jy(LastDigit(z,y) Ap-ylpz —y),
Ambig(z) := Inf(z) A =3y LastDigit(z, y).

We obtain the interpretation

0(z) Inf(z) V Fin(x),
e(z,y) z =y V [Ambig(z) A Ambig(y) Az = —y],
Po;(z,y) = [Inf(z) Ae(z,y)] Vv
[Fin(z) A Fin(y) A 3z(LastDigit(z, z) A LastDigit(y, z/p)
Ny=z—z+i-z+z/p),

pai(z,y) = [Inf(z) Alnf(y)] v
[Fin(z) A Fin(y) A 3z(LastDigit(z, z) A LastDigit(y, z))],
e<(z,y) = el(z,y)

Vv [Fin(z) A 3z(LastDigit(z, z) A [(Inf(y) A ¢}_< (x,y,2)) V
(Fin(y) A ¢ (z,9,2)])].
YL (2,9,2) = [(0 < yV Ambig(y)) A 0 < |yl — (x — 2) <p- 2]V
[y <OA-Ambig(y) A0 <|y| = (z—2) <p-z],

% (x,y, 2) := 32 (LastDigit(y, 2) A0< (y—2') = (x —2) <p-2). .
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This time we use 20 (X), mainly because the construction of an w-automatic
presentation of R, is quite involved. (See [BRW9S] for a similar result.)

Theorem 4.7. R C (X“)" is FO-definable in 20“(X) if and only if fold(R) is
w-reqular.

Proof. W.l.o.g. assume X' = Z, for some p > 1.
(=) Set

Zpoi=Zpu{d}, id:={[i]]|i€Zp}, idg:={[i]|i€Z,n}.
The desired presentation of 20¢ (X)) is

0:= (lda Zpl:‘a L57 LE: (Ldi)i<pa Lja Lel)

where
Ls == 7;0° UZY, L<:=L$?n [id” uid*{[}] |i € Z,a}"],
L. := L nidy, Ly, = L§?n [id” uid* [T [B]"],
La:= (22 U (22" [5]°.

(<) The proof is analogous to the one above. Let 2 = (Q,ZZ,A,G, F)
with @ = Z} be a Muller-automaton which recognises fold(R). We construct a
formula g defining R.

Yo (zo, ..., Tp—1) := 3o - * Igm-1[ADM(q, T) A START(3,T) A
RUN(3,7) A ACC(,7)]

with
Inf(z) =Vy(z Ry >z =y),
Symﬁ(fa 2) = /\ digai (Ii, Z)a

ADM(g,z) = /\ Inf(g;) A /\ Inf(z;),

i<m i<n
START(q,Z) := Symg(q, €),
RUN(,7) =
Yz \/ (Symgz(q, 2) A Symg(Z, 2) A Symy (g, 002)),
(ka,k)eA
acc@m =\ (A V=312 > |2l A Symg(@, )
FeF keF
AN V3] > 2] /\Symﬁ(q,z'))).
k¢F

4.3 'Tree Languages

Let R be a ring and M a monoid. The semiring R{{(M)) of formal power series
over M consists of all maps r : M — R. We write (r,m) for the value of m
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under r. Addition, product, and Hadamard product are defined as

(7‘1 +T2am) = (Tlam) + (T27m)7
(ri-raym) = " (ri,ma) - (r2,ma),
mi-ma2=m

(r1 ®re,m) := (r1,m) - (r2, m).

Note that the product is undefined if the sum diverges. We denote by R{(M)
the semiring of formal polynomials over M, i.e., power series r with (r,m) =0
for all but a finite number of m.

In this section we consider the structures

mp = (Zp<{X,Y}*>a+,®, - X, 'Y) and ‘Ip = (T’+’ "80’81)

where, for p € N\ {0,1}, B, is the semiring of formal polynomials in two non-
commuting variables with addition, Hadamard product and right-multiplication
by the variables, and

T = {te Ty |t'(i) is finite for all i # 0},
(t1 + t2)(z) := t1(z) + t2(x) for all z € {0,1}",
(t1 - t2)(z) = t1(z) - ta(x) for all z € {0,1}",
(sit)(z) = t(xi) for i € {0,1}.

Proposition 4.8. B, =ro T,

Proof. Note that each tree ¢ : dom(t) — Z, can be regarded as a formal polyno-
mial in Z ({0, 1}*). Hence, both structures are nearly isomorphic but for the def-
inition of s; and - X, where the arguments are reversed. sot =r iff r- X =¢t. O

We encode each t € Ty as tree in ¥, by marking its frontier with 1’s.
Formally

t(z) if x € dom(t),
code(t) :==<¢ 1 it z ¢ dom(¢), z = yi, i € {0,1} and y € dom(¢),
0 otherwise.

Theorem 4.9. Let R C (Tx)". code(R) is FO-definable in T|x| if and only if
fold(R) is recognisable.

Proof. (=) A presentation of T, is given by
0:= (lda Z,Da TZpa L(Q[E)7 L(Q[Jr)a L(Q[)a L(mso)a L(Q[sl))

where

Ql&‘ . ({qO}:Z?w AEa{qO})a
g = ({qO}azfv AEB: {QO}),
lei : ({qoa"'7QD*1}7Z12)7Aia{q07'"aqpfl})
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for € {-,+} and i € {0,1} with

A == {(qo, (a,0),q,q") |a€Zp,q,q'€{(10,El}}
Ag = {(qo, (01,02,01 ®az),q,q") | ar,az € Zp, q,4' € {q0,0}}
U {(q0, (a,0,a®0),q,q ),(qo,(D,a,O@a), ) |
a € Zy,q,q" € {q0,0}},

Ao = {(¢a; (a,b), a5, q |G b€ Zp,q€{qo,.-.,qp—1,0}}
U{(qa,(a,D ),0,q) |anp,qE{qo,...,qp_l,D}},
Ay = {(qa, (a,0),4,q) | a,b € Zp, q € {qo, ..., qp-1,0}}
U{(qa, (a,0),¢,0) | a € Zp, q € {qo,-.-,qp—1,0}}.

(<) First we define some auxiliary formulae. The O-tree is defined by 0+0 =
0. The m-fold product of some tree ¢ is

0t :=0, mt:=t+---+1t.

In order to access the nodes of a tree we use trees containing a single node
labelled by 1.

SingleNonZero(t) := Vs \/ t-s=it,
i<p
SingleOne(t) := SingleNonZero(t) A 37Ps(t - s = s).
The root is
Root(t) := SingleOne(t) A sot = 0 A s1t =0,

and the successors of some node are defined by

Succo(s, t) := SingleOne(s) A SingleOne(t) A sot = s,
Succy (s, 1) := SingleOne(s) A SingleOne(t) A s1t = s,
Succ(s, to, t1) := Succy(s, to) A Sucey (s, t1).

Additionally, we need a formula characterising those trees all of whose nodes
are either labelled with 1 and posses at least one child also labelled with 1, or
are labelled with 0

Inf(t) := Vr[SingleOne(r) = (t-r =rVit-r =0)]
AVrVsoVsi[Succ(r, sp,s1) = (t-r=0V t-s590#0 V t-s; #0)],

and a formula defining those positions of a tree whose successors all are labelled
with 0

Box(s,t) := [s-t =0A3r(Inf(r) Ar-t=t Ar-s=0)]
V [s+t =t AVo(Succo(t,v) V Suce (t,v) =
Ir(Inf(r) Ar-v=vAr-s=0))].
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We construct a formula stating that the tree automaton A = (Q,Zy, A, F)
with @) = Z" accepts some tuple (to, .- tn_1) € T£p.

¢Ql(t0a ey tn—l) = qu ot HQm—l[RUN(@ Z) A ACC(@ Z)]
where

Symg(Z,r) := /\ (®; -7 = a;r A —Box(z;,7)) A /\ Box(t;, r),
i a; 720 i a;=0

RUN(g,7) :=

VrVsoVsq (Succ(r, 50,51) —

\/  (Symy(@r) ASymg(E ) ASymg, (@ s0) A Symg, (@,51)) )

ACC(g,t) :=13r (Root(r) A \/ Symy(q, 7"))
keF (|

4.4 w-Tree Languages

This last section holds no surprises. A bored reader may skip it without missing
anything. The structures are

PUSEES (Z,(({X,Y}*),+,0, - X, -Y) and Ty = (T7,+,-, 50, 51)

where, p € N\ {0,1}, B, is the semiring of formal power series in two non-
commuting variables with addition, Hadamard product and right-multiplication
by the variables, and

2() for all z € {0,1}",
(t1 - t2)(x) :=t1(2) - ta(x) for all z € {0,1}",
(sit)(z) = (i) for i € {0,1}.

Proposition 4.10. B, =ro T} .
Proof. same as above. O

Theorem 4.11. R C (Tg)" is FO-definable in T, of and only if fold(R) is
recognisable.

Proof. (=) The desired presentation of T is
0= (id,Zp, Tﬁ’p,L(ng),L(Ql+),L(Ql.),L(leO),L(lel))

where

A ({qo},Z,Q,, As,{qo},{QO})7
Ql@ = ({q0}7Z13)aA®a{q0}a{q0})a
lei : ({qoa s 7QLD*1}7 Z?p Aia {q()a ) prl}, '@({qoa s 7q‘l)*1}))
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for € {-,+} and i € {0,1} with

A == {(qo0, (a,a), 90, q0) |a€Zp}
= {(qo, (a1, a2,a1 ® a2), qo, q0) | ai,as € Zyp},
={(qa,(a J@5,9) | a,b € Zp,q € {qo,- -, ap-1}},
A1 = {(¢a, (a,0),¢,q) | 0,0 € Zp,q € {qo, -, @p1}}-

(<) Using the same auxiliary formulae as in the case of finite trees we
construct a formula stating that the w-tree automaton A = (Q,Z}, A, Qo,-F)
with @ = Z}" accepts some tuple (to,...,tn—1) € (T7 )".

Yo (to, -+, tn—1) := Iqo - - Igm—1[START (3, 1) A RUN(q, %) A ACC(q,1)]
where
Sym_(Z, r) /\xzr—ar
START(g,7) = EIr(Root \/ symz(@n),
k€Qo
RUN(q, ) :=
VrVsoVs; (Succ(r, S0,51) =

\/  (Symgp(@r) ASymg(E, ) ASymg, (@ 50) A Symg, (@,51)) ),

\/ (_/\ Vr[Inf(r) — 3s(SingleOne(s) Ar - s = s A Symy(q, s)]

A /\ —Vr[Inf(r) — 3s(SingleOne(s) Ar - s = s A Sym(q, s)])

k¢F 0
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Chapter 5

Classes of Automatic
Structures

We are now ready to investigate the four classes of automatic structures. Af-
ter developing tools to obtain negative results and looking at the closure of
[w-][T]AutStr under certain products we will determine the relationship between
them.

5.1 Growth Rates and Length Sequences

So far, our only tool to prove that some structure is not automatic was to show
that its theory is undecidable. In this section we develop another method which
unfortunately is only applicable in case of AutStr. The arguments used are slight
generalisations of a result of Khoussainov and Nerode [KN95, Lemma 4.5].

When trying to show that a structure has no automatic presentation one
suffers from the lack of knowledge about how elements are encoded. If such
information were available one could use standard techniques from formal lan-
guage theory to prove non-regularity. So far, the best we can do is to give
bounds on the length of the encoding of some element.

Proposition 5.1 (implicit in [KN95, Lemma 4.5]). Let 2 € AutStr, 0 an in-
jective presentation of A, and let f : A™ — A be a function of A. Then there
is a constant m such that for alla € A™

X (f(@)) < m+ max{\’(ag),- .-, \°(an—1)}

Proof. As 0 isinjective there is a single word w encoding the value of f(a). Let m
be the number of states in the automaton recognising the graph of f. Suppose
that w is more than m symbols longer than the encoding of each argument.
Then the automaton recognises a word of the form

(FU{Oh" x D)* (O} x D)™+

As there has to be a repetition of states in the suffix of this word the automaton
recognises infinitely many words with the same prefix. But this prefix completely
contains the arguments of the function so the image of @ has infinitely many
representations. Contradiction. |

43
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Corollary 5.2. Let 2 € AutStr, 0 an injective presentation of 2, and let
R C A”jk be a relation of A such that for all'a € A™ the number of b € Ak
with (@,b) € R is finite. Then there is a constant m such that for all (@,b) € R

max{A®(bg), ..., A% (bx_1)} < m + max{\°(ap),...,\°(an_1)}.
Proof. Define the function f: A™ — A by
f@) = c :iff Ib(Rab A “c appears in b”)
A vE(RaE - AN (b) <N (c)).
i<k

By assumption on R f is well-defined, and it should be clear that there is some
automaton recognising the graph of f. Therefore the result follows from the
preceding proposition. O

In the case of Presburger Arithmetic Proposition 5.1 seems to indicate that
we do not have much choice with regard to the encoding.

Lemma 5.3. For any automatic presentation 0 of Presburger Arithmetic we
have X°(n) € O(logn).

Proof. The lower bound immediately follows from the fact that there are only
|X|" strings of length n over ¥. To prove the upper bound we show by induction
on n that

X’ (n) < m[log, n] + X°(1)

where m is the constant from the previous lemma.
(n =1) X°(1) < m[log, 11 + A°(1).
(n > 1) Set k = [logy n]. Then n = 2¥~! 4 (n — 2*¥~') and we obtain from
the previous lemma and the induction hypothesis
A (n) = N (2! 4 (n — 2F71))
< m 4 max{\°(2¥ 1), \°(n — 2F71)}
<m+m(k—1)+ (1)
= m[logyn] + A°(1).

Corollary 5.2 can be paraphrased such that it yields lower bounds.

Corollary 5.4. Let 21 € AutStr, 0 an injective presentation of 2, and let
f: A" — A be a function of A such that for all b € A the set f~1(b) is finite.
Then there is a constant m such that for all a € A™

N (f(@) > max{\’(ap), ..., A (an_1)} — m.

Proof. The relation R := {(b,a) | f(a) = b} satisfies the conditions of the
corollary above. O
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The above results deal with a single application of a function or relation. In
the remaining part of this section we will study the effect of applying functions
iteratively, that is, we will consider some definable subset of the universe and
calculate upper bounds on the length of the encodings of elements in the sub-
structure generated by it. First we need bounds for the (encodings of) elements
of some definable subsets.

Lemma 5.5. Let 2 be a structure in AutStr with presentation 0, and let B be
an FO(3¥)-definable subset of A. Then X°(B) is a finite union of arithmetical
Progressions.

Proof. Denote by L the regular language representing B and let h : X* — {1}*
be the projection with h(a) := 1 for all @ € X. Then h(L) is regular, too, and

{l2| |z e L} ={lz| |z ech(L)}.

