Monadic Second-Order Model Theory

Achim Blumensath

Hionadic Second-~Order
Todel Aheory

Achim Blumensath

ab

BRNO 2025

Achim Blumensath
blumens@fi.muni.cz

This document was last updated 2025-02-23.
The latest version can be found at

www.fr.muni.cz/~blumens

CoPYRIGHT 2025 Achim Blumensath
This work is licensed under the Creative Commons Attribu-
5Y tion 4.0 International License. To view a copy of this license,

visit http://creativecommons.org/licenses/by/4.0/.

Jontents

A. Sundamentals

I Logics and Their Sepre(live Yowers

1. Structures and logics
2. Simple translations between logics

D N T T T S SIS

3. Theories and back-and-forth arguments

4. Operations for monadic second-order logic

5, Operations for first-order logic . .

II Sinite Hdords
1. Words and languages
2. Semigroups and Green'’s relations
3. SimonsLemma
4. Regular languages of finite words .
5. First-order logic

IIT Infinite HHords
1. Ramsey theory
2. Thetheoryofw
3. W-SEMIgroups . . . v o v v v v\ .
4, @W-AULOMALA « « v v v v v v v e oo

IV Yarity Bames
1. Positional games
2. Reachability games

D N B T T S S Y

MONADIC SECOND-ORDER MODEL THEORY 2025-02-23 — ©ACHIM BLUMENSATH

II
16
23
51

61
61
63
73
86

93

107
107
17
120
130

145
145
147

Contents

3. Gale-Stewartgames oL
4. Regular games and paritygames,
5. Themodal p-calculus

V Trees
1. Composition theorems oL
2. Treeautomata . . v v v v v v e e e e e e e e e e
3. The Muchnik Iteration v v v v v v v i e i e e e e s
4. Lowenheim-Skolem theorems
5. The Cantor Topology v v v v v i i i

6. Counting quantifiers

B. Structure Theory

VI Linear Orders
I. Dense and scatteredorders oo
2. Partitiontheorems e
3. Interpretations
4.Regular linearorders oL
5. Modestlinearorders v v v v v i
6.Choice functions . . . v v v v v v v vt e e e e e
2. Uniformisation « « v v v v v v v e e e e e e
8. First-orderlogic

VII Syparle Structures
L Spanning forests . .« v v v v
2.Sparse hypergraphs o L
3. Translating GSOintoMSO . .« . . v v oo v
4.Sparsedistributions

VIII Tree-BHidth and Braph Prinors

1. Tree-decompositions v v v v v i
2.MINors ... e

vi

157
159
179

193
193
206
228
237
243
259

281

283
283
299
308

313
327
393
414
441

461
461
481

490
497

531

543

Contents

3.Brambles e e . 553
4. The Excluded Grid Theorem« v v v v v v v v . 560
5. Branch-decompositions and tangles 578

6. Well-quasi-orderings 592
IX drofling-Hgidth 599
L Partitionsandranks 599
2. Decompositionso 610
3 Terms « v v e e e e e e e e e . 615
4. Tree-width and crossing-width 622
s. Interpretations it .. 631
6. Non-standard crossing-width, 639

7. The monadic independence property 644

X Guarded Second ~Order Tranductions 653
L Transductions v v v v v v v v i e e e e e, 653
2. Tree-decompoSitions . . v v v v v v v v v i 665
3. Treesof bounded height. 667
4. The Transduction Hierarchy 685

5. Defining tree-decompositions 692

C. 2pyplications 713
XI The Taucal Hierardyy 715
1. Finitely Presentable Structures 715
2. Prefix-recognisable structures 725
3. VR-equational and HR-equational structures 732
4. Regular path-interpretations 739
5. Pushdowngraphs L. 751
6. Context-freegroups . . .« v v v v v v 777
7.Graphsandpaths, 796

8. AXIOmAtiSationsS .+ + v v v v v s vttt e e e ... 816

vii

Contents

XII lutomatic Structures 833
I. Automatic presentations« ..o .0 000t h w833
2. Interpretations e 841
3. Closure properties . . . v v v v v v v 849
4.Undecidability L 853
5. Injective presentations it i, 857
6. Partitiontheorems« . . v it e e .. 863
7.Counting quantifiers 883
8. Proving NON-AUtOMALICILY + v+ v v v v v v v o v e e v e v v e a s 892
9. AUTOMALIC FOUPS + + + v v v v v v v e e 914
10, AUtOmAtiC SEMIFINGS « « « « + v v v v v v v v v 943
1. Automaticorders v v i e e e e e . 957
12. Subclasses of automatic structures, . 970
Bibliography 1005
Suymbol Index 1021
Jnder 1027

viii

Jart A

Sundamentals

I Logics and Aheir Eepreflive
Jowers

HE TWO CENTRAL TOPICS of this book are (1) the model checking
T problem for specific structures and (11) the study of the expressive
power of various logics. To this end we will develop techniques to compute
and compare the theories of given structures. This obviously solves the model
checking problem since, if we know the theory of a structure %, we can decide
whether a formula is satisfied by it. But this also helps us to prove that certain
things are not expressible in a given logic L. If we can find two structures
A and B with the same L-theory such that U has a given property P, but
B does not, then the property P cannot be expressed in L.

Tlotation. The following basic notation will be used throughout the
book. For n < w, we set [n] := {o,...,n — 1}. We tacitly identify a tuple
a = {ao,...,a,_,) with the set {ao,...,a,_;} of its components. This
allows us to write 4 € C or ¢ € 4. The empty tuple is ().

£(A) denotes the power set of A, and A + B is the disjoint union of
A and B. For a function f : A - B, we denote the domain by dom f := A
and its range by rng f € B, We write f | X : X — B for the restriction of f
to the set X.

For a partial order (A, <) and a subset X C A, we set

1X:={aeA|a>xforsomexeX},
|X:={acA|a<xforsomexeX}.

We denote the infimum and the supremum of two elements x and y by,
respectively, x M y and x U y.

MONADIC SECOND-ORDER MODEL THEORY 2025-02-23 — ©ACHIM BLUMENSATH 3

I Logics and Their Expressive Powers

1 Structures and Logics

Logics are formal languages designed to talk about mathematical objects. As
we will deal with several different logics in the course of this book it is useful
to adopt an abstract point of view. In general a logic consists of (1) a class of
objects to talk about; (11) a set of statements we can make about them; and
(111) a relation telling us which statements hold for a given object.

Definition 1.1. A logic is a triple (L, M,) consisting of a set L of formulae,
a class M of models, and a satisfaction relation = € M x L. To keep notation
light, we usually identify a logic with its set of formulae L. |

For instance, we can define first-order logic as a triple (FO[X], STR[Z],)
where FO[X] is the set of all first-order formulae (without free variables)
over the signature ¥ and STR[2] is the class of all Z-structures. For formulae
with free variables we can use the logic (FO[2, X], STR[Z, X],) where
FO[Z, X] s the set of all first-order formulae with free variables in the set X
and STR[Z, X] is the class of all pairs (I, 8) consisting of a Z-structure Y
and a variable assignment 8 : X — A.

The logics we consider in this book are mostly variants of first-order
logic and monadic second-order logic. Let us quickly recall their definitions.
A signature 2 is a set of relation symbols and function symbols, each of which
has an associated arity. A S-structure A = (A, (£) ges) consists of a set A
together with

 one n-ary relation R* € A", for every relation symbol R € X of arity n,
¢ one n-ary function f(‘)I : A" — A, for every function symbol f € ¥ of
arity n.
Note that we allow functions of arity o, which correspond to constants. Most
of the time in this book we assume that all signatures are finite and purely
relational.

Most of the time we will only work with 1-sorted structures, but sometimes

many-sorted ones are more convenient. An S-sorted structure

A= ((As)ses: (fgl)fez)

1 Structures and logics

has one domain A, for each sort s € S, and each relation symbol and
function symbol has an associated type. For an n-ary relation symbol R, this
type is an n-tuple 5 € S”, for an n-ary function symbol f, it is an (n +1)-
tuple 5t € $"*', which we will usually write at 5 — ¢. If R has type 3, the
corresponding relation is of the form R¥ € []; Ay, Similarly, if f has type
§ — t, we are given a function fg[I A, = A

Example. (a) The field of real numbers (R, +, -, 0,1, <) is a structure with
signature {+, -,0,1,<}, where + and - are binary function symbols, 0 and 1
are o-ary function symbols, and < is a binary relation symbol.

(b) A graph is a structure { V, E) with a single binary relation E € V x V.

(c) We can represent a vector space V over a field K either as a 1-sorted
structure of the form B = (V, +, 0, (f4)sex) where scalar multiplication
is split into separate functions f; : V — V, for each a € K, or we can
use a two-sorted structure B = (V, K, +,0, -) with + : V x V - V and
-t KxV >V, .,

The main logics we are concerned with in this book are first-order logic
and various variants of monadic second-order logic. Recall that first-order
logic FO[2] consist of formulae that are built up from atomic formulae of the
form s = t and Rt, ... t,_;, where R € X is an n-ary relation symbol and
Syt to, + v+, ty—y are terms built up from variables and the function symbols
in 2. Such atomic formulae can be combined using boolean operations
A (conjunction), v (disjunction), - (negation), and first-order quantifiers
dx and Vx.

Definition 1.2. Let X be a signature. The formulae of monadic second-order
logic MSO[Z] are built up from atomic formulae of the form s = t, Zt, and
Rty ... ty—y, where R € X is an n-ary relation symbol, Z is a set variable,
and s, t,to, ..., ty,—; are terms built up from first-order variables and the
function symbols in X. Such atomic formulae can be combined using boolean
operations A (conjunction), V (disjunction), — (negation), and quantifiers
dx, Vx, 3Z, and VZ, where x is a first-order variable and Z is a set variable.

The semantics of such a formula is defined as follows. Given a formula
¢(%, Z) € MSO[X] with free first-order variables % and free set variables Z

I Logics and Their Expressive Powers

and given a Z-structure Y, a tuple of elements @ of A, and a tuple of subsets P
of U, we define the satisfaction relation

AE ¢(a,P)

by induction on ¢. The definition is analogous to that for first-order logic. An
atomic formula Zt holds in U if the element denoted by the term ¢ belongs
to the set denoted by Z. A formula of the form 3Zy holds if there exists a
set satisfying ¥, and V Zy holds if every set satisfies .

Throughout we use lower case letters for first-order variables and upper
case ones for set variable, For readability we will sometimes use common
short-hands such as, s # t instead of ~(s = t), or t € Z instead of Zt.

As above we write MSO[2, X] for the set of MSO-formulae with free vari-
ables in a given set X. A model of such a formula consists of a Z-structure A
and a variable assignment 8. We usually write ¢ (%, Z) for a formula ¢ to
indicate that the free variables of ¢ are among the variables xZ. This allows
us to use the more common notation

A= ¢(a,P) if (A,B)Eo,

where f3 is the variable assignment mapping x; to a; and Z; to P;. Since
2 and X can usually be inferred from the context, we will frequently simplify
notation by writing MSO instead of MSO[Z, X], and similarly for other
logics. |

Example. (a) For a linear order A = (A, <,), we can say that y is the imme-
diate successor of x by the FO-formula

o(x,y) =x<yAx#EyAVz[x<zAz<y->(z=xVz=y)].

(b) For atree ¥ = (T, <) where < is the predecessor order, we can express
that a set variable X contains an infinite branch by the MSO-formula

ElZ[ZEX/\Zi@/\\?’xVy[Zx/\Zy—>(xﬁyVny)]
AVxTy[Zx > x <y n Zy]].

1 Structures and logics

(c) Givena graph & = (V, E), the MSO-formula
¢o(x,y) :=VZ[Zx AYuVv(Zu A Euwv - Zv) - Zy]

expresses that there exists a path from x to y.
(d) We can say that a graph & = (V, E) is connected by the formula

VxVyp(x,y),
where ¢ is the formula from (c).)
We will also study the following variants of monadic second-order logic.

Definition 1.3. Let X be a signature.

(a) Weak monadic-second order logic WMSO([X] has the same syntax as
MSO[X], but all set variables range over finite sets only.

(b) Monadic-second order logic with first-order counting CMSO[X], or
counting monadic-second order logic for short, is the extension of MSO[Z] by
statements of the form

|X] <R, and |X|=k (modm),

for a set variable X and finite numbers k, m < w. A statement of the form
|X| < R, holds if X is a finite set, and | X| = k (mod m) is true if, X is finite
and its size is congruent k modulo m. We write MSO[inf | if we only allow
predicates of the first form.

(c) Let U be a Z-structure. A tuple d € A” is guarded if there exists a
relation R of U containing a tuple ¢ € R with 4 C ¢. Here, we allow R to
be the equality relation =, even though it is not present in the signature.
A relation S € A” is guarded if every tuple 4 € S is guarded.

(d) Guarded second-order logic GSO[2] extends first-order logic by atomic
formulae of the form Zt,...t,_;, where to,...,t,_; are terms and Z is
a relation variable of arity n, and by quantifiers 3Z and VZ over relation
variables. A formula of the form 3Z holds if there exists a guarded relation
satisfying ¥, and VY Zy holds if every guarded relation satisfies y.)

I Logics and Their Expressive Powers

Example. We consider undirected graphs & = (V, E) as structures over
the signature {E} consisting of one binary edge relation (irreflexive and
symmetric).

(a) To express that a graph has a Hamiltonian cycle we can write down a
GSO-formula stating that there is a guarded binary relation Z (i.e., a set of
edges) such that

o for every vertex x there are unique vertices y and z with (y, x) € Z and

(x,2) €2,
¢ every two vertices are connected by a sequence of Z-edges.

(b) A minor of a graph & is a graph 9 obtained from the first graph by
deleting vertices and edges and by contracting edges. To say that a fixed finite
graph is a minor of the given graph, we can use an MSO-formula stating
that, for each vertex v of 9, there exists a set X, such that

& the subgraph induced by X, is connected and

o for every edge (u, v) of D there is an edge connecting some vertex of X,
with some vertex of X,. .

As defined above the logic MSO is not always convenient to use in proofs.
Therefore, we introduce a simplified version that still has the same expressive
power.

Definition 1.4. Let X be a relational signature. The logic MSO°[X] has
atomic formulae of the form

Xcy, sing(X), RXo. . Xy,
XnY=@, cover(Xo,..., Xp—1),

where R € X is an n-ary relation symboland X, Y, X,, ..., X,,_; are set vari-
ables. The logic is closed under boolean operations and set quantifiers. The
formulae X € Y and X N Y = & have the obvious meaning. sing(X) states
that | X| = 1. An atomic formula of the form cover(X,, ..., X,—;) holds if
the union X, U---U X,,_; contains the whole universe, while a formula of
the form RX,, ... X,,_, holds if each set X; is a singleton {4; } and the tuple
(a0, .., an_y) of elements belongs to R. j

1 Structures and logics

Remark. (a) We frequently use abbreviations like

(X=Y)=(XcY)A(Y<cX),
(XcY)=(XcY)rn-(YCX),
(X=02)=(XnX=02).

(b) Note that every MSO°-formula is equivalent to one that does not

contain atomic formulae of the form X n X’ = @&, sing(X), or cover(X)
since we can define these in terms of C.

XnX'=@ = VY[YSXAYcX > VZ(Yc2Z)],

sing(X) = X#@AVY[YcX->Y=¢g],
cover(X) = VZ[sing(Z) -\/Zc Xi] .
i
But note that this translation does increase the quantifier rank.)

Lemma 1.5. Let X be a relationle signature. For every formula ¢(x, Z) €
MSO[Z], there is a formula ¢° (X, Z) € MSO°[2] such that

A 9°({ao}, s {ama}, P) if A= @(do,..,dmr, P),
for every Z-structure A and all parameters & and P.
Proof. We define ¢° by induction as follows.
(x=y)° :=sing(X) Asing(Y)AXCYAYCX,
(Rxg...xyy)®=RXo... Xy,
(PA9) =" Ay, (Fxy)" = IX[sing(X) A y7],
(pvy)®=9"vy®, (Vxy)":= VX[sing(X) - y°],

(9 =mg*s (329 =32y,
(YZy)° :=VZy°. O

Analogous statements hold for the other variants of MSO.

I Logics and Their Expressive Powers

Exercise 1.I. We consider coloured linear orders of the form (A, <, P) where
P ¢ Ais a unary predicate. Find MSO-formulae expressing the following
statements:

(a) The set P is dense, i.e,, it is non-empty and between any two elements
of A there is an element of P.

(b) The set P contains infinitely many elements.

(c) The set P is finite and it has an even number of elements. |
Exercise 1.2. An (m x n)-grid is a graph & = (V, E) where
V iz [m] x [n],
E = {{{ik), (D) [1= jl+ k=1 =1}
(a) Construct an MSO-formula expressing that a graph is a grid.

(b) For each of the following functions f : @ - , find an MSO-formula
stating that the given graph is an (n x f(#))-grid, for some n.

(i) f(n)=n, (i) f(n)=n> (i) f(n)=2". |
Exercise 1.3. We can encode a finite word w = g, ...a,_; € X* over the
alphabet X by a word structure

i 2= ([n], < (Pa)aes)

where the universe [n] = {o, ..., n — 1} is the set of positions in the word w
and the predicates

P,:={i<n|a;=a}

contain all positions carrying the corresponding letter. Prove that, for every
regular expression «, there exists an MSO-formula ¢ such that

wee iff wel(a).

Hint. First construct, for each regular expression o, an MSO-formula ¢ (x, y)
such that

WwE@e(x,y) iff w[x,y]eLl(a),

where w[x, y] denotes the factor of w between positions x and y. ,

2 Simple translations between logics

2 Simple Tranflations Between Logics

In this section we relate the various logics introduced above to each other,
and we provide translations between them. We start with MSO and FO.

Definition 2.1. Let X be a relational signature.

(a) The power-set structure of a X-structure & is the structure £() with
signature X + {C} whose universe is the power set £(A) of the universe of 2.
The relation symbol € denotes the usual subset relation on £(A). For each
n-ary relation symbol R € X, () has the relation

RF(A) = {13 eP(A)" ’ each P; = {a;} is a singleton and 4 € R¥ } .

(b) The finite power-set structure of a Z-structure U is the substructure

Pen () of P(A) consisting of all finite subsets of A. ,

It is straightforward to check that MSO over X-structures corresponds to
FO over their power-set structures.

Proposition 2.2. Let X be a relational signature.
(a) For every MSO[X]-formula ¢(X), there exists an FO[X+ {C} | -formula
@' () such that

Ak o(P) iff RA)E¢'(P),

for all Z-structures A and all sets P in 2.
(b) For every FO[X + {C}]-formula ¢(), there exists an MSO[Z]-formula
@' (X) such that

P(A) = (/)(13) iff Ak g0'(13),
for all Z-structures U and all sets Pinl

Proof. (a) By Lemma 1.5 and the remark after Definition 1.4, we may as-
sume that ¢ is an MSO°-formula without subformulae of the form sing(X),
X NY =@, or cover(X). Then we obtain the desired formula ¢’ from ¢ by
replacing every set variable X by a corresponding first-order variable x.

(b) It is sufficient to construct an MSO®-formula. We obtain it from ¢ by
replacing every first-order variable x by a corresponding set variable X. [J

I Logics and Their Expressive Powers

‘We obtain the analogous result for finite power-sets and weak MSO. The
proof is identical to the one above.

Proposition 2.3. Let X be a relational signature.
(a) For every WMSO[Z]-formula ¢(X), there exists an FO[2 + {C}]-
formula ¢’ () such that

Arp(P) iff Fra(W) F'(P),

for all Z-structures A and all finite sets Pind.
(b) For every FO[X + {C}]-formula ¢(%), there exists an WMSO[Z]-
formula @' (X) such that

Pen () E @(P) iff AE ¢’ (P),
for all Z-structures A and all finite sets P in L.
There is also a variant for CMSO, again with basically the same proof.

Proposition 2.4. Let X be a relational signature and m < w a constant.

(a) Let ¢(X) be a CMSO[Z]-formula such that, in every subformula of
the form |X| = k (mod n), the constant n divides m. Then there exists an
FO[X + {<, M}]-formula ¢' (%) such that

A= o(P) if (RP(A), M)k ¢'(P),
for all Z-structures A and all sets P in 9, where
Mp:={ScA||S|=k (mod m)}.

(b) For every FO[Z + {c, M}]-formula ¢(x), there exists a CMSO[X]-
formula @' (X) such that

(), M) = @(P) iff A ¢'(P),

for all Z-structures A and all sets P in A, where the predicates M = (My) kem
are defined as above.

2 Simple translations between logics

Finally, we can also relate MSO to GSO via a suitable operation.

Definition 2.5. Let X be a relational signature. The incidence structure of a
X-structure U is the 2-sorted X;, -structure

g[in = <A; E, (Pc)c; ing, iny, ...)
with domains A and
E:={¢e A% | ¢ guarded, all components distinct } .

