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Chapter 1Introdu
tionStarting with the famous 
hara
terisation of Nptime by Fagin in 1974, �nitemodel theory has grown into a �eld of its own with many appli
ations to 
om-puter s
ien
e, espe
ially in 
omplexity theory where it turned out that thereis a 
lose 
orresponden
e between 
omplexity 
lasses and 
ertain logi
s. Butalso the investigation of query languages in database theory and the design ofmodel-
he
king algorithms for automati
 veri�
ation was strongly in
uen
ed by�nite model theory.In re
ent years the need of a theory 
overing not only �nite but also in�-nite stru
tures be
ame apparent in those �elds. For instan
e, 
urrently model-
he
king of systems with in�nite state spa
e 
an be performed only in some veryrestri
ted 
ases whi
h do not 
over most real-world problems. Another exampleare geometri
al databases where|for operations like interse
tion|it is more
onvenient to treat geometri
 shapes as (in�nite) sets of points instead of usingparametrised basi
 shapes.Of 
ourse, only restri
ted 
lasses of stru
tures are meaningful for su
h anapproa
h. In order to be able to pro
ess an in�nite stru
ture by algorithmi
means it must possess a �nite en
oding, and the operations being performedmust be re
ursive.In this thesis we will investigate several 
lasses of possibly in�nite stru
turesmeeting those requirements. The general idea is to use �nite automata to presenta given stru
ture. Ea
h element of the stru
ture is en
oded by one or severalwords. The language of all valid en
odings is required to be regular, and forea
h relation, in
luding equality, an automaton is 
onstru
ted whi
h a

epts atuple of words i� the 
orresponding tuple of elements is in the relation. Insteadof normal �nite automata one 
an also use automata over !-words, trees, et
.,leading to several di�erent 
lasses of automati
 stru
tures. In ea
h 
ase, su
hstru
tures 
an be en
oded by a list of automata and pro
essed using well-knownautomata 
onstru
tions|whi
h, in parti
ular, in
lude boolean operations andproje
tion so that we are able to evaluate �rst-order formulae.These 
on
epts were introdu
ed by Cannon and Thurston [ECH+92℄ in grouptheory|where they, e.g., solved word problems using automata|, and subse-quently generalised to arbitrary stru
tures by Khoussainov and Nerode [KN95℄.This thesis will extend the results of the later fo
using on model theoreti
 issues.Automati
 groups will hardly be mentioned.One fundamental result is that ea
h of the investigated 
lasses 
ontains a1



2 1. Introdu
tion
omplete stru
ture, i.e., a stru
ture C su
h that any stru
ture A is a member ofthe given 
lass if and only if there is an interpretation of A in C.The outline of this thesis is as follows. We start in Chapter 3 with the de�-nition of automati
 presentations using languages of, respe
tively, �nite words,!-words, trees, and !-trees. We prove some of their basi
 properties su
h as
losure under �rst-order interpretations, and study de
idability and 
omplex-ity of queries on automati
 stru
tures. We show that �rst-order queries aree�e
tively 
omputable and that their results are again automati
, while slightlystronger logi
s already be
ome unde
idable, and we present some restri
ted
ases in whi
h the 
omplexity is a

eptable.The fundamental 
hara
terisation of automati
 stru
tures in terms of �rst-order interpretations whi
h makes many methods from logi
 available to us isgiven in the following 
hapter. For ea
h 
lass we present a stru
ture C su
hthat some stru
ture A belongs to the 
lass if and only if there is a �rst-orderinterpretation of A in C.In Chapter 5 we take a 
loser look at the 
lasses of stru
tures de�ned so far,determine their hierar
hy, and investigate the 
losure under Feferman-Vaughtlike produ
ts. In order to prove that some stru
ture is not automati
 we developmethods based on the 
al
ulation of bounds on the length of the en
oding ofelements.Chapter 6 is devoted to purely logi
al questions. It is shown that the Com-pa
tness Theorem fails if the 
lass of models is restri
ted to automati
 ones,and an axiomatisation is given for the stru
ture (N;+; jp) whi
h plays an im-portant role for the 
hara
terisation of automati
 stru
tures. We also 
onstru
ta non-standard model of this axiom system.In the �nal 
hapters we 
onsider restri
ted types of presentations. Chap-ter 7 deals with the 
ase of presentations over a unary alphabet whi
h yieldsan interesting sub
lass of automati
 stru
tures with many pleasant theoreti
alproperties and 
omplexity results whi
h are low enough for pra
ti
al appli
a-tions.The last 
hapter investigates another way to en
ode the input whi
h turnsout to yield a mu
h weaker 
lass, and the restri
tion to star-free and lo
allythreshold testable languages.I would like to thank Eri
h Gr�adel for his guidan
e while I wrote this thesis,and Eri
 Rosen for his valuable 
omments.



Chapter 2Formal Languages andLogi
2.1 Formal LanguagesRegular languages. We assume that the reader is familiar with the funda-mental notions of formal language theory. For an introdu
tion see [HU79, Eil74,RS97℄, readers with a ba
kground in logi
 are referred to [EF95, Chapter 5℄.An overview of !-languages is given in [Tho90℄. We use the following 
onven-tions regarding automata. A �nite automaton is a tuple A = (Q;�;�; q0; F )with set of states Q, input alphabet �, initial state q0, set of �nal states F ,and transition relation � � Q � � � Q. A �nite !-automaton is a tupleA = (Q;�;�; q0;F ) with set of states Q, input alphabet �, initial state q0,transition relation� � Q���Q, and Muller a

eptan
e 
onditionF �P(Q),where some !-word is a

epted i� the set of states appearing in�nitely often insome run is a member of F . We 
all an automaton deterministi
 i� for everyq 2 Q and a 2 � there is at most one q0 2 Q su
h that (q; a; q0) 2 �.For L;W � �� we denote the left- and right-quotient byW�1L := fx j 9y 2 W : yx 2 L g;LW�1 := fx j 9y 2 W : xy 2 L g:De�nition 2.1. Let L � ��. The Nerode-
ongruen
e �L is de�ned byx �L y : i� x�1L = y�1L:Clearly, �L is a right-
ongruen
e, i.e., x �L y =) xz �L yz. By the Myhill-Nerode Theorem, �L is of �nite index if and only if L is regular. In this 
ase theindex is equal to the number of states of the minimal deterministi
 automatonfor L.Re
all that the 
lass of regular languages is 
losed under(i) boolean operations: union, interse
tion, and 
omplement,(ii) 
on
atenation and star,(iii) homomorphisms and inverse homomorphisms, and(iv) left- and right-quotients. 3



4 2. Formal Languages and Logi
An important tool to show non-regularity whi
h will frequently be used inthe following is thePumping Lemma. Let L � �� be regular. There exists a 
onstant m su
hthat for all words uvw 2 �� with jvj � m there exists a fa
torisation v0v1v2of v with v1 6= " su
h thatuvw 2 L i� uv0vk1v2w 2 L for all k 2 N:When investigating !-languages one frequently uses topologi
al te
hniques.�! is equipped with the produ
t topology where � is taken as dis
rete spa
e.In this topology open sets are of the form W�! for some W � ��. All regular!-languages are 
ontained in B(GÆ), the boolean 
losure of the se
ond level ofthe Borel hierar
hy, i.e., every regular language 
an be written as a boolean
ombination of 
ountable interse
tions TiWi�! with W0;W1; : : : � ��.De�nition 2.2. Let � be a �nite alphabet and �x a linear ordering < of �.The lexi
ographi
 ordering �l and the alphabeti
 ordering �a indu
ed by < arede�ned asx �l y : i� y = xy0; or x = zax0 and y = zby0 for somez; x0; y0 2 ��; and a; b 2 � with a < b;and x �a y : i� jxj < jyj or jxj = jyj and x �l y:Convolution. The operation of 
onvolution plays a 
entral role in the follow-ing. Ordinary �nite automata take single words as their input. When repre-senting relations of arity greater than one by automata one needs a model withseveral inputs. In order to avoid having to de�ne a new type of automaton weintrodu
e an operation whi
h en
odes several words into one word in su
h a waythat the automaton reading the new word has a

ess to the original ones.De�nition 2.3. Let � be a �nite alphabet with � =2 �. The 
onvolution ofx0; : : : ; xn�1 2 �� with xi = xi0 � � �xili is de�ned asx0 
 � � � 
 xn�1 := 24 x000...x0(n�1)0 35 : : :24 x00l...x0(n�1)l 35 2 (� �[ f�g)nwherex0ij := (xij if j � li;� otherwise; l := maxfl1; : : : ; lng:For L; L0 � �� we de�neL
 L0 := fx
 y j x 2 L; y 2 L0 g;L
n := L
 � � � 
 L (n times):Remark. Regular languages are 
losed under 
onvolution.For notational 
onvenien
e we introdu
e the following fun
tions to translatebetween produ
t and 
onvolution. Let R � (��)n and L � (��)
n.fold(R) := fx0 
 � � � 
 xn�1 j (x0; : : : ; xn�1) 2 R g;unfold(L) := f (x0; : : : ; xn�1) j x0 
 � � � 
 xn�1 2 L g:



2.1. Formal Languages 5Trees. We re
all some basi
 de�nitions regarding tree languages (see [GS97℄,[Tho90℄).De�nition 2.4. Let � be a �nite alphabet. A �nite binary tree over � is amapping t : dom(t) ! � where dom(t) � f0; 1g� is �nite and satis�es thefollowing 
losure 
ondition: wi 2 dom(t) for some w 2 f0; 1g� and i 2 f0; 1gimplies w 2 dom(t) and wj 2 dom(t) for all j < i.A binary !-tree over � is a mapping t : dom(t)! � with dom(t) = f0; 1g�.The set of all �nite trees is denoted by T� , the set of all !-trees by T!� .To avoid 
umbersome de�nitions we use the following notation in this se
-tion. Let t 2 T�. By ta we denote the !-tree de�ned asta(x) := (t(x) if x 2 dom(t);a otherwise:The notion of 
onvolution readily generalises to trees.De�nition 2.5. The 
onvolution of �nite or in�nite trees t0; : : : ; tn�1 over �is de�ned as(t0 
 � � � 
 tn�1)(x) := ((t0)�(x); : : : ; (tn�1)�(x)) 2 T(�[f�g)nwhere dom(t0 
 � � � 
 tn�1) := dom(t0) [ � � � [ dom(tn�1).A (bottom-up) tree automaton is a tuple A = (Q;�;�; F ) with set ofstates Q, input alphabet �, set of �nal states F , and transition relation� � Q�� � (Q [ f�g)� (Q [ f�g):A run of A on some input tree t 2 T� is a tree % 2 TQ satisfying the following
onditions:(i) dom(t) = dom(%),(ii) %(") 2 F , and(iii) (%(x); t(x); %�(x0); %�(x1)) 2 � for all x 2 dom(t).A (top-down) !-tree automaton is a tuple A = (Q;�;�;Q0;F ) with set ofstates Q, input alphabet �, set of initial states Q0, Muller a

eptan
e 
ondi-tion F , and transition relation � � Q���Q�Q. A run of A on some inputtree t 2 T!� is a tree % 2 T!Q satisfying the following 
onditions:(i) %(") 2 Q0,(ii) ea
h path through % satis�es the Muller-
ondition F , and(iii) (%(x); t(x); %(x0); %(x1)) 2 � for all x 2 dom(t).The tree language T (A) re
ognised by some (!-)tree automaton A is the setof trees, respe
tively !-trees t for whi
h there is a run of A on t.



6 2. Formal Languages and Logi
2.2 Logi
For an introdu
tion to mathemati
al logi
, see for example [EFT94℄. We re
allsome basi
 notions.A signature � is a set of relation and fun
tion symbols ea
h of whi
h isequipped with an arity. Constants are regarded as fun
tions of arity 0. FO[� ℄is the set of all �rst-order formulae using only relation and fun
tions symbolsfrom � (and equality). A �-stru
ture A = (A;RA0 ; : : : ; fA0 ; : : : ) 
onsists of aset A, 
alled the universe of A, and of one relation RA for ea
h relation symbol Rin � and one fun
tion fA for ea
h fun
tion symbol f in � . For '(x) 2 FO wede�ne'A := f a 2 Ar j A j= '(a) g:First-order formulae are 
lassi�ed a

ording to their quanti�er-pre�x. The
lass �k 
ontains all formulae whose prenex normal form has k alternations be-tween existential and universal quanti�ers and starts with an existential quanti-�er. Similarly, the prenex normal form of an �k-formula begins with a universalquanti�er, and �k denotes the 
lass �k \ �k.Besides FO[� ℄ we 
onsider several other logi
s in the following (see [EF95℄).MSO and SO are monadi
 se
ond-order and se
ond-order logi
 whi
h permitquanti�
ation over sets and relations of arbitrary arity, respe
tively. FO(9!)extends FO by the quanti�er \there are in�nitely many," whereas FO(DTC)introdu
es the deterministi
 transitive 
losure operator DTC.Let A be a stru
ture and � an assignment, i.e., a mapping of variables toelements of A. We de�ne for ' 2 FO(DTC)(A; �) j= [DTCx;y '(x; y; z)℄(a; b)i� there are 
0; : : : ; 
n with n � 1 su
h that 
0 = a, 
n = b and, for all i < n,
i+1 is the unique tuple with�A; �[x=
i; y=
i+1℄� j= ':Finally, FO(#) is the extension of �rst-order logi
 by variables of a se
ondsort ranging over 
ardinal numbers up the the 
ardinality of the universe andthe 
ardinality operator # whi
h is de�ned as�#x'(x)�(A;�) := ��� a 2 A �� (A; �[x=a℄) j= '	��:De�nition 2.6. Let L be a logi
, � = fR0; : : : ; Rrg a relational signature wherethe arity of Rj is rj , A a �-stru
ture, and B a � -stru
ture. A k-dimensionalL-interpretation of A in B is a tupleI = �h; Æ(x); "(x; y); 'R0(x0; : : : ; xr0�1); : : : ; 'Rr (x0; : : : ; xrr�1)�satisfying the following 
onditions:(i) Æ, ", 'R0 ; : : : , 'Rr 2 L and ea
h ea
h tuple x 
onsists of k variables,(ii) h : ÆB ! A is surje
tive,(iii) B j= "(b0; b1) i� h(b0) = h(b1) for all b0, b1 in ÆB, and(iv) B j= 'Rj (b0; : : : ; brj�1) i� (h(b0); : : : ; h(brj�1)) 2 RAj for all b0; : : : ; brj�1in ÆB.



2.2. Logi
 7Thus, an interpretation I of A in B de�nes an isomorphi
 
opy of A in B.If there is some L-interpretation of A in B we write A �L B. If both A �L Band B �L A we say A and B are mutually interpretable and write A
L B.Example. A standard example is the interpretation of the rationals (Q;+; �)in the integers (Z;+; �). Fra
tions p=q are represented by the pair (p; q). Allpairs with non-zero se
ond 
omponent en
ode a rational number. Therefore theuniverse is de�ned byÆ(x0; x1) := x1 6= 0:Two pairs (p; q) and (p0; q0) are equal if p=q = p0=q0. Thus we set"(x0; x1; y0; y1) := x0 � y1 = y0 � x1:Addition and multipli
ation 
an be de�ned the usual way.'+(x; y; z) := "(z0; z1; x0 � y1 + y0 � x1; x1 � y1);'�(x; y; z) := "(z0; z1; x0 � y0; x1 � y1):A stronger notion than interpretability is given by the de�nition of a redu
t .A is an L-redu
t of B if both have the same universe and ea
h relation of A isL-de�nable in B. A and B are de�nitional L-equivalent , A =L B, if both, A isan L-redu
t of B and vi
e versa.The following result shows that when dealing with in�nite stru
tures oneeasily 
rosses the boundary to unde
idability.Proposition 2.7. The FO(DTC)-theory of (N; s) is unde
idable where s is thesu

essor fun
tion.Proof. We show how to de�ne addition and multipli
ation in (N; s). Hen
e,using FO(DTC)-formulae it is possible to interpret Arithmeti
 in (N; s) whosetheory is unde
idable.z = x+ y : i� [DTCuv;u0v0 u0 = su ^ v0 = sv℄(0y; xz)z = x � y : i� [DTCuv;u0v0 u0 = su ^ v0 = v + x℄(00; yz)In parti
ular, in any 
lass of stru
tures 
ontaining (N; s) there are stru
tureswith unde
idable FO(DTC)-theory. Thus, if one is interested in logi
s withre
ursion, i.e., transitive 
losure or �xed point logi
s, one should look at 
lasseswith very simple in�nite stru
tures or stru
tures with dense orderings. All butone of the 
lasses we 
onsider in the following 
ontain (N; s).
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Chapter 3Automati
 Presentationsand Queries3.1 Automati
 PresentationsThe idea of representing possibly in�nite stru
tures by �nite automata 
an bemade pre
ise as follows. We en
ode the elements of the stru
ture by wordsover some alphabet. In order to determine whether a tuple (a0; : : : ; an�1) be-longs to some relation R we take the tuple (w0; : : : ; wn�1) of words en
oding(a0; : : : ; an�1) and test whether the 
onvolution w0 
 � � � 
wn�1 is a

epted bythe automaton representing R.De�nition 3.1. Let � = fR0; : : : ; Rrg be a �nite relational signature, rj thearity of Rj , and let A = (A;RA0 ; : : : ; RAr ) be a � -stru
ture.d = (�;�; LÆ; L"; LR0 ; : : : ; LRr)is an automati
 presentation of A if the following 
onditions are satis�ed:(i) LÆ � ��, L" � (��)
2, and LRj � (��)
rj for j � r, are regularlanguages.(ii) � : LÆ ! A is surje
tive andx0 
 x1 2 L" i� �(x0) = �(x1);x0 
 � � � 
 xrj�1 2 LRj i� ��(x0); : : : ; �(xrj�1)� 2 RAjfor all j � r.Note the similarity between the de�nitions of an automati
 presentationand an interpretation. We will see in Chapter 4 that basi
ally an automati
presentation is an interpretation in a �xed stru
ture.If regular languages of !-words, trees, or !-trees are used instead of word lan-guages we speak of !-automati
, tree-automati
, and !-tree-automati
 presen-tations, respe
tively. The 
lasses of � -stru
tures possessing a presentation of oneof the above de�ned types is denoted by AutStr[� ℄, !-AutStr[� ℄, TAutStr[� ℄, and!-TAutStr[� ℄, respe
tively. Furthermore we use abbreviations like [T℄AutStr[� ℄meaning AutStr[� ℄ or TAutStr[� ℄. 9



10 3. Automati
 Presentations and QueriesIf the signature � 
ontains fun
tions, an automati
 presentation of some� -stru
ture A is a presentation of its relational variant where ea
h fun
tion isrepla
ed by its graph.Example. (1) An important example of a stru
ture with an automati
 presenta-tion is Presburger Arithmeti
 (N;+). Ea
h number n 2 N is en
oded the stan-dard way as binary number without leading zeros, but in reversed order, i.e.,with the least signi�
ant digit �rst. A presentation is d = (�; f0; 1g; LÆ; L"; L+)with �(b0 � � � bl) := Pi�l bi2i; L" := �[ 00 ℄ ; [ 11 ℄	�;LÆ := f0; 1g�1 [ f0g; L+ := L(A+):A+ is an automaton whi
h 
ompares its input digit by digit and remembers the
arry at every step. Formally, A := �f0; 1g; f0; 1;�g3; �; 0; f0g� with� := � (i; (a; b; 
); j) �� a+ b+ i = 2j + 
 (
ounting � as 0)	:(2) Natural 
andidates for stru
tures with automati
 presentation are those
onsisting of words. (But note that the free monoid|with at least two genera-tors|does not have su
h a presentation as we will see in Se
tion 5.1.) Let � besome alphabet and 
onsider the stru
ture (��; (Da)a2� ;�) whereDaxy : i� x = uav for some u; v 2 �� with juj = jyj ;x � y : i� jxj � jyj :It 
an be presented as d = (id; �;��; L"; (La)a2� ; L�) withL" := � � aa � �� a 2 � 	�;La := � � b
 � �� b; 
 2 � 	� � a� � � � b� � �� b 2 � 	�;L� := � � ab � �� a; b 2 � 	�� ��b � �� b 2 � 	�:De�nition 3.2. Let A 2 AutStr be a stru
ture with automati
 presentationd = (�;�; LÆ; L"; LR0 ; : : : ; LRr). Denote by �d : A ! N the fun
tion mappingea
h element of A to the length of its shortest en
oding.�d(a) := minf jxj j �(x) = a gLet us start with some basi
 observations about automati
 presentations.First, a binary alphabet is always suÆ
ient.Lemma 3.3. Let A 2 [!-℄[T℄AutStr. Then A has a presentation over a binaryalphabet.Proof. Let d = (�;�; LÆ; L"; LR0 ; : : : ; LRr) be a presentation of A. If j�j = 1 we
an simply add some symbol to �. Otherwise, let � = fa0; : : : ; an�1g. Considerthe family of homomorphisms hm : (�m)� ! (f0; 1gm)� de�ned byhm(ai0 ; : : : ; aim�1) := (bin(i0); : : : ; bin(im�1))where bin(i) is the binary en
oding of i of �xed length dlog2 ne. As all wordsbin(ik), k < m, in the de�nition above have the same lengthd0 := (� Æ h�1; f0; 1g; h1(LÆ); h2(L"); hr0(LR0); : : : ; hrr(LRr ))is a presentation of A of the required form.



3.1. Automati
 Presentations 11The next result turns out to be vital in many 
ir
umstan
es|espe
iallywhen applying the Pumping Lemma as it guarantees that all pumped wordsen
ode di�erent elements. The 
ase of AutStr is due to Khoussainov andNerode [KN95℄.Theorem 3.4. Every A 2 [T℄AutStr has an inje
tive automati
 presentation.Proof. (AutStr) Let d = (�;�; LÆ; L"; LR0 ; : : : ; LRr) be a presentation of A 2AutStr. Fix an ordering of � and 
onsider the alphabeti
al ordering � of ��indu
ed by it. This ordering is re
ognisable by an automaton. In order tode�ne an inje
tive presentation we pi
k from ea
h set ��1(a) the least wordwith respe
t to � and obtain the inje
tive presentationd0 = (�;�; L0Æ; L"; LR0 ; : : : ; LRr)where the languageL0Æ := fx 2 LÆ j 8y 2 LÆ : x
 y 2 L" ! x � y gis regular.(TAutStr) We have to de�ne a well-ordering on the set of �nite trees whi
his re
ognisable by an automaton. Then the rest of the proof is identi
al to the
ase above. Thus we set t0 � t1 if either(i) dom(t0) 6= dom(t1) and the leftmost position in the symmetri
 di�eren
eof dom(t0) and dom(t1) belongs to dom(t1) or(ii) dom(t0) = dom(t1) and at the leftmost position x where t0 and t1 di�erwe have t0(x) < t1(x).This relation 
an be re
ognised by an automaton as follows. It guesses whi
h
ase applies and the position of the di�eren
e, and 
he
ks that to the left of thisposition both trees are identi
al.In the 
ase of !-AutStr all we 
an do at the moment is to 
lassify the setsof !-words en
oding the same element.Lemma 3.5. Let d be an !-automati
 presentation of A and let a 2 A. Theset of all !-words en
oding a belongs to B(GÆ), the boolean 
losure of the se
ondlevel of the Borel hierar
hy.Proof. Let d = (�;�; LÆ; L"; LR0 ; : : : ; LRr). Take any !-word w en
oding a.The fun
tion �w : �! ! (�!)
2 = (� � �)! de�ned by �w(x) := x 
 w is
ontinuous. As every regular !-language is in B(GÆ), and sin
e the inverse ofa 
ontinuous fun
tion leaves levels of the Borel hierar
hy invariant, we obtain��1(a) = ��1w (L") 2 B(GÆ).We end this se
tion with some simple remarks about how to 
onstru
t au-tomati
 stru
tures from other ones.Lemma 3.6. Every automati
 presentation of a stru
ture A 2 [T℄AutStr 
ane�e
tively be extended to a presentation of (A;�) 2 [T℄AutStr for some well-ordering �.



12 3. Automati
 Presentations and QueriesProof. (AutStr) Let d = (�;�; LÆ; L"; LR0 ; : : : ; LRr) be an inje
tive presentationof A. De�nea � b : i� ��1(a) � ��1(b)where � is some �xed alphabeti
al ordering of ��.(TAutStr) Take the well-ordering de�ned in the proof of Theorem 3.4.Lemma 3.7. (i) If A 2 [T℄AutStr then (A; a) 2 [T℄AutStr for any tuple a of�nitely many elements of A.(ii) Let A 2 !-AutStr with presentation d. If there is some ultimately peri-odi
 !-word en
oding a 2 A then (A; a) 2 !-AutStr.Proof. (i) Let d = (�;�; LÆ; L"; LR0 ; : : : ; LRr) be an inje
tive presentation of A.For ea
h a 2 A one 
an 
onstru
t an automaton whi
h re
ognises the singleword ��1(a).(ii) Let d = (�;�; LÆ; L"; LR0 ; : : : ; LRr) and a be en
oded by uv!. Then thepresentation of a isLa := fw 2 �! j w 
 uv! 2 L" g = �1�L" \ (�2)�1(uv!)�;where �i is the proje
tion on the ith 
omponent.Proposition 3.8. [T℄AutStr is 
losed under �nite variations of some relation.Proof. Let d = (�;�; LÆ; L"; LR0 ; : : : ; LRr) be an inje
tive presentation of someA = (A;R0; : : : ; Rr) 2 [T℄AutStr. We have to show that A0 = (A;R00; : : : ; R0n) isalso in [T℄AutStr where R0j and Rj di�er only in �nitely many tuples. Constru
td0 = (�;�; LÆ; L"; L0R0 ; : : : ; L0Rr)with L0Rj := LRj nX�j [X+j whereX�j := ��1(Rj nR0j) and X+j := ��1(R0j nRj)are �nite sets. Therefore L0Rj is also regular.3.2 First-Order QueriesAfter having de�ned automati
 presentations the question arises what 
an bedone with them. The most fundamental operation on stru
tures is the evaluationof a query, i.e., we are given a formula '(x) and ask whi
h elements a of thestru
ture A satisfy '. Formally, we want to 
ompute 'A from A and '. In
ase of automati
 stru
tures this operation is not only e�e
tive but|due to theextensive 
losure properties of regular languages|the en
oding of the resultingset is also regular.For ease of notation we use regular expressions instead of automata 
on-stru
tions in the de�nition below and in most other pla
es. But in an a
tualimplementation one will usually work with automata whi
h are easier to handlealgorithmi
ally.



