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Abstract. In this paper we introduce so-called asymptotic logics, logics
that are meant to reason about weights of elements in a model in a way
inspired by topology. Our main subject of study is Asymptotic Monadic
Second-Order Logic over infinite words. This is a logic talking about ω-
words labelled by integers. It contains full monadic second-order logic
and can express asymptotic properties of integers labellings.
We also introduce several variants of this logic and investigate their

relationship to the logic MSO+U. In particular, we compare their ex-
pressive powers by studying the topological complexity of the different
models. Finally, we introduce a certain kind of tiling problems that is
equivalent to the satisfiability problem of the weak fragment of asymp-
totic monadic second-order logic, i.e., the restriction with quantification
over finite sets only.

1 Introduction

In this paper we consider logics that are able to express asymptotic properties
about structures whose elements are labelled by weights. We call such logics
‘asymptotic logics’. In general, these logics refer to a structure A together with
a labelling function d, called the ‘weight map’, that maps elements or tuples of
elements to non-negative reals. A typical example of such an object is a metric
structure, i.e., a structure A equipped with a distance map d : UA×UA → [0,∞).
In general, we refer to such structures as ‘weighted structures’.

We are interested in the formalisation of properties of asymptotic nature over
weighted structures. Typical examples, in the case of a metric structure, are:

– Continuity of a function f :

(∀x)(∀ε > 0)(∃δ > 0)(∀y)
[
d(x, y) < δ → d(f(x), f(y)) < ε

]
.
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– Uniform continuity of f :

(∀ε > 0)(∃δ > 0)(∀x)(∀y)
[
d(x, y) < δ → d(f(x), f(y)) < ε

]
.

– Cauchy convergence of a sequence (ai)i∈N:

(∀ε > 0)(∃k)(∀i, j > k)
[
d(ai, aj) < ε

]
.

– Density of a set Y : (∀x)(∀ε > 0)(∃y ∈ Y )
[
d(x, y) < ε

]
.

Inspecting the syntax of these formulae, we note the following properties. First,
there are two sorts: the objects that live in the universe of the structure, such
as elements, series, functions, etc.. . . , and the objects living in R that are used
to refer to distances. The map d is the only way to relate these two sorts, and
all tests in which elements of R are involved are comparisons with variables
ε, δ. More interesting is the remark that if a variable, say ε, ranging over R+ is
quantified universally, it is always used as an upper bound, i.e, positively in a test
of the form d(−) < ε (positively in the sense that an even number of negations
separate the quantifier from its use). Dually, if it is quantified existentially, it is
always used as a lower bound, i.e., positively in a test of the form d(−) ≥ ε. In
particular, this is the case for the test d(x, y) < δ in the sentences expressing
continuity and uniform continuity, since it occurs in the left hand-side of an
implication.

This syntactic property witnessed in the above examples can be turned into a
definition. An asymptotic formula is a formula in which it is possible to quantify
over quantities ∃ε, ∀δ, and the only way to use the map d is in tests of the form
d(−) ≥ ε positively below ∃ε and d(−) < δ positively below ∀δ.

This restriction captures the intuition that variables ranging over R+ are
always thought as ‘tending to 0’ or ‘to be very small’. In other words, they
are only used to state properties of a topological nature. Our objective is to
understand the expressive power and the decidability status of logics to which
we have added this asymptotic capability.

Link with topological logics. Of course, logics as described above are related to
topological notions, and as such these logics are not very far from the topological
logics as studied in the seventies and eighties. These were logics (variants of first-
order logic) in which it is possible to quantify over open sets. There are several
variants. Flum and Ziegler introduced a logic in which it is possible to quantify
over open sets, but it is only allowed to test the membership in these sets under
a positivity assumption with respect to the quantifier [11] (in a way very similar
to our case). Rabin proved, as a consequence of the decidability of the theory of
the infinite binary tree that the theory of the real line (R, <) with quantification
over open sets is decidable [15]. On the other hand, Shelah and Gurevich showed
that monadic formulas over Cantor space equipped with an ‘is open’ predicate
is undecidable [12].

Our approach is slightly different. Our base object is not, as above, a topology
of open sets, but a weight map d. Of course, if d is required to be a distance,



it induces a topology. However, there is no such assumption in general (and d
may even be non-binary). Nevertheless, we can consider the topology over the
non-negative reals in which the open sets are the neighbourhoods of 0 (as well
as ∅ of course). Then the quantifiers ∀ε, ∃δ,. . . can be replaced by quantifiers
ranging over open sets, and tests of the form d(−) < ε by membership tests of
d(−) in an open set. Furthermore, these tests respect the positivity assumption
as defined by Flum and Ziegler. However, this relationship of our logic with those
from the literature does not seem to help with solving the questions raised in
the present paper.

Monadic second-order logic and asymptotic monadic second-order logic. In this
paper, we consider the asymptotic variant of monadic second-order logic, though
certainly this notion of asymptoticity can be combined with other formalisms.
Let us recall that monadic second-order logic is the extension of first-order logic
by set quantifiers. There is a long history of works dealing with the decidabil-
ity of monadic second-order logic over some classes of structures, the prominent
examples being the results over ω by Büchi [7] and over the infinite binary tree
by Rabin [15]. These results can be regarded as foundations for a theory of
‘regular languages’ of infinite words and trees. We are interested in knowing
whether this logic can be ‘made asymptotic’ while keeping these strong decid-
ability properties. We have good hopes that – at least some of – these results
can be generalised to more general ones, in which monadic logic is extended with
asymptotic capabilities.

Before continuing, let us formalise what is ‘asymptotic monadic second-order
logic’ (AMSO for short). The first aspect is that weight maps range over the
elements of the structure, and not tuples. This is a design choice, our goal be-
ing to concentrate our attention on the simplest situation. The second aspect is
cosmetic: instead of considering quantities ranging over R+, we consider quan-
tities ranging over N. Essentially, this amounts for weights to exchange d(−)
with d1/d(−)e and, for quantifiers ∃ε, ∀δ ranging over R+, to exchange them
for ∃r, ∀s ranging over N. As a consequence, existentially quantified numbers
are used as upper bounds, while universally quantified ones are used as lower
bounds. Hence, the syntax of ‘asymptotic monadic second-order logic’ is the one
of MSO, extended by number quantifiers ∃r, ∀s ranging over N and by predicates
of the form d(x) < r and d(x) ≥ s, where x is a first-order variable, under the
assumption that there is an even number of negations between the quantifier
and the use.

Let us give some examples. The structure here is ω and f : ω → N is a weight
map. The convention is that variables x, y, z range over elements of ω, upper case
variables X,Y, Z over subsets of ω, and r, s over N.

– f is bounded: ∃s∀x[f(x) ≤ s].
– f tends to ∞: ∀r∃x(∀y > x)[f(y) > r].
– f takes infinitely many values infinitely many times:
∀r∃s∀x(∃y > x)[r ≤ f(y) < s] .

The subject of this paper is to analyse the expressive power of AMSO, as
well as its variants, and study its decidability status.



Link with MSO+U. A logic closely related to AMSO is MSO+U [1, 3]. MSO+U is
monadic second-order logic extended by a quantifier UXϕ(X) stating that ‘there
are arbitrarily large finite sets X satisfying ϕ(X)’, i.e., UXϕ(X) is equivalent
to ∀s∃X[|X| ≥ s ∧ ϕ(X)]. Thus, MSO+U can be regarded as a fragment of an
asymptotic logic, if the weight map is chosen to be ‘the cardinality map’ that
associates to each set its size (and, say, 0 for infinite sets).

So far, the precise decidability status of MSO+U is unknown. The most
expressive decidable fragment over infinite words corresponds (essentially) to
Boolean combination of formulas in which the U-quantifier occurs positively [3]
(in fact a bit more). On the negative side, it is known that over infinite trees
MSO+U is undecidable [4] under the set-theoretic assumption V = L. This proof
is inspired from the undecidability proof of MSO over the real line by Shelah
[16], and it is absolutely not adaptable to infinite words as such. Hence, there
is a very large gap in our knowledge of the decidability of MSO+U. The case
of the weak fragment of MSO+U, i.e., where set quantifiers do only range over
finite sets, has been positively settled in [5, 6] over infinite words and trees. In
terms of the expressive power, this weak fragment still falls in the classes that
are understood from [3].

In some sense, this paper can be seen as an attempt to better understand the
logic MSO+U. This is also the subject of another branch of research: the theory
of regular cost functions [8, 10, 9]. However, that approach concentrates on how
to measure the cardinality of sets (the quantifier U involves such a computation),
and does not give any asymptotic analysis of quantities.

Contributions of the paper. In this paper, we study AMSO and some of its
variants over infinite words. These variants are: BMSO in which number quan-
tifiers are replaced by a boundedness predicate; EAMSO which extends AMSO
with quantification over weight functions; and EBMSO that combines these two
modifications. We also study the weak fragment WAMSO of AMSO, and its
‘number prenex’ fragment AMSOnp. The contributions are in several directions:
expressive power, topological complexity, and decidability.

Concerning the expressive power we show that EAMSO is equivalent to
EBMSO, AMSO is equivalent to BMSO, and WAMSO is equivalent to AMSOnp.
All other pairs of logics can be separated. However, more interestingly, we can
show that as far as the decidability of satisfiability is concerned, AMSO, BMSO,
EAMSO, EBMSO and MSO+U are all equivalent, and WAMSO is equivalent to
AMSOnp. We are hence confronted with only two levels of difficulty.

Concerning topological complexity, we perform an analysis in terms of de-
scriptive set theory. We prove that AMSO reaches all levels of the projective
hierarchy, while WAMSO reaches all finite levels of the Borel hierarchy. This
separates the two classes. In particular, this shows that – as far as topological
complexity is concerned – WAMSO is far simpler than AMSO, and at the same
time far more complex than any variant of MSO known to be decidable (for
instance the weak fragment of MSO+U remains at the third level of the Borel
hierarchy).



On the decidability front, the case of MSO+U is notoriously open and diffi-
cult, and as explained above (in particular, it is known to be undecidable over
infinite trees, though this gives no clue about the infinite word case). AMSO
is not easier. In this paper, we advocate the importance of the weak fragment
WAMSO as a logic of intermediate difficulty. Though we have to leave its decid-
ability status open as well, we are able to disclose new forms of tiling problems
that are equivalent to the decidability of the satisfiability of WAMSO. This
provides a promising line of attack for understanding the decidability status of
AMSO and MSO+U.

We believe that these numerous results perfectly describe how the asymptotic
notions relate to other notions from the literature, the prominent one being
MSO+U. In particular we address and answer the most important questions:
expressive power, topological complexity, and – in some very preliminary form –
decidability. We are finally convinced that the tiling problems that we introduce
deserve to be studied on their own.

Structure of the paper. In Section 2, asymptotic monadic second-order logic is
introduced as well as several fragments. Some first results are proved: the weak
fragment is introduced and it is shown to be equivalent to the number prenex-
form of AMSO. The extended version of asymptotic monadic second-order logic
(EAMSO) is introduced and its relation to MSO+U is established. Section 2.3
characterises our logics in terms of Borel complexity. In Section 3, we introduce
certain tiling problems and we show their equivalence with the satisfiability
problem for WAMSO.

2 Asymptotic monadic second-order logic and variants

In this section, we quickly recall the definition of monadic second-order logic
and we introduce the new asymptotic variant AMSO (which happens to be
equivalent to another formalism, called BMSO, see below). We then introduce
the weak fragment WAMSO, mention some of its basic properties. We conclude
with a comparison of the expressive power of these logics.

We assume that the reader is familiar with the basic notions of logic. We
consider relational structures A = 〈U , R1, . . . , Rk〉 with universe U and relations
R1, . . . , Rk. A word (finite or infinite) over the alphabet Σ is regarded as a
structure whose universe is the set of positions and where the relations consist
of the ordering ≤ of positions and unary relations a, for each a ∈ Σ, containing
those positions carrying the letter a.

Monadic second-order logic (MSO) is the extension of first-order logic (FO)
by set variables X,Y, . . . ranging over sets of positions, quantifiers ∃X, ∀X over
such variables, and membership tests x ∈ Y .

2.1 Weighted structures and asymptotic monadic second-order logic

The subject of this paper is asymptotic monadic second-order logic. This logic ex-
presses properties of structures whose elements have a weight which is a natural



number. Formally, a weighted structure is a pair 〈A, f̄〉 consisting of a relational
structure A with universe U and a tuple of functions fi : U → N called weight
functions. A weighted finite word (resp. a weighted ω-word) corresponds to the
case where A is a finite word (resp., an ω-word).

Asymptotic monadic second-order logic (AMSO) extends MSO with the fol-
lowing constructions:

– quantifiers over variables of a new type, number variables (written r, s, t, . . . )
that range over natural numbers, and

– atomic formulae f(x) ≤ r where x is a first-order variable and r a number
variable. These formulae must appear positively inside the existential quan-
tifier binding r, i.e., the predicate and the quantifier are separated by an
even number of negations. As a commodity of notation, the dual predicate
f(x) > r can be used positively below the universal quantifier ∀r.

Example 1. It is possible to express in AMSO that:

– the weights in a structure are bounded: ∃r∀x[f(x) ≤ r] ,
– an ω-word has weights tending to infinity: ∀s∃x(∀y > x)[f(y) > s] ,
– infinitely many weights occur infinitely often in a weighted ω-word:

∀s∃r∀x(∃y > x)[f(y) > s ∧ f(y) ≤ r] .

On the other hand, the formula ∀r∃x[f(x) ≤ r] is ill-formed since it does not
respect the positivity constraint separating the introduction of r and its use.

There is an alternative way to define this logic, in a spirit closer to MSO+U:
the logic BMSO extends MSO with boundedness predicates of the form f [X] <∞
where X is a set variable. Such a predicate holds if the function f restricted to
the set X is bounded by some natural number. Hence f [X] < ∞ can be seen
as a shorthand for the AMSO formula ∃r(∀x ∈ X)[f(x) ≤ r]. It follows that
BMSO is a fragment of AMSO. In fact, both logics are equivalent, as shown by
the following theorem.

Theorem 2. AMSO and BMSO are effectively equivalent over all weighted struc-
tures.

Finally, let us mention an important invariance of the logic AMSO. Two functions
f, g : U → N are equivalent, noted f ≈ g, if they are bounded over the same sub-
sets of their domain (this is expressible in BMSO as ∀X(f [X] <∞↔ g[X] <∞)).
We extend this equivalence to weighted structures by 〈A, f̄〉 ≈ 〈B, ḡ〉 if A and
B are isomorphic, and fi ≈ gi for all i.
Proposition 3. ≈-equivalent weighted structures have same AMSO-theory.

This is obviously true for the logic BMSO, and hence also for AMSO according to
Theorem 2. In fact, Proposition 3 also holds for the logic EAMSO introduced in
Section 4 below and, more generally, for every logic that would respect syntactic
constraints similar to AMSO in the use of weights. An immediate consequence
is that there is no formula defining f(x) = f(y) in AMSO or its variants. This
rules out all classical arguments yielding undecidability in similar contexts of
‘weighted logics’.



2.2 The weak and the number prenex fragments of AMSO

The use of quantifiers over infinite sets combined with number quantifiers in-
duces intricate phenomena (the complexity analysis performed in Section 2.3
will make this obvious: AMSO reaches all levels of the projective hierarchy).
There are two ways to avoid it. Either we allow only quantifiers over finite sets,
thus obtaining WAMSO (which defines only Borel languages), or we prevent the
nesting of monadic and number quantifiers by requiring all number quantifiers
to be at the head of the formula, thereby obtaining the number-prenex fragment
of AMSO, named AMSOnp. We will see that these two logics have the same ex-
pressive power. To avoid confusion, let us immediately point out that WAMSO
and WMSO+U, the weak fragment of MSO+U, are very different logics. This
is due to the fact that the syntax of AMSO is not the one of MSO+U, and as
a consequence assuming the sets to be finite has dramatically different effects.
In particular, we will see that WAMSO inhabits all finite levels of the Borel
hierarchy, while it is known that WMSO+U is confined in the third level [13].

Weak asymptotic monadic second-order logic (WAMSO) is obtained by re-
stricting set quantification to finite sets (the syntax remains the same). We will
write ∃wX and ∀wX when we want to emphasize that the quantifiers are weak,
i.e., range over finite sets. Let us remark that, as usual, the weak logic is not
strictly speaking a fragment of the full logic since, in general, AMSO is not able
to express that a set is infinite. However, on models such as words, ω-words, or
even infinite trees, the property of ‘being finite’ is expressible, even in MSO.

It turns out that, in a certain sense, weak quantifiers commute with number
quantifiers.

Lemma 4. There exists a WAMSO-formula ψ(X, r) such that, for every se-
quence Q̄t̄ of number quantifiers, every WAMSO-formula Q̄t̄ ϕ(X, t̄), and all
weighted ω-words w,

w |= ∃wXQ̄t̄ϕ(X, t̄) iff w |= ∃rQ̄t̄∃wX[ϕ(X, t̄) ∧ ψ(X, r)] .

By this lemma, it follows that we can transform every WAMSO-formula into
number-prenex form, i.e., into the form Q̄t̄ϕ, where Q̄t̄ is a sequence of number
quantifiers while ϕ does not contain such quantifiers. However, this translation
adds new number variables in the formula. The fragment of AMSO-formulae in
number prenex form is denoted AMSOnp. For weak quantifiers, we obtain the
logic WAMSOnp in the same way.