As h(L) is a regular language over an unary alphabet the claim follows (see,
e.g., [Eil74, Proposition V.1.1]). O

Before proceeding we apply this lemma, to our favourite example, Presburger
Arithmetic.

Lemma 5.6. Let (N,+, P) € AutStr for some unary predicate P, and let ky <
ky < --- be an enumeration of P. There exists a constant ¢ such that k; < 2.

Proof. Fix a presentation 0 of (N, +, P). Obviously, the set P is definable in this
structure. By the preceding lemma, there is a constant m such that A°(k;) < mi
for all ¢, and because of \°(k;) € O(log k;) there is some ¢ such that

%logg k; < }\D(kl) <mi = k; < gemi. .

The example (N, +, P,) € AutStr shows that this result is optimal, where
P, is the set of all powers of p.

In the process of generating a substructure we have to count the number of
applications of functions. This is made precise by

Definition 5.7. Let 2l € AutStr with presentation 0, let fy,..., f. be finitely
many operations of arity ro,...,r,, respectively, and let E = {ej,es,...} be
some subset of A with A\?(e;) < A%(e3) < ---. Then G, (F), the n** generation
of E, is defined as

G1(E) :={e1},
Gn(E) := Gno1(E)U{e,} U{ fi(a) |a € G (E), i <r}.

Putting everything together we obtain the following important result. The
case of finitely generated substructures already appeared in [KN95].

Proposition 5.8. Let 2l € AutStr with injective presentation 0, let fo, ..., fr
be finitely many operations of A, and let E be some definable subset of A. Then
there is a constant m such that

X (a) < mn for all a € Gp(E).

In particular, |G, (E)| < |Z|™""" where X is the alphabet of 0.
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Proof. According to Proposition 5.1 and Lemma 5.5 there are constants m' and
mo, ..., My with
X (en) < m'n,
N (fila0, - ary—1)) < i + max{X(ao), ., X (ar, 1)}
for i < r. Set m := max{m',mo,...,m,}. We prove the claim by induction
on n.
(n=1) G1(E) ={e1} and X°(e1) < m' < m.

(n > 1) Let a € G,,(E). There are three possible cases. If a € G,,_1 (E) then
the induction hypothesis yields

X (a) <m(n—1) < mn.
If a = e, then
X (a) < m'n < mn.
If a = fi(aog,...,ar,—1) for some @ € G’ |(E) and i < r then
X (a) = X°(fi(ao, ..., ar,_1))
< m; +max{\°(ag),...,\(a,, 1)}

<m;+m(n—1) (by ind. hyp.)

<m+m(n—1) =mn.
O

Remark. Clearly, the claim remains valid if we replace some of the generating
functions by relations which satisfy the conditions of Corollary 5.2.

We give two applications. Obviously, in free structures you can construct
many different elements by few applications of functions. Therefore it should
not be surprising that the free monoid is not automatic.

Example. Let 91 be a trace monoid with at least two non-commuting generators
a and b. Then M ¢ AutStr. In particular, (X*, -, €) ¢ AutStr for any non-unary
alphabet Y.

Proof. We show by induction on n that
{a,b}=*" C Gpnyi(a,b).
For n =1 we have {a,b} C {a,aa,b} = G2(a,b), and for n > 1
Gni1(a,b) = {w | u,v € Gn(a,b) }
D {uv|uve {a,b}gn_1 }
= {a,b}=%".
Therefore, |G.,(a,b)| > 22" and the claim follows. O

Example. Let 2 be any structure in which a pairing function f can be defined.
Then 2 ¢ AutStr.
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Proof. Let a, b be distinct elements of 2. All words w € {a,b}* of length
|w| = 2™ can be coded in A using applications of f nested n levels deep. For
instance, the word abaa of length 22 can be represented as f(f(a,b), f(a,a)).
Let ¢(w) be the code of w. Consider the generations of {a,b}. We have

{c(w) | w e {aab}2n } - Gn+1(aab)'
which implies that |G, 1(a,b)| > 22" as the coding is injective. O

The above proposition can be generalised to the case of an infinite number
of definable generating functions.

Definition 5.9. Let L C X*. By (L) we denote the index of the Nerode-
congruence of L. Analogously, if 9 is an automatic presentation and ¢ € FO we

define () := 1(n°(p)).

Lemma 5.10. Let o = (v, ¥, Ls,L.,Lp,,...,Lg,) be an automatic presenta-
tion.

Lo V) < ile)(v) (=) < (L))
W A) < u(e)e(¥) ((Tgp(E,7)) < 24

Proof. To prove the first three inequations we show that ¢(L; © Lo) < ¢(L;)e(Ls)
for regular languages L, Lo, and & € {U,N,\}. Let 2; and 2> be the minimal
deterministic automata recognising Ly and Ly. Then, after choosing the right
set of final states, the product automaton 2A; x 2> recognises Ly & Lo.

To construct an automaton for 7° (Iyy) we take the minimal deterministic
automaton for ¢, remove the components corresponding to 7 from the labels of
every transition, and mark as final states all states from which, in the original
automaton, a final state can be reached by using only transitions whose labels
contain [ in the components corresponding to y. Since in general this yields
a nondeterministic automaton we have to apply the subset construction which
may cause an exponential blowup of the state-space. O

Ezample. The question whether (Q, +) is automatic is open. If we assume that
(Q,+) has an automatic presentation 9, then there is a constant m such that
for all n, qo,---,q, ko,..-, ki €N

l
0 n > mlogg u
A@fﬁﬁfkmﬂw%M+Zm _
o q; =

Proof. Set m := i(x+y = z). As in the case of Presburger Arithmetic for n € N
we obtain the bound

X (n) < mflog, n] + A°(1).

log% q

It remains to show that t(y = z/q) < 2™ for fixed ¢ € N. Let {ip,...,ir}
be the set of digits of the binary encoding of ¢ which are 1. Then, y = z/q or,
equivalently, £ = ¢ - y can be defined as

Az - Fze—13y1 - - Y log, qf (y1 = y+y/\/\yj+1 =y;+y;

J
A /\a:j =Zj1+Yi; NT1=VYio T Yiy NT=2Tpr1 +yir).
j>1
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(y; contains 2%y, z; is used to calculate the sum of those y; needed.) We obtain
the following bound

[loga q]-m log2 q

vr=q-y)<2™ <2m

proving our claim. O

5.2 Applications and Examples

In this section the tools developed in the previous one are used to investigate
whether some structures do or do not have automatic presentations. We start
with some simple applications to linear orders, equivalence and permutation
structures.

Lemma 5.11. Let A = (A, <, Ro,...,R;) € AutStr be a structure with a dis-
crete linear order < and an injective presentation 0. Denote by s the successor
function of <. Then there is some constant m such that for alla € A andn € Z

N (s"a) < X%(a) + |n|m.
Proof. Immediately from Proposition 5.1 as s and s~! are definable. |

Lemma 5.12. Let 2 = (4, <o,<1,Ro,...,R-) € AutStr be a structure with
two discrete linear orders. Denote the successor functions of <o and <i by
so and sy, respectively. There is some constant m such that for all a € A and
nez

|)\°(sga) -X° (s?a)| < A%(a) + |n|m.

Proof. Take m as maximum of the constants from the previous lemma for
<o and <. O

Lemma 5.13. Let 2 = (A,<,Ro,...,R,) € AutStr be a structure with a well-
ordering < and an injective presentation 0. Then there exists a constant m such
that for every a € A

X (b) < X°(a) +m for all b < a.

Proof. Since for every a € A the set {b € A | b < a} is finite we can apply
Corollary 5.2. O

Lemma 5.14. If f : N = N is definable in N, and ~ C Ax A is an equivalence
relation with f(n) classes of size n for all n € N and with r < w classes of
cardinality No then the structure A := (A, ~) has an automatic presentation.

Proof. We show that 21 <po NM,. The k*® element of the m*™ class of size n is
encoded by the tuple (n,m, k) and the k' element of the m'" infinite class is
encoded by (0,m, k). The interpretation is defined as

5(5) ::(1‘0>0/\1‘1<f1‘0/\1‘2<1‘0)V(1‘0:0/\1‘1<7‘),
(if r = w then 21 < r = true)
e(@,y) =zo=YoAx1 =y1 ATz = Yo,

O~ (T,7) :=20 = Yo A T1 = Y1.
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Lemma 5.15. Let A = (A, ~) € AutStr where ~ is an equivalence relation
and let 0 be an injective presentation of A. Then there is a constant m such
that for all finite equivalence classes [a]~

|A%(a) = X°(a")| <m for all @' € [a]~.

Proof. Let o = (v, X, Ls, L., L) and let m be the index of the Nerode-congru-
ence of L.. If there are z, y € X* such that

r®y € L. and ly| > |z| + m

then, according to the Pumping Lemma, there are infinitely many y’ € X¥* with
z ®y € L.. Contradiction. O

Lemma 5.16. Let 2l = (A, ~) € AutStr where ~ is an equivalence relation.
Let ng < ny < --- be an enumeration of the cardinalities of the finite ~-classes.
Then n; € 200,

Proof. Let o = (v, X, Ls, Lc, L) be an injective presentation of 2. Consider
the set F' defined by

p(r) == -3Fy(zr ~y).

According to Lemma 5.5 there is a subset {ai,as,...} C F such that, for some
constant m’, A\°(a;) = m'i. Let m be the constant from the preceding lemma
and set k := |[m/m'| + 1. Then a; # a;+ and

N ({ai]) < m'i - (Imfm') + 1)+ m < (m +m')(i +1)
ol |[alk]w| < QO(i).

As (|[aix]~]); is a subsequence of (n;); the claim follows. O

Lemma 5.17. Let f : N — N be definable in M,. Then (A, 7) € AutStr where
A is countable and w is a permutation of A with f(n) orbits of size n and an
arbitrary number of infinite orbits.

Proof. For simplicity, we construct an interpretation of (A,w) in (Z,+,|p)-
Clearly, f is also definable in this structure. Let r < w be the number of
infinite orbits. We encode the k*" element of the m!" orbit of size n as (k,m,n)
and the elements of the m* infinite orbit as (k,m,0) for k € Z. Thus, we define

8(T) =(22>0AN0< 20 <22 ANO< 21 < fao)V(za=0Az <T),
e(z,7) To =Yo ATy = y1 A Ts = Yo,
T,y =1 =y1 Ax2a=y2A(x2 >0Ax0+1 <z Ayo =20+ 1
Vaa>0Azg+1=23Ayo=0
Vze =0Ayo =z +1).

AS)

™
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Reducts of Arithmetic. We start by deriving limits on the possible presen-
tations of Presburger Arithmetic. Recall from Lemma 5.3 that A°(n) € ©(logn).

Proposition 5.18. Let (N, +, f) € AutStr for f : N — N.
(i) f(n) € n®W and n'ts ¢ O(f(n)) for all e > 0.
(ii) If f(n) € O(n'=¢) for some e > 0 then f(n) is bounded.

(iii) Let k1 < ko < --- be an enumeration of f~'(n) for some n. There exists
a constant ¢ such that k; < 2°°.

Proof. (i) Fix a presentation 0 of (N, +, f). By Proposition 5.1 there is a con-
stant m such that for alln € N

X (f(n)) < X (n) +m.
Applying f several times, we obtain
X (F*(n)) < X°(n) + km.

Because of \°(n) € ©(logn) there are constants ¢y and ¢; such that for large
enough n

% log, f*(n) < X°(f*¥(n)) < X(n) + km < ¢y logy n + km
— fk(n) S 200kmn0001-
Thus f(n) € n®W.

Suppose that n” € O(f(n)) for some r > 1, i.e., f(n) > cn” for some ¢ and
all sufficiently large n. Thus,

fk(n) > e’ - _crk_lnrk — c(rkfl)/(rfl)nrk-

Choosing ¥ > coc; we get a contradiction to f¥(n) < 2¢0kmnpcoct for large n.
(ii) Let f(n) be unbounded. Then

g(n) := min{ k| f(k) > n}

is well-defined and monotone. Since g is FO-definable in (N, +, f) the structure
(N, +, g) has an automatic presentation as well, and n'*% ¢ O(g(n)) for alle > 0
by (i).

Suppose f(n) € O(n") for some r < 1. Then f(n) < en™ for some ¢ and all
sufficiently large n. Thus,

f() <en” = n=yg(f(n)) < g(en") = ¢ 'n'’" <g(n)

in contradiction to n'/" ¢ O(g(n)).
(iii) Since the set f~!(n) is definable the claim immediately follows from
Lemma 5.6. g

So far, the only reduct of Arithmetic we looked at was the additive one. Now
we turn to Skolem Arithmetic (N, -) and the divisibility poset (N, |).

Proposition 5.19. (N,|) ¢ AutStr.
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Proof. Suppose (N,|) € AutStr. We define the set of primes
Pz :iff e A#1AVYy(y|lz 2y=1Vy=u1),
the set of powers of some prime
Qz :iff Jy(PyAVz(z|lzAz#£1—>y]2),
and a relation containing all pairs (n, pn) where p is a prime divisor of n
Sxy :iff 2 |yAT'2(QzA-PzAz|yA-z]|2).
The least common multiple of two numbers is
lem(z,y) =z :iff 2|z AylzA-"FuuZzAz|uAy|luAulz).

For every n € N there are only finitely many m with (n,m) € S. Therefore
S satisfies the conditions of Corollary 5.2. Consider the set generated by P
via S and lem, and let y(n) := |G, (P)| be the cardinality of G,,(P). If (N, ]) is
in AutStr then (N, |, P,Q, S) € AutStr and v(n) € 2°( by Proposition 5.8. Let
P ={p1,p2,...}. For n =1 we have G| (P) = {p1}. Generally, G,,(P) consists
of

(1) numbers of the form pt*,
(2) numbers of the form p4? - pkn  and
(3)
In n steps we can create
(1) pr,...,p} (via S),
(2) v(n —1) numbers with k&, = 0, and

(3) v(n —2) — 1 numbers of a mixed form for every 0 < k; < n (via lem).

numbers of a mixed form.

All in all we obtain

Y(m) > n+y(n—1)+ @ —-1)(y(n-2) -1)
=yn—-1)+n—-1yn-2)+1

> ny(n —2) (as y(n —1) > y(n —2))
>n(n—2)---3v(1) (w.l.o.g. assume that n is odd)
—nn—2)--3
> ((n +1)/2)!
g 29(nlogn)

Contradiction. O

The importance of the following corollary lies in the fact that it is possible to
construct a tree-automatic presentation of Skolem Arithmetic (cf. Section 5.3)
which implies that AutStr # TAutStr.