3.2. First-Order Queries 13De�nition 3.9. Let � = fR0; : : : ; Rrg be a �nite relational signature, rj thearity of Rj , and A a � -stru
ture with presentationd = (�;�; LÆ; L"; LR0 ; : : : ; LRr):We de�ne the fun
tion �dn : FO[� ℄ ! P(L
nÆ ) whi
h maps formulae ' all ofwhose variables are among fx0; : : : ; xn�1g to a presentation of the setf (a0; : : : ; an�1) j A j= '(a) g:From this set an en
oding of 'A 
an be obtained by removing the 
omponentsof those variables whi
h do not appear free in '. The 
orresponding fun
tion isdenoted �d (without the index n).To sele
t and permute the 
omponents of a word we de�ne the auxiliarymapping�m;n(i0;k0):::(il�1;kl�1) :P�(��)
m�!P�(��)
n�whi
h takes a language L to the setfw0 
 � � � 
 wn�1 j 9u0 
 � � � 
 um�1 2 L : uij = wkj for all j < l g;i.e., 
omponent ij is moved to position kj . �m;n(i0;k0):::(il�1;kl�1) preserves regularitysin
e it 
an be de�ned as�m;n(i0;k0):::(il�1;kl�1)(L) := (��)
n \ ���n;lk0:::kl�1��1 Æ ��m;li0:::il�1���L(�m)��where �n;li0:::il�1 :P((�n)�)!P((�l)�) denotes the proje
tion with�n;li0:::il�1�(a0; : : : ; an�1)� = (ai0 ; : : : ; ail�1):In the above de�nition we had to add the fa
tor (�m)� be
ause the other|unspe
i�ed|
omponents may be longer that those from L.Using this fun
tion, �d 
an be de�ned in terms of �dn by�d(') := �n;k(i0;0):::(ik�1;k�1)��dn(')�if the free variables of ' are xi0 ; : : : ; xik�1 .Finally, �dn is de�ned per indu
tion on '. For atoms we simply return the
orresponding language of the presentation after moving the 
omponents intothe right position.�dn(Rjxi0 : : : xirj�1) := L
nÆ \ �rj ;n(0;i0):::(rj�1;irj�1)�LRj�;�dn(xi = xj) := L
nÆ \ �2;n(0;i)(1;j)�L"�:Boolean 
onne
tives are handled by the 
orresponding set operations.�dn(:') := L
nÆ n �dn(');�dn(' _  ) := �dn(') [ �dn( ):Finally, for the existential quanti�er we erase the 
omponent of the variable inquestion.�dn(9xi') := L
nÆ \ �n;n(0;0):::(i�1;i�1)(i+1;i+1):::(n�1;n�1)��dn(')�:



14 3. Automati
 Presentations and QueriesOf 
ourse, we have to show that the above 
onstru
tion is 
orre
t.Proposition 3.10. Let A 2 [!-℄[T℄AutStr have the automati
 presentation d.For all formulae ' 2 FO it holds that ���d(')� = 'A.Proof. Per indu
tion on the stru
ture of ' prove that�(�dn(')) = f a 2 An j (A; a) j= ' gwhere n is 
hosen large enough su
h that the indi
es of all variables xi appearingin ' are below n. As an example we prove the 
ase of ' = Rxixj .(�) Letw0 
 � � � 
 wn�1 2 �dn(Rxixj) = L
nÆ \ �2;n(0;i)(1;j)(LR):Then w0; : : : ; wn�1 2 LÆ, and wi 
 wj 2 LR. Thus, ��(wi); �(wj )� 2 R and(A; �(w0) : : : �(wn�1)) j= Rxixj :(�) If on the other hand (A; a) j= Rxixj for some a 2 An with en
odingsw0; : : : ; wn�1 2 LÆ, then (ai; aj) 2 R and thus wi 
 wj 2 LR. Hen
e,w0 
 � � � 
 wn�1 2 L
nÆ \ �2;n(0;i)(1;j)(LR) = �dn(Rxixj):In the 
ase of word and tree languages we are able to do a bit more.Proposition 3.11. For A 2 [T℄AutStr the fun
tion � 
an be extended to for-mulae of FO(9!).Proof. Let d be an inje
tive presentation of A. De�ne�dn(9!xi') := L
nÆ \ �n;n(0;0):::(i�1;i�1)(i+1;i+1):::(n�1;n�1)��dn(')W�1k �:where k is the index of the Nerode-
ongruen
e of the language �dn(') andWk := "
i�1 
�k 
 "
n�i:We give the indu
tion step in the proof that���dn(9!xn�1')� = f a 2 An j there are in�nitely many a 2 A su
h thatA j= '(a0; : : : ; an�2; a) g:(�) Fix values a0; : : : ; an�2. If there are in�nitely many values an�1 for xn�1satisfying ' there exists su
h an element an�1 2 A with �d(an�1) � k +maxf�d(a0); : : : ; �d(an�2)g. Thus(a0; : : : ; an�2; an�1) 2 ���dn(') \ (��)
n("
n�1 
�k)�:Let x be the pre�x of ��1(an�1) of length �d(an�1)� k. Then��1(a0)
 � � � 
 ��1(an�2)
 x 2 �dn(')�"
n�1 
�k��1;whi
h implies that (a0; : : : ; an�2; a) 2 ���dn(9!xn�1')� for all a 2 A.



3.2. First-Order Queries 15(�) If on the other hand there are elements (a0; : : : ; an�1) 2 ���dn(9!xn�1')�then there is some an�1 2 A with��1(a0)
 � � � 
 ��1(an�2)
 ��1(an�1) 2 �dn(') \ (��)
n("
n�1 
�k):When applying the Pumping Lemma to the suÆx of length k of this word we getin�nitely many words of the form ��1(a0)
� � �
��1(an�2)
x whi
h di�er onlyin x as the suÆx does not 
ontain any symbols from the �rst n� 1 arguments.Sin
e the presentation is inje
tive ea
h x en
odes a di�erent element and thusthere are in�nitely many an�1 2 A with (a0; : : : ; an�2; an�1) 2 'A.As the de�nition of �d is e�e
tive we obtain the followingCorollary 3.12.(i) The FO(9!)-theory of any stru
ture in [T℄AutStr is de
idable.(ii) The FO-theory of any stru
ture in !-[T℄AutStr is de
idable.Its importan
e lies in the fa
t that it yields one of the two methods known tothe author to prove that a stru
ture is not automati
. If the �rst-order theoryof some stru
ture A is unde
idable then A 
annot be automati
.Example. As the �rst-order theory of Arithmeti
 (N;+; �) is unde
idable it doesnot have an automati
 presentation, i.e., (N;+; �) =2 [!-℄[T℄AutStr.A se
ond important 
onsequen
e of Proposition 3.10 is the following resultwhi
h yields a notion of redu
tion of one automati
 stru
ture to another.Proposition 3.13.(i) [T℄AutStr is 
losed under (k-dimensional) FO(9!)-interpretations.(ii) !-[T℄AutStr is 
losed under (k-dimensional) FO-interpretations.Proof. We just give the proof for AutStr. Let I = (h; Æ; "; 'R0 ; : : : ; 'Rr ) be ak-dimensional FO(9!)-interpretation of A in B. LetdB = (�B; �B; LBÆ ; LB" ; LBS0 ; : : : ; LBSs)be a presentation of B. We 
onstru
t an automati
 presentation dA of A. SetdA := (�A; �A; LAÆ ; LA" ; LAR0 ; : : : ; LARr)where �A := ��B [ f�g�k;�A(x) := h��B��0(x)�; : : : ; �B��k�1(x)��;LAÆ := (LBÆ )
k \ �dBk (Æ);LA" := (LAÆ )
2 \ �dB2k (");LARj := (LAÆ )
rj \ �dBrjk('Rj ):



16 3. Automati
 Presentations and QueriesSome immediate 
onsequen
es are summarised inCorollary 3.14. [!-℄[T℄AutStr is 
losed under(i) expansions by de�nable relations,(ii) fa
torisations by de�nable 
ongruen
es,(iii) substru
tures with de�nable universe, and(iv) �nite powers.Before getting ones hopes too high, here is a warning that even some of thesimplest model theoreti
 
onstru
tions do not work for automati
 stru
tures.Lemma 3.15. There is a stru
ture A su
h that every redu
t of A has an au-tomati
 presentation but A itself is not automati
.Proof. Consider A := (N;+; 2), the natural numbers with addition and squaringfun
tion. Sin
e multipli
ation is de�nable in A its �rst-order theory is unde
id-able and therefore A =2 [!-℄[T℄AutStr. What about the redu
ts? (N) obviouslyhas an automati
 presentation, and we already know that (N;+) 2 AutStr. Apresentation of (N; 2 ) 
an be 
onstru
ted as follows. LetM := N n f k2 j k 2 N gbe the set of non-squares. Every natural number n 2 N n f0; 1g 
an uniquelybe written as n = m2k for some m 2 M and k 2 N. Hen
e, we 
an en
ode nby (m; k). The squaring fun
tions a
ts as (m; k) 7! (m; k+1) on this en
oding.Therefore we set d := (�; f0; 1; a; bg; LÆ; L"; L2) where�(0) := 0; LÆ := f0; 1g [ a�b�;�(1) := 1; L" := � � 

 � �� 
 2 f0; 1; a; bg	�;�(ambk) := l2km ; L2 := �� 00 � ; � 11 �	 [ � aa �� � bb �� ��b � ;and l0; l1; : : : is an enumeration of M .Lemma 3.16. [!-℄[T℄AutStr is not 
losed under arbitrary substru
tures.Proof. Consider A := (N; <; P ) with P := 2N. This stru
ture is 
learly auto-mati
. Let X � N be any non-re
ursive set, and 
onstru
t the substru
tureB � A with universeB := f 2n j n 2 X g [ f 2n+ 1 j n =2 X g:Then B = (B;<jB ; P jB) �= (N; <;X). But Th(B) 
annot be de
idable for,otherwise, X would be re
ursive.3.3 Extensions of First-Order Logi
We have seen that automati
 stru
tures are quite well behaved with regard to�rst-order logi
. What about stronger logi
s? Possible appli
ations of automati
stru
tures in
lude automati
 veri�
ation where the most important problemis Rea
hability, and databases where one usually wants to have some sortof re
ursion. Thus it is natural to 
onsider transitive 
losure and �xed-pointextensions of �rst-order logi
. Unfortunately, even slightly stronger logi
s thanFO, respe
tively FO(9!), are already unde
idable.



3.3. Extensions of First-Order Logi
 17Proposition 3.17.(i) [!-℄[T℄AutStr 
ontains stru
tures with unde
idable FO(DTC1)-theory.(ii) [!-℄[T℄AutStr is not 
losed under expansion by FO(DTC1)-de�nable rela-tions.Proof. This result follows immediately from Proposition 2.7 and the 
losure of[!-℄[T℄AutStr under �nite powers. Nevertheless we give an expli
it proof whi
hstrengthens the 
laim to formulae su
h that in all subformulae of the form[DTCx;y  (x; y)℄(x; y) the only free variables appearing in  are x and y.Presburger Arithmeti
 (N;+) is automati
. We de�ne multipli
ation usingtransitive 
losure.x � y = z : i� [DTCxyz;x0y0z0 x0 = x ^ y0 + 1 = y ^ z0 = z + x℄(xy0; x0z)If automati
 stru
tures were 
losed under deterministi
 transitive 
losure therewould be an automati
 presentation of Arithmeti
 (N;+; �) in 
ontradi
tion tothe example above.The expression above uses a 3-dimensional DTC-operator. We 
an repla
eit by a 1-dimensional one if we take the stru
ture 
onsisting of PresburgerArithmeti
 together with its third power, i.e., (N [ N3 ;+; �0; �1; �2) where+ � N � N � N is the graph of addition and �i � N3 � N is the proje
tionon the ith 
oordinate.Proposition 3.18. For stru
tures in [!-℄[T℄AutStr, Rea
hability is unde-
idable.Proof. Let M = (Q;�; �;�; q0; F ) be a Turing ma
hine. We 
onstru
t anautomati
 presentation of its 
on�guration graph. A 
on�guration (q; w; p) isen
oded by the word w0qw1 with w = w0w1 and jw0j = p. The transition rela-tion `M is 
learly re
ognisable by an automaton as it depends only on the �niteregion of the word around the position of the state symbol. If Rea
habil-ity were de
idable there would be an algorithm de
iding the halting problem.W.l.o.g. assume M has an unique a

epting state qf and 
lears its tape beforea

epting. Then, given M and an input x, we 
ould 
onstru
t the presenta-tion of its 
on�guration graph and 
he
k whether the a

epting 
on�gurationis rea
hable from the starting 
on�guration, i.e., whether (qf ; "; 0) is rea
hablefrom (q0; x; 0).Proposition 3.19.(i) [!-℄[T℄AutStr 
ontains stru
tures with unde
idable FO(#)-theory.(ii) [!-℄[T℄AutStr is not 
losed under expansion by FO(#)-de�nable relations.Proof. Consider the automati
 stru
ture (N �[N2 ;+; �0; �1) where + � N�N�Nis the graph of addition and �i � N2 �N is the proje
tion on the ith 
oordinate.Multipli
ation 
an be de�ned asx � y = z : i� #v(v < z) = #v9u1u2(�0vu1 ^ �1vu2 ^ u1 < x ^ u2 < y)with the abbreviationx < y : i� 9z(x+ z = y) ^ x 6= y:Therefore there is a FO(#)-interpretation of Arithmeti
 in this stru
ture andthe unde
idability follows.



18 3. Automati
 Presentations and Queries3.4 Complexity of QueriesAfter having seen what 
an be done with automati
 stru
tures we now studythe 
omplexity of those operations. (For an introdu
tion to 
omplexity theorysee [HU79, Pap94, Imm98℄.) We investigate the following fundamental problems.The most basi
 one is the model-
he
king problem: Given a � -stru
ture A, aformula ' 2 FO[� ℄, and a tuple of parameters a in A, de
ide whether A j= '(a)does or does not hold.A generalisation is the query-evaluation problem: Given a presentation dand a formula ', 
ompute �d(').The 
omplexity of both problems 
an be investigated under three pointsof view. First one 
an hold the formula �xed and ask how the 
omplexitydepends on the input stru
ture. If the 
omplexity is measured in this way wespeak of stru
ture 
omplexity . On the other hand one 
an �x the stru
ture andmeasure the dependen
y on the formula. This leads to the notion of expression
omplexity . Finally, one 
an look at the so 
alled 
ombined 
omplexity whereboth parts may vary.Of 
ourse, statements about 
omplexity are only meaningful if the en
odingof the input is spe
i�ed. A presentation d is given by a mapping � and severalregular languages. � is a purely semanti
 obje
t whi
h is not part of the inputof an algorithm. There are various ways to en
ode regular languages, but therepresentation whi
h 
an be handled by algorithms most easily uses automata.Therefore in this se
tion we assume that d is given by a list of deterministi
automata. Furthermore we only 
onsider presentations using binary alphabets.Deterministi
 automata are 
hosen be
ause boolean operations on them
an be performed in polynomial time whereas negation of nondeterministi
 au-tomata may 
ause an exponential blowup. If the input is restri
ted to positiveformulae the results below hold for presentations given by nondeterministi
 au-tomata as well.We use the following notations for the size of the input. For a presentation d,jdj denotes the maximal size of the automata belonging to d, and we use �d(a)as an abbreviation for the maximum of �d(ai) for all i.Our �rst result is rather dis
ouraging. A fun
tion is said to be non-elemen-tary if it 
annot be bounded from above by a fun
tion of the form22���2n okfor �xed k.Proposition 3.20. The expression 
omplexity of the model-
he
king problemis non-elementary.Proof. The 
laim follows immediately from the fa
t that Np := (N;+; jp) isautomati
 wherea jp b : i� a is a power of p and a j b;sin
e the theory of Np has non-elementary 
omplexity (see [Gr�a90℄).Let us hope that in some restri
ted 
ases the 
omplexity is less devastating.We begin by taking a 
loser look at the simulation of automata.



3.4. Complexity of Queries 19Lemma 3.21. Given a deterministi
 automaton A = (Q;�; Æ; q0; F ) and aword w 2 ��, to 
he
k whether w 2 L(A) is inDtime�O�jwj jQj log jQj�� and Dspa
e�O�log jQj+ log jwj��:Proof. We use the following algorithm:Input: Æ, F , wq := q0i := 0m := jwjwhile i < m doa := w[i℄q := Æ(q; a)i := i+ 1endreturn q 2 FThe spa
e used 
onsists of the 
urrent state, the input position, and thelength of the input.In order to minimise the time needed to a

ess the 
urrent symbol of theword w we slightly modify the above algorithm su
h that it 
opies w to a separatework tape �rst. Then we 
an leave the head of that tape on the 
urrent symboland do not need to go ba
k and forth between the two parts of the input.Therefore the �rst and last line of the loop 
an be performed in 
onstant time.The se
ond line requires a lookup in Æ whi
h 
an be done by s
anning Æ untilthe state q is found. This takes O(jÆj log jQj) = O(jQj log jQj) steps. The loopis exe
uted jwj times.The initialisations take time O(jwj). To 
he
k whether q 2 F the algorithms
ans the en
oding of F and looks for q. This needs time O�jF j log jQj� =O�jQj log jQj�. Putting everything together, we obtain the desired bound.Lemma 3.22. Given a nondeterministi
 automaton A = (Q;�;�; q0; F ) anda word w 2 ��, to 
he
k whether w 2 L(A) is inDtime�O�jwj j�j jQj log jQj�� and Dspa
e�O�jQj+ log jwj��:Proof. We use the following algorithm:Input: �, F , wP := fq0gfor i = 0; : : : ; jwj � 1 doa := w[i℄P 0 := ;forall (q; a; q0) 2 � doif q 2 P then P 0 := P 0 [ fq0gP := P 0endreturn P \ F 6= ;



20 3. Automati
 Presentations and QueriesThe spa
e used 
onsists of the 
urrent set of states, the input position, andthe length of the input.If the sets are implemented using arrays of bits, the statements in the body ofthe loop use time O�jQj� for erasing P 0; O�jQj log jQj� for testing the 
onditionin the if -statement; and O�jQj log jQj� for the updates of P 0 and P .To 
he
k whether there was a su

essful run takes time O�jQj�. Therefore,the overall time used is as given above.When 
onsidering the stru
ture 
omplexity of a problem, the automata ofthe presentation are �xed. Therefore we also look at the non-uniform version ofthe membership problem for regular languages.Lemma 3.23. Let L � f0; 1g� be regular. The problem to determine, given aword w 2 f0; 1g�, whether w 2 L, is in Alogtime.Proof. Our alternating log-time algorithm is based on the 
hara
terisation ofa regular language L via its synta
ti
 monoid M(L). It is well known that alanguage L is regular if and only if there is some �nite monoid M(L), a subsetP �M(L), and a homomorphism �L : f0; 1g� !M(L) su
h that L = ��1L (P ).Let w = a0 � � � an�1 and ei := �L(ai) for i < n. Thusa0 � � � an�1 2 L i� e0 � � � en�1 2 P:The algorithm starts by guessing e0 � � � en�1 and veri�es its guess by re
ursivelydetermining the values of e0 � � � en=2�1 and en=2 � � � en�1.Input: a0 � � � an�1existentially guess m 2 Prepeat dlogne timesexistentially guess m0, m1 2M(L)if m 6= m0m1 then return falseuniversally 
hoose i 2 f0; 1gappend i to the index tapem := miendread the symbol a whose number is stored on the index tapereturn �L(a) = mSo far, we only dealt with relational signatures as fun
tions 
an easily berepla
ed by their graphs. But to do so we need to introdu
e additional quan-ti�ers whi
h is not possible if we want to investigate quanti�er-free formulae.When studying quanti�er-free formulae with fun
tions we need an algorithm to
ompute the value of a fun
tion whose graph is given by some automaton.Lemma 3.24 (Epstein et al. [ECH+92℄). Given a tuple w of words over �,and an automaton A = (Q;�; Æ; q0; F ) re
ognising the graph of a fun
tion f ,the 
al
ulation of f(w) is inDtime�O�jQj2 log jQj (jQj+ jwj)�� andDspa
e�O�jQj log jQj+ log jwj��:



3.4. Complexity of Queries 21Proof. The following algorithm simulates A on input w0
� � �
wn�1
x wherex is the result that we want to 
al
ulate. For every position i of the input, theset Qi of states whi
h 
an be rea
hed for various values of x is determined. Atthe same time the sets Qi and Qi+1 are 
onne
ted by edges Ei labelled by thesymbol of x by whi
h the se
ond state 
ould be rea
hed. When a �nal state isfound, x 
an be read o� the graph.We use the following fun
tion to 
ompute Qi+1 and Ei from Qi and theinput symbol a.Step(Q; a)Q0 := ;E := ;forall q 2 Q doforall 
 2 � doq0 := Æ(q; a
)if q0 =2 Q0 thenE := E [ f(q; 
; q0)gQ0 := Q0 [ fq0gendendreturn (Q0; E)If E is realised as an array 
ontaining, for every q 2 Q, the values q0 and 
 su
hthat (q0; 
; q) 2 E, this fun
tion needs spa
e O�jQj log jQj� and timeO�jQj (jQj log jQj+ jQj log jQj)� = O�jQj2 log jQj�:We use two slightly di�erent algorithms for the time and spa
e 
omplexitybounds. The �rst one simply 
omputes all set Qi and Ei and determines x. These
ond one reuses spa
e and keeps only one set Qi and Ei in memory. Thereforeit has to start the 
omputation from the beginning in order to a

ess old valuesof Ei in the se
ond part.In the �rst version the fun
tion Step is invoked jxj times, and the se
ondpart is exe
uted in time O�jxj jQj log jQj�.The spa
e needed by the se
ond version 
onsists of storage for Q, E, andthe 
ounters i and k. Hen
e, O(jQj+ jQj log jQj+ log jxj) bits are used.Sin
e A re
ognises a fun
tion the length of x 
an be at most jQj+ jwj (seeProposition 5.1 for a detailed proof). This yields the given bounds.Input: A = (Q;�; Æ; q0; F ), wQ0 := fq0gi := 0while Qi \ F = ; doif i < jwj thena := w[i℄elsea := �(Qi+1; Ei) := Step(Qi; a)i := i+ 1end
Input: A = (Q;�; Æ; q0; F ), wQ := fq0gi := 0while Q \ F = ; doif i < jwj thena := w[i℄elsea := �(Q;E) := Step(Q; a)i := i+ 1end



22 3. Automati
 Presentations and Querieslet q 2 Qi \ Fwhile i > 0 doi := i� 1
let (q0; 
; q) 2 Eix[i℄ := 
q := q0endreturn x

let q 2 Q \ Fwhile i > 0 doi := i� 1Q := fq0gfor k = 0; : : : ; i� 1 doif k < jwj thena := w[k℄elsea := �(Q;E) := Step(Q; a)endlet (q0; 
; q) 2 Ex[i℄ := 
q := q0endreturn xObviously, the formula is responsible for the high 
omplexity of the model-
he
king problem. So we 
onsider restri
ted 
lasses of formulae. It turns out thatmodel-
he
king and query-evaluation for quanti�er-free and existential formulaeare still|to some extent|tra
table.Proposition 3.25. (i) Let � be a relational signature. Given the presentation dof a stru
ture A 2 AutStr[� ℄, a tuple a in A, and a quanti�er-free formula'(x) 2 FO[� ℄, the model-
he
king problem for (A; a; ') is inDtime�O�j'j�d(a) jdj log jdj�� andDspa
e�O�log j'j+ log jdj+ log�d(a)��:(ii) The stru
ture 
omplexity of the model-
he
king problem for quanti�er-free formulae is Logspa
e-
omplete with regard to FO-redu
tions.(iii) The expression 
omplexity is Alogtime-
omplete with regard to deter-ministi
 log-time redu
tions.Proof. (i) In order to 
he
k whether A j= '(a) holds, we need to know the truthvalue of ea
h atom appearing in '. Then, all what remains is to evaluate aboolean formula whi
h 
an be done inDtime�O�j'j�� andAtime�O�log j'j�� �Dspa
e�O�log j'j�� (see [Bus87℄). The truth value of an atom Rx 
an be 
al-
ulated by simulating the 
orresponding automaton on those 
omponents of awhi
h belong to the variables appearing in x. A

ording to the lemma abovethis 
an be done in time O��d(a) jdj log jdj)� and spa
e O�log jdj+ log�d(a)�.For the time 
omplexity bound we perform this simulation for every atom,store the out
ome, and evaluate the formula. Sin
e there are at most j'j atomsthe 
laim follows.To obtain the spa
e bound we 
annot store the value of ea
h atom. Thereforewe use the Logspa
e-algorithm to evaluate ' and, every time the value ofan atom is needed, we simulate the run of the 
orresponding automaton on aseparate set of tapes.



3.4. Complexity of Queries 23(ii) We redu
e the Logspa
e-
omplete problem DetRea
h, of rea
habilityby deterministi
 paths, (see e.g. [Imm98℄) to the model-
he
king problem. Givena graph G = (V;E; s; t) we 
onstru
t the automaton A = (V; f0g; �; s; ftg) with� := f (u; 0; v) j u 6= t; (u; v) 2 E and there is no v0 6= v with(u; v0) 2 E g[ f(t; 0; t)g:That is, we remove all edges originating at verti
es with out-degree greaterthan 1 and add a loop at t. Then there is a deterministi
 path from s to t in Gi� A a

epts some word 0n i� 0jV j 2 L(A). Thus,(V;E; s; t) 2 DetRea
h i� B j= P0jV jwhere B = (B;P ) is the stru
ture presented by (�; f0g; f0g�; L(A)).A 
loser inspe
tion reveals that the above transformation 
an be de�ned in�rst-order logi
.(iii) The third part follows immediately from Lemma 3.23 and the fa
t thatthe evaluation of boolean formulae is Alogtime-
omplete (see [Bus87℄).It was remarked above that for quanti�er-free formulae the question whetherfun
tions are allowed does make a di�eren
e.Proposition 3.26. (i) Let � be a signature 
ontaining fun
tions. Given thepresentation d of a stru
ture A 2 AutStr[� ℄, a tuple a in A, and a quanti�er-free formula '(x) 2 FO[� ℄, the model-
he
king problem for (A; a; ') is inDtime�O�j'j jdj2 log jdj �j'j jdj+ �d(a)��� andDspa
e�O�j'j �j'j jdj+ �d(a)�+ jdj log jdj��:(ii) The stru
ture 
omplexity of the model-
he
king problem for quanti�er-free formulae with fun
tions is in Nlogspa
e.(iii) The expression 
omplexity is Ptime-
omplete with regard to �logm -re-du
tions.Proof. (i) Our algorithm pro
eeds in two steps. First the values of all fun
tionsappearing in ' are 
al
ulated starting with the innermost one. Then all fun
-tions 
an be repla
ed by their values and a formula 
ontaining only relationsremains whi
h 
an be evaluated as above.We need to evaluate at most j'j fun
tions. If they are nested the result 
anbe of length j'j jdj+ �d(a). Thus, by Lemma 3.24, we need spa
eO�jdj log jdj+ log�j'j jdj+ �d(a)��for the evaluation of a fun
tion, spa
eO�j'j �j'j jdj+ �d(a)��to store the results, and spa
eO�log j'j+ log jdj+ log�j'j jdj+ �d(a)��for the �nal evaluation of '. This yields the bound given above.