Theorem 5. The logics WAMSO, AMSOnp and WAMSOnp effectively have the
same expressive power over weighted ω-words.

2.3 Separation results

To separate the expressive power of the logics introduced so far, we employ
topological arguments. One way to show that a logic is strictly more expressive
than one of its fragments is to prove that it can define languages of a topological
complexity the fragment cannot define. In our case we use the Borel hierarchy
and the projective hierarchy to measure topological complexity.



Theorem 6. Languages definable in AMSO strictly inhabit all levels of the pro-
jective hierarchy, and not more. Languages definable in WAMSO strictly inhabit
all finite levels of the Borel hierarchy, and not more.

This is proved using standard reduction techniques. We obtain the following
picture:

Bool(Σ0
2)︷ ︸︸ ︷

MSO = WMSO (
all Borel levels of finite rank︷ ︸︸ ︷
WAMSO = AMSOnp (

all projective levels︷ ︸︸ ︷
AMSO .

As an immediate consequence, we obtain the corollary that AMSO is strictly
more expressive than WAMSO and AMSOnp, that AMSOnp is strictly more
expressive than MSO, and that WAMSO is strictly more expressive than WMSO.

3 Weak asymptotic monadic second-order logic and tiling
problems

We have introduced in the previous sections several logics with quantitative capa-
bilities. The analysis performed shows that WAMSO (or equivalently AMSOnp)
offers a good compromise in difficulty in the quest for solving advanced logics like
MSO+U. Indeed, in terms of Borel complexity, it is significantly simpler than
other logics like AMSO and EAMSO, and hence MSO+U. Despite its relative
simplicity, this logic is, still in terms of Borel complexity, significantly more com-
plex than any other extensions of WMSO known to be decidable over infinite
words, e.g., WMSO+U 4 and WMSO+R 5 [2, 5]. Both of these logics can define
Boolean combinations of languages at the third level of the Borel hierarchy.

In this section, we develop techniques for attacking the satisfiability problem
of WAMSO over weighted ω-words, though we are not able to solve this problem
itself. Our contribution in this direction is to reduce the satisfiability problem
of WAMSO to a natural kind of tiling problem, new to our knowledge, the
decidability of which is unknown, even in the simplest cases. As a teaser, let us
show the simplest form of such tiling problems:

Open problem 7 Given two regular languages K and L over an alphabet Σ
where K is closed under letter removal, can we decide whether, for every n,
there exists a Σ-labelled picture of height n such that all rows belong to L and
all columns to K?

Note that this problem would clearly be undecidable if K was not required to
be sub-word closed. In the remainder of the section, we first introduce these
problems in a more general setting (a multidimensional version of it), and give
the essential ideas explaining why the decidability of satisfiability for WAMSO
reduces to such tiling problems.
4 The weak fragment of MSO+U, where set quantifiers range over finite sets.
5 An extension of WMSO with an unusual recurrence operator. Adding this operator
to MSO yields a logic equivalent to MSO+U.



3.1 Lossy tiling problems

A picture p : [h]× [w]→ Σ is a rectangle labelled by a (fixed) finite alphabet Σ,
where h ∈ N is the height and w ∈ N the width of the picture. For 0 ≤ i < w,
the ith column of the picture is the word p(0, i)p(1, i) . . . p(h − 1, i). A band
of height m in a picture is obtained by erasing all but m-many rows from a
picture. We regard bands of height m as words over the alphabet Σm. Formally,
for 0 ≤ j1 < j2 < · · · < jm < h, the band for rows j1, . . . , jm is the word
(p(j1, 0), . . . , p(jm, 0)) . . . (p(j1, w−1), . . . , p(jm, w−1)). Our tiling problems have
the following form. Fix an alphabet Σ and a dimension m ∈ N.
Input: A column languageK ⊆ A∗ and a row language L ⊆ (Am)∗, both regular.
Question: Does there exist, for all h ∈ N, a picture p of height h such that

– all columns in p belong to K,
– all bands of height m in p belong to L?

Such a picture is called a solution of the tiling system (K,L).
Of course, in general such problems are undecidable, even in dimension m =

1. Consequently, we consider two special cases of tiling systems: monotone and
lossy ones. A tiling system (K,L) is lossy if K is closed under sub-words: for all
words u, v and all letters a, uav ∈ K implies uv ∈ K. A tiling system (K,L) is
monotone if there exists a partial order ≤ on the alphabet Σ (which we extend
component-wise, i.e., letter-by-letter, to Σ∗ and to (Σm)∗) such that u ≤ v and
u ∈ L implies v ∈ L, and uabv ∈ K implies ucv ∈ K, for some c with c ≥ a
and c ≥ b. Consequently, if we have a solution p of a lossy tiling system, we can
obtain new solutions (of smaller height) by removing arbitrarily many rows of p.
For a monotone tiling system, we obtain a new solution by merging two rows.

Example 8. (a) Consider the one-dimensional lossy tiling problem defined by
L = a∗ba∗ and K = a∗b?a∗. There are solutions of every height n: take a picture
that has label a everywhere but for one b in each row, and at most one b per
column (see Figure 1 (a)). The width of such a solution is at least n.

a b a a a a a
b a a a a a a
a a b a a a a
a a a a a a b
a a a a b a a

b c c c c c c
a b c c c c c
a a b c c c c
a a a a b c c
a a a a a a b

d b a a c b a a c
c a b a d a b a c
c a a b c a a b d

a 1 1 1 1 1 1 1
b 1 1 1 a 1 1 1
b 1 a 1 b 1 a 1
b a b a b a b a

(a) (b) (c) (d)

Fig. 1. Some solutions to tiling problems

(b) A similar example uses the languages L = a∗bc∗ and K = a∗b?c∗. Again,
there exist solutions for all heights n, and the corresponding width is at least n



too. However, the solution is more constrained since it involves occurrences of b
letters to describe some sort of diagonal in the solution (see Figure 1 (b)).

(c) More complex is the system with L = (ca∗ba∗)∗d(a∗ba∗c)∗ and K =
a∗b?a∗+c∗d?c∗. There are also solutions of all heights, but this time, the minimal
width for a solution is quadratic in its height (see Figure 1 (c)).

(d) Our final example is due to Paweł Parys. It consists of L = a1∗+(b1∗a1∗)+

and K = b∗a?1∗. All solutions of this system have exponential length (see Fig-
ure 1 (d)).

Theorem 9. The satisfiability problem for WAMSO and the monotone tiling
problem are equivalent. Both reduce to the lossy tiling problem.

Conjecture 10. Monotone tiling problems and lossy ones are decidable.

This is the main open problem raised in this paper, even in dimension one. In
the remainder, we will sketch some ideas on how to reduce the satisfiability of
WAMSO to lossy tiling problems.

3.2 From ω-words to finite words

Using Ramsey arguments in the spirit of Büchi’s seminal proof [7], we can reduce
WAMSO over ω-words to the following question concerning sequences of finite
words. Consider a formula Q̄t̄ϕ(t̄) in AMSOnp and a sequence ū = u1, u2, . . . of
weighted finite words. We say that ū (Q̄t̄)-ultimately satisfies ϕ(t̄) if

Q̄t̄[ui |= ϕ(t̄) for all but finitely many i] .

The limit satisfiability problem for AMSOnp is to decide, given a formula Q̄t̄ϕ(t̄),
whether ϕ(t̄) is (Q̄t̄)-ultimately satisfied by some sequence ū.

Lemma 11. The satisfiability problem for AMSOnp and the limit satisfiability
problem for AMSOnp can be reduced one to the other. Furthermore, the prefix of
number quantifiers is preserved by these reductions.

Of course, the interesting reduction is from satisfiability of AMSOnp on infinite
words to limit satisfiability. We follow here an approach similar to Büchi’s tech-
nique or, more precisely, its compositional variant developed by Shelah [16]. It
amounts to use Ramsey’s Theorem for chopping ω-words into infinitely many
pieces that have the same theory. However, in this weighted situation, this kind
of argument requires significantly more care.

A typical example would be to solve the satisfiability of the AMSOnp-formula
ϕ := ∀s∃r∀x(∃y > x)[s < f(y) ≤ r] stating that there are infinitely many
values that occur infinitely often (Example 1). It reduces to solving the limit
satisfiability of the formula ψ := ∀s∃r∃y[s < f(y) ≤ r]. A limit model for this
formula would be the sequence (in which we omit the letters and only mention the
weights) ū = 0, 01, 012, 0123, . . . . Indeed, for all s, fixing r = s+ 1, the formula
∃y[s < f(y) ≤ r] holds for almost all ui. If we concatenate this sequence of words,
we obtain the weighted ω-word 0010120123 . . . which satisfies ϕ. Conversely,



every ω-word satisfying ϕ can be chopped into an infinite sequence of finite
weighted words that satisfy ψ in the limit. In fact, this last reduction is more
complex since it requires us to take care of the values contained in the finite
prefixes. This is just an example, since in general the reduction is ‘one-to-many’
and involves regular properties of the finite prefixes.

4 Extended asymptotic monadic logic

In this section we prove that the decidability problem for AMSO over ω-words
is equivalent to the corresponding problem for MSO+U. To do so we introduce
an extension of AMSO called extended asymptotic monadic second-order logic
(EAMSO). This logic extends AMSO by quantifiers over weight functions. Inside
a quantifier ∃f we can use the function f in the usual constructions of AMSO.
Note that variables for weight functions are not subject to any positivity con-
straint. Only number variables do have to satisfy such constraints.

Example 12. Let LS be the language of ω-words over the alphabet {a, b, c} such
that, either there are finitely many occurrences of the letter b, or the number of a
appearing between consecutive b tends to infinity. Consider the EAMSO-formula

ψ := ∃f∀r∃s∃w∀x∀z
[
(w < x < z ∧ b(x) ∧ b(z))→
∃y(x < y < z ∧ a(y) ∧ r < f(y) ≤ s)

]
.

This formula defines LS as follows. It guesses a weight function f and expresses
that, for every number r, there exists a number s such that, ultimately, every
two b-labeled positions x < z are separated by an a-labeled position y with
weight in (r, s]. It is easy to see that, if the number of a in an ω-word separating
consecutive b tends to infinity, the weight function f defined by

f(x) =


0 if the letter at x is not a
r if x is the r-th occurrence of the letter a after the last

occurrence of the letter b or the beginning of the word

witnesses that the ω-word is a model of ψ. One can show that the converse also
holds, i.e., an ω-word satisfies ψ if and only if the number of a occurring between
b tends to infinity (or there are finitely many occurrences of b).

The interesting point concerning EAMSO is that we can prove that, as far as
satisfiability over infinite words is concerned, this logic is essentially equivalent
to both AMSO and MSO+U. Let us recall that MSO+U is the extension of MSO
with a new quantifier UXϕ which signifies that ‘there exists sets of arbitrarily
large finite size such that ϕ holds’. For instance, it is straightforward to define
the above language LS in MSO+U.

Theorem 13. (a) For every MSO+U-sentence, we can compute an EAMSO-
sentence equivalent to it over ω-words. Conversely, for every EAMSO-sentence,



there effectively exists an MSO+U-sentence such that the former is satisfiable
over ω-words if, and only if, the latter is.

(b) For every EAMSO-sentence, we can compute an AMSO-sentence such
that the former is satisfiable over ω-words if, and only if, the latter is.

To compare the expressive power of EAMSO and AMSO, we again employ
topological arguments. It is easy to show that, over ω-words without weights,
AMSO collapses to MSO and, therefore, defines only Borel sets. However, accord-
ing to Theorem 13, EAMSO is at least as expressive as MSO+U which reaches
all levels of the projective hierarchy [13], even over non-weighted ω-words. Con-
sequently, EAMSO is strictly more expressive than AMSO.
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Appendices

In the remainder of this document we present the proofs that had to be omitted
from the main part due to space considerations. These appendices follow the
structure of the main part of the paper. Appendix A presents the proofs missing
from Section 2, Appendix B the ones missing from Section 2.3, and Appendix C
the ones missing from Section 3.

A Logics

We successively provide complementary proofs for AMSO in Section A.1, for
WAMSO and AMSOnp in Section A.2, and for EAMSO in Section A.3.

A.1 Some more on AMSO

The positivity assumption on the use of number variables results in the fact
that whenever some number r makes a formula ∃rϕ true, then all larger values
would also make the formula true. A consequence of this is that some syntactic
transformations are valid in formulae, that are not allowed for general logics.

Proposition 14. In AMSO the following equivalences hold:

∃r∃sϕ(r, s) ≡ ∃rϕ(r, r) , (∃rϕ) ∧ (∃r ψ) ≡ ∃r(ϕ ∧ ψ) ,

∀r∀sϕ(r, s) ≡ ∀rϕ(r, r) , (∀rϕ) ∨ (∀rψ) ≡ ∀r(ϕ ∨ ψ) .

Proof. In the first equivalence, the right to left implication always holds. For the
converse, just note that, if values for r and s are chosen such that ϕ holds, the
formula would still be true if we would choose max(r, s) as value of both r and
s, by the above remark. Hence, there exists a value of r (namely max(r, s)) such
that ϕ(r, r) holds.

The second equivalence follows from the first one since ∃rϕ(r) ∧ ∃sψ(s) is
equivalent to ∃r∃s(ϕ(r) ∧ ψ(s)) (this is true in any logic). The two remaining
equivalences follow by duality. ut

We next prove Theorem 2 stating that AMSO and BMSO are equivalent.

Lemma 15. (a) For every BMSO-formula ϕ(X̄), there is an AMSO-formula
ϕ∗(X̄) such that

A |= ϕ(P̄ ) iff A |= ϕ∗(P̄ ),

for all weighted structures A and sets P̄ .
(b) For every AMSO-formula ϕ(X̄) without free number variables, there is a

BMSO-formula ϕ∗(X̄) such that

A |= ϕ(P̄ ) iff A |= ϕ∗(P̄ ),

for all weighted structures A and sets P̄ .



Proof. (a) We obtain ϕ∗ from ϕ by replacing every atom of the form f [X] <∞
by the AMSO-formula

∃r(f [X] ≤ r) .

(b) Intuitively, instead of quantifying over a number r, we quantify over sets
of the form

Z := { a | f(a) ≤ r } .

Formally, the translation is as follows. For every number variable r and every
weight function f , we fix a set variable Zf,r. Let f0, . . . , fl be an enumeration of
all weight functions.

(X ⊆ Y )∗ := X ⊆ Y , (ψ ∧ ϑ)∗ := ψ∗ ∧ ϑ∗ ,
(X ∩ Y = ∅)∗ := X ∩ Y = ∅ , (ψ ∨ ϑ)∗ := ψ∗ ∨ ϑ∗ ,

(RX̄)∗ := RX̄ , (¬ψ)∗ := ¬ψ∗ ,
(f [X] ≤ r)∗ := X ⊆ Zf,r , (∃Xψ)∗ := ∃Xψ∗ ,
(f [X] > s)∗ := X ∩ Zf,r = ∅ , (∀Xψ)∗ := ∀Xψ∗ ,

(∃rψ)∗ := ∃Zf0,r · · · ∃Zfl,r
[∧

i≤l fi[Zfi,r] <∞∧ ψ∗
]
,

(∀sψ)∗ := ∀Zf0,r · · · ∀Zfl,r
[∧

i≤l fi[Zfi,r] <∞→ ψ∗
]
.

A.2 The logic WAMSO

We need to prove Lemma 4, and then complete the proof of Theorem 5. The
following operation on formulae provides a translation from AMSO to MSO.

Definition 16. Let r̄, s̄, t̄ be tuples of number variables and let ϕ(r̄, s̄) be an
AMSO-formula. We denote by ϕ↓t̄ the formula obtained from ϕ by substituting

– the formula true for every atom of the form f [X] ≤ ri with ri ∈ t̄, and
– the formula false for every atom of the form f [X] > si with si ∈ t̄.

In the case where t̄ = r̄s̄, we simply write ϕ↓ for ϕ↓t̄.

The following observation follows immediately from the definitions.

Lemma 17. Let r̄, r̄′, s̄, s̄′ be number variables and let m̄, m̄′, n̄, n̄′ be tuples of
numbers such that every component of m̄ and n̄ is greater than or equal to the
maximal weight of A. Then

A |= ϕ(m̄m̄′, n̄n̄′) iff A |= ϕ↓r̄′,s̄′(m̄′, n̄′) .

The next lemma summarises the key property of the operation ϕ↓t̄. It is a
direct consequence of the preceding observation.



Lemma 18. Let ϕ(t̄) be an AMSO-formula and Q̄t̄ a prefix a number quanti-
fiers. Then

A |= Q̄t̄ϕ iff A |= ϕ↓t̄ ,

for every structure A whose weights are bounded.

Proof. It is sufficient to prove the following two equivalences

A |= ∃rψ(r) iff A |= ψ↓r ,
A |= ∀sψ(s) iff A |= ψ↓s ,

for every formula ψ.
Let k be some number larger than all weights of A. First, suppose that A |=

∃rψ(r). Then there is some number m such that A |= ψ(m). By monotonicity,
it follows that A |= ψ(m+ k). Consequently, Lemma 17 implies that A |= ψ↓r.