Corollary 5.20. (N,-) ¢ AutStr.
PT‘OOf. (Na |) <ro (Na) L
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Ezample. If we replace divisibility by the predicate L defined by
x Ly :iff x and y have no common divisors
the resulting structure (N, 1) is automatic.

Proof. We construct an interpretation (N, L) <po M,. A number n is encoded
by the pair (k,m) where the it" digit of k is 1 iff the i*" prime divides n and the
second component enumerates all numbers with the same set of prime divisors.
Thus, (k,m) L (k',m') holds iff there is no position at which both k£ and &’
carry the digit 1. We obtain the interpretation

6(z)  =Vz(Ppz — digy(zo, 2) V dig; (20, 2)),

e(T,y) =m0 =yo AT1 =y,

@1 (T,7) := —3z(dig, (z0, 2) A dig, (yo, 2))-

Proposition 5.21. (N,+, 1) ¢ AutStr.

Proof. The set of primes can be defined as
Px :iff x >1AVyly<z— 2z Ly).

We start by constructing a function mapping numbers = to the least prime
greater than z.

fr=y :iff y>zAPyA-T2(x <z<yAPz).

Let g(x) := fx - ffz. Since g(x) > 22, the claim follows if we can define g in
(N,+,1). We use the auxiliary relation Mxzy which holds iff fz and ffz are
the only prime divisors of y. Thus, g(z) returns the least such y.

Mzy :iff =(y L f) A=(y L ffz)
AVz[~(y L z) = —(z L fz)V (2 L ffz)],
g(x) =y :iff y> ffeAMzyA-3z[ffer<z<yAMzz].

5.3 Composition of Structures

Generalised Products. We begin our investigation of the closure properties
of automatic structures with Feferman-Vaught like products (see [Tho97a, Zei%4,
Hod93]). A generalised product—as it is defined below—is a generalisation of a
direct product, a disjoint union, and an ordered sum. Hence, we will be able to
prove closure under all of these operations with just one—unfortunately quite
technical—theorem.

The relations of the new structure are defined in terms of the types of the
components of its elements.

Definition 5.22. Let 7 be a finite relational signature, 2 a 7-structure, and
@€ A", For k € N* we define the k-type T*(A, @) of (A,a) as

T*(A,a) := { ¢ € FO"[7] | ¢ is atomic, (%,a) = ¢ },
TFm(21,3) = { TH(A,ab) | b e A™ ).
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The set T E(n) of all k-types with n parameters is
F¢(n) := { ¢ € FO"[r] | ¢ is atomic },
TF(n) = 2(TF(n +m)).
For each type there exists a so-called Hintikka-formula defining the tuples of
this type (see [EF95] for the definition).

In order to understand the next definition let us first look at how a direct
product and an ordered sum can be defined using types.

Ezample. (1) Let A := %Ay x 2; where 2; = (4;, R;), for i € {0,1}, and R is a
binary relation. The universe of 2 is Ag X A;. Some pair (a,b) belongs to R
iff (ag,bo) € Ro and (a1,b1) € Ry. This is equivalent to the condition that the
e-types of agbp and of a;b; both include the formula Rzyz.-

(2) Let A := Ao + A4 where 2; = (4;,<;), for i € {0,1}, and <g, <7 are
partial orders. The universe of 2 is Ao U A1 =2 49 x {0} U {0} x A1, and we
have

a<biffa= (0,0,0), b= (b0,<>) and ag <g bo,
ora= (0,(7,1), b= (O,bl) and a1 <4 by,
or @ = (aop, ), b= (0,b1).
Again, the condition a; <; b; can be expressed using e-types.
Definition 5.23. Let 7 = {Ry,..., R,} be a finite relational signature, r; the
arity of R;, and # := max{rog,...,r,}. Let n € N and (;);cr be a sequence of
T-structures, and let J be an arbitrary relational o-structure with universe I.
Fix for each k < 7 an enumeration {7§,..., 7% } of 7°(n + k) and set

op:=0U{Do,..., D1 }U{T" | m < k,l <tn}.
The ox-expansion J(b) of J belonging to a sequence b € ([T;c;(A4; U {0}))F is
given by

Dy ={iel|(h)i#0},
(1" = {ie I [{j] ()i #0}={jo- - jm—1} and
Ts(mia (bjo)i s (b]’mfl)i) = 7.lm }
Then C := (3,D,B,...,B;) with D C B! and 8; € FO[o,,] defines the

generalised product C(;)icr := (A, Ro, ..., R;) of (;)icr where

A= [Ixa ({0} 4),  Ri:={be A" |3(}) B},

deD el

and xp(ag,a1) := ap.

Ezample. (continued)
(1) For the direct product of Ay x Ay we would set

J:=(I)  with I ={0,1},

D :={(1,1)},
g:=\/TP0N\/ 171,
leEL leL

where L is the set of e-types containing the formula Rz .
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(2) In this case we would set
J:=() with I = {0, 1},
D :={(1,0),(0,1)},

8= (DOO ADIOA\/ Tfo) v (Dol ADi1A\/ :/?1) V (Do0 A Di1),
leL leEL

where L is the set of e-types containing the formula zy < x.

Theorem 5.24. Let 7 = {Ry,..., R} be a finite relational signature, and % a
class of T-structures containing all finite T-structures and a structure € which
is complete for & with regard to many-dimensional FO-interpretations.

Let T be a finite relational o-structure, (U;);cr a sequence of structures in &',
and C = (3,D, 3) a generalised product. Then C(Us)icr € #, and an interpre-
tation C(2A;)icr <ro € can be constructed effectively from the interpretations
A; <po € and I <po €.

Proof. Wlo.g. let I = {0,...,|I| — 1} and assume that ¢ contains constants
0 and 1. We have to construct an interpretation of 2 := C(2;);cr in €. Let
r; be the arity of R;. Consider n;-dimensional interpretations

Zi = (hzagl(fl)asl(flayl)a ‘P(Z)(ff)a s 75%71)7 vy (pi(f(z)a e 7jf*r71))
of ; in €. We represent an element a of 2 by an (|I| 4+ ng + - - - +n|7—1)-tuple
7= (d,7°,...,711)

where d € D determines which components are empty and Z' encodes the
i*® component of a. The desired interpretation is constructed as follows.

T:= (h,é(f),a(j,y),wo(fo, s 7ET0—1)7 .- '7907‘(j07 s 7j7‘7‘—1))

where
h(g, fo, flllfl) — (Xdo (0, ho(fo))’ e Xdir s (0, h|I|*1(E\I\*1))),
6(d,z°,.... 711 = \/ (E A 61'(?')),
ceD i: c;=1
and

ed,z,.... 7" e, g ) i=d=2 A \ (i =1-¢£F.7)).
i<|I|
In order to define ¢; we consider an interpretation

II = (hI,(sI(f),&I(T,y),(pé(fg, s 7580*1)7 . 'a(pg(f()) s 7553*1))

of Jin €. Since J is finite such an interpretation exists. Let a; := B].II be
the formula defining R;. Note that §; contains additional relations D; and T;™
which are not in . Thus «; is a sentence over the signature 7 extended by the
symbols D; and T;™ for appropriate [ and m. We have to be replace them in
order to obtain a definition of ;. Let To,...,T,, 1 be the parameters of p;
where

_ = _ _|T]=1
T :(dk,xg,...,xlkl )
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for k < r;. D; can be defined by
Dli = (dl)z =1.

To define T;™ consider the Hintikka-formula 9" (o, ...,2,; 1) defining the cor-
responding type and set

T = (07" (&, - Thy 1)

Note that those definitions are only valid because i ranges over a finite set.
¢, can now be defined as o; with D; and T;™ replaced by the above definitions.
Obviously, all steps in the construction above are effective. [l

Corollary 5.25. [w-][T]AutStr is effectively closed under finitary generalised
products.

As promised we immediately obtain closure under several types of composi-
tions.

Corollary 5.26. Let T = {Ry, ..., R,} be a finite relational signature, I a finite
set, and A and ;, i € I, T-structures with automatic presentation. Then there
exist automatic presentations of

(i) the direct product [[;c;Ai of (As)icr,
(ii) the disjoint union |J;c ;i of (Us)ier, and
(iii) the w-fold disjoint union w-2A of 2A.

Proof. (i) We have [[,.;; = C(;)icr for C := (3, D, Bo, ..., Br) with 3 := (I),
D:={(1,...,1)}, and

Bi=vi \/ Ti
l: RjTETlrj
(ii) We have ;o 2; = C(%;)ier for C := (3, D, B) with 3 := (I) and
D= {(1,0,...,0),...,(0,...,0,1)},

ﬁj:zai(/\pﬂ'/\ \/ le)

I<r; l: R;EET,’

= (w) has an automatic presentation. We have w -2 = C(2,N) for
3,D,B) with 3 := ({0,1},0,1), D := {(1,1)}, and

Bi=\/ T0n A V 1L

e o ) hy
l: Rjzer,’ 10501 <T [ gy =a;, €T,°

C:

O

Corollary 5.27. Let 7 = {<, Ry, ..., R.} be a finite relational signature, I a
finite ordered set, and A and A;, i € I, ordered T-structures with automatic
presentation. Then there exist automatic presentations of

(i) the ordered sum ) ;. ; Ui of (As)icr and
(i) the w-fold ordered sum Y .. A of 2.

IEw
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Proof. (i) We have Y., %; = C(%;)ier for C := (3,D, B<, B) with J:= (I,<)
and

D :={(1,0,...,0),...,(0,...,0,1)},
B; = Eli(/\ Din \/ le)
I<r; l: ijerfj
B =3 (Doi ADiiA Tﬁi) V JioJi1 (Doio A Diiy Ado < i1).
l: zo<z1€7'l2

(ii) The structure 9 = (w, <) has an automatic presentation. Construct

C:=(3,D,8<,B) with 3 := ({0,1},0,1), D := {(1,1)}, and

Bi=\/ ToAn A \V 71,

l: R]-TETlrj G0,01 <1 Tin=Tiy ETlrj
Be = ( \/ TPoA :r,21) v o\ 1L
I: zo<wi€TE I: zo=z1 €77 I: zo<wiETE
Then 3, 2 = C(2,M). O

Weak Direct Powers. A case not covered in the preceding section are weak
and w-fold direct powers. Clearly, for cardinality reasons [T]AutStr cannot be
closed under w-fold direct powers, and even in the weak case we obtain a negative
result.

Theorem 5.28. AutStr is not closed under weak direct powers.

Proof. Presburger Arithmetic (N, +) possesses an automatic presentation. But
its weak direct power is isomorphic to Skolem Arithmetic which according to
Corollary 5.20 is not in AutStr. O

It turns out that tree presentations on the other hand are closed under weak
powers.
Theorem 5.29.
(i) TAutStr is closed under weak direct powers.
(il) w-TAutStr is closed under weak and w-fold direct powers.

Proof. Let 2 € TAutStr with presentation @ = (v, ¥, T5,T.,Tr,,...,Tr,.). In
order to construct a tree-automatic presentation of the weak direct power 2A*
of 2l we encode a tuple (to,...,t,) of trees from T by the tree ¢ with

dom(t) := {,0,...,0"} U | 0'1 dom(t;),
i<n
t(0%) := 0,
t(0"1z) == t;(z).
Let B = (Q,X, A, F) be a tree-automaton recognising one of the languages

Ts, T, TRy, - - -, Tr,. The tree-automaton B* for the corresponding language
in the presentation of 2A* is B* := (Q U {q}, X, A’, {qo}) with

AI =AU { ((10,0:(10,(1),((10,0,[':‘1) | q € F}

The proofs of the other claims are analogous. |
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Figure 5.1: Encoding of (to,...,tn)

Ezample. (1) (N,-) € TAutStr as (N \ {0},-) = (N,+)* via the isomorphism
taking (no,nq,...) to the number pg°pl* - - - where po, p1, ... is an enumeration

of all primes.
(2) Similarly, (Q>°,-) € TAutStr as (Q>°,-) = (Z, +)*.

5.4 The Class Hierarchy

Finally, we are able to compare the various classes of automatic structures.
Theorem 5.30. [T]AutStr C w-[T]AutStr.

Proof. We construct an interpretation 9, <po R .

iz) =1|p=, or(z,y,2) =x+y=2,
e(z,y) =z =y, o, (T,y) =y
Because |R| > |N| there is no interpretation in the other direction, hence the
inclusion is proper.
The case of tree-automatic presentations is analogous. |
Theorem 5.31.
(i) AutStr C TAutStr
(il) w-AutStr C w-TAutStr
Proof. (i) We show that N, <po ¥p. We define formulae which state that the
left branch of a tree ¢ is labelled 1, respectively, from the root or from some
vertex r to some other vertex, and every other vertex is labelled 0.
LeftPath(t) :=
VrvsVs'(Suce(r, s, s')
=t r=rVt-r=0)A({t-r=r—t-s =0)
At-r=0—t-s=0At-s =0))
LeftPathSuffix(¢,r) :=
SingleOne(r)
A dsy3so(LeftPath(sy) A LeftPath(ss)
NS t=tANsy - t=0ANt+83=8 As -r=rAsy-r=0
AYv(Succo (v, 1) = $2 - v =0))
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To check the digits at one position the following formula can be used. It states
that the labels at the position r in the trees tg, t1, t2, and t3 are labelled xq, 21,
x2, and z3, respectively, and the position r' in t3 is labelled x.

Addagay asasay (fo, t1, ta, t3,7,7") = /\ ret; =a;r Atz =agr.
i<d

A number n € N is encoded by a tree whose left branch is labelled with the
digits of n.

o(t) := ds(LeftPath(s) As -t =t),
e(t,t") =t=t,
@, (t,t) := Js(LeftPathSuffix(s,t) As -t =t'),

o4 (to, t1,t') :==3s (5(8) ANV (Succo(r, r') —

\/ Addapedar (to, t1, 8, 8,7, 7"')))7
(a,b,c,d,d')EA

where we used the set A of correct digits defined in Section 4.1.
The inclusion is proper, as (N, -) € TAutStr \ AutStr.
(ii) analogous. O

We have seen that, simply for cardinality reasons, w-[T]AutStr \ [T]AutStr
is non-empty. The question occurs whether cardinality is the only reason. A
first step to answer this question is

Theorem 5.32. Let 2 € w-AutStr be countable. A € AutStr if and only if it
has an injective w-automatic presentation.

Proof. (=) Let » be an injective automatic presentation of A. We obtain an
injective w-automatic presentation by changing each encoding x to z[0“ for some
padding symbol .