24 3. Automati
 Presentations and QueriesThe evaluation of j'j fun
tions takes timeO�j'j jdj2 log jdj (j'j jdj+ �d(a))�;the evaluation of ' timeO�j'j �j'j jdj+ �d(a)� jdj log jdj�:(ii) It is suÆ
ient to present a nondeterministi
 log-spa
e algorithm for eval-uating a single �xed atom 
ontaining fun
tions. The algorithm simultaneouslysimulates the automata of the relation and of all fun
tions on the given input.Components of the input 
orresponding to values of fun
tions are guessed non-deterministi
ally. Ea
h simulation only needs 
ounters for the 
urrent state andthe input position whi
h both use logarithmi
 spa
e.(iii) Let M be a p(n) time-bounded deterministi
 Turing Ma
hine for somepolynomial p. A 
on�guration (q; w; p) of M 
an be 
oded as word w0qw1 withw = w0w1 and jw0j = p. Using this en
oding both the fun
tion f mapping one
on�guration to its su

essor and the predi
ate P for 
on�gurations 
ontaininga

epting states 
an be re
ognised by automata. We assume that f(
) = 
 fora

epting 
on�gurations 
. Let q0 be the starting state of M . Then M a

eptssome word w if and only if the 
on�guration fp(jwj)(q0w) is a

epting if andonly if A j= Pfp(jwj)q0w where A = (A;P; f) is automati
. Hen
e, the mappingtaking w to the pair q0w and Pfp(jwj)x is the desired redu
tion whi
h 
an 
learlybe 
omputed in logarithmi
 spa
e.Proposition 3.27. (i) Let � be a �xed relational signature. Given the presenta-tion d of a stru
ture A 2 AutStr[� ℄, a tuple a in A, and a formula '(x) 2 �1[� ℄,the model-
he
king problem for (A; a; ') is inNtime�O�j'j jdj�d(a) + jdjO(j'j)�� andNspa
e�O�j'j (jdj+ log j'j) + log�d(a)��:(ii) The stru
ture 
omplexity of the model-
he
king problem for �1-formulaeis Nptime-
omplete with regard to �pT-redu
tions.(iii) The expression 
omplexity is Pspa
e-
omplete with regard to �logm -redu
tions.Proof. (i) As above we 
an run the 
orresponding automaton for every atomappearing in ' on the en
oding of a. But now there are some elements of theinput missing whi
h we have to guess. Sin
e we have to ensure that the guessedinputs are the same for all automata, the simulation is performed simultaneously.Input: d, a, ' = 9y0 � � � 9yk�1 (x; y)Let Ai = (Qi; �; Æi; 0; Fi), for i < n, be the automata belongingto the atoms of '.q := (0; : : : ; 0)m := �d(a)for i = 0; : : : ;m� 1 dob := a[i℄guess 
 2 �kfor j = 0; : : : ; n� 1 do qj := Æj(qj ; b
)end



3.4. Complexity of Queries 25repeat at most jQ0 � � � � �Qn�1j timesguess 
 2 �kfor j = 0; : : : ; n� 1 do qj := Æj(qj ;� � � ��
)endevaluate ' with values determined by qThe algorithm needs the following spa
e:� for ea
h atom the number of the relation and the numbers of the variables:O(j'j log j'j),� P and P 0: O(j'j jdj) (note that � is �xed),� i and m: O(log�d(a)), and� b and 
: O(j'j).The initialisation 
an be performed in time O�j'j+�d(a)�. The while-loopis exe
uted �d(a) times. Its body requires O�j'j + j'j jdj� = O�j'j jdj� steps.The body of the repeat-loop uses time O�j'j jdj�. Therefore the total time isO�j'j+ �d(a) + �d(a) j'j jdj+ j'j jdj jdjj'j�= O�j'j jdj �d(a) + jdjO(j'j)�:(ii) We redu
e the Nptime-
omplete non-universality problem for nondeter-ministi
 automata over a unary alphabet (see [MS73, HRS76℄), given su
h anautomaton 
he
k whether it does not re
ognise the language 0�, to the givenproblem. This redu
tion is performed in two steps. First the automaton mustbe simpli�ed and transformed into a deterministi
 one, then we 
onstru
t anautomati
 stru
ture and a formula '(x) su
h that '(a) holds for several valuesof a if and only if the original automaton re
ognises 0�. As the model-
he
kinghas to be performed for more than one parameter this yields not a many-to-onebut a Turing-redu
tion.Let A = (Q; f0g; �; q0; F ) be a nondeterministi
 �nite automaton over thealphabet f0g. We 
onstru
t an automaton A0 su
h that there are at most twotransitions outgoing at every state. This is done be repla
ing all transition formsome given state by a binary tree of transitions with new states as internalnodes. Of 
ourse, this 
hanges the language of the automaton. Sin
e in A everystate has at most jQj su

essors, we 
an take trees of �xed height k := dlog jQje.Thus, L(A0) = h(L(A)) where h is the homomorphism taking 0 to 0k. Note thatthe size of A0 is polynomial in that of A.A0 still is nondeterministi
. To make it deterministi
 we add a se
ond 
om-ponent to the labels of ea
h transitions whi
h is either 0 or 1. This yields an au-tomaton A00 su
h that A a

epts the word 0n i� there is some word y 2 f0; 1gknsu
h that A00 a

epts 0kn 
 y.A00 
an be used in a presentation. Let d = (�; f0; 1g; f0; 1g�; L(A00)) be thepresentation of some fRg-stru
ture B. ThenB j= 9y R0kny i� 0kn 
 y 2 L(A00) i� 0n 2 L(A):It follows thatL(A) = 0� i� B j= 9y R0kny for all n < 2 jQj :



26 3. Automati
 Presentations and QueriesThe part ()) is trivial. To show (() let n be the least number su
h that0n =2 L(A). By assumption n � 2 jQj. But then we 
an apply the PumpingLemma and �nd some n0 < n with 0n0 =2 L(A). Contradi
tion.(iii) LetM be a p(n) spa
e-bounded Turing ma
hine for some polynomial p.As above we en
ode 
on�gurations as words, but this time we append enoughspa
es to in
rease their length to p(n) + 1. Let L` := f 
0
 
1 j 
0 ` 
1 g be thetransition relation of M . The run of M on input w is en
oded as sequen
e of
on�gurations separated by some marker #. L` 
an be used to 
he
k whethersome word x represents a run ofM . Let y be the suÆx of x obtained by removingthe �rst 
on�guration. The word x
 y has the form
0 # 
1 #
1 # 
2 # � � � # 
s�1 # 
s# 
s # :Thus x en
odes a valid run i� x
 y 2 LT whereLT := �L` h## i��(�� 
 "):Clearly, the language LF of all runs whose last 
on�guration is a

epting isregular. Finally, we need two additional relations. Both, the pre�x relation �and the shift s are regular where s(ax) := x for a 2 � and x 2 ��. Therefore,the stru
ture A := (A; T; F; s;�) is automati
, and it should be 
lear thatw 2 L(M) i� A j= 'w�q0w�k�jwj#�;where k := p(jwj) and'w(x) := 9y0 � � � 9yk+1�î�k syiyi+1 ^ x � y0 ^ Ty0yk+1 ^ Fy0�:'w(x) states that there is an a

epting run y0 ofM starting with 
on�guration x.y1; : : : ; yk+1 are used to remove the �rst 
on�guration from y0, so we 
an use Tto 
he
k whether y0 is valid.Clearly, the mapping of w to 'w and q0w�k�jwj# 
an be 
omputed in log-arithmi
 spa
e.Proposition 3.28. (i) Let � be a relational signature. Given the presentation dof a stru
ture A 2 AutStr[� ℄ and a quanti�er-free formula '(x) 2 FO[� ℄, thelanguage �d(') 
an be 
omputed in time O�jdjO(j'j)� and spa
e O�j'j log jdj�.In parti
ular, the stru
ture 
omplexity is in Logspa
e and the expression
omplexity in Pspa
e.(ii) This result is optimal in the sense that there exist presentations d andformulae ' su
h that the output is of size O�jdjO(j'j)�.Proof. (i) Use the na��ve algorithm:Input: d, '(x0; : : : ; xl�1)Let Ai = (Qi; �; Æi; 0; Fi), for i < n, be the automata belongingto the atoms of '.forall q 2 Q0 � � � � �Qn�1 doforall a 2 �l dofor j = 0; : : : ; n� 1 do q0j := Æj(qj ; a)output \ Æ(q; a) = q0 "end



3.4. Complexity of Queries 27forall q 2 Q0 � � � � �Qn�1 doif ' with values determined by q evaluates to true thenoutput \ q 2 F "The 
laim follows as jQ0 � � � � �Qn�1j = O(jdjO(j'j)).(ii) Let d be a presentation of a stru
ture with a single unary relation Rwhi
h is represented by the languageL := fuuv j juj = n g:Let A be a minimal automaton re
ognising L. It has2n+1 � 1 + 2n � 1 + 1 = 3 � 2n � 1states (2i states for i � n to store the pre�x of length i, 2i states for i < n tostore the remaining suÆx of length i, and one failure state). De�ne ' as'(x0; : : : ; xk�1) := Rx0 ^ � � � ^ Rxk�1:Sin
e the run of the resulting automaton on all 
omponents is independent it iseasy to see that at least (32n � 2)k + 1 states are needed (the failure state 
anbe shared).Proposition 3.29. Let � be a relational signature. Given the presentation dof a stru
ture A 2 AutStr[� ℄ and a formula '(x) 2 �1[� ℄, the language �d(')
an be 
omputed in time O�2jdjO(j'j)� and spa
e O�jdjO(j'j)�.In parti
ular, the stru
ture 
omplexity is in Pspa
e and the expression 
om-plexity in Expspa
e.Proof. Analogous to above with the state-spa
e P(Q1 � � � � �Qn).The 
omplexity results of this se
tion are summarised in the following table.Stru
ture-Complexity Expression-ComplexityModel-Che
king �0 Logspa
e-
omplete Alogtime-
omplete�0 + fun Nlogspa
e Ptime-
omplete�1 Nptime-
omplete Pspa
e-
ompleteQuery-Evaluation �0 Logspa
e Pspa
e�1 Pspa
e Expspa
e



28 3. Automati
 Presentations and Queries



Chapter 4Complete Stru
turesWe have seen that [!-℄[T℄AutStr is 
losed under FO-interpretations. Those in-terpretations 
an be regarded as redu
tions in the sense of 
omplexity theory.A natural question is whether [!-℄[T℄AutStr 
ontains any 
omplete stru
tureswith regard to this redu
tion, i.e., stru
tures A su
h that all other stru
turesin [!-℄[T℄AutStr 
an be interpreted in A. The following theorem gives an aÆr-mative answer. (The stru
tures Np, Rp, Pp, and P!p are de�ned below.)Theorem 4.1. Let A be a �-stru
ture.(i) A 2 AutStr[� ℄ i� A �FO Np for some/all p � 2.(ii) A 2 !-AutStr[� ℄ i� A �FO Rp for some/all p � 2.(iii) A 2 TAutStr[� ℄ i� A �FO Pp for some/all p � 2.(iv) A 2 !-TAutStr[� ℄ i� A �FO P!p for some/all p � 2.The proof will take the rest of this 
hapter. We will show for ea
h type oflanguage (�nite words, trees, et
.) that there are stru
tures A with presentationsof this type whose universe 
onsists of (an en
oding of) �� for some alphabet �su
h that a subset of A is FO-de�nable if and only if its en
oding is regular.4.1 Word LanguagesLogi
al de�nability of regular languages of �nite words was investigated alreadyin the 60's by B�u
hi, Trakhtenbrot and others. We present one 
lassi
al result(see [BHMV94℄ for an overview). The stru
tures we are looking at areNp := (N;+; jp) and W(�) := (��; (�a)a2� ;�; el);where + is addition, p 2 N n f0; 1g, andx jp y : i� 9n; k 2 N : x = pn and y = kx;�a(x) := xa;x � y : i� 9z : xz = y;el(x; y) : i� jxj = jyj :First we show that both are equivalent. Thus we 
an 
hoose whi
hever �ts outmomentary needs. While Np is more 
onvenient to work with, W(�) is mu
h29



30 4. Complete Stru
tures
loser to formal languages thereby simplifying some proofs. A
tually, in thisse
tion we will only be 
on
erned with Np, but in the 
ase of !-languages anadapted version of W(�) will save a lot of work.Proposition 4.2 (
f. [Gr�a90℄). Nj�j 
FO W(�).Proof. W.l.o.g. assume � = Zp := f0; : : : ; p� 1g for some p > 1.(W(Zp) �FO Np) Let valp(w) denote the value of the word w 2 Z�p viewed asa p-adi
 number with the least signi�
ant digit �rst. We 
annot just map everyword w 2 Z�p to valp(w), for w may end with zeros whi
h would be dis
arded.Therefore we en
ode words w 2 Z�p by the number valp(w1).We introdu
e some abbreviations. In order to a

ess the digits of a numberwe de�nedigk(x; y) := 9s9t(x = s+ k � y + t ^ t < y ^ p � y jp s)whi
h says that the digit of x at position y is k. Powers of p 
an be de�ned byPpx := x jp x. The last digit of x is 
hara
terised byend(x; z) := Ppz ^ z � x < 2 � z:The desired interpretation of W(�) in Np isÆ(x) := 9z end(x; z);"(x; y) := x = y;'�a (x; y) := 9z(end(x; z) ^ y = p � z + a � z + (x� z));'�(x; y) := 9zhend(x; z) ^8z0�z0 < z ! k̂<p(digk(x; z0)$ digk(y; z0))�i;'el(x; y) := 9z(end(x; z) ^ end(y; z)):(Np �FO W(Zp)) Here, every word w 
an simply be seen as p-adi
 en
odingof the number valp(w). Again, we de�ne some abbreviations. The length ofwords 
an be 
ompared with jxj � jyj : i� 9z(el(x; z) ^ z � y). The digit ofvalp(x) at position jyj isdigk(x; y) := 9z(jzj = jyj ^ �kz � x):In 
ase k = 0 we have to 
onsider the 
ase jyj � jxj as well.dig0(x; y) := 9z(jzj = jyj ^ �kz � x) _ jyj � jxjThe universe of the interpretation 
onsists of all words. Two words are equal ifthey have the same digits.Æ(x) := true;"(x; y) := 8z k̂<p(digk(x; z)$ digk(y; z)):x jp y holds i� x = 0 � � � 010 � � � and y = 0 � � � 0y0.'jp(x; y) := 9z[dig1(x; z) ^ 8z0(jz0j 6= jzj ! dig0(x; z0))^ 8z0(jz0j < jzj ! dig0(y; z0))℄:



4.1. Word Languages 31Addition is slightly more involved. LetA := � (a; b; 
; d; d0) �� a+ b+ d = d0p+ 
; a; b; 
 2 Zp; d; d0 2 f0; 1g	be the set of digits valid for addition. '+(x; y; z) says that there is some word uen
oding the 
arry su
h that at all positions the digits of x, y, z, and u are in A.'+(x; y; z) := 9u�8v(dig0(u; v) _ dig1(u; v))^ 8v _(a;b;
;d;d0)2A (diga(x; v) ^ digb(y; v) ^ dig
(z; v)^ digd(u; v) ^ digd0(u; �0v))�:As the universe of W(�) is �� one 
an ask whi
h languages are de�nablein W(�). We want to use Np instead, so we have to use some sort of en
oding.Sin
e numbers may have arbitrarily many leading zeros we 
an take 0 as theblank symbol � used by the 
onvolution.The following result was �rst proved by B�u
hi in 1960 where it is stated in adi�erent but equivalent way using weak monadi
 se
ond-order logi
. In the formbelow it was �rst proved by Bruy�ere. A detailed overview is given in [BHMV94℄.Theorem 4.3. R � Nn is FO-de�nable in Np if and only if fold(val�1p (R)) isregular.Proof. ()) We 
onstru
t an automati
 presentation of Np using the p-adi
en
oding. Let d := �valp;Zp; LÆ; L"; L(A+); Ljp� whereLÆ := Z�p;L" := �� ii � �� i 2 Zp	�;Ljp := � 00 �� �� 1i � �� i 2 Zp	�� 0i � �� i 2 Zp	�;and A+ := �f0; 1g;Z3p; �; 0; f0g� just needs to keep tra
k of the 
arry.� := � (i; (a; b; 
); j) �� pj + 
 = a+ b+ i	(() Let A = (Q;Znp; �; q0; F ) be an automaton re
ognising fold(val�1p (R)).W.l.o.g. assume Q = Zmp for some m and q0 = (0; : : : ; 0). We prove the 
laim by
onstru
ting a formula  A(x) 2 FO stating that there is a su

essful run of Aon some word w 2 fold(val�1p (x))). By assumption, if A a

epts one su
h wordit a

epts all words regardless of the number of leading zeros. The run of Ais en
oded by a tuple (q0; : : : ; qm�1) 2 Nm of numbers su
h that the digits ofq0; : : : ; qm�1 at some position equal k0; : : : ; km�1 i� the automaton is in state(k0; : : : ; km�1) when s
anning the input symbol at that position. Additionally,we have to �nd a position s to the right of all positions 
arrying non-zero digitsthat we 
an take as length of the input.  A(x) has the form A(x0; : : : ; xn�1) := 9q0 � � � 9qm�19s[ADM(x; q; s) ^ START(x; q; s) ^RUN(x; q; s) ^ ACC(x; q; s)℄;where the admissibility 
ondition ADM(x; q; s) states that s is some positiongreater than ea
h xi, START(x; q; s) says that the �rst state is 0, ACC(x; q; s)that the last one is �nal, and RUN(x; q; s) ensures that all transitions are 
orre
t.



32 4. Complete Stru
turesWe use the abbreviation Syma(x; z) := Vi digai(xi; z) stating that the digitsof x at position z are a. ADM(x; q; s) must express that s is a power of p whi
his greater than any of the xi.ADM(x; q; s) := Pps ^ î<nxi < sSTART(x; q; s) and ACC(q; x; s) simply say that the �rst symbol of q is 0 andthat the last symbol of q is in F , respe
tively.START(x; q; s) := Sym0:::0(q; 1)ACC(x; q; s) := _k2F Symk(q; s)Finally, RUN(x; q; s) states that at every position a valid transition is used.RUN(x; q; s) := 8z�Ppz ^ z < s! _�2�Trans� (x; q; s)�where Trans� (x; q; z) des
ribes a single transition � .Trans(k;a;k0)(x; q; z) := Symk(q; z) ^ Syma(x; z) ^ Symk0(q; p � z)Using this theorem twi
e we 
an transform every formula ' into an automaton Aand ba
k to  A. Hen
e, in Np every formula ' is equivalent to a formula of theform  A for some automaton A. We 
all  A the automaton normal form of '.Corollary 4.4. In Np every FO(9!)-formula is equivalent to some �2-formu-la.Proof. Let  A be the automaton normal form of the given formula. We have to
ount its quanti�er nesting. 0 and 1 
an be de�ned asDEF(0; 1) := 0 + 0 = 0^ 8x8y(x+ y = 1! (x = 0 ^ y = 1) _ (x = 1 ^ y = 0))whi
h is in �1. Furthermorex < y 2 �1; ADM 2 �1; ACC 2 �1;digk(x; y) 2 �1; START 2 �1; RUN 2 �2:Therefore, if  A is written as9q9s9091[DEF ^ADM ^ START ^ RUN ^ ACC℄we see that  A 2 �3. In order to obtain the stronger 
laim we have to rewriteRUN to some �1-formula. This 
an be done by expressing that all invalidtransitions do not o

ur instead of listing all valid transitions.RUN0(x; q; s) := 8z�Ppz ^ z < s! �̂ =2�:Trans� (x; q; s)� A, as 
onstru
ted above, is in �2. Sin
e we 
an take A to be deterministi
,an equivalent de�nition is8q8s8081[DEF^ADM ^ START ^ RUN0 ! ACC℄whi
h is in �2.



4.1. Word Languages 33The last 
orollary 
an be strengthened to give an expli
it bound on the num-ber of quanti�ers whi
h depends only on the number of free variables appearingin the formula. For w 2 f9;8g� let [w℄ denote the 
lass of all �rst-order formulaewhi
h are equivalent to some FO-formula with the quanti�er pre�x w.Corollary 4.5. In Np every FO(9!)-formula '(x0; : : : ; xn�1) is in [91083n+10℄and in [8793n+10℄.Proof. We use the same idea as in the previous 
orollary but have to en
odethe run in only one variable q. Let A = �Q;Znp; �; f0g; fm � 1g� be a non-deterministi
 automaton belonging to ' with states Q = f0; : : : ;m � 1g. Westore only every (m+1)th state in q. Thus we 
an use m+1 digits of q for ea
hstate k 2 Q. We en
ode k as sequen
e 1k+10m�k. Note that there is always atleast one 1 and one 0. First, we de�ne a generalisation of digk(x; y) to sequen
esof digits.digsk0:::kr�1(x; y) := 9s9t�x = s+ �Pi<r piki� � y + t^ t < y ^ pr � y jp s� 2 [93℄Furthermore, we have DEF 2 [82℄ and, using thatx < y � 9z(x+ z = y ^ x 6= y) � 8z(y + z 6= x) 2 [9℄ \ [8℄;we obtainSTART(x; q; s) := digs10m(q; 1) 2 [93℄;ACC(x; q; s) := digs1m0(q; s) 2 [93℄:ADM has to ensure that q is of the right form.ADM(x; q; s) :=Pps ^ î<nxi < s^ :9z_�digw(q; z) �� jwj = m+ 1 and w is not a fa
tor of1i+10m�i1j+10m�j for all i; j < m	 2 [84℄:In order to de�ne RUN we need a formula des
ribing the e�e
t of a sequen
e ofm+ 1 transitionsTrans(k;a0:::am;k0)(x; q; z) :=digs1k+10m�k (q; z) ^ digs1k0+10m�k0 (q; pm+1 � z)^ î<n digs(a0)i:::(am)i(xi; z) 2 [93n+6℄;and a formula de�ning those positions where the en
oding of a state startsPOS(q; z) := Ppz ^ _w2f0;1gm�1 digs1w0(q; z) 2 [93℄:



34 4. Complete Stru
turesLet �m+1 denote the set of all tuples (k; a0 : : : am; k0) 2 Q�Zm+1p �Q des
ribingsequen
es of m+ 1 transitions permitted by �. SettingRUN(x; q; s) := 8z�POS(q; z)! ^� =2�m+1 :Trans� (x; q; z)� 2 [83n+10℄we obtain9q9s9091[DEF ^ ADM ^ START ^ RUN ^ ACC℄ 2 [94939383n+10℄;8q8s8081[DEF^ADM ^ START ^ RUN! ACC℄ 2 [848393n+10℄:4.2 !-LanguagesIn this and the following se
tions we repeat the program of the last one for,respe
tively, !-, tree, and !-tree languages. In the 
ase of !-languages thestru
tures 
orresponding to Np and W(�) areRp := (R;+;�; jp; 1) and W!(�) := (��!; (�a)a2� ;�; el);where +, �, and 1 have their usual meaning, p 2 N n f0; 1g, andx jp y : i� 9n; k 2 Z : x = pn and y = kx;�a(x) := (xa if x 2 ��;x if x 2 �!;x � y : i� 9z : xz = y;el(x; y) : i� jxj = jyj :Again, the �rst step is to prove their equivalen
e. In order to simplify onedire
tion we additionally introdu
e the stru
ture R+p := (R�0 ;+; jp; 1).What makes matters slightly more 
ompli
ated in the 
ase of reals is thefa
t that some real numbers have two en
odings. For instan
e, in base 10 thenumbers 0:999 : : : and 1:000 : : : are the same. The �rst 
ase is 
alled the lowen
oding, the se
ond the high en
oding.Proposition 4.6. Rp 
FO R+p 
FO W!(Zp).Proof. (Rp �FO R+p ) The interpretation represents non-negative numbers x 2 Rby the pair (0; x) and non-positive numbers x by (1;�x).Æ(x) := x0 = 0 _ x0 = 1;"(x; y) := (x0 = y0 ^ x1 = y1) _ (x1 = 0 ^ y1 = 0);'1(x) := x0 = 0 ^ x1 = 1;'jp(x; y) := x0 = 0 ^ x1 jp y1;'�(x; y) := (x0 = 1 ^ y0 = 0) _ (x1 = 0 ^ y1 = 0)_ (x0 = 0 ^ y0 = 0 ^ 9z(x1 + z = y1))_ (x0 = 1 ^ y0 = 1 ^ 9z(y1 + z = x1)):



4.2. !-Languages 35To de�ne addition we have to handle ea
h 
ombination of signs separately.'+(x; y; z) := (x0 = 0 ^ y0 = 0 ^ z0 = 0 ^ x1 + y1 = z1)_ (x0 = 1 ^ y0 = 1 ^ z0 = 1 ^ x1 + y1 = z1)_ (x0 = 0 ^ y0 = 1 ^ z0 = 0 ^ x1 = y1 + z1)_ (x0 = 1 ^ y0 = 0 ^ z0 = 1 ^ x1 = y1 + z1)_ (x0 = 1 ^ y0 = 0 ^ z0 = 0 ^ y1 = x1 + z1)_ (x0 = 0 ^ y0 = 1 ^ z0 = 1 ^ y1 = x1 + z1)(R+p �FO W!(Zp)) We represent a number Pimipi (in high en
oding) bythe pair (m0 : : :mr;m�1m�2 : : : ) and de�ne, using the same abbreviations asin the previous se
tion,Inf(x) := 8y(x � y ! x = y); " : 8x(" � x);Fin(x) := :Inf(x); 0! : Inf(0!) ^ 8x dig0(0!; x):The universe of the interpretation 
onsists of all pairs whose fra
tional part doesnot end with (p� 1)!.Æ(x) := Fin(x0) ^ Inf(x1) ^ :9y8z(jzj > jyj ! digp�1(x1; z))Two pairs are equal if their fra
tional parts are identi
al and their integer partsdi�er only by the number of initial zeros."(x; y) := x1 = y1 ^ 8z k̂<p(digk(x0; z)$ digk(y0; z))'1(x) := "(x; (�1"; 0!))For x jp y we have to 
he
k whether x is an integer or less than 1, and handleboth 
ases separately.'jp(x; y) := [x1 = y1 = 0! ^  1jp(x0; y0)℄ _ [x0 � 0! ^  2jp(x1; y1)℄ 1jp(x; y) := 9z�dig1(x; z) ^ 8z0(jz0j 6= jzj ! dig0(x; z0)) ^8z0(jz0j < jzj ! dig0(y; z0))� 2jp(x; y) := 9z�dig1(x; z) ^ 8z0(jz0j 6= jzj ! dig0(x; z0)) ^8z0(jz0j > jzj ! dig0(y; z0))�Unsurprisingly, addition is the most 
ompli
ated part. Again there has to be anumber u en
oding the 
arry.'+(x; y; z) := 9u[Æ(u) ^ 8v(dig0(u0; v) _ dig1(u0; v))^ 8v(dig0(u1; v) _ dig1(u1; v))^  1+(x; y; z; u) ^  2+(x; y; z; u)℄ 1+ and  2+ handle, respe
tively, the integer and fra
tional part of the addition