Conversely, suppose that A |= ψ↓r. By Lemma 17 it follows that A |= ψ(k).
Hence, A |= ∃rψ(r).

For the second claim, suppose that A |= ∀sψ(s). Then A |= ψ(k) which
implies, by Lemma 17, that A |= ψ↓s.

Conversely, suppose that A |= ψ↓s. By Lemma 17 it follows that A |= ψ(n),
for all n ≥ k. By monotonicity, it follows that A |= ψ(n), for all n. Hence,
A |= ∀sψ(s).

The following proposition is a refinement of Lemma 4 from the main part of
the paper.

Proposition 19. There exists a WAMSO-formula ϑ(X, r) such that, for every
AMSO-formula ϕ(X, t̄) and all sequences Q̄t̄ of number quantifiers,

w |= ∃wXQ̄t̄ϕ iff w |= ∃rQ̄t̄∃wX[ϑ(X, r) ∧ ϕ] ,

for all weighted ω-words w.

Proof. We claim that the formula

ϑ(X, r) := (∀x ∈ X)(∀y < x)
∧
f

f(y) ≤ r

has the desired properties where the conjunction ranges over all weight func-
tions f .

For the proof, we distinguish two cases. First, suppose that the all weights
are bounded in w. Then Lemma 18 implies that

w |= ∃rQ̄t̄∃wX[ϑ(X, r) ∧ ϕ] iff w |= ∃wX[ϑ(X, r) ∧ ϕ]↓
iff w |= ∃wX[ϑ(X, r)↓ ∧ ϕ↓]
iff w |= ∃wXϕ↓
iff w |= ∃wXQ̄t̄ϕ .



It remains to consider the case where the weights of w are unbounded. We
claim that, in this case,

w |= (∃wX ϑ(X,m))Q̄t̄ϕ iff w |= Q̄t̄(∃wX ϑ(X,m))ϕ ,

for all m < ω. For the proof, consider the weight function

g(x) := max { f(y) | y ≤ x and f a weight function } .

This function is unbounded and (not necessarily strictly) increasing. For m < ω
and a finite nonempty set P ⊆ ω, it follows that

w |= ϑ(P,m) iff g(maxP ) ≤ m,

Consequently, for every m < ω, there are only finitely many finite sets P ⊆ ω
such that w |= ϑ(P,m). For m < ω, it follows by Proposition 14 that

w |= (∃X ϑ(X,m))Q̄t̄ϕ(X, t̄)

iff w |=
∨
{ Q̄t̄ϕ(P, t̄) | P ⊆ ω, w |= ϑ(P,m) }

iff w |= Q̄t̄
∨
{ϕ(P, t̄) | P ⊆ ω, w |= ϑ(P,m) }

iff w |= Q̄t̄(∃X ϑ(X,m))ϕ .

Note that, for every finite set P , there is some number m with w |= ϑ(P,m).
Hence, having proved the claim, it follows that

w |= ∃X Q̄t̄ϕ iff w |= ∃r(∃X ϑ(X, r))Q̄t̄ϕ

iff w |= ∃rQ̄t̄(∃X ϑ(X, r))ϕ

iff w |= ∃rQ̄t̄∃X [ϑ(X, r) ∧ ϕ] .

Corollary 20. On ω-words, every WAMSO-formula is equivalent to a WAMSO-
formula in number prenex form.

Let us now complete the proof of Theorem 5, stating that, over infinite words,
WAMSOnp, WAMSO and AMSOnp have the same expressive power. The only
inclusion that is missing is to prove that, over infinite words, every AMSOnp-
formula can be turned into a WAMSOnp-formula. This last direction relies on
McNaughton’s result stating that, over infinite words, every MSO-formula over
infinite words can be turned into a WMSO-formula.

Lemma 21. For every AMSOnp-formula Q̄t̄ϕ, there exists a WAMSOnp-formula
Q̄t̄ϕ′ that is equivalent to Q̄t̄ϕ over weighted ω-words.

Proof. For the proof, we use the machinery of AMSO0
h-types introduced in Sec-

tion C.1 below. We will need the fact that AMSO0
h-types are partially ordered

by ⊆, that, for each such type p, there is a formula χp stating that a word has
some type q ⊇ p, and that we have two operations ⊕ and ω on types correspond-
ing to the concatenation of words and to their ω-power.



Let h be the quantifier rank of ϕ. By the Theorem of Ramsey and Lemmas
37 and 38, we obtain the following equivalence over ω-words:

ϕ ≡
∨

(p,e):ϕ∈p⊕eω
χp,e ,

where the disjunction is over all AMSO0
h-types p and e such that ϕ ∈ p ⊕ eω

and the formula χp,e states that the ω-word w has a factorisation w0w1w2 . . .
such that w0 has some type containing p and all other factors have a type (not
necessarily the same) containing e.

Hence, it is sufficient to translate the formulae χp,e into WAMSO. Given an
infinite word w, let λ be the function mapping a pair x < y of positions of w to
the AMSO0

h-type of the factor from position x to position y−1. Using predicates
of the form λ(x, y) ⊇ q, for types q, we can write an MSO-formula ϑp,e stating
there are positions x0 < x1 < x2 < . . . such that

λ(0, k0) ⊇ p and λ(xi, xi+1) ⊇ e , for every i .

Since, over ω-words, MSO and WMSO have the same expressive power, ϑp,e is
equivalent to some WMSO-formula ϑ0

p,e.
Let ηq(x, y) be an WAMSO-formula stating that λ(x, y) ⊇ q. The desired

WAMSO-formula χp,e is obtained from the formula ϑ0
p,e by replacing

– every positive occurrence of an atomic formula λ(x, y) ⊇ q by ηq and
– every negative occurrence of an atomic formula λ(x, y) ⊇ q by

∧
r ¬ηr, where

the conjunction is over all types r such that r ∪ q is inconsistent.

A.3 The logic EAMSO and MSO+U

We begin showing that the decidability of model-checking/satisfiability of EAMSO
can be reduced to the one of AMSO, thus showing that EAMSO and AMSO have
the same decidability status. We begin with a preparatory lemma. In this state-
ment EBMSO represents the logic obtained by extending BMSO by quantifiers
over weight functions: there are no number quantifiers, but there is a predicate
f [X] <∞ where f is a function variable and X a set variable.

Lemma 22. EAMSO and EBMSO are effectively equivalent over ω-words.

Proof. The translation from EBMSO to EAMSO is straightforward: it suffices to
substitute each occurrence of f [X] <∞ by the EAMSO-formula defining it. For
the converse direction some ideas from the translation from AMSO to BMSO
are used. However, these are not sufficient by themselves. The essential problem
is that this construction does not consider the case of a quantifier over weight
functions appearing in the scope of a number quantifier.

Our goal is to transform an EAMSO-formula ϕ into an equivalent EBMSO
formula ϕ∗. The transformation is syntactic, and is done inductively on the
structure. We begin our description by explaining how the free variables F ∗ of
ϕ∗ are obtained from the set of free variables F of ϕ:



– For every set variables X in F , the same variable is in F ∗.
– For every first-order variable x in F , the same variable is in F ∗.
– For every weight function variable f in F , the same variable occurs in F ∗.
– For every weight function variable f and each number variable r, a new set

variable Lf,r is in F ∗ (to be thought of as the set of positions x for which
f(x) ≤ r).

We assume that the bound variables are numbered, or equivalently totally or-
dered. This order is required to be consistent with the sequence of quantifiers
binding the corresponding variables. This means that whenever we consider some
formula which quantifies two bound variables r, s such that s is quantified inside
the scope of r, then r < s with respect to this order/numbering. The intuition
behind that is that we can safely assume that the valuations of these variables
respect the same order, r1 < r2 < · · · < r`. We refer to this order as the quan-
tification order.

When translating formulae, every construct is preserved unmodified but the
ones involving weight functions and number variables. These are translated ac-
cording to the following rules: Atomic MSO-formulae, boolean operations, and
quantifiers over elements and sets are unchanged.

(f(x) ≤ r)∗ := x ∈ Lf,r , for existentially quantified variables r ,
(f(x) > s)∗ := x 6∈ Lf,s , for universally quantified variables s ,

(∃sϕ)∗ := ∃Lf1,s · · · ∃Lfk,s
[
ϕ∗ ∧

A︷ ︸︸ ︷
k∧
i=1

fi[Lfi,s] <∞

∧
k∧
i=1

∧̀
j=1

Lfi,rj ⊆ Lfi,s︸ ︷︷ ︸
B

]

where f1, . . . , fk are the function variables in F and r1, . . . , r` are the number
variables in F ,

(∀sϕ)∗ := ∀Lf1,s · · · ∀Lfk,s[A ∧B → ϕ∗] ,

(∃fϕ)∗ := ∃f∃Lf,r1 · · · ∃Lf,r`
[
ϕ∗ ∧

C︷ ︸︸ ︷∧̀
j=1

f [Lf,r1 ] <∞

∧
`−1∧
j=1

Lf,ri ⊆ Lf,ri+1︸ ︷︷ ︸
D

]
,

where r1, r2, . . . , r` are the number variables in F in their order of quantification,

(∀fϕ)∗ := ∀f∀Lf,r1 · · · ∀Lf,r` [C ∧D → ϕ∗] .



Let us first note that membership tests to the variable Lf,r always appear under
the same number of negations as the statement f(x) ≤ r it originates from.

Of course, in the correctness proof of this construction, we will have to re-
late valuations v over the free variables F of ϕ to valuations v∗ over the free
variables F ∗ of ϕ∗ in order to model the transfer of semantics. We also have
to impose some structural constraints on these valuations. We assume that the
bound variables in F are r1, . . . , r` in this quantification order.

– We call the valuation v valid of v(r1) < v(r2) < · · · < v(r`).
– We call the valuation v∗ valid if, for all weight variables f , v∗(Lf,r1) ⊆
v∗(Lf,r2) ⊆ · · · ⊆ v∗(Lf,r`), and furthermore f is bounded over Lf,r` (note
that this is EBMSO-definable, and that in particular the above formulae
A,B,C and D are expressing these constraints).

– Given a valuation valid valuation v of F , define v∗ to be the valuation of F ∗
such that
• v and v∗ coincide over all set variables, all first-order variables, and all

weight variables,
• for all weight variables f and all number variables r from F ∗,

v∗(Lf,r) = {i ∈ ω | v(f)(i) ≤ v(r)} .

Let us note that if v is valid, then v∗ is valid.

Let us comment first on the role of the subformulae A,B,C and D. Consider
the case in which ϕ is ∃sψ, and the inductive definition of ϕ∗. Assume given
a valid valuation v∗ of ϕ∗. The formula ϕ∗ is introducing new variables, and
immediately requiring them to satisfy A and B, yielding a new valuation w∗. It
is easy to check that A and B imply that w∗ is also valid. The same goes for the
rule defining (∃fψ)∗, as well as for the two dual constructs.

We shall now prove by structural induction on a formula ϕ of EAMSO with
free variables F that, for all valid valuations v of F ,

u, v |= ϕ implies u, v∗ |= ϕ∗ .

We assume that the negations are pushed to the leaves (this means that we have
to treat all constructions as well as their dual version).

Let us consider some formula ϕ with free variables F and a valid valuation v
of F such that u, v |= ϕ. Our goal is to show that u, v∗ |= ϕ∗. This is done by
case distinction. In all the cases, we assume that the free number variables are
r1, . . . , r` in quantification order.
Bases cases. The only interesting base cases are when number variables are
used. Assume first that ϕ is f(x) ≤ r for some upper-bound variable r and that
u, v |= f(x) ≤ r. This means that v(f)(v(x)) ≤ v(r) and, hence, by definition
of v∗, v∗(x) = v(x) ∈ v∗(Lf,r). Therefore, u, v∗ |= ϕ∗.

Assume now that ϕ is f(x) > r for some lower-bound variable r and that
u, v 6|= f(x) > r. Then v(f)(v(x)) > v(r) and, by definition of v∗, it follows that
v∗(x) = v(x) 6∈ v∗(Lf,r). Hence, u, v∗ |= ϕ∗.



The other base cases as well as disjunction and conjunction are all straight-
forward. The case of negation does not exist (these were pushed to the leaves).
The case of quantifiers over set variables and first-order variables are immediate.

Case of number quantifiers. The next interesting case is the one of an existential
quantifier, i.e., that ϕ is ∃sψ. The free variables of ψ are F ∪ {s}. The free
variables of ψ∗ are F ∗ ∪ {Lf,s | f ∈ F}. Since we assume that u, v |= ∃sψ, there
is a value n such that u,w |= ψ where w is v extended with s = n. Without
loss of generality, using the monotonicity in the use of s in ψ, we can assume
n to be larger than v(r) for all other number variables in F . This makes v a
valid valuation. By induction hypothesis, we obtain u,w∗ |= ψ∗. This proves
that u,w |= ϕ∗.

Let us consider now the case in which ϕ is ∀sψ. Assume that u, v |= ∀sψ. Let
w′ be any extension of v∗ by valuations of Lf,s for a weight function variable
f ∈ F . We have to prove that u,w′ |= (A ∧ B) → ψ∗. Firstly, if u,w∗ does not
satisfy A or B, then u,w′ |= (A∧B)→ ψ∗ by definition. Hence, we assume from
now u,w′ |= A ∧B. Since w′ extends the valid valuation v∗, this means that w′
is a valid valuation. Let n be some number larger than v(r) for all other number
variables in F and larger than v(f)(i) for all weight function variables f ∈ F and
i ∈ w∗(Lf,r) (this is possible since u,w′ |= A, and hence v(f)(i) is bounded when
f ranges in F and i in w∗(Lf,r)). Let now w be a valuation extending v with
w(s) = n. By construction w is valid. Furthermore, since u, v |= ∀sψ, u,w |= ψ.
Hence by inductive hypothesis, u,w∗ |= ψ∗. Note that w∗ coincides with w′ on
all variables in F ∗. For the variables Lf,s, because n has been chosen sufficiently
large, w′(Lf,s) ⊆ w∗(Lf,s). Using now the fact that ψ∗ uses the variable Lf,s
only negatively, we deduce that u,w∗ |= ψ∗ implies u,w′ |= ψ∗. Hence, once
more u,w′ |= (A ∧B)→ ψ∗. It follows that u, v∗ |= ϕ∗.
Cases of weight function quantifiers. The next case is when ϕ is ∃fψ. Let g
be the weight function such that the valuation w obtained by extending v with
w(f) = g is such that u,w |= ψ. By induction hypothesis, u,w∗ |= ψ∗. Since
furthermore w∗ is valid, u,w∗ |= C ∧D. Hence w∗ is a witness that u, v∗ |= ϕ∗.

The last case is when ϕ is ∀fψ. Let w′ be any valuation of F ∗ that coincides
with v∗ over F . If either u,w′ 6|= C or u,w′ 6|= D, then u,w′ |= (C ∧D) → ψ∗.
Hence we assume that u,w′ |= C ∧D. This implies that w′ is valid. We have to
prove that u,w′ |= ψ′ using the inductive hypothesis. Let us construct a map g
as follows. For all i ∈ ω,

– if i 6∈ w′(Lf,r`) (recall that r` is the largest number variable in scope), then
g(i) = w′(f)(i) + w(r`) + 1,

– otherwise, g(i) = w(rj) for j in 1 . . . ` minimal such that i ∈ w′(Lf,rj ).

Let us consider the valuation w that extends v with w(f) = g. Since v is valid,
the same holds for w. Note now that, by choice of g, w′ and w∗ do only differ
(possibly) on the variable f . However, w′(f) and w∗(f) = g are ≈-equivalent
(i.e, bounded over the same subsets of ω). This comes from the fact that the
first line in the definition of g amounts to just taking w′(f) and shifting it with



the constant w(r`) + 1 (an operation invisible up to ≈), and that the second line
replaces only values in the set w′(Lf,r`), over which w′(f) is bounded, by values
that are no greater than v(e`). Since the semantics of EBMSO is invariant under
replacing weight variables by ≈-equivalent ones, it follows that u,w′ |= ψ∗ if and
only if u,w∗ |= ψ∗. Hence, u,w∗ |= ψ∗ implies u,w′ |= ψ∗. As a consequence we
obtain once more u,w′ |= (C ∧ D) → ψ∗. Since this holds for all w′ extending
v∗, we obtain u, v∗ |= ϕ∗.

Hence, we have established the inductive hypothesis for all formulae ϕ.
Consider now a sentence ϕ. Then ϕ∗ has no free variables. Let us show that

u |= ϕ if and only if u |= ϕ∗. Clearly, by the above arguments, if u |= ϕ then
u |= ϕ∗. Otherwise assume that u 6|= ϕ. Then this means that u |= ψ where ψ
is obtained from ¬ϕ by pushing the negation to the leaves. We can apply the
above result to ψ and we obtain u |= ψ∗. However, the ∗ construction commutes
with negation (in fact in the definition, we just gave half of the rules, letting
the others be obtained by duality: this directly implies that ∗ commutes with
negation) which means that ψ∗ is equal to ¬(ϕ∗) after the negation have been
pushed to the leaves. Hence, u 6|= ϕ∗. It follows, using excluded third, that u |= ϕ
if and only if u |= ϕ∗. ut

Proposition 23. There exists a formula ξ of AFO with the following properties:

– There exists a weighted ω-word that satisfies ξ.
– Given an EBMSO-formula ψ, we can effectively construct an AMSO-formula
ψ∗ such that, for all models u of ξ,

ω |= ψ if and only if u |= ψ∗ .