For every relation R € X of arity n and every surjective monotone function
0 : [n] — [k] with k < n, we have a unary predicate

Proi={é€E|[deRY di=c,(iy},

containing all tuples that are guarded by some tuple in R¥. In addition, for
every k < w, there is an incidence relation

ing:={(a,6) e AxE|cp=a}. .
Example. Let & = (V, E) be a graph. Then
Bin = (V,E', (Pg,0)osino, in;)
where
E':=Vu{(uv)|u+v, (uv)eEor(v,u) €eE},

Proi={{(uv)|u+v, (uv)€E}, o:[2]-[2],
Pgr:={(v)|{v,v)€E}, T:[2] = [1]. .

Let us check that GSO over X-structures corresponds to MSO over their
incidence structures.

Proposition 2.6, Let 2 be a finite relational signature.

I Logics and Their Expressive Powers

(a) For every GSO[Z]-formula ¢, there is an MSO[Z;, |-formula ¢ such
that

Ao iff A=, forall Z-structures A.

(b) For every MSO[Z;,, |-formula @, there is a GSO[Z]-formula ¢ such
that

Ain =@ iff AE¢@', forall Z-structures A.

Proof. (a) For every n-ary relation variable Z of ¢, the formula ¢’ will use
atuple Z = (Z4), of variables that is indexed by all surjective functions
0 :[n] - [k] with k < w. We define ¢’ by induction on ¢ as follows.

(RxgvvuXpy) = Hz\/[PR,gz AN ing (k) (xks z)] s
o k<n

(Zxo o xpyy) = Ez\/[zaz A k/\ ing (k) (xks z)])
o <n
(omy) mx=y, Gy =3y,
(pry)=o'ny', (Yxy)':=Vay/,
(pvy) =9'vy', (32y) =32y,
(-9) :=-¢", (YZy) =VZy'.

(b) We may assume that ¢ is an MSO°-formula without subformulae
of the form sing(X), X N'Y = &, or cover(X). We denote variables of ¢
representing a set of elements by X° and variables representing a set of
guarded tuples by X®. For every variable X® of ¢ the formula ¢’ will use a
tuple X = (X,,..., X,,) where X, is an n-ary relation variable and m is the

maximal arity of a relation symbol in X. Variables X° remain unchanged.

We define ¢’ by induction on ¢ as follows.
(ProXE) = El)'cEljl[X,,)'c ARjA N i = xg(i)],
where 0 : [k] = [n],

(o (00, Y9))' =V 3[¥, = (5} 1 X = () 1 A Yi=],

i#n

2 Simple translations between logics

m
(X*cY®):=Xcv, (X2cy®) = AX,<Y,,

(pry) =9"ny', (3X%y) = 3Xy/,

(pvy) =¢'vy', (VXy) =YXy,

(~9)" = ~¢', (3X®y) = 3Xy/,
(YXBy) = VXy . O

Using these two lemmas we could in theory reduce any question we have
about MSO or GSO to FO. In practice this is not always the most convenient
thing to do since it does make the underlying structures more complicated.
In particular working with power-set structures can be quite unwieldy. Nev-
ertheless the operations {* and —;, will have many uses throughout this
book.

There are many operations that behave like the above ones. This first
chapter and, to a somewhat lesser extend, the whole book is devoted to their
study. Let us give a name to capture the general situation.

Definition 2.7. Let (L, M, &) and (L', M’,) be two logics. A unary
operation f : M — M"is (L, L")-compatible if, for every formula ¢" € L',
we can effectively compute a formula ¢ € L such that

f) g if Arg¢, foreveryAe M.

We call f (L, L")-bicompatible if, furthermore, for every formula ¢ € L, we
can effectively compute a formula ¢’ € L’ such that

Ao iff f(A)E¢', foreverydAe M.

For the case that L = L’ we simply speak of L-compatible and L-bicompatible
operations. P

Example. In this terminology, Proposition 2.2 states that the operation £ is
(MSO, FO)-bicompatible, and Proposition 2.6 states that —;, is (GSO, MSO)-
bicompatible. |

I Logics and Their Expressive Powers

Note that it follows immediately from the definition that compatible
operations compose.

Lemma2.8. If f is (L, L")-compatible operation and g (L', L"")-compatible,
then go fis (L, L"")-compatible. If f and g are bicompatible, so is g o f.

3 Theories and Badk~and~Sorth Avrguments

As already remarked above we are interested in computing the theory of
certain structures. The problem is that such theories are infinite objects since
our logics have infinitely many different formulae. The usual way around this
issue is to write the logic in question as a union of finite sublogics indexed
by some complexity parameter. In our case, the standard such parameter is
the quantifier-rank of a formula.

Definition 3.1. (a) The quantifier rank qr(¢) of a formula ¢ is the number
of nested (first-order and second-order) quantifiers in ¢.

(b) We denote by FO,,,[%, X], MSO,,[2, X],... the corresponding sub-
logic consisting of all formulae of quantifier-rank at most m. For CMSO, we
use a slightly different definition: CMSO,,, denotes the sublogic consisting of
all formulae of quantifier-frank at most m that only use counting predicates

|X| 2k (mod p) with p < m.)

Example. The formula Vx[El yRxy A 3zRzx] has quantifier-rank 2 since

the two innermost quantifiers are not nested.)

Let us formally define our notion of a theory. We also introduce an equi-
valence relation on structures for ‘having the same theory, which will be
central to much of this book.

Definition 3.2. Let (L, M, &) be a logic.
(a) The L-theory of a model M € M is

Thy(M):={¢peL|ME¢}.

3 Theories and back-and-forth arguments

If L is a logic for which the notion of a quantifier-rank is defined, we also set
Th' (M) :={¢eL|q(p)<m MEo}.

(b) A set @ € L of formulae is a theory if it is of the form @ = Thy (M),
for some M € M.
(c) For two models M and N, we define

Mcp N :iff ThL(M)EThL(N),
MELN :iff ThL(M)IThL(N)

If M =, N, we call M and N L-equivalent. Again, for logics that have a

notion of a quantifier-rank, we use the notation

MEe” N :iff Th?(M) < Th"(N),
M="N iff Th”(M)=Th"(N).

If the logic L is understood, we will speak of m-equivalence in this case. If
we want to indicate the logic in question, we will use the terms first-order
m-equivalence, monadic m-equivalence, or guarded m-equivalence instead.

(d) The class of models of a formula ¢ € L is the set
Mod(p):={MeM|MEeg¢p}.

A class C € M is L-definable if C = Mod(¢), for some ¢ € L.
(e) A logic L is lattice closed if the collection of all L-definable classes is

closed under finite intersections and unions. ,

Remark. In the common case where the logics in question are closed under
negation, the relations £, and =1, coincide. The more general definitions
above are only needed to support logics like, e.g,, existential first-order logic
that are not closed under negation ,

We can use L-equivalence to give a simple but useful conditions for when
a class of models is definable.

I Logics and Their Expressive Powers

Lemma 3.3. Let (L, M, =) be a lattice-closed logic. A class C ¢ M is L-
definable if, and only if, there exists a finite subset A C L such that

MeC and Mecy N implies NeC.

Proof. (=) Let ¢ € L be a formula defining C and set A := {¢}. Suppose
that M € C and M £4 N. Then M E ¢, which implies that N = ¢. Hence,
NeC.

(<=) Set

9:=V{ATha(M) | MeC}.

Note that this disjunction is finite since there are only finitely many subsets

of A. For N € M, it follows that

Neg¢ iff Nr:/\ThA(M), for some M € C
if Mcy, N, forsomeMeC
if NeC. O

As explained above, the reason why we consider bounded-quantifier the-
ories is that they are finite objects that can be manipulated algorithmically.
Let us prove this fact.

Proposition 3.4. Let L be one of the logics defined above, X a finite relational
signature, k, m,r < w, and let L%, [Z] be the set of all L[Z]-formulae of
quantifier-rank at most m with at most k free variables and such that all constants
i, p appearing in counting predicates | X| = i (mod p) are bounded by r.
(a) Up to logical equivalence, there are only finitely many LY, .[Z]-formu-
lae. Furthermore, given m, k, v < w, we can compute a finite set O, _ of
Lk, [Z]-formulae such that every L¥, [Z]-formula is equivalent to one
in @ﬁm.
(b) There are only finitely many L¥, [Z]-theories.

(c) Forevery L’fn‘, [Z]-theory T, there exists a single L]fn', [Z]formula O such
that

A0 i Thy (A)cT.

3 Theories and back-and-forth arguments

Remark. Note that, in (a), it is in general undecidable which formula in @¥,
is equivalent to a given L¥, [X]-formula. We only know there is at least
one. :

Proof. (a) We prove the claim by induction on m. First, consider the case
where m = o. Every quantifier-free L-formula can be written in disjunctive
normal form. Since the signature, the number of variables, and the number
of possible counting predicates |X| = i (mod p) are all finite, there are
only finitely many atomic formulae and only finitely many negated atomic
formulae. (For L = MSO®, we may assume w.l.o.g. that all variables in an
atom cover(X) are distinct.) Since, up to logical equivalence, a conjunction of
such formulae is uniquely determined by the set of formulae appearing in it,
it follows that there are only finitely many such conjunctions. In the same way,
we see that, up to logical equivalence, there are only finitely many disjunctions
of such conjunctions. Hence, there are only finitely many quantifier-free
formulae in disjunctive normal form.

For the inductive step, suppose that m > o. As above, every L-formula
of quantifier-rank at most m can be written as a boolean combination
of (1) atomic formulae and (11) formulae of the form Ixy or IXy with
qr(y) < m. By inductive hypothesis, there are only finitely many formulae
of these two forms. Writing the boolean combination of them in disjunctive
normal form, we can use the same argument as above to show that there are
only finitely many such combinations.

For the desired set (Dl:n'r of representatives, we can take the set of all
formulae in disjunctive normal form (without repetitions) built up from
subformulae of the form 3xy and 3Xy with y € @lfntll, -

(b) By (a), we can fix a finite set Q)fnrr of L[X]-formulae such that every
Llfnyr [2]-formula is equivalent to one in @fnrr. Then every L’fn,r [Z]-theory T
is uniquely determined by the intersection T'N (D’fn’,. Since there are only
finitely many sets of the form T n (len' .» the number of theories is finite.

(c) By (a), we can compute a finite set @’fn’, of Llfn,r [Z]-formulae such

that every Lfn,r [Z]-formula is equivalent to one in Q‘)’fn,r. For every Lﬁ” [Z]-

I Logics and Their Expressive Powers

theory T, the formula

0= A(Tr ok,)
has the desired property. O

Example. Inspecting the proofs of Propositions 2.2 and 2.3, we see that the
quantifier-rank does not increase during the translation (if we work with
MSOP°-formulae). But the translation in Proposition 2.6 does introduce new
quantifiers, although only a bounded number of them that depends only on
the maximal arity of a relation in the signature. Consequently, we can restate
these three lemmas in our new terminology as follows.

Do ® i P() = (D),
=wmsoe B iff Prn(A) =f6 FPan(B),
=Gs0 B = Ain EI\W/l[Jsréo Bin

_m _m+l
Ain =Nsoe Bin = =Gs0 B

for some constants k, | depending on the signature, but independent of m.

4

The most basic way to compute the theory of a structure is by induction
on the quantifier rank. When doing so, we have to deal with formulae with
free variables. We call the values provided for these variables parameters.

Definition 3.5. Let U be a structure. A parameter in A is a value « that can
be assigned to a variable. There are three kinds of parameters:

¢ first-order parameters are elements o € A;

& monadic parameters are sets « € A; and

& guarded parameters are guarded relations € A”.
We say that o is a

& second-order parameter, if it is a monadic parameter or a guarded para-
meter;

20

3 Theories and back-and-forth arguments

& FO-parameter, if it is a first-order parameter;
* MSOP°-parameter, if it is a monadic parameter;
* MSO-parameter, if it is a first-order parameter or a monadic parameter;

& GSO-parameter, if it is a first-order parameter, a monadic parameter, or
a guarded parameter.)

Our main tool to inductively compute a theory consists in the following
kind of argument.

Proposition 3.6. Let L be one of the logics defined above, X a finite signature,
A and B X-structures with L-parameters & and f, and m < w. Then

o, & ="t %,[3
if, and only if, the following two properties are satisfied.

(Forth Property) Forevery L-parameter o’ in 9, there exists an L-parameter 5’
in B such that

A aa’ =B, BB
(Back Property) For every L-parameter ' inB, there exists an L-parameter o'
in U such that
A aa’ =1 B, BB

Proof. (<) Suppose that both properties are satisfied. We have to show
that

egp(a) it BEeoe(P),
for all L-formulae ¢ (x) of quantifier rank at most m+1. Every such formula s

a boolean combination of formulae of the form 3x'y(x, x") where qr(y) <
m and the variable x” is either first-order, monadic, or guarded. Therefore, it

21

I Logics and Their Expressive Powers

is sufficient to prove the claim for such formulae. By symmetry, it is further
enough to prove that

Ak Ix'y(a,x") implies BE Ix'y(B,x"),

for all (%, x") with qr(y) < m. Hence, suppose that & = Ix'y (&, x").
Then there exists an L-parameter o in U such that U = y(&,a’). By
assumption, we can find an L-parameter /' in & with

A an’ =1 B, BB .

Consequently, B = (3, B), which implies that B £ Ix"y(B, x").

(=) By Proposition 3.4 (a), there exists a finite set @ of L-formulae of
quantifier rank at most m such that every formula of quantifier rank at
most m is equivalent to some formula in @.

Suppose that there exists an L-parameter o’ in ¥ such that

A o’ 27 B, BB, forallf inB.
We have to prove that %, & #/'*' B, B Set
O:={y(x,x)ed|Ary(aa)},

and let 9 := A O be the conjunction of all formulae in ©. It is sufficient to
show that

AEIx'9(&,x") and B Ix'I(B,x").

Since U = 9(&, a’), we have U = Ix"9(&, x”). Furthermore, for every
B’ in B, we have

A aa’ £ B, BB

Hence, there exists a formula (%, x") of quantifier rank at most m such
that

Aen(a,a’) and B (B).

22

4 Operations for monadic second-order logic

By choice of the set @, we may choose 77 € @. Hence, 77 € © and
B (B, B) implies B I(B,L).
We have shown that

B 9(B,B'), forevery L-parameter ' in B .

Hence, B & 3x'9(f, x"). O

Exercise 3.1. Let m < w and suppose that 4, be Q" are tuples such that
aj<aj < b; sbj, foralli, j<n.

Prove that (Q, <), a =% (Q, <), b.)

Exercise 3.2. Find MSO-formulae distinguishing the following structures:
N:=(N,<), 3:=(Zx<), 9=(Qg), R=(R<).

Which of these structures are FO-equivalent?

a

Exercise 3.3. Let ¥ = (A,<) and B = (B, <) be finite linear orders and
m < w. Prove that

A=r B iff |A|=|B| or |A]|B|>2" 1.)

4 QOperations for Wonadic Second-~Order Logic

In non-trivial cases the complexities involved in carrying out a back-and-forth
argument quickly become unmanageable. Instead of computing a theory from
first principles, it is often easier to preform a reduction to another theory
which is already known. This approach is known as the composition method.
In this section and the next one, we present several operations on structures
that can be used for such reductions and we establish so-called composition
theorems for them: statements to the effect that they are compatible with the
logic in question. We start with operations that are compatible with MSO.
Those compatible with FO we defer to the next section.

23

I Logics and Their Expressive Powers

Di[joint Unions

One of the most basic operations, but a surprisingly versatile one, is that of
forming a disjoint union.

Definition 4.1. Let X be a relational signature. The disjoint union of two 2-
structures ¥ and B is the (X + {Left, Right})-structure A ®B with universe
A + B and relations

R¥%®:=R*+R?, forReX,
Lef™®% .= A,
Rightg@% :=B.)
The composition theorem for disjoint unions reads as follows.

Proposition 4.2. Let L be one of the logics defined above, let X be a finite
relational signature, A, A', B and B’ Z-structures with first-order paramet-
ersa,d’, b, b’ and second-order parameters P, P, Q, Q', respectively, and let
m < w. Then

A, P,a=y A, P,a" and B,0,b=y ¥, 0,0
implies
Ao B, PUO,ab =2 A B, P U0, il .

(We write PU Q for the tuple whose i-th component is P; U Q;. We assume that
the parameters are appropriate for the logic L, i.e., if L = MSO?® there are no
first-order parameters and if L = FO, there are only first-order parameters.)

Proof. We prove the claim by induction on m. First, consider the case where
m = o. Since quantifier-free formulae are boolean combinations of atomic
formulae, it is sufficient to consider such formulae, By symmetry, we therefore
only need to show that

Ao B (PuQ,a, b) implies A’ @B = o(P'uQ’,d, by,

24

4 Operations for monadic second-order logic

for every atomic formula (X, %, 7). We distinguish several cases. (I encour-
age the reader to skip most of them.)

If @ is an equality z = 2’ and A ® B = (P U Q, d, b), then the variables
z and 2’ are either both among the % or among the j. By symmetry, we may
assume the former, i.e., ¢ = (x; = xj). Then a; = a; and

A,P,a= A, P, d
implies that a: = ag-. Hence, A & B’ = (p(13' U Q', a, l;')

If ¢ = Rz for R € X, then again Z must be a subtuple of X or of j. Say it is
the former. Then 9, P, 4 £ Rz and

A,P,a= A, 0,4

implies that o', P’,d' = Rz. Hence, W @ B’ = q)(l-)' U Q', a, l_t')
For ¢ = Left(x) or ¢ = Right(x), the proof is similar.
If(p =X; ¢ XJ, then

g[@%;pUQPX,' c YJ
= DPu Q,‘ c P] @] Qj
= P;cPjand Q; € Q;
= P{EPJ{aninIEQ;
= P/uQ/cPiuQ}
= QIIQB%I,P,UQ,PX,‘EYJ'.

The proofs for ¢ = X N'Y = @ and cover(X) are analogous.

Suppose that ¢ = RX, ... X, _,, i.e., that

Ao B,PUQ FRX.
Then there are elements a; € P; U Q; such that 4 € R¥®%_ Since R¥®% =
R¥ U R, it follows that 4 € R¥ or 4 € RZ, By symmetry, we may assume

the former. Then 9, P £ RX, which implies that ', P’ & RX. It follows
that

A o®,Pul ERX.

25

I Logics and Their Expressive Powers

For ¢ = Left(X) or ¢ = Right(X), the proof is similar.
If ¢ = |X;| < oo, then

AdB,PUQ E |X;| <00
= P;yuQ;is finite
P; is finite and Q; is finite
P! is finite and Q! is finite
P! u Q! is finite
AP, PuQ E|Xi]<oo.

Vol

Finally, suppose that ¢ = |X;| = k (mod p). then

Ao B,PUQ E|X;|=k (mod p)
= |[P;uQi|=k (mod p)
= |Pi|=k, (mod p) and [Q;|=k, (mod p)
with k, + k, = k
= [P{|=k (modp) and [Q]|=k, (mod p)
with k; + k, = k
= [PfuQi|=k (mod p)
AeB,PPuQ’ E|Xi|=k (mod p).

Y

For the inductive step, suppose that we have already established the claim
for m, and consider structures

AP,a=p A, P,d" and B,0,b=" B, 00 .
We have to show that
AeB,Pu Q, ab = A a0, Py Q', a'b’.

By symmetry and Proposition 3.6, it is sufficient to prove that, for every
L-parameter « in A & B, there exists an L-parameter o’ in A’ & B’ such

26

4 Operations for monadic second-order logic

that
AeB,PuQ,aba=y A oB ,Pul, it .

Hence, consider a parameter o in A & B. We distinguish two cases.

If « is a first-order parameter, then & € A or « € B. By symmetry, we may
assume the former. According to Proposition 3.6, we can find an L-para-
meter &’ in A’ such that

A, P aa=y A, P,da .
By inductive hypothesis, this implies that
Ao B,PuQ,aba=f A 0P, PuQ, dba,

as desired.
Hence, suppose that « is a second-order parameter. According to Propos-
ition 3.6, we can find parameters &, in A’ and] in B’ such that

AD, G alt A=p A, P, d,
and 98B, Q, bya | B=" ¥, Q', b, (x; .
By inductive hypothesis, this implies that

AeB,PuQ,aba = WP ,P'uQ,i't,alual.

Hence, we can set & := &, U al. O

Let us present some applications. We start with structures over the empty
signature.

Proposition 4.3. Let A and B be structures over the empty signature. Then

(a) A=f5 iff |A|=|B|or|Al|B|=m.
(b) A=Pss ifft |A|=|B|or|A|,|B|>2".

27

I Logics and Their Expressive Powers

Proof. (a) (=) Suppose that k := |A| < |B| with k < m. Then the formula

o Ixe N\ xi#xj

o<i<j<k

holds in B, but not in . It quantifier-rank is k + 1 < m.