36 4. Complete Stru
turesand 
he
k whether ea
h digit is 
orre
t using the set A de�ned above. 1+(x; y; z; u) := 8v _(a;b;
;d;d0)2A �diga(x0; v) ^ digb(y0; v) ^ dig
(z0; v)^ digd(u0; v) ^ digd0(u0; �0v)� 2+(x; y; z; u) := 8v _(a;b;
;d;d0)2A� diga(x1; v) ^ digb(y1; v) ^ dig
(z1; v)^ digd(u1; v)^ [9s(jvj = jsj+ 1 ^ digd0(u1; s)) _(v = " ^ digd0(u0; "))℄�(W!(Zp) �FO Rp) Finite words m1 : : :mr 2 Z�p are en
oded by the numberp�r+1 + rXi=1mip�i + 2 2 [2; 3℄:We 
annot just map in�nite words m1m2 : : : 2 Z!p to Pimip�i 2 [0; 1℄ be-
ause, e.g., the words 0(p� 1)! and 10! would be mapped to the same number.Therefore we 
hoose the en
oding as�Xi mip�i 2 [�1; 1℄su
h that numbers in [0; 1℄ en
ode the word 
orresponding to their high en
odingand numbers in [�1; 0℄ en
ode words 
orresponding to the low en
oding of theirabsolute value. This results in most words having two en
odings. SetLastDigit(x; y) := y jp x ^ p � y 6 jpx;Inf(x) := �1 � x � 1;Fin(x) := 2 � x � 3 ^ 9y(LastDigit(x; y) ^ p � y jp x� y);Ambig(x) := Inf(x) ^ :9y LastDigit(x; y):We obtain the interpretationÆ(x) := Inf(x) _ Fin(x);"(x; y) := x = y _ [Ambig(x) ^Ambig(y) ^ x = �y℄;'�i (x; y) := [Inf(x) ^ "(x; y)℄ _[Fin(x) ^ Fin(y) ^ 9z(LastDigit(x; z) ^ LastDigit(y; z=p)^ y = x� z + i � z + z=p)℄;'el(x; y) := [Inf(x) ^ Inf(y)℄ _[Fin(x) ^ Fin(y) ^ 9z(LastDigit(x; z) ^ LastDigit(y; z))℄;'�(x; y) := "(x; y)_ �Fin(x) ^ 9z�LastDigit(x; z) ^ [(Inf(y) ^  1�(x; y; z)) _(Fin(y) ^  2�(x; y; z))℄��; 1�(x; y; z) := [(0 � y _Ambig(y)) ^ 0 � jyj � (x � z) < p � z℄ _[y < 0 ^ :Ambig(y) ^ 0 < jyj � (x� z) � p � z℄; 2�(x; y; z) := 9z0(LastDigit(y; z0) ^ 0 � (y � z0)� (x � z) < p � z):



4.3. Tree Languages 37This time we useW!(�), mainly be
ause the 
onstru
tion of an !-automati
presentation of Rp is quite involved. (See [BRW98℄ for a similar result.)Theorem 4.7. R � (�!)n is FO-de�nable in W!(�) if and only if fold(R) is!-regular.Proof. W.l.o.g. assume � = Zp for some p > 1.()) SetZp� := Zp �[ f�g; id := �[ ii ℄ �� i 2 Zp	; id� := �[ ii ℄ �� i 2 Zp�	:The desired presentation of W!(�) isd := �id;Zp�; LÆ; L"; (L�i)i<p; L�; Lel�whereLÆ := Z�p�! [Z!p ; L� := L
2Æ \ �id! [ id����i � �� i 2 Zp�	!�;L" := L
2Æ \ id!�; L�i := L
2Æ \ �id! [ id� ��i � ��� �!�;Lel := (Z2p)! [ (Z2p)� ��� �! :(() The proof is analogous to the one above. Let A = (Q;Znp; �; 0;F )with Q = Zmp be a Muller-automaton whi
h re
ognises fold(R). We 
onstru
t aformula  A de�ning R. A(x0; : : : ; xn�1) := 9q0 � � � 9qm�1[ADM(q; x) ^ START(q; x) ^RUN(q; x) ^ ACC(q; x)℄with Inf(x) := 8y(x � y ! x = y);Syma(x; z) := î digai(xi; z);ADM(q; x) := ^i<m Inf(qi) ^ î<n Inf(xi);START(q; x) := Sym0(q; ");RUN(q; x) :=8z _(k;a;k0)2�(Symk(q; z) ^ Syma(x; z) ^ Symk0(q; �0z));ACC(q; x) := _F2F� k̂2F 8z9z0(jz0j > jzj ^ Symk(q; z0))^ k̂ =2F :8z9z0(jz0j > jzj ^ Symk(q; z0))�:4.3 Tree LanguagesLet R be a ring and M a monoid. The semiring RhhMii of formal power seriesover M 
onsists of all maps r : M ! R. We write (r;m) for the value of m



38 4. Complete Stru
turesunder r. Addition, produ
t, and Hadamard produ
t are de�ned as(r1 + r2;m) := (r1;m) + (r2;m);(r1 � r2;m) := Xm1�m2=m(r1;m1) � (r2;m2);(r1 � r2;m) := (r1;m) � (r2;m):Note that the produ
t is unde�ned if the sum diverges. We denote by RhMithe semiring of formal polynomials over M , i.e., power series r with (r;m) = 0for all but a �nite number of m.In this se
tion we 
onsider the stru
turesPp := �ZphfX;Y g�i;+;�; �X; � Y � and Tp := (T;+; �; s0; s1)where, for p 2 N n f0; 1g, Pp is the semiring of formal polynomials in two non-
ommuting variables with addition, Hadamard produ
t and right-multipli
ationby the variables, andT := � t 2 T!Zp �� t�1(i) is �nite for all i 6= 0	;(t1 + t2)(x) := t1(x) + t2(x) for all x 2 f0; 1g�;(t1 � t2)(x) := t1(x) � t2(x) for all x 2 f0; 1g�;(sit)(x) := t(xi) for i 2 f0; 1g:Proposition 4.8. Pp =FO Tp.Proof. Note that ea
h tree t : dom(t)! Zp 
an be regarded as a formal polyno-mial in Zphf0; 1g�i. Hen
e, both stru
tures are nearly isomorphi
 but for the def-inition of si and �X , where the arguments are reversed. s0t = r i� r �X = t.We en
ode ea
h t 2 T� as tree in Tp by marking its frontier with 1's.Formally
ode(t) :=8><>:t(x) if x 2 dom(t);1 if x =2 dom(t); x = yi; i 2 f0; 1g and y 2 dom(t);0 otherwise:Theorem 4.9. Let R � (T�)n. 
ode(R) is FO-de�nable in Tj�j if and only iffold(R) is re
ognisable.Proof. ()) A presentation of Tp is given byd := �id;Zp; TZp; L(A"); L(A+); L(A�); L(As0); L(As1)�where A" := �fq0g;Z2p; �"; fq0g�;A� := �fq0g;Z3p; ��; fq0g�;Asi := �fq0; : : : ; qp�1g;Z2p; �i; fq0; : : : ; qp�1g�



4.3. Tree Languages 39for � 2 f�;+g and i 2 f0; 1g with�" := �(q0; (a; a); q; q0) �� a 2 Zp; q; q0 2 fq0;�g	;�� := �(q0; (a1; a2; a1 � a2); q; q0) �� a1; a2 2 Zp; q; q0 2 fq0;�g	[ �(q0; (a;�; a� 0); q; q0); (q0; (�; a; 0� a); q; q0) ��a 2 Zp; q; q0 2 fq0;�g	;�0 := �(qa; (a; b); qb; q) �� a; b 2 Zp; q 2 fq0; : : : ; qp�1;�g	[ �(qa; (a;�);�; q) �� a 2 Zp; q 2 fq0; : : : ; qp�1;�g	;�1 := �(qa; (a; b); q; qb) �� a; b 2 Zp; q 2 fq0; : : : ; qp�1;�g	[ �(qa; (a;�); q;�) �� a 2 Zp; q 2 fq0; : : : ; qp�1;�g	:(() First we de�ne some auxiliary formulae. The 0-tree is de�ned by 0+0 =0. The m-fold produ
t of some tree t is0t := 0; mt := t+ � � �+ t:In order to a

ess the nodes of a tree we use trees 
ontaining a single nodelabelled by 1.SingleNonZero(t) := 8s_i<p t � s = it;SingleOne(t) := SingleNonZero(t) ^ 9=ps(t � s = s):The root isRoot(t) := SingleOne(t) ^ s0t = 0 ^ s1t = 0;and the su

essors of some node are de�ned bySu

0(s; t) := SingleOne(s) ^ SingleOne(t) ^ s0t = s;Su

1(s; t) := SingleOne(s) ^ SingleOne(t) ^ s1t = s;Su

(s; t0; t1) := Su

0(s; t0) ^ Su

1(s; t1):Additionally, we need a formula 
hara
terising those trees all of whose nodesare either labelled with 1 and posses at least one 
hild also labelled with 1, orare labelled with 0Inf(t) := 8r[SingleOne(r)! (t � r = r _ t � r = 0)℄^ 8r8s08s1[Su

(r; s0; s1)! (t � r = 0 _ t � s0 6= 0 _ t � s1 6= 0)℄;and a formula de�ning those positions of a tree whose su

essors all are labelledwith 0Box(s; t) := �s � t = 0 ^ 9r(Inf(r) ^ r � t = t ^ r � s = 0)�_ �s � t = t ^ 8v( Su

0(t; v) _ Su

1(t; v)!9r(Inf(r) ^ r � v = v ^ r � s = 0))�:



40 4. Complete Stru
turesWe 
onstru
t a formula stating that the tree automaton A = (Q;Znp; �; F )with Q = Zmp a

epts some tuple (t0; : : : ; tn�1) 2 TnZp. A(t0; : : : ; tn�1) := 9q0 � � � 9qm�1[RUN(q; t) ^ ACC(q; t)℄whereSyma(x; r) := ^i : ai 6=�(xi � r = air ^ :Box(xi; r)) ^ ^i : ai=�Box(ti; r);RUN(q; t) :=8r8s08s1�Su

(r; s0; s1)!_(k;a;k0;k1)2��Symk(q; r) ^ Syma(t; r) ^ Symk0(q; s0) ^ Symk1(q; s1)��;ACC(q; t) := 9r�Root(r) ^ _k2F Symk(q; r)�:4.4 !-Tree LanguagesThis last se
tion holds no surprises. A bored reader may skip it without missinganything. The stru
tures areP!p := �ZphhfX;Y g�ii;+;�; �X; � Y � and T!p := (T!Zp;+; �; s0; s1)where, p 2 N n f0; 1g, Pp is the semiring of formal power series in two non-
ommuting variables with addition, Hadamard produ
t and right-multipli
ationby the variables, and(t1 + t2)(x) := t1(x) + t2(x) for all x 2 f0; 1g�;(t1 � t2)(x) := t1(x) � t2(x) for all x 2 f0; 1g�;(sit)(x) := t(xi) for i 2 f0; 1g:Proposition 4.10. P!p =FO T!p .Proof. same as above.Theorem 4.11. R � (T!�)n is FO-de�nable in T!j�j if and only if fold(R) isre
ognisable.Proof. ()) The desired presentation of T!p isd := �id;Zp; T!Zp; L(A"); L(A+); L(A�); L(As0); L(As1)�where A" := �fq0g;Z2p; �"; fq0g; fq0g�;A� := �fq0g;Z3p; ��; fq0g; fq0g�;Asi := �fq0; : : : ; qp�1g;Z2p; �i; fq0; : : : ; qp�1g;P(fq0; : : : ; qp�1g)�



4.4. !-Tree Languages 41for � 2 f�;+g and i 2 f0; 1g with�" := �(q0; (a; a); q0; q0) �� a 2 Zp	;�� := �(q0; (a1; a2; a1 � a2); q0; q0) �� a1; a2 2 Zp	;�0 := �(qa; (a; b); qb; q) �� a; b 2 Zp; q 2 fq0; : : : ; qp�1g	;�1 := �(qa; (a; b); q; qb) �� a; b 2 Zp; q 2 fq0; : : : ; qp�1g	:(() Using the same auxiliary formulae as in the 
ase of �nite trees we
onstru
t a formula stating that the !-tree automaton A = (Q;Znp; �;Q0;F )with Q = Zmp a

epts some tuple (t0; : : : ; tn�1) 2 (T!Zp)n. A(t0; : : : ; tn�1) := 9q0 � � � 9qm�1[START(q; t) ^ RUN(q; t) ^ ACC(q; t)℄whereSyma(x; r) := î xi � r = air;START(q; t) := 9r�Root(r) ^ _k2Q0 Symk(q; r)�;RUN(q; t) :=8r8s08s1�Su

(r; s0; s1)!_(k;a;k0;k1)2��Symk(q; r) ^ Syma(t; r) ^ Symk0(q; s0) ^ Symk1(q; s1)��;ACC(q; t) :=_F2F� k̂2F 8r[Inf(r)! 9s(SingleOne(s) ^ r � s = s ^ Symk(q; s)℄^ k̂ =2F :8r[Inf(r) ! 9s(SingleOne(s) ^ r � s = s ^ Symk(q; s)℄�:
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Chapter 5Classes of Automati
Stru
turesWe are now ready to investigate the four 
lasses of automati
 stru
tures. Af-ter developing tools to obtain negative results and looking at the 
losure of[!-℄[T℄AutStr under 
ertain produ
ts we will determine the relationship betweenthem.5.1 Growth Rates and Length Sequen
esSo far, our only tool to prove that some stru
ture is not automati
 was to showthat its theory is unde
idable. In this se
tion we develop another method whi
hunfortunately is only appli
able in 
ase of AutStr. The arguments used are slightgeneralisations of a result of Khoussainov and Nerode [KN95, Lemma 4.5℄.When trying to show that a stru
ture has no automati
 presentation onesu�ers from the la
k of knowledge about how elements are en
oded. If su
hinformation were available one 
ould use standard te
hniques from formal lan-guage theory to prove non-regularity. So far, the best we 
an do is to givebounds on the length of the en
oding of some element.Proposition 5.1 (impli
it in [KN95, Lemma 4.5℄). Let A 2 AutStr, d an in-je
tive presentation of A, and let f : An ! A be a fun
tion of A. Then thereis a 
onstant m su
h that for all a 2 An�d(f(a)) � m+maxf�d(a0); : : : ; �d(an�1)g:Proof. As d is inje
tive there is a single word w en
oding the value of f(a). Letmbe the number of states in the automaton re
ognising the graph of f . Supposethat w is more than m symbols longer than the en
oding of ea
h argument.Then the automaton re
ognises a word of the form((� �[ f�g)n ��)�(f�gn ��)m+1:As there has to be a repetition of states in the suÆx of this word the automatonre
ognises in�nitely many words with the same pre�x. But this pre�x 
ompletely
ontains the arguments of the fun
tion so the image of a has in�nitely manyrepresentations. Contradi
tion. 43



44 5. Classes of Automati
 Stru
turesCorollary 5.2. Let A 2 AutStr, d an inje
tive presentation of A, and letR � An+k be a relation of A su
h that for all a 2 An the number of b 2 Akwith (a; b) 2 R is �nite. Then there is a 
onstant m su
h that for all (a; b) 2 Rmaxf�d(b0); : : : ; �d(bk�1)g � m+maxf�d(a0); : : : ; �d(an�1)g:Proof. De�ne the fun
tion f : An ! A byf(a) = 
 : i� 9b(Rab ^ \
 appears in b")^ 8b�Rab! î<k �d(bi) � �d(
)�:By assumption on R f is well-de�ned, and it should be 
lear that there is someautomaton re
ognising the graph of f . Therefore the result follows from thepre
eding proposition.In the 
ase of Presburger Arithmeti
 Proposition 5.1 seems to indi
ate thatwe do not have mu
h 
hoi
e with regard to the en
oding.Lemma 5.3. For any automati
 presentation d of Presburger Arithmeti
 wehave �d(n) 2 �(log n).Proof. The lower bound immediately follows from the fa
t that there are onlyj�jn strings of length n over �. To prove the upper bound we show by indu
tionon n that�d(n) � mdlog2 ne+ �d(1)where m is the 
onstant from the previous lemma.(n = 1) �d(1) � mdlog2 1e+ �d(1).(n > 1) Set k = dlog2 ne. Then n = 2k�1 + (n � 2k�1) and we obtain fromthe previous lemma and the indu
tion hypothesis�d(n) = �d(2k�1 + (n� 2k�1))� m+maxf�d(2k�1); �d(n� 2k�1)g� m+m(k � 1) + �d(1)= mdlog2 ne+ �d(1):Corollary 5.2 
an be paraphrased su
h that it yields lower bounds.Corollary 5.4. Let A 2 AutStr, d an inje
tive presentation of A, and letf : An ! A be a fun
tion of A su
h that for all b 2 A the set f�1(b) is �nite.Then there is a 
onstant m su
h that for all a 2 An�d(f(a)) � maxf�d(a0); : : : ; �d(an�1)g �m:Proof. The relation R := f (b; a) j f(a) = b g satis�es the 
onditions of the
orollary above.



5.1. Growth Rates and Length Sequen
es 45The above results deal with a single appli
ation of a fun
tion or relation. Inthe remaining part of this se
tion we will study the e�e
t of applying fun
tionsiteratively, that is, we will 
onsider some de�nable subset of the universe and
al
ulate upper bounds on the length of the en
odings of elements in the sub-stru
ture generated by it. First we need bounds for the (en
odings of) elementsof some de�nable subsets.Lemma 5.5. Let A be a stru
ture in AutStr with presentation d, and let B bean FO(9!)-de�nable subset of A. Then �d(B) is a �nite union of arithmeti
alprogressions.Proof. Denote by L the regular language representing B and let h : �� ! f1g�be the proje
tion with h(a) := 1 for all a 2 �. Then h(L) is regular, too, andf jxj j x 2 L g = f jxj j x 2 h(L) g:As h(L) is a regular language over an unary alphabet the 
laim follows (see,e.g., [Eil74, Proposition V.1.1℄).Before pro
eeding we apply this lemma to our favourite example, PresburgerArithmeti
.Lemma 5.6. Let (N;+; P ) 2 AutStr for some unary predi
ate P , and let k1 <k2 < � � � be an enumeration of P . There exists a 
onstant 
 su
h that ki � 2
i.Proof. Fix a presentation d of (N;+; P ). Obviously, the set P is de�nable in thisstru
ture. By the pre
eding lemma, there is a 
onstantm su
h that �d(ki) � mifor all i, and be
ause of �d(ki) 2 �(log ki) there is some 
 su
h that1
 log2 ki � �d(ki) � mi =) ki � 2
mi:The example (N;+; Pp) 2 AutStr shows that this result is optimal, wherePp is the set of all powers of p.In the pro
ess of generating a substru
ture we have to 
ount the number ofappli
ations of fun
tions. This is made pre
ise byDe�nition 5.7. Let A 2 AutStr with presentation d, let f0; : : : ; fr be �nitelymany operations of arity r0; : : : ; rr, respe
tively, and let E = fe1; e2; : : : g besome subset of A with �d(e1) � �d(e2) � � � � . Then Gn(E), the nth generationof E, is de�ned asG1(E) := fe1g;Gn(E) := Gn�1(E) [ feng [ � fi(a) �� a 2 Grin�1(E); i � r 	:Putting everything together we obtain the following important result. The
ase of �nitely generated substru
tures already appeared in [KN95℄.Proposition 5.8. Let A 2 AutStr with inje
tive presentation d, let f0; : : : ; frbe �nitely many operations of A, and let E be some de�nable subset of A. Thenthere is a 
onstant m su
h that�d(a) � mn for all a 2 Gn(E):In parti
ular, jGn(E)j � j�jmn+1 where � is the alphabet of d.



46 5. Classes of Automati
 Stru
turesProof. A

ording to Proposition 5.1 and Lemma 5.5 there are 
onstants m0 andm0; : : : , mr with �d(en) � m0n;�d(fi(a0; : : : ; ari�1)) � mi +maxf�d(a0); : : : ; �d(ari�1)gfor i � r. Set m := maxfm0;m0; : : : ;mrg. We prove the 
laim by indu
tionon n.(n = 1) G1(E) = fe1g and �d(e1) � m0 � m.(n > 1) Let a 2 Gn(E). There are three possible 
ases. If a 2 Gn�1(E) thenthe indu
tion hypothesis yields�d(a) � m(n� 1) < mn:If a = en then�d(a) � m0n � mn:If a = fi(a0; : : : ; ari�1) for some a 2 Grin�1(E) and i � r then�d(a) = �d(fi(a0; : : : ; ari�1))� mi +maxf�d(a0); : : : ; �d(ari�1)g� mi +m(n� 1) (by ind. hyp.)� m+m(n� 1) = mn:Remark. Clearly, the 
laim remains valid if we repla
e some of the generatingfun
tions by relations whi
h satisfy the 
onditions of Corollary 5.2.We give two appli
ations. Obviously, in free stru
tures you 
an 
onstru
tmany di�erent elements by few appli
ations of fun
tions. Therefore it shouldnot be surprising that the free monoid is not automati
.Example. LetM be a tra
e monoid with at least two non-
ommuting generatorsa and b. ThenM =2 AutStr. In parti
ular, (��; �; ") =2 AutStr for any non-unaryalphabet �.Proof. We show by indu
tion on n thatfa; bg�2n � Gn+1(a; b):For n = 1 we have fa; bg � fa; aa; bg = G2(a; b), and for n > 1Gn+1(a; b) = �uv �� u; v 2 Gn(a; b)	� �uv �� u; v 2 fa; bg�2n�1 	= fa; bg�2n:Therefore, jGn(a; b)j � 22n and the 
laim follows.Example. Let A be any stru
ture in whi
h a pairing fun
tion f 
an be de�ned.Then A =2 AutStr.



5.1. Growth Rates and Length Sequen
es 47Proof. Let a, b be distin
t elements of A. All words w 2 fa; bg� of lengthjwj = 2n 
an be 
oded in A using appli
ations of f nested n levels deep. Forinstan
e, the word abaa of length 22 
an be represented as f(f(a; b); f(a; a)).Let 
(w) be the 
ode of w. Consider the generations of fa; bg. We have� 
(w) �� w 2 fa; bg2n 	 � Gn+1(a; b):whi
h implies that jGn+1(a; b)j � 22n as the 
oding is inje
tive.The above proposition 
an be generalised to the 
ase of an in�nite numberof de�nable generating fun
tions.De�nition 5.9. Let L � ��. By �(L) we denote the index of the Nerode-
ongruen
e of L. Analogously, if d is an automati
 presentation and ' 2 FO wede�ne �(') := �(�d(')).Lemma 5.10. Let d = (�;�; LÆ; L"; LR0 ; : : : ; LRr) be an automati
 presenta-tion. �(' _  ) � �(')�( ) �(:') � �(LÆ)�(')�(' ^  ) � �(')�( ) �(9y'(x; y)) � 2�(')Proof. To prove the �rst three inequations we show that �(L1�L2) � �(L1)�(L2)for regular languages L1, L2, and � 2 f[;\; ng. Let A1 and A2 be the minimaldeterministi
 automata re
ognising L1 and L2. Then, after 
hoosing the rightset of �nal states, the produ
t automaton A1 � A2 re
ognises L1 � L2.To 
onstru
t an automaton for �d(9y') we take the minimal deterministi
automaton for ', remove the 
omponents 
orresponding to y from the labels ofevery transition, and mark as �nal states all states from whi
h, in the originalautomaton, a �nal state 
an be rea
hed by using only transitions whose labels
ontain � in the 
omponents 
orresponding to y. Sin
e in general this yieldsa nondeterministi
 automaton we have to apply the subset 
onstru
tion whi
hmay 
ause an exponential blowup of the state-spa
e.Example. The question whether (Q;+) is automati
 is open. If we assume that(Q;+) has an automati
 presentation d, then there is a 
onstant m su
h thatfor all n, q0; : : : ; ql, k0; : : : ; kl 2 N�d� nqk00 � � � qkll � � �d(1) +mdlog2 ne+ lXi=0 ki2mlog22 qi :Proof. Set m := �(x+y = z). As in the 
ase of Presburger Arithmeti
 for n 2 Nwe obtain the bound�d(n) � mdlog2 ne+ �d(1):It remains to show that �(y = x=q) � 2mlog22 q for �xed q 2 N. Let fi0; : : : ; irgbe the set of digits of the binary en
oding of q whi
h are 1. Then, y = x=q or,equivalently, x = q � y 
an be de�ned as9x1 � � � 9xr�19y1 � � � 9yblog2 q
�y1 = y + y ^ ĵ yj+1 = yj + yj^ ĵ>1 xj = xj�1 + yij ^ x1 = yi0 + yi1 ^ x = xr�1 + yir�:
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 Stru
tures(yi 
ontains 2iy, xi is used to 
al
ulate the sum of those yi needed.) We obtainthe following bound�(x = q � y) � 2mblog2 q
�r � 2mlog22 qproving our 
laim.5.2 Appli
ations and ExamplesIn this se
tion the tools developed in the previous one are used to investigatewhether some stru
tures do or do not have automati
 presentations. We startwith some simple appli
ations to linear orders, equivalen
e and permutationstru
tures.Lemma 5.11. Let A = (A;<;R0; : : : ; Rr) 2 AutStr be a stru
ture with a dis-
rete linear order < and an inje
tive presentation d. Denote by s the su

essorfun
tion of <. Then there is some 
onstant m su
h that for all a 2 A and n 2 Z�d(sna) � �d(a) + jnjm:Proof. Immediately from Proposition 5.1 as s and s�1 are de�nable.Lemma 5.12. Let A = (A;<0; <1; R0; : : : ; Rr) 2 AutStr be a stru
ture withtwo dis
rete linear orders. Denote the su

essor fun
tions of <0 and <1 bys0 and s1, respe
tively. There is some 
onstant m su
h that for all a 2 A andn 2 Z���d(sn0a)� �d(sn1a)�� � �d(a) + jnjm:Proof. Take m as maximum of the 
onstants from the previous lemma for<0 and <1.Lemma 5.13. Let A = (A;<;R0; : : : ; Rr) 2 AutStr be a stru
ture with a well-ordering < and an inje
tive presentation d. Then there exists a 
onstant m su
hthat for every a 2 A�d(b) � �d(a) +m for all b � a:Proof. Sin
e for every a 2 A the set f b 2 A j b � a g is �nite we 
an applyCorollary 5.2.Lemma 5.14. If f : N ! N is de�nable in Np and � � A�A is an equivalen
erelation with f(n) 
lasses of size n for all n 2 N and with r � ! 
lasses of
ardinality �0 then the stru
ture A := (A;�) has an automati
 presentation.Proof. We show that A �FO Np. The kth element of the mth 
lass of size n isen
oded by the tuple (n;m; k) and the kth element of the mth in�nite 
lass isen
oded by (0;m; k). The interpretation is de�ned asÆ(x) := (x0 > 0 ^ x1 < fx0 ^ x2 < x0) _ (x0 = 0 ^ x1 < r);(if r = ! then x1 < r � true)"(x; y) := x0 = y0 ^ x1 = y1 ^ x2 = y2;'�(x; y) := x0 = y0 ^ x1 = y1:



5.2. Appli
ations and Examples 49Lemma 5.15. Let A = (A;�) 2 AutStr where � is an equivalen
e relationand let d be an inje
tive presentation of A. Then there is a 
onstant m su
hthat for all �nite equivalen
e 
lasses [a℄����d(a)� �d(a0)�� � m for all a0 2 [a℄�:Proof. Let d = (�;�; LÆ; L"; L�) and let m be the index of the Nerode-
ongru-en
e of L�. If there are x, y 2 �� su
h thatx
 y 2 L� and jyj � jxj+mthen, a

ording to the Pumping Lemma, there are in�nitely many y0 2 �� withx
 y 2 L�. Contradi
tion.Lemma 5.16. Let A = (A;�) 2 AutStr where � is an equivalen
e relation.Let n0 < n1 < � � � be an enumeration of the 
ardinalities of the �nite �-
lasses.Then ni 2 2O(i).Proof. Let d = (�;�; LÆ; L"; L�) be an inje
tive presentation of A. Considerthe set F de�ned by'(x) := :9!y(x � y):A

ording to Lemma 5.5 there is a subset fa1; a2; : : : g � F su
h that, for some
onstant m0, �d(ai) = m0i. Let m be the 
onstant from the pre
eding lemmaand set k := bm=m0
+ 1. Then ai 6� ai+k and�d([aik ℄�) � m0i � (bm=m0
+ 1) +m � (m+m0)(i+ 1)=) ��[aik℄��� � 2O(i):As �j[aik ℄�j�i is a subsequen
e of (ni)i the 
laim follows.Lemma 5.17. Let f : N ! N be de�nable in Np. Then (A; �) 2 AutStr whereA is 
ountable and � is a permutation of A with f(n) orbits of size n and anarbitrary number of in�nite orbits.Proof. For simpli
ity, we 
onstru
t an interpretation of (A; �) in (Z;+; jp).Clearly, f is also de�nable in this stru
ture. Let r � ! be the number ofin�nite orbits. We en
ode the kth element of the mth orbit of size n as (k;m; n)and the elements of the mth in�nite orbit as (k;m; 0) for k 2 Z. Thus, we de�neÆ(x) := (x2 > 0 ^ 0 � x0 < x2 ^ 0 � x1 < fx2) _ (x2 = 0 ^ x1 < r);"(x; y) := x0 = y0 ^ x1 = y1 ^ x2 = y2;'�(x; y) := x1 = y1 ^ x2 = y2 ^ (x2 > 0 ^ x0 + 1 < x2 ^ y0 = x0 + 1_ x2 > 0 ^ x0 + 1 = x2 ^ y0 = 0_ x2 = 0 ^ y0 = x0 + 1):
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 Stru
turesRedu
ts of Arithmeti
. We start by deriving limits on the possible presen-tations of Presburger Arithmeti
. Re
all from Lemma 5.3 that �d(n) 2 �(log n).Proposition 5.18. Let (N;+; f) 2 AutStr for f : N ! N.(i) f(n) 2 nO(1) and n1+" =2 O(f(n)) for all " > 0.(ii) If f(n) 2 O(n1�") for some " > 0 then f(n) is bounded.(iii) Let k1 < k2 < � � � be an enumeration of f�1(n) for some n. There existsa 
onstant 
 su
h that ki � 2
i.Proof. (i) Fix a presentation d of (N;+; f). By Proposition 5.1 there is a 
on-stant m su
h that for all n 2 N�d(f(n)) � �d(n) +m:Applying f several times, we obtain�d(fk(n)) � �d(n) + km:Be
ause of �d(n) 2 �(log n) there are 
onstants 
0 and 
1 su
h that for largeenough n 1
0 log2 fk(n) � �d(fk(n)) � �d(n) + km � 
1 log2 n+ km=) fk(n) � 2
0kmn
0
1 :Thus f(n) 2 nO(1).Suppose that nr 2 O(f(n)) for some r > 1, i.e., f(n) > 
nr for some 
 andall suÆ
iently large n. Thus,fk(n) > 

r � � � 
rk�1nrk = 
(rk�1)=(r�1)nrk :Choosing rk > 
0
1 we get a 
ontradi
tion to fk(n) � 2
0kmn
0
1 for large n.(ii) Let f(n) be unbounded. Theng(n) := minf k j f(k) � n gis well-de�ned and monotone. Sin
e g is FO-de�nable in (N;+; f) the stru
ture(N;+; g) has an automati
 presentation as well, and n1+" =2 O(g(n)) for all " > 0by (i).Suppose f(n) 2 O(nr) for some r < 1. Then f(n) < 
nr for some 
 and allsuÆ
iently large n. Thus,f(n) < 
nr =) n = g(f(n)) < g(
nr) =) 
�1n1=r � g(n)in 
ontradi
tion to n1=r =2 O(g(n)).(iii) Sin
e the set f�1(n) is de�nable the 
laim immediately follows fromLemma 5.6.So far, the only redu
t of Arithmeti
 we looked at was the additive one. Nowwe turn to Skolem Arithmeti
 (N; �) and the divisibility poset (N; j).Proposition 5.19. (N; j) =2 AutStr.



5.2. Appli
ations and Examples 51Proof. Suppose (N; j) 2 AutStr. We de�ne the set of primesPx : i� x 6= 1 ^ 8y(y j x! y = 1 _ y = x);the set of powers of some primeQx : i� 9y(Py ^ 8z(z j x ^ z 6= 1! y j z));and a relation 
ontaining all pairs (n; pn) where p is a prime divisor of nSxy : i� x j y ^ 9=1z(Qz ^ :Pz ^ z j y ^ :z j x):The least 
ommon multiple of two numbers isl
m(x; y) = z : i� x j z ^ y j z ^ :9u(u 6= z ^ x j u ^ y j u ^ u j z):For every n 2 N there are only �nitely many m with (n;m) 2 S. ThereforeS satis�es the 
onditions of Corollary 5.2. Consider the set generated by Pvia S and l
m, and let 
(n) := jGn(P )j be the 
ardinality of Gn(P ). If (N; j) isin AutStr then (N; j; P;Q; S) 2 AutStr and 
(n) 2 2O(n) by Proposition 5.8. LetP = fp1; p2; : : : g. For n = 1 we have G1(P ) = fp1g. Generally, Gn(P ) 
onsistsof(1) numbers of the form pk11 ,(2) numbers of the form pk22 � � � pknn , and(3) numbers of a mixed form.In n steps we 
an 
reate(1) p1; : : : ; pn1 (via S),(2) 
(n� 1) numbers with k1 = 0, and(3) 
(n� 2)� 1 numbers of a mixed form for every 0 < k1 < n (via l
m).All in all we obtain
(n) � n+ 
(n� 1) + (n� 1)(
(n� 2)� 1)= 
(n� 1) + (n� 1)
(n� 2) + 1� n
(n� 2) (as 
(n� 1) > 
(n� 2))� n(n� 2) � � � 3
(1) (w.l.o.g. assume that n is odd)= n(n� 2) � � � 3� ((n+ 1)=2)!2 2
(n log n):Contradi
tion.The importan
e of the following 
orollary lies in the fa
t that it is possible to
onstru
t a tree-automati
 presentation of Skolem Arithmeti
 (
f. Se
tion 5.3)whi
h implies that AutStr 6= TAutStr.Corollary 5.20. (N; �) =2 AutStr.Proof. (N; j) �FO (N; �).
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 Stru
turesExample. If we repla
e divisibility by the predi
ate ? de�ned byx ? y : i� x and y have no 
ommon divisorsthe resulting stru
ture (N;?) is automati
.Proof. We 
onstru
t an interpretation (N;?) �FO Np. A number n is en
odedby the pair (k;m) where the ith digit of k is 1 i� the ith prime divides n and these
ond 
omponent enumerates all numbers with the same set of prime divisors.Thus, (k;m) ? (k0;m0) holds i� there is no position at whi
h both k and k0
arry the digit 1. We obtain the interpretationÆ(x) := 8z(Ppz ! dig0(x0; z) _ dig1(x0; z));"(x; y) := x0 = y0 ^ x1 = y1;'?(x; y) := :9z(dig1(x0; z) ^ dig1(y0; z)):Proposition 5.21. (N;+;?) =2 AutStr.Proof. The set of primes 
an be de�ned asPx : i� x > 1 ^ 8y(y < x! x ? y):We start by 
onstru
ting a fun
tion mapping numbers x to the least primegreater than x.fx = y : i� y > x ^ Py ^ :9z(x < z < y ^ Pz):Let g(x) := fx � ffx. Sin
e g(x) > x2, the 
laim follows if we 
an de�ne g in(N;+;?). We use the auxiliary relation Mxy whi
h holds i� fx and ffx arethe only prime divisors of y. Thus, g(x) returns the least su
h y.Mxy : i� :(y ? fx) ^ :(y ? ffx)^ 8z[:(y ? z)! :(z ? fx) _ :(z ? ffx)℄;g(x) = y : i� y > ffx ^Mxy ^ :9z[ffx < z < y ^Mxz℄:5.3 Composition of Stru
turesGeneralised Produ
ts. We begin our investigation of the 
losure propertiesof automati
 stru
tures with Feferman-Vaught like produ
ts (see [Tho97a, Zei94,Hod93℄). A generalised produ
t|as it is de�ned below|is a generalisation of adire
t produ
t, a disjoint union, and an ordered sum. Hen
e, we will be able toprove 
losure under all of these operations with just one|unfortunately quitete
hni
al|theorem.The relations of the new stru
ture are de�ned in terms of the types of the
omponents of its elements.De�nition 5.22. Let � be a �nite relational signature, A a � -stru
ture, anda 2 An. For k 2 N� we de�ne the k-type T k(A; a) of (A; a) asT "(A; a) := �' 2 FOn[� ℄ �� ' is atomi
, (A; a) j= '	;T km(A; a) := �T k(A; ab) �� b 2 Am 	:



5.3. Composition of Stru
tures 53The set T k(n) of all k-types with n parameters isT "(n) := �' 2 FOn[� ℄ �� ' is atomi
	;T km(n) :=P(T k(n+m)):For ea
h type there exists a so-
alled Hintikka-formula de�ning the tuples ofthis type (see [EF95℄ for the de�nition).In order to understand the next de�nition let us �rst look at how a dire
tprodu
t and an ordered sum 
an be de�ned using types.Example. (1) Let A := A0 � A1 where Ai = (Ai; Ri), for i 2 f0; 1g, and R is abinary relation. The universe of A is A0 � A1. Some pair (a; b) belongs to Ri� (a0; b0) 2 R0 and (a1; b1) 2 R1. This is equivalent to the 
ondition that the"-types of a0b0 and of a1b1 both in
lude the formula Rx0x1.(2) Let A := A0 + A1 where Ai = (Ai; <i), for i 2 f0; 1g, and <0, <1 arepartial orders. The universe of A is A0 �[ A1 �= A0 � f�g [ f�g � A1, and wehave a < b i� a = (a0;�); b = (b0;�) and a0 <0 b0;or a = (�; a1); b = (�; b1) and a1 <1 b1;or a = (a0;�); b = (�; b1):Again, the 
ondition ai <i bi 
an be expressed using "-types.De�nition 5.23. Let � = fR0; : : : ; Rrg be a �nite relational signature, rj thearity of Rj , and r̂ := maxfr0; : : : ; rrg. Let n 2 N and (Ai)i2I be a sequen
e of� -stru
tures, and let I be an arbitrary relational �-stru
ture with universe I .Fix for ea
h k � r̂ an enumeration f�k0 ; : : : ; �ktkg of T "(n+ k) and set�k := � �[ fD0; : : : ; Dk�1g �[ fTml j m � k; l � tm g:The �k-expansion I(b) of I belonging to a sequen
e b 2 �Qi2I(Ai �[ f�g)�k isgiven byDI(b)l := � i 2 I �� (bl)i 6= �	;(Tml )I(b) := � i 2 I �� f j j (bj)i 6= � g = fj0; : : : ; jm�1g andT "(Ai; (bj0)i : : : (bjm�1)i) = �ml 	:Then C := (I; D; �0; : : : ; �r) with D � B I and �j 2 FO[�rj ℄ de�nes thegeneralised produ
t C(Ai)i2I := (A;R0; : : : ; Rr) of (Ai)i2I whereA := [d2DYi2I �di�f�g; Ai�; Ri := f b 2 Ari j I(b) j= �i g;and �b(a0; a1) := ab.Example. (
ontinued)(1) For the dire
t produ
t of A0 � A1 we would setI := (I) with I = f0; 1g;D := f(1; 1)g;� := _l2LT 2l 0 ^ _l2LT 2l 1;where L is the set of "-types 
ontaining the formula Rx0x1.
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 Stru
tures(2) In this 
ase we would setI := (I) with I = f0; 1g;D := f(1; 0); (0; 1)g;� := �D00 ^D10 ^ _l2LT 2l 0� _ �D01 ^D11 ^ _l2LT 2l 1� _ (D00 ^D11);where L is the set of "-types 
ontaining the formula x0 < x1.Theorem 5.24. Let � = fR0; : : : ; Rrg be a �nite relational signature, and K a
lass of �-stru
tures 
ontaining all �nite �-stru
tures and a stru
ture C whi
his 
omplete for K with regard to many-dimensional FO-interpretations.Let I be a �nite relational �-stru
ture, (Ai)i2I a sequen
e of stru
tures inK ,and C = (I; D; �) a generalised produ
t. Then C(Ai)i2I 2 K , and an interpre-tation C(Ai)i2I �FO C 
an be 
onstru
ted e�e
tively from the interpretationsAi �FO C and I �FO C.Proof. W.l.o.g. let I = f0; : : : ; jI j � 1g and assume that C 
ontains 
onstants0 and 1. We have to 
onstru
t an interpretation of A := C(Ai)i2I in C. Letrj be the arity of Rj . Consider ni-dimensional interpretationsIi := �hi; Æi(xi); "i(xi; yi); 'i0(xi0; : : : ; xir0�1); : : : ; 'ir(xi0; : : : ; xirr�1)�of Ai in C. We represent an element a of A by an (jI j+ n0 + � � �+ njIj�1)-tuplex := �d; x0; : : : ; xjIj�1�where d 2 D determines whi
h 
omponents are empty and xi en
odes theith 
omponent of a. The desired interpretation is 
onstru
ted as follows.I := �h; Æ(x); "(x; y); '0(x0; : : : ; xr0�1); : : : ; 'r(x0; : : : ; xrr�1)�whereh(d; x0; : : : ; xjIj�1) := ��d0��; h0(x0)�; : : : ; �djIj�1��; hjIj�1(xjIj�1)��;Æ(d; x0; : : : ; xjIj�1) := _
2D�d = 
 ^ ^i : 
i=1 Æi(xi)�;and "(d; x0; : : : ; xjIj�1; e; y0; : : : ; yjIj�1) := d = e ^ ^i<jIj�di = 1! "i(xi; yi)�:In order to de�ne 'j we 
onsider an interpretationII := �hI ; ÆI(x); "I(x; y); 'I0(x0; : : : ; xs0�1); : : : ; 'Is(x0; : : : ; xss�1)�of I in C. Sin
e I is �nite su
h an interpretation exists. Let �j := �IIj bethe formula de�ning Rj . Note that �j 
ontains additional relations Dl and Tmlwhi
h are not in �. Thus �j is a senten
e over the signature � extended by thesymbols Dl and Tml for appropriate l and m. We have to be repla
e them inorder to obtain a de�nition of 'j . Let x0; : : : ; xrj�1 be the parameters of 'jwherexk = (dk; x0k; : : : ; xjIj�1k )
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tures 55for k < rj . Dl 
an be de�ned byDli := (dl)i = 1:To de�ne Tml 
onsider the Hintikka-formula #ml (x0; : : : ; xrj�1) de�ning the 
or-responding type and setTml i := (#ml )Ii(xi0; : : : ; xirj�1):Note that those de�nitions are only valid be
ause i ranges over a �nite set.'j 
an now be de�ned as �j with Dl and Tml repla
ed by the above de�nitions.Obviously, all steps in the 
onstru
tion above are e�e
tive.Corollary 5.25. [!-℄[T℄AutStr is e�e
tively 
losed under �nitary generalisedprodu
ts.As promised we immediately obtain 
losure under several types of 
omposi-tions.Corollary 5.26. Let � = fR0; : : : ; Rrg be a �nite relational signature, I a �niteset, and A and Ai, i 2 I, �-stru
tures with automati
 presentation. Then thereexist automati
 presentations of(i) the dire
t produ
t Qi2I Ai of (Ai)i2I ,(ii) the disjoint union �Si2IAi of (Ai)i2I , and(iii) the !-fold disjoint union ! � A of A.Proof. (i) We haveQi2I Ai = C(Ai)i2I for C := (I; D; �0; : : : ; �r) with I := (I),D := f(1; : : : ; 1)g, and�j := 8i _l : Rjx2�rjl T rjl i:(ii) We have �Si2IAi = C(Ai)i2I for C := (I; D; �) with I := (I) andD := f(1; 0; : : : ; 0); : : : ; (0; : : : ; 0; 1)g;�j := 9i�^l<rj Dli ^ _l : Rjx2�rjl T rjl i�:(iii) N = (!) has an automati
 presentation. We have ! � A = C(A;N) forC := (I; D; �) with I := (f0; 1g; 0; 1), D := f(1; 1)g, and�j := _l : Rjx2�rjl T rjl 0 ^ ^i0;i1<rj _l : xi0=xi12�rjl T rjl 1:Corollary 5.27. Let � = f<;R0; : : : ; Rrg be a �nite relational signature, I a�nite ordered set, and A and Ai, i 2 I, ordered �-stru
tures with automati
presentation. Then there exist automati
 presentations of(i) the ordered sum Pi2I Ai of (Ai)i2I and(ii) the !-fold ordered sum Pi2! A of A.
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 Stru
turesProof. (i) We have Pi2I Ai = C(Ai)i2I for C := (I; D; �<; �) with I := (I;<)and D := f(1; 0; : : : ; 0); : : : ; (0; : : : ; 0; 1)g;�j := 9i�^l<rj Dli ^ _l : Rjx2�rjl T rjl i�;�< := 9i�D0i ^D1i ^ _l : x0<x12�2l T 2l i� _ 9i09i1(D0i0 ^D1i1 ^ i0 < i1):(ii) The stru
ture N = (!;<) has an automati
 presentation. Constru
tC := (I; D; �<; �) with I := (f0; 1g; 0; 1), D := f(1; 1)g, and�j := _l : Rjx2�rjl T rjl 0 ^ ^i0;i1<rj _l : xi0=xi12�rjl T rjl 1;�< := � _l : x0<x12�2l T 2l 0 ^ _l : x0=x12�2l T 2l 1� _ _l : x0<x12�2l T 2l 1:Then Pi2! A = C(A;N).Weak Dire
t Powers. A 
ase not 
overed in the pre
eding se
tion are weakand !-fold dire
t powers. Clearly, for 
ardinality reasons [T℄AutStr 
annot be
losed under !-fold dire
t powers, and even in the weak 
ase we obtain a negativeresult.Theorem 5.28. AutStr is not 
losed under weak dire
t powers.Proof. Presburger Arithmeti
 (N;+) possesses an automati
 presentation. Butits weak dire
t power is isomorphi
 to Skolem Arithmeti
 whi
h a

ording toCorollary 5.20 is not in AutStr.It turns out that tree presentations on the other hand are 
losed under weakpowers.Theorem 5.29.(i) TAutStr is 
losed under weak dire
t powers.(ii) !-TAutStr is 
losed under weak and !-fold dire
t powers.Proof. Let A 2 TAutStr with presentation d = (�;�; TÆ; T"; TR0 ; : : : ; TRr). Inorder to 
onstru
t a tree-automati
 presentation of the weak dire
t power A�of A we en
ode a tuple (t0; : : : ; tn) of trees from TÆ by the tree t withdom(t) := f"; 0; : : : ; 0ng [ [i�n 0i1 dom(ti);t(0i) := 0;t(0i1x) := ti(x):Let B = (Q;�;�; F ) be a tree-automaton re
ognising one of the languagesTÆ, T", TR0 ; : : : , TRr . The tree-automaton B� for the 
orresponding languagein the presentation of A� is B� := (Q �[ fq0g; �;�0; fq0g) with�0 := � �[ � (q0; 0; q0; q); (q0; 0;�; q) �� q 2 F 	:The proofs of the other 
laims are analogous.
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Figure 5.1: En
oding of (t0; : : : ; tn)Example. (1) (N; �) 2 TAutStr as (N n f0g; �) �= (N;+)� via the isomorphismtaking (n0; n1; : : : ) to the number pn00 pn11 � � � where p0; p1; : : : is an enumerationof all primes.(2) Similarly, (Q>0 ; �) 2 TAutStr as (Q>0 ; �) �= (Z;+)�.5.4 The Class Hierar
hyFinally, we are able to 
ompare the various 
lasses of automati
 stru
tures.Theorem 5.30. [T℄AutStr � !-[T℄AutStr.Proof. We 
onstru
t an interpretation Np �FO R+p .Æ(x) := 1 jp x; '+(x; y; z) := x+ y = z;"(x; y) := x = y; 'jp(x; y) := x jp y:Be
ause jRj > jNj there is no interpretation in the other dire
tion, hen
e thein
lusion is proper.The 
ase of tree-automati
 presentations is analogous.Theorem 5.31.(i) AutStr � TAutStr(ii) !-AutStr � !-TAutStrProof. (i) We show that Np �FO Tp. We de�ne formulae whi
h state that theleft bran
h of a tree t is labelled 1, respe
tively, from the root or from somevertex r to some other vertex, and every other vertex is labelled 0.LeftPath(t) :=8r8s8s0(Su

(r; s; s0)! (t � r = r _ t � r = 0) ^ (t � r = r ! t � s0 = 0)^ (t � r = 0! t � s = 0 ^ t � s0 = 0))LeftPathSuÆx(t; r) :=SingleOne(r)^ 9s19s2(LeftPath(s1) ^ LeftPath(s2)^ s1 � t = t ^ s2 � t = 0 ^ t+ s2 = s1 ^ s1 � r = r ^ s2 � r = 0^ 8v(Su

0(v; r)! s2 � v = v))
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 Stru
turesTo 
he
k the digits at one position the following formula 
an be used. It statesthat the labels at the position r in the trees t0, t1, t2, and t3 are labelled x0, x1,x2, and x3, respe
tively, and the position r0 in t3 is labelled x03.Adda0a1a2a3a03(t0; t1; t2; t3; r; r0) := î<4 r � ti = air ^ r0 � t3 = a03r:A number n 2 N is en
oded by a tree whose left bran
h is labelled with thedigits of n.Æ(t) := 9s(LeftPath(s) ^ s � t = t);"(t; t0) := t = t0;'jp(t; t0) := 9s(LeftPathSuÆx(s; t) ^ s � t0 = t0);'+(t0; t1; t0) := 9s�Æ(s) ^ 8r8r0�Su

0(r; r0)!_(a;b;
;d;d0)2AAddab
dd0(t0; t1; t0; s; r; r0)��;where we used the set A of 
orre
t digits de�ned in Se
tion 4.1.The in
lusion is proper, as (N; �) 2 TAutStr nAutStr.(ii) analogous.We have seen that, simply for 
ardinality reasons, !-[T℄AutStr n [T℄AutStris non-empty. The question o

urs whether 
ardinality is the only reason. A�rst step to answer this question isTheorem 5.32. Let A 2 !-AutStr be 
ountable. A 2 AutStr if and only if ithas an inje
tive !-automati
 presentation.Proof. ()) Let d be an inje
tive automati
 presentation of A. We obtain aninje
tive !-automati
 presentation by 
hanging ea
h en
oding x to x�! for somepadding symbol �.(() Let d = (�;�; LÆ; L"; LR0 ; : : : ; LRr) be an inje
tive !-automati
 presen-tation of a 
ountable stru
ture A. Then LÆ is 
ountable, too. As it is !-regularwe haveLÆ = [i�nUiV !ifor regular languages U0; : : : ; Un; V0; : : : ; Vn � ��. In this expression V0; : : : ; Vn
an be 
hosen one-elementary as, otherwise, jV !i j � jf0; 1g!j = 2�0 > jLÆj.Thus,LÆ = [i�nUifvig!:We 
onstru
t an automati
 presentation d0 = (�0; �0; L0Æ; L0"; L0R0 ; : : : ; L0Rr) of A.�0 := � �[ f0; : : : ; ng �0(ix) := �(xv!i )L0Æ := [i�n iUi L0" := (L0Æ)
2 \ � [ aa ℄ �� a 2 �0 	�



5.4. The Class Hierar
hy 59Consider a B�u
hi-automaton B = (Q; (� �[ f�g)rj ; �; q0; F ) re
ognising LRj ,and for l 2 f0; : : : ; ngrj and i0 < jvl0 j ; : : : ; irj�1 < jvlrj�1 j, denote by Rl{ the setof states from whi
h B a

epts the word�si0(vl0)
 � � � 
 sirj�1(vlrj�1)�!where si is the 
y
li
 shift by i letters to the leftsi(a0 � � � an) := ai � � � ana0 � � �ai�1:Let k := maxfjv0j ; : : : ; jvnjg and vi = vi0 � � � vi(jvij�1). The following automatonre
ognises L0Rj . Set B0 := �Q0; (�0 �[ f�g)rj ; �0; q00; F 0� whereQ0 := Q� f0; : : : ; ngrj � f0; : : : ; k � 1grj �[ fq00g;�0 := � �q00; l; (q0; l; 0)� �� l 2 f0; : : : ; ngrj 	[ � �(q; l; {); a; (q0; l; {0)� �� (q; b; q0) 2 � where, for s < rj ;(bs = as; i0s = is = 0; and as 2 �) or(bs = vlsis ; i0s = is + 1mod jvls j ; and as = �)	;F 0 := � (q; l; {) �� q 2 Rl{ 	:Intuitively, B0 determines from the �rst letter whi
h in�nite part the words inea
h tra
k of the input have, and when the end of a word is rea
hed it simulatesthe work of B on the word v!i until the end of the whole input is rea
hed. Asthere are only �nitely many possible ways the in�nite parts are shifted relativeto ea
h other B0 
an determine whether the input is a

epted by B.Open Problem. Does every 
ountable A 2 !-AutStr possess an inje
tive presen-tation, or, equivalently, is every 
ountable A 2 !-AutStr already in AutStr?A �rst step in the investigation of this question isLemma 5.33. Let A 2 !-AutStr and let a 2 A be de�nable. Then in every !-automati
 presentation d of A there is an ultimately periodi
 !-word en
oding a.Proof. Let '(x) be the formula de�ning a. The 
laim immediately follows fromthe fa
t that every non-empty regular !-language 
ontains an ultimately peri-odi
 word, and be
ause �d(') is non-empty.Open Problem. Does every A 2 !-AutStr in whi
h every element is de�nablebelong to AutStr?We have obtained the following hierar
hy of 
lassesRe
StrTAutStrAutStrFinStr
De
Th!-TAutStr!-AutStroooooooo

oooooooo



60 5. Classes of Automati
 Stru
tureswhere FinStr is the 
lass of �nite, Re
Str the 
lass of re
ursive, and De
Ththe 
lass of stru
tures with de
idable FO-theory, and where solid lines indi-
ate proper in
lusion. Examples for the proper in
lusions FinStr � AutStr,TAutStr � Re
Str, and !-TAutStr � De
Th are Presburger Arithmeti
 (N;+),full Arithmeti
 (N;+; �), and any set with 
ardinality greater than 2�0 , respe
-tively.The following example, due to Eri
 Rosen, shows that 
ardinality is not theonly reason for the proper in
lusion of !-TAutStr in De
Th.Lemma 5.34. De
Th n !-TAutStr 
ontains a 
ountable stru
ture.Proof. The stru
tureD is 
onstru
ted via diagonalisation. Consider the 
lassKof graphs 
onsisting of �nite disjoint 
y
les. Let (Ai)i2N be an enumeration ofall !-tree automati
 stru
tures in K . De�ne D as follows: D 
ontains one 
y
leof length n i� An does 
ontain no su
h 
y
le. Obviously, D =2 !-TAutStr. Onthe other hand D 2 De
Th be
ause, for every ' 2 FO, whether ' 2 Th(D)depends only on the existen
e of 
y
les up to a 
ertain length. This length 
anbe e�e
tively determined from the quanti�er rank of '. Be
ause of the e�e
tivesemanti
s of automati
 stru
tures the question whether a 
y
le of length n exists
an be answered by 
onstru
ting An.