Proof. Let us start with the description of the formula ξ. It states that:

– There are infinitely many letters ] in u, expressed as ∀x(∃y > x)](y), and
the first symbol is ]. This means that u can be uniquely decomposed as
]u1]u2 . . . such that no symbol ] does occur in the factors ui. Furthermore,
each of the ui have length at least one. This is obtained for instance with
∀x∀y[(](x) ∧ ](y) ∧ x < y)→ ∃z(z > x ∧ z < y)].

– For all r, there exists s such that almost all the ui contain a position with
weight in (r, s]. This is formalized as

∀r∃s∃w(∀x > w)[](x)→ (∃y > x) ((∀z ∈ (x, y]) ¬(]x)) ∧ r < f(y) ≤ s] .

It is easy to provide a model for ξ. It looks like (with some abuse of notation):

] 0 ] 01 ] 012 ] 0123 ] 01234 ] . . . .

Let us consider some model u = u0]u1]u2] . . . of ξ. Let f be its weight
function. We call a subset X = {xi | i ∈ ω} of ω an encoding if xi is a position
in ui (with respect to the above decomposition). Note that this decomposition of
X into xi is unique. Note also that the fact that X is an encoding is expressible



in MSO. An encoding X induces a function gX defined by gX(i) = f(xi) for all
i ∈ ω.

We claim that, for all weight functions g, there exists an encoding X such
that gX ≈ g. First, using skolemization, there exists a map α : ω → ω such that,
for all r, almost all the ui contain a position with weight in (r, α(r)]. (Note in
particular that this implies r < α(r).) Without loss of generality, this map α
can be chosen non-decreasing and such that all the ui contain a position with
weight at most α(0). (This is possible because we have guaranteed that all the
ui are non-empty.) Consider some i ∈ ω and chose xi to be a position in ui such
that f(xi) ≤ α(g(i)) that maximizes f(xi) (such an element exists because we
have chosen α with suitable properties). We shall prove that X = {xi | i ∈ ω}
satisfies the claim. First it is clear that gX ≤ g. This means that whenver g is
bounded over some set, the same goes for gX . For the opposite direction, assume
that that g is not bounded over some set Y . Let n ∈ ω be fixed. We shall prove
that gX is not bounded by n. For this, we know that almost all the ui contain
a position with weight in (n, α(n)]. Furthermore, since g is not bounded, there
is a position in Y as large as we want, say i, such that g(i) > α(n). For such an
i, maximality of f(xi) in the definition of xi implies that gX(i) > n. Since this
holds for all n, gX is not bounded either over Y . The claim is established.

The remainder of the proof is straightforward. The principle is to use en-
codings to quantify over weight functions. We do it as ‘an interpretation’. Let
us call a position of u an element if it carries the letter ]. Being an element is
FO-definable. There is a bijection π between the elements of u and the positions
in ω: xi is mapped to i. The elements are ordered as positions in u. This order is
of course definable. π is monotonic w.r.t. this order. Sets are interpreted as sets
of elements. This is of course definable. Sets of elements are in bijection with
sets of positions of ω by extension of the mapping π. Finally weighted variables
are interpreted as encodings. The only thing to do is provide a formula which,
given a set of elements X and an encoding Y , tests whether gY is bounded
over the set of elements represented as π(Y ). For this, we use the intermediate
formula int(x, y) which expresses that x carries a ], and y lies in the ui that
follows this ]: ](x) ∧ ∀z[(x < z ∧ z ≤ y) → ¬](z)]. The predicate B is now re-
placed by ∃r(∀x ∈ X)(∀y ∈ Y )[int(x, y)→ f(y) ≤ r]. The only argument worth
mentioning in this proof is that indeed, quantifying over encodings is as good as
quantifying over weight functions. This comes on one side from the claim that
every weight function is equivalent to some encoding, and from the other side
that we are starting from the logic EBMSO, and in this logic (as opposed to
AMSO) replacing the valuation of any variable with an ≈-equivalent one does
not change the semantics. ut

Next, we present the translations from MSO+U to EAMSO and back again.

Proposition 24. For every (MSO+U)-formula ϕ, there is an EAMSO-formula ϕ∗
such that

〈ω, P̄ , f̄〉 |= ϕ iff 〈ω, P̄ , f̄〉 |= ϕ∗,

for all sets P̄ and weight functions f̄ .



Proof. For every subformula of the form UXψ, we have to find an equivalent
EAMSO-formula. The proof is by induction on ψ. First, note that

UXψ(X) ≡ UX∃Y [ψ(Y ) ∧X ⊆ Y ] .

Hence, we may assume that the formula ψ(X) is closed under subsets, i.e., if a
set P satisfies ψ then every subset of P also satisfies it.

Let ψ∗(X) be the translation of ψ we obtain from the induction hypothesis.
We set

(UXψ)∗ := ∃X∃Y ∃f [ϑ0 ∧ ϑ1 ∧ ϑ2 ∧ ϑ3] ,

where the formulae ϑ0, ϑ1, ϑ2, ϑ3 are as follows.

ϑ0 := ∀Z∀x∀y[Y x ∧ Y y ∧ ∀z(x < z < y → ¬Y z)
∧ ∀z(Zz ↔ Xz ∧ x ≤ z < y)

→ ψ∗(Z)]

states that, on every factor of the word between two consecutive elements of Y ,
the restriction of the set X to this factor satisfies ψ.

ϑ1 := ∃r∀x[Y x→ f(x) ≤ r]

states that the f -weight of all elements of Y is bounded.

ϑ2 := ∀s∃x[Y (x+ 1) ∧ f(x) > s]

states that the f -weight of all elements whose successor is in Y is unbounded.

ϑ3 := ∀s∃r∀x∀y[x < y

∧ ¬∃u∃v(x ≤ u < v ≤ y ∧Xu ∧Xv)

∧ ∀z(x < z ≤ y → ¬Y z)
→ (f(x) ≤ s→ f(y) ≤ r)]

states that there is a function α : ω → ω such that f(y) ≤ α(f(x)), for all
positions x < y such that the interval [x, y] contains at most one element of X
and no element of Y (except possibly for x).

To show that the above formula is equivalent to the original one, let us first
assume that there are arbitrarily large finite sets satisfying ψ. Since we assume
that ψ is closed under subsets, we can find a sequence (Pi)i<ω of finite sets of
unbounded size, each satisfying ψ and such that every element of Pi is less than
all elements of Pi+1. Setting

X :=
⋃
i<ω

Pi ,

Y := {minPi | i < ω } ,
f(x) :=

∣∣Pi ∩ [minPi, x]
∣∣ , where i is the index such that

minPi ≤ x < minPi+1 ,



we can satisfy ϑ0 ∧ ϑ1 ∧ ϑ2 ∧ ϑ3.
Conversely, suppose that X,Y, f satisfy ϑ0 ∧ ϑ1 ∧ ϑ2 ∧ ϑ3. Let y0 < y1 < . . .

be an enumeration of Y and set Pi := X ∩ [yi, yi+1). Then each Pi satisfies ϕ.
Hence, it remains to show that the size of the sets Pi is unbounded.

For a contradiction, suppose otherwise. Let

m := max { |Pi| | i < ω } .

Since f satisfies the formula ϑ3, there exists a function α : ω → ω such that
f(y) ≤ α(f(x)), for all pairs x < y as in ϑ3. For every i < ω, we choose a
sequence yi = zi0 ≤ · · · ≤ zim = yi+1 − 1 of positions such that each interval
[zik, z

i
k+1) contains at most one element of Pi. Then f(zik+1) ≤ α(f(zik)) implies

f(zim) ≤ αm(f(zi0)). By ϑ1, there is some number n such that f(zi0) ≤ n, for
all i. Hence, f(zim) ≤ αm(n), for all i. But this number is unbounded since
f satisfies ϑ2. A contradiction.

Let us now consider the opposite direction. Since we have already shown
that EAMSO and EBMSO are equivalent, it is sufficient to translate EBMSO-
formulae.

Proposition 25. For every EBMSO-sentence ϕ, there exists an (MSO+U)-
sentence ψ such that

〈ω,≤〉 |= ϕ iff 〈ω,≤〉 |= ψ .

Proof. To construct the desired formula ψ we choose an infinite set W of posi-
tions, each followed by an interval of positions not in W . The positions in W
will represent the elements of ω while those not in W will be needed to code
the values of the weight functions. For every weight functions f , we introduce
a set variable Zf (disjoint from W ) that codes f as follows. If f(x) = n, then
Zf contains an interval of length n starting immediately after the position x.
We use the following auxiliary formula

ϑ(X,Y ) :=

X ⊆W ∧ Y ∩W = ∅
∧ UZ

[
Z ⊆ Y ∧
∃x∃y[Xx ∧ ∀z(Zz ↔ x < z ≤ y)]

]
.

which states, for sets X ⊆ W and Y ⊆ ω \W , that there are arbitrarily large
intervals in Y that begin directly after some position in X.

We set

ψ := ∃W
[
∀x∃y(x < y ∧Wy) ∧ ∀x(Wx→ ¬W (x+ 1))

∧ ϑ(W,ω \W ) ∧ ϕ∗(W )
]



where ϕ∗(W ) states that the formula ϕ holds on the positions in W . We define
ϕ∗ by induction on ϕ. The nontrivial cases are:

(f [X] <∞)∗ := ¬ϑ(X,Zf ) ,

(f v g)∗ := ∀X[ϑ(X,Zf )→ ϑ(X,Zg)] ,

(∃fχ(f))∗ := ∃Zf [Zf ∩W = ∅ ∧ χ∗(Zf )] ,

(∃Xχ)∗ := ∃X[X ⊆W ∧ χ∗] .

To see that this construction is correct note that, if Zf is a set disjoint from W
that satisfies χ∗, we can define a corresponding weight function f by taking as
value of f(x) the length of the interval of Zf starting at the position x + 1.
Conversely, given a weight function f , we can define the set Zf as the union of
all intervals [x+ 1, x+ f(x)], but only if the elements x+ 1, . . . , x+ f(x) are not
members of W . Hence, consider the function w : W → ω defined by

w(x) := max {n | x+ 1, . . . , x+ n /∈W } .

Note that, by choice of the setW , this function is unbounded. We have seen that
any weight function f ≤ w can be encoded by a suitable set Zf . To conclude the
proof, let f be an arbitrary weight function. We consider the function f0(x) :=
min {f(x), w(x)}. Then f0 ≤ f implies f0 v f . For the converse, note that w is
unbounded. Therefore, if f0[X] is bounded then so is f [X]. Consequently, f v f0.
Hence, f ≈ f0 and it follows by Proposition 3 that, if f satisfies a formula χ,
then so does f0. Since f0 ≤ w we can find a set Zf as above.

B Borel complexity

In this section, we give the missing proof of Theorem 6. This theorem has two
independent parts, one concerning the complexity of the logic WAMSO, and the
other concerning AMSO. The first one is presented in Section B.1 and the second
one in Section B.2.

B.1 The Borel complexity of the logic WAMSO

In this section, we establish the following proposition.

Proposition 26. The logic WAMSO inhabits strictly all levels of finite rank of
the Borel hierarchy.

We start with the obvious upper bound on complexity.

Proposition 27. Every WAMSO-definable language of weighted ω-words is of
finite Borel rank.

Proof. By induction on the complexity of a formula ϕ, we show that the lan-
guage defined by ϕ is Borel. The claim clearly holds for atomic formulae. For
boolean operations, the inductive step follows from the fact that the Borel sets



form a boolean algebra. For quantifiers, it is sufficient to note that every WMSO-
quantifier ranges over a countable domain (finite sets or natural numbers). Con-
sequently, each quantifier corresponds to a countable union or a countable inter-
section.

Let us now turn to the lower bound showing that WAMSO reaches arbitrar-
ily high finite ranks of the Borel hierarchy. For the proof we use the following
languages, which are complete for Π0

2k.

Definition 28. C0
2k ⊆ (ω2k)ω is the language consisting of all words u over the

alphabet ω2k such that

∀n0∃m0 · · · ∀nk−1∃mk−1

[(m0, . . . ,mk−1, n0, . . . , nk−1) appears in u] .

We recall the following classical fact.

Theorem 29. C0
2k is complete for Π0

2k.

Proof. A set of level Π0
2k is a countable intersection of countable unions, . . . , of

basic open sets, which are sets of words that have a fixed prefix. Hence, a Borel
set A ∈ C0

2k can be written as the set of words u such that:

∀n0∃m0 · · · ∀nk−1∃mk−1

[v(m0, . . . ,mk−1, n0, . . . , nk−1) is a prefix of u]

where v is some function from N2k to finite words. To prove completeness, let us
provide a continuous reduction from A to C0

2k.
Assume a finite word given u, then let [u]i be the list of the i first tuples m̄

(for some enumeration of them by N) such that v(m̄) is a prefix of u. One can
assume that [u]i is non-empty. Now, given an infinite sequence u = a1 . . . an . . . ,
let us set:

f(u) = [a1]1[a1a2]2 . . . [a1a2 . . . an]n . . .

Clearly this function is continuous, and clearly too, u has v(m̄) as prefix if and
only if m̄ appears in f(u).

Proposition 30. There exists a WAMSO-definable set of weighted ω-words that
does not belong to Σ0

2k.

Proof. We will construct a WAMSO-formula ψ and a continuous function h
mapping a sequence u ∈ (ω2k)∗ to a weighted ω-word h(u) such that

h(u) |= ψ iff u ∈ C0
2k .

Since C0
2k is complete for Π0

2k, it follows that the language defined by ψ is not
in Σ0

2k.
Note that a sequence u is in C0

2k if, and only if, there exists Skolem functions
fi : ωi → ω, for i < k, such that, for all n0, . . . , nk−1,

(f0(n0), f1(n0, n1), . . . , fk−1(n0, . . . , nk−1), n0, . . . , nk−1)



appears in u. For such a tuple f̄ , we write

f̄(n̄) := (f0(n0), f1(n0, n1), . . . , fk−1(n0, . . . , nk−1)) .

The s-th approximation of f̄ are the functions f̄ (s) where f (s)
i : [s]i → ω is

the restriction of fi to [s]i. Such a tuple f̄ (s) will be called a partial Skolem
function or an s-Skolem function. We say that an s-Skolem function f̄ occurs
before position j in a word u if, for all n̄ ∈ [s]k, the tuple (f̄(n̄), n̄) appears in u
before position j.

An s-Skolem function f̄ can be encoded into a finite weighted word [f̄ ],
simply by enumerating the tuples in its graph and by, say, adding the number s.
Fix an enumeration S̄0, S̄1, . . . of all partial Skolem functions such that every
function occurs infinitely often in this sequence (this is possible since there are
only countably many partial Skolem functions). Given a word u, we define

h(u) := #h0(u)#h1(u)# . . .

where

hi(u) :=

{
[S̄i] if S̄i occurs before i in u ,
ε otherwise .

Note that h is continuous.
We can write down a formula ψ stating that

∀n0∃m0 · · · ∀nk−1∃mk−1∀n′[
the word has a factor of the form #[f̄ ]# where
f̄ is an s-Skolem function with s > n′ such that

fl(i0, . . . , il) < ml for all l < k and i0 < n0, . . . , il < nl
]
.

We claim that

h(u) |= ψ iff u ∈ C0
2k .

(⇐). Suppose that u ∈ C0
2k. Then there exists a tuple of Skolem functions f̄

such that

∀n̄[(f̄(n̄), n̄) occurs in u] .

Let f̄ (s) be the s-th approximation of f̄ . Fix a tuple n̄. For every large enough
number s, it follows that (f̄ (s)(n̄), n̄) appears in u. Suppose that f̄ (s) = S̄i.
Since every function appears infinitely often in the enumeration S̄0, S̄1, . . . , we
can choose the index i large enough such that f̄ (s) occurs before i in u. Then
hi(u) = [f̄s] and f̄s satisfies the condition

(fs)l(i0, . . . , il) < ml for all l < k and i0 < n0, . . . , il < nl .



Consequently, h(u) |= ψ.
(⇒) Suppose that h(u) |= ψ. Then there exist functions ḡ such that, for all

tuples n̄ and every number n′, the word h(u) has a factor of the form #[f̄n̄,n′ ]#
such that f̄n̄,n′ is an s-Skolem function with s > n′ and

(fn̄,n′)l(i0, . . . , il) < gl(n0, . . . , nl) ,

for all l < k and i0 < n0, . . . , il < nl. Let us abbreviate this last condition by
f̄n̄,n′ ≤ ḡ(n̄).

To show that u ∈ C0
2k, fix n̄. Note that, for each s, there are only finitely

many s-Skolem functions f̄ with f̄ ≤ ḡ(n̄). Ordering the set of all functions
f̄n̄,n′ , for n′ < ω, by the extension relation, we obtain an infinite tree that is
finitely branching. By Kőnig’s Lemma, this tree contains an infinite branch.
Consequently, there exists a sequence n′0 < n′1 < . . . such that f̄n̄,n′0 ⊆ f̄n̄,n′1 ⊆
. . . . Let f̄ be the limit of this sequence. It follows that, for every s < ω, the s-th
approximation f̄ (s) of f̄ appears as factor #[f̄ (s)]# in h(u). By definition of h,
this implies that f̄ (s) occurs in u. In particular, the tuple (f̄ (s)(n̄), n̄) appears
in u. Since f̄ (s)(n̄) = f̄(n̄), it follows that

(f̄(n̄), n̄) appears in u , for all n̄ .