(<=) Clearly, if |[A| = |B| then ¥ =~ B and both structures have the
same theory. Hence, it remains to consider the case where |A|, |B| > m. We
have to show that A =Ji; B. For m = o the claim is trivial, since there are
no quantifier-free FO[@]-formulae without free variables. Hence, we may
assume that m > o. In this case, according to Proposition 3.6, it is enough
to prove the Back-and-Forth Property. As usually it is further sufficient
to consider only the Forth Property. The Back Property then follows by
symmetry. Hence, let ¢ € A. We pick an arbitrary element b € B. Let
A, and B, be the substructures of A and B induced by the sets A, :=
A~ {a} and B, := B\ {b}, and let ¥, and B, be the substructures induced
by {a} and {b}. By inductive hypothesis,

|Aol,|Bo| 2m—1 implies A, =f5" Bo .

Since U, = B,, we also have A, a =f5* B,, b. Consequently, it follows by
Proposition 4.2 that

Aax U U, a="" Bo @B, b= B,b.

(Strictly speaking, instead of the disjoint unions U, & U; and B, & B, we
have to take their reducts that omit the new relations Left and Right.)
(b) (=) Suppose that k := |A| < |B| with k < 2™ and let n be the largest

number such that 2” < k. For i < 2", set

Si(XO,.H,X,,) = 3)/ /\ Xtyj(X’y)

o<j<n
where

Xy if the j-thbitofiis1,

Li(Xy) =
xi,i (X, y) {ﬁij if the j-thbitof iiso.

28

4 Operations for monadic second-order logic

The formula

IXo-3X, N\ O

o<i<k

holds in B, but not in . It has quantifier rank n + 2 < m + 1.

(«<=) Again it is sufficient to consider the case where |A|, |B| > 2™, We
prove the claim by induction on m. First, suppose that m = o. Every for-
mula ¢ of quantifier rank 1 contains only one bound variable. As the signature
is empty, it follows that the only atomic formulae appearing in ¢ are of the
form x = x. Consequently, ¢ either states that the structure is non-empty, or
that it is empty. Since % and B are both non-empty, such formulae therefore
hold either in both structures, or in none of them.

For the inductive step, suppose that m > o. Again it is sufficient to check
the Forth Property. We distinguish two cases, depending on whether we
deal with a first-order parameter or with a monadic one. First, consider a
monadic parameter P € A. If P = &, we choose Q := &. If P = A, we choose
Q := B. In both cases it follows by inductive hypothesis that

AP =150 B, 0.

Hence, we may assume that P is neither empty, nor all of A. If |P| < 2™,
choose a subset Q € B of size |Q| = |P|. Otherwise, choose a subset Q € B
with |[B\ Q| = |A N P|. Let U, and B, be the substructures of A and B
induced by P and Q, and let U; and B, be the substructures induced by
AN Pand B\ Q. It follows that

o 1Pl =[] or P} Q] 2 2"
¢ [ANP|=|BNQ|or|[ANP[,[BNQ|>2"7,
By inductive hypothesis, this implies that

Ao =pso Bo and A, =)o B: -
By Proposition 4.2, it follows that

AP =AU, POYU, T =50 B0, Q0B,023,0.

29

I Logics and Their Expressive Powers

(Again, we have to omit the relations Left and Right.)

For a first-order parameter a € A, we choose an arbitrary element b € B.
We denote by %, and B, the substructures of U and B induced by {a} and
{b}, and we write U, and B, for the substructures induced by A \ {4} and
B~ {b}. Then

As,a 2By, b implies A, a =hs0 Bos b
Furthermore, it follows by inductive hypothesis that
A =lso Br -
By Proposition 4.2, this implies that
WazUy,a @Y =Niso Bo, b®B, 2B, b. O

Example. There is no MSO[X]-formula ¢ such that, for every finite 2-
structure U,

A= iff |A]iseven.

For the proof, let m := qr(¢) and let & and B be Z-structures of size 2™
and 2™ + 1, respectively, where every relation is empty. By Proposition 4.3,

we have U ={[{l, B. Consequently,

A=gp f Beo.
A contradiction. 1

Exercise 4.1. We consider structures of the form U = (A, E) where E is an
equivalence relation. For an equivalence relation E, we denote by N (E)
the number of E-classes [a] of size |[a]g| = k and N} (E) denotes the
number of classes of size |[a]| > k. We write m =, niff m = norm,n > k.

Let E and F be equivalence relations on the sets A and B, respectively.

Prove that (A, E) =15 (B, F) if, and onlyif, forallk < m,

Ni(E) 2o Ni(F) and N7(E) =i Ni(F). J

30

4 Operations for monadic second-order logic

Jnterpretations

Disjoint unions alone are not that interesting as they cannot be used to
modify the relations of a structure. The next operation, called an interpreta-
tion, fills that hole. We will present the definition for of many-sorted struc-
tures since this more general case is what is needed in Chapter VII below.

Definition 4.4. Let L be one of the logics FO, MSO, WMSO, or CMSO,
let X and I be relational signatures, and assume that I' is S-sorted. An L-
interpretation from X to I' is an operation 7 transforming X-structures into
I'-structures that is defined by a list

((8.(x))ces (9R(3))er)

of L-formulae over the signature X as follows. We assume that the formu-
lae §; have one free variable, while the number of free variables of p g matches
the arity of R. Then 7 maps a X-structure to the I'-structure

(@) = ((89)s, (pR)rer)

whose domain of sort s is the set
0 i={acA|AEd(a)}

defined by &; and whose relations are
on={a|A=¢r(a)}, forReX.

We call the list ((8;)s, (¢r) rer) the definition scheme of 7. The quantifier

rank of T is the maximal quantifier rank of a formula in its definition scheme.

Bl
Let us show that L-interpretations are L-compatible.

Proposition 4.5. Let L be one of the logics FO, MSO, WMSO, or CMSO, and
let T = ((05(x))ses, (9r(%))Rer) be an L-interpretation from X to I with

31

I Logics and Their Expressive Powers
quantifier rank m. For every L[T'|formula w(X), there exists an L[Z]-formula
Yy (X) with quantifier rank at most qr(y) + m such that
(W ey(a) f A=y (a),
for all Z-structures A and all parameters & in T(A).

Proof. We define y* by induction on y as follows.

(x=3) =x=y, (pry) =9 A",
(X9)" =Xy, (pvy) =9 vy,
(R9)" = gu(5), (-9)" = 0",

@) =HlaO)av], @AYy =3y

W) =Nla() v, () =Yy

where s is the sort of the variable y. O

Remark. Note that this statement fails for L = GSO since guarded tuples in
7(U) are not necessarily guarded in 2.)

Corollary 4.6. Let T be an L-interpretation from X to I with quantifier rank m.
A=Km o implies (A) =X 7(A'). for all Z-structures A, A’ .
Proof. By symmetry, it is sufficient to prove that
7(A) = ¢ implies 7(A')E ¢, forall ¢ withqr(p) <k

Hence, suppose that 7(A) £ ¢ and let ¢ be the formula from Proposi-
tion 4.5. Then

A= ¢” and qr(¢”) <k+m.

Thus, 2 =k A" implies that A’ & ¢ It follows that 7(2) F ¢. O

Lemma 4.7. Let 0 and T be L-interpretations. Then sois T o 0.

32

4 Operations for monadic second-order logic

Proof. Suppose that T = ((8;(x))ses, (Pr(*))Rrer). We claim that 7o 0

has the definition scheme

<(850(.X))seS7 ((Pfl()-c))ReF) *

Note that, given a structure 9, the elements 7(o ()) of sort s are exactly
those a € A satisfying

o(A) = d.(a).
By Proposition 4.5, this condition is equivalent to
A= 87(a).
Similarly, a tuple 4 belongs to a relation R if, and only if,
o(M) Eor(a) if Aeoei(a). O

Frequently, disjoint unions and interpretations are all one needs to com-
pute a theory. As an example, let us show how to generalise Proposition 4.3
to structures with unary predicates.

Proposition 4.8. Let X = {Uo, ..., Up} be a signature consisting of unary
predicates only. Over the class of all Z-structures, every GSO-formula ¢ (X, x)
is equivalent to an FO-formula.

Proof. Since the only guarded tuples over a unary signature are singletons,
every GSO-formula can trivially be translated to an MSO-formula. Hence,
by Lemma 3.3, it is sufficient to prove that, for every quantifier-rank r < w,
there exists some p < w such that

9, P4 Ezgo B, Ql_a implies ¥, Pa =vso B, Ql_t)
for all %, B with parameters Pa and Qb. To simplify notation, we will

not work with parameters but with structures & = (A, P, ¢) where the
parameters are part of the structure itself. Hence, let U,,, , be the class of all

33

I Logics and Their Expressive Powers

such structures with m unary predicates P, ..., P,y € A and n constant
symbols co, ..., ¢y, Given A € Uy, , and a set 6 € [m], we set

P@ = mP‘ N U P,’ »
icf ie[m]\0

we denote by Uy the substructure induced by Py \ ¢, and (¢ })q is the sub-
structure generated by ¢. Then we can write U as a disjoint union

A=~ <<C->>Q[GB @ 919.

0c[m]

Let us make the following observations.

(1) For every structure € of size at most k, there exists a first-order for-
mula of quantifier-rank k + 1 that characterises € up to isomorphisms. Con-
sequently, for 4 € Ak and b € BF,

(o =& (d)o implies (o= (d)ss.

(11) For every MSO-formula ¢, we can use Proposition 4.3 to find a finite
set H € w and a number N < w such that,

C=¢ iff |CleH,
or €=¢ iff |CleH or |C|2N,

for all € € U, ,. Since, for every k < w, we can construct an FO-formula v,
stating that the structure has at least k elements, it follows that there exists
some number f(r) such that

A Eg(or) DB implies A={;50B, foralld, Beldy,,.

(111) For every 0 € [m], there exists a quantifier-free interpretation oy
mapping € € U, , to a structure 09 (€) € U, , with predicates

C ified,
PiI:
@ ifigh.

34

4 Operations for monadic second-order logic

In particular,
Ay =09((Ag)|g), forAeldy, ,andOc[m],

where €| denotes the reduct to the empty signature. For %, B € U,,,, and
0 ¢ [m], it follows that

(Yo)lo =uso (Bo)ls implies Ag =50 Bo -
(1v) There exists quantifier-free interpretations 7° and 7g such that
() = (a)a and 7o(%A) = (Yo)g -
Hence,
A=io B implies (Ea=fo (d)s and (Ug)lo =fo (Bo)lo-

We can conclude the proof as follows. Set p := max { f(r), n + 1} and let
A, B € Uy, . Combining the above observations it follows by Proposition 4.2
that

A=L B
= (o Elpgo «J»% and (Yp)l|y Ego (Bo)|w, for all 0,
= (= (d) and (Up)lp =hso (Be)|y, forall 6,
= () =hso (d)» and Ao =nmso Do forall 6,
= A=l B. O

As a second example, let us give the example of an ordered sum, which
corresponds to concatenations of words.

Definition 4.9. Let C be a set of colours.
(a) A C-coloured order is a structure of the form U = (A, <, (P:)cec)
where < is a linear ordering on A and the P, are unary predicates.

(b) Let 3 = (I, <) be a linear order and let ; := (A;,<;, P;), i € I, bea
family or C-coloured linear orders indexed by I. The ordered sum

S

i€l

35

I Logics and Their Expressive Powers

is the linear order with universe

L:={(i,a)|iel,acA;}
and order

(i,a) < (j,b) :iff i<j or (i=janda<;b).
The colour predicates are

P ::U(Pi):'

iel
If I = [2], we simply write U, + 9, for the ordered sum.)

Proposition 4.10. Let Uy, Ay, By, B, be C-coloured linear orders and let L be
FO, MSO, WMSO, or CMSO. Then

Ao =" By and A, =7 B, implies Ao+, =7 B, + B, .
Proof. We have
As + A 2 (Yo ® Y,

where 7 is a quantifier-free L-interpretation that corrects the order relation.
It has the definition scheme

8(x) = true,
¢<(x,y) = x < y v (Left(x) A Righe(y)) ,
(pp‘(x) = P.x. O

As a final application let us show that first-order logic cannot compute
the length of a linear order.

Proposition 4.11. Let U be a C-coloured linear order and m < w a constant.

Then
kxU=fy I xU, forallk, 122" -1,
where k x U := Y, 1. U denotes the k-fold ordered sum of U with itself.

36

4 Operations for monadic second-order logic

Proof. 'We proceed by induction on m. For m = o, we have k x ¥ =R | x ¥,
for all k, I, since there are no quantifier-free first-order formulae without free
variables (over the signature of C-coloured linear orders). For the inductive
step, suppose that m > 0. We check the forth property. (As usual the back
property follows by symmetry.) Hence, let a be an element of k x & and
suppose that a belongs to the i-th copy of A. In I x 2, we choose the same
element in the j-th copy of ¥ where

i ifi <2777,
= [- (k - i) otherwise .
Let us denote this element by b. By inductive hypothesis it follows that
kxUaz(i-)xA+Aa+ (k—i)xd
=0 G- xA+Ab+ (I-j) xAz I xUb. O
For MSO and CMSO, we obtain the following result.

Proposition 4.12. For every m < w, there exist numbers k, k, ', 1" < w such
that

(A, <) =Yso (B, <) iff |A]=|B|<k, or
|Al,|B| >k and |A|=|B| (mod),
(49 o (B i A= Bl <K, o
|A|,|B| > k" and |A|=|B| (mod 1),
for all finite linear orders (A, <) and (B, <).

Proof. Let L be one of MSO or CMSO. Let © be the set of all L,,-theories
of finite linear orders. It follows by Proposition 4.10 that we can define a
binary operation + on ® such that

Thi () + Th7 (B) = Thy (¥ +B),

for all finite linear orders 2 and B. This turns © into a finite semigroup. Let
o be the theory of the 1-element linear order. Since @ is finite, there is some

37

I Logics and Their Expressive Powers

number 1 > 1such that 6" = o*, for some k < #. We choose #n minimal. Let

l:=n — k. Then
"t = gk foralld, j,
and it follows that
o'=0/ if i=j or i j>kandi-k=j-k (modl).
Since Th} () = o4/ the claim follows. O

Corollary 4.13. For each CMSO-formula @ there exists an CMSO-formula ¢*
such that

(A)=op iff (A)E¢”.

Proof. Let m be the quantifier-rank of ¢ and k', I” the constants from the
preceding lemma. By the lemma, there exist sets K € [k’] and L € [I'] such
that

(A,<)Egq iff |AleK, or |A|>k" and |Almod!'eL.
This is a condition that can be expressed in CMSO. O

Remark. We can rephrase this statement by saying that the reduct operation
(A, <) = (A) is CMSO-compatible. .

Example. (a) There does not exist an FO-formula ¢ that holds in an undir-
ected graph if, and only if, the graph is connected.

For a contradiction, suppose that such a formula ¢ exists. We will con-
struct a new formula ¥ that holds in a finite linear order if, and only if, this
order has an even number of elements. Let m be the quantifier rank of
and let ¥ and B be linear orders of size 2™ and 2™ + 1, respectively. Then

A=y and BEy,

in contradiction to the statement in the above exercise.

To construct the desired formula ¥, we define an FO-interpretation T =
(8, 9) mapping linear orders to undirected graphs as follows. The formula §
is true while ¢ (x, y) states that

38

4 Operations for monadic second-order logic

¢ in the order < there is exactly one element between x and y, or
¢ x is the first element and y is the last one, or
&y is the first element and x is the last one.

Then T maps finite linear orders of even size to paths and finite linear orders
of odd size (at least 3) to the disjoint union of a path and a cycle. Orders of
size 1 are mapped to a loop.

Hence,

7(A) =@ iff A has either exactly one, or an even number

of elements.

Consequently, the formula y := ¢” A Ixy(x # y) has the desired properties.
(b) There does not exist an FO-formula ¢(x, y) such that

8= @(u,v) iff the graph & contains a path from u to v

Otherwise, the formula

VxVyo(x,y)

would express that the graph is connected.

a

Example. We consider undirected graphs as structures over the signature
{E}.

(a) There does not exist an MSO-formula ¢ that holds in a finite complete
bipartite graph K,y , if, and only if, m = n. The proof is similar to that
of Proposition 4.10. Suppose that such a formula ¢ exists and let k be
its quantifier rank. Let A and B be graphs without any edges that have,

respectively, m = 2* and n := 2* + 1 vertices. Then

Kpm=1(d@d) and K, ,=1(deB),

39

I Logics and Their Expressive Powers

where 7 is a quantifier-free interpretation that adds all edges between a vertex
in Left and a vertex in Right. Since & =¥ s, B it follows that

Kpm=1(A0A) =X 1(A0B) =K, .

A contradiction, since ¢ distinguishes between these two graphs.

(b) There does not exist an MSO-formula ¢ that holds in a finite graph
if, and only if, all vertices have the same number of neighbours. For a con-
tradiction, suppose that such a formula ¢ exists. For a complete bipartite

graph K, , it follows that
KunEe f m=n.

This contradicts (a).

(c) There does not exist an MSO-formula ¢ that holds in a finite un-
directed graph if, and only if, the graph has a Hamiltonian cycle. For a
contradiction, suppose that such a formula ¢ exists. Since a complete bi-
partite graph K, ,, contains an Hamiltonian cycle if, and only if, m = n, it
follows that

KunkEe i m=n.

This contradicts (a).

Quotients

In some contexts it is usual to combine interpretations with a quotient oper-
ation. To simplify the presentation we present these operations separately.

Definition 4.14. Let % be a (X + ~)-structure where ~*

relation on A. The quotient of U by is the Z-structure U/~ with universe

is an equivalence

Afri= {[a]o |a€ A}
and relations

RY* = {([a0]ur-- s [ans]s) | G € RM). .

40

4 Operations for monadic second-order logic

Proposition 4.15. Let L be one of FO, MSO, WMSO, or GSO, let X be a
signature with relations of arity at most r, and let U, B be a (Z + ~)-structures
such that #% and ~2 are equivalence relations. Then

A=PT" B implies A/~ =P B/~.
Proof. Given ¢ € L,,, we construct a formula ¢’ € L,,,,, such that
A/xe @ iff AEg¢'.

We obtain ¢’ by
¢ replacing each atomic subformula of the form x = y by x ~ y,

¢ replacing each atomic subformula of the form Rx (where R is either a
relation symbol or a guarded second-order variable) by

Hj/[/\yi ~x; ARy].

To reach the desired quantifier-rank for L = GSO, we have to make sure
in this translation that the arity of guarded variables is bounded by r. But
note that, since every guarded tuple has at most r distinct components, we
can replace each guarded variable Z of arity n > r by one of arity r (or
rather a tuple (Z,), of such variables indexed by all surjective functions

o :[n] = [r]). O

In the above lemma the quantifier rank increases when going from a struc-
ture to its quotient. Sometimes this can be avoided by using the following
simple version of a quotient.

Definition 4.16. Letbea (X+{P})-structure where P is a unary predicate.
The fusion fusep () of A is the Z-reduct of the quotient A/~ where

axb :iff a=borabePlP. ,

Since a fusion is a quotient by an equivalence relation with just one non-
trivial class, we can avoid increasing the quantifier rank by annotating the
structure by information about the elements in this class.

41

I Logics and Their Expressive Powers

Proposition 4.17. Let L be one of FO, MSO, WMSO, CMSO, or GSO, and
let A and B be (X + {P})-structures. Then

(Hap, U) =P (Blpp, V) implies fusep(A) =7 fusep(B),

where the parameters U = (UR .y)R, and V = (VR 1) r,w contain, for every
R € X of arity n and every set w C [n], the predicate

UR,w ::{d|w|d€Rm, a;eP=idw}
(and similarly for V).

Proof. Let €be the X-structure with one element and empty relations. There
exists a quantifier-free interpretation 7 such that

fusep () = T((9[|A\P, U)o Q:) .
Hence, the result follows from Propositions 4.2 and 4.5. O

It turns out that when constructing a structure U from smaller parts, we

can often construct the annotated substructure (Y|4« p, U) instead, which
then allows us to compute fusep () by the above proposition.

Exercise 4.2. Prove that, for every L-interpretation T, there is some L-
interpretation ¢ such that

w(2/%) = () . J

Exercise 4.3. Prove that, for every L-interpretation 7, there is some L-
interpretation ¢ such that

P(() = a(P(9N)) .- .

‘The Topying Operation

Next, let us introduce a variant of the disjoint union that will be used ex-
tensively in Chapter X.

42

4 Operations for monadic second-order logic

Definition 4.18. The k-copy operation is of the form
copyk(gl) = (9[& Hy,...,Hp_,, I> .

That is copy,, () consists of k disjoint copies of A with unary predicates
H;:={(i,a)|acA}

containing the i-th copy, and a binary relation

I:={((i,a), (jya)) |acA, ij<k}

that relates all copies of the same element. ,

Proposition 4.19. Let L be one of FO, MSO, WMSO, CMSO, or GSO, and
let m, k < w. For every Ly,-formula ¢(%,Y) with |%| = r and |Y| = s and
every tuple i € [k]*, there exists an L -formula ¢, (%, Y') with |Y'] = sk
such that

copy, (A) E ¢(aos v+ dr—1, Po, .o Pey)
iff A= ¢-(al,...,al_,P,...P_),

for all structures A, elements &, @', and sets P, P’ that are related via
a; =(u;,a;) and (P)),={beA|(v,b)eP;}.