() Letd = (v,X, Ls, L, Lg,, - - ., Lg,) be an injective w-automatic presen-
tation of a countable structure 2. Then L; is countable, too. As it is w-regular
we have

Ly=JUiv¥
i<n

for regular languages Uy, ..., Uy, Vo, ...,V C X*. In this expression Vg, ..., V,

can be chosen one-elementary as, otherwise, |[V;*| > [{0,1}*| = 2% > |L;|.
Thus,
L5 = U UZ{’UZ}W
i<n
We construct an automatic presentation o' = (v', X", Ly, LL, L'y ..., L ) of 2.

Y :=Xu{0,...,n} V(i) :=v(zv¥)
i= iU L= (Ly)®* n{[s]ae ¥}

i<n
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Consider a Biichi-automaton B = (Q, (¥ W {00})", A, o, F') recognising Lg,,
and for [ € {0,...,n}" and ig < |vg|,. .. 01 < v, |, denote by RL the set
of states from which 28 accepts the word

(8i0 (V1) ® -+ ® Sirjfl(vlrfl))w
where s; is the cyclic shift by i letters to the left

si(ag - an) == a; - apag---a;—1.
Let k := max{|vo|, ..., |vn|} and v; = vip - - - Vj(jv;|-1)- The following automaton
recognises th. Set B’ := (Q’, (2'y {D})"f,A’,q(’),F’) where

Q :=Qx{0,...,n}" x{0,....,k— 1} U{q},

A= { (q('),f, (qo,z,ﬁ)) | 1€{0,...,n}" }

u{((¢,1,7),a,(q',1,7)) | (q,b,q¢') € A where, for s < r;,

bs = as, i, =is =0, and az € X)) or
, and a; = 0) },

—~~

(bs = v1,i,, iy = is + 1 mod v,

F':={(q,1,7) | qER%}.

Intuitively, 28’ determines from the first letter which infinite part the words in
each track of the input have, and when the end of a word is reached it simulates
the work of B on the word v} until the end of the whole input is reached. As
there are only finitely many possible ways the infinite parts are shifted relative
to each other B’ can determine whether the input is accepted by 8. O

Open Problem. Does every countable 2l € w-AutStr possess an injective presen-
tation, or, equivalently, is every countable 24 € w-AutStr already in AutStr?
A first step in the investigation of this question is

Lemma 5.33. Let 2 € w-AutStr and let a € A be definable. Then in every w-
automatic presentation 0 of 2 there is an ultimately periodic w-word encoding a.

Proof. Let ¢(x) be the formula defining a. The claim immediately follows from
the fact that every non-empty regular w-language contains an ultimately peri-
odic word, and because n°(p) is non-empty. O

Open Problem. Does every 2 € w-AutStr in which every element is definable
belong to AutStr?

We have obtained the following hierarchy of classes

RecStr DecTh
w-TALtStr
TAutStr
w-Al:ltStI‘
AutStr

FinStr
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where FinStr is the class of finite, RecStr the class of recursive, and DecTh
the class of structures with decidable FO-theory, and where solid lines indi-
cate proper inclusion. Examples for the proper inclusions FinStr C AutStr,
TAutStr C RecStr, and w-TAutStr C DecTh are Presburger Arithmetic (N, +),
full Arithmetic (N, +,), and any set with cardinality greater than 28, respec-
tively.

The following example, due to Eric Rosen, shows that cardinality is not the
only reason for the proper inclusion of w-TAutStr in DecTh.

Lemma 5.34. DecTh \ w-TAutStr contains a countable structure.

Proof. The structure ® is constructed via diagonalisation. Consider the class Z
of graphs consisting of finite disjoint cycles. Let (2;);en be an enumeration of
all w-tree automatic structures in .#". Define © as follows: © contains one cycle
of length n iff A, does contain no such cycle. Obviously, ® ¢ w-TAutStr. On
the other hand ® € DecTh because, for every ¢ € FO, whether ¢ € Th(D)
depends only on the existence of cycles up to a certain length. This length can
be effectively determined from the quantifier rank of (. Because of the effective
semantics of automatic structures the question whether a cycle of length n exists
can be answered by constructing 2. O



Chapter 6

Model Theory

We turn back to logic. After showing that the compactness theorem fails for
the class of automatic structures we will take a closer look at the theory of 9.

6.1 Compactness

Very often, if one restricts the class of models—say to finite or recursive models
or to constraint databases—many important tools and results of classic model
theory fail. The most prominent example is compactness. Unsurprisingly in
automatic model theory it also does not hold.

Theorem 6.1. The compactness theorem fails for the classes [w-][T]AutStr.

Proof. (Adapted from the proof for the case of recursive structures in [HH96].)
Let A C N be any non-recursive set. Define

P :={p<,pstU{pr | k €N}
where

V<o i= Voyz(rz<zA(z<yAy<z—oz<z)
ANz<yVz=yVy<uz))
Adz—-Ty(y < 1)
AVzIy(z <y A-Fz(z < 2 Az <y)),

(“< is a discrete linear order with least element.”)

s :=Vay(Szy ¢ (z <y A-Jz(z <z Az <y))),

(“S is the successor relation with respect to <.”)

PYr = dxg - xp (—E'y(y < ZL”()) A /\ SCUZ'ZL”H_l A ’(/Jk(f)),
i<k
P = /\ Ux; A /\ -Uzx;.
i€{0,...,k}NA i€{0,...,k}\ A
(“U = An{0,...,k}")

61
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Then every finite subset &' C & has the automatic model (N, <, S,U) with the
usual ordering and successor relation, and U := AN {0,...,m} where m :=
max{k | o, € P}

Suppose @ has an automatic model 2. Then the following algorithm can
decide A:

Input: n
=3z xn(—Fy(y < o) A /\ Szizipr AUwy)
if A = ¢ then s

return true
else

return false
O

Corollary 6.2. There is no sound and complete proof system for the set of
sentences valid in [w-][T]AutStr.

Proof. We show that the existence of such a system would imply the compact-
ness theorem. Assume there is a proof system such that & + ¢ iff & = .
If @ is unsatisfiable then there is a proof of @ I false. In this proof only a
finite number of sentences of @ would be used. Therefore there is a finite subset
@' C ¢ with &' - false. By completeness this would imply &' |= false. Thus
there is a finite unsatisfiable subset of @. O

6.2 Axiomatisation of Th(91),)

We present an axiom system for Th(D,). In order to simplify the task we first
construct one for the structure &, := (N, <, sp, (Dg)r<p) Where

Dy, :={(z,y) | y is a power of p and the digit of = at position y is k },

SpT =p- .
Proposition 6.3. 9N, =po 6,.

The proof is straightforward. It follows that any axiom system for the theory
of one structure yields an axiomatisation of the other one.

We have seen in Section 4.1 that in 0N, every formula can be transformed into
automaton normal form. This can be used to derive an axiom system of Th(0),)
or, equivalently, one of Th(&,).

Definition 6.4 (Axiom system of Th(&,)). We introduce the following abbre-
viations. The set P of Positions is defined as Px := Djzxz. The least element
of < is denoted by 0, the next one by 1. Let 2 = (Zg"”,Zg,ﬁ,A,F) be a de-
terministic automaton. The corresponding formula (see Section 4.1) is defined
as

Yo (T) := 3gIs[ADM A START A RUN A ACC]
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where
ADM(Z,q, s) ;= Ps A /\ x; < s,
i<n
START(z,q, s) = Symg(q, 1),
RUN(Z,q, s) =Vz (z <SsANPz— \/ Trans. (%, q, z)),
TEA
ACC(z,7, 5) = \/ Symy(g,s),
keF
TranS(E@j') (Ea q, Z) = Symﬁ(aa 2) A Symﬁ(ja Z) A SymE' (qa sz)a
Sym (T, z) = /\ D, z;iz.

The axiom system consists of:

(P1) < is a discrete linear order with first but without last element.

Ve—x <z

VaVyVz(z <y Ay <z — x < 2)
VaVy(e <y Vaz=y Vy<uz)

Vedy(z <y A—Jz(z < zAz<y))

Ve[dyy <z — Jyly <z A-3Jz(y < zAz < 1))
JaVyx <y

(P2) s, is monotone.

Ve(z >0 — spz > )
5,0=10
(P3) The least element of P is 1, P is unbounded, and s, is the successor
function on <|p.
—POAP1
VzIy(z < y A Py)
Vo(Px — Pspr A—3z(Pz Az < z < spx))
Ve(Pr Az >1— 3y(Py Az =spy))

(P4) Each number has exactly one colour at every position and no colour at
non-positions.

VzVy /\ (=D;zy V =Dyzy)
i#k

VaVy (Py > \/ Dk:vy)
k<p

(P5) Numbers are uniquely identified by their colouring.
VaVylzr = y > Vz(Pz — SameDigit(z, z; y, 2))]

where SameDigit(z1, z1; 22, 22) := \/ (Dgz121 A Dpxaza).
k<p
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(P6) Every number eventually has colour zero.
VaIy(Py AVz(Pz Az >y — Doxz))

(P7) Positions have the colouring 0---010---.
VaVy(Pz A Py Az #y — Dozy)

(P8) Definition of < and s, in terms of colours.
VaVy (:c <y 3z (Pz A \/ (Dizz A Dyyz)
i<k
AVZ' (2> 2 — SameDigit(m,z';y,z'))))
VzVy /\ (Drxy < Dyspzspy)
k<p
Ve (Jy(z = spy) <> Dozl)

(P9) Every periodic colouring exists. For all numbers n € N\ {0} and every
word w = ag - - - ap—1 € Z, of length n we have the axiom

VaVsVtdy (Ps ANPtAsys<t

— Vz(z < sV z >t — SameDigit(z, z; y, 2))
AVz(s <z Asyz <t — SameDigit(y, z;y,5,2))

A /\ Daiys;s
i<n n i—1

A \/ dz (sﬁz =tA /\ Dakys';_iz A /\ Dakysg_(i_1)+kz)
i<n k=i k=0

/\Vz(s <zA SZnZ <t— \/ /\ Dakys;,+kz)).

i<n k<n

(Intuitively, this axiom says that for every number z and all positions
s and t of x there is some other number y which differs from z only at the
positions between s and ¢. The part of y between s and ¢ is periodic with
period n, it starts with w, ends with some suffix of w, and every interval
of length n in between contains some cyclic permutation of w.)

(P10) Every deterministic automaton has a unique run on each input. For all

n, m € N, m > 0 and all transition relations A C Z7* x Zy7 X Z of some
finite total deterministic automaton (Z)",Zy, A0, F)—i.e., forallg € y
and @ € 7 there is exactly one §' € Z;" with (7,a@,7') € A—we have the
axiom

VzVsI='G[START(Z,q, s) A RUN(Z,q, s) A END(g, s)]
where

END(q, s) :=Vz(Pz Az > s = Symg(q, 2)).

Note that we allow automata without input, i.e., n = 0. Such automata
are of the form A = (Z7,Z9, A,0,F) where Z9 = {0} (O denotes the
empty tuple), A C Z7' x Z = 7" x {00} x Z} and L() is either {1}
or ) depending on whether there is some g € F with (0,q) € TC(A).
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(P11) The subset construction works. For all deterministic automata 21 and B
such that B recognises the set defined by Jy ¢y (Ty) we have the axiom

VZ[Bypa(Ty) < ¢ (T)]-
Theorem 6.5. The aziom system (P1)—(P11) is complete.

Proof. We show that (P1)—(P11) imply that each formula is equivalent to its
automaton normal form using the minimal automaton. Therefore, if ¢ is a
sentence it has an automaton normal form g with 2 = ({0}, {0}, 4,0, F)
where A = {(0,0,0)} and F is either {0} or @. In the first case (P1)—(P11) = ¢,
in the other case (P1)—(P11) | =p. Thus, (P1)-(P11) is complete.

By (P1)—(P3) the set of positions is some discrete linear order with first
element 1 and without last element. By (P4) every number can be seen as
colouring of P which by (P6) eventually becomes 0; by (P5) the colouring is
unique.

By (P7) and (P8), if z is a position then z < z iff Dyzz' for all positions
2! > z. Let 2 be a deterministic automaton. Consider

Yo (T) := 3g3s[ADM A START A RUN A ACC].

By (P3) there is some s satisfying ADM and by (P10) there is a unique tuple g
which, given s, satisfies START A RUN. Therefore g holds if and only if the
unique run of % on T contains some final state somewhere after the last position
of T carrying a non-zero digit.

Now we a ready to prove the equivalence of atomic formulae to their au-
tomata. We start with equality. Let A— := ({0, 1},Z12,, A0, {0}) with

A: = {(0,(&,0,),0) | S ZP}U{(Oa(avb)al) | a 7£ b}
u{(,(a,b),1)]a,beZ,}.
Because of (P9) the colourings 00--- and 0---01---10--- exist. Therefore, by
(P10) and (P6) the unique run of 2l on some T is of one of these forms. If
o = x1 it can only be the former, and if zg # 1 it can only be the latter. Thus
2A accepts T if and only if zp = z;.
The other relations are handled similarly. Define

Ao := ({0,1},Z2, A,,0,{1}),

Ap, := ({0,1,2},Z2, Ap,,0,{1}),

A, = ({0, .. ,p},Zi, A, 0, {0})
with

A< ::{(Qa(aab)ao) | a > baqe {071}}

U{(g,(a,b),1)|a<bqge{0,1}}
U{(g,(a,a),q) | a € Zpqe{0,1}},

Asp ::{(aa (b,a),b) | a,b € ZP}U{(p, (aab)ap) | a,b € Zp}
U{ (e (a,b),p)|b#c,a,b,ceZ,},
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,(1,(a,0),1) |a € Zp }

DIU{0,(a,1),2) |a#k}
0,(a,b),2) |b>1,a,b€ Zy}
U{(1,(a,0),2) | b#0,a,b € Zyp}

(2,(a,b),2) |a,be Zp}.

We have zg < z; iff, by (P8), there is some position z such that the digit
of xg at z is greater than the digit of z; at z and the digits of 2y and z; are the
same at all greater positions. This is the case iff in the run of 2. on (zg,z1)
the state at position s,z is 1 and remains 1 until all non-zero digits of (zo, z1)
are passed. Again, the last equivalence follows since by (P9) such a run exists
and by (P10) it is unique. Therefore, 2o < 21 it Ya_ (2o, 21).

Similarly, Dyxoz; iff, by (P9) and (P10), the run of 2p, on (o, z;) has the
form 0---01---1. Therefore, Dyxoz, iff Yap, (zo,21).

Finally, s,z¢ = 21 iff, by (P9) and (P19), the run of 2, on (2o, 1) has the
form (z1,0). Therefore, s,zo = z1 iff wmsp (zo,x1).