Hence, u ∈ C0
2k.

B.2 The Borel complexity of the logic AMSO

In this section, we establish the following proposition.

Proposition 31. The logic WAMSO inhabits strictly all levels of the projective
hierarchy.

The arguments are inspired by the corresponding results for MSO+U [13]. Let us
consider the topological space [2]ω

∗
(where we consider [2] as a discrete space).

Note that this space is homeomorphic to Cantor space [2]ω, via a suitable bijec-
tion ω∗ → ω. For notational simplicity, we will identify functions f : ω∗ → [2]
with subsets f−1(1) ⊆ ω∗. Such a set T ⊆ ω∗ is a tree if

– u ∈ T implies that v ∈ T , for every prefix v of u and
– uk ∈ T implies that ui ∈ T , for all u ∈ ω∗ and i < k < ω.

We use the following languages of trees, which are complete for Σ1
2k.

Definition 32. We denote by C1
2k the language consisting of all trees T ⊆ (ω2k)∗

such that

∃u0∀v0 · · · ∀uk−1∃vk−1

[u0 × · · · × uk−1 × v0 × · · · × vk−1 is a branch of T ] ,

where u0, v0, . . . , uk−1, vk−1 are ω-words over the alphabet ω and u0×· · ·×uk−1×
v0×· · ·×vk−1 denotes the ω-word over ω2k obtained by pairing them component-
wise.



Theorem 33. C1
2k is complete for Σ1

2k.

Proof. This is the language described in the proof of Theorem (37.7) of [14].

Proposition 34. There exists an AMSO-definable set of weighted ω-words that
does not belong to Π1

2k.

Proof. The proof is completely inspired by the work of Szczepan Hummel and
Michał Skrzypczak [13]. Given a finite sequence u ∈ ω∗, let us denote by [u]
the weighted word over the unary alphabet with two weight functions f and d
defined by f(x) := u(x) and d(x) := x. Hence, the weight function f over [u]
merely codes u, and d is an extra weight function that encodes the position in
the word. Note that a sequence u0, u1, . . . in ω∗ converges if, and only if, the
corresponding sequence [u0], [u1], . . . converges.

Let T ⊆ (ω2k)∗ be a tree. The n-th approximation of T is the finite tree of
height 2k + 1 such that

– all branches have length exactly 2k + 1,
– there exists a number n such that every node but the root is labelled by [u]

for some word u of length n,
– there exists a branch with label [u0], [v0], . . . , [uk−1], [vk−1] if, and only if,
u0 × · · · × uk−1 × v0 × · · · × vk−1 ∈ T .

We denote the label of an node x by T (x).
Given a tree T , let [T ]n be some encoding of the n-th approximation of T as a

finite weighted word. (We omit the details. One can use, e.g., brackets to encode
the tree structure. Since the height of the tree is bounded, we can assume that
all relevant concepts, like being a node, being a branch, the successor relation,
etc., are expressible in MSO.)

Given a tree T , define the weighted ω-word

h(T ) := [T ]1#[T ]2# . . .

which enumerates the approximations of T . Clearly, h is a continuous mapping.
Our goal is to construct an AMSO-formula ψ which is satisfied by h(T ) if, and
only if, T ∈ C1

2k. This would immediately imply that the language defined by
this formula is at level Σ1

2k or higher in the analytic hierarchy. In particular, it
is not in Π1

2k.
The idea of the construction is to replace in the description of C1

2k each
quantification over an infinite word, say, in the ith quantifier, by a quantification
over an infinite set Z over h(T ) which selects nodes at level i in infinitely many
approximations occurring in h(T ) (what exactly ‘selecting’ means depends on
the chosen coding, but it should be clear).

We will make use of the following auxiliary formulae. For each i < 2k, there
exists a formula

lvli(Z)



expressing that the set Z selects infinitely many nodes of the successive approx-
imations, that each selected node is at level i in the approximation (the root
having level 0), and that no two nodes belong to the same approximation. Given
some Z satisfying lvli we will often refer to the sequence x0, x1, . . . of nodes
selected by Z. We will also say that Z ′ is a subsequence of Z if it corresponds to
extracting a subsequence of x0, x1, . . . .

We define a successor relation on sets Z by

suci(Z,Z
′) := lvli(Z) ∧ lvli+1(Z ′) ∧

‘All nodes selected by Z ′ are children of
nodes selected by Z.’

Recall that we would like to replace a quantification over an infinite word by
a set Z. Hence, what we would like to have is that the nodes x0, x1, . . . selected
by Z be such that T (x0), T (x1), . . . converges to some infinite word. However, it
is not possible to express this property in AMSO. All we can express is a sufficient
condition guaranteeing that there some is some subsequence T (y0), T (y1), . . .
of T (x0), T (x1), . . . that converges to some infinite word in ωω. For this we
introduce a formula conv(Z) expressing that the nodes selected by Z contain,
at the limit, an infinite word. We define

conv(Z) := ∀s∃r(∀x ∈ Z)[d(x) ≤ s→ f(x) ≤ r] .

(Here, x ∈ Z means that x is a position in the weighted word representing a node
selected by Z. Recall that d is simply a depth stamp numbering the positions in
the word.)

We claim that

(i) If h(T ) |= conv(Z), there is a subset of Z selecting nodes x0, x1, . . . such
that T (x0), T (x1), . . . has a limit in ωω.

(ii) If Z selects x0, x1, . . . and the sequence T (x0), T (x1), . . . converges, then
h(T ) |= conv(Z).

(i) Let x0, x1, . . . be the nodes selected by Z. For s = 0, we obtain that
the weight of the first position is bounded. Hence, it is possible to extract a
subsequence such that all T (xi) have the same weight over the first position.
Then, one can continue with s = 1 and extract a subsequence such that the
weight of the second position is constant. By iterating this extraction process
we obtain, for each number s < ω, a subsequence xs0, xs1, . . . of x0, x1, . . . such
that the weights of the first s positions is constant. The ‘diagonal’ sequence
x0

0, x
1
1, x

2
2, . . . is the desired converging subsequence.

(ii) Suppose that T (x0), T (x1), . . . converges. To show that conv(Z) holds,
fix a number s < ω. There exists an index n such that, in the subsequence
T (xn), T (xn+1), T (xn+2), . . . , the first s positions are constants. Choose a num-
ber r that is greater than the weights of the first s positions in the words
T (x0), . . . , T (xn). For x ∈ Z, it follows that d(x) ≤ s implies f(x) ≤ r.



To simplify terminology, we will say that Z converges toward u ∈ ωω if
Z selects nodes x0, x1, . . . such that T (x0), T (x1), . . . converges to u. In this
terminology the above statements read:

(i) If conv(Z) holds, then there is some subset of Z which converges.
(ii) If Z converges, then conv(Z) holds.

Consider the AMSO-formula

ψ :=

(∃X0.lvl1(X0) ∧ conv(X0))

(∀Y0.suc1(X0, Y0) ∧ conv(Y0))

(∃X1.suc2(Y0, X1) ∧ conv(X1))

(∀Y1.suc3(X1, Y1) ∧ conv(Y1))

. . .

(∃Xk−1.suc2k−2(Yk−2, Xk−1) ∧ conv(Xk−1))

(∀Yk−1.suc2k−1(Xk−1, Yk−1) ∧ conv(Yk−1))

true .

We claim that

h(T ) |= ψ iff T ∈ C1
2k .

Note that, by Skolemising the definition, we see that a tree T belongs to C1
2k

if, and only if, there are functions Si : (ωω)i → ωω, for i < k, such that, for all
v0, . . . , vk−1 ∈ ωω, the sequence

S0 × S1(v0)× · · · × S(v0, v1, . . . , vk−1)× v0 × · · · × vk−1

is a branch of T .
First, suppose that T ∈ C1

2k. We have to show that h(T ) |= ψ. By the above
remark there are Skolem functions S0, . . . , Sk−1 witnessing that T belongs to
C1

2k. Fix a set X0 that satisfies lvl1(X0) and that converges to S0. Let Y0 be
an arbitrary set satisfying suc1(X0, Y0) and conv(X0). By (i), there exists a
subsequence Y ′0 which converges toward a word v0.

Choose a set X1 that converges to S1(v0) and satisfies suc2(Y ′0 , X1). (This is
possible by construction of the approximations.) Then conv(X1) holds by (ii).
To proceed, consider some set Y1 satisfying suc3(X1, Y1) and conv(Y1). Again,
there exists a subsequence X ′1 of X1 that converges to some word v1. Repeating
this argument for 2k steps we see that h(T ) satisfies ψ.

It remains to prove the converse. Hence, suppose that h(T ) satisfies ψ. We
have to show that T ∈ C1

2k, i.e., that

∃u0∀v0 · · · ∃uk−1∀vk−1[
u0 × · · · × uk−1 × v0 × · · · × vk−1 is a branch of T

]
.



Since ψ holds, there exists a set X0 satisfying lvl1(X0) and conv(X0). By (i),
there exists a subset X ′0 converging to some word u0. Given an arbitrary word
v0 ∈ ωω, we choose a set Y0 satisfying suc1(X ′0, Y0) that converges to v0. By (ii),
Y0 satisfies conv(Y0).

In the next step, we find a set X1 satisfying suc2(Y0, X1) and conv(X1).
Again, there exists a subset X ′1 converging to some word u1. Given a word
v1 ∈ ωω, we choose Y1 satisfying suc1(X ′1, Y1) and converging to v1.

Repeating this argument, we obtain a definition of u0, . . . , uk−1. SinceX ′i con-
verges to ui and Yi converges to vi, there are arbitrarily long prefixes u′i of ui
and v′i of vi such that

u′0 × · · · × u′k−1 × v′0 × · · · × v′k−1 is a branch of T .

This implies that

u0 × · · · × uk−1 × v0 × · · · × vk−1 is a branch of T .

Corollary 35. Over weighted ω-words AMSO is strictly more expressive than
WAMSO.

C Tiling systems

C.1 Restriction to limit satisfiability

The first proof we present is the one of Lemma 11, which states that the sat-
isfiability problem for AMSOnp over infinite words is equivalent to the limit
satisfiability problem.

Composition theorems We start by developing composition theorems for
AMSOnp. This part is similar to the techniques introduced by Feferman-Vaught
and Shelah, but paying furthermore attention to positivity consideration in the
use of weights. Our analysis is based on the notion of a type and two operations
⊕ and ω on them.

Definition 36. Let h < ω.
(a) We denote by AMSO0

h the set of all AMSO-formulae of quantifier-rank
at most h that do not contain number quantifiers.

(b) Let w be a word and m̄, n̄ numbers. The AMSO0
h-type of 〈w, m̄, n̄〉 is the

set

tph(w, m̄, n̄) := {ϕ(r̄, s̄) ∈ AMSO0
h | w |= ϕ(m̄, n̄) } .

Lemma 37. There exists a monotone binary operation ⊕ on AMSO0
h-types such

that

tph(u, m̄, n̄)⊕ tph(v, m̄, n̄) = tph(uv, m̄, n̄) ,

for all words u and v and all numbers m̄, n̄.



Proof. It is sufficient to prove the following claim. For every AMSO0
h-formula

ϕ(r̄, s̄) in negation normal form, there exist two finite lists ψ0(r̄, s̄), . . . , ψl−1(r̄, s̄)
and ϑ0(r̄, s̄), . . . , ϑl−1(r̄, s̄) of AMSO0

h-formulae such that, for all words u and v
and all numbers m̄, n̄,

uv |= ϕ(m̄, n̄) iff u |= ψi(m̄, n̄) and v |= ϑi(m̄, n̄) ,

for some i < l .

We prove the claim by induction on ϕ. If ϕ is of the form

X ⊆ Y , X ∩ Y = ∅ , ¬PX , f [X] ≤ r , or f [X] > s ,

then we can set l = 1 and

ψ0 := ϕ , ϑ0 := ϕ .

Similarly, if ϕ is of the form

¬(X ⊆ Y ) , ¬(X ∩ Y = ∅) , PX , ¬(f [X] ≤ r) ,
or ¬(f [X] > s) ,

then we can set l = 2 and

ψ0 := ϕ , ψ1 := true ,

ϑ0 := true , ϑ1 := ϕ .

If ϕ = X ≤ Y , we use the formulae

ψ0 := X ≤ Y , ψ1 := true , ψ2 := ¬(X ∩X = ∅) ,
ϑ0 := true , ϑ1 := X ≤ Y , ϑ2 := ¬(Y ∩ Y = ∅) .

For ϕ = ¬(X ≤ Y ), we use

ψ0 := ¬(X ≤ Y ) , ψ1 := X ∩X = ∅
ϑ0 := Y ∩ Y = ∅ , ϑ1 := ¬(X ≤ Y ) .

For the inductive step, suppose that we have already proved the claim for
the formulae ϕ′ and ϕ′′, and let

ψ′0, . . . , ψ
′
l′−1 , ϑ′0, . . . , ϑ

′
l′−1

and

ψ′′0 , . . . , ψ
′′
l′′−1 , ϑ′′0 , . . . , ϑ

′′
l′′−1

be the corresponding lists of formulae.



If ϕ = ϕ′ ∨ ϕ′′, we use l := l′ + l′′ and the lists

ψ′0, . . . , ψ
′
l′−1, ψ

′′
0 , . . . , ψ

′′
l′′−1

ϑ′0, . . . , ϑ
′
l′−1, ϑ

′′
0 , . . . , ϑ

′′
l′′−1 .

Similarly, if ϕ = ϕ′ ∧ ϕ′′, we use l := l′l′′ and the lists

ψ′i ∧ ψ′′k , for i < l′ and k < l′′ ,

ϑ′i ∧ ϑ′′k , for i < l′ and k < l′′ .

If ϕ = ∃Xϕ′, we use l = l′ and

∃Xψ′0, . . . ,∃Xψ′l′−1 and ∃Xϑ′0, . . . ,∃Xϑ′l′−1 .

Similarly, if ϕ = ∀Xϕ′, we use l = l′ and

∀Xψ′0, . . . ,∀Xψ′l′−1 and ∀Xϑ′0, . . . ,∀Xϑ′l′−1 .

Lemma 38. There exists a monotone operation ω on AMSO0
h-types such that

pω = tph(w0w1w2 . . . , m̄, n̄) ,

for all words w0, w1, w2, . . . with

tph(wi, m̄, n̄) = p .

Proof. It is sufficient to prove the following claim. For every AMSO0
h-formula

ϕ(r̄, s̄) in negation normal form, there exists a finite list ψ0(r̄, s̄), . . . , ψl(r̄, s̄) of
AMSO0

h-formulae such that, for all words w0, w1, . . . with

tph(wi) = tph(wk) , for all i, k < ω ,

and for all numbers m̄, n̄,

w0w1 . . . |= ϕ(m̄, n̄) iff (∃i < l)(∀k < ω)[wk |= ψi(m̄, n̄)] .

We prove the claim by induction on ϕ. If ϕ is an atomic formula, or a negated
atomic formula, but not of the form X ≤ Y or ¬(X ≤ Y ), we can take l := 1
and

ψ0 := ϕ .

If ϕ = X ≤ Y , we take l := 2 and

ψ0 := X ≤ Y , ψ1 := ¬(X ∩X = ∅) ∧ ¬(Y ∩ Y = ∅) .

If ϕ = ¬(X ≤ Y ), we take l := 1 and

ψ0 := X ∩X = ∅ ∨ Y ∩ Y = ∅ .



For the inductive step, suppose that we have already proved the claim for
the formulae ϕ′ and ϕ′′, and let

ψ′0, . . . , ψ
′
l′−1 and ψ′′0 , . . . , ψ

′′
l′′−1

be the corresponding lists of formulae.
If ϕ = ϕ′ ∨ ϕ′′, we use l := l′ + l′′ and the list

ψ′0, . . . , ψ
′
l′−1, ψ

′′
0 , . . . , ψ

′′
l′′−1 .

Similarly, if ϕ = ϕ′ ∧ ϕ′′, we take l := l′l′′ and

ψ′i ∧ ψ′k , for all i < l′ and k < l′′.

If ϕ = ∃Xϕ′, we use l = l′ and

∃Xψ′0, . . . ,∃Xψ′l′−1 .

Similarly, if ϕ = ∀Xϕ′, we use l = l′ and

∀Xψ′0, . . . ,∀Xψ′l′−1 .

Factorisations In the second part of this reduction, we use the theorem of
Ramsey for chopping an infinite word into infinitely many pieces that have es-
sentially the same behaviour with respect to the logic. The real difficulty here is
to deal with the prefix of the word since it also contains weights.

Recall the notation ϕ↓t̄ introduced in Definition 16.

Definition 39. Let r̄, s̄, t̄ be tuples of number variables and let p(r̄, s̄) be an
AMSO0

h-type.
(a) We denote by p↑t̄ the set of all AMSO0

h-formulae ϕ(r̄, s̄, t̄) such that
ϕ↓t̄ ∈ p.

(b) We denote by π(p) the set of all formulae ϕ ∈ p without free number
variables.