Proof. We can construct ¢ by induction on ¢. We replace each variable Y;
by a k-tuple Yi' = (Yi"o, [Yi'!k_!).

(X~ :x~)/. = *i :xj lfui :uj,
1 T .
Ju false otherwise,

Rxioooxi, ifuy, = =u;_,

-1

false otherwise,

(ino ...Xin_l)i—, = {

43

I Logics and Their Expressive Powers

(Yixj)i = Y], %}, (329); =V 29y, ,
v<k
(pvy)s =9z Vg, (Vzg); = \ Vz=9;,,
v<k
(prAy)a=9iAvy, (3Z¢);=3Z"-¢y,
(=) = ~94, (VZo); :=VZ'-¢,
(1Yi| < 00); = AIY],| < o0,
v<k

(IYi|=n (mod p))j =
VA{ Aver|YL, = g(v) (mod p) |
g:[k] > [p]with ¥, g(v) =n (mod p) }. O
Let us also note that copying operations commute with interpretations.

Lemma 4.20. Let L be one of FO, MSO, WMSO, or CMSO, and let k < w.
For every L-interpretation T, there exists an L-interpretation T’ such that

copy, 0T = 7o Copyy, -

Proof. The transduction 7’ applies 7 separately to each copy H;. That is, if
7 is defined by (8(x), (pr(%))), we define 7’ by

6’(9{) = \/[H,‘x A S(Hi)(x)] s

i<k
and ¢ (x) = V[AHixjn 9 (3]
i<k j
where y/(P) denotes the relativisation of ¥ to the set P. O

Exercise 4.4. Letk, [< w. Find a quantifier-free interpretation 7 such that

copy; (copy; (¥)) = 7(copy;, (%)) . ,

44

4 Operations for monadic second-order logic

Generalifed Sums

So far, we have only looked finite unions. It is straightforward to generalise
the arguments from Section 4 to infinite ones. But it turns out that, for
many applications, an even more general approach is needed where we allow
the number of structures in the two unions to differ. We use a union of X-
structures where the index setis itselfa I'-structure, for some signature I'. The
result the has all relations in X and I'. This leads to the following definition.

Definition 4.21. Let I and X be relational signatures, 3 a I'-structure and,
for every element i € I, let ¥; be a X-structure, The generalised sum of the ;
over I is the (I' + X + {~})-structure Y ;.5 ; with universe

U:={(i,a)|icl,acA;}

and the following relations. For every n-ary relation symbol R € %, it has the
relation

Re={{(i,ao) e {i,ani)) i€l (a0, .. an) € R%),
for every n-ary relation symbol R € I, it has the relation
R:= { <(io: ao); ey (in—v an—l)) | <ioy vees in—l) € RS: aj € AJ };
and additionally it has the equivalence relation
~::{<(i,a>,(i,b))‘i61,a,bEA,»}. J

Example. (a) The disjoint union U, @& 9, can be written (up to a quantifier-
free interpretation) as a generalised sum ;. A; where

3 = ([2], Left, Right) with Left={o} and Right={1}.
(b) Given linear orders 3 = (I,€) and ¥; := (A;,<;), for i € I, the

generalised sum is the structure (U, g, <, ~) with relations
(i,a)c (j,b) iff icj,
(i,a) < (j,b) if i=janda<;b,
(i,a) ~(j,b) iff i=j.

45

I Logics and Their Expressive Powers

We can interpret the ordered sum of the ; in this structure via the inter-
pretation T = (0, <) with

O0(x):=true and ¢<(x,y):=xCyA[x~y—>x<y].)

For an application in Section IIL.2 below, we will need to prove the com-
position theorem for generalised sums using a finer notion than just the
quantifier rank: we will not only need to count the number of quantifiers,
but also their alternation. We call this combined measure the quantifier
structure of a formula.

Definition 4.22, Let# € w*.

(a) We define the set MSO$[2] of all MSO°-formulae with quantifier
structure 71 as follows. MSOY)[2] contains all quantifier-free MSO°[2]-
formulae, and MSO?,.[X] contains all formulae that can be written as
boolean combinations of formulae of the form

IXo- 3N,y with e MSOZ[X].
(b) We denote by Thysoe (%, P) the MSO2-theory of 9, P and we set
AP =Nsor BQ wiff Thijsoe (% P) = Thizsoe (B, Q) - 4

The composition theorem for generalised sums not only states that the
theory of the resulting structure only depends on the theories of the argu-
ments, but also that we can compute this theory by evaluating a formula on
the index structure.

Definition 4.23. Let ;.5 9; be a generalised sum and let P be a tuple of
monadic parameters. For an MSO°[X]-formula y(X), we define

[x(P)]:={iel|%Ex(PtA)}. |

Theorem 4.24. Let I and X be relational signatures. Given a formula (p(X) €
MSOZ [T + 2 + {~}], we can compute a tuple 7 € w* of length |7| = || and
formulae

Ko (X)), e o) Ym—r(X) e MSO2[Z]

46

4 Operations for monadic second-order logic

and W(Zo, ..., Zim—r) € MSOZ[T]

such that

;%ih(p(f)) iff SEQ([te(P) -, [xm—(P)]),

for all T-structures 3, S-structures A;, and monadic parameters P.

Proof. We construct 7, ¥(Z), and xo(X) ..., m-:(X) by induction on ¢.
First, suppose that ¢ is atomic. We distinguish several cases. For ¢ = (X ¢
Y) we set

yi=cover(Z,) and xo(X,Y):=XcY.
For ¢ = (XNY = &) we set
yi=cover(Z,) and xo(X,Y):=XnY=g.
For ¢ = cover(X) we set
v = cover(Z,) and yo(X) := cover(X).
For ¢ = RX with R € 2, we set
v i=sing(Z,) and xo(X):=RX.
For ¢ = RXwithReTlandR of arity m, we set
v := RZ A cover(Z,,),
xi(X) :=sing(X;), fori<m,
X (X) = N\ [sing(X:) v X; = 2]
i<m
For ¢ = (X ~Y), we set
Vi=ZoNZ, + B Asing(Z,) Asing(Z,) A cover(Z,),
Yo (X, Y) :=sing(X),
1 (X, Y) :=sing(Y),
X2(X,Y) :=[sing(X) VX = &] A [sing(Y) VY = &].

47

I Logics and Their Expressive Powers

For the inductive step, suppose that we have already computed formulae
Yooxs e Ko and w7, 0, o, x| for, respectively, ¢ and ¢”'. For
the conjunction ¢ = ¢’ A ¢”, we set
X; ifi<m’,

W2, 2) =y (Z)Ay"(Z') and ki ::{ AT
iHi>m'.

i—m

'The construction for ¢ = ¢’ v ¢" is analogous. For a negation ¢ = —~¢’, we
set

y(Z2):=-y'(Z2) and yxi:=y;.

It remains to consider the case where 9(X) = 3Y¢'(X, Y). Again we
may assume that we have already constructed formulae ¥/, x¢, ..., X},

for ¢’. A first attempt might be to use the formulae y := y' and x; := EIY)(;

for ¢. But this does not work since, for example, the sets Y we use to make
x5 true might be different from those we take for y,. Instead, we have to
know which of the X; we can satisfy at the same time. Consequently, we set

XW(}-()::EIY[/\X;(X,Y)A A\ —\X;(X,Y')], forw [m],
JEW

je[m]\w

and Y= EIZ'[I//’(Z’) AVx \/ [wa AN Z;-x AN —|Z3x]] .
jew

we[m] jew
It remains to check that these formulae have the desired properties. We have
Z A = 3?(p,(13, Y)
i€3
iff Z A = go'(l-’, Q) , for some Q,
i€l

i ey (B O [(B,O)]), for some Q.

We claim that the latter is equivalent to

IE W([Xw(ﬁ)ﬂwg[m]) ’

48

4 Operations for monadic second-order logic

(=) Given sets Q as above, we set
Uj=[xi(P,Q)] and w;i:={jlieU;}, foriel.
Then
SEY'(U), ielxw(P)] and ieUj< jew;, foriel,
which implies that
3 E YD (P)uepmy) -

(<=) Suppose that I = 1//([xw (P) Jue[m]) Then there exists sets U and

w; C [m], for i € I, such that
SEY(U), ielyw,(P)], and w;={jlieU;}.
For each i € I, we can therefore choose sets Qi in ; such that

A= A\ Xj(PTALQ)A A -Xj(P1ALQY.

jew; JEwi
Setting Q := U; Q', it follows that

SEy/(0) and U= [x,(P,0)]. O

We have seen above that an ordered sum can be expressed as a generalised
sum followed by an interpretation. Therefore, we obtain a composition
theorem for ordered sum as an easy application of the one for generalised
sums.

Proposition 4.25. Let 3 be a linear order and let (¥,) ier and (B;) i1 be two
families of C-coloured linear orders indexed by I. If

A =pisoo Bi, foralliel,

then 31 Ui Ssoe ier Bi-

49

I Logics and Their Expressive Powers

Proof. Let ¢ € MSO$, and let ¢" and y,, ..., Xn—: be the formulae obtained
via Theorem 4.24. By assumption, the sets [y;] have the same value when
evaluated for the sequence (¥;) ey and for (B;)ier. Consequently, we have

ZQI"':(P iff S':(PI(HXO}]"“’HXVI—I}])

[y
iff B, E Q.

So far, we have only considered disjoint unions. Let us give an example

showing how to extend our approach to certain unions that are not disjoint.

Example. Let A be a Z-structure and k < w a constant. We consider a non-
disjoint decomposition A = C U U H of the following form where the set C

is called the center of the decomposition and the sets in H its petals.

¢ Every guarded tuple of U is entirely contained in C or in one of the

HeH.
¢ [HNC| <k, forall HeH.
e HNKcC, forall H# Kin H.

¢ For every H € H, there is some element cyy € C that belongs to H but
not to any other petal K € H.

For He H,letay € AF be an enumeration of H N C that starts with the
element cyy. (If H N C has fewer than k elements, we repeat some of them
to obtain a k-tuple.) Let €, := Y| be the restriction of A to the set C and
define

€:= (€, (Up)e),

where, for every MSO°-theory 6 of quantifier rank m, we have added the
relation

Ug = {éH | ﬂihﬂ/}soo(g|H, (EH) = 9}.

Then, for every MSO-formula ¢, we can construct an MSO-formula ¢’ such
that

A=g iff Crg'.

50

5 Operations for first-order logic

To see this, note that we can express U as a generalised sum followed by an
interpretation

oA = T(ZQSC),

ce€@
where
% = (Q[|H,tiH> ifCZCH,
. 9[|{C} ifc¢{cyg|HeH}. |

Exercise 4.5. Given a graph & = (V, E), we call a pair (A, B) of subsets
A, B € V aseparation of 8 if AU B = V and there is no edge between a
vertexin A \ Band onein B \ A.

Let& = (V,E)and &’ = (V’, E’) be two graphs with separations (A, B)
and (A’, B'), respectively. Let A, B, ', and B be the subgraphs of & and &’
induced by the sets A, B, A’, and B’, respectively, let ¢ be an enumeration
of An B, and let ¢’ be one of A’ N B'. Suppose that A N B and A'Nn B are
finite. Prove that

Aéiz=mso A, ¢ and B, i=peo B¢ implies & =poo &'

Hint. Express & and &' as a generalised sums followed by a quantifier-free

interpretation. 3

5 Operations for Sic[t~Order Logic

The operations in the previous section are compatible for a wide variety of
logics. In this section we take a look at operations that are FO-compatible,
but not MSO-compatible.

JProducts

Most of the operations introduced in the previous section were based on
sums. Here, we present analogous operations that are based on products
instead. We start with the simplest one: the binary direct product.

51

I Logics and Their Expressive Powers

Definition 5.1. Let % and B be two Z-structures, The direct product of
A and B is the X-structure A x B with universe A x B and relations

R® = {((a0,bo), ., (an-rbyr)) | d € R, bR,
forRe X, s
Proposition 5.2, A =y A and B =iy B’ implies AxB =iy A’ xB’.

Proof. For every FO,,-formula ¢(x), we construct two finite sequences of

FO,,-formulae ¥, (%), ..., ¥i—; (%) and 95(%),..., 9, (%) such that
Ax Bt 9({a0,b0), s (an-rs bur))
if A=y;(a)andBE9;(b), forsomei<l!.
We proceed by induction on . If ¢ is of the form x = y or R, we can take
Vo= and 9, := 9.

For the inductive step, suppose that we have already constructed the se-
quences of formulae ¥o,...,¥;_;, 9o,...,9j_; corresponding to ¢, and
Verer s Vi 95,0+, 91, corresponding to ¢'. Then the sequences cor-
responding to ¢ Vv ¢’ are

Voree s Vi Voo, Wi, and 90,000, 9,90, ..., 90,
For ¢ A ¢, we can take

viAy;, and 9;A9%, foralli<landj<!’.
For —¢, we use all formulae of the form

v, and 9., forwcll],
where

yo= A -y and 95:= A9

ie[l]\w iew
Finally, for 3x¢, we can take

IxWo, ..., Ixy;; and Ix9o,...,Ix9_,;. O

52

5 Operations for first-order logic

Example. The ordered product of two linear orders % = (A, <¥) and B =
(B, <®) is the linear order 9 - B with universe A x B and ordering

(a,b) <{c,d) :iff b<d or b=danda<c.

We can express this product using the direct product ¥ x B followed by an
FO-interpretation. 4

Exercise 5.1. Find FO-interpretations p, 0, T such that

P(AeB) =1(p(P(A)) x a(P(B))).)

Sinite Jowers

Our analogue for the copying operation is the finite power of a structure.

Definition 5.3. Let U be a Z-structure and k < w. The k-th power of U is the
structure A* obtained from the k-fold direct product & x -- - x 9 by adding

the relations
Iij={(ab)e A< A" |a;=b;}, fori,j<k.
Proposition 5.4. A =f, B implies ok Ef:ng Bk

Proof. Given an FO,,-formula ¢(x,,...,x,_;), we construct an FO,,-
formula ¢'(%,, ..., X,—;) such that

A e @(doeer) if AE @ (Gorery).

We construct ¢ by induction on ¢.

(x=y)"=N\xi=y, (Iijxy)' = xi = y;,
i<k
(RXOH.Xn_I)I = /\Rx?‘ux?_r, (—.q))’ = —.q)”
i<k
(pry) =¢'ny, (Ixg)":=3x9’,
(pvy) =9 vy, (Vxp)' :=Vzg'. O

53

I Logics and Their Expressive Powers

Exercise 5.2. Find an FO-interpretation 7 such that

k
B (copy, () = 7(R(2)") - .
Finite powers are frequently combined with first-order interpretations.
Definition 5.5. Let k < w. A k-dimensional FO-interpretation is an operation
of the form
r=poreo(-),

where p is a quotient operation and 7, a normal FO-interpretation. |

Remark. We can compactly specify a k-dimensional FO-interpretation by a
list of formula

(8(2), e(%3), (Pr(%o, %1, ---))R)

where each tuple %, j, %o, ... consists of k-variables. The formula & defines
the universe of the new structure, ¢ defines the new equality relation, and
the formulae ¢ define the relations.

a

Examples. (a) Let R = (R, +, -,0,1) and € = (C, +, -, 0, 1) be the fields of
real and complex numbers. There exists a 2-dimensional FO-interpretation T
mapping R to € which is given by
8(xx") = true,
e(xx',yy") := true,
oi(xx',yy,22") = z=x+ynd =x"+y,
e« (xx',yy,22") = z=xy—x"y n2' =x"y+xy',
@o(xx") = x=0rx"=0,

¢:(xx") ==x=1Ax"=0.

(b) There exists a 2-dimensional FO-interpretation mapping N := (N, +)
to 3 := (Z, +). It is given by the formulae

8(xx") = true,
e(xx, yy") -
§0+(XX,,)/)/,,ZZ,) = Z:X+y/\z’:x,+y,‘ }

x+y’:y'+x,

54

5 Operations for first-order logic

Generalifed Products

Similarly to generalised sums for MSO, we can define a general version of a
product for FO where the index set is equipped with additional relations.

Definition 5.6. Let I be a set, 3 a I'-structure with universe £(I), and
(¥;) ier a family of Z-structure. The generalised product

[T

i€l

is obtained from the (X + I' + { | })-structure with universe

YITA =TT +{1})

Kel ieK i€l
relations
R:= { (aoyvvvrdnoy) | dom(a,) =+ = dom(a,—,) and

(a0(i),...,an_s(i)) € RY, forall i € dom(as) },
for every R € %,
S:={ (a0, .., ans) | (dom(ao),...,dom(a,_)) € S },
for every S € T', and one binary function

alb:= a|d0m(a)ﬂdom(b) . a

Definition 5.7. Let 3 be a I'-structure and (;) ies a family of Z-structures.
Given an FO-formula y(x) and a tuple d in [T;c;(A; + 1), we define

[[X(é)] II{i€I|Q[i®1¢X(di)},
where d; denotes the projection of d to the i-th component, and 1 denotes

the 1-element X-structure where all relations are non-empty, i.e., the terminal
object in the category of all X-structures. |

55

I Logics and Their Expressive Powers

The following composition theorem and its proof closely follow that for
generalised sums. In fact, the case of generalised sums can be derived from
the one for products using the power-set operation.

Theorem 5.8 (Feferman, Vaught). For every formula ¢(x) € FO,,, there
exist formulae W(%, j) € FO and yo(%), ..., Xu (%) € FO,, such that

[T%=e@) i (36 Fy(lxe(@] . [(a)]).

i€

Proof. We prove the claim by induction on ¢. In the formulae x; (which are
evaluated in a disjoint union U; ® 1), we will for readability use the notation
x = L in instead of Right(x).If ¢ = (x; = x;), we can set

v(p)=(p=1) with x(x):=(xi=xj).
If ¢ = (xx = x; | xj), we can set
v(p,p'p" pe) =p=p' np" Ap=p.,

X(3) = (e # 1), }(3):=(x#1),
') =(x#1), xe(%) = (o = x1).

Ifp = (x; ~ xj),we can set

v(pp)=p=p, x(X)=@x=#1), }(&F)=(xj#1).
If ¢ = Rx;, ...x;,_, with R € X, we can set

y(p)=(p=1I) and xo(%):=Rxi ...x;_, -
If(p = Sxio e X

o, with S € I', we can set

I//(po""'f’k—l) = SPO v Ph-1s
and xj(x):=(x;# 1), forj<k.

For boolean operations, we can simply take the corresponding boolean
combination of the formulae ¥ (after renaming the predicates p; to make

56

5 Operations for first-order logic

them disjoint), and we take the union of all formulae y;. For instance, for
¢ = Qo A @y, we can set

V(Por pr) = Vo(Po) AYi(p1) -
Finally, suppose that ¢ = 3x’¢’(x, x"). Let
Y'(7) and xo(3x"), ..o, pp (3X1)

be the formulae obtained by applying the inductive hypothesis to ¢, We set

v =32y @r U [Nz Uzl=1),

Tl jew jew
Xw(x) = Elx/[/\ X;(icx/) AN ﬂ)(;(ix')] , forwc[n].
jew

je[m] w
It remains to check that these formulae have the desired properties. We have

[T% = 3x"¢'(a,x")
i€l

iff [[Y%Eg¢'(db), forsomeb,
ie3
it (3,9) =y ([xo(a6)],.... [x—i(d,b)]), forsomeb.
We claim that the latter is equivalent to
(3,€) F (D () werm)) -
(=) Given an element b as above, we set
pi=[x;(ab)] and w;i:={jliep;}, forj<mandiel.
Then

(3.9 Ev'(B), iclpw(@], and iep; e jew,

57

I Logics and Their Expressive Powers

for j < m and i € I, which implies that

i€xw(a)]n mpj\ U pj, foralliel.

Jjew; JEw;

Hence,

(3,2) = v([xw(@)lwerm)) -

(«=) Suppose that 3 = 1//([xw (@) Jwepm)) Then there exists sets p such
that

(3,<)=v'(p)

and, for every i € I, there is some w; C [m] such that

ie[xw(@]n e~ Upj-

jew; JEw;

This implies that w; = { j| i € p; }. The fact that i € [y,,(a)]n therefore

implies that there is some element b; € A; + 1 such that

A= A Kj(ab)a N =xi(aibi).

jew; JjEwi
Setting b := (b;);, it follows that

(39 =v/(p) and p;=[xj(ab)]. O

Example. We can use generalised products to construct ultraproducts and,

more generally, quotients of products by arbitrary filters. To this end, let
F ¢ £(I) be a filter on I. Recall that

[T%:/F

iel
denotes the quotient of the direct product [];.; Y; by the relation

anb iff {iella;=b;}€F.

58

5 Operations for first-order logic

Using the index structure 3 := (£(I), F) we can define such a product in
the generalised product

[T

i€l

using an FO-interpretation defining the relation =, followed by a quotient

by N, 1

Totes

Composition arguments were popularised by Shelah [193], although their
use is much older. For instance, the composition theorem for generalised
products is from [80]. Good surveys include (136, 22, 60].