It remains to prove that the equivalence is preserved when applying boolean
connectives and quantifiers. Let 2; = (Z", Zy, A;,0, F;), for i = 0, 1, be deter-
ministic automata recognising some set of numbers. In particular the acceptance
of 2(; does not depend on the number of leading zeros.

=g, () holds iff the unique run g of Ay on Z does not contain a final state
after the last non-zero position of T iff, by assumption, § contains some non-final
state at such a position iff Ay := (Zy, Ly, Ao, 0, Zyo\ Fy) accepts T iff ¢y (7)
holds.

a1, (T) V vy, () holds iff the unique run g, of Ay on T or the run g, of Ay
contains a final state after the last non-zero position of Z iff the run (g,,q;) of

A= (Zyot™, 77, A0, Fy X L UZ° x Fy),

with A defined componentwise according to Ag and Ay, contains a final state
at such a position if 2 accepts T iff o (Z) holds.

The case of the existential quantifier immediately follows from (P11).

It remains to prove that each automaton can be minimised. Let § be the
run of some automaton 2 on input Z. The run §' of the minimal automaton 8
can be obtained from § by mapping each state to the corresponding state of 8.
(Note that minimising some automaton means merging equivalent states.) If
7 exists it follows by (P10) that ¢ = 1g. Consider the automaton € whose
states are the states of B8 and which on input g, after reading one symbol of g
enters the corresponding state of the minimal automaton. Hence, the run of €
on input g is 0g’. As 0g' = s,q’ (with obvious abbreviations) the existence of g’
follows from (P8). O

6.3 Non-Standard Models

The axiom system of the previous section can be used to construct non-standard
models of Th(&,) and Th(M,). Of course, we are mainly interested in non-
standard models which are automatic, but so far the author has only been able
to construct a recursive one.
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Definition 6.6. &, := (S, <,s,, (Dy,)x) is the structure of “intermediately pe-
riodic” (w+ ¢)-words where ( = w* + w is the order type of the integers and the
universe S consists of all words w € Z;‘,’*C such that there are finite words z, ¥,

z € L, with w = zy“y®” 20¢. The relations are defined the canonical way:

x <y :iff x =wiv, y =u'kv for some u,u’,v, and i < k € Z,,
Dyxy :iff x =wukv and y = 0“110- -+ for some u, v,

spr 1= 0.
Proposition 6.7. &, is a recursive non-standard model of Th(&,).

Proof. &,, obviously satisfies (P1)~(P9). Consider two runs gy, g, of some de-
terministic automaton 2( on input . By definition there are decompositions
o =ToUs¥s 200" and g =TGT; 20

Clearly, the initial parts of both runs must be identical Zoyy = Z1%{. Thus,
ToysTy = T17¢7Y and therefore g, = g, which yields (P10). Analogously,
(P11) holds because, when reading the initial part of the input Zg“7* 20,
the set of reachable states must eventually become periodic and this period is
preserved faithfully when crossing the infinite gap.

Since the order types of &, and ép are different, they cannot be isomorphic
and &, is really non-standard.

Each element zy“y*” 2 of ép can be stored as (z,y, 21, 22) € (Z%)* where 2,

P
is the part of z = 2125 which lies before position w + w*. Obviously, using this

encoding all relations can be checked effectively. Thus, &, is recursive. O

From &, one easily obtains a recursive non-standard model 9, of Th(91,)
by applying the interpretation M, <po &,.

Open Problem. Is there an automatic non-standard model of Th(9,)?

Since the order type of ‘ftp is w + (n this problem is related to the question
whether (Q, +) is automatic.

Lemma 6.8. If ép as constructed above is in AutStr then (Q,+,|,) € AutStr
where + and |, are defined the canonical way.

Proof. We proceed in several steps. First applying the interpretation of 91,
in &, we obtain an automatic non-standard model 9, of Th(t,). Since the
set I of infinite powers of p is FO(3¥)-definable by

p(x) == Ppx NIyy < w,

the expansion (N, +, |p, I) of ‘ftp is automatic as well. Finally, we construct an
interpretation of (Q,+, |, I) in this structure by identifying two elements of N
if their difference is finite.

d(z) := true, e(z,y) =Vz(Iz = |z —y| < 2).
+ and [, are defined the obvious way.

(,0+($,y,2) = E(x-l-y,z), cp\p(xay) = Il‘/\$|py
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Open Problem. Are (Q,+) or (Q,+,]p) in [w-][T]AutStr?

Another partial answer to the first problem provides the following observa-
tion.

Proposition 6.9. If there exists an automatic non-standard model A of N,
then 2L is not a reduct of a non-standard model of Peano Arithmetic.

Proof. It is a well known result of recursive model theory that in any non-
standard model of Peano Arithmetic both addition and multiplication are not
recursive (see e.g. [Sch98]). O



Chapter 7

Unary Presentations

The kind of automatic presentations we have used so far have two main dis-
advantages. While the FO-theories of automatic structures are decidable, their
complexity can be non-elementary and more expressive logics like FO(DTC) are
already undecidable. The other problem is of a methodical nature. It seems to
be very difficult to show that some structure is not automatic and thus to give
exact characterisations of the various classes of automatic structures.

In this chapter we will investigate a certain restricted type of presentations
in the hope that stronger logics become decidable, the complexity of various op-
erations decreases, or that at least more powerful theoretical techniques become
available.

Our main method in the investigation of presentations was to calculate
bounds on the length of encodings. In the special case of languages over a
unary alphabet a word is completely determined by its length. Therefore, we
take a closer look at this case.

The class of structures 20 € AutStr[r] possessing a unary automatic presen-
tations, i.e., a presentation over a unary alphabet, is denoted by 1AutStr[r].
Many of the basic properties proved in Chapter 3 for automatic structures—
such as the effective semantics for FO(3¥)—remain valid for 1AutStr. One
notable exception is that 1AutStr is only closed under 1-dimensional FO(3¢)-
interpretations.

7.1 Complete Structure

Again, our aim will be to characterise 1AutStr via a complete structure. This
structure is 9y = (N, <,(n| x)neN), the natural numbers with ordering and
divisibility predicates or, equivalently,

1= (N,5,<,0,(z =k (mod 1))k nen)

where s is the successor function, < is the natural order, and z = k (mod n)
denotes those numbers which are congruent £ modulo n.

Definition 7.1. Let 7, y € N*. Define
O(E) = {71' € Sn | Tpo <-00 < Tr(n—1) }a

A(Z) = (x,rg,xﬂ — 0y e+ Tr(n_1) — l'ﬂ-(n_g)) for some/all © € o(T).

69
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Figure 7.1: Automata over 1* and 1* ® 1*

~,p is the equivalence relation defined by
T ~1p Y ciff o(F) = o(7) and A(T); ~1,p A(Y); for all i < n,
where by abuse of notation ~; , denotes the equivalence relation
z~ppy iff eitherz =y <, orz,y >l and =y (mod p).

Our main lemma to prove the completeness of 9 is the following characteri-
sation of regular languages. The general structure of automata over 1*®- - -® 1*
is depicted in Figure 7.1. The inner loop of the second automaton is labelled
by [1], the outer loops by [§] and [}], respectively.

Lemma 7.2. L C (1*)®" is regular if and only if there are constants 1, p € N
such that for all T, 5 € N® with T ~;, § it holds that

1zo®...®1zn71€L=>1y0®_‘_®1yn,1 GL.

Proof. (=) Induction on n.

(n=1) L C {1}* is regular iff it is a finite union of arithmetical progressions
(see [Eil74, Proposition V.1.1]).

(n > 1) Let A = (Q,{1}, 4,90, F) be a deterministic automaton recognis-
ing L. For each pair ¢ € @}, R C @ denote by 2,r the automaton ;g :=

(@Q,{1},9,q, R), and let QlfJR be the automaton obtained from 2(;r by erasing

all transitions whose label has as i*" component a [, and by removing the

ith component of all other labels. Then, if z; = max{xo,...,7,_1} we have

1"°®.---®1%-1 ¢ L(Q[)
ff 1" .- @l%% 11" ... 1% 1 ¢ L(méo{'ﬂ’)

for some ¢ € () such that
e® L @14@n1 @ =i ¢ [(Y,F).

Let lé, pfl € N be the constants for L(Qléo{q}) provided by the induction hypoth-

esis and let lNé, P € N be the corresponding constants for the language
LA ) N (O x {1} x O"7H*
(as language over the unary alphabet {(O,...,0,1,0,...,0)}). Define

l::max{lé,lz |i<n,q€Q}, piZHP(i]iﬁz-
i,q
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Then we obtain for all 7, ¥ € N* with T ~; , § that
1 ®.-- @11 e L(A)
iff 170 @ - @171 @17+ @ - @ 17 € L(A] o)
for i = o(Z)(n — 1) and some ¢ € @ such that
e®i1 @ 1A@n—1 g e8n—i ¢ [(9( 1)
iff 1@ - 1% @ 1Y+ @@ 19~ € LAY )
for i = o(Z)(n — 1) = o(y)(n — 1) and some ¢ € @ such that
e®171 @ 1401 @ @i ¢ (A, p)
iff 1% @ - @191 € L().

(<) For each ~j ,-class one can easily construct an automaton recognising
this class. As regular languages are closed under union the claim follows. |

For lack of a better name, we call the numbers [ and p of the preceding
lemma the loop constants of L.

Definition 7.3. The loop constants of a unary presentation 0 consists of a pair
(I,p) such that [ and p are loop constants of every language of 0. W.l.o.g. we
always assume that [ < p.

For R C N" define code(R) := {1*° ®--- ® 1~ | (zg,...,Zn—1) € R}.
Theorem 7.4. R C N" is FO-definable in 9 if and only if code(R) is reqular.
Proof. (=) 9% has a unary automatic presentation

0:= (v, {1}, Ls, L., L<,(Ly)n)
with
v(1%) =z, Ls:=1%, Ln = (1),
L= [i]", Le:=[1]7[7]".

(<) If code(R) is regular then it is a union of some ~; ,-classes where (I, p)
are the loop constants of code(R). One such class can be defined (in 9t}) by the
formula

p(T) = /\ Tri < Tr(iv1) A Yo(Tr0) A /\ VYit1 (Tr(it1) — Tri)

i<n—1 i<n—1
where each ¢;(x — ) is either of the form

-y =z—y=m (=z=s"y)
or

Y(E—y)i=r—y>lAxz—y=k (mod p)

(= stlyAV(in+k (mod p) A y =i (mod p))).

Hence, code(R) can be defined by a disjunction with one such formula for each
~1,p-class contained in R. O
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As a corollary we obtain the desired characterisation of 1AutStr in terms of
a complete structure.

Corollary 7.5. 2 € 1AutStr iff A <po My vie a 1-dimensional interpreta-
tion.

We will see below that 1AutStr is not closed under products and hence under
many-dimensional interpretations. A more robust class is obtained if we take
the closure of 9; under many-dimensional FO-interpretations. This corresponds
to presentations where all languages are subsets of (1*)®*, for some k, instead
of 1*. In the following we only consider 1AutStr, which is simple enough to
permit precise characterisations of the structures it contains.

7.2 Structures with Unary Presentation

The following example shows that unary presentations are much weaker than
those with a binary alphabet.

Ezample. Presburger Arithmetic (N, +) has no unary automatic presentation.

Proof. Suppose (N, +) has a unary presentation d. Define
Np:={meN|X(m)<n}\{0}

and let m, := max N,. Then |N, + m,| = |N,|, and since \°(z) > n for all
x ¢ N, there is some z,, € N,, with

A (2 +myp) > X (m) + [Ny | = max{A\’(my), A’ (24)} + | Nal.
As |N,| is unbounded for n — oo we get a contradiction to Proposition 5.8. O

Proposition 7.6.
(i) 1AutStr is not closed under products.
(ii) 1AutStr is closed under finite disjoint unions and finite ordered sums.

Proof. (i) Consider (N, s), the s-reduct of N}. We claim that (N?,s) := (N, s) x
(N, s) has no unary presentation. Let

M :={(n,0), (0,n) € N’ | n € N},

which is definable by ¢(z) := —=Jy(z = sy). Consider the sequence (G, (M))n
of generations of M. As (z)s N (y)s = 0 for all different z, y € M the size y(n)
of G, (M) is equal to

n

fy(n):’y(n—l)-|-n—1-|-1:fy(n—1)+n:Zi:n(n—1)/2.

i=1

But, according to Proposition 5.8, |G, (M)| < mn for some m because in the
unary case there can be only one word of each length.
(ii) Let, for i € {0,1}, 2; € 1AutStr with presentation

0 = (vi, {1}, L, LL, Ly, , ..., L'y
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Define the homomorphism A : {1,0}* — {1,0}* by h(1) := 11, A(O) := OO.
We identify h with its extension to 1% (defined componentwise). Then 2y U,
has the presentation o := (v, {1}, Ls, L., Lg,,. .., Lg,) where

k/2 g
V(%) = 0(1%/2) Tf k is even,
v (1R=1/2) if k is odd,
Ls := h(L3) U1h(Ly),
L := h(L2) U] h(L),
1

Lg, = h(L},) U [
1

AN

)u
) U

h(Lk,).

That is, elements of 2y are mapped to even numbers, those of 2; to odd ones.
In case of the ordered sum we additionally define

O

Corollary 7.7. 1AutStr is not closed under many-dimensional FO-interpreta-
tions.

In the remainder of this section we try to give precise characterisations of
those structures having a unary presentation. The main work is done in the
following technical lemmas. Let f: A x A™ — A. Define

fo(a,g) = a, fi+1(a75) = f(f’(a,Z),Z)

The set f*(a,b) == { f*(a,b) | n € N} is called the f-chain of a (with parame-
ters b).

Lemma 7.8. Let (A, f) € 1AutStr for some f : A — A. There are only finitely
many disjoint infinite f-chains.

Proof. Let 0 be a unary presentation of (A4, f) and let m be some constant
such that A°(f(a)) < A°(a) + m. Suppose there are infinitely many infinite
f-chains f*(ag), f*(a1),.... Let k := max{ A\°(a;) | i < m }. For each i < m let
b; € f*(a;) the element with minimal length A°(b;) > k. W.Lo.g. assume that
A%(bg) < -+ < A°(by,). By minimality, A°(b,,) < k + m. Thus

k< N(bg) <+ < X(by) < k+m.
Contradiction. O

Lemma 7.9. Let 0 be a unary presentation of (A, f) where f: A x A™ — A.
The sequence

(/\0 (fiJrlaZ) X\ (fiaz))ieN

is eventually periodic for all a and b in A. Furthermore, the period can be chosen
to be independent of a and b.
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Proof. If f"ab = f™**ab for some n and k the claim follows immediately. Oth-
erwise, let (I, p) be the loop constants of 8. W.l.o.g. assume that [ > X\°(b;) for
all parameters b;. Choose ig large enough such that A*(fab) > [ for all i > io.
We claim that

X(a) = X°(a’) (mod p) implies A°(fab) — X°(a) = X°(fa'b) — X°(a’)

for all a, a’ € A such that X?(a), X%(a’), A°(fab), and \’(fa'b) are greater
than or equal to I. The result follows since the sequence (A°(f*ab) mod p); for
19 <1 < ip+ p must contain at least one number twice. Hence by the claim, the
part in between is repeated infinitely. Furthermore, we can choose p! as period
which is independent of ¢ and b.