The following result is an immediate consequence of Lemma 17.

Lemma 40. If mi, ni ≥ max f [w], for all i, then

w |= p iff w |= (p↑r̄,s̄)(m̄, n̄) .

Proof. (⇐) follows form the fact that p ⊆ p↑r̄,s̄. For (⇒), suppose that w |= p
and let ϕ ∈ p↑r̄,s̄. Then ϕ↓〈〉 ∈ p. Hence, w |= ϕ↓〈〉 implies, by Lemma 17, that
w |= ϕ(m̄, n̄).

Definition 41. Let I and J be sets and k < ω a number. We write I ⊆∞ J if
I is an infinite subset of J and we write I ⊆k∞ J if I ⊆∞ J and I contains the
first k elements of J .



Definition 42. Let w be an ω-word and I ⊆∞ ω.
(a) Let k0 < k1 < . . . be an enumeration of I and set k−1 := 0. The factori-

sation of w induced by I is the sequence (wi)i<ω where

wi := w[ki−1, ki)

is the factor of w from position ki−1 to position ki − 1. Hence, w = w0w1w2 . . .
and |wi| = ki − ki−1.

(b) Let h < ω, let p and e be AMSO0
h-types, let (wi)i<ω be the factorisation

of w induced by I, and let n̄ be numbers. We say that the triple 〈w, I, n̄〉 is
h-Ramsey of type (p, e) if

tph(w0, n̄) = p and tph(wi . . . wk, n̄) = e ,

for all 0 < i ≤ k < ω .

Definition 43. For a AMSO0
h-type p, we define the formulae

pref(p, I) := ∃x(∀y ∈ I)
[
y ≥ x→ p[0,y)

]
,

ult(p, I) := ∃x(∀y, z ∈ I)
[
x ≤ y < z ∧ I ∩ (y, z) = ∅ → p[y,z)

]
,

where p[x,y) is the relativisation of p to the interval [x, y).

Lemma 44. Let Q ∈ {∃,∀} and let ϕ(t, t̄′, Ī) be an AMSO0
h-formula such that

w |= ϕ(m, m̄, Ī) implies w |= ϕ(m, m̄, J̄) ,

for all Ji ⊆∞ Ii. Then

〈w, m̄〉 |= Qt(∀I ⊆∞ ω)(∀k < ω)

(∃J0 ⊆k∞ I)(∃J1 ⊆k∞ J0) · · · (∃Jl ⊆k∞ Jl−1)ϕ(t, t̄′, J̄)

implies

〈w, m̄〉 |= (∀I ⊆∞ ω)(∀k < ω)

(∃J0 ⊆k∞ I)(∃J1 ⊆k∞ J0) · · · (∃Jl ⊆k∞ Jl−1)Qtϕ(t, t̄′, J̄) .

Proof. If Q = ∃ then

〈w, m̄〉 |= ∃t(∀I ⊆∞ ω)(∀k < ω)

(∃J0 ⊆k∞ I) . . . (∃Jl ⊆k∞ Jl−1)ϕ(t, t̄′, J̄)

⇒ 〈w, m̄〉 |= (∀I ⊆∞ ω)(∀k < ω)∃t
(∃J0 ⊆k∞ I) . . . (∃Jl ⊆k∞ Jl−1)ϕ(t, t̄′, J̄)

⇒ 〈w, m̄〉 |= (∀I ⊆∞ ω)(∀k < ω)

(∃J0 ⊆k∞ I) . . . (∃Jl ⊆k∞ Jl−1)∃tϕ(t, t̄′, J̄) .



Hence, suppose that Q = ∀ and that

〈w, m̄〉 |= ∀t(∀I ⊆∞ ω)(∀k < ω)

(∃J0 ⊆k∞ I) . . . (∃Jl ⊆k∞ Jl−1)ϕ(t, t̄′, J̄) .

To show that

〈w, m̄〉 |= (∀I ⊆∞ ω)(∀k < ω)

(∃J0 ⊆k∞ I) . . . (∃Jl ⊆k∞ Jl−1)∀tϕ(t, t̄′, J̄) ,

fix I ⊆∞ ω and k < ω. By induction on n, we construct sets Jni , for i ≤ l and
n < ω, such that

J0
l ⊆k∞ · · · ⊆k∞ J0

0 ⊆k∞ I ,

Jn+1
l ⊆k∞ · · · ⊆k∞ Jn+1

0 ⊆k∞ Jnl ,

and

w |= ϕ(n, m̄, Jn0 . . . J
n
l ) , for all n < ω .

Set J−1
l := I. For the inductive step, suppose that we have already defined Jn−1

l .
Choosing n, Jn−1

l , k + n for t, I, k,

〈w, m̄〉 |= ∀t(∀I ⊆∞ ω)(∀k < ω)

(∃J0 ⊆k∞ I) . . . (∃Jl ⊆k∞ Jl−1)ϕ(t, t̄′, J̄)

implies that there are sets Jnl ⊆k+n
∞ · · · ⊆k+n

∞ Jn−1
l such that w |= ϕ(n, m̄, Jn0 . . . J

n
l ).

Having constructed (Jni )n<ω,i≤l, let Kn
i ⊆ Jni consist of the first k + n ele-

ments of Jni and set

Ji :=
⋃
n<ω

Kn
i .

Then Ji ⊆k+n
∞ Jni , for all n and i. Hence,

w |= ϕ(n, m̄, Jn0 . . . J
n
l ) implies w |= ϕ(n, m̄, J0 . . . Jl) .

Consequently, w |= ∀tϕ(t, m̄, J) and it remains to prove that

Jl ⊆k∞ · · · ⊆k∞ J0 ⊆k∞ I .

Let j ∈ Ji+1. Then j ∈ Kn
i+1, for some n. Since Kn

i+1 ⊆ Kn
i ⊆ Ji it follows that

j ∈ Ji. Consequently, Ji+1 ⊆∞ Ji. SinceK0
i+1 ⊆ Ji+1, it follows that Ji+1 ⊆k∞ Ji.

Similarly, one can show that J0 ⊆k∞ I.

The induction step in the proof of the theorem below is based on the following
two lemmas. The first one deals with the case of an universal number quantifier,
the next one treats existential quantifiers.



Lemma 45. Let w be an ω-word, n̄ natural numbers, and ϕ(t, t̄′) an AMSO0
h-

formula. We define

Φ := { 〈p, e〉 | p⊕ π(e) = p and p↑t ⊕ eω |= ϕ }

where p is an AMSOh-type with free variables t̄′, J and e is an AMSOh-type with
free variables t, t̄′, J . The following statements are equivalent:

(1) 〈w, n̄〉 |= ∀tϕ(t, t̄′) .

(2) 〈w, n̄〉 |= (∀I ⊆∞ ω)(∀k < ω)(∃J ⊆k∞ I)∨
〈p,e〉∈Φ

[
pref(p, J) ∧ ∀tult(e, J)

]
.

(3) 〈w, n̄〉 |= (∃J ⊆∞ ω)
∨

〈p,e〉∈Φ

[
pref(p, J) ∧ ∀tult(e, J)

]
.

Proof. (2) ⇒ (3) follows by taking I := ω and k := 0.
(3) ⇒ (1) Suppose that

〈w, n̄〉 |= (∃J ⊆∞ ω)
∨

〈p,e〉∈Φ

[
pref(p, J) ∧ ∀tult(e, J)

]
.

Fix a set J ⊆∞ ω and types 〈p, e〉 ∈ Φ such that

〈w, n̄〉 |= pref(p, J) ∧ ∀tult(e, J) .

To show that

〈w, n̄〉 |= ∀tϕ(t, t̄′) ,

fix m < ω. Let (wi)i<ω be the factorisation of w induced by J . There is some
index k < ω such that

〈w0 . . . wi, n̄〉 |= p , for i ≥ k ,
〈wi,m, n̄〉 |= e , for i > k .

Let M ≥ m be a number such that M ≥ f [w0 . . . wk]. Then

〈w0 . . . wi,M, n̄〉 |= p↑t ,

which, by monotonicity, implies that

〈w0 . . . wi,m, n̄〉 |= p↑t .

Hence,

〈w,m, n̄〉 |= (p↑t)⊕ e⊕ e · · · = (p↑t)⊕ eω .



Since 〈p, e〉 ∈ Φ, it follows that

〈w,m, n̄〉 |= ϕ .

(1) ⇒ (2) Suppose that

〈w, n̄〉 |= ∀tϕ(t, t̄′) ,

To show that

〈w, n̄〉 |=(∀I ⊆∞ ω)(∀k < ω)(∃J ⊆k∞ I)∨
〈p,e〉∈Φ

[
pref(p, J) ∧ ∀tult(e, J)

]
,

fix I ⊆∞ ω and k < ω. By induction on i, we choose sets Ji, i < ω such that
J0 ⊆∞ I, Ji+1 ⊆∞ Ji, and 〈w, Ji, i〉 is h-Ramsey of some type (p+

i , ei). Note
that this implies that p+

i ⊕ ei = p+
i and ei ⊕ ei = ei. Set j0 := −1 and let ji+1

be the least element of Ji such that ji+1 > ji. We set

Jω := { ji+1 | i < ω } .

Let (wi)i<ω be the factorisation of w induced by Jω. There exists an infinite set
K ⊆∞ ω and types p+ and e such that

p+
i = p+ and ei = e , for all i ∈ K .

Hence,

〈w0 . . . wi, j, n̄〉 |= p+ , for all j ≤ i < ω and j < ω ,

〈wi, j, n̄〉 |= e , for all j < i < ω and j < ω .

Setting p := π(p+) it follows that

〈w, n̄〉 |= pref(p, Jω) ∧ ∀tult(e, Jω) .

Let I0 be the set consisting of the first k elements of I. Then

〈w, n̄〉 |= pref(p, I0 ∪ Jω) ∧ ∀tult(e, I0 ∪ Jω) .

Hence,

〈w, n̄〉 |= (∃J ⊆k∞ I)
[
pref(p, J) ∧ ∀tult(e, J)

]
.

To show that

〈w, n̄〉 |=(∀I ⊆∞ ω)(∀k < ω)

(∃J ⊆k∞ I)
∨

〈p,e〉∈Φ

[
pref(p, J) ∧ ∀tult(e, J)

]



it therefore remains to prove that 〈p, e〉 ∈ Φ.
Note that p+ ⊕ e = p+ implies p⊕ π(e) = p. Hence, it remains to show that

p↑t ⊕ eω |= ϕ. Fix m ∈ K. Then

tph(w,m, n̄) = p+ ⊕ eω and 〈w,m, n̄〉 |= ϕ .

This implies that p+ ⊕ eω |= ϕ. Let m′ ∈ K be some number such that m′ ≥ m
and

tph(w,m′, n̄) = p↑t ⊕ eω .

Set ri := tph(wi,m
′, n̄). Then there exists some l < ω such that ri = e, for all

i > l. Since m′ ≥ m,

tph(wi,m, n̄) = e implies ri ⊆ e .

Hence,

ϕ ∈ tph(w,m′, n̄) = p↑t ⊕ r0 ⊕ · · · ⊕ rl ⊕ eω

⊆ p↑t ⊕ e⊕ · · · ⊕ e⊕ eω

implies p↑t ⊕ eω |= ϕ.

Lemma 46. Let w be an ω-word, n̄ natural numbers, and ϕ(t, t̄′) an AMSO0
h-

formula. We define

Φ := { 〈p, e〉 | p⊕ π(e) = p and p↑t ⊕ eω |= ϕ }

where p is an AMSOh-type with free variables t̄′, J and e is an AMSOh-type with
free variables t, t̄′, J . The following statements are equivalent:

(1) 〈w, n̄〉 |= ∃tϕ(t, t̄′) .

(2) 〈w, n̄〉 |= (∀I ⊆∞ ω)(∀k < ω)

(∃J ⊆k∞ I)
∨

〈p,e〉∈Φ

[
pref(p, J) ∧ ∃tult(e, J)

]
.

(3) 〈w, n̄〉 |= (∃J ⊆∞ ω)
∨

〈p,e〉∈Φ

[
pref(p, J) ∧ ∃tult(e, J)

]
.

Proof. (2) ⇒ (3) follows by taking I := ω and k := 0.
(3) ⇒ (1) Suppose that

〈w, n̄〉 |= (∃J ⊆∞ ω)
∨

〈p,e〉∈Φ

[
pref(p, J) ∧ ∃tult(e, J)

]
.

We claim that

〈w, n̄〉 |= ∃tϕ(t, t̄′) .



Fix a set J ⊆∞ ω, types 〈p, e〉 ∈ Φ, and a number m < ω such that

〈w, n̄〉 |= pref(p, J) ∧ ult(e, J)(m) .

Let (wi)i<ω be the factorisation of w induced by J . There is some index k < ω
such that

〈w0 . . . wi, n̄〉 |= p , for i ≥ k ,
〈wi,m, n̄〉 |= e , for i > k .

LetM ≥ m be a number such thatM ≥ f [w0 . . . wk]. By monotonicity, it follows
that

〈w0 . . . wk,M, n̄〉 |= p↑t ,
〈wi,M, n̄〉 |= e , for i > k .

Set si := tph(wi,M). Then

〈w,M, n̄〉 |= (p↑t)⊕ sk+1 ⊕ sk+2 ⊕ . . . .

Since e ⊆ si implies si |= e, it follows that

〈w,M, n̄〉 |= (p↑t)⊕ e⊕ e⊕ . . . .

Hence, p↑t ⊕ eω |= ϕ implies that

〈w,M, n̄〉 |= ϕ .

Consequently, 〈w, n̄〉 |= ∃tϕ.
(1) ⇒ (2) Suppose that

〈w, n̄〉 |= ∃tϕ(t, t̄′) ,

and fix some number m < ω such that

〈w,m, n̄〉 |= ϕ .

To show that

〈w, n̄〉 |=(∀I ⊆∞ ω)(∀k < ω)

(∃J ⊆k∞ I)
∨

〈p,e〉∈Φ

[
pref(p, J) ∧ ∃tult(e, J)

]
,

fix I ⊆∞ ω and k < ω. Let J ⊆∞ I be a set such that 〈w, J,m, n̄〉 is h-Ramsey
of type (p+, e), for some types p+ and e. This implies that p+ ⊕ e = p+. Let
(wi)i<ω be the factorisation of w induced by Jω, and set p := π(p+). Note that
p⊕ π(e) = p and

ϕ ∈ tph(w,m, n̄) = p+ ⊕ eω implies p+ ⊕ eω |= ϕ ,

p+ ⊆ p↑t implies p↑t |= p+ .



Hence,

p↑t ⊕ eω |= p+ ⊕ eω |= ϕ ,

and 〈p, e〉 ∈ Φ. Furthermore,

〈w0 . . . wi,m, n̄〉 |= p+ ⊕ e⊕ · · · ⊕ e = p+ |= p ,

for all i < ω ,

〈wi,m, n̄〉 |= e , for all 0 < i < ω .

Consequently,

〈w,m, n̄〉 |= pref(p, J) ∧ ult(e, J) .

Let I0 be the set consisting of the first k elements of I. Then it follows that

〈w, n̄〉 |= pref(p, I0 ∪ J) ∧ ∃tult(e, I0 ∪ J) .

Hence,

〈w, n̄〉 |=(∀I ⊆∞ ω)(∀k < ω)

(∃J ⊆k∞ I)
∨

〈p,e〉∈Φ

[
pref(p, J) ∧ ∃tult(e, J)

]
.

Combining the preceding lemmas we obtain the following theorem, which is
the main result of this section.

Theorem 47. Let w be an ω-word, n̄ natural numbers, ϕ(t̄, t̄′) an AMSO0
h-

formula, and let Q0, . . . , Ql−1 ∈ {∃,∀}. We define

Φ :=
{
〈p̄, ē〉

∣∣ pi ⊕ π(ei) = pi for all i ,
pl−1↑tl−1

⊕ eωl−1 |= ϕ , and

pi↑ti ⊕ eωi |= pref(pi+1, Ji+1) , for i < l − 1
}
,

where, for i < l, pi is an AMSO0
h-type with free variables t0, . . . , ti−1, t̄

′, Ji+1, . . . , Jl−1

and ei an AMSO0
h-type with free variables t0, . . . , ti−1, ti, t̄

′, Ji+1, . . . , Jl−1.
The following statements are equivalent:

(1) 〈w, n̄〉 |= Q0t0 · · ·Ql−1tl−1ϕ(t̄, t̄′) .

(2) 〈w, n̄〉 |= (∀I ⊆∞ ω)(∀k < ω)

(∃Jl−1 ⊆k∞ I)(∃Jl−2 ⊆k∞ Jl−1) · · ·
(∃J0 ⊆k∞ J1)∨
〈p̄,ē〉∈Φ

[
pref(p0, J0) ∧∧
i<l

Q0t0 · · ·Qiti ult(ei, Ji)
]
.



(3) 〈w, n̄〉 |= (∃Jl−1 ⊆∞ ω)(∃Jl−2 ⊆∞ Jl−1) · · ·
(∃J0 ⊆∞ J1)∨
〈p̄,ē〉∈Φ

[
pref(p0, J0) ∧∧
i<l

Q0t0 · · ·Qiti ult(ei, Ji)
]
.