The logic MSO® was invented by Thomas to simplify composition argu-
ments [203], while guarded second-order logic was introduced in [89]. The
latter generalises a logic for graphs defined by Courcelle, which is usually
called MSO, or MS,, cf. [60].

The power-set construction was first systematically investigated in [52].
The example with the composition theorem for overlapping unions is taken
from [67]. Exercise 1.2 on axiomatisations of grids was inspired by [140].

59

II Sinite YHorbds

1 BHords and Languages

OUR FIRST DEEPER STUDY of the expressive power of monadic second-
order logic concerns the definability of languages of finite or infinite
words. We start by setting up our terminology regarding such languages.

Definition L.I. (a) A binary relation < € A x A is a partial ordering if it has
the following properties:

Reflexivity. a < a,forall a € A.

Anti-Symmetry. a <band b < a impliesa = b, forall a,b € A,
Transitivity. a <b < cimpliesa < ¢, foralla,b,c € A,

A partial order is a structure (A, <) where < is a partial ordering on A.
(b) A linear order is a partial order (A, <) where

a<borb<a, foralla,beA.

(c) A linear order (A, <) is a well-order if every non-empty subset X € A
has a minimal element, that is, if there exists no infinite, strictly descending
sequence do, > d; > d, > . An ordinal is the isomorphism type of a
well-order.

(d) We denote by w the first infinite ordinal. It is isomorphic to the linear
order of the natural numbers. ,

Formal language theory deals with linear orders whose positions are
labelled with elements of a given set X,

MONADIC SECOND-ORDER MODEL THEORY 2025-02-23 — ©ACHIM BLUMENSATH 61

I1. Finite Words

Definition 1.2. (a) An alphabet is a finite set X whose elements are called
letters.
(b) A (finite) word over an alphabet X is a finite sequence

w= (ao,‘”,an,l)

of elements a; € X. The empty word is the empty sequence (). We denote the
length of a word w by |w|. We write 2* for the set of all finite words over X,
and Z* for the set of all non-empty finite words.

(c) An w-word over an alphabet X is an infinite sequence w = (4;)i<o
of elements a; € X. The set of all w-words is denoted by £“. We also set
e =Xruxe.

(d) A language is a set of words or a set of w-words.)

In order to define languages in some logic, we have to encode words as
structures.

Definition 1.3. Let X be an alphabet.
(a) We can associate with every word w € X* a relational structure

<W' s, (Pa)a62>

over the signature {<}u{P,|aecZX} where W is the set of positions of w,
< is the ordering of the positions, and P, is a set containing all positions
labelled by the letter a. Structures of this form are called word structures.

(b) A language K € 2 is definable in a logic L if there exists a formula
¢ € L such that

weK if wEeeg.

(In the right-hand side, we have identified w with the associated word struc-
ture.))

62

2 Semigroups and Green’s relations

Example. The language of all words over the alphabet * := {4, b, ¢} with
an even number of letters a can be defined by the MSO-formula

¢ :=3X[VxVy[x <y APux APy A-Tz(x <zAz<yAP,z)
> (Xx o -X)]
AVx[Pax A=3y(y<x AP,y) = Xx]
AVx[Pax A=3y(x <yAPy) > ﬂXy]] .

a

Exercise 1.1. Prove that the language in the above example is not FO-definable.
Definition 1.4. Let 2 be an alphabet.

(a) Ifw € 2% and i < k < |w|, we write w(i) for the element of w at
position i and

wli, k) = (w(i),w(i+1),...,w(k—1))

for the factor of w from position i to k — 1.
(b) The concatenation of two words u € * and v € X is the word u™v
that consists of the elements of u, followed by the elements of v. Formally,

. u(i) ifi <lu|,
uv)(i) =
(w)(0) {v(i —lu]) ifi>lu|.
Frequently, we omit the symbol ~and simply write v instead.
(c) A word u is a prefix of aword w € X*° if w = 4", for some v € X*°
Similarly, u is a suffix of w if w = v"y, for some v. Finally, u is a factor of w if

w = x"u"y, for some x, y. ,

2 Semigroups and Breen’s Relations

When studying languages of words, an algebraic approach based on semi-
group theory sometimes proves to be quite convenient. The starting point is
the observation that the set £* of all finite words together with the concat-
enation operation ~ forms a monoid.

63

I1. Finite Words

Definition 2.1. (a) A semigroup is a structure & = (S, -) where the multi-
plication - : § x § — § is associative:

a-(b-¢)=(a-b)-c.

We usually omit the dot and simply write ab for the product.
(b) A monoid M= (M, -,1)isa semigroup with a neutral element 1, i.e.,
an element satisfying

1ra=a=a-1, forallae M.

To each semigroup © we can associate a monoid &t by adding a new neutral
element 1.
(c) An element e of a semigroup is idempotent if ee = e.)

Examples. (a) For every alphabet X, we have the free semigroup (2%,) over 2
and the free monoid (£*, -, ()) over Z. The only idempotent element is the
empty word ().

(b) The natural numbers form the monoid (N, +, 0) and the monoid
(N, -, 1). The former is called Presburger arithmetic, the latter Skolem arith-
metic.

(c) The set of functions f : X — X forms a monoid (XX, o,id) where
o denotes function composition. A function f : X — X is idempotent if,
and only if; it is a projection, i.e., f | tng f = id.

(d) Similarly, the set of all binary relations R € X x X forms a monoid
(P(X x X), o,id) where o denotes the composition of relations and id is
the diagonal. If R € X x X is reflexive and transitive, it is idempotent.
Conversely, every idempotent element R € X x X is transitive, but not
necessarily reflexive.

(e) Every semilattice (L, U) is a semigroup where all elements are idem-
potent.)

Exercise 2.1. Prove that every semigroup has at most one neutral element.

a

‘We will be mostly dealing with finite semigroups or, more generally, ones
that are cyclically finite.

64

2 Semigroups and Green’s relations

Definition 2.2. A semigroup & is cyclically finite if
{ahe:={a" |o<n<w}isfinite, foreveryac§. |

While a semigroup does not need to have a neutral element, a cyclically fi-
nite one will always contain at least some idempotent (which can be regarded
as a weak form of a neutral element).

Lemma 2.3. If & is a cyclically finite semigroup, every element a € S* has an
idempotent power.

Proof. The unit 1 is itself idempotent. Let a € S. As & is cyclically finite,

there are exponents 0 < i < j < w such that a’ = a/. Set k := j — i. Iterating
i+k

the equation a' = a'™*, we obtain

ai _ ai+k _ ui+2k = ui+ik‘
Hence,

ik _ i ik—i _ _i+ik ik—i _ _ik+ik
a =aa =a a =a

and a’* is our desired idempotent element. O

Example. If X is a non-empty, finite set, this lemma tells us that there is
some number n such that, for every function f : X — X, the n-th power
f"+ X = X is a projection. In particular, f” has a fixed point.)

Exercise 2.2, Let G be a finite semigroup. Prove that there exists a number
0 < n < w such that a” is idempotent, for every a € S. ,

The main technical result the following material is based on, is the follow-
ing property of cyclically finite semigroups.

Lemma2.4. Let G be a cyclically finite semigroup, and a € S and s, t,u,v € st
elements. Then

L 1
a =stauv implies xta=a=auy, forsomex,y€eS",

65

I1. Finite Words

Proof. Iterating the equation a = (st)a(uv), we obtain
a=(st)'a(uw)’, forali<w.

By Lemma 2.3, there is some exponent o < n < w such that (st)” and (uv)”
are both idempotents. It follows that

(st)”a = (st)"(st)"a(uv)" = (st)”a(uv)’1 =a.
Similarly, we obtain a(uv)” = a. Hence, we can set x := (st)"™"s and

yi=v(uv)" O

(Breen’s Relations

There exists a rich structure theory for cyclically finite semigroups (and more
generally for compact semigroups). The starting point are the following
divisibility relations. There are several of them since semigroups do not need
to be commutative and we therefore have to distinguish between dividing
from the left, from the right, or from somewhere in the middle.

Definition 2.5. Greene’s relations consist of the divisibility relations

a< b :iff a=xb forsomex €S
a<pb :iff a=bx forsomexe€ st

a<yb iff a=xby forsomex,yesl‘
together with the associated equivalence relations

a=L b :iff a< b and b< a,
a=pgb :if a<gb and b<ra,
a=y3b :iff a<yb and b<ja.

Furthermore, we set

az=pyb :iff a= b and a=Rb.

66

2 Semigroups and Green’s relations

We call the equivalence classes of the relations =| , =g, =J, =4 L-classes, R-
classes, J-classes, and H-classes, respectively, and we use the notation [a]L, [a]r,
[a]y, and [a]n for the class of a.

a

Examples. (a) Let M = {1, a, b, ab, ba, aba, o} be the monoid with unit 1,
zero o and relations

aa=1, bab=0, bb=o.
The Greene's relations are depicted in the following schema:

I, a

b ba
ab | aba

[o]

Here each field represents a single H-class, each group of fields a J-class,
each column inside a group an L-class, and each row an R-class. So we have
three J-classes

{o} <y {b,ba,ab,aba} <, {1,a},

where the middle J-class is divided into two L-classes: {ba, aba} and {b, ab};
and into two R-classes: {b, ba} and {ab, aba}. The only non-trivial H-class
is {1,a}.

(b) In the monoid of all relations R € [2] x [2] we have the following
classes.

[

N X | X

XM

67

I1. Finite Words

N M| A

V17

7
/.

. .
—
P
..
Again there is only one non-trivial H-class. ,

The diagram in the previous example is typical for Green’s relations. The
next series of lemmas shows that it is always the case that every J-class
consists of a rectangular grid of H-classes where the columns are the L-
classes and the rows the R-classes.

Lemma 2.6. Let S be a semigroup and a,b, c € S.
(a) a < b implies ac <\ be.
(b) a <gr b implies ca <g cb.
() <Lo<gr = <Ro<L.
Proof. (a) a = xb implies ac = xbc.
(b) @ = bx implies ca = cbx.
(c) Suppose that a < b <g c. Then there are elements x, y € S* such that
a =xbandb = cy.Hence, a = xcy <g xc¢ <|_ c. Therefore, <| 0<g € <Ro<|.
The other inclusion follows in the same way. 0

Proposition 2.7. Let G be a finite semigroup. Then
EJ = EL [e] ER B

Proof. Suppose thata = ¢ =g b. Then a <| ¢ <g band a > ¢ >g b which,
by Lemma 2.6 (c), implies that a <; band a >, b.

Conversely, suppose that a = b. Then there are elements s, t, 4, v € st
suchthata = sbuand b = tav. Hence, 4 = stauv and it follows by Lemma 2.4
that xta = a = auy, for some x, y € Sl.In particular, a <| ta and a <R au.

68

2 Semigroups and Green’s relations

Since, trivially, ta <| a and au <R 4, it follows that ta = a =r au. Using
Lemma 2.6 (a) we obtain b = tau =| au =g a. O

Since L-equivalence and R-equivalence both imply J-equivalence, we can
partition every J-class into L-classes and into R-classes. By the above lemma,
these two partitions intersect such that every L-class meets every R-class.
Hence, we always obtain a picture as in the above example. The following
lemma states that all the L-classes have the same size and the same holds for
the R-classes.

Lemma 2.8 (Green). Let & be a cyclically finite semigroup and a,b € S. Any
two elements s, t € ST with b = as and a = bt induce bijections

p:lalL>[blLixxs and y:[b]L - [a]L:x— xt
which are inverses of each other.

Proof. Letc = a. First, note that cs = as = b. Hence, ¢ maps [a]L to [b]L.
Furthermore, if x € S! is an element with ¢ = x4, then

y(p(c)) =cst=xast=xbt=xa=c.

In the same way, we can show that ¥ maps [b]| to [a]L and that ¢ o is the
identity on [b]L. O

Remarks. (a) Applying this result to the dual semigroup &°P (with product
a -°P b := ba) gives the analogous statement for R-classes.
(b) The maps ¢ and y above preserve H-equivalence (see the proof of

Lemma 2.14 below).]

‘The Structure of J-Tlaffes

Next, let us take a closer look at some properties of the J-relation that turn
out to be useful when studying FO-definability.

Lemma 2.9. Let & be a cyclically finite semigroup and a,b € S.
(a) b <y abimplies b = ab.

69

I1. Finite Words

(b) a <y ab implies a =g ab.

(c) Ifa =y ab=yb, there is some idempotent e € S with a = e =g b.
Proof. (a) Suppose that b <j ab. Then there are elements s, u € S* such that
b = sabu. By Lemma 2.4, it follows that xab = b, for some x € S'. Hence,
b < ab. Since, trivially, ab < b, the claim follows.

(b) follows in exactly the same way.

(c) Suppose that a = ab =, b. By (a) and (b), it follows that a =g ab =_b.
Fix an element s € S! with abs = a. We have seen in Lemma 2.8 that the
function ¢ : x > xb is a bijection between the L-classes of 4 and ab with
inverse ¥ : x > xs. Setting e := Y(b), it therefore follows that e = a and

ee=cy(b) =ebs=g(e)s=p(y(b))s=bs=y(b) =e.

Thus, e isidempotent. Finally, we have e =g b since, by definition, o(x) <rx
and y(x) <g x, for all x. O

Let us note a few consequences of this lemma that will turn out to be
particularly useful.

Corollary 2.10. Let J be a J-class of a cyclically finite semigroup S and let
a,b €] be elements such that ab € J. Then

a=rab=_ b
and there exists an idempotent e € J such that
a=_e=Rb.
Corollary 2.11. Let & be a cyclically finite semigroup and a,b, c € S.

(a) ab=;b=ybc implies abc=)b.
(b) ab=a=;b implies ac=a < bc=b.

Proof. (a) By Lemma 2.9 (b), we have b =g bc. This implies that abc =g ab.
In particular, abc =) ab =) b.

(b) (<=) bc = b implies ac = abc = ab = a.

(=) By Lemma 2.9 (a), b =, ab implies b = ab = a. Hence, b = x4, for
some x € S%, and we have bc = xac = xa = b. O

70

2 Semigroups and Green’s relations

We obtain the following structure result for J-classes.

Definition 2.12. Let & be a semigroup. An element a € S is regular if there
exists some ¢ € S with aca = a. A J-class is regular if it contains a regular

element. ,

Proposition 2.13. Let] be a J-class of a cyclically finite semigroup &. The
following statements are equivalent.

(1) Jis regular.
(2) J contains an idempotent.
(3) Every L-class in J contains an idempotent.

(4) There are elements a, b €] such that ab € J.

Proof. (3) = (2) is trivial and (4) = (2) follows by Lemma 2.9.

(2) = (1) If e € J is idempotent, then eee = e. Hence, e is regular.

(1) = (4) Suppose that there are elements a € J and ¢ € S with aca = a.
Then a <j ac and acac = ac. Since ac < g holds trivially, it follows that
ac € J and that it is an idempotent.

(2) = (3) Let e € J be idempotent. Given an element a € J, we have to
find an idempotent that is L-equivalent to a. By Proposition 2.7, there exists
some b with e =g b = a. Consequently, there are x, y € S* with ex = b and
e = by. It follows that eb = eex = ex = band yb = yeb = ybyb. Hence, yb is
idempotent. Furthermore, byb = eb = b implies yb <| b. Since we trivially
have b <| yb, it follows that yb = b =| a. O

‘The Structure of H-Tlafles

We conclude this section with a similar look at H-classes. Let us start by
noting that all H-classes in a given J-class have the same size.

Lemma 2.14. Let & be a cyclically finite semigroup and let H, H' be two H-
classes that belong to the same J-class. Then there are elements s, t € S* such that
the function

go:H—>H':xr—>sxt

is bijective.

71

I1. Finite Words

Proof. Fixa € Hand a’ € H'. Since a =) a’, it follows by Proposition 2.7
that a = b =g @’ for some b. Fix elements s, ¢ € S* with b = sa and a’ = bt.
By Lemma 2.8 and the corresponding statement for R-classes, the functions

vilalL—>[blL:xsx and ¢ :[b]lr—>[d']r:x > xt

are bijective. To show that ¢ = y o ¥’ is a bijection H — H' it is therefore
sufficient to prove that y and ¥’ preserve H-equivalence.

Hence, suppose that ¢ =4 d. Then ¢ =r d implies s¢ =g sd. Since all
elements in the range of Y are L-equivalent, we also have sc =| sd, as desired.
In the same way it follows that tc = td. O

Lemma 2.15. a =y b =, ab implies a =y ab.

Proof. Since a =) aband b = ab, it follows by Lemma 2.9 that ab =g a and
ab = b. As a =y b, the latter implies a = b = ab. Thus, ab = a. O

Proposition 2.16. Let H be an H-class of a cyclically finite semigroup &. The
following statements are equivalent.

(1) H contains an idempotent element.

(2) There are a, b € H with ab =) a.

(3) Thereare a,b € Hwith ab € H.

(4) H is closed under multiplication.

(5

Proof. The implications (5) = (4) and (1) = (2) are trivial, while (2) = (3)
follows immediately by Lemma 2.15.

o — o

H is closed under multiplication and the subsemigroup (H, -) is a group.

(4) = (1) Given a € H, we can use Lemma 2.3 to find a number o < n < w
such that 4” is idempotent. Furthermore, we have 4” € H since H is closed
under multiplication.

(3) = (4) Fix a, b € H with ab € H and consider two arbitrary elements
¢,d € H.Since a <g cand b <| d, there are s, t € S* with @ = sc and b = dt.
It follows that

cd>yscdt=abeH,

72

3 Simon’s Lemma

which implies that c¢d =) ¢. Hence, we have ¢d € H by Lemma 2.15.

(4) = (5) Suppose that H is closed under multiplication. Fix ¢ € H.
By Lemma 2.3, there exists some number 0 < n < w such that e := " is
idempotent. By assumption, it follows that e € H. We start by showing that
e acts as a neutral element. Hence, consider a € H. Then a =|_ e implies that
a = se, for some s € S1. Therefore,

ae=see=se=a.
In the same way a =g e implies that ea = a.

To conclude the proof, it remains to show that each element a € H has
an inverse. Given g we use Lemma 2.3 to find some number k > o such that
b := a* is idempotent. By Corollary 2.11 (b),

be=b=je and bb=b implies eb=e.

Consequently, a* = b =eb = e and a*" is the desired inverse of a. O

3 Simon’s Lemma

Since the semigroup operation - is associative, we can evaluate a product
o *+ay—; in many different ways, depending on where we put the parenthesis.
For instance, we can do the evaluation left-to-right or right-to-left:

("'((aoal)ﬂz)"'an—l) ’ (“o(“l("'(an—Z“n—!)"'))) .

If we want to do as much of the computation as possible in parallel, we can
instead use the following scheme:

[((a0a:) (a205)) ((agas)(asar))]

Each of these possible ways of putting the parentheses can be visualised as a
tree.

73

I1. Finite Words

as do A1 G, a3 d4 a5 G 4y

as

do a1
We call such trees factorisation trees.

Definition 3.1. Let & be a semigroup and w € S* a sequence of elements.
A factorisation tree of w is an S-labelled, successor-ordered tree where

o the leaves are labelled by the elements in w (in left-to-right order) and

o each internal vertex is labelled by the product of the labels of its suc-
cessors.)

Note that we do not require a factorisation tree to be binary. A typical
application of factorisation trees is the following problem. Suppose we are
given a sequence w = (@, ..., d,—,) of semigroup elements and want to
compute the product a;++-a of some factor. If we know a factorisation tree
of w, we can do so by traversing the subtree corresponding to the subsequence
(a,-, ey aj)‘ For instance, given the tree

do a1 d» @3 G4 G5 de 47 ag Gg an diz

we can evaluate the product a,---a,; by multiplying the labels of the marked
vertices. The amount of work we have to do for this depends both on the
height of the tree and on its branching factor. Thus, we would ideally like
to minimise both. If we prioritise the branching and take a binary tree, the

74

3 Simon’s Lemma

height is at least logarithmic. If, on the other hand, we minimise the height
and take a tree of height one, the branching is the same as the length of our
sequence and the tree becomes useless. It turns out that there is a middle
ground where the height is still bounded by a constant, while all vertices
with more than two successors have a labelling that makes it easy to compute
the product: we can ensure that every vertex of this kind corresponds to a
product of the form e---e where e is idempotent. This leads to the following
definition.

Definition 3.2. A Simon tree of a sequence w is a factorisation tree where

* no vertex has exactly one successor, and

o for each vertex v with more than two successors uo,t,_;, there exists
some idempotent e € S such that u,, ..., u,_; (and thus also v) are all
labelled by e.

WEe call an internal vertex v of a Simon tree binary if it has two successors
and idempotent if it has more than two.)

For technical reasons, we will not work with factorisation trees directly
but a different encoding which behaves better with respect to compositions.
Since we will use these results also in Chapter VI below, we will present
the definition and the proofs for arbitrary linear orders instead of just finite
ones.

Definition 3.3. Let U be a linear order and & a finite semigroup (written
additively).