To prove the claim suppose by symmetry, A°(a) < X°(a'). Since f is a
function, either A?(a) — I < A%(fab) < A°(a) +1 or XN°(fab) < 1. If X°(a) > [
and A?(fab) > [ then

(N (a), X*(fab)) ~1,p, (X (a) +ip, X*(fab) + ip)
for all i > 0. Thus, if A°(a’) = A°(a) (mod p) then A\°(a’) = A°(a) + ip for
some i. Therefore, A°(fa’'b) = \°(fab) + ip, and

X (fa'b) — X°(a') = A°(fab) +ip — X°(a) —ip = A°(fab) — X\°(a). .
Lemma 7.10. Let 2 € 1AutStr, f a unary function of 2, and a some element

of 2. Every presentation 0 of 2 can effectively be extended to one of (A, R)
where R := { (a,b) | b € f*(a) }.

Proof. Let T be an interpretation of 2 in 91y, and let 0 be the corresponding
presentation. For notational simplicity we identify elements of 20 with their
encodings in N. We have to construct a formula ¢(z,y) for R.

In a first step we define a formula v, (y) describing f*a for fixed a. If f*a
is finite 1, (y) simply consists of an enumeration of its elements. Otherwise, by
Lemma 7.9, there is a constant ¢ such that

fi+1a _ fia — fq+i+1a _ fq+ia

for all 4 greater than some ig. (Recall that we identify a with A°(a).) Thus,
f?%a = fla + A for some A which is positive by infinity of f*a. Hence, we can
set,

va@) =\ y=Ffav \/ (y>fary=fa (modA)).
i<ig io<i<ip+q

In the second step we construct ¢. Let (I,p) be the loop constants of d.
Choose the threshold m := I(p + 2). The f-chains of all elements less than m
are defined by

X(z,y) =\ (& =kAgr(y)).
k<m

For each k < p, the f-chains of all elements a = m + k (mod p) greater
than m are handled by a single formula ¥y (z,y). Consider the f-chain of m + k.
By the preceding lemma, there is some number i; such that the sequence

(fHm + k) = fi(m + k));
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is periodic for ¢ > i;. Denote the period by pg and let A be the constant such
that fP**i(m + k) = fi(m + k) + A for i > ;. Note that

(i) eithera —1 < fa<a+1lor fa<l;
(ii) if @ > | and fa > [ then for all b > a with b = a (mod p) we have
(a, fa) ~1p (b,b+ fa—a). Thus fb= fa+b—a.
Suppose that fi(m + k) > 1 for all i < j. Then, by (ii),
fim+k+pn)=fi(m+k)+pn

for i < j and all n > 0. By choice of m and (i), we either have fi(m + k) > [
for i < p, or there is some j < p such that f'(m + k) > 2l for i < j and
Fi(m+k) <L.

First consider the second case. We have
film +k)+pn fori<j,

f’(m+k+pn):{fi(m+k) for ¢ > j,

where the case i > j follows because of

(F77 N (m+ k), f/(m + k) ~1p (F77"(m + &) +pn, f(m + k).
Thus we can define

Di(z,y) =\ (y—z=Fim+k) — (m+k) V pinin ¥)-

i<j
Note that fi(m + k) — (m + k) is a constant.
Now assume f*(m + k) > [ for every i < p. Then
fim+k+pn)=fi(m+k)+pn

foralli < p. Asthe sequence (f*(m+k))i<, must contain two elements which are
congruent modulo p, the first period appears before position p, i.e., i + pr < p.
To define ¥1(x,y) we consider the following cases.

If Ay > 0 then f{(m + k) > [ for all i. Thus we define

Di(w,y) = \/ y—z=f(m+k) —(m+k)

i<ip

v\ -z fim+k) = (m+k)A
’ (

WSSy g = film+ k) — (m+ k) (mod Ay)).
If Ar =0 then
G(wy) =\ y—az=fm+k) —(m+k).
i<ip+q

The most complicated case is A < 0. We split the definition into two parts
by choosing some intermediate element ¢ € f*(m + k) with I < ¢ < m. The
initial part of the chain up to ¢ is defined by

Oi(z,y) = \/ y—2=fi(m+k) - (m+k)
1<ip
v o\ wlAay-z<fimt+k)—(m+k) A
BSISEAP g p = film+ k) — (m+ k) (mod Ay)),
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and the final part by
Ir(z,y) :==3z(I <z <m A (2, 2) A x(2,9)).
Thus 9y (z,y) := 94 (z,y) V Ii(z,y).
Altogether we obtain

o(z,y) =x(x,y)V \/ (z=m+k (mod p) Az >m A di(z,y)).
k<p
It should be clear that all constants needed in the above construction can
be obtained effectively. O

Unary functions. Analogously to Proposition 5.18 we obtain

Proposition 7.11. Let (N,s, f) € 1AutStr where s is the successor function
and f : N — N.

(i) There is a constant ¢ such that f(n) <n+c for alln € N.

(i) If linrgig(l)f f(n) = oo then there are constants ¢y and ¢; such that
n—co < f(n)<n+e
for all but finitely many n.
Proof. (i) By the Lemma 7.9 applied to s, there is a constant ¢ such that
)\D(siHO) —X\° (siO) = /\a(s‘”i“O) —X\° (S‘IHO)
for large enough i. Thus \?(s7t%0) = X?(s%0) + A for some A. If f(n) —n is
unbounded then for all m there is some n with

f(n)>n+mqg = X°(f(n)) > X°(n) + mA+r

where r := min{ \?(s"*10) —\?(s"0) | i < q }. But \°(f(n)) —\?(n) is bounded.
Contradiction.
(ii) Define

g(n) :==min{ f(k) | k >n}, h(n) := max{k| g(k) <n}.

Both functions are monotone. Suppose n — f(n) < n — g(n) is unbounded, i.e.,
for all ¢ there are n with

n—c>g(n) = h(n—-c)>h(g(n)) >n.

Thus, for all ¢ there are n with h(n) > n + ¢ in contradiction to (i). O
For structures with a permutation a precise characterisation is possible.

Theorem 7.12 (Khoussainov, Rubin [KR99]). Let f : A — A be a bijective
function. (A, f) € 1AutStr if and only if
(i) the cardinality of the finite orbits of f is bounded and

(ii) there are only finitely many infinite orbits of f.
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Proof. (<) Since 1AutStr is closed under finite unions and it contains every
finite structure, we only need to prove the claim for structures with one infinite
orbit and structures with infinitely many finite orbits of the same size. For the
first case we construct an interpretation Z = (h, d,¢, ;) of (Z,s) in 9y where

i >
h(n)= {Qn ifn >0,

—on—1 ifn<0,
0 and ¢ are trivial, and
vs(z,y) = 2|lzAy=24+2)V(2tzAy+2=z)V(z=1Ay=0).
For the other case consider the structure (N, f) where

f@%:{w+1 if nt(z+1),

z+1—n otherwise,
which has infinitely many orbits of size n. f can be defined in 9%; by
fl@)=y :iff y=z+1Anty)Vy+n—1=zAnly).
(=) (i) By Lemma 7.9 there is a constant ¢ such that
N (f*a) = X°(fla) = X (f7 " a) = X (f17a)

for all a € A and large enough i. Let A be a finite orbit. For a € A this implies
fi%%a = fia as A would be infinite otherwise. Thus, |A| < q.

(ii) Let A be an infinite orbit and choose some a € A. f*(a) C A is infinite.
Thus, each infinite orbit contains an infinite f-chain, of which, by Lemma 7.8,
there are only finitely many. O

As an immediate corollary we obtain a characterisation of structures with
an equivalence relation.

Theorem 7.13 (Khoussainov, Rubin [KR99]). Let ~ C A x A be an equiva-
lence relation. (A, ~) € 1AutStr if and only if

(i) the cardinality of the finite ~-classes is bounded and

(ii) there are only finitely many infinite ~-classes.
Proof. (<) Again, it is sufficient to prove the claim for structures with one

infinite class and structures with infinitely many classes of the same size. Clearly,
(A, A x A) € 1AutStr, and for each n > 1, the relation

x~y:iff Tz(n]jzAz<e<z+n A z<y<z+n)

has infinitely many classes of size n.
(=) By Lemma 3.6 there is a well-ordering < such that (4, ~, <) € 1AutStr.
Define f: A — A by

min{y |y ~z Ay >z} ifsuchay exists,
fl@)=q . .
min{y |y ~z} otherwise.

Clearly, f is definable in (A4,~,<). Thus, (4, f) € 1AutStr. Since the orbits
of f are exactly the ~-classes, the claim follows from the preceding theorem. [
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Orderings. Next we turn to linear orderings. Again, Khoussainov and Rubin
obtained a precise characterisation.

Proposition 7.14. Let (A, <) € 1AutStr be a linear order. Every set B C A
such that there are infinitely many elements of A between any two elements of B
is finite.

Proof. Let 0 be a unary presentation of (A4, <) with loop constants (I,p). We
claim that |B| < p(p + 2) + I. Otherwise, there are elements ag < --- < apt1
of B with X\%(a;) = \°(a;) (mod p) and X°(a;) > I for all ¢, j. Denote by J; the
set of numbers k such that the interval between a; and a;;1 contains infinitely
many elements a with A%(a) = k (mod p). There have to be two sets J;, Jy
with J; N Ji, # 0. Choose elements a; < b < a;41 and aj < ¢ < aj1 with

X (D) = A%(c) =m (mod p) for some m € .J; N Jg,
A (5),X() > A°(aa1) + 1, N (az) + 1

Then (X°(b),A°(ait1)) ~1p (A°(c),A°(a;)) but b < a;41 and ¢ > a;. Contra-
diction. g

Theorem 7.15 (Khoussainov, Rubin [KR99]). Let < be a linear order. (A, <)
has a unary presentation if and only if it is a finite sum of linear orders of type
1, w, or w*.

Proof. (<) immediately follows from the closure of 1AutStr under finite ordered
sums. (=) Each structure satisfying the condition of the previous proposition
can be written as such a sum. O

Corollary 7.16 (Khoussainov, Rubin [KR99]). Let « be an ordinal. (a, <) has
a unary presentation if and only if a < w>.

Graphs. A graph is in 1AutStr iff it has a certain “ladder structure.”

Theorem 7.17. Let & = (V, E) be a graph. & € 1AutStr if and only if there
are finite graphs 9, $' and a partition (A, Bo, Bi,...) of V such that the fol-
lowing conditions hold.

(i) &|la =9 and &g, = ' for all i.

(ii) The edges between A and B; do not depend on i for i > 1, and the edges
between B; and By do not depend on i and k for |i — k| > 1. Formally,
let A= {(lo, N a,,-_l}, Bz = {b(z), N bifl}'

(ar,b}) € B iff (ag,b)) € E foralli,j>1,
(bi, b)) e E  iff (b, bl )€ E forall i—j,i' —j' > 1 or
i— g —j < —1,
0L, by € B iff (b6 Y€ B for all i, ;.
Proof. (=) Fix a presentation ? of & with loop constants (I, p). Set

A={veG|N\N(w) <L},
Bi:={veG|pi+I1<XN@w) <p(i+1)+1}.
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Each condition can easily be verified. For example, to prove the first item of
condition (ii) let a € A, b* € B;, and ¥/ € B;. Then

(A% (@), A°(6")) ~1p (A (), A (b))

and thus (a,b’) € E iff (a,b) € E.

(<) We construct an interpretation of & in 9. Let r := |A4|, s := |B;|.
The elements of A are encoded as numbers less than r, and those of B; as
si+7r,...,s(1 +1)+r —1. We can define formulae expressing that z is the
k*h element of B; for some i, and that = € B; and y € By, for some i by

Yp(z) ;=2 —r =k (mod s),
x(z,y) :=Fz2(Yo(z) Az —s<zx<z2<y<z+s).

The desired formula @g(z,y) for E can be constructed as disjunction over the
cases z,y € A; x € A,y € By; x € A,y € B;fori > 0; z € B;, y € By, for
|i — k| > 1, and so on. Each case can be handled using ¢ (z) and x(z,y). O

Corollary 7.18. The Random Graph R has no unary presentation.

Proof. Suppose there is a partition (A, By, By, . .. ) of R satisfying the conditions
of the preceding theorem. Set X := AUByU---U By. By the extension axioms,
there is some node v ¢ X which is connected to all elements of X except those
of Bs. Since v € B; for some i > 5 we have (b},,v) € E iff (b3,v) € E, by the
second condition of part (ii) above. Contradiction. O

Groups. As far as groups are concerned unary presentations only suffice to
describe finite structures.

Theorem 7.19. Let & = (G,-) be a group. & € 1AutStr if and only if & is
finite.

Proof. (<) is immediate. (=) Suppose & is infinite. Fix an injective pre-
sentation 9 with loop constants (I,p). Choose elements a and b such that
2p < X°(a) < X°(b) — p.

If A°(a-b) < A°(b) — 1 then choose c such that A\°(c) = A\°(b) + p. Because of

(A%(a), A°(0), A°(a - b)) ~ip (A7(a), A% (c), A% (a - b))

we have a-b = a - c. But this implies b = ¢. Contradiction.
If X°(a-b) > \°(b) —1 then choose ¢ such that \°(c) = A\?(a) — p. Because of

(A(a), A°(0), A% (a - b)) ~1 (A7(c), A" (D), A" (a - b))
we again obtain a contradiction. |

Corollary 7.20. Let 2 be a ring or field. A € 1AutStr if and only if A is
finite.

Let ® = (G,-) be a group, S a set of semigroup generators of &, and set
fo(z) := 2 - a. If we do not require full multiplication to be presented but
use groups in the form (G, (fy)scs) instead, there are also infinite groups in
1AutStr.
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Lemma 7.21. Let & = (G,-) be a group and S, S C G be sets of semigroup
generators of &. (G7 (fa)aES) =FO (G7 (fa)aGS’)'

Proof. Each g € S can be written as g = g{---g!, for some gj,...,g, € S'.
Thus, f, can be defined by foz := fg -+ fyr . O

Proposition 7.22. Let ® = (G, (f.)acs) be an abelian group. & € 1AutStr if
and only if & is either finite or 8 2 Z D Zip, ® -+ - ® Zp, for some po,...,Pn.