Chapter 6Model TheoryWe turn ba
k to logi
. After showing that the 
ompa
tness theorem fails forthe 
lass of automati
 stru
tures we will take a 
loser look at the theory of Np.6.1 Compa
tnessVery often, if one restri
ts the 
lass of models|say to �nite or re
ursive modelsor to 
onstraint databases|many important tools and results of 
lassi
 modeltheory fail. The most prominent example is 
ompa
tness. Unsurprisingly inautomati
 model theory it also does not hold.Theorem 6.1. The 
ompa
tness theorem fails for the 
lasses [!-℄[T℄AutStr.Proof. (Adapted from the proof for the 
ase of re
ursive stru
tures in [HH96℄.)Let A � N be any non-re
ursive set. De�ne� := f'<; 'Sg [ f'k j k 2 N gwhere'< := 8xyz(:x < x ^ (x < y ^ y < z ! x < z)^ (x < y _ x = y _ y < x))^ 9x:9y(y < x)^ 8x9y(x < y ^ :9z(x < z ^ z < y));(\< is a dis
rete linear order with least element.")'S := 8xy(Sxy $ (x < y ^ :9z(x < z ^ z < y)));(\S is the su

essor relation with respe
t to <.")'k := 9x0 � � �xk�:9y(y < x0) ^ î<k Sxixi+1 ^  k(x)�; k := ^i2f0;:::;kg\AUxi ^ ^i2f0;:::;kgnA:Uxi:(\U = A \ f0; : : : ; kg") 61



62 6. Model TheoryThen every �nite subset �0 � � has the automati
 model (N; <; S; U) with theusual ordering and su

essor relation, and U := A \ f0; : : : ;mg where m :=maxf k j 'k 2 �0 g.Suppose � has an automati
 model A. Then the following algorithm 
ande
ide A:Input: n' := 9x0 � � �xn�:9y(y < x0) ^ Vi<nSxixi+1 ^ Uxn�if A j= ' thenreturn trueelsereturn falseCorollary 6.2. There is no sound and 
omplete proof system for the set ofsenten
es valid in [!-℄[T℄AutStr.Proof. We show that the existen
e of su
h a system would imply the 
ompa
t-ness theorem. Assume there is a proof system su
h that � `  i� � j=  .If � is unsatis�able then there is a proof of � ` false. In this proof only a�nite number of senten
es of � would be used. Therefore there is a �nite subset�0 � � with �0 ` false. By 
ompleteness this would imply �0 j= false. Thusthere is a �nite unsatis�able subset of �.6.2 Axiomatisation of Th(Np)We present an axiom system for Th(Np). In order to simplify the task we �rst
onstru
t one for the stru
ture Sp := (N; <; sp; (Dk)k<p) whereDk := f (x; y) j y is a power of p and the digit of x at position y is k g;spx := p � x:Proposition 6.3. Np =FO Sp.The proof is straightforward. It follows that any axiom system for the theoryof one stru
ture yields an axiomatisation of the other one.We have seen in Se
tion 4.1 that in Np every formula 
an be transformed intoautomaton normal form. This 
an be used to derive an axiom system of Th(Np)or, equivalently, one of Th(Sp).De�nition 6.4 (Axiom system of Th(Sp)). We introdu
e the following abbre-viations. The set P of Positions is de�ned as Px := D1xx. The least elementof < is denoted by 0, the next one by 1. Let A = (Zmp ;Znp; 0; �; F ) be a de-terministi
 automaton. The 
orresponding formula (see Se
tion 4.1) is de�nedas  A(x) := 9q9s[ADM ^ START ^ RUN ^ ACC℄



6.2. Axiomatisation of Th(Np) 63whereADM(x; q; s) := Ps ^ î<nxi < s;START(x; q; s) := Sym0(q; 1);RUN(x; q; s) := 8z�z < s ^ Pz ! _�2�Trans� (x; q; z)�;ACC(x; q; s) := _k2F Symk(q; s);Trans(k;a;k0)(x; q; z) := Symk(q; z) ^ Syma(x; z) ^ Symk0(q; spz);Syma(x; z) := î Daixiz:The axiom system 
onsists of:(P1) < is a dis
rete linear order with �rst but without last element.8x:x < x8x8y8z(x < y ^ y < z ! x < z)8x8y(x < y _ x = y _ y < x)8x9y(x < y ^ :9z(x < z ^ z < y))8x[9y y < x! 9y(y < x ^ :9z(y < z ^ z < x))℄9x8y x � y(P2) sp is monotone.8x(x > 0! spx > x)sp0 = 0(P3) The least element of P is 1, P is unbounded, and sp is the su

essorfun
tion on <jP .:P0 ^ P18x9y(x < y ^ Py)8x(Px! Pspx ^ :9z(Pz ^ x < z < spx))8x(Px ^ x > 1! 9y(Py ^ x = spy))(P4) Ea
h number has exa
tly one 
olour at every position and no 
olour atnon-positions.8x8y î 6=k(:Dixy _ :Dkxy)8x8y�Py $ _k<pDkxy�(P5) Numbers are uniquely identi�ed by their 
olouring.8x8y[x = y $ 8z(Pz ! SameDigit(x; z; y; z))℄where SameDigit(x1; z1;x2; z2) := Wk<p(Dkx1z1 ^Dkx2z2).



64 6. Model Theory(P6) Every number eventually has 
olour zero.8x9y(Py ^ 8z(Pz ^ z � y ! D0xz))(P7) Positions have the 
olouring 0 � � � 010 � � � .8x8y(Px ^ Py ^ x 6= y ! D0xy)(P8) De�nition of < and sp in terms of 
olours.8x8y�x < y $ 9z�Pz ^ _i<k(Dixz ^Dkyz)^ 8z0(z0 > z ! SameDigit(x; z0; y; z0))��8x8y k̂<p(Dkxy $ Dkspxspy)8x(9y(x = spy)$ D0x1)(P9) Every periodi
 
olouring exists. For all numbers n 2 N n f0g and everyword w = a0 � � � an�1 2 Znp of length n we have the axiom8x8s8t9y�Ps ^ Pt ^ snps � t! 8z(z < s _ z > t! SameDigit(x; z; y; z))^ 8z(s � z ^ snpz � t! SameDigit(y; z; y; snpz))^ î<nDaiysips^ _i<n 9z�snpz = t ^ n̂k=iDakysk�ip z ^ i�1̂k=0Dakysn�(i�1)+kp z�^ 8z�s � z ^ s2np z � t! _i<n k̂<nDakysi+kp z��:(Intuitively, this axiom says that for every number x and all positionss and t of x there is some other number y whi
h di�ers from x only at thepositions between s and t. The part of y between s and t is periodi
 withperiod n, it starts with w, ends with some suÆx of w, and every intervalof length n in between 
ontains some 
y
li
 permutation of w.)(P10) Every deterministi
 automaton has a unique run on ea
h input. For alln, m 2 N, m > 0 and all transition relations � � Zmp �Znp �Zmp of some�nite total deterministi
 automaton (Zmp ;Znp; �; 0; F )|i.e., for all q 2 Zmpand a 2 Znp there is exa
tly one q0 2 Zmp with (q; a; q0) 2 �|we have theaxiom8x8s9=1q[START(x; q; s) ^ RUN(x; q; s) ^ END(q; s)℄whereEND(q; s) := 8z(Pz ^ z > s! Sym0(q; z)):Note that we allow automata without input, i.e., n = 0. Su
h automataare of the form A = (Zmp ;Z0p; �; 0; F ) where Z0p = f�g (� denotes theempty tuple), � � Zmp � Zmp �= Zmp � f�g � Zmp and L(A) is either f�gor ; depending on whether there is some q 2 F with (0; q) 2 TC(�).



6.2. Axiomatisation of Th(Np) 65(P11) The subset 
onstru
tion works. For all deterministi
 automata A and Bsu
h that B re
ognises the set de�ned by 9y  A(xy) we have the axiom8x[9y A(xy)$  B(x)℄:Theorem 6.5. The axiom system (P1){(P11) is 
omplete.Proof. We show that (P1){(P11) imply that ea
h formula is equivalent to itsautomaton normal form using the minimal automaton. Therefore, if ' is asenten
e it has an automaton normal form  A with A = (f0g; f�g; �; 0; F )where � = f(0;�; 0)g and F is either f0g or ;. In the �rst 
ase (P1){(P11) j= ',in the other 
ase (P1){(P11) j= :'. Thus, (P1){(P11) is 
omplete.By (P1){(P3) the set of positions is some dis
rete linear order with �rstelement 1 and without last element. By (P4) every number 
an be seen as
olouring of P whi
h by (P6) eventually be
omes 0; by (P5) the 
olouring isunique.By (P7) and (P8), if z is a position then x < z i� D0xz0 for all positionsz0 � z. Let A be a deterministi
 automaton. Consider A(x) := 9q9s[ADM ^ START ^ RUN ^ ACC℄:By (P3) there is some s satisfying ADM and by (P10) there is a unique tuple qwhi
h, given s, satis�es START ^ RUN. Therefore  A holds if and only if theunique run of A on x 
ontains some �nal state somewhere after the last positionof x 
arrying a non-zero digit.Now we a ready to prove the equivalen
e of atomi
 formulae to their au-tomata. We start with equality. Let A= := �f0; 1g;Z2p; �=; 0; f0g� with�= := f (0; (a; a); 0) j a 2 Zpg [ f (0; (a; b); 1) j a 6= b g[ f (1; (a; b); 1) j a; b 2 Zpg:Be
ause of (P9) the 
olourings 00 � � � and 0 � � � 01 � � � 10 � � � exist. Therefore, by(P10) and (P6) the unique run of A on some x is of one of these forms. Ifx0 = x1 it 
an only be the former, and if x0 6= x1 it 
an only be the latter. ThusA a

epts x if and only if x0 = x1.The other relations are handled similarly. De�neA< := �f0; 1g;Z2p; �<; 0; f1g�;ADk := �f0; 1; 2g;Z2p; �Dk ; 0; f1g�;Asp := �f0; : : : ; pg;Z2p; �sp ; 0; f0g�with �< := f (q; (a; b); 0) j a > b; q 2 f0; 1g g[ f (q; (a; b); 1) j a < b; q 2 f0; 1g g[ f (q; (a; a); q) j a 2 Zp; q 2 f0; 1g g;�sp := f (a; (b; a); b) j a; b 2 Zpg [ f (p; (a; b); p) j a; b 2 Zpg[ f (
; (a; b); p) j b 6= 
; a; b; 
 2 Zpg;



66 6. Model Theory�Dk := f (0; (a; 0); 0); (1; (a; 0); 1) j a 2 Zpg[ f(0; (k; 1); 1)g [ f (0; (a; 1); 2) j a 6= k g[ f (0; (a; b); 2) j b > 1; a; b 2 Zpg[ f (1; (a; b); 2) j b 6= 0; a; b 2 Zpg[ f (2; (a; b); 2) j a; b 2 Zpg:We have x0 < x1 i�, by (P8), there is some position z su
h that the digitof x0 at z is greater than the digit of x1 at z and the digits of x0 and x1 are thesame at all greater positions. This is the 
ase i� in the run of A< on (x0; x1)the state at position spz is 1 and remains 1 until all non-zero digits of (x0; x1)are passed. Again, the last equivalen
e follows sin
e by (P9) su
h a run existsand by (P10) it is unique. Therefore, x0 < x1 i�  A<(x0; x1).Similarly, Dkx0x1 i�, by (P9) and (P10), the run of ADk on (x0; x1) has theform 0 � � � 01 � � � 1. Therefore, Dkx0x1 i�  ADk (x0; x1).Finally, spx0 = x1 i�, by (P9) and (P19), the run of Asp on (x0; x1) has theform (x1; 0). Therefore, spx0 = x1 i�  Asp (x0; x1).It remains to prove that the equivalen
e is preserved when applying boolean
onne
tives and quanti�ers. Let Ai = (Zmip ;Znp; �i; 0; Fi), for i = 0, 1, be deter-ministi
 automata re
ognising some set of numbers. In parti
ular the a

eptan
eof Ai does not depend on the number of leading zeros.: A0 (x) holds i� the unique run q of A0 on x does not 
ontain a �nal stateafter the last non-zero position of x i�, by assumption, q 
ontains some non-�nalstate at su
h a position i� A0 := (Zm0p ;Znp; �0; 0;Zm0p nF0) a

epts x i�  A0(x)holds. A0 (x) _  A1(x) holds i� the unique run q0 of A0 on x or the run q1 of A1
ontains a �nal state after the last non-zero position of x i� the run (q0; q1) ofA := (Zm0+m1p ;Znp; �; 0; F0 �Zm1p [ Zm0p � F1);with � de�ned 
omponentwise a

ording to �0 and �1, 
ontains a �nal stateat su
h a position if A a

epts x i�  A(x) holds.The 
ase of the existential quanti�er immediately follows from (P11).It remains to prove that ea
h automaton 
an be minimised. Let q be therun of some automaton A on input x. The run q0 of the minimal automaton B
an be obtained from q by mapping ea
h state to the 
orresponding state of B.(Note that minimising some automaton means merging equivalent states.) Ifq0 exists it follows by (P10) that  B �  A. Consider the automaton C whosestates are the states of B and whi
h on input q, after reading one symbol of qenters the 
orresponding state of the minimal automaton. Hen
e, the run of Con input q is 0q0. As 0q0 = spq0 (with obvious abbreviations) the existen
e of q0follows from (P8).6.3 Non-Standard ModelsThe axiom system of the previous se
tion 
an be used to 
onstru
t non-standardmodels of Th(Sp) and Th(Np). Of 
ourse, we are mainly interested in non-standard models whi
h are automati
, but so far the author has only been ableto 
onstru
t a re
ursive one.



6.3. Non-Standard Models 67De�nition 6.6. ~Sp := (S;<; sp; (Dk)k) is the stru
ture of \intermediately pe-riodi
" (!+ �)-words where � = !�+! is the order type of the integers and theuniverse S 
onsists of all words w 2 Z!+�p su
h that there are �nite words x, y,z 2 Z�p with w = xy!y!�z0!. The relations are de�ned the 
anoni
al way:x < y : i� x = uiv; y = u0kv for some u; u0; v; and i < k 2 Zp;Dkxy : i� x = ukv and y = 0juj10 � � � for some u; v;spx := 0x:Proposition 6.7. ~Sp is a re
ursive non-standard model of Th(Sp).Proof. ~Sp obviously satis�es (P1){(P9). Consider two runs q0, q1 of some de-terministi
 automaton A on input x. By de�nition there are de
ompositionsq0 = x0y!0 y!�0 z00! and q1 = x1y!1 y!�1 z10!:Clearly, the initial parts of both runs must be identi
al x0y!0 = x1y!1 . Thus,x0y!0 y!�0 = x1y!1 y!�1 and therefore q0 = q1 whi
h yields (P10). Analogously,(P11) holds be
ause, when reading the initial part of the input xy!y!�z0!,the set of rea
hable states must eventually be
ome periodi
 and this period ispreserved faithfully when 
rossing the in�nite gap.Sin
e the order types of Sp and ~Sp are di�erent, they 
annot be isomorphi
and ~Sp is really non-standard.Ea
h element xy!y!�z of ~Sp 
an be stored as (x; y; z1; z2) 2 (Z�p)4 where z1is the part of z = z1z2 whi
h lies before position ! + !�. Obviously, using thisen
oding all relations 
an be 
he
ked e�e
tively. Thus, ~Sp is re
ursive.From ~Sp one easily obtains a re
ursive non-standard model ~Np of Th(Np)by applying the interpretation Np �FO Sp.Open Problem. Is there an automati
 non-standard model of Th(Np)?Sin
e the order type of ~Np is ! + �� this problem is related to the questionwhether (Q;+) is automati
.Lemma 6.8. If ~Sp as 
onstru
ted above is in AutStr then (Q;+; jp) 2 AutStrwhere + and jp are de�ned the 
anoni
al way.Proof. We pro
eed in several steps. First applying the interpretation of Npin Sp we obtain an automati
 non-standard model ~Np of Th(Np). Sin
e theset I of in�nite powers of p is FO(9!)-de�nable by'(x) := Ppx ^ 9!y y � x;the expansion ( ~N;+; jp; I) of ~Np is automati
 as well. Finally, we 
onstru
t aninterpretation of (Q;+; jp; I) in this stru
ture by identifying two elements of ~Nif their di�eren
e is �nite.Æ(x) := true; "(x; y) := 8z(Iz ! jx� yj < z):+ and jp are de�ned the obvious way.'+(x; y; z) := "(x+ y; z); 'jp(x; y) := Ix ^ x jp y:



68 6. Model TheoryOpen Problem. Are (Q;+) or (Q;+; jp) in [!-℄[T℄AutStr?Another partial answer to the �rst problem provides the following observa-tion.Proposition 6.9. If there exists an automati
 non-standard model A of Npthen A is not a redu
t of a non-standard model of Peano Arithmeti
.Proof. It is a well known result of re
ursive model theory that in any non-standard model of Peano Arithmeti
 both addition and multipli
ation are notre
ursive (see e.g. [S
h98℄).



Chapter 7Unary PresentationsThe kind of automati
 presentations we have used so far have two main dis-advantages. While the FO-theories of automati
 stru
tures are de
idable, their
omplexity 
an be non-elementary and more expressive logi
s like FO(DTC) arealready unde
idable. The other problem is of a methodi
al nature. It seems tobe very diÆ
ult to show that some stru
ture is not automati
 and thus to giveexa
t 
hara
terisations of the various 
lasses of automati
 stru
tures.In this 
hapter we will investigate a 
ertain restri
ted type of presentationsin the hope that stronger logi
s be
ome de
idable, the 
omplexity of various op-erations de
reases, or that at least more powerful theoreti
al te
hniques be
omeavailable.Our main method in the investigation of presentations was to 
al
ulatebounds on the length of en
odings. In the spe
ial 
ase of languages over aunary alphabet a word is 
ompletely determined by its length. Therefore, wetake a 
loser look at this 
ase.The 
lass of stru
tures A 2 AutStr[� ℄ possessing a unary automati
 presen-tations, i.e., a presentation over a unary alphabet, is denoted by 1AutStr[� ℄.Many of the basi
 properties proved in Chapter 3 for automati
 stru
tures|su
h as the e�e
tive semanti
s for FO(9!)|remain valid for 1AutStr. Onenotable ex
eption is that 1AutStr is only 
losed under 1-dimensional FO(9!)-interpretations.7.1 Complete Stru
tureAgain, our aim will be to 
hara
terise 1AutStr via a 
omplete stru
ture. Thisstru
ture is N1 := �N;�; (n j x)n2N�, the natural numbers with ordering anddivisibility predi
ates or, equivalently,N01 := �N; s;�; 0; (x � k (mod n))k;n2N�where s is the su

essor fun
tion, � is the natural order, and x � k (mod n)denotes those numbers whi
h are 
ongruent k modulo n.De�nition 7.1. Let x, y 2 Nn . De�neo(x) := f� 2 Sn j x�0 � � � � � x�(n�1) g;�(x) := �x�0; x�1 � x�0; : : : ; x�(n�1) � x�(n�2)� for some/all � 2 o(x):69



70 7. Unary Presentations
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 1��l;p is the equivalen
e relation de�ned byx �l;p y : i� o(x) = o(y) and �(x)i �l;p �(y)i for all i < n;where by abuse of notation �l;p denotes the equivalen
e relationx �l;p y : i� either x = y < l; or x; y � l and x � y (mod p):Our main lemma to prove the 
ompleteness of N1 is the following 
hara
teri-sation of regular languages. The general stru
ture of automata over 1�
� � �
1�is depi
ted in Figure 7.1. The inner loop of the se
ond automaton is labelledby [ 11 ℄, the outer loops by ��1 � and � 1� �, respe
tively.Lemma 7.2. L � (1�)
n is regular if and only if there are 
onstants l, p 2 Nsu
h that for all x, y 2 Nn with x �l;p y it holds that1x0 
 � � � 
 1xn�1 2 L() 1y0 
 � � � 
 1yn�1 2 L:Proof. ()) Indu
tion on n.(n = 1) L � f1g� is regular i� it is a �nite union of arithmeti
al progressions(see [Eil74, Proposition V.1.1℄).(n > 1) Let A = (Q; f1g; Æ; q0; F ) be a deterministi
 automaton re
ognis-ing L. For ea
h pair q 2 Q, R � Q denote by AqR the automaton AqR :=(Q; f1g; Æ; q; R), and let AiqR be the automaton obtained from AqR by erasingall transitions whose label has as ith 
omponent a �, and by removing theith 
omponent of all other labels. Then, if xi = maxfx0; : : : ; xn�1g we have1x0 
 � � � 
 1xn�1 2 L(A)i� 1x0 
 � � � 
 1xi�1 
 1xi+1 
 � � � 
 1xn�1 2 L(Aiq0fqg)for some q 2 Q su
h that"
i�1 
 1�(x)n�1 
 "
n�i 2 L(AqF ):Let liq, piq 2 N be the 
onstants for L(Aiq0fqg) provided by the indu
tion hypoth-esis and let ~liq , ~piq 2 N be the 
orresponding 
onstants for the languageL(AiqF ) \ (�i�1 � f1g ��n�i)�(as language over the unary alphabet f(�; : : : ;�; 1;�; : : : ;�)g). De�nel := max� liq ; ~liq �� i < n; q 2 Q	; p :=Yi;q piq ~piq:



7.1. Complete Stru
ture 71Then we obtain for all x, y 2 Nn with x �l;p y that1x0 
 � � � 
 1xn�1 2 L(A)i� 1x0 
 � � � 
 1xi�1 
 1xi+1 
 � � � 
 1xn�1 2 L(Aiq0fqg)for i = o(x)(n� 1) and some q 2 Q su
h that"
i�1 
 1�(x)n�1 
 "
n�i 2 L(AqF )i� 1y0 
 � � � 
 1yi�1 
 1yi+1 
 � � � 
 1yn�1 2 L(Aiq0fqg)for i = o(x)(n� 1) = o(y)(n� 1) and some q 2 Q su
h that"
i�1 
 1�(y)n�1 
 "
n�i 2 L(AqF )i� 1y0 
 � � � 
 1yn�1 2 L(A):(() For ea
h �l;p-
lass one 
an easily 
onstru
t an automaton re
ognisingthis 
lass. As regular languages are 
losed under union the 
laim follows.For la
k of a better name, we 
all the numbers l and p of the pre
edinglemma the loop 
onstants of L.De�nition 7.3. The loop 
onstants of a unary presentation d 
onsists of a pair(l; p) su
h that l and p are loop 
onstants of every language of d. W.l.o.g. wealways assume that l < p.For R � Nn de�ne 
ode(R) := f 1x0 
 � � � 
 1xn�1 j (x0; : : : ; xn�1) 2 R g.Theorem 7.4. R � Nn is FO-de�nable in N1 if and only if 
ode(R) is regular.Proof. ()) N1 has a unary automati
 presentationd := ��; f1g; LÆ; L"; L�; (Ln)n�with �(1x) := x; LÆ := 1�; Ln := (1n)�;L" := � 11 �� ; L� := � 11 �� ��1 �� :(() If 
ode(R) is regular then it is a union of some �l;p-
lasses where (l; p)are the loop 
onstants of 
ode(R). One su
h 
lass 
an be de�ned (in N01) by theformula'(x) = ^i<n�1x�i � x�(i+1) ^  0(x�0) ^ ^i<n�1 i+1(x�(i+1) � x�i)where ea
h  i(x� y) is either of the form (x� y) := x� y = m �� x = smy�or  (x� y) := x� y � l ^ x� y � k (mod p)�� x � sly ^ _i<p(x � i+ k (mod p) ^ y � i (mod p))�:Hen
e, 
ode(R) 
an be de�ned by a disjun
tion with one su
h formula for ea
h�l;p-
lass 
ontained in R.