(a) An additive labelling of % is a function A mapping each pair i < j of
elements of A to some element A(i, j) € S such that

A, k) =A>i, j) +A(j, k), foralli<j<k.

(b) A split of U is a function ¢ : A — [n] mapping each element a € A to
some number 0 (x) < n. We call n the height of 0.

(c) A split 0 : A — [n] is right-guarded if 67 (n — 1) either contains
the maximal element of A, or it is unbounded from above. Similarly, o is

75

I1. Finite Words

left-guarded if 0" (n — 1) either contains the minimal element of A, or it is
unbounded from below.
(d) Givenasplit 0 : A — [n] of Y, we define a binary relation c, on A by

xcey iff x<y, o(x)=0(y), and

o0(z)<o(x), forallx<z<y.

As usual, S, denotes the reflexive version of .

]“o ‘11]“2 a6 “7‘”8‘“9 alo]ﬂn “12]‘113]“14 “15]

(e) Asplit 0 : A — [n] of U is Ramseyan for an additive labelling A if

as la4 as

xS,y and xCS,uc,v implies A(x,y)=A(u,v).)

Cleatly, splits are just another way to encode factorisation trees. There is
also a correspondence between Simon trees and Ramseyan splits, although
it is less direct.

e

Lemma 3.4. Let S be a semigroup, w = (ao,...,an—y) € ST a sequence of

elements, and let A be the additive labelling of [n + 1] defined by

a3 l“4 as

A(i,k):=a;--ap, foro<i<k<n.

76

3 Simon’s Lemma

(a) If there exists a Ramseyan split of A of height k, the word w has a Simon
tree of height at most 3k — 2.

(b) If w has a Simon tree of height k, there exists a Ramseyan split of A of
height at most k.

Proof. (a) We prove the claim by induction on k. If k = 1, then we have

AMx,y) =A(u,v), forallcutsx <yandu<v.

This means that either n < 2 and w has a Simon tree of height o or 1, or

n > 2 and there is some element e such that

Ao =" =dy_;=€=0dgd;.

Hence, ¢ is idempotent and w has a Simon tree of height 1 where the root is
an idempotent vertex.

For the inductive step, suppose that k > 1. Let z; < -+ < z,, be an
enumeration of 0" (k — 1) and set u; := w[z;, zi1,), for 0 < i < m (where
we have set z, := 0 and 24, = #). Then 0 induces a Ramseyan split of
height k — 1 for each factor u;. Hence, we can use the inductive hypothesis to
get a Simon tree t; of height 3(k — 1) — 2 for each ;. We define the desired
tree for w as follows. If m = 1, we use a binary vertex to combine t, and t,.
Similarly, if m = 2, we use two binary vertices to combine first t, and ¢, and
then the resulting tree with t,. Finally, for m > 2, we use an idempotent
vertex to combine t, ..., t,—;, and then two binary vertices to combine
the resulting tree, first with t, and then with t,,. Note that the products
¢r = AMuy), .-+, ey = Mty) are indeed equal and idempotent since

Zi Cg Zis1 Cg Zi4, implies ¢;=c¢iy; and ¢; = ciciyy .

77

I1. Finite Words

3(k—1)-2

(b) Let t be a Simon tree of w of height k and let po, ..., p,—; be its leaves
in left-to-right order. We set

o ifx =o,
o(x) =1k —1—|px—s Mpsx| ifo<x<n,

o ifx=mn.

where as usual we have identified the vertices of t with words over some
set D of directions, and « M v denotes the longest common prefix of ¥ and v.
We claim that ¢ is Ramseyan. Hence, suppose that x ©5 yand x S, u ;5 v,

We first consider the case where all cuts x, y, u, v are proper. By definition
of 0, there exists a vertex z with |z| = k — 1 — 0(x) such that

z:PxflﬂPx:Py—xﬂpyzpu—ll_lpu:Pv—xﬂpv‘

One of the subtrees attached to z corresponds to the factor w[x, y) and
one to w[u,v). Let us denote these by, respectively, r and s. The roots of
r and s are labelled by, respectively, A(x, y) and A(u, v). As z has at least
one successor to the left of r (the one above p,_,), and one successor to the
right of r and s (the one containing p,, or p,), it follows that z has more than
2 successors. Consequently, z is an idempotent vertex of t. Since A(x, y) and
A(u,v) are the labels of successors of z, it follows in particular that their
values coincide.

It remains to consider the cases where x = 0, y = n, or v = n, Suppose
that x = o. (The other two cases follow analogously.) Then 0 (x) = 0 and it

78

3 Simon’s Lemma

follows by definition of ¢ that there is some vertex z with |z| = k — 1 such
that py, py, pu, and p, are all successors of z. If z is binary, we have x = u
and y = v and there is nothing to do. Otherwise, z is idempotent with label e

and A(x,y) =e=A(u,v). O

After these preparations let us finally prove that Ramseyan splits of
bounded height exist. We start with two special cases.

Lemma 3.5. Let A be an additive labelling of a linear order U by a finite semi-
group & and let H be an H-class of © containing an idempotent. If

AMa,b) e H, foralla<b,
then A has a right-guarded Ramseyan split o of height at most |H|.

Proof By Proposition 2.16, H forms a group. Hence, we can define

Aa,b) ifa<b,
Ai(a,b) =40 ifa="b,
-A(b,a) ifa>b.

It follows that
Ae(a,b) + Au(b,c) = Ai(a,c), foralla,bceA.

We fix an element a, € A and we choose some ¢ € H such that the set
{beA|Ai(ao,b)=c}

either contains the maximal element of A, or it is unbounded. Let y : H —
[n] be some bijection with p(c) = n — 1. We claim that the split

o(a)=p(Ai(a0,a)), foracA,

is Ramseyan and right-bounded. Right-boundedness follows by choice of p.

To see that it is Ramseyan, consider elements x ©, y and x E; 4 ©, v. Then

79

I1. Finite Words

0(x) = o(y) implies that

A(x,y) = Ae(3,y) = A (%, 00) + A (a0, y)
= A*(“o:}’) - Ax—(“oyx) =0.

Similarly, it follows that A(u,v) = o. In particular, A(x, y) = A(u,v). O

Lemma 3.6. Let A be an additive labelling of a linear order A by a finite semi-
group & and let | be a regular J-class of &. If

A(a,b)e], foralla<b,

then A has a right-guarded Ramseyan split o of height at most | J|.

Proof. If |A] < 1, the claim is trivial. Hence, we may assume that A has at
least two elements. For every non-maximal a € A, we fix some element b > 4
and we set

R(a) :=[A(a,b)]r.

Note that R(a) does not depend on b since, given a < b < b’, it follows by
Corollary 2.10 that

Ma, b') = A(a,b) + A(b,b") =5 A(a,b) =5 A(b,b")

implies A(a, b") =g A(a, b). Similarly, for every non-minimal a € A, we set
L(a):=[A(b,a)]L, forb<a.

If A has a maximal element a, we set
R(a) :=[e]r, for someidempotente € L(a).

(Such an idempotent exists by Proposition 2.13.) Similarly, if & has a minimal
element a, we set

L(a):=[e]L, forsomeidempotente € R(a).

8o

3 Simon’s Lemma

Let
H(a):=R(a)nL(a).

We start by proving that H(a) forms a group, for every a € A. If a is
maximal or minimal, this follows from Proposition 2.16 and the fact that, by
definition, H(a) contains an idempotent. Otherwise, fix elements b < a < b'.

Then

A(b,a) e L(a) and A(a,b") €R(a).
Then A(b,a) + A(a,b") = A(b,b") € J and we can use Corollary 2.10 to
find an idempotent e such that

A(b,a) =L e =R A(a, b').

Consequently, e € L(a) n R(a) = H(a) and it follows by Proposition 2.16
that H(a) forms a group.

Let H,,..., Hy_; be an enumeration of all H-classes in | that form
groups and set

B;:={a€A|H(a)=H;}, fori<k.

We choose the enumeration H, ..., Hy_, such that B; either contains the
maximal element of A, or such that it is unbounded in A. By Corollary 2.10,
it follows that

A(a,b) e H;, foralla<binB;.

Hence, we can use Lemma 3.5 to construct a right-guarded Ramseyan
split 7; of B; of height at most |H;|. Note that, according to Lemma 2.14, all
classes H; have the same size n. We set

o(a):=ni+71;(a), foracB;.

Then 0 is a split of height nk < | J|. Furthermore, it is right-guarded since
B; is unbounded in A. To see that ¢ is also Ramseyan, consider elements
X C yand x S, u ©, v. Then x,y,u,v € B, for some i. Since T; is

Ramseyan for A, it follows that A(x, y) = A(u, v). O

81

I1. Finite Words

Theorem 3.7. Let A be an additive labelling of a linear order A by a finite
semigroup &. Then A bas a Ramseyan split of height at most 2 - |S]|.

Proof. Let J be a maximal J-class of &. We callaset C € A a J-set if
A(i,j)eJ, foralli<jinC.

We use two different orders on J-sets: inclusion C and the order
C<D :iff thereissomece Cwithc<d, foralldeD.

We call a J-set maximal if it is maximal with respect to C. Let us start be
establishing the following claims.

(1) The convex hull of a J-setisa J-set.

(1) The restriction of < to the maximal J-sets forms a strict linear order.
(v) Every element a € A is contained in at least one, but at most two
maximal J-sets.

(1m1) Every J-set is contained in a maximal one.

(rv) Two different maximal J-sets have at most one element in common.

(1) Let D be the convex hull of a J-set C. To show thatitisa J-set, consider
elements a < b of D. Then there are elements a’, b’ € Cwitha’ <a<b<b’.
By additivity, it follows that

A’ b') = A(a’,a) + A(a,b) + A(b,b").
(Ifa’ = a or b = b’, we omit the corresponding terms.) Hence,
A(a’,b") <y AM(a,b).

By maximality of J, it follows that A(a’, b") € J implies A(a,b) € J.

(11) Irreflexivity and transitivity are immediate. For linearity, fix two max-
imal J-sets C and D. Then there are elementsa € C\ Dand b € D \ C.
If a < b it follows by convexity that C < D. Otherwise, D < C.

(111) By Zorn's Lemma, it is sufficient to prove that the class of J-sets is
closed under unions of increasing sequences. Hence, let (C;);<q be sucha

82

3 Simon’s Lemma

sequence and let D := [J;, C; be its union. Fix 4 < b in D. Then there is
some index i < & with a, b € C;. As C; is a J-set, it follows that A(a, b) € J.

(1v) Let C and D be maximal J-sets with |C n D| > 2. By (1) and
symmetry, we may assume that C < D. We will prove that Cu D is also a
J-set. By maximality, this implies that C = C U D = D. Hence, fix elements
a < bin C n D and consider two elements ¢’ < b’ in CuD.Ifa’,b’ € C or
a’,b" € D, we have A(a’,b") € J by assumption. Otherwise, C < D implies
thata’ e CNx Dand b’ e D\ C,and thata’ < a < b < b’. Since

A(a',a) +A(a,b) =5 A(a,b) =5 M(a,b) + A(b, b)),
it follows by Corollary 2.1 (a) that
Aa',b")=A(a",a) + A(a,b) + A(b,b") € J.

(v) Let a € A. The singleton {a} is a J-set since it does not contain two
elements b < b’. By (111), it is therefore contained in some maximal J-set C.
To conclude the proof, suppose for a contradiction that a4 is contained in at
least three different maximal J-sets C,, C;, C,. By maximality, none of these
sets can be a singleton. It follows that either at least two of them contain
an element less than g, or at least two contain an element greater than a.
By symmetry, suppose that there are b, b; < a with b, € C, and b, € C;.
Furthermore, we may assume by symmetry that b, < b;. As C,, is convex,
this implies that b; € C,. Hence, a, b, € C, N C,, which implies by (1v) that
C, = C,. A contradiction.

Having established the above claims we now construct the desired split o
by induction on |S|. Fix a maximal set B € A that contains at most 1 element
of each maximal J-set. (We can use Zorn's Lemma to prove that such a set
exists.) For a < b in B it follows that A(a,b) € S \ J. As J is maximal, the
complement S \ J forms a subsemigroup of &. Therefore, we can use the
inductive hypothesis to construct a Ramseyan split ¢’ of B of height at most
2(IS| = [J1)-

To turn ¢’ into a split of all of A, we consider a maximal convex subset
C ¢ Awith Cn B = @. It is suflicient to construct a Ramseyan split ¢ of C

83

I1. Finite Words

of height at most 2| J|. Then we obtain the desired split o of A by

o'(a)+2|J| ifaeB,
o(a):=
1c(a) if a € C and C as above.

.................................. ‘ e 220SI=1ID
MMMM Mnmnh }Z'J'

To see that ¢ is Ramseyan, consider elements x ©, y and x S, u &4 v.
If (x) < 2|]J|, it follows that x, y,u,v € C for some set C as above and
that x c,, yand x S, ¢ v Since T¢ is Ramseyan, this implies that
A(x,y) = AMu,v). Hence, suppose that 6(x) > 2|J|. Then x, y,u,v € B
and x ©, y and x S u £, v, Since ¢’ is Ramseyan, this implies that

Ax, y) = Au,v).

Hence, it remains to construct the splits 7¢. Let B_ be the set of all

uc

elements of B that are smaller than those of C and let B, be those that are
larger. By (1) and (v), there is at most one maximal J-set that intersects
both B_ and Z. Similatly, there is at most one maximal J-set intersecting
Z and B.. We denote these two sets by D_ and D, (setting D_ = &
or D, = @& if such sets do not exist). We claim that C ¢ D_ u D,. For
a contradiction, suppose that there is some element ¢ € C \ (D_ U D,).
By (v), the element c is contained in some maximal J-set E. If E intersects B_,
(v) would imply have E = C_. Similarly, if E intersects B, we would have
E = C,.Hence, E c C. It follows that

‘(B u{c}) ﬂX| <1, forevery J-set X.

A contradiction to the maximality of B.

If|C| < 2, we can take any injective function 7¢ : C — [2] as the desired
Ramseyan split. It height is 2 < 2|J|. Hence, suppose that C has at least 3
elements. By the above claim, it follows that one of C " D_ or C N Dy has
at least 2 elements. By symmetry, we may assume that it is the former. Since
D_ N B # &, the set D_ also has at least 3 elements. Fix elements a < b < ¢
in D_. Then

AMa,b)e]J, AMb,c)e]J, and A(a,b)+A(b,c)=A(a,c)e].

84

3 Simon’s Lemma

Consequently, it follows by Proposition 2.13 that the J-class J is regular.
Hence, we can use Lemma 3.6 to construct a right-guarded Ramseyan
split 7_ of D_ of height at most | J|. In the samy way we can use (the dual
version of) Lemma 3.6 to construct a left-guarded Ramseyan split 7, of

Dy ~ D_ of height at most | J|. We set

re(a) 7_(a) ifaeCnD_,
a):=
¢ ,(a)+1 ifaeCnDyND_.

To see that 7¢ is Ramseyan, consider elements x ©,. y and x ;. » C v.
Ifx,y,u,ve CnD_orx,y,u,veCnD,,wehave A(x, y) = A(u, v) since
7_ and 7, are Ramseyan. Hence, suppose otherwise. Then x € D_ while
w = max {y, v} € D, \ D_. Since 7, is left-guarded, there is some element
z€ Dy~ D_withx <w < zand 7, (w) =|J| - 1. Hence,

1c(w) = 1¢(x) = 7-(a) <|J| = 7+(2) +1= 1¢(2),
which implies that x ;. w. A contradiction. O

The following rephrasing of this result is frequently more convenient in
applications.

Corollary 3.8. Let ¢ : © — ¥ be a semigroup homomorphism where & is
finitely generated and T is finite. If f : w — w and y : S — w are functions
such that

#(aoan—y) < f(r?jnxﬂ(ai)) ’

holds for all elements a,, ..., a,_; € S satisfying

* n=20r

* ¢(a,) =---=¢(a,) = e for some idempotent e € T,
then rng y is finite.

Proof. Let G be a set of generators of S. Given w = (a6, ..., ay—) € GV, let
t be a Simon tree of the sequence (¢(a,), ..., ¢(a,-;)) of height at most

85

I1. Finite Words

3|S|. By induction on the height k of ¢, it follows that
p(r(w) < f*(maxp(s))
which is independent of w. As k is bounded by 3|S| the claim follows. [

Exercise 3.1. Let ¢ : Z* — & be a semigroup homomorphism where
2 and @ are finite. Prove that there exists a constant k > o such that every
word w € Z* of length n* with # > 2 has a factorisation

W=wWe...Wyyy with @(wy)=-=0(w,). ,

4 Regular Languages of Sinite BHords

Before considering infinite words, we start with finite ones. For these it is
quite simple to characterise which languages are MSO-definable. We present
several equivalent ways to describe such languages. The first one is in terms
of automata.

Definition 4.1. (a) A nondeterministic automaton A = (Q, 2, A, g0, F) con-
sists of a finite set Q of states, a finite input alphabet X, an initial state q, € Q,
aset F € Q of final states, and a transition relation A € Q x X x Q. Instead of
(p, a,q) € A, we also write p 5% q.

(b) A run of an automaton A = (Q, 2, A, g0, F) onan input word w =
(305 +++)any) € Z¥ isasequence po, ..., p, of states starting with p, = ¢,
such that

(pirai, pir) €A, foralli<n.
Arun po,..., pyis accepting if p, € F.

(c) An automaton A accepts a word w if there exists an accepting run of A

on w. The language recognised by A is the set L(\A) of all words it accepts.

86

4 Regular languages of finite words

Example. The language of all words over the alphabet > := {4, b, ¢} with

an even number of letters 4 is recognised by the automaton

={Q 24,40, F)
with states Q = {q,, g }, final state F = {q, }, and transitions

b, b,
‘Iogqu ‘IIL‘IO’ ‘]o—c>‘Io’ ‘]1—c>%~

b, c b, ¢
0.3

The second way to describe languages is in terms of semigroups.

Definition 4.2. Let L € X*,
(a) A homomorphism # : 2* — & into a semigroup & recognises L if

O = ’7_1[1)] , forsomePcCS.
(b) The syntactic congruence of L is the relation on 2* defined by

x~py c:iff uxwelL<uywel forallu,weZX”.

a

Note that in the definition of recognition by 2 homomorphism we have
ignored the empty word. This can be avoided by using monoids instead of
semigroups. But later on when we study infinite words, monoids would
cause technical problems of their own.

Example. Let L be the language of all words over the alphabet > := {a, b, ¢}
with an even number of letters a. L is recognised by the homomorphism
1 : 2% — Z/2Z that maps a to 1and b, ¢ to o. Its syntactic congruence is

x~py Uf modulo2, xand y have the same number of

letters a

it n(x)=n(y). ,

87

I1. Finite Words

Example. Let us show that every language recognised by an automaton
A=(Q,Z2,A,qo, F) can also be recognised by some finite semigroup. This
semigroup is S := ((Q x Q), o) consisting of all relations R € Q x Q with

the usual composition
RoT:={{(a,c)|(a,b)eR, (bc)eT}

as multiplication. To define the homomorphism # : £* — & we only need
to say what it does on single letters. For a € X, we set

n({a)) ={{pa) [(pa,q)eA}.

For words w = (a,, ..., a,_,) it then follows that

n(w) =n({ac)) o---en({an)).
To see that 7 recognises the desired language, note that L(A) = 7 "[P]

where

P:={RcQOxQ|(q0,p)€RforsomepeF}.

The subsemigroup of & induced by the elements in the range of # is also
called the transition semigroup of A.

4

Example. The construction in the previous example simplifies for determ-
inistic automata. Such automata take the form A = (Q,2,6,95, F) where,
instead of a transition relation A € Q x ¥ x Q, we now have a transition func-
tion 8 : Q x X — Q. In this case, we can take the semigroup & := (Q2, 0°P)
of all functions Q — Q with ‘mirrored’ function composition as multiplica-
tion:

fooP g= gof,

'The homomorphism # : £* — & maps a letter a € X to the function
da(q) = 8(g,a).

Then L(A) = [Pl for P:={f:Q = Q| f(q0) € F}. y

88

4 Regular languages of finite words

Lemma 4.3. The syntactic congruence ~1, is a congruence relation (of the free
semigroups (Z*,).

Proof. ~ is obviously reflexive and symmetric. For transitivity, suppose that
x ~1 ¥ ~1 z. To show that x ~, z,let u,w € ¥, Then

uxw € L < uyw € L < uyzw € L.

Finally, suppose that x ~, x" and y ~1, y’. To show that xy ~p x'y’,
consider words u, w € 2. Then

uxyw€L©ux'yw€L©ux'y'w€L. O

We obtain the following characterisations of the class of MSO-definable
languages.

Theorem 4.4. Let L € X%, The following statements are equivalent:
(1) L is definable in MSO.
(2) L is recognised by a homomorphism to a finite semigroup.
(3) L is recognised by an automaton.
(4) The syntactic congruence of L has finite index.