Proof. (=) Suppose & = Z & 7Z ® $H and let a and b be generators of the
subgroups Z. By the preceding lemma we can assume that a, b € S. Since
Fr@®™) N fx(™) = P for all n # m there are infinitely many disjoint f,-chains
in contradiction to Lemma 7.8.

(<) Let 6 = Z @ § for finite $. W.lo.g. assume that S = {a} UT where
a generates Z and T generates §). Let n := |H|. We identify H with the set

{0,...,n—1}, and construct an interpretation of & in 9M; by encoding elements
(k,l) € Z x H by
2 if k>
Wik, 1) = kn+1 1 k>0,
(=2k—Dn+1 ifk<O0.

The generating functions can be defined by

fa@) =y :iff [y=2+2nATz(z<n Az—2=0 (mod 2n))]
V[y+2n=2A3z(z<n Az—2z=n (mod 2n))]
V[n§m<2n/\y=m—n],
folz) =y :iff EIz(zEO (mod n) A \/(m=z+h/\y=z+gb(h)).
heH
where b € T and ¢, : H — H is the right-multiplication by b in §. [l

Proposition 7.23. Let & = (G, (fa)acs) € 1AutStr be a group. If a and b are
elements of infinite order then there are some constants k, | € Z \ {0} such that
a* =1

Proof. W.lo.g. assume a € S. Consider the f,-chains of b for i > 0. Each
chain is infinite since

b'a” =b'a" —= a"=ad" —= n=m.

By Lemma 7.8, only finitely many chains can be disjoint. Hence, there are
i, j € N such that f*(b") N f2 (b)) # 0, i.e.,

ba® =ba™ = b I =™ "
for some n, m € N. O

Equivalently, the above proposition can be stated as, if & is in 1AutStr and
a is of infinite order then |& : (a)|, the index of (a), is finite.
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7.3 Complexity

After having defined unary presentations and having shown that they are much
weaker than general automatic presentations the question arises whether we
have gained anything by this restriction. A first positive effect is a drastic
decrease in complexity.

We will show that every quantifier 3z can be replaced by a bounded version
(3 < m)yp for some m.

Definition 7.24. For @, b € N* and n,d € N we define

@ ~ns b :iff d(a;,a;) =s3n d(bi,b;) and a; = b; (mod 0) for all 4,5 < k
where

d(ag,a1) := a1 — ag and a=; b :iff a=bora,b>l.

The following lemma ensures that if 3z is satisfied then there is some element b
which is not too large such that ((b) holds.

Lemma 7.25. Let @, b € N* with ap = by =0 and @ ~ntl,8 b, and let m € N
be such that bo,...,bx—1 < m. For every a’ € N there is some b' € N with
b <m+6(3" + 1) such that aa’ ~,, 5 bb'.

Proof. W.l.o.g. assume ag < -+ < ag—1, and let a; < a’ < a;11 for some i. The
case ap—1 < a' is proved analogously.
If d(a;,a’) < 03" then choose b’ :=b; + d(a;,a’). It follows that

d(a’,aiy1) =s3n d(b',bit1)
and a' = a; + d(a;,a’) = b; +d(a;,a’) = b (mod §).

Thus, aa’ ~,. s bb'.

If d(a;,a’) > 63" but d(a’,a;41) < 63" then choose b’ := by — d(a;,a’).
Again, we have aa’ ~p 5 bb'.

Finally, if both distances are more than §3" then choose some b' such that
bi + 03" < b < biy; — 33" and ' = o' (mod 4). This is possible because
d(b;, bip1) > 03"+ and

{amodd|a;<a<ay1}={0,...,0 -1}
={bm0d6|bi<b<bi+1}.

Furthermore o' can be chosen such that d(b;,b") < 03™ + §. Therefore b’ <
m+ (3" +1). O

Proposition 7.26. Let o = Qoxo -+ Qn-1T,-19Y(T,7) for quantifiers Qq,- ..,
Qn-1 € {3,Y} and let ng, . ..,n, be the constants appearing in divisibility predi-
cates n|x. Denote the least common multiple of ng,...,n, by &, and for a € NF
let m := max{ao,...,ar}. Then the model-checking problem My |= p(a) is in

DsPACE[O(n + log |¢| + log d + logm)].
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Proof. Obviously, b ~q.s b implies Ny = ¢(b,a) iff Ny = w(gl,ﬁ). By the
preceding lemma there are bounds my, . .., mp—1 such that we can find b} < m;,
i <n with b ~g s 7. We have

mo :=m+ 63" + 1),
Mip1 ==m; +6(3" 1+ 1), fori<n-—1.

Which yields

mi=m+Y 63" +1)
i<i
=m+03i+1)+d3" ) 3
i<i
. 3i+1_1
=m+ (i +1) +d3" 1 ——
m+6(i+1) +63 31
<m+6(i+1)+ 163"

Therefore, a Turing machine can evaluate (@) by cycling through all values
of b; for i < n on its tape, and checking whether ¢ (@, b) holds, which can be
done in LoGSPACE. The space used to store b is

lomei =log(nm + Lon(n + 1) + 16n3")
<n < log(nm + §2°0()

< O(n +logd + logm).
O

Hence, using the same conventions as in Section 3.4 we obtain the following
bound on the complexity of the model-checking problem for 1AutStr.

Corollary 7.27. Let T be a relational signature. Given the presentation 0 of
a structure A € 1AutStr[7], a tuple @ in A, and a formula ©(T) € FO[r], the
model-checking problem for (A,a,p) is in DSPACE[(’)(|<,0|2 [0® + log X? (@))].

Proof. Construct an interpretation Z of 2 in 9t; via the translation of automata
to formulae given above. A closer look reveals that the length of each formula
defining one ~; ,-class is in O(l + p?). There are at most |d| such classes (one
for each final state). Since I,p < |d| we obtain |[¢| € O(]d*). The translation
of 0 to Z can be performed in DTIME[O(]0]*)].

Further, note that the interpretation maps each a € A to the number \°(a).

By the preceding proposition we can decide M, = ¢*(at) in

DsPACE[O(n + log [¢” | + log d + log A°(@))].

Since || € O(l¢|[0]*) we have n € O(|¢| [0]*), no,...,n, € 2002IRI)) and
hence

5 <mp--my € (200212)0U2IRI) — 901l
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7.4 Decidability

We start our investigation as to what logics are decidable by showing that 9t}
allows quantifier elimination. To simplify the task an intermediate structure is
introduced.

Lemma 7.28. The structure (Z,s,g, (x = k (mod n))kn) admits quantifier
elimination.

Proof. It is well known that (Z, s, <) admits quantifier elimination. In [KK71]
it is shown that each formula dzp € FOls, <] with quantifier-free ¢ can be
transformed into a disjunction of formulae of the form

Eia:(/\:n <ti/\/\ui <:U/\/\:U=vi).

Analogously, formulae 3z € FO[s, <, (z = k (mod n)),»] can be brought into
the form

Eia:(/\:n <ti/\/\ui <:U/\/\:U=vi/\/\(a:5ki (mod nl)))

by using the following additional rules:

s"r=k (modn) = xz=k-—m (modn),
=(z =k (mod n)) = \/:UEi (mod n).
ik

Furthermore, we can ensure that all moduli n; are equal by replacing them by
their least common multiple. Thus, we obtain

ELT(/\:U <ti/\/\ui <:U/\/\:U=vi/\/\(wzki (mod n)))

If there are more than one atom of the form z = k; (mod n) with different k;
then the formula is false. If there is no such atom then we can eliminate the
quantifier as in the case of (Z, s, <). Hence, we only need to consider the case

Elx(/\x<ti/\/\ui<x/\/\xzvi/\xzk (modn)).

If there is at least one atom of the form xz = v then we can replace = by v
everywhere. Otherwise, let the free variables be among {yo,...,ys}. Then the
formula is equivalent to

3 \/ (/\ yi = ki (mod n) A @ko...ks)
ko,....ks<n i<s

where ¢ is obtained from ¢ be removing the modulo-atom and modifying all
other atoms according to the following rules:

T < slyi — < sl_A"yi,

slyi <z — SH'A"yi <uwz,
where A; := k; — k (mod n). In the resulting formula the quantifier can be
eliminated as in the case of (Z, s, <). O
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Corollary 7.29. 0| admits quantifier elimination.

Proof. 1t follows from the preceding lemma that
3= (Z,5,<,0,(z =k (mod n))sn)

admits elimination of quantifiers (just replace 0 by some new variable, eliminate
all quantifiers, and replace the new variable by 0, see e.g. [KKT71]). 9] is the
substructure of 3/ defined by 6(z) := 0 < z. Let p(Z) € FO. By ¢’ we denote
the relativisation of ¢ to the set defined by 4. There is some quantifier-free
(x) € FO such that

31 F ¢’ (@) « 9(T)
iff 3% = ¢°(@) < 3| E (@) for all @ in Z
= 3\ E¢°(@ < 3| E¢(@) for all @ in N.

8

As 1) is quantifier-free this implies

I E ¢’ (@) < N = (a) forall @ in N
iff N E p(a) <= N =+ (@) for all @in N
it N, = p(7) © ¥(a). .

We have quantifier elimination not only for FO but also for FO(R), the
extension of FO by Ramsey-quantifiers. The formula Rzq...x,—1¢ holds iff
there is some infinite set X such that p(a) is true for all distinct ag, - .., an—1
in X.

Lemma 7.30. ) admits quantifier elimination for FO(R).

Proof. We have to show that for every formula ¢(3) = Rzo ... zp—1¢ (7, T) with
1 € FO there is an equivalent formula ¢'(y) € FO. If we can prove that

N E p(a) iff there are k,p € N with k > a; + p for all j such that
mll |: w(aa k+ Z'Opa tey k+ Z'nflp)
for all different ig,...,%,_1 € N,

then it follows that

@(y)zﬂz(/\yi+p<z

/\VE(/\(a:i >z Az =2z (mod p)) A /\CUZ # x; %@b(y,f))).
i i#j

Thus it remains to prove the above claim. (<) is trivial. (=) Let (I,p) be
the loop constants of some unary presentation d of 9t}. Let X C N be a maximal
infinite set satisfying M} = ¥(a,bo,...,b,—1) for all distinct by,...,b,—1 € X
and with b > a; + p for all j and b € X. By the Pigeonhole Principle there is
some constant ¢ < p such that

V:={beX|b=c (modp)}
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is infinite. Note that, if by < --- < b,_1 € Y and bi+1 > b; + 2p, then
‘ﬁ'l |= ¢(a,b0,...,bi,bi+1 ﬂ:p,...,bn_l :I:p)

Let by < - -+ < by_1 be the least elements of Y. Applying the above observation
several times we obtain

mll |: ¢(5a bO + Z'Opa vy bnfl + inflp)

for all ig,...,%p—1 € Nsuch that b; +¢;p+p < bji1 +¢j41p for all j < n. Thus,
when setting k := b,_1, it follows that

N =@k +iop, ..., k+in_1p)
for all distinct ig,...,%, 1 € N. O

Unfortunately, despite the weakness of unary presentations we have not
gained much as far as decidability of stronger logics is concerned.

Proposition 7.31. There are structures with undecidable FO(DTC)-theory in
1AutStr.

Proof. Tmmediately from Lemma 2.7 as (N, s) € 1AutStr. O

There is only a very special case in which we obtain decidability. Denote
by FO(closed DTC) the restriction of FO(DTC) to those formulae such that in
every subformula of the form [DTC, , ¢ (z,y)](u,v) the only free variables of ¢
are r and y.

Theorem 7.32. 1AutStr is effectively closed under FO(closed DTC!)-inter-
pretations.

Proof. Define

() y if y is the unique element such that 1 (z,y),
T) 1=
x otherwise.

Then [DTC,,, ¥(z,y)](u,v) holds iff v € f*(u). Therefore, the claim follows
from Lemma 7.10. g
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Chapter 8

Other Types of
Presentations

The restriction to unary alphabets turned out to yield an interesting subclass
of automatic structures where model-checking has an acceptable complexity
and which permits many precise characterisations. In this chapter we look at
different kinds of restrictions hoping to obtain other interesting subclasses.

While the class studied in the first section has many pleasant theoretical
properties it seems doubtful whether weak presentations are strong enough to be
of practical value. The classes defined in the second section even lack important
theoretical properties—Ilike closure under first-order interpretations—and are
only included for the sake of completeness.

8.1 Weak Presentations

The choice we made concerning the encoding of tuples is not the only one
possible. In this section we investigate an alternative encoding where a tuple
(zo,--.,2n—1) of words is encoded by the word zoO---Oxp_1. As it turns out
this model is considerably weaker than those we have used so far.

Definition 8.1. Let zg,...,2,_1 € X*. The weak convolution of T is defined
as

Ty Qw "+ - Ow Tp—1 := IOD s Dl’nfl.
The notion of weak presentation (called “strong presentation” in [KN95]) is
defined analogously to automatic presentations where
(i) convolution is replaced by weak convolution everywhere and
(ii) the language L. defining equality is left out, i.e., the presentation is always
injective.
The class of T-structures with weak presentation is denoted by WAutStr[r].
The reason for the restriction to injective presentations is that identity can-

not be weakly presented. Therefore only finite structures would be presentable
without it (see Corollary 8.6 and Theorem 8.7 below).
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As in the case of automatic structures one can effectively evaluate FO-
formulae on weakly presentable structures with the notable exception of equality.
In the following we denote by £+ the logic £ without equality. If we want to
emphasise that equality is allowed the notation £_ is used.

Lemma 8.2. There is a recursive function n assigning to every weak presenta-
tion 0 of some A € WAutStr[r] and every formula ¢ € FOL[T] a weak presen-
tation of (A, p%).

Proof. Analogous to the proof for automatic structures with obvious modifica-

tions for the case of quantifiers. O

In order to give a characterisation in terms of a complete structure we have
to choose a different logic.

Definition 8.3. FFO is the restriction of FOx to boolean combinations of
monadic FO-formulae, i.e., formulae with only one free variable.

Obviously, every such formula can be written in the form

QO(CUO, s amn—l) = \/ /\ ’QZJ;(Q?])
i<m j<n
with ¢i € FO.

Theorem 8.4. Let R C N". Let codey(z) be the p-adic encoding of x € N and
define

code,(R) := { codey (o) @w - - - @w codep(zn_1) | (z0,.-.,Zn-1) € R}.
code,(R) is regqular if and only if R is FFO-definable in N,,.