72 7. Unary PresentationsAs a 
orollary we obtain the desired 
hara
terisation of 1AutStr in terms ofa 
omplete stru
ture.Corollary 7.5. A 2 1AutStr i� A �FO N1 via a 1-dimensional interpreta-tion.We will see below that 1AutStr is not 
losed under produ
ts and hen
e undermany-dimensional interpretations. A more robust 
lass is obtained if we takethe 
losure ofN1 under many-dimensional FO-interpretations. This 
orrespondsto presentations where all languages are subsets of (1�)
k, for some k, insteadof 1�. In the following we only 
onsider 1AutStr, whi
h is simple enough topermit pre
ise 
hara
terisations of the stru
tures it 
ontains.7.2 Stru
tures with Unary PresentationThe following example shows that unary presentations are mu
h weaker thanthose with a binary alphabet.Example. Presburger Arithmeti
 (N;+) has no unary automati
 presentation.Proof. Suppose (N;+) has a unary presentation d. De�neNn := fm 2 N j �d(m) � n g n f0gand let mn := maxNn. Then jNn +mnj = jNnj, and sin
e �d(x) > n for allx =2 Nn there is some xn 2 Nn with�d(xn +mn) � �d(mn) + jNnj = maxf�d(mn); �d(xn)g+ jNnj :As jNnj is unbounded for n!1 we get a 
ontradi
tion to Proposition 5.8.Proposition 7.6.(i) 1AutStr is not 
losed under produ
ts.(ii) 1AutStr is 
losed under �nite disjoint unions and �nite ordered sums.Proof. (i) Consider (N; s), the s-redu
t of N01. We 
laim that (N2 ; s) := (N; s)�(N; s) has no unary presentation. LetM := f (n; 0); (0; n) 2 N2 j n 2 N g;whi
h is de�nable by '(x) := :9y(x = sy). Consider the sequen
e (Gn(M))nof generations of M . As hxis \ hyis = ; for all di�erent x, y 2M the size 
(n)of Gn(M) is equal to
(n) = 
(n� 1) + n� 1 + 1 = 
(n� 1) + n = nXi=1 i = n(n� 1)=2:But, a

ording to Proposition 5.8, jGn(M)j � mn for some m be
ause in theunary 
ase there 
an be only one word of ea
h length.(ii) Let, for i 2 f0; 1g, Ai 2 1AutStr with presentationdi = (�i; f1g; LiÆ; Li"; LiR0 ; : : : ; LiRr):



7.2. Stru
tures with Unary Presentation 73De�ne the homomorphism h : f1;�g� ! f1;�g� by h(1) := 11, h(�) := ��.We identify h with its extension to 1
k (de�ned 
omponentwise). Then A0 �[A1has the presentation d := (�; f1g; LÆ; L"; LR0 ; : : : ; LRr) where�(1k) := (�0(1k=2) if k is even;�1(1(k�1)=2) if k is odd;LÆ := h(L0Æ) [ 1h(L1Æ);L" := h(L0") [ [ 11 ℄h(L1");LRj := h(L0Rj ) [ " 1...1#h(L1Rj ):That is, elements of A0 are mapped to even numbers, those of A1 to odd ones.In 
ase of the ordered sum we additionally de�neL� := h(L0�) [ � 11 �h(L1�)[ �� 11 � � 11 ������1 � ��1 ��� ��1 �[ �� 11 � � 11 ��� � 11 � � 1� � �� 1� � � 1� ���:Corollary 7.7. 1AutStr is not 
losed under many-dimensional FO-interpreta-tions.In the remainder of this se
tion we try to give pre
ise 
hara
terisations ofthose stru
tures having a unary presentation. The main work is done in thefollowing te
hni
al lemmas. Let f : A�An ! A. De�nef0(a; b) := a; f i+1(a; b) := f(f i(a; b); b):The set f�(a; b) := f fn(a; b) j n 2 N g is 
alled the f-
hain of a (with parame-ters b).Lemma 7.8. Let (A; f) 2 1AutStr for some f : A! A. There are only �nitelymany disjoint in�nite f-
hains.Proof. Let d be a unary presentation of (A; f) and let m be some 
onstantsu
h that �d(f(a)) � �d(a) + m. Suppose there are in�nitely many in�nitef -
hains f�(a0); f�(a1); : : : . Let k := maxf�d(ai) j i � m g. For ea
h i � m letbi 2 f�(ai) the element with minimal length �d(bi) � k. W.l.o.g. assume that�d(b0) < � � � < �d(bm). By minimality, �d(bm) < k +m. Thusk � �d(b0) < � � � < �d(bm) < k +m:Contradi
tion.Lemma 7.9. Let d be a unary presentation of (A; f) where f : A � An ! A.The sequen
e��d(f i+1ab)� �d(f iab)�i2Nis eventually periodi
 for all a and b in A. Furthermore, the period 
an be 
hosento be independent of a and b.



74 7. Unary PresentationsProof. If fnab = fn+kab for some n and k the 
laim follows immediately. Oth-erwise, let (l; p) be the loop 
onstants of d. W.l.o.g. assume that l > �d(bj) forall parameters bj . Choose i0 large enough su
h that �d(f iab) > l for all i � i0.We 
laim that�d(a) � �d(a0) (mod p) implies �d(fab)� �d(a) = �d(fa0b)� �d(a0)for all a, a0 2 A su
h that �d(a), �d(a0), �d(fab), and �d(fa0b) are greaterthan or equal to l. The result follows sin
e the sequen
e (�d(f iab) mod p)i fori0 � i � i0+p must 
ontain at least one number twi
e. Hen
e by the 
laim, thepart in between is repeated in�nitely. Furthermore, we 
an 
hoose p! as periodwhi
h is independent of a and b.To prove the 
laim suppose by symmetry, �d(a) � �d(a0). Sin
e f is afun
tion, either �d(a) � l < �d(fab) < �d(a) + l or �d(fab) < l. If �d(a) > land �d(fab) > l then(�d(a); �d(fab)) �l;p (�d(a) + ip; �d(fab) + ip)for all i > 0. Thus, if �d(a0) � �d(a) (mod p) then �d(a0) = �d(a) + ip forsome i. Therefore, �d(fa0b) = �d(fab) + ip, and�d(fa0b)� �d(a0) = �d(fab) + ip� �d(a)� ip = �d(fab)� �d(a):Lemma 7.10. Let A 2 1AutStr, f a unary fun
tion of A, and a some elementof A. Every presentation d of A 
an e�e
tively be extended to one of (A; R)where R := f (a; b) j b 2 f�(a) g.Proof. Let I be an interpretation of A in N1, and let d be the 
orrespondingpresentation. For notational simpli
ity we identify elements of A with theiren
odings in N. We have to 
onstru
t a formula '(x; y) for R.In a �rst step we de�ne a formula  a(y) des
ribing f�a for �xed a. If f�ais �nite  a(y) simply 
onsists of an enumeration of its elements. Otherwise, byLemma 7.9, there is a 
onstant q su
h thatf i+1a� f ia = fq+i+1a� fq+iafor all i greater than some i0. (Re
all that we identify a with �d(a).) Thus,fq+ia = f ia+� for some � whi
h is positive by in�nity of f�a. Hen
e, we 
anset  a(y) := _i�i0 y = f ia _ _i0<i�i0+q�y � f ia ^ y � f ia (mod �)�:In the se
ond step we 
onstru
t '. Let (l; p) be the loop 
onstants of d.Choose the threshold m := l(p + 2). The f -
hains of all elements less than mare de�ned by�(x; y) := _k<m�x = k ^  k(y)�:For ea
h k < p, the f -
hains of all elements a � m + k (mod p) greaterthan m are handled by a single formula #k(x; y). Consider the f -
hain of m+k.By the pre
eding lemma, there is some number ik su
h that the sequen
e(f i+1(m+ k)� f i(m+ k))i



7.2. Stru
tures with Unary Presentation 75is periodi
 for i � ik. Denote the period by pk and let �k be the 
onstant su
hthat fpk+i(m+ k) = f i(m+ k) +�k for i � ik. Note that(i) either a� l < fa < a+ l or fa < l;(ii) if a > l and fa > l then for all b � a with b � a (mod p) we have(a; fa) �l;p (b; b+ fa� a). Thus fb = fa+ b� a.Suppose that f i(m+ k) > l for all i � j. Then, by (ii),f i(m+ k + pn) = f i(m+ k) + pnfor i � j and all n � 0. By 
hoi
e of m and (i), we either have f i(m + k) > lfor i � p, or there is some j < p su
h that f i(m + k) > 2l for i < j andf j(m+ k) < l.First 
onsider the se
ond 
ase. We havef i(m+ k + pn) = (f i(m+ k) + pn for i < j;f i(m+ k) for i � j;where the 
ase i � j follows be
ause of�f j�1(m+ k); f j(m+ k)� �l;p �f j�1(m+ k) + pn; f j(m+ k)�:Thus we 
an de�ne#k(x; y) := _i<j�y � x = f i(m+ k)� (m+ k)� _  fj(m+k)(y):Note that f i(m+ k)� (m+ k) is a 
onstant.Now assume f i(m+ k) > l for every i � p. Thenf i(m+ k + pn) = f i(m+ k) + pnfor all i � p. As the sequen
e (f i(m+k))i�p must 
ontain two elements whi
h are
ongruent modulo p, the �rst period appears before position p, i.e., ik+ pk � p.To de�ne #k(x; y) we 
onsider the following 
ases.If �k > 0 then f i(m+ k) > l for all i. Thus we de�ne#k(x; y) := _i<ik y � x = f i(m+ k)� (m+ k)_ _ik�i<ik+q �y � x � f i(m+ k)� (m+ k) ^y � x � f i(m+ k)� (m+ k) (mod �k)�:If �k = 0 then#k(x; y) := _i<ik+q y � x = f i(m+ k)� (m+ k):The most 
ompli
ated 
ase is �k < 0. We split the de�nition into two partsby 
hoosing some intermediate element 
 2 f�(m + k) with l < 
 < m. Theinitial part of the 
hain up to 
 is de�ned by#1k(x; y) := _i<ik y � x = f i(m+ k)� (m+ k)_ _ik�i<ik+pk �y � l ^ y � x � f i(m+ k)� (m+ k) ^y � x � f i(m+ k)� (m+ k) (mod �k)�;



76 7. Unary Presentationsand the �nal part by#2k(x; y) := 9z�l < z < m ^ #1k(x; z) ^ �(z; y)�:Thus #k(x; y) := #1k(x; y) _ #2k(x; y).Altogether we obtain'(x; y) := �(x; y) _ _k<p�x � m+ k (mod p) ^ x � m ^ #k(x; y)�:It should be 
lear that all 
onstants needed in the above 
onstru
tion 
anbe obtained e�e
tively.Unary fun
tions. Analogously to Proposition 5.18 we obtainProposition 7.11. Let (N; s; f) 2 1AutStr where s is the su

essor fun
tionand f : N ! N.(i) There is a 
onstant 
 su
h that f(n) � n+ 
 for all n 2 N.(ii) If lim infn!1 f(n) =1 then there are 
onstants 
0 and 
1 su
h thatn� 
0 � f(n) � n+ 
1for all but �nitely many n.Proof. (i) By the Lemma 7.9 applied to s, there is a 
onstant q su
h that�d(si+10)� �d(si0) = �d(sq+i+10)� �d(sq+i0)for large enough i. Thus �d(sq+i0) = �d(si0) + � for some �. If f(n) � n isunbounded then for all m there is some n withf(n) > n+mq =) �d(f(n)) > �d(n) +m�+ rwhere r := minf�d(sn+i0)��d(sn0) j i < q g. But �d(f(n))��d(n) is bounded.Contradi
tion.(ii) De�neg(n) := minf f(k) j k � n g; h(n) := maxf k j g(k) � n g:Both fun
tions are monotone. Suppose n� f(n) � n� g(n) is unbounded, i.e.,for all 
 there are n withn� 
 � g(n) =) h(n� 
) � h(g(n)) � n:Thus, for all 
 there are n with h(n) � n+ 
 in 
ontradi
tion to (i).For stru
tures with a permutation a pre
ise 
hara
terisation is possible.Theorem 7.12 (Khoussainov, Rubin [KR99℄). Let f : A ! A be a bije
tivefun
tion. (A; f) 2 1AutStr if and only if(i) the 
ardinality of the �nite orbits of f is bounded and(ii) there are only �nitely many in�nite orbits of f .



7.2. Stru
tures with Unary Presentation 77Proof. (() Sin
e 1AutStr is 
losed under �nite unions and it 
ontains every�nite stru
ture, we only need to prove the 
laim for stru
tures with one in�niteorbit and stru
tures with in�nitely many �nite orbits of the same size. For the�rst 
ase we 
onstru
t an interpretation I = (h; Æ; "; 's) of (Z; s) in N1 whereh(n):= (2n if n � 0;�2n� 1 if n < 0;Æ and " are trivial, and's(x; y) := (2 j x ^ y = x+ 2) _ (2 - x ^ y + 2 = x) _ (x = 1 ^ y = 0):For the other 
ase 
onsider the stru
ture (N; f) wheref(x) := (x+ 1 if n - (x+ 1);x+ 1� n otherwise;whi
h has in�nitely many orbits of size n. f 
an be de�ned in N1 byf(x) = y : i� (y = x+ 1 ^ n - y) _ (y + n� 1 = x ^ n j y):()) (i) By Lemma 7.9 there is a 
onstant q su
h that�d(f i+1a)� �d(f ia) = �d(fq+i+1a)� �d(fq+ia)for all a 2 A and large enough i. Let � be a �nite orbit. For a 2 � this impliesfq+ia = f ia as � would be in�nite otherwise. Thus, j�j � q.(ii) Let � be an in�nite orbit and 
hoose some a 2 �. f�(a) � � is in�nite.Thus, ea
h in�nite orbit 
ontains an in�nite f -
hain, of whi
h, by Lemma 7.8,there are only �nitely many.As an immediate 
orollary we obtain a 
hara
terisation of stru
tures withan equivalen
e relation.Theorem 7.13 (Khoussainov, Rubin [KR99℄). Let � � A � A be an equiva-len
e relation. (A;�) 2 1AutStr if and only if(i) the 
ardinality of the �nite �-
lasses is bounded and(ii) there are only �nitely many in�nite �-
lasses.Proof. (() Again, it is suÆ
ient to prove the 
laim for stru
tures with onein�nite 
lass and stru
tures with in�nitely many 
lasses of the same size. Clearly,(A;A �A) 2 1AutStr, and for ea
h n > 1, the relationx � y : i� 9z(n j z ^ z � x < z + n ^ z � y < z + n)has in�nitely many 
lasses of size n.()) By Lemma 3.6 there is a well-ordering� su
h that (A;�;�) 2 1AutStr.De�ne f : A! A byf(x) := (minf y j y � x ^ y > x g if su
h a y exists;minf y j y � x g otherwise:Clearly, f is de�nable in (A;�;�). Thus, (A; f) 2 1AutStr. Sin
e the orbitsof f are exa
tly the �-
lasses, the 
laim follows from the pre
eding theorem.



78 7. Unary PresentationsOrderings. Next we turn to linear orderings. Again, Khoussainov and Rubinobtained a pre
ise 
hara
terisation.Proposition 7.14. Let (A;�) 2 1AutStr be a linear order. Every set B � Asu
h that there are in�nitely many elements of A between any two elements of Bis �nite.Proof. Let d be a unary presentation of (A;�) with loop 
onstants (l; p). We
laim that jBj < p(p + 2) + l. Otherwise, there are elements a0 < � � � < ap+1of B with �d(ai) � �d(aj) (mod p) and �d(ai) > l for all i, j. Denote by Ji theset of numbers k su
h that the interval between ai and ai+1 
ontains in�nitelymany elements a with �d(a) � k (mod p). There have to be two sets Ji, Jkwith Ji \ Jk 6= ;. Choose elements ai < b < ai+1 and aj < 
 < aj+1 with�d(b) � �d(
) � m (mod p) for some m 2 Ji \ Jk;�d(b); �d(
) > �d(ai+1) + l; �d(aj) + l:Then ��d(b); �d(ai+1)� �l;p ��d(
); �d(aj)� but b � ai+1 and 
 > aj . Contra-di
tion.Theorem 7.15 (Khoussainov, Rubin [KR99℄). Let � be a linear order. (A;�)has a unary presentation if and only if it is a �nite sum of linear orders of type1, !, or !�.Proof. (() immediately follows from the 
losure of 1AutStr under �nite orderedsums. ()) Ea
h stru
ture satisfying the 
ondition of the previous proposition
an be written as su
h a sum.Corollary 7.16 (Khoussainov, Rubin [KR99℄). Let � be an ordinal. (�;�) hasa unary presentation if and only if � < !2.Graphs. A graph is in 1AutStr i� it has a 
ertain \ladder stru
ture."Theorem 7.17. Let G = (V;E) be a graph. G 2 1AutStr if and only if thereare �nite graphs H, H0 and a partition (A;B0; B1; : : : ) of V su
h that the fol-lowing 
onditions hold.(i) GjA �= H and GjBi �= H0 for all i.(ii) The edges between A and Bi do not depend on i for i � 1, and the edgesbetween Bi and Bk do not depend on i and k for ji� kj > 1. Formally,let A = fa0; : : : ; ar�1g, Bi = fbi0; : : : ; bis�1g.(ak; bil) 2 E i� (ak; bjl ) 2 E for all i; j � 1;(bik; bjl ) 2 E i� (bi0k ; bj0l ) 2 E for all i� j; i0 � j0 > 1 ori� j; i0 � j0 < �1;(bik; bi+1l ) 2 E i� (bjk; bj+1l ) 2 E for all i; j:Proof. ()) Fix a presentation d of G with loop 
onstants (l; p). SetA := f v 2 G j �d(v) < l g;Bi := f v 2 G j pi+ l � �d(v) < p(i+ 1) + l g:



7.2. Stru
tures with Unary Presentation 79Ea
h 
ondition 
an easily be veri�ed. For example, to prove the �rst item of
ondition (ii) let a 2 A, bi 2 Bi, and bj 2 Bj . Then(�d(a); �d(bi)) �l;p (�d(a); �d(bj))and thus (a; bi) 2 E i� (a; bj) 2 E.(() We 
onstru
t an interpretation of G in N1. Let r := jAj, s := jBij.The elements of A are en
oded as numbers less than r, and those of Bi assi + r; : : : ; s(i + 1) + r � 1. We 
an de�ne formulae expressing that x is thekth element of Bi for some i, and that x 2 Bi and y 2 Bi+1 for some i by k(x) := x� r � k (mod s);�(x; y) := 9z( 0(z) ^ z � s � x < z � y < z + s):The desired formula 'E(x; y) for E 
an be 
onstru
ted as disjun
tion over the
ases x; y 2 A; x 2 A, y 2 B0; x 2 A, y 2 Bi for i > 0; x 2 Bi, y 2 Bk forji� kj > 1, and so on. Ea
h 
ase 
an be handled using  k(x) and �(x; y).Corollary 7.18. The Random Graph R has no unary presentation.Proof. Suppose there is a partition (A;B0; B1; : : : ) ofR satisfying the 
onditionsof the pre
eding theorem. Set X := A[B0[ � � �[B4. By the extension axioms,there is some node v =2 X whi
h is 
onne
ted to all elements of X ex
ept thoseof B3. Sin
e v 2 Bi for some i � 5 we have (b1k; v) 2 E i� (b3k; v) 2 E, by these
ond 
ondition of part (ii) above. Contradi
tion.Groups. As far as groups are 
on
erned unary presentations only suÆ
e todes
ribe �nite stru
tures.Theorem 7.19. Let G = (G; �) be a group. G 2 1AutStr if and only if G is�nite.Proof. (() is immediate. ()) Suppose G is in�nite. Fix an inje
tive pre-sentation d with loop 
onstants (l; p). Choose elements a and b su
h that2p < �d(a) < �d(b)� p.If �d(a � b) < �d(b)� l then 
hoose 
 su
h that �d(
) = �d(b)+ p. Be
ause of(�d(a); �d(b); �d(a � b)) �l;p (�d(a); �d(
); �d(a � b))we have a � b = a � 
. But this implies b = 
. Contradi
tion.If �d(a � b) � �d(b)� l then 
hoose 
 su
h that �d(
) = �d(a)� p. Be
ause of(�d(a); �d(b); �d(a � b)) �l;p (�d(
); �d(b); �d(a � b))we again obtain a 
ontradi
tion.Corollary 7.20. Let A be a ring or �eld. A 2 1AutStr if and only if A is�nite.Let G = (G; �) be a group, S a set of semigroup generators of G, and setfa(x) := x � a. If we do not require full multipli
ation to be presented butuse groups in the form (G; (fa)a2S) instead, there are also in�nite groups in1AutStr.



80 7. Unary PresentationsLemma 7.21. Let G = (G; �) be a group and S, S0 � G be sets of semigroupgenerators of G. (G; (fa)a2S) =FO (G; (fa)a2S0).Proof. Ea
h g 2 S 
an be written as g = g00 � � � g0n for some g00; : : : ; g0n 2 S0.Thus, fg 
an be de�ned by fgx := fg0n � � � fg00x.Proposition 7.22. Let G = (G; (fa)a2S) be an abelian group. G 2 1AutStr ifand only if G is either �nite or G �= Z�Zp0 � � � � �Zpn for some p0; : : : ; pn.Proof. ()) Suppose G �= Z � Z � H and let a and b be generators of thesubgroups Z. By the pre
eding lemma we 
an assume that a, b 2 S. Sin
ef�a (bn) \ f�a (bm) = ; for all n 6= m there are in�nitely many disjoint fa-
hainsin 
ontradi
tion to Lemma 7.8.(() Let G = Z� H for �nite H. W.l.o.g. assume that S = fag [ T wherea generates Z and T generates H. Let n := jH j. We identify H with the setf0; : : : ; n�1g, and 
onstru
t an interpretation of G in N1 by en
oding elements(k; l) 2 Z�H byh(k; l) := (2kn+ l if k � 0;(�2k � 1)n+ l if k < 0:The generating fun
tions 
an be de�ned byfa(x) = y : i� �y = x+ 2n ^ 9z(z < n ^ x� z � 0 (mod 2n))�_ �y + 2n = x ^ 9z(z < n ^ x� z � n (mod 2n))�_ �n � x < 2n ^ y = x� n�;fb(x) = y : i� 9z�z � 0 (mod n) ^ _h2H(x = z + h ^ y = z + gb(h)�:where b 2 T and gb : H ! H is the right-multipli
ation by b in H.Proposition 7.23. Let G = (G; (fa)a2S) 2 1AutStr be a group. If a and b areelements of in�nite order then there are some 
onstants k, l 2 Z n f0g su
h thatak = bl.Proof. W.l.o.g. assume a 2 S. Consider the fa-
hains of bi for i � 0. Ea
h
hain is in�nite sin
ebian = biam =) an = am =) n = m:By Lemma 7.8, only �nitely many 
hains 
an be disjoint. Hen
e, there arei, j 2 N su
h that f�a (bi) \ f�a (bj) 6= ;, i.e.,bian = bjam =) bi�j = am�nfor some n, m 2 N.Equivalently, the above proposition 
an be stated as, if G is in 1AutStr anda is of in�nite order then jG : haij, the index of hai, is �nite.



7.3. Complexity 817.3 ComplexityAfter having de�ned unary presentations and having shown that they are mu
hweaker than general automati
 presentations the question arises whether wehave gained anything by this restri
tion. A �rst positive e�e
t is a drasti
de
rease in 
omplexity.We will show that every quanti�er 9x' 
an be repla
ed by a bounded version(9x � m)' for some m.De�nition 7.24. For a, b 2 Nk and n; Æ 2 N we de�nea �n;Æ b : i� d(ai; aj) =Æ3n d(bi; bj) and ai � bi (mod Æ) for all i; j < kwhered(a0; a1) := a1 � a0 and a =l b : i� a = b or a; b > l:The following lemma ensures that if 9x' is satis�ed then there is some element bwhi
h is not too large su
h that '(b) holds.Lemma 7.25. Let a, b 2 Nk with a0 = b0 = 0 and a �n+1;Æ b, and let m 2 Nbe su
h that b0; : : : ; bk�1 � m. For every a0 2 N there is some b0 2 N withb0 � m+ Æ(3n + 1) su
h that aa0 �n;Æ bb0.Proof. W.l.o.g. assume a0 � � � � � ak�1, and let ai � a0 � ai+1 for some i. The
ase ak�1 < a0 is proved analogously.If d(ai; a0) � Æ3n then 
hoose b0 := bi + d(ai; a0). It follows thatd(a0; ai+1) =Æ3n d(b0; bi+1)and a0 � ai + d(ai; a0) � bi + d(ai; a0) � b0 (mod Æ):Thus, aa0 �n;Æ bb0.If d(ai; a0) > Æ3n but d(a0; ai+1) � Æ3n then 
hoose b0 := bi+1 � d(ai; a0).Again, we have aa0 �n;Æ bb0.Finally, if both distan
es are more than Æ3n then 
hoose some b0 su
h thatbi + Æ3n < b0 < bi+1 � Æ3n and b0 � a0 (mod Æ). This is possible be
aused(bi; bi+1) > Æ3n+1 andf a mod Æ j ai < a < ai+1 g = f0; : : : ; Æ � 1g= f b mod Æ j bi < b < bi+1 g:Furthermore b0 
an be 
hosen su
h that d(bi; b0) � Æ3n + Æ. Therefore b0 <m+ Æ(3n + 1).Proposition 7.26. Let ' = Q0x0 � � �Qn�1xn�1 (x; y) for quanti�ers Q0; : : : ,Qn�1 2 f9;8g and let n0; : : : ; nr be the 
onstants appearing in divisibility predi-
ates n jx. Denote the least 
ommon multiple of n0; : : : ; nr by Æ, and for a 2 Nklet m := maxfa0; : : : ; akg. Then the model-
he
king problem N1 j= '(a) is inDspa
e�O(n+ log j'j+ log Æ + logm)�:



82 7. Unary PresentationsProof. Obviously, b �0;Æ b0 implies N1 j=  (b; a) i� N1 j=  (b0; a). By thepre
eding lemma there are bounds m0; : : : ;mn�1 su
h that we 
an �nd b0i < mi,i < n with b �0;Æ b0. We havem0 := m+ Æ(3n�1 + 1);mi+1 := mi + Æ(3n�i + 1); for i < n� 1:Whi
h yieldsmi = m+Xj�i Æ(3n�j�1 + 1)= m+ Æ(i+ 1) + Æ3n�i�1Xj�i 3j= m+ Æ(i+ 1) + Æ3n�i�1 3i+1 � 13� 1� m+ Æ(i+ 1) + 12Æ3n:Therefore, a Turing ma
hine 
an evaluate '(a) by 
y
ling through all valuesof bi for i < n on its tape, and 
he
king whether  (a; b) holds, whi
h 
an bedone in Logspa
e. The spa
e used to store b islogXi<nmi = log�nm+ 12Æn(n+ 1) + 12Æn3n�� log�nm+ Æ2O(n)�� O(n+ log Æ + logm):Hen
e, using the same 
onventions as in Se
tion 3.4 we obtain the followingbound on the 
omplexity of the model-
he
king problem for 1AutStr.Corollary 7.27. Let � be a relational signature. Given the presentation d ofa stru
ture A 2 1AutStr[� ℄, a tuple a in A, and a formula '(x) 2 FO[� ℄, themodel-
he
king problem for (A; a; ') is in Dspa
e�O(j'j2 jdj6 + log�d(a))�.Proof. Constru
t an interpretation I of A in N1 via the translation of automatato formulae given above. A 
loser look reveals that the length of ea
h formula  de�ning one �l;p-
lass is in O(l + p2). There are at most jdj su
h 
lasses (onefor ea
h �nal state). Sin
e l; p � jdj we obtain j j 2 O(jdj3). The translationof d to I 
an be performed in Dtime[O(jdj3)℄.Further, note that the interpretation maps ea
h a 2 A to the number �d(a).By the pre
eding proposition we 
an de
ide N1 j= 'I(aI) inDspa
e�O(n+ log j'I j+ log Æ + log�d(a))�:Sin
e j'I j 2 O(j'j jdj3) we have n 2 O(j'j jdj3), n0; : : : ; nr 2 2O(j'jjdj3), andhen
eÆ � n0 � � �nr 2 (2O(j'jjdj3))O(j'jjdj3) = 2O(j'j2jdj6):



7.4. De
idability 837.4 De
idabilityWe start our investigation as to what logi
s are de
idable by showing that N01allows quanti�er elimination. To simplify the task an intermediate stru
ture isintrodu
ed.Lemma 7.28. The stru
ture �Z; s;�; (x � k (mod n))k;n� admits quanti�erelimination.Proof. It is well known that (Z; s;�) admits quanti�er elimination. In [KK71℄it is shown that ea
h formula 9x' 2 FO[s;�℄ with quanti�er-free ' 
an betransformed into a disjun
tion of formulae of the form9x� î x < ti ^ î ui < x ^ î x = vi�:Analogously, formulae 9x' 2 FO[s;�; (x � k (mod n))k;n℄ 
an be brought intothe form9x� î x < ti ^ î ui < x ^ î x = vi ^ î (x � ki (mod ni))�by using the following additional rules:smx � k (mod n) � x � k �m (mod n);:(x � k (mod n)) � _i 6=k x � i (mod n):Furthermore, we 
an ensure that all moduli ni are equal by repla
ing them bytheir least 
ommon multiple. Thus, we obtain9x� î x < ti ^ î ui < x ^ î x = vi ^ î (x � ki (mod n))�:If there are more than one atom of the form x � ki (mod n) with di�erent kithen the formula is false. If there is no su
h atom then we 
an eliminate thequanti�er as in the 
ase of (Z; s;�). Hen
e, we only need to 
onsider the 
ase9x� î x < ti ^ î ui < x ^ î x = vi ^ x � k (mod n)�:If there is at least one atom of the form x = v then we 
an repla
e x by veverywhere. Otherwise, let the free variables be among fy0; : : : ; ysg. Then theformula is equivalent to9x _k0;:::;ks<n�î�s yi � ki (mod n) ^ 'k0:::ks�where 'k is obtained from ' be removing the modulo-atom and modifying allother atoms a

ording to the following rules:x < slyi �! x < sl��iyi;slyi < x �! sl+�iyi < x;where �i := ki � k (mod n). In the resulting formula the quanti�er 
an beeliminated as in the 
ase of (Z; s;�).