Proof. (2) ⇒ (3) follows by taking I := ω and k := 0.
(3) ⇒ (1) We prove the implication by induction on l. The case where l = 1

follows directly from Lemmas 45 and 46. Hence, let l > 1. Suppose that

〈w, n̄〉 |=(∃Jl−1 ⊆∞ ω) · · · (∃J0 ⊆∞ J1)∨
〈p̄,ē〉∈Φ

[
pref(p0, J0) ∧

∧
i<l

Q0t0 · · ·Qiti ult(ei, Ji)
]

and that we have already proved the implication (3) ⇒ (1) for l− 1 quantifiers.
Set

Φ′ :=
{
〈p1, . . . , pl−1, e1, . . . , el−1〉

∣∣
pi ⊕ π(ei) = pi for all i ,
pl−1↑tl−1

⊕ eωl−1 |= ϕ , and

pi↑ti ⊕ eωi |= pref(pi+1, Ji+1) , for i < l − 1
}
.

Then

〈w, n̄〉 |=(∃Jl−1 ⊆∞ ω) · · · (∃J1 ⊆∞ J2)∨
〈p̄,ē〉∈Φ′

[
(∃J0 ⊆∞ J1)∨

p0,e0:
p0⊕π(e0)ω=p0

p0↑t0⊕e
ω
0 |=pref(p1,J1)

[
pref(p0, J0) ∧
Q0t0 ult(e0, J0)

]
∧
∧

0<i<l

Q0t0 · · ·Qiti ult(ei, Ji)
]
.

By Lemmas 45 and 46, it follows that

〈w, n̄〉 |= (∃Jl−1 ⊆∞ ω) · · · (∃J1 ⊆∞ J2)∨
〈p̄,ē〉∈Φ′

[
Q0t0pref(p1, J1) ∧

∧
0<i<l

Q0t0 · · ·Qiti ult(ei, Ji)
]
,



which, by Proposition 14, is equivalent to

〈w, n̄〉 |= (∃Jl−1 ⊆∞ ω) · · · (∃J1 ⊆∞ J2)Q0t0∨
〈p̄,ē〉∈Φ′

[
pref(p1, J1) ∧

∧
0<i<l

Q1t1 · · ·Qiti ult(ei, Ji)
]
.

This formula implies

〈w, n̄〉 |= Q0t0(∃Jl−1 ⊆∞ ω) · · · (∃J1 ⊆∞ J2)∨
〈p̄,ē〉∈Φ′

[
pref(p1, J1) ∧

∧
0<i<l

Q1t1 · · ·Qiti ult(ei, Ji)
]
.

By induction hypothesis, it follows that

〈w, n̄〉 |= Q0t0 . . . Ql−1tl−1ϕ .

(1) ⇒ (2) We prove the implication by induction on l. The case where l = 1
follows directly from Lemmas 45 and 46. Hence, let l > 1. Suppose that

〈w, n̄〉 |= Q0t0 · · ·Ql−1tl−1ϕ(t̄, t̄′)

and that we have already proved the implication (1) ⇒ (2) for l− 1 quantifiers.
Set

Φ′ :=
{
〈p1, . . . , pl−1, e1, . . . , el−1〉

∣∣
pi ⊕ π(ei) = pi for all i ,
pl−1↑tl−1

⊕ eωl−1 |= ϕ , and

pi↑ti ⊕ eωi |= pref(pi+1, Ji+1) , for i < l − 1
}
.

By induction hypothesis, it follows that

〈w, n̄〉 |= Q0t0(∀I ⊆∞ ω)(∀k < ω)

(∃Jl−1 ⊆k∞ I) · · · (∃J1 ⊆k∞ J2)∨
〈p̄,ē〉∈Φ′

[
pref(p1, J1) ∧∧
0<i<l

Q1t1 · · ·Qiti ult(ei, Ji)
]
.



Using Lemma 44 we obtain

〈w, n̄〉 |= (∀I ⊆∞ ω)(∀k < ω)

(∃Jl−1 ⊆k∞ I) · · · (∃J1 ⊆k∞ J2)Q0t0∨
〈p̄,ē〉∈Φ′

[
pref(p1, J1) ∧∧
0<i<l

Q1t1 · · ·Qiti ult(ei, Ji)
]
,

which, by Proposition 14, is equivalent to

〈w, n̄〉 |= (∀I ⊆∞ ω)(∀k < ω)

(∃Jl−1 ⊆k∞ I) · · · (∃J1 ⊆k∞ J2)∨
〈p̄,ē〉∈Φ′

[
Q0t0pref(p1, J1) ∧∧
0<i<l

Q0t0Q1t1 · · ·Qiti ult(ei, Ji)
]
.

Applying Lemmas 45 and 46 to Q0t0pref(p1, J1), we obtain

〈w, n̄〉 |=(∀I ⊆∞ ω)(∀k < ω)(∃Jl−1 ⊆k∞ I) · · · (∃J1 ⊆k∞ J2)∨
〈p̄,ē〉∈Φ′

[
(∀I ′ ⊆∞ ω)(∀k′ < ω)(∃J0 ⊆k

′

∞ I ′)∨
p0,e0:

p0⊕π(e0)ω=p0
p0↑t0⊕e

ω
0 |=pref(p1,J1)

[
pref(p0, J0) ∧
Q0t0ult(e0, J0)

]
∧

∧
0<i<l

Q0t0Q1t1 · · ·Qiti ult(ei, Ji)
]
.

Choosing I ′ = J1 and k′ = k, this reduces to

〈w, n̄〉 |=(∀I ⊆∞ ω)(∀k < ω)(∃Jl−1 ⊆k∞ I) · · · (∃J1 ⊆k∞ J2)∨
〈p̄,ē〉∈Φ′

[
(∃J0 ⊆k∞ J1)∨

p0,e0:
p0⊕π(e0)ω=p0

p0↑t0⊕e
ω
0 |=pref(p1,J1)

[
pref(p0, J0) ∧
Q0t0ult(e0, J0)

]
∧

∧
0<i<l

Q0t0Q1t1 · · ·Qiti ult(ei, Ji)
]
.



It follows that

〈w, n̄〉 |=(∀I ⊆∞ ω)(∀k < ω)(∃Jl−1 ⊆k∞ I) · · ·
(∃J1 ⊆k∞ J2)(∃J0 ⊆k∞ J1)∨
〈p̄,ē〉∈Φ′

[ ∨
p0,e0:

p0⊕π(e0)ω=p0
p0↑t0⊕e

ω
0 |=pref(p1,J1)

[
pref(p0, J0) ∧
Q0t0ult(e0, J0)

]
∧

∧
0<i<l

Q0t0Q1t1 · · ·Qiti ult(ei, Ji)
]
.

This formula reduces to

〈w, n̄〉 |=(∀I ⊆∞ ω)(∀k < ω)(∃Jl−1 ⊆k∞ I) · · · (∃J0 ⊆k∞ J1)∨
〈p0,p̄,e0,ē〉∈Φ

[
pref(p0, J0) ∧∧
i<l

Q0t0 · · ·Qiti ult(ei, Ji)
]
.

Using the preceding theorem, we can reduce the satisfiability problem for
WAMSO to the so-called limit satisfiability problem.

Definition 48. The limit satisfiability problem consists in, given an AMSO0
h-

formula ϕ(t̄) and a quantifier-prefix Q̄t̄, to decide whether there exists a sequence
(wi)i<ω of finite words such that

Q̄t̄(∃k < ω)(∀i ≥ k)[wi |= ϕ(t̄)] .

Proposition 49. The satisfiability problem for WAMSO over the class of ω-
words reduces to the limit satisfiability problem.

Proof. Let ϕ be a WAMSO-formula. We can use Corollary 20 to compute a
formula Q̄t̄ψ in number prenex form that is equivalent to ϕ on the class of all
ω-words. For an ω-word w, it follows by Theorem 47 that

w |= Q̄t̄ψ

iff w |= (∃Jl−1 ⊆∞ ω)(∃Jl−2 ⊆∞ Jl−1) · · · (∃J0 ⊆∞ J1)∨
〈p̄,ē〉∈Φ

[
pref(p0, J0) ∧

∧
i<l

Q0t0 · · ·Qiti ult(ei, Ji)
]

iff w |= (∃Jl−1 ⊆∞ ω)(∃Jl−2 ⊆∞ Jl−1) · · · (∃J0 ⊆∞ J1)∨
〈p̄,ē〉∈Φ

[
pref(p0, J0) ∧ Q̄t̄

∧
i<l

ult(ei, Ji)
]
.

It follows that ϕ is satisfiable if, and only if, there exist types 〈p̄, ē〉 ∈ Φ and a
sequence (wi, J̄

i)i<ω where the wi are finite words and J i0 ⊆ · · · ⊆ J il−1 ⊆ wi are
unary predicates such that



– 0 ∈ J i0 for i > 0

– (∃k < ω)(∀i ≥ k)[(w0, J̄
0) . . . (wi, J̄

i) |= p0]

– Q̄t̄(∃k < ω)(∀i ≥ k)
[
wi |=

∧
i<l

all(ei, Ji)
]

where

all(e, J) := (∀x, y ∈ J)
[
x < y ∧ J ∩ (x, y) = ∅ → e[x,y)

]
∧ (∀x ∈ J)∀y

[
¬∃z(y < z) ∧ J ∩ (x, y] = ∅ → e[x,y]

]
states that every interval with end-points specified by J satisfies e.

Fix 〈p̄, ē〉 ∈ Φ and set

ϑ(t̄, J̄) := 0 ∈ J0 ⊆ · · · ⊆ Jl−1 ∧
∧
i<l

all(ei, Ji) .

We claim that the following two statements are equivalent:

(a) There exists a sequence (wi, J̄
i)i<ω such that

• 0 ∈ J i0 for i > 0

• (∃k < ω)(∀i ≥ k)[(w0, J̄
0) . . . (wi, J̄

i) |= p0]

• Q̄t̄(∃k < ω)(∀i ≥ k)
[
wi |=

∧
j<l

all(ej , J
i
j)
]

(b) There exist a finite word satisfying p0 and a sequence (vi, Ī
i)i<ω such that

Q̄t̄(∃k < ω)(∀i ≥ k)[vi |= ϑ(t̄, Īi)] .

Note that satisfiability of p0 by a finite word is decidable since p0 is a set of
WMSO-formulae. Consequently, (b) reduces to the limit satisfiability problem
for the formula ϑ. To prove the proposition, it is therefore sufficient to show that
(a) and (b) are equivalent.

Clearly, (a) implies (b). Hence, suppose that (b) holds. Let (v∗, Ī
∗) be a finite

word satisfying p0 and let (vi, Ī
i)i<ω be a sequence as in (b). By assumption,

there is some index k < ω such that,

vi |= ϑ(0, . . . , 0, Īi) , for all i ≥ k .

Consider the sequence (wi, J̄
i) where

(wi, J̄
i) :=

{
(v∗, Ī

∗) if i = 0 ,

(vk+i, Ī
k+i) if i > 1 .

We claim that (wi, J̄
i) satisfies (a). The only thing we have to check is that

every long enough prefix satisfies p0. In fact, we claim that all prefixes satisfy p0.
Hence, let i < ω. Then

tph((w0, J̄
0) . . . (wi, J̄

i)) = p0 ⊕ π(e0)⊕ · · · ⊕ π(e0) = p0 .

Consequently,

(w0, J̄
0) . . . (wi, J̄

i) |= p0 .



The last result of this section provides a preparation step to the reduction
of the limit satisfiability problem to the tiling problems. To simplify notation,
for a tuple n̄ = 〈n0, . . . , nm−1〉 of numbers, we write n̄ + 1 for the tuple 〈n0 +
1, . . . , nm−1 + 1〉.

Lemma 50. An AMSO0
h-formula ϕ(r̄, s̄) and the quantifier prefix ∀s0∃r0 · · · ∀sm−1∃rm−1

are a solution to the limit satisfiability problem if, and only if, there exists a se-
quence (wi)i<ω of finite words such that, for all n0 < · · · < nm−1 < ω,

(∃k < ω)(∀i ≥ k)[wi |= ϕ(n̄+ 1, n̄)] .

Proof. (⇐) Suppose that, for all n0 < · · · < nm−1 < ω,

(∃k < ω)(∀i ≥ k)[wi |= ϕ(n̄+ 1, n̄)] .

By induction on l, we will show that

∀sm−l∃rm−l · · · ∀sm−1∃rm−1(∃k < ω)(∀i ≥ k)[
wi |= ϕ(n0 + 1, . . . , nm−l−1 + 1, rm−l, . . . , rm−1,

n0, . . . , nm−l−1, sm−l, . . . , sm−1)
]
.

for all n0 < · · · < nm−i−1.
By induction hypothesis, assume that

(∀n0 < · · · < nm−l−2 < nm−l−1)

∀sm−l∃rm−l · · · ∀sm−1∃rm−1(∃k < ω)(∀i ≥ k)[
wi |= ϕ(n0 + 1, . . . , nm−l−2 + 1, nm−l−1 + 1,

rm−l, . . . , rm−1,

n0, . . . , nm−l−2, nm−l−1,

sm−l, . . . , sm−1)
]
.

Then

(∀n0 < · · · < nm−l−2)(∀sm−l−1 > nm−l−2)∃rm−l−1

∀sm−l∃rm−l · · · ∀sm−1∃rm−1(∃k < ω)(∀i ≥ k)[
wi |= ϕ(n0 + 1, . . . , nm−l−2 + 1,

rm−l−1, rm−l, . . . , rm−1,

n0, . . . , nm−l−2,

sm−l−1, sm−l, . . . , sm−1)
]
.



By monotonicity, it follows that

(∀n0 < · · · < nm−l−2)

∀sm−l−1∃rm−l−1∀sm−l∃rm−l · · · ∀sm−1∃rm−1

(∃k < ω)(∀i ≥ k)[
wi |= ϕ(n0 + 1, . . . , nm−l−2 + 1,

rm−l−1, rm−l, . . . , rm−1,

n0, . . . , nm−l−2,

sm−l−1, sm−l, . . . , sm−1)
]
.

(⇒) Let (wi)i<ω be a sequence of finite words such that

∀s0∃r0 · · · ∀sm−1∃rm−1(∃k < ω)(∀i ≥ k)
[
wi |= ϕ(r̄, s̄)

]
.

Then there are Skolem functions β0, . . . , βm−1 such that, for all n̄,

(∃k < ω)(∀i ≥ k)[
wi |= ϕ(β0(n0), β1(n0, n1), . . . , βm−1(n0, . . . , nm−1), n̄)

]
.

By monotonicity of ϕ, we may assume that each βi is increasing in every argu-
ment. Furthermore, setting β′i(x) := βi(x, . . . , x) and n′i := max {n0, . . . , ni}, it
follows that

(∃k < ω)(∀i ≥ k)[
wi |= ϕ(β′0(n′0), β′1(n′1), . . . , β′m−1(n′m−1), n̄)

]
.

Consequently, it follows for

β(x) := max {β′0(x), . . . , β′m−1(x)}

that

(∃k < ω)(∀i ≥ k)
[
wi |= ϕ(β(n0), . . . , β(nm−1), n̄)

]
,

for all n0 < · · · < nk−1. Let w′i be the weighted word obtained from wi by
replacing each weight function f by the function

f ′(x) := k where βk(0) ≤ f(x) < βk+1(0) .

For all n0 < · · · < nm−1 and every i, it follows that

wi |= ϕ(β(n0), . . . , β(nm−1), n̄)

implies

w′i |= ϕ(n0 + 1, . . . , nm−1 + 1, n̄) .

Consequently, we have

(∃k < ω)(∀i ≥ k)
[
w′i |= ϕ(n0 + 1, . . . , nm−1 + 1, n̄)

]
,

for all n0 < · · · < nk−1.



C.2 Reductions between tiling problems

Before reducing the limit satisfiability problem to certain tiling problems, we
present reductions between various versions of these tiling problems. Let us start
with some terminology. For a picture p : [h]× [w]→ Σ, we denote the ith column
by

p(−, i) := p(0, i) · · · p(k − 1, i) ,

the jth row by

p(j,−) := p(j, 0) · · · p(j, n− 1) ,

and, the band for rows j1 < · · · < jk by

p(j1,−)× · · · × p(jk,−) .

We will consider the following variants of tiling systems.

Definition 51. (a) An m-dimensional tiling system (L,K) is lossy if the col-
umn language K is closed under subwords.

(b) An m-dimensional tiling system (L,K) is monotone if there is a partial
order ≤ on the alphabet Σ such that

– if uabv ∈ K, for a, b ∈ Σ and u, v ∈ Σ∗, then there exists a letter c ∈ Σ
such that c ≥ a, b and ucv ∈ K ;

– a00 . . . a0(k−1) × · · · × a(m−1)0 . . . a(m−1)(k−1) ∈ L and aij ≤ bij implies
b00 . . . b0(k−1) × · · · × b(m−1)0 . . . b(m−1)(k−1) ∈ L.

(c) An m-dimensional tiling system (L,K) is restricted if the language K is
a finite union of languages of the form a∗bc∗, for a, b, c ∈ Σ.

The m-dimensional tiling problem is the problem to decide whether a given
m-dimensional tiling system (L,K) has solutions of arbitrarily large height. The
lossy/monotone/restricted m-dimensional tiling problem is the similar problems
for tiling systems of the corresponding kind.