Proof. (=) Let & = (Q,X,0,q0, F) be a deterministic automaton recognising
code,(R). For each pair (g,¢") € @ we can construct formulae ¢, (z) saying
that if 2 starts in state g it reaches state ¢' after reading code,(z). Then R can
be defined by

@, mn1) =\ {Vuan @) A\ Usta00.000: (@)

i<n—1
qo;---,qn—1 € QaQn € F}

(<) Let @(zo,..-,2n-1) = V; \;¥j(z;). The languages L defined by ¢}
are regular. Therefore, the language L = J; LiO---0OLE _, is regular as well.
O

Corollary 8.5. A structure % = (A, Ro, - .., R;) has a weak automatic presen-
tation if and only if A <pro N, for some/all p € N\ {0,1}.

Corollary 8.6 (Khoussainov, Nerode [KN95]). If 2 € WAutStr then for every
relation R of A with arity r there are X;; C A such that

R = U Xio X -+ XXi(rfl)-

i<m

Proof. Take as X, the sets defined by the formulae 1%, in the definition of R. O
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Theorem 8.7. Let 2 be a relational T-structure. A € WAutStr if and only if
there is some congruence ~ such that A/~ is finite.

Proof. (=) Let \/; A, fk be the formula defining R;. Set
x~y :iff wfk(:v) = wgk (y) for all 7,1, k.

Then ~ is the required congruence of finite index.

(<) Let A = (A, R, ..., R,) and let ~ be a congruence of finite index. We
construct a weak automatic presentation of 2 as follows. Let [ao], ..., [an] be
an enumeration of A/~, and n; := |[ai] | Denote the k" member of [a;] by ar..
We encode a;;, as 1'#1*. The presentation is 0 := (v, {1,#}, Ls, Lg,,- .-, LR,)
where

Ly = JU#15m,  w(U#1%) = ay,
i<n

Ly, = U{ 1o 410 - - 01— #1*

(i), - [ai,, . ]) € Ry/~ }.

In case of structures with functions f the condition above, applied to the
graph of f, means that the image of f is finite.

Theorem 8.7 shows that weakly presentable structures are just finite struc-
tures blown up. Therefore we can reduce most problems to the finite case which
usually is decidable. We call a logic £ invariant under congruences if for all
structures 2, congruences ~, and formulae ¢(%) € £ it holds that

A= (@) iff A/~ = e([a.).

Theorem 8.8. Let £ be a logic invariant under congruences. WAutStr is
closed under L£-interpretations.

Proof. As WAutStr is closed under reducts it is sufficient to show that given
20 € WAutStr and ¢ € £ we can construct an FFO-interpretation of (2, o)
in M,. According to Theorem 8.7 there is a congruence ~ of finite index.
Let Z = (h,d,¢,9¢R,,---,9r.) be an FFO-interpretation 2A <ppo M, and let
V4] (%) be the formula defining the ~-class of a in 90,. By assumption on £
the formula

6@ = VA Pa @) | (o) [ani)e) € 6™/~ |

i<n
defines p*. Thus (Z,1) is an FFO-interpretation of (A, %) in N, O

Some logic satisfying the condition above is FO.(PFP). Logics not covered
are e.g., FO= or FOx(#). What about SO?

Proposition 8.9. WAutStr is not closed under SOx-interpretations.
Proof. Equality is definable in SO.

w=wv :iff IA[-uAvAVezx £z
AYR(Nz ~Rxx — VaVy(Rzy — x £ y))].
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The above proof uses a two-dimensional relation variable. This leaves the
case of monadic second-order logic unanswered. In fact, WAutStr is closed under
MSO-interpretations despite it not being invariant under congruences.

Proposition 8.10. WAutStr is closed under MSO.-interpretations.

Proof. Let 2 = (A, Ry,...,R,) be a relational structure and ~ a congruence
of A. We denote by 2 = (A, (Ro)y,,-- -, (Rr)y) the substructure of 2 which
contains exactly m elements of each ~-classes of size at least m, and all elements
of smaller ~-classes. Note that, since ~ is a congruence, 27, is uniquely deter-
mined up to isomorphisms. Let P C A be a unary relation. The refinement ~p
of ~ induced by P is defined as

a~pb:iff a~bandae P<=be P.

Let (T) = QoPo -+ Qno1Pr_19(Z, P) € MSO with Qo, ..., Qn—1 € {3,V}
and ¢ € FOx. We prove by induction on n that

2 = ¢(a) iff A5, | (@) for some @’ ~ .

The case n = 0 is immediate as FO is invariant under congruences. For the
induction step we prove:

Claim. There is a surjective mapping ' associating to every P C A a relation
P’ C A3, such that

(Q[) P);n}il = (Q[QN" Y Pl);npfl'
Then it follows that

A = IvPy(@)
iff for some/all P C A: (A, P) Ev(a)
iff for some/all P C A: (A, P)on-1 E (@)

(
( ind. hyp.)
iff for some/all P C A: (A5, P )on-1 E (@)
:(
:(

Claim)
iff for some/all P C A%, : (A5., P)on—s = (@) surjectivity)
iff for some/all P C A%, : (As., P) E (@)

iff A3, = 3/VPy(@).

~ o~~~

ind. hyp.)

It remains to prove the claim. Consider each ~-class [a] in turn. What we have
to do is to decide how many elements of [a] are to be included in P’.

If |[a]| < 2™ then [a] C A5, and we can put all b € [a]N P into P’. Otherwise
let ny := |[a] N P| and ny := |[a] \ P|, and set n} := min{ny,2"7'}, n} :=
min{ns,2"~'}. Then we can add n) elements form [a] to P’ and there are still
at least n), elements left which are not in P’. Therefore in both cases we have

(i) either |[a] N P| = |[a]N P’| or |[a] N P|, |[a] N P'| > 2", and
(i) either |[a] \ P| = |[a]\ P'| or |[a]\ P|, |[a] \ P'| > 2" 1.

Hence,

)

)

(Qla P);np—l = (mgnapl);np—l-

It remains to show that ' is surjective. Let P C A3.. Construct a relation P C A

by including |[a] N }3| elements of each ~-class [a] into P. Then P’ = P. O
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Theorem 8.11. WAutStr C 1AutStr

Proof. Let A = (A, R, ...,R,) € WAutStr and let ~ be the congruence defined
in Theorem 8.7. Fix an enumeration [ag],...,[an—1] of A/~ and denote the
k*" member of [a;] by a;. Set n; := |[al]| We construct a unary presentation

0:= (v,{1},Ls, L., Lp,,...,LR,)
of 2 by encoding a;; by the string of length kn + .
v(1Y) == ap where k := |I/n],i:=1 (mod n),
Ls = U 1(amy<m,

i<n
L. := H]* )

LR]. = U{ 1i0(1n)* R--® lirj—l(ln)* | ([aio], R [airjﬂ]) € Rj/N } -

8.2 Star-free and Locally Threshold Testable
Presentations

When looking at restrictions of regular languages one naturally thinks of star-
free and locally threshold testable languages. As far as automatic presentations
are concerned those classes of languages are unsuitable as the following remark
shows.

Lemma 8.12 (see e.g. [Tho97b, page 412]). The classes of star-free and locally
threshold testable languages are not closed under projections.

Therefore we only have closure under quantifier-free interpretations.

Lemma 8.13. Let U be a structure with a star-free or locally threshold testable
presentation. Then, for every quantifier-free formula ¢, (A, p*) has a presen-
tation of the same type.

Proof. By definition, the class of star-free languages forms a boolean algebra.
By the logical characterisation of locally threshold testable languages the same
is true in case of the second class. Therefore, by the same proof as for AutStr
we obtain the desired result. |

The structures in question are
6y = (N <, (Di)iez,) and  &;:=(N,s,,(Di)iez,)
where
D;zy :iff dig;(z,y) and sp = {(z,px) |z € N}.

Again, for the characterisation via interpretations we need to define the right
logic. We consider only structures with universe N and define W,FO to be the
restriction of FO to quantification over powers of p.

As in Proposition 4.2 we encode words w € Zy, be the number val,(w1).
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Theorem 8.14. Let R C N",
(i) R is W,FO-definable in 6; if and only if fold(valljl(R)) is star-free.

(ii) R is W,FO-definable in &, if and only if fold(valgl(R)) is locally thresh-
old testable.

Proof. We prove only (i). The other case is analogous.

(=) Let p(y) € FO[L, (Q¥)1.;] define L where QF is the set of positions at
which the symbol 7 appears in the k" component of the word. We construct a
formula ¢*(Z,y) € W,FO such that

wo ® - @ Wp—1 | @(ro, -, "m-1)
iff B, | " (val,(wo),...,valp(wp_1),p™,...,p"™").

First we define a formula specifying those positions which lie in the domain of
the k' word, which is the case if there is a greater position carrying the digit 1.

domy(y) := 3pz(y < 2 A Dizy2), dom(y) := \/ domy (y).
k<n
The translation is

(ny)* := domy (y) A Dizry for i £ 0O,
(Qby)* = —~domy(y),

(yi = y;j)" = yi = yj,

(yi <yj)" = yi <y,

()" =T,

(V)" =" Vi,

(Fye(@))" = Fpy(dom(y) A " (T, 7y))-

(<) Let ¢(Z,7) € W,FO where the variables § are guaranteed to range
over powers of p. As variables in 6; are unbounded whereas the positions
in word models are bounded by the length of the longest word, we need to
store additional information about those variables whose values are too large.
Therefore we define for any tuple (rg,...,7m—1) € N

type, () := (tir)ik<m
where

ri —rp if |rp— | <27,
tir := £ 00 if r; —rp > 27,

—00 if ry —rp < -—2m,

We write t |= y; < yi, for some type t iff t;, < 0 and similarly for other formulae.
Now, we can construct a formula ¢} (g) € FO such that

B, | p(codey(wp), . ..,codep(wy_1),p",...,p"™ 1)
ff wo @ -+ ®wp_1 'Zcp)tk(rioa"'arik)



8.2. Star-free and Locally Threshold Testable Presentations 93

where

[ := max{|wo],...

7|wn*1|}7

t 1= typegy(p) (! — L, max{l — 1,ro},...,max{l — 1,rp_1}),
T R {r €{ro,...,Tm_1} | r< l}.

First, we simplify ¢ to ¢’ by applying the following rules.

(zi = 1) :=V,2 /\(Djmiz < Djayz),

(Diyjyr)" -

(Dixkxj)' :

J

= Dyz;y AVp2(z # y = Doz;z),

(xi = y)la

=, =y VVyz(z >y — Doziz),

y =iV -(e <y),
T, =2V E]p2|: \/ (Djxlz A Djrxkz)

Y # Y
Yi = Yk
false

J<j’
AVZ! (z' >z /\(Dj:niz' “ Dijz'))],
J

if i =0,
ifi=1,
otherwise,

Ipz(z; = 2 A Dizpz),

(Diyzy) = 3pz(zr = 2z A Diyz).

Thus, only the following cases remain. For the boolean connectives we define

(—);
(V)

_— *
A _'cpta

= p Vi,
(HpZSO(fay)): = 3Z(p)tk[z:lfl](yz)
% \/{ Pi—n @) |t T <y+ 24() for some y },

where we denoted by [z = r] the extension of ¢ by an additional variable with
value r, and for the atomic formulae

(Dizry);

Qfy iftl=y<l,
true ifi=1landtl=y =1,
true ifi=0andtEy>I,

false otherwise,

Yi = Yj
true
false
Yi < yj
true

false

ift =y <lAy; <l,
iftEy=y; >1,
otherwise,

iftEy <lny <l
iftEy <y Al<yj,
otherwise.
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Corollary 8.15. (i) A structure A = (A, Ry, ..., R.) has a star-free presenta-
tion if and only if A <w, ro Gg for some p € N\ {0,1}.

(ii) A structure A = (A, Ry, ..., R,) has a locally threshold testable presen-
tation if and only if A <w,ro &;, for some p € N\ {0,1}.



Chapter 9

Conclusion

We studied various classes of structures which can be presented in some way or
other by automata. The resulting hierarchy is depicted in Figure 9.1. A common
characteristic of those classes is that they allow effective—even automatic—
evaluation of first-order queries. In the case of AutStr several complexity results
were obtained. They are summarised in Table 9.1.

One of the most fundamental results was that in each case we were able
to give an equivalent characterisation in terms of interpretations. Each class
investigated turned out to be the closure of some complete structure under
interpretations. This view can be applied to various other fields. For instance,
the class of recursive structures can be defined as the closure of Arithmetic
under A;-interpretations.

Another example are constraint databases. A constraint database consists
of a fixed structure, called context structure, extended by relations that can be
defined by quantifier-free formulae in this structure. Extensions of this kind can
be regarded as interpretations of a particularly simple form. Hence the class
of constraint databases using a fixed context structure is the closure of this
structure under a restricted type of interpretations.

A natural generalisation of both automatic structures and constraint data-
bases therefore consists of classes defined as the closure of some given structure
under interpretations of some kind. Form a practical point of view it would be
of particular interest to find classes where either the complexity of evaluating a
query is acceptable or REACHABILITY becomes decidable.

Another area of possible further research would be to develop methods for
proving non-membership in one of the automatic classes. To the knowledge of

Structure-Complexity —Expression-Complexity

Model-Checking 3o LoasPACE-complete ALOGTIME-complete
Yo + fun NLOGSPACE PTIME-complete
P NPTIME-complete PsPACE-complete
Query-Evaluation Yo LOGSPACE PSPACE
31 PspPACE EXPSPACE

Table 9.1: Complexity results for AutStr
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RecStr ~ DecTh (N, +,-) By
| 5
w-TAutStr ‘
— P
TAutStr Ry
w-AutStr /
/ m
AutStr ‘p
|
1AutStr (N, +)
|
WA utStr ‘
| M1
FinStr

Figure 9.1: Hierarchy of automatic classes and complete structures

the author up to now only two such methods are available: showing that the
FO-theory is undecidable and proving a more than exponential lower bound
on the cardinality of generations. In particular there is no tool to separate
w-TAutStr from w-AutStr.

Finally, many questions in model theory remain unresolved. Besides com-
pactness there are several other results in classical model theory which fail for
most restricted classes, e.g., Craig’s Interpolation Theorem, Beth’s Definability
Theorem, Lyndon’s Lemma, and other preservation properties. Up to now it
is unknown whether these results do or do not hold in the case of automatic
structures. A first step to answer those questions could be to show that there
are no automatic non-standard models of Th(9,). In that case it would be
possible to axiomatise a well-ordering, and if, furthermore, it were possible to
reduce this axiom system to a finite one, one would have a tool which perhaps
could be used to answer the above questions.
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