84 7. Unary PresentationsCorollary 7.29. N01 admits quanti�er elimination.Proof. It follows from the pre
eding lemma thatZ01 := �Z; s;�; 0; (x � k (mod n))k;n�admits elimination of quanti�ers (just repla
e 0 by some new variable, eliminateall quanti�ers, and repla
e the new variable by 0, see e.g. [KK71℄). N01 is thesubstru
ture of Z01 de�ned by Æ(x) := 0 � x. Let '(x) 2 FO. By 'Æ we denotethe relativisation of ' to the set de�ned by Æ. There is some quanti�er-free (x) 2 FO su
h thatZ01 j= 'Æ(x)$  (x)i� Z01 j= 'Æ(a)() Z01 j=  (a) for all a in Z=) Z01 j= 'Æ(a)() Z01 j=  (a) for all a in N :As  is quanti�er-free this impliesZ01 j= 'Æ(a)() N01 j=  (a) for all a in Ni� N01 j= '(a)() N01 j=  (a) for all a in Ni� N01 j= '(x)$  (a):We have quanti�er elimination not only for FO but also for FO(R), theextension of FO by Ramsey-quanti�ers. The formula Rx0 : : : xn�1' holds i�there is some in�nite set X su
h that '(a) is true for all distin
t a0; : : : ; an�1in X .Lemma 7.30. N01 admits quanti�er elimination for FO(R).Proof. We have to show that for every formula '(y) = Rx0 : : : xn�1 (y; x) with 2 FO there is an equivalent formula '0(y) 2 FO. If we 
an prove thatN01 j= '(a) i� there are k; p 2 N with k > aj + p for all j su
h thatN01 j=  (a; k + i0p; : : : ; k + in�1p)for all di�erent i0; : : : ; in�1 2 N;then it follows that'(y) � 9z� î yi + p < z^ 8x� î �xi � z ^ xi � z (mod p)� ^ î 6=j xi 6= xj !  (y; x)��:Thus it remains to prove the above 
laim. (() is trivial. ()) Let (l; p) bethe loop 
onstants of some unary presentation d of N01. Let X � N be a maximalin�nite set satisfying N01 j=  (a; b0; : : : ; bn�1) for all distin
t b0; : : : ; bn�1 2 Xand with b � aj + p for all j and b 2 X . By the Pigeonhole Prin
iple there issome 
onstant 
 < p su
h thatY := f b 2 X j b � 
 (mod p) g



7.4. De
idability 85is in�nite. Note that, if b0 < � � � < bn�1 2 Y and bi+1 � bi + 2p, thenN01 j=  (a; b0; : : : ; bi; bi+1 � p; : : : ; bn�1 � p):Let b0 < � � � < bn�1 be the least elements of Y . Applying the above observationseveral times we obtainN01 j=  (a; b0 + i0p; : : : ; bn�1 + in�1p)for all i0; : : : ; in�1 2 N su
h that bj + ijp+ p � bj+1+ ij+1p for all j < n. Thus,when setting k := bn�1, it follows thatN01 j=  (a; k + i0p; : : : ; k + in�1p)for all distin
t i0; : : : ; in�1 2 N.Unfortunately, despite the weakness of unary presentations we have notgained mu
h as far as de
idability of stronger logi
s is 
on
erned.Proposition 7.31. There are stru
tures with unde
idable FO(DTC)-theory in1AutStr.Proof. Immediately from Lemma 2.7 as (N; s) 2 1AutStr.There is only a very spe
ial 
ase in whi
h we obtain de
idability. Denoteby FO(
losed DTC) the restri
tion of FO(DTC) to those formulae su
h that inevery subformula of the form [DTCx;y  (x; y)℄(u; v) the only free variables of  are x and y.Theorem 7.32. 1AutStr is e�e
tively 
losed under FO(
losed DTC1)-inter-pretations.Proof. De�nef(x) := (y if y is the unique element su
h that  (x; y);x otherwise:Then [DTCx;y  (x; y)℄(u; v) holds i� v 2 f�(u). Therefore, the 
laim followsfrom Lemma 7.10.
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Chapter 8Other Types ofPresentationsThe restri
tion to unary alphabets turned out to yield an interesting sub
lassof automati
 stru
tures where model-
he
king has an a

eptable 
omplexityand whi
h permits many pre
ise 
hara
terisations. In this 
hapter we look atdi�erent kinds of restri
tions hoping to obtain other interesting sub
lasses.While the 
lass studied in the �rst se
tion has many pleasant theoreti
alproperties it seems doubtful whether weak presentations are strong enough to beof pra
ti
al value. The 
lasses de�ned in the se
ond se
tion even la
k importanttheoreti
al properties|like 
losure under �rst-order interpretations|and areonly in
luded for the sake of 
ompleteness.8.1 Weak PresentationsThe 
hoi
e we made 
on
erning the en
oding of tuples is not the only onepossible. In this se
tion we investigate an alternative en
oding where a tuple(x0; : : : ; xn�1) of words is en
oded by the word x0� � � ��xn�1. As it turns outthis model is 
onsiderably weaker than those we have used so far.De�nition 8.1. Let x0; : : : ; xn�1 2 ��. The weak 
onvolution of x is de�nedas x0 
w � � � 
w xn�1 := x0� � � ��xn�1:The notion of weak presentation (
alled \strong presentation" in [KN95℄) isde�ned analogously to automati
 presentations where(i) 
onvolution is repla
ed by weak 
onvolution everywhere and(ii) the language L" de�ning equality is left out, i.e., the presentation is alwaysinje
tive.The 
lass of � -stru
tures with weak presentation is denoted by WAutStr[� ℄.The reason for the restri
tion to inje
tive presentations is that identity 
an-not be weakly presented. Therefore only �nite stru
tures would be presentablewithout it (see Corollary 8.6 and Theorem 8.7 below).87



88 8. Other Types of PresentationsAs in the 
ase of automati
 stru
tures one 
an e�e
tively evaluate FO-formulae on weakly presentable stru
tures with the notable ex
eption of equality.In the following we denote by L6= the logi
 L without equality. If we want toemphasise that equality is allowed the notation L= is used.Lemma 8.2. There is a re
ursive fun
tion � assigning to every weak presenta-tion d of some A 2WAutStr[� ℄ and every formula ' 2 FO6=[� ℄ a weak presen-tation of (A; 'A).Proof. Analogous to the proof for automati
 stru
tures with obvious modi�
a-tions for the 
ase of quanti�ers.In order to give a 
hara
terisation in terms of a 
omplete stru
ture we haveto 
hoose a di�erent logi
.De�nition 8.3. FFO is the restri
tion of FO6= to boolean 
ombinations ofmonadi
 FO6=-formulae, i.e., formulae with only one free variable.Obviously, every su
h formula 
an be written in the form'(x0; : : : ; xn�1) = _i<m ĵ<n ij(xj)with  ij 2 FO.Theorem 8.4. Let R � Nn. Let 
odep(x) be the p-adi
 en
oding of x 2 N andde�ne
odep(R) := f 
odep(x0)
w � � � 
w 
odep(xn�1) j (x0; : : : ; xn�1) 2 R g:
odep(R) is regular if and only if R is FFO-de�nable in Np.Proof. ()) Let A = (Q;�; Æ; q0; F ) be a deterministi
 automaton re
ognising
odep(R). For ea
h pair (q; q0) 2 Q we 
an 
onstru
t formulae  qq0 (x) sayingthat if A starts in state q it rea
hes state q0 after reading 
odep(x). Then R 
anbe de�ned by'(x0; : : : ; xn�1) :=_n q0q1(x0) ^ ^i<n�1 Æ(qi;�);qi+1(xi) ���q0; : : : ; qn�1 2 Q; qn 2 F o:(() Let '(x0; : : : ; xn�1) = WiVj  ij(xj). The languages Lij de�ned by  ijare regular. Therefore, the language L = Si Li0� � � ��Lin�1 is regular as well.Corollary 8.5. A stru
ture A = (A;R0; : : : ; Rr) has a weak automati
 presen-tation if and only if A �FFO Np for some/all p 2 N n f0; 1g.Corollary 8.6 (Khoussainov, Nerode [KN95℄). If A 2WAutStr then for everyrelation R of A with arity r there are Xik � A su
h thatR = [i<mXi0 � � � � �Xi(r�1):Proof. Take asXik the sets de�ned by the formulae  ik in the de�nition of R.



8.1. Weak Presentations 89Theorem 8.7. Let A be a relational �-stru
ture. A 2 WAutStr if and only ifthere is some 
ongruen
e � su
h that A=� is �nite.Proof. ()) Let WiVk  jik be the formula de�ning Rj . Setx � y : i�  jik(x)()  jik(y) for all j; i; k:Then � is the required 
ongruen
e of �nite index.(() Let A = (A;R0; : : : ; Rr) and let � be a 
ongruen
e of �nite index. We
onstru
t a weak automati
 presentation of A as follows. Let [a0℄; : : : ; [an℄ bean enumeration of A=�, and ni := ��[ai℄��. Denote the kth member of [ai℄ by aik .We en
ode aik as 1i#1k. The presentation is d := (�; f1;#g; LÆ; LR0 ; : : : ; LRr)where LÆ := [i�n 1i#1<ni ; �(1i#1k) := aik;LRj :=[n 1i0#1�� � � ��1irj�1#1� ��� �[ai0 ℄; : : : ; [airj�1 ℄� 2 Rj=�o:In 
ase of stru
tures with fun
tions f the 
ondition above, applied to thegraph of f , means that the image of f is �nite.Theorem 8.7 shows that weakly presentable stru
tures are just �nite stru
-tures blown up. Therefore we 
an redu
e most problems to the �nite 
ase whi
husually is de
idable. We 
all a logi
 L invariant under 
ongruen
es if for allstru
tures A, 
ongruen
es �, and formulae '(x) 2 L it holds thatA j= '(a) i� A=� j= '([a℄�):Theorem 8.8. Let L be a logi
 invariant under 
ongruen
es. WAutStr is
losed under L-interpretations.Proof. As WAutStr is 
losed under redu
ts it is suÆ
ient to show that givenA 2 WAutStr and ' 2 L we 
an 
onstru
t an FFO-interpretation of (A; 'A)in Np. A

ording to Theorem 8.7 there is a 
ongruen
e � of �nite index.Let I = (h; Æ; "; 'R0 ; : : : ; 'Rr ) be an FFO-interpretation A �FFO Np and let#[a℄�(x) be the formula de�ning the �-
lass of a in Np. By assumption on Lthe formula (x) :=_n î<n #[ai℄�(xi) ��� �[a0℄�; : : : ; [an�1℄�� 2 'A=� ode�nes 'A. Thus (I;  ) is an FFO-interpretation of (A; 'A) in Np.Some logi
 satisfying the 
ondition above is FO 6=(PFP). Logi
s not 
overedare e.g., FO= or FO 6=(#). What about SO?Proposition 8.9. WAutStr is not 
losed under SO 6=-interpretations.Proof. Equality is de�nable in SO 6=.u = v : i� 96=[:u 6= v ^ 8x:x 6= x^ 8R(8x:Rxx! 8x8y(Rxy! x 6= y))℄:



90 8. Other Types of PresentationsThe above proof uses a two-dimensional relation variable. This leaves the
ase of monadi
 se
ond-order logi
 unanswered. In fa
t, WAutStr is 
losed underMSO 6=-interpretations despite it not being invariant under 
ongruen
es.Proposition 8.10. WAutStr is 
losed under MSO6=-interpretations.Proof. Let A = (A;R0; : : : ; Rr) be a relational stru
ture and � a 
ongruen
eof A. We denote by A�m = (A�m; (R0)�m; : : : ; (Rr)�m) the substru
ture of A whi
h
ontains exa
tlym elements of ea
h �-
lasses of size at leastm, and all elementsof smaller �-
lasses. Note that, sin
e � is a 
ongruen
e, A�m is uniquely deter-mined up to isomorphisms. Let P � A be a unary relation. The re�nement �Pof � indu
ed by P is de�ned asa �P b : i� a � b and a 2 P () b 2 P:Let  (x) = Q0P0 � � �Qn�1Pn�1'(x; P ) 2 MSO 6= with Q0; : : : ; Qn�1 2 f9;8gand ' 2 FO6=. We prove by indu
tion on n thatA j=  (a) i� A�2n j=  (a0) for some a0 � a:The 
ase n = 0 is immediate as FO6= is invariant under 
ongruen
es. For theindu
tion step we prove:Claim. There is a surje
tive mapping 0 asso
iating to every P � A a relationP 0 � A�2n su
h that(A; P )�P2n�1 �= (A�2n ; P 0)�P2n�1 :Then it follows thatA j= 9=8P (a)i� for some/all P � A : (A; P ) j=  (a)i� for some/all P � A : (A; P )�2n�1 j=  (a0) (ind. hyp.)i� for some/all P � A : (A�2n ; P 0)�2n�1 j=  (a0) (Claim)i� for some/all P � A�2n : (A�2n ; P )�2n�1 j=  (a0) (surje
tivity)i� for some/all P � A�2n : (A�2n ; P ) j=  (a00) (ind. hyp.)i� A�2n j= 9=8P (a00):It remains to prove the 
laim. Consider ea
h �-
lass [a℄ in turn. What we haveto do is to de
ide how many elements of [a℄ are to be in
luded in P 0.If j[a℄j � 2n then [a℄ � A�2n and we 
an put all b 2 [a℄\P into P 0. Otherwiselet n1 := ��[a℄ \ P �� and n2 := ��[a℄ n P ��, and set n01 := minfn1; 2n�1g, n02 :=minfn2; 2n�1g. Then we 
an add n01 elements form [a℄ to P 0 and there are stillat least n02 elements left whi
h are not in P 0. Therefore in both 
ases we have(i) either ��[a℄ \ P �� = ��[a℄ \ P 0�� or ��[a℄ \ P ��; ��[a℄ \ P 0�� � 2n�1, and(ii) either ��[a℄ n P �� = ��[a℄ n P 0�� or ��[a℄ n P ��; ��[a℄ n P 0�� � 2n�1.Hen
e,(A; P )�P2n�1 �= (A�2n ; P 0)�P2n�1 :It remains to show that 0 is surje
tive. Let ~P � A�2n . Constru
t a relation P � Aby in
luding ��[a℄ \ ~P �� elements of ea
h �-
lass [a℄ into P . Then P 0 = ~P .



8.2. Star-free and Lo
ally Threshold Testable Presentations 91Theorem 8.11. WAutStr � 1AutStrProof. Let A = (A;R0; : : : ; Rr) 2WAutStr and let � be the 
ongruen
e de�nedin Theorem 8.7. Fix an enumeration [a0℄; : : : ; [an�1℄ of A=� and denote thekth member of [ai℄ by aik . Set ni := ��[ai℄��. We 
onstru
t a unary presentationd := (�; f1g; LÆ; L"; LR0 ; : : : ; LRr)of A by en
oding aik by the string of length kn+ i.�(1l) := aik where k := bl=n
; i := l (mod n);LÆ := [i<n 1i(1n)<ni ;L" := [ 11 ℄� ;LRj :=[� 1i0(1n)� 
 � � � 
 1irj�1(1n)� �� ([ai0 ℄; : : : ; [airj�1 ℄) 2 Rj=�	:8.2 Star-free and Lo
ally Threshold TestablePresentationsWhen looking at restri
tions of regular languages one naturally thinks of star-free and lo
ally threshold testable languages. As far as automati
 presentationsare 
on
erned those 
lasses of languages are unsuitable as the following remarkshows.Lemma 8.12 (see e.g. [Tho97b, page 412℄). The 
lasses of star-free and lo
allythreshold testable languages are not 
losed under proje
tions.Therefore we only have 
losure under quanti�er-free interpretations.Lemma 8.13. Let A be a stru
ture with a star-free or lo
ally threshold testablepresentation. Then, for every quanti�er-free formula ', (A; 'A) has a presen-tation of the same type.Proof. By de�nition, the 
lass of star-free languages forms a boolean algebra.By the logi
al 
hara
terisation of lo
ally threshold testable languages the sameis true in 
ase of the se
ond 
lass. Therefore, by the same proof as for AutStrwe obtain the desired result.The stru
tures in question areS�p := (N;�; (Di )i2Zp) and Ssp := (N; sp ; (Di)i2Zp)whereDixy : i� digi(x; y) and sp := f (x; px) j x 2 N g:Again, for the 
hara
terisation via interpretations we need to de�ne the rightlogi
. We 
onsider only stru
tures with universe N and de�ne WpFO to be therestri
tion of FO to quanti�
ation over powers of p.As in Proposition 4.2 we en
ode words w 2 Z�p be the number valp(w1).



92 8. Other Types of PresentationsTheorem 8.14. Let R � Nn .(i) R is WpFO-de�nable in S�p if and only if fold(val�1p (R)) is star-free.(ii) R is WpFO-de�nable in Ssp if and only if fold(val�1p (R)) is lo
ally thresh-old testable.Proof. We prove only (i). The other 
ase is analogous.()) Let '(y) 2 FO[�; (Qki )k;i℄ de�ne L where Qki is the set of positions atwhi
h the symbol i appears in the kth 
omponent of the word. We 
onstru
t aformula '�(x; y) 2WpFO su
h thatw0 
 � � � 
 wn�1 j= '(r0; : : : ; rm�1)i� Bp j= '�(valp(w0); : : : ; valp(wn�1); pr0 ; : : : ; prm�1):First we de�ne a formula spe
ifying those positions whi
h lie in the domain ofthe kth word, whi
h is the 
ase if there is a greater position 
arrying the digit 1.domk(y) := 9pz(y < z ^D1xkz); dom(y) := _k<n domk(y):The translation is(Qki y)� := domk(y) ^Dixky for i 6= �;(Qk�y)� := :domk(y);(yi = yj)� := yi = yj ;(yi � yj)� := yi � yj ;(:')� := :'�;(' _  )� := '� _  �;(9y'(y))� := 9py(dom(y) ^ '�(x; yy)):(() Let '(x; y) 2 WpFO where the variables y are guaranteed to rangeover powers of p. As variables in S�p are unbounded whereas the positionsin word models are bounded by the length of the longest word, we need tostore additional information about those variables whose values are too large.Therefore we de�ne for any tuple (r0; : : : ; rm�1) 2 Ntypen(r) := (tik)i;k<mwheretik := 8><>:ri � rk if jri � rkj < 2n;1 if ri � rk � 2n;�1 if ri � rk � �2n:We write t j= yi � yk for some type t i� tik � 0 and similarly for other formulae.Now, we 
an 
onstru
t a formula '�t (y) 2 FO su
h thatBp j= '(
odep(w0); : : : ; 
odep(wn�1); pr0 ; : : : ; prm�1)i� w0 
 � � � 
 wn�1 j= '�t (ri0 ; : : : ; rik )



8.2. Star-free and Lo
ally Threshold Testable Presentations 93wherel := maxfjw0j ; : : : ; jwn�1jg;t := typeqr(')(l � 1;maxfl � 1; r0g; : : : ;maxfl� 1; rm�1g);fri0 ; : : : ; rikg := � r 2 fr0; : : : ; rm�1g �� r < l 	:First, we simplify ' to '0 by applying the following rules.(xi = xk)0 := 8pz ĵ (Djxiz $ Djxkz);(xi = y)0 := D1xiy ^ 8pz(z 6= y ! D0xiz);(y = xi)0 := (xi = y)0;(xi � y)0 := xi = y _ 8pz(z � y ! D0xiz);(y � xi)0 := y = xi _ :(xi � y)0;(xi � xk)0 := xi = xk _ 9pzh _j<j0(Djxiz ^Dj0xkz)^ 8z0�z0 > z ! ĵ (Djxiz0 $ DjXkz0)�i;(Diyjyk)0 := 8><>:yj 6= yk if i = 0;yj = yk if i = 1;false otherwise;(Dixkxj)0 := 9pz(xj = z ^Dixkz);(Diyxk)0 := 9pz(xk = z ^Diyz):Thus, only the following 
ases remain. For the boolean 
onne
tives we de�ne(:')�t := :'�t ;(' _  )�t := '�t _  �t ;(9pz'(x; y))�t := 9z'�t[z=l�1℄(yz)_ _�'�t[z=r℄(y) �� t j= r � y + 2qr(') for some y 	;where we denoted by t[z = r℄ the extension of t by an additional variable withvalue r, and for the atomi
 formulae(Dixky)�t :=8>>><>>>:Qki y if t j= y < l;true if i = 1 and t j= y = l;true if i = 0 and t j= y > l;false otherwise;(yi = yj)�t :=8><>:yi = yj if t j= yi < l ^ yj < l;true if t j= yi = yj � l;false otherwise;(yi � yj)�t :=8><>:yi � yj if t j= yi < l ^ yj < l;true if t j= yi � yj ^ l � yj ;false otherwise:



94 8. Other Types of PresentationsCorollary 8.15. (i) A stru
ture A = (A;R0; : : : ; Rr) has a star-free presenta-tion if and only if A �WpFO S�p for some p 2 N n f0; 1g.(ii) A stru
ture A = (A;R0; : : : ; Rr) has a lo
ally threshold testable presen-tation if and only if A �WpFO Ssp for some p 2 N n f0; 1g.



Chapter 9Con
lusionWe studied various 
lasses of stru
tures whi
h 
an be presented in some way orother by automata. The resulting hierar
hy is depi
ted in Figure 9.1. A 
ommon
hara
teristi
 of those 
lasses is that they allow e�e
tive|even automati
|evaluation of �rst-order queries. In the 
ase of AutStr several 
omplexity resultswere obtained. They are summarised in Table 9.1.One of the most fundamental results was that in ea
h 
ase we were ableto give an equivalent 
hara
terisation in terms of interpretations. Ea
h 
lassinvestigated turned out to be the 
losure of some 
omplete stru
ture underinterpretations. This view 
an be applied to various other �elds. For instan
e,the 
lass of re
ursive stru
tures 
an be de�ned as the 
losure of Arithmeti
under �1-interpretations.Another example are 
onstraint databases. A 
onstraint database 
onsistsof a �xed stru
ture, 
alled 
ontext stru
ture, extended by relations that 
an bede�ned by quanti�er-free formulae in this stru
ture. Extensions of this kind 
anbe regarded as interpretations of a parti
ularly simple form. Hen
e the 
lassof 
onstraint databases using a �xed 
ontext stru
ture is the 
losure of thisstru
ture under a restri
ted type of interpretations.A natural generalisation of both automati
 stru
tures and 
onstraint data-bases therefore 
onsists of 
lasses de�ned as the 
losure of some given stru
tureunder interpretations of some kind. Form a pra
ti
al point of view it would beof parti
ular interest to �nd 
lasses where either the 
omplexity of evaluating aquery is a

eptable or Rea
hability be
omes de
idable.Another area of possible further resear
h would be to develop methods forproving non-membership in one of the automati
 
lasses. To the knowledge ofStru
ture-Complexity Expression-ComplexityModel-Che
king �0 Logspa
e-
omplete Alogtime-
omplete�0 + fun Nlogspa
e Ptime-
omplete�1 Nptime-
omplete Pspa
e-
ompleteQuery-Evaluation �0 Logspa
e Pspa
e�1 Pspa
e Expspa
eTable 9.1: Complexity results for AutStr95



96 9. Con
lusionRe
StrTAutStrAutStr1AutStrWAutStrFinStr
De
Th!-TAutStr!-AutStrooooo

ooooo

(N; +; �)PpNp(N; +)N1
P!pRpooooooooo

ooooooooo

Figure 9.1: Hierar
hy of automati
 
lasses and 
omplete stru
turesthe author up to now only two su
h methods are available: showing that theFO-theory is unde
idable and proving a more than exponential lower boundon the 
ardinality of generations. In parti
ular there is no tool to separate!-TAutStr from !-AutStr.Finally, many questions in model theory remain unresolved. Besides 
om-pa
tness there are several other results in 
lassi
al model theory whi
h fail formost restri
ted 
lasses, e.g., Craig's Interpolation Theorem, Beth's De�nabilityTheorem, Lyndon's Lemma, and other preservation properties. Up to now itis unknown whether these results do or do not hold in the 
ase of automati
stru
tures. A �rst step to answer those questions 
ould be to show that thereare no automati
 non-standard models of Th(Np). In that 
ase it would bepossible to axiomatise a well-ordering, and if, furthermore, it were possible toredu
e this axiom system to a �nite one, one would have a tool whi
h perhaps
ould be used to answer the above questions.
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