Proof. (1) = (4) Suppose that there is an MSO-formula ¢ defining L. and
set m := qr(¢). Since

_m / d _m " imoli ~ _m I~ o1
vEyuso V. and w Sygow implies viw Sygo v w,

for v,v',w,w’ € X%, the relation =Niso 1s a congruence relation on >,
Furthermore, if x =4 y then uxw =)} uyw implies that

uxwel iff wxwee iff uwywe¢ iff uywel.

Hence, =}}so S ~1. We have seen in Proposition I.3.4 that there are only
finitely many ={j4-classes. As every =] -class is contained in a ~ -class,
it follows that ~1, also has only finitely many classes.

89

I1. Finite Words

(4) = (2) If ~1, has only finitely many classes, the quotient ¥/~ isa
finite semigroup. We claim that L\ {{}} = 77" (P) where 7 : Z* — X%/~
is the canonical projection mapping every word w to its ~p -class [w] and

P:={[w]|weL}.

Clearly, w € L implies m(w) € P. Conversely, if 7(w) € P, there is some
v ~p w with v € L. By definition of ~, it follows that w € L.

(2) = (3) Suppose that L\ {()} = 47" (P), where 71 : £* — & is a homo-
morphism to a finite semigroup & and P C S. We obtain an automaton .4
recognising L by setting A := (Sl, 2, A, 1, F) where

pa P if()¢L,
T lpu{t} if()eL,
and A::{(s, a, s-r/(a))|s€S, an}.

(3) = (1) Let A=(Q, 2, A, g, F) be an automaton recognising L. We
obtain a formula ¢ defining L as follows. ¢ guesses a run of A on the given
word. It encodes this run by a tuple (Z4)4¢0 of set variables, where Z, con-
tains all positions such that the automaton is in state g after having read that
position. In the case where () ¢ L, we set

¢ = 3(Z4)gc0[ADM A INIT A TRANS A ACC]

where ADM states that every position is labelled by at most one state:

ADM :=VYx A\ ~(Z,x A Zyx),
r#q

INIT states that the first state is correct:

INIT := Ex[Vy(x <AV (Zgx A Pax)] ,
(g0,a,q)eA

90

4 Regular languages of finite words

TRANS states that at every position a valid transition is used:

TRANS := Vx\?’y[suc(x,y) -V (ZyxnZyy /\Pay)] ,
(pa,9)eh

and ACC states that the last state is final:

ACC:=\/ Ix[Zx AVy(y <x)].
qeF

If () € L, we use the formula Yz ¢ instead, where ¢ is defined as above. [

Example. Let us use the preceding theorem to show that the language
L:={a"b"|n<w}

is not MSO-definable. We give three different proofs, one for each of the
above characterisations.

The easiest way is to argue in terms of the syntactic congruence. For m < n,
we have a”b™ € L and a”b™ ¢ L. Hence, a” +1 a” for all m < n and the
index of ~p is infinite.

Using semigroups we can proceed as follows. For a contradiction, suppose
that L were MSO-definable. Then it would be recognised by a homomorph-
ism 7 : ¥ - & to some finite semigroup &. It follows that there must be
two numbers m < n with §(a™) = #(a"). Consequently,

n(a”b™) =n(a")-n(6") = na")-n(b") = n(a"b").
Hence, a”b™ € L implies a”b™ € L. A contradiction.

Finally, let us argue in terms of automata. Again, suppose that L is regular.
Then there exists an automaton A = (Q, %, A, q,, F) recognising L. Let
n := |Q| be its number of states. Then a”b” € L implies that there exists an
accepting run (p;)i<.n of Aon a”b”. As there are only n states, we can find
two indices 0 < j < k < n with p; = pi. We construct a new input word
and a corresponding accepting run on it by taking the given word and its

run and repeating the part between the indices j and k. (In automata theory,
this process is called pumping.)

o1

I1. Finite Words

P P 5§ |
Pj pj

L& [[ab [o | b |
pj Pj pj

This produces the word g+ (k=j)pn (note that k < n, so both indices corres-
pond to positions in the first half of the word) and the run (p’)iS2n+(k—j)
where

I Pi lflfk;
bi Pi-(k-j) ifi>k.

It follows that A also accepts the input a"* (k=i p? ¢ [A contradiction.

Exercise 4.1. Give direct proofs for the following implications from The-
orem 4.4:

M=0), ()=0),
(3)=(4),)=06), (=0 .

Exercise 4.2. For each of the following languages over the alphabet X :=
{a,b, ¢}, find (i) an MSO-formula defining them, (ii) an automaton recog-
nising them, and (iii) 2 homomorphism recognising them.

m bn

(a) The language of all words of the form a™b" with m, n < w.

(b) The language of all words such that, after every letter g, there is some
later position with a b.

(c) The language of all words such that between any two a there is at least
one b.

(d) The language of all words with exactly 2 occurrences of the letter a.
(e) The language of all words of the from xay with x,y € Z* and |y| =

n. |

Exercise 4.3. Prove that the following languages over X := {4, b} are not
MSO-definable.

92

5 First-order logic

(a) The language of all words of the form a™b” with m > n.
(b) The language of all words of the form ww for w € Z*.

)

)
(c) The language of all words of length n* for n < w.
(d) The language of all words with the same number of letters 4 and b.
)

(e) The language of all well-bracketed words where we consider a as an
opening bracket and b as a closing one.)

Exercise 4.4. Let L be an MSO-definable language over the alphabet 2.
Prove that there exists a constant 0 < n < w such that every word w € L of
length |w| > n has a factorisation w = x yz satisfying

Ixy|<n, y#(), and xy*zeL forallk<w. ,

5 Sitft~Order Logic

We can derive a similar characterisation of the class of first-order definable
word languages. The goal of this section is to prove the following theorem,
which contains logical and algebraic descriptions of this class. We omit the
automata-theoretic characterisation, as it is more technical.

Theorem 5.1 (Schiitzenberger, McNaughton, Papert, Kamp). Let L € Z*.
The following statements are equivalent.

(1) L is definable in FO.

(2) L is definable in LTL.

(3) L = L(«a), for some star-free regular expression a.
)

(4) L is recognised by a homomorphism into a finite aperiodic semigroup.

We have not yet defined all the notions figuring in this statement. This will
be done below.

Semigroups

We start with the algebraic characterisation.

93

I1. Finite Words

Definition 5.2. A semigroup & is aperiodic if every H-class of & has a single
element. |

Let us mention several alternative definitions of aperiodicity that some-
times are more convenient.

Lemma 5.3. Let G be a finite semigroup. The following statements are equival-
ent.
(1) & is aperiodic.

(2) Forevery a € S, there is some number n > o such that a"** = a”.

(3) No subsemigroup $ € & with more than one element forms a group.

Proof. (2) = (1) Suppose that @ =y b. Then there are elements u, v, s, t € S
such that

a=sb=bu and b=ta=av.

n+1

By assumption, there is some # with s”™* = 5", Consequently,

b=av=sby=s"bv" =s""bv" =sb=a.

(1) = (3) Suppose that $ € & is a subsemigroup with at least two elements
that forms a group. For all 4,b € H, it follows that 4 < b and a <gr b.
Consequently, all elements of H are contained in the same H-class and at
least one H-class of & has more than one element.

(3) = (2) Given a € S, we consider the sequence 4, a?, 4%, a*, Since
& is finite there are numbers n, k > o such that a” = " ¥, We choose them
minimal. If k = 1, we are done. Hence, suppose that k > 1. Let m be the
number such that n < m < n + k and m = 1 modulo k. It follows that

(um)i — ami — um+i—1 .

Hence, the element ™ generates the subsemigroup {amﬂ, a”, ..., a””k*’}

which is isomorphic to Z/kZ, a group with k > 1 elements. O

We can already prove the following part of Theorem 5.1.

94

5 First-order logic

Proposition 5.4. A language L C X is FO-definable if, and only if, it is
recognised by a homomorphism into a finite aperiodic semigroup.

Proof. (=) Suppose that L is defined by an FO-formula of quantifier-
rank m. It follows by Proposition I.4.10 that we can define a binary operation
on the set O, of all FO,,-theories that turns ©,, into a semigroup and the
theory map Thig : ¥ — 0,, into a semigroup homomorphism. As this
homomorphism recognises every FO,,-definable language, it is therefore
sufficient to show that ©,, is aperiodic. By Proposition I.4.11, we have

Thio (w™"") = Theo ("),

for every w € ¥ and every n > 2™ — 1. Consequently, aperiodicity follows
by Lemma 5.3.

(<) Let 7 : 2 — & be a homomorphism recognising L where & is
finite and aperiodic. We will construct FO-formulae ¢, (x, y), for a € S,
such that

wEe@.(i, k) iff n(w[i,k))=a.

We proceed by induction on the J-class] of 4. By inductive hypothesis, we
have already constructed formulae ¢ for all ¢ > a. First, we construct a
formula 97 such that

we9d; iff n(w)e].

Let us call a factor w[i, k) of a word w an J-factor if

o n(wlik)) >y a,

o either k = |w|or y(w[i,k+1)) <j q,

o eitheri=oory(w[i—1,k)) <) a.
We can define a formula ¢ (x, y) stating that x[x, y — 1) is a J-factor and
#(w[x,y)) = ¢ by expressing that

¢ ¢p(x,y—1) holds for some b > a,

¢ P,y holds for some d with b - (d) = ¢ < a, and

95

I1. Finite Words

¢ x is either the least element, or we have Py/(x — 1) for some d’ with
n(d)-b<ya.
Let 95 be the formula saying that
o every J-factor u of w satisfies 17(u) 2 a,
¢ if u and v are consecutive J-factors of w, then #(uv) > a.
Then it follows by Corollary 2.11 (b) that w = 9; implies #(w) >, a, as
desired.

To conclude the proof note that, & being aperiodic, we have
nw)=a if n(w)szpa f #n(w)= aandy(w)=Ra.

Furthermore,

n(w) =L n(v) and n(w)=kn(s),

where u is the first J-factor of w and v the last one.
Consequently, we obtain the desired formula ¢,(x, y) by stating the
following three conditions:

s n(w)e].
¢ 1(u) =g a, where u is the first J-factor of w,
o 7(v) = a, where v is the first J-factor of w.

By the above remarks, each of them can be expressed in first-order logic. [

Remark. This result can be used to decide whether a given regular language L
is first-order definable. Given an automaton for L, we start by computing
a semigroup recognising it using the construction from the proof above.
Unfortunately, simply checking this semigroup for aperiodicity is not enough
since we need to know whether some semigroup recognising L is aperiodic.
One can show that amoung all semigroups recognising a given language L
there is always a minimal one, the so-called syntactic semigroup of L. This
semigroup can be computed from any other semigroup recognising L by
taking a suitable quotient. As aperiodicity is presvered under quotients it
follows that, if any semigroup recognising L is aperiodic, so is its syntactic
semigroup. Hence, from the semigroup we computed above we can construct
the syntactic semigroup and check it for aperiodicity. |

96

5 First-order logic

Star~Sree Gepreflions

We can also characterise the first-order definable languages via a certain kind
of regular expressions.

Definition 5.5. (a) A star-free regular expression « over an alphabet X is a
term built up from binary operations -, N, U, a unary operation ~, and
constant symbols & and a, for each letter a € 2.

(b) The language L(«) € X* of such an expression « is defined inductively
as follows.

L(2):=9,

L(a):={a}, foraceZX,
L(anpf):=L(a) nL(B),
L(auB):=L(a)uL(B),

L(~a):=2"\L(a),

L(a-p):=L(a) L(B). s

Examples. (a) ~& - a-~3 - a -~ describes the language of all words
containing at least two occurrences of the letter a.

(b) ~(~@-(aaubb)-~z)n(a-~@-b) defines (ab)*.)

To show the equivalence of star-free expressions and first-order logic, we
use the following variant of the back-and-forth property for FO.

Lemma 5.6. For words u,v € X* and a number m < w, we have

u=p3tv iff (ue€EaF < ve EaF)

forall a € X and all =}ty -classes E, F € " [=], .

97

I1. Finite Words

Proof. By Proposition 1.3.6, we have

—m+1
U=pp V

iff forevery i < |u there is some k < |v| with u, i =f v, k, and
for every k < |v| there is some i < |u| with u, i =g v, k

iff ~ for every factorisation u = u,au, (with a € X) there is some
factorisation v = vy av; with u, =pq vo and 4, =fg v;, and
for every factorisation v = v,av, (with a € X) there is some
factorisation u = uyau; with uy =pg vo and 4, =pg vy

iff ueEaF=veEaF, forall=f,-classesE,FandacX
veEaF = ueEaF, forall=f,-classesE,FandacZX

if uweEaF < veEaF, forall=f,-classesE,F. O

Exercise 5.1. Show that, over the class of all finite words, every first-order
formula is equivalent to a formula that uses only three variables (which can
be quantified several times).)

Proposition 5.7. A language L € 2* is FO-definable if, and only if, it can be
expressed by a star-free regular expression.

Proof. (<) Given a star-free expression & we construct an FO-formula

¢a(x, y) such that
wE (i, j) iff wli,j]eLl(a).
As usual the definition proceeds by induction on «.

¢gz(x,y) = false,
¢a(x,y):=x=yAP,x,
q’aﬂﬁ(x’J’) = @a(x,) A q’ﬂ("»}’):
Paup(x,y) = 9ulx,) vV 9p(x,y),
Pea(x,y) = x Sy A=@a(x,y),

98

5 First-order logic

Pap(x,y) =[x <unu+ti=vAv<y
A pa(x,u) A pp(v,y)]
Vl/’tx,ﬂ(x')’) VV’ﬂ,a(x))’)f

where in the last definition we have used the formula

false otherwise .

Va,p(x,y) = {(pﬁ(x,y) if () e L(a),

(=) It is sufficient to construct, for every =fo-class K € 2+/E;"O, a
star-free expression defining K. We do so by induction on m.

If m = o, all words are =} -equivalent. Hence, K = X* and we can use the
star-free expression ~@. For the inductive step, let K be an =" -class. By
Lemma 5.6, it follows that K can be written as a finite boolean combination
of languages of the form EaF where a € X and E, F are =5 -classes. We can
use the inductive hypothesis to obtain expressions « and f§ for, respectively,
E and F. Hence, « - a - 8 defines EaF. As star-free expressions are closed
under boolean operations, we can combine these expressions to get one

for K. O

Pinear Temporal Logic

Finally, we can also use a certain form of modal logic.

Definition 5.8. Let X be an alphabet. The formulae of linear temporal logic
LTL are built up from atomic formulae of the form P, with a € ¥ using
(i) boolean operations and (ii) a binary modal operator U. We read ¢ U v/
as ‘g until . The semantics is defined as follows. Given a word w € X* of
length n > o, we set

wE P, ;iff w(o) =a,
wEe@Uy :iff thereissome o < k < nsuch that w[k,n) £ v
andw[i,n) = ¢pforallo<i<k.

99

I1. Finite Words

The boolean operations are interpreted in the usual way. In addition we use
the following abbreviations:

Xg :=falseU ¢ (‘next ¢’),
Fo:=trueUg (finally @),
Gy :=-F-¢ (generally ¢’) .
We also introduce reflexive versions of U, F, G:
pU.y:=yv(eUy),
F.p:=¢VFgp,
G.o:=9pnGop. R

Examples. (a) F.(P,AF.P,) defines the language of all words containing
at least two occurrences of the letter a.

(b) G.(P, — F.Py) says that every letter a is followed (not necessarily
immediately) by a b.

(c) —Xtrue states that the word consists of a single letter.
(d) P, AP, UGP, defines the language a*b*.

Cleatly, the logic LTL can be embedded into first-order logic.

Lemma 5.9. For every LTL-formula @, there exists an FO-formula y such that

wee it wey, forallwordsw.
Proof. Given ¢ we construct an FO-formula ¢* (x) such that

wee iff uwE@ (Ju]), forallw,ueX”.
The definition proceeds by induction on ¢.

Py (x):=Psx,
(pAy) (%)= (x) Ay (x),
(=) (x) = =" (x),
(pUy)"(x) =[x <yny* () AVe[x<z<y—>9"(x)]]. O

100

5 First-order logic

To conclude the proof of Theorem 5.1 it is now sufficient to show that
first-order definable languages can also be defined in LTL. This is the hardest
part of the theorem and requirese a bit of preparation.

Lemma s.10. For every LTL-formula ¢ and every set A C X, there exists an
LTL-formula ¢*) such that

wie o™ i uEeg for the maximal prefix u of w withu € A .

Proof. 'We start by transforming the given formula ¢ into negation normal
form where negations are only allowed in front of the atomic predicates P,.
This can be done using the laws of de Morgan and the equivalences

—|FI// = G_\Illr
-Gy = F-vy,
—|(l//U19) = G(I///\—!S) \% (l//A—!S)U(—!I///\—!S).

After this simplification, we can construct ¢(4) by induction on ¢ as follows.
Setting Py = Ve P, we define

P(A)'— Pa ifﬂeA,
“ 7) false otherwise,

P(A) . _‘Pa/\PA ifaGA,
7) true otherwise,
(o A 1l,)(ﬂ) - g0(4) A V/(A))
(pv)@ =™ vylD),
(Uyp)D := Py Ao AP, JU YA, O

The second construction we need is the following analogue of an inter-
pretation for LTL.

Definition 5.11. Let X and I' be alphabets, O ¢ I' a new letter, and let
(W) cerugn) be a family of LTL-formulae such that, for every w € X, there
exists exactly one ¢ € I'U{O} with w = ..

101

I1. Finite Words

The LTL-transduction 7 : Z* — I'" defined by (). is the following
function. Given a word w € X* of length n := |w|, let c; e Tu{O}, for i < n,
be the letters such that

w,iE Y, .
‘Then 7(w) is the word obtained from (co, ..., c,—;) by deleting all letters
that are equal to O.)

Lemma s.12. Let 7 : £* — I'" be an LTL-transduction. For every LTL-
formula @, there exists an LTL-formula @ such that

(w)Ee iff wke", forallweZX".
Proof. Given ¢, we will define a formula ¢* such that

w)Ee ff wee", forallweX" withwE -yg.
Then we can set

9" =yo U (syn A @7).
To define ¢* we proceed by induction on ¢@.

P: =V,
(91 9)" =" A",
(-¢)" ==(9"),
(pU9)" :=(~yg > ¢") U (-yg A 9"). O

As an application, let us show how to compute products in aperiodic
semigroups using LTL.

Proposition 5.13. Let & be a finite, aperiodic semigroup. For every element
d € S, there exists an LTL-formula ¢ 4 such that

wkeeg iff w(w)=d, forallweS".

102

5 First-order logic

Proof. We will prove the following more general claim. Given a finite, aperi-
odic semigroup &, a non-empty subset C C S, and an element d € §, there
exists an LTL-formula ¢4 such that

we@s iff 7w(u)=d whereuis the maximal prefix of w

withu e C™.

The proof proceeds by induction on |S| and |C|.

If S = {c}, we can set ¢, := true. If C = {c}, we have to check whether
w = ¢"v where ¢” = d and v does not start with ¢, As © is aperiodic, there
exists some number k such that ¢” = ¢*, for all n > k. Setting

Y, =P, and Y,y =P AXy,,
we obtain formulae such that
wey, iff w=c"v, forsomeveS”.
Since there exists at most one number n < k with ¢ = d, we can now set

Yo A—Wyyy ifd=c"withn<k,
Pd =Yk ifd = ck,
false ifc" £dforalln<k.

For the inductive step, suppose that we have already proved the claim
for all semigroups &' and all subsets C’ € S’ such that either |S’| < |S], or
IS’] = |S|and |C’| < |C|. We first consider the case where, for every element
¢ € C, left-multiplication 0, := a ~ ca by c is bijective. Since & is aperiodic,
k+1 = ¢k, Consequently, 5** = ok,
As o, is bijective, we can divide this equvation by (Tck and obtain o, = id.
Hence, we have ca = g, for all c € C and a € S, and it follows that

there exists some number k such that ¢

n(w)=d iff thelastelementof wisequaltod, forw e c*.

Thus, we can set

Q4= [\/PC]U[P‘,;/\—'X\/PC:I‘

ceC ceC

103

I1. Finite Words

It remains to consider the case where there is some ¢ € C such that
the function a — ca is not bijective. Set T := ¢S and D := C \ {c}. By
assumption, T c S. Furthermore, T induces a subsemigroup of & since
ca-cb=c(achb) e T.

Let us define a block of w € C* to be a maximal factor of the form ¢"u
with n < w and u € D*. To compute 7(w) we will proceed in two steps:
first we multiply every block of w and then we multiply the results.

To accomplish the former we define formulae v, for d € S, such that

weyy iff w=ac"uww and 7#(u)=d

where ¢"uisablockofw, ae D, veC*.