Lemma 52. The [restricted] monotone m-dimensional tiling problem reduces to
the [restricted] lossy m-dimensional tiling problem.

Proof. Let (L,K) be a monotone m-dimensional tiling system and let K ′ be the
closure of K under subwords. We claim that (L,K ′) has solutions of arbitrarily
large heights if, and only if, (L,K) has such solutions.

Clearly, any solution of (L,K) is also one of (L,K ′). Conversely, let p :
[n]× [k]→ Σ be a solution of (L,K ′). Then

p(−, i) ∈ K ′ , for all i < k .

Hence, there exists a word ai0 . . . aili−1 ∈ K and an injective function hi : [n] →
[li] such that p(j, i) = aihi(j)

. Since (K,L) is monotone, there exists a word



bi0 . . . b
i
n−1 ∈ K such that bij ≥ aihi(j)

. We define q : [n]× [k]→ Σ by q(i, j) := bij .
By choice of bij , we have

q(−, i) ∈ K , for all i < k .

Furthermore, as (K,L) is monotone, and q(i, j) ≥ p(i, j),

q(i0,−)× · · · × q(im−1,−) ∈ L ,

for all i0 < · · · < im−1 < n. Hence, q is a solution of (K,L) of the same height
as p.

Lemma 53. The restricted lossy 1-dimensional tiling problem and the restricted
monotone 1-dimensional tiling problem are equivalent (with respect to many-one
reductions).

Proof. We have already presented a reduction from the monotone case to the
lossy case. For the other direction, let (L,K) be a restricted lossy 1-dimensional
tiling system over the alphabet Σ. We set Σ′ := P(Σ). The language K ′ is the
closure of the set

{ {a0} . . . {an−1} | {a0} . . . {al−1} ∈ K }

under the operation

A0 . . . An−1 7→ A0 . . . Ai−1(Ai ∪Ai+1)Ai+2 . . . An−1 .

The language L′ consists of all words A0 . . . Ak−1 such that there exist elements
ai ∈ Ai with a0 . . . ak−1 ∈ L.

We claim that (K,L) has solutions of arbitrary height if, and only if, (K ′, L′)
has such solutions. Clearly, if p is a solution of (K,L) then we obtain a solution p′
of (K ′, L′) by setting p′(i, j) := {p(i, j)}. Conversely, let p′ : [n] × [k] → Σ′ be
a solution of (K ′, L′). For each i < n, there are elements aij ∈ p′(i, j) such that
ai0 . . . a

i
k−1 ∈ L. We set p(i, j) := aij . By choice of aij , we have ai0 . . . aik−1 ∈ L,

for every i < n. By definition of K ′, for each j < k, there exists a word wj ∈
K such that a0

j . . . a
n−1
j is a subword of wj . As (K,L) is lossy, it follows that

a0
j . . . a

n−1
j ∈ K. Consequently, p is a solution of (K,L).

Lemma 54. The lossy m-dimensional tiling problem and the restricted lossy m-
dimensional tiling problem are equivalent (with respect to many-one reductions).

Proof. Clearly, every restricted tiling problem is also an unrestricted one. Hence,
we only have to prove one direction. Let (L,K) be an arbitrary lossy m-dimen-
sional tiling system over the alphabet Σ. We define an equivalent restricted
problem as follows. Suppose that K =

⋃
i<l Ti where each language Ti is of the

form

Ti = (Ai0)∗bi1(Ai1)∗ . . . (Ain−1)∗bin(Ain)∗,



for Ai0, . . . , Ain ⊆ Σ and bi1, . . . , bin ∈ Σ. W.l.o.g. we may assume that the num-
ber n is the same for all languages Ti. Let >,< /∈ Σ be new symbols and define
the alphabet

Σ′ := (Σ ∪ {<,>})× [l]× [2n+ 1] .

For every a ∈ Σ, we define the language Ba ⊆ (Σ′)∗ consisting of all words

(c0, i, j0) . . . (cs, i, js)

such that

– c0 . . . cs ∈ >∗a<∗ ;
– ct = a and jt = 2r implies a ∈ Air ;
– ct = a and jt = 2r + 1 implies a = bir+1 ;
– 0 = j0 ≤ · · · ≤ js = 2n;
– jt = jt+1 implies that jt is even;
– jt 6= jt+1 implies that jt+1 = jt + 1.

Let L′ be the language obtained from L by replacing each letter a by a word of
the form Ba. The language K ′ is

K ′ :=
⋃
a∈Σ

⋃
i<l

⋃
j<2n+1

[
(<, i, j)∗(a, i, j)(>, i, j)∗

∪ (<, i, j)∗(>, i, j)∗
]
.

We claim that (L′,K ′) has a solution of height n if, and only if, (L,K) has such
a solution.

(⇐) Let p be a solution of (L,K) of height h. For each column p(−, x), fix a
language Ti containing it and fix numbers k0, . . . , kn such that

p(−, x) ∈ (Ai0)k0bi1(Ai1)k1 . . . (Ain−1)kn−1bin(Ain)kn .

We obtain p′ by replacing the column p(−, x) by h columns

(>, i, 0)

...

(>, i, 0)
(p(0, x), i, 0)


· · ·



(>, i, js)
...

(>, i, js)
(p(s, x), i, js)

(<, i, js)
...

(<, i, js)


· · ·



(p(h− 1, x), i, 2n)
(<, i, 2n)

...

(<, i, 2n)


,

where

js :=


0 if s < k0 ,

2j + 1 if s = k0 + · · ·+ kj + j ,

2j if k0 + · · ·+ kj−1 + j − 1

< s < k0 + · · ·+ kj + j .



Then p′ is a solution of (L′,K ′) of height h.
(⇒) Let p′ be a solution of (L′,K ′) of height h and length w. Let 0 = x0 <

· · · < xt = w be all indices such that, for every s < t,

p′(y, xs)p
′(y, xs + 1) . . . p′(y, xs+1 − 1) ∈ Ba ,

for some a ∈ Σ. Given x, y with xs ≤ x < xs+1, let p(y, x) := a, where a ∈ Σ is
the letter such that

p′(y, xs)p
′(y, xs + 1) . . . p′(y, xs+1 − 1) ∈ Ba .

We claim that p is a solution of (L,K).
From the definition of L′ it follows easily that every tuple of m lines of p is

in L. Hence, we only have to check that every column is in K. For s < t, set
ay := p(y, x). Then

p′(y, xs)p
′(y, xs + 1) . . . p′(y, xs+1 − 1) ∈ Bay

and there is some index xs ≤ x < xs+1 such that p′(y, x) = (ay, iy, jy), for
suitable iy, jy. By definition of L′ and K ′, we have i0 = · · · = ih−1 and

ay ∈ Aiys , if jy = 2s ,

ay = b
iy
s+1 , if jy = 2s+ 1 .

Consequently, a0 . . . ah−1 ∈ Ti ⊆ K.

C.3 Reducing limit satisfiability to tiling problems

Theorem 55. The limit satisfiability problem for formulae with number quan-
tifier prefix (∀∗∃∗)m reduces to the restricted monotone m-dimensional tiling
problem.

Proof. First, note that, by Proposition 14, the limit satisfiability problem for
formulae with number quantifier prefix (∀∗∃∗)m reduces to the one with number
quantifier prefix (∀∃)m. Hence, given a quantifier prefix ∀s0∃r0 · · · ∀sm−1∃rm−1

and a AMSO0
h-formula ϕ(r̄, s̄), we will construct a restricted monotonem-dimensional

tiling system (L,K) that has solutions of arbitrary large height if, and only if,
there exists a sequence (wi)i<ω of finite words satisfying

∀s0∃r0 · · · ∀sm−1∃rm−1(∃k < ω)(∀i ≥ k)[wi |= ϕ(t̄)] .

Let Σ be the alphabet used in ϕ. We define a monotone tiling system (L,K)
over the alphabet Σ′ := Σ × {<,=, >} with ordering

(a, σ) < (b, τ) :iff a = b, τ = >, and σ ∈ {<,=} .

The column language is

K :=
⋃
a∈Σ

(a,<)∗(a,=)(a,>)∗ ∪
⋃
a∈Σ

(a,<)∗(a,>)∗ .



To define the row language L let Θ be the set of all AMSO0
h-types with free

variables r̄s̄ and set

L0 := { p0 . . . pk | p0, . . . , pk ∈ Θ with p0 ⊕ · · · ⊕ pk |= ϕ } .

Let µ be the function that maps an m-tuple ((a, σ0), . . . , (a, σm−1)) ∈ (Σ′)m

to the AMSOh-type

Thh(a, n0 + 1, . . . , nm−1 + 1, n̄) ,

where a is the word consisting of the single letter a with weight k := 2m, and
n̄ are arbitrary numbers such that, for all i,

ni + 1 < ni+1 and

ni + 1 < k if σi = < ,
ni = k if σi = = ,
ni > k if σi = > .

If there are no such numbers, µ remains undefined. Note that µ is well-defined
since, for a word consisting of a single letter with weight k, the theory

Thh(a, n0 + 1, . . . , nm−1 + 1, n̄)

only depends on the order type of the numbers k, n0, . . . , nm−1. We set

L := µ−1(L0) = { c0 . . . ck−1 ∈ ((Σ′)m)∗ |
µ(c0) . . . µ(ck−1) ∈ L0 } .

To show that (L,K) has the desired properties, it is sufficient, by Lemma 50,
to prove that (L,K) has solutions of arbitrary large height if, and only if, there
exists a sequence (ui)i<ω of words such that, for all n0 < · · · < nm−1 < ω,

(∃k < ω)(∀i ≥ k)[ui |= ϕ(n̄+ 1, n̄)] .

(⇒) For each i < ω, fix a solution pi of height hi ≥ i and length li. We define
a word ui as follows. The k-th column of pi is of the form

(ai,k, <)wi,k(ai,k,=)(ai,k, >)hi−wi,k−1

or

(ai,k, <)wi,k(ai,k, >)hi−wi,k ,

for some ai,k ∈ Σ and w < ω. We define the weighted word ui := ai,0 . . . ai,li−1,
where the letter ai,k has weight wi,k. For n0 < · · · < nm−1 < hi with nj + 1 <
nj+1, it follows that

Thh(ai,k, n0 + 1, . . . , nm−1 + 1, n̄)

= µ
(
p(n0, i) . . . p(nm−1, i)

)
.



Hence,

µ
(
p(n0, 0) . . . p(nm−1, 0)

)
. . .

µ
(
p(n0, li − 1) . . . p(nm−1, li − 1)

)
∈ L0

implies

Thh(ui, n̄+ 1, n̄) =

Thh(ai,0, n̄+ 1, n̄)⊕ · · · ⊕ Thh(ai,li−1, n̄+ 1, n̄) |= ϕ .

Consequently,

ui |= ϕ(n̄+ 1, n̄) , for all n0 < · · · < nm−1 with
nj + 1 < nj+1 and i with nm−1 < hi .

(⇐) Let (ui)i<ω be a sequence of words such that, for all n0 < · · · < nm−1 <
ω,

(∃k < ω)(∀i ≥ k)[ui |= ϕ(n̄+ 1, n̄)] .

Then there exists an increasing sequence (hi)i<ω of numbers such that

ui |= ϕ(n̄+ 1, n̄) , for all n0 < · · · < nm−1 < hi .

Let ln be the length of un. For each n, we define a function pn : [hn]× [ln]→ Σ
as follows. Suppose that aj is the j-th letter of un and that its weight is kj . We
set

pn(i, j) :=


(aj , <) if i < kj ,

(aj ,=) if i = kj ,

(aj , >) if i > kj .

We claim that every pn is a solution of (L,K). By definition, every column of pn
belongs to K. Let n0 < · · · < nm−1 < hn and set n̄′ := (n0 + 1, . . . , nm−1 + 1).
For j < ln, let an,j be the letter such that un = an,0 ⊕ · · · ⊕ an,ln−1. It follows
that

µ(p(n0, j) . . . p(nm−1, j)) = Thh(an,j , n̄
′, n̄) .

Consequently,

Thh(an,0, n̄
′, n̄)⊕ · · · ⊕ Thh(an,ln−1, n̄

′, n̄)

= Thh(un, n̄
′, n̄) |= ϕ

implies that

µ(p(n0, 0) . . . p(nm−1, 0)) . . .

µ(p(n0, ln − 1) . . . p(nm−1, ln − 1)) ∈ L0 .

Consequently, the rows n0, . . . , nm−1 are in L.



Theorem 56. The restricted monotone m-dimensional tiling problem reduces
to the satisfiability problem for WAMSO-sentences with number quantifier prefix
(∀∗∃∗)m.

Proof. Let (L,K) be a restricted monotone m-dimensional tiling problem over
the alphabet Σ. We construct a formula stating that the model is an ω-word of
the form #w0#w1#w2# . . . where # /∈ Σ is a new letter and the words wi ∈
(Σ3)∗ encode solutions of (L,K) of unbounded height. The following conditions
are easily expressed in WAMSO:

– there are infinitely many #,
– the weight function f is unbounded,
– each letter other than # is of the form (a, b, c) ∈ Σ3 where a∗bc∗ ⊆ K.

The main task is finding a formula expressing that every m-tuple of lines belongs
to L. We use the formula

ϕ :=∀s0∃r0 · · · ∀sm−1∃rm−1∀x∀y
[‘x and y are consecutive occurrences of #’
→ ψ(x, y, r̄, s̄)]

where ψ is defined as follows. Let χ be an MSO-formula defining the language L
where we use letter predicates of the form P≥a meaning that the letter at the
given position is greater or equal to a. As L is upward closed, we can choose χ
such that every occurrence of such a predicate P≥a is positive. For a ∈ Σ, set

ϑia(x) :=
∨
b,c∈Σ

[
(P(a,b,c)(x) ∧ f(x) < ri)

∨ (P(b,a,c)(x) ∧ si ≤ f(x) < ri)

∨ (P(b,c,a)(x) ∧ si ≤ f(x))
]
.

Let χ′ be the formula obtained from χ by replacing every predicate P≥(a0,...,am−1)

by ∧
i<m

ϑiai(x) .

The formula ψ states that the formula χ′ holds between positions x and y.
We claim that ϕ is satisfiable if, and only if, (K,L) has solutions of arbitrarily

large height.
(⇐) For each n < ω, fix a solution pn : [n]× [kn]→ Σ of (K,L) of height n.

Set

wn := an0 . . . a
n
kn−1 ,

where ani = (a, b, c) is choosen such that pn(0, i) . . . pn(n − 1, i) ∈ a∗bc∗. We
define the weight function f of wn such that pn(0, i) . . . pn(n − 1, i) ∈ af(i)bc∗.
We claim that the ω-word

#w0#w1#w2# . . .



is a model of ϕ.
Given the values si of the universally quantified number variables, we choose

the value ri := si + 1 for the existentially quantified ones. It is sufficient to
prove that a subformula ϑia holds for a position j in the word wn if, and only if,
pn(ri, j) ≥ a. Hence, suppose that ϑia holds at j in wn and let (c0, c1, c2) be the
letter at that position. Then one of the following cases holds:

– a = c0 and pn(si, j) ∈ {a, c1}, or
– a = c1 and pn(si, j) = a, or
– a = c2 and pn(si, j) ∈ {a, c1}.

Since c1 ≥ a it follows that pn(si, j) ≥ a.
Conversely, suppose that pn(si, j) ≥ a. Let (c0, c1, c2) be the letter of wn at

position j. Then

– c0 ≥ a and f(j) ≤ si, or
– c1 ≥ a and f(j) = si, or
– c2 ≥ a and f(j) > si.

Since ri = si + 1 it follows that ϑia holds at j.
(⇒) Suppose that ϕ is satisfiable. Then the model has the form

#w0#w1#w2# . . . ,

for words w0, w1, . . . . We have to construct solutions pn of (K,L) of arbitrarily
large height.

Fix a skolem function βi(s0, . . . , si) for the variable ri and set

β(s) := max {βi(s0, . . . , si) | i < m ands0, . . . , si ≤ s } .

By monotonicity of χ′(r̄, s̄), it follows that

wn |= χ′
(
β(s0), . . . , β(sm−1), s0, . . . , sm−1

)
,

for all s0 < · · · < sm−1 < ω. Let (anj , b
n
j , c

n
j ) be the i-th letter of wn. We set

pn(i, j) :=


anj if f(j) < βi(0) ,

bnj if βi(0) ≤ f(j) < βi+1 ,

cnj if f(j) ≥ βi+1(0) .

As height of pn we take the maximal value of f(j) where j ranges over the
positions in wn. Since the function f is unbounded, it follows that the pn have
unbounded weight. Hence, it remains to prove that each pn is a solution of (K,L).
Clearly, we have

pn(0, j) . . . pn(h− 1, j) ∈ K ,

for all j, where h is the height of pn.
Fix numbers k0 < · · · < km−1 and set si := βki(0). If a formula ϑia(x) holds

at position j in wn with letter (c0, c1, c2) then



– a = c0 and f(j) < β(si), or
– a = c1 and si ≤ f(j) < β(si), or
– a = c2 and si ≤ f(j).

Consequently, ϑia(j) implies that pn(ki, j) ≥ a. It follows that

(pn(k0, 0) . . . pn(km−1, 0)) . . . (pn(k0, l) . . . pn(km−1, l)) ∈ L ,

as desired.