Note that this formula is supposed to be evaluated at the position preceding
the block in question. This is because we need to verify that we are at the
beginning of a block and we cannot look backwards in LTL. By inductive hy-
pothesis, we can construct formulae (¢¢), and (¢2), evaluating products
of sequences in, respectively, {c}* and D*. We set

Ya = =P AX(Pe A yy)

where
v, = [95 AGP.] v \b/ [95 A [P Ugp]].
a,beS
ab=d

(The first part deals with the special case where we are in the last block and
this block is of the form ¢” without elements from D. The second part is
for the more common case where the current block does contain elements
from D.) Together with the formula

Yo = P, v =XP.

we obtain a family (¥4)g4esuqoy that defines an LTL-transduction 7 that
maps w to the sequence of products of the blocks (excluding the first block
which we treat separately). This sequence belongs to T™*. Since T is a proper

104

5 First-order logic

subsemigroup of S we can use the inductive hypothesis to obtain formu-
lae gog for evaluating the resulting product. This leads to the following

definition.
9a = [y AGyo] v \b/s[‘//; Ay U (o)1)
Yond

('The first clause is for the case where there is only one block, the second one
if there are more.) O

As we have already established the equivalence between FO-definability
and recognisability in an aperiodic semigroup, we now immediately obtain
the last missing piece for the proof of Theorem s5.1.

Corollary 5.14. Every FO-definable language is LTL-definable.

Proof. Let L € X" be FO-definable. By Proposition 5.4, we can find a ho-
momorphism 7 : Z* — & to a finite aperiodic semigroup & such that
L = #7*[P] for some P € S. We construct an LTL-formula y defining L as
follows. Let ¢4, d € S, be the LTL-formulae from Proposition 5.13. Given
awordw =a,...a,-, € X, letw" =1(a,)...n(a,-,) € S* be the word
obtained from w by replacing each letter by its image under #. It follows that

weL if nw)eP if w'e=\9¢, iff wey,
aeP

where is the formula obtained from V ,cp ¢, by replacing every predic-
ate P, with ¢ € S by the formula

v9C = \/ Py.
ben~'(c)nZ O

Totes

Ramseyan splits were introduced by Colcombet, extending earlier results by
Simon (195] on factorisation trees. Their existence for arbitrary linear orders

105

I1. Finite Words

is due to [50]. Our presentation follows expositions by Bojariczyk [26] and
Colcombet [51].

The equivalence between monadic second-order logic and automata was
independently discovered by Biichi [34], Elgot [78], and Trakhtenbrot [206].
The equivalence between star-free regular expressions and aperiodic monoids
is due to Schiitzenberge [190], the one between star-free regular expressions
and first-order logic due to McNaughton and Papert [142], and the equival-
ence to LTL is due to Kamp [113].

106

III Jnfinite Yords

1 Ram(ey dbheory

UR NEXT AIM IS TO DO what we just did in Section I1.4 for languages of
O infinite words. Unfortunately this entails a bit of technical overhead.
In particular, we need a few results from a branch of combinatorics called
Ramsey Theory. We have already seen one result of this kind in Section IL.3:
the Lemma of Simon. In this section we will derive several more. The simplest
example of such a result is the statement that every infinite undirected graph
contains an infinite clique or an infinite independent set.

Definition 1.1. Let A be a linear order.

(a) We denote by [A]* the set of all pairs (i, k) € A> with i < k.

(b) A finite colouring of A is a function A : [A]* - C where C is a finite
set of colours.

(c) Let & be a finite semigroup. A finite colouring A : [A]> — S is additive
if

AMx,y) Ay, z) =A(x,2), forallx<y<z.)

Theorem 1.2 (Ramsey). Let A : [w]* — C be a finite colouring of w.
There exists an infinite subset I € w such that

A, k) =A(, 1), foralli<kand j<linl.

Proof. We construct an increasing sequence n, < n; < --- of indices, a
sequence ¢, ¢y, - .. € C of colours, and a decreasing sequence J, 2 J; 2 -+
of infinite sets such that, for every i < w,

ni€J; and A(n;,k)=¢;, forallke Ji,.

MONADIC SECOND-ORDER MODEL THEORY 2025-02-23 — ©ACHIM BLUMENSATH 107

III. Infinite Words

We start with n, := 0 and J, := w. By induction, suppose that we have
already defined n; and J;. For ¢ € C, set

Lei={keJi|k>n;and A(nj, k) =c}.

Then J; \ [n; +1] = Ucec L. As J; is infinite and C is finite, there is some
element ¢; € C such that L., is infinite. We set

Jisr =L and njy t=min Jiy, .
Having defined (1) i<, (¢i)i<ws and (Ji)i<w, we consider the sets
M ={i<w|ci=c}, forceC.
Note that nj € J; € Jiyy, for j > i, implies that
A(ni,nj) =c, foralli< jin M.

Since U.ec M, = w, there is some ¢ € C such that M, is infinite. We set
IZ:{n,‘|i€Mc}. O

Remark. This theorem holds more generally for colourings of k-tuples
instead of pairs. The proof is a straightforward induction on k using
the argument from the above proof for the inductive step. ,

Exercise L.1. (a) Let & = (V, E) be an infinite undirected graph. Prove
that there exists an infinite set X € V such that either all vertices in X are
adjacent, or none of them are.

(b) Let 8 = (V, E) be an undirected graph with at least 6 vertices. Prove
that there exists three vertices x, y, z € V that are either all connected by an
edge, or none of them are. j

Exercise 1.2. Let & be a finite semigroup and a,, 4, . . . an infinite sequence
of elements of S. Prove that there exists an increasing sequence ko, < k; <. ..
of indices and two elements b, e € S such that

be=b, ee=e, b=agap,_,, and e=ap--ap, .,

foralli < w. |

108

1 Ramsey theory

Exercise 1.3. Let & be a finite semigroup, 7 : Z* — & a homomorphism,
and let L € 2 be a language of the form

L={J rf‘(bi)(ﬂﬂ(ei))w, forn<wandb;,e; €8,
i<n
where X¢ := { xox;%,... | x; € X }.

Prove that the complement X \ L is also of the form

NL=Un ")),

i<m
for suitable m < w and ¢;, f; € S. .

Exercise 1.4. A well-quasi-order is a partial order (A, <) that does not contain
any infinite descending sequence and any infinite antichain (i.e., a set of
pairwise incomparable elements).

(a) Prove that every infinite partial order contains an infinite set that is
either an ascending chain, a descending chain, or an antichain.

(b) Prove that (A, <) is a well-quasi-order if, and only if, for every infinite
sequence do, 4y, ,, . .. in A there are indices i < k with a; < ay.

(c) Let X be a finite alphabet. We define an ordering on X* by setting
x < y if the word x can be obtained from y by deleting some letters. Prove
that (£, <) is a well-quasi-order.

Hint. Assume that (£¥, <) is not a well-quasi-order and find words
Wo, Wy, ... such that, for every n < w, the sequence w,, ..., w, can be
continued to an infinite sequence violating the condition in (b).)

For additive colourings, we can improve the Theorem of Ramsey. One
such result is the Lemma of Simon that we proved in Section II.3. We can
interpret Simon's Lemma as a recursive version of the Theorem of Ramsey
where we partition the input word not only once, but each of the resulting
factors recursively until only single letters are left. Of course we could just
repeatedly use the Theorem of Ramsey to get such a decomposition. The
point of Simon’s Lemma is that a bounded number of iterations is suflicient
for this.

109

III. Infinite Words

While Simon’s Lemma is a powerful result, it does have one drawback:
the split we obtain depends on the whole input word. Below we will need
a way to compute a split while reading the word from left-to-right in a
deterministic fashion without having to know how the part we have not
seen yet looks like. In the following we will prove a result of Colcombet
which shows how this can be done. The resulting split will unfortunately
not be fully Ramseyan, it will only satisfy a slightly weaker property, which
is nonetheless still sufficient for many applications.

The starting point is the following problem: given an additive colouring
A:[I]* = S of alinear order 3, we would like to find a colouring y: I - C
of the elements of I such that we can recover A from y. That is, we want to
reduce a labelling of pairs to a labelling of singletons. The proof use techniques
from semigroup theory and Green's relations.

Definition 1.3, Let & be a finite semigroup.
(a) A right action of & on a set Q is a function » : Q x § - Q satisfying

the equation
g>(ab)=(qra)>b, forallgeQanda,beS.
(b) A J-chain of Sisatuple d = (a,,...,a,) € S* such that
Ao <J <Y g -

We denote the set of all J-chains of & by Chain;(S).
(c) We define a right action > of & on Chain (&) by

(a0, .-ram) v b:={ac,...,ap_y, (ar--anub)),

where 0 < k < m + 1is the maximal index such that the above tuple is a
J-chain.

(d) Let « < wandlet A : [a]* — S be an additive colouring. A function
x: « > Chain (&) is a J-chain labelling for A if, forallo < i < a,

x()=x(G-1)vA(i-11). j

110

1 Ramsey theory

Example. Let M = {1,a, b, ab, ba, aba, 0} be the monoid from the example
on page 67 with three J-classes:

{o} <j {b,ba,ab,aba} <; {1,a}.

For the colouring A : [10]* = M with

we obtain a J-chain labelling

a I b
b a a b b a
|a|—>|ab|—> ab |—| ab —>|o|—> o|—
a I a
b b b
a a a b
—|o|—|o0o|—|0|— |o|
where we have written a J-chain (a,, ..., a,,—,) as a column
Am—1
ao

We will prove that we can recover A from a J-chain labelling.

Definition 1.4. Let ¥ : &« — Chainj(&) be a J-chain labelling for A :
[a]* = S.

(a) Let 4 : ST — S be the function mapping a tuple (ao, ..., dm—y) to
its last element a,,_,, and let 77 : $* — S* be the function mapping a tuple
(a6, .+, am—y) to the product ag-+-a,,_; of its components.

(b) For positions i, k < «, we define

i<;k (ff i<k and uy(j) £y px(i), foralli< j<k,
i< k iff i<fk and py(i) =px(k).

111

III. Infinite Words

Lemma 1.5. Let & < w, let ¥ : @ — Chainy(&) be a J-chain labelling for
A:[a*] = S, and let i < k < a be positions with

ié;k, X(i):sa, and X(k):t, fors,tES*,aES.
(a) Thereexistb € S and x € S* such that
t=sbx, b=ja, and w(bx)=a-A(i, k).

(b) If t = s°b"™x with x # (), there is some position i < j < k such that
A(j, k) = n(x).
(c) Ift=s"band i<k, thena=yA(i, k).

Proof. (a) We prove the statement by induction on the number of positions
between i and k. If i = k, then

= (k) = x(i) =,

and we can set b := g and x := ().
For the inductive step, let k be the immediate predecessor of k and assume
that i < k. By inductive hypothesis, it follows that

(k') =sb"x,

for some b € S and x € S* such that
b=ya and 7(b™x)=a-A(i, k).

By definition of y, there is a factorisation 4™ of s"b"x such that
t=un(vc), where c:=A(k",k).

We claim that s is a prefix of u. For a contradiction, suppose otherwise. Then
s=u"d"yandv =d"y"b"x where y € S* and d € S is the first element of v.
Setting d’ := 7(v"c) we obtain

d'=n(dybxc)<;d.

112

1 Ramsey theory

Since sb™x = u"d"y"b"x is a valid configuration, it follows that d <; b.
Consequently,

px(k'y=d"<yd<yb=ya.

A contradiction.
We have shown that ¢ is of the form

t=s2"d where d:=n(v) and zVv=bx.
By definition of y and by inductive hypothesis, it further follows that

a-A(i, k) =a-A(i, k") - A(k', k)
=a(bx)-c=n(zv) =n(z) n(ve)=mn(z"d").

It therefore remains to prove that the first element of z°d” is J-equivalent
to a. Ifz # (), then z = b2/, for some 2’ € S*. Hence, t = s"b"2'"d’ where
b=)a.Ifz =), thent=sd where

d=na(ve)=n(zve)=n(bxc)<yb=a.

Since d’ = uy(k') ¢y a, it follows that d’ = a.
(b), (c) We prove both statements by induction on the number of positions
between i and k If i = k, then b = 4, x = (), and (b) and (c) hold trivially.
For the inductive step, let k’ be the immediate predecessor of k and sup-

pose that i < k’. By (a), it follows that y(k") = s°b""x’ where
B zyazsb and 7(bx)=a-A(ik).
Set ¢ = A(K', k). The definition of y implies that eicher
x=() and b=n(b"x""),
or b=0b", x'=y%, and x=y7m(zc), forsomey,zeS".

To prove (b), suppose that x # (). Then 7(x) = n(yz) = n(x'7).
Thus, it is sufficient to find a position i < j < k such that A(j, k) = m(x"").

113

III. Infinite Words

If x" = (), we can take j:= k".If x" # (), we can use the inductive hypothesis
to obtain a position i < j < k' with A(j, k") = nm(x"). Then A(j, k) =
A k) e =m(x"¢).

To prove (c), suppose that x = (). Set d’ := 7(x'c). Then b = b’ - d’
and, by definition of ¥, the sequence s°’"d’ is not a J-chain, while s
is one. Furthermore, we have b’ =) a =; b = b’'d’, which implies that
b’ < d'. Hence, the only possible reason for s"b'"d’ not being a J-chain is
that b’ ¢, d'. Consequently, d’ =, b’ =) a. We choose a position i < j < k
as follows. If x” = (), we set j := k'. If x" # (), we use (b) to choose j such
that A(j, k") = m(x"). In both cases it follows that

A, k) <y A(j k) =n(x"c)=d"=)a.

Moreover, we have seen above that b = n(b"x) = a - A(i, k). Therefore,
A(i, k) 2y b =y a and it follows that a =) A(i, k). O

Corollary 1.6. Let a < w and let y : & — Chainy(&) be a J-chain labelling
for A:[a?] = S.If i < k, then

ux(i)-A(i, k) = px(i) and px(i) =5 A(i, k).
Proof. By Lemma 1.5 (a), we have
x(i)=s"a and y(k)=s5b"x,

for some s, x € S* and a,b € S such that b =j g and #(b™x) = a - A(i, k).
Note that, if x # (), then x = y7a, for some y € S¥, and b £ a implies that
t"a = s"b"y"a is not a J-chain. Hence, x = (). This implies that

t=s, b=a, and a-A(i,k)=n(bx)=b=a.
Furthermore, it follows by Lemma 1.5 (c) that a =5 A(i, k). O

We are finally able to state our deterministic version of Simon’s Lemma.
Recall the notion of a split o and the corresponding preorder c,; from Sec-
tion II.3.

114

1 Ramsey theory

Definition 1.7. Let A and B be linear orders and A : [A]* — S an additive
colouring. A function 0 : A — B is a weak Ramseyan split of A if

AMx,y)=Ax,y)-A(x",y"), forallx c, yand x" =, y'

such that x €, x" or x’ £, x. ,
The above results allow us to construct a weak Ramseyan split as follows.

Lemma 1.8. Let & be a finite semigroup of size N := |S|and x : a —
Chain; (&) a J-chain labelling for an additive colouring A : [a]* — S. If
v: S — [N] is a bijection such that

a<yb implies v(a)>v(b),
then 0 = v o y o y is a weak Ramseyan split for A.

Proof. Consider positions x < y and x’ < y’ with x 5 y %, x" 7, y". Then

a:= ux(x) = ux(y) = ux(x') = ux(y')
and px(z) ¢y a, forallzbetween any two of x, y,x', y".

Consequently, x <, y and x” <, y’. By Corollary 1.6 it follows that

a-AMx,y)=a and a=jA(x,y),
a-Mx',y)=a and a=;A(x,y).

Applying Corollary IT.2.11 (a) to the values b := A(x, y) and ¢ := A(x', "),

we obtain
AMx,) AMx',y)=b-c=b=A(x,y). O
We can compute weak Ramseyan splits by an automaton.

Definition 1.9. (a) A deterministic finite-state transducer

T: <Q;Z,F,Qo;5; rl>

115

III. Infinite Words

consists of a finite set Q of states, an input alphabet %, an output alphabet T,
an initial state g, € Q, an output function 1 Q — I', and a transition function
0:0xX—>Q.

Let T = <Q, 2T, 40,6, #) be a transducer. The run of T on a word
w = (¢;)icq € 2% is the sequence (qi),-<ﬁ of states where ¢, is the initial
state and

a+1 fa<w,

w fa=w.

gi+r :=0(qi,c;), foralli, and f:= {
Every transducer 7 defines a function T : £*° — I'*® that maps an input
word w € 2° to the word

T(w)=(n(qi))icp, where(qi)icpistherunof T onw.

(b) Let & a finite semigroup and N < w a natural number. We say that a
transducer 7 = (Q, S, [N], 40, 8,) computes weak Ramseyan splits for S
if, for every additive colouring A : [a]> - S with & < w, the function
0 : a - [N] defined by

0=T(w) where w:=(A(i,i+1))itr<a,

is a weak Ramseyan split of A.

a

Theorem 1.10 (Colcombet). Given a finite semigroup & of size N :=|S
can effectively construct a deterministic finite-state transducer

T ={Q S [N] 90, 0,7)

that computes weak Ramseyan splits for &.

, we

Proof. We use the set Q := Chain (&) of all J-chains as states of the trans-
ducer. Note that this set is finite, since there are at most |S| J-classes. The
initial state q,, is an arbitrary J-chain. We define the transition function ¢

using the right action > : Chain (&) x § — Chain (&) by

8(ga)=qv>a.

116

2 The theory of w

Then the run of 7 on a given input A is a J-chain labelling y for A. Fixing a

bijection v : S - [N] as in Lemma 1.8, we can define the output function
1:Q ~ [N]byn(q) = v(u(q))- N

Exercise 1.5, (a) Let X be a finite alphabet, w € X, and k < w. Prove
that there are sets Q,, ..., Q,_; € w such that, for every MSO-theory 6 of
quantifier rank k, there exists an FO-formula ¢g(x, y) such that

(,Q)F go(x,y) i Thyso(wlx,y)) = 0.

(b) Let 7 be an MSO-interpretation 7 and P, ..., P,_; € @ monadic
parameters. Prove that there exist an FO-interpretation o and sets Qo, ..., Q-1 €
w such that

({0, P)) = 0((w, Q). ,
2 The dbheory of w

Biichi was the first one to show that the monadic second-order theory of
(w, <) is decidable. His origninal proof uses automata for w-words. In this
section we present an alternative model-theoretic proof due to Shelah. We
start with computing the theories of finite linear orders.

Definition 2.1. For 71 € w* and m < w, we denote by ©; (m) the set of all
sets of MSO” [<]-formulae with free variables X, ..., X,,,—;. And we set

@;(m) = { Thi/lsoo (A, Py...P,y) | A a finite linear order and
Po,..o, Py CA}.

Lemma 2.2. We can equip ©;(m) with two operations - and © such that
Thf/lsoo(gl' P+%,0)= Th&SOO(QI, P)- Thﬁsoo (3,0)
and Thil\lxlsoo(z:iw QI:I_)) = Thf/[soo (2, P)”,

for all linear orders A and B and all parameters P, Q.

17y

III. Infinite Words

Proof. This follows immediately from Proposition I.4.25. O

Proposition 2.3. Given 71 € w* and m < w, we can compute O;(m).
P

Proof. The set
Y= {Th;l\l/lsoo (<, 13) | A = (A, <) alinear order with |A| < 1}

is a finite subset of ®; (m) which we can compute from 7 and m. As every
finite linear order can be written as a finite ordered sum of one-element
linear orders, it follows that @;(m) is the subsemigroup of (@;(m), -)
generated by the set ¥. Hence, we can compute @ (m) from ©;(m) and
v, O

The next lemma allows us to go from finite orders to infinite ones.

Lemma 2.4. Let 1 € @™ and m < w. There exists a tuple ¥ € w™ of length
|7| = |#| such that, for every 0 € @;;(m), we can compute 0 € Oz (m) from
0 and Thyso, (@, <).

Proof. Note that
0= Thil\‘/ISOO(ZKw 91,13) ,

where 2 is any finite linear order with Thﬁflsoo (A, P)=0.Lett€ @z(m)
and let 9; be an MSO?, -formula equivalent to 7. It follows that

=1 iff Y APEI,.

i<w

According to Theorem 1.4.24, we can compute formulae 9'(Z) e MSO!,
and Xo, ..., Xi—1 € MSO} such that

YUPEY if (w,<)EI([xo] - s [xi—:])-

i<w

As all terms in the sum above are equal, we have

w ifyeo,
Mlﬂ_{@ if yi ¢ 0.

118

2 The theory of w

Let 97/ be the formula obtained from 9.(Z) by replacing every variable Z;
by

true ify; €0,
false ify; ¢o.
Then it follows that
o’=1 iff (0 <)E9 iff 97 eThyg, (w<). O

The key argument in our decidability proof below is the following lemma,
which states that every labelling of w is equivalent to an ultimately periodic
one. It is a direct application of the Theorem of Ramsey.

Lemma2.5. Letn € w* and m < w. Then
{Thﬁ,lsoo(w,g,l_’) | PoyooisPusCwh={01" |0, 7€ Ds(m)}.

Proof. (_2) Giveno,7 € @j; (m), fix finite linear orders A and B and para-
meters P and Q with theories ¢ and 7, respectively. Then

9P+ Z%,Q%(w,ﬁ,§>, for some S,,...,S,,_; Cw.

i<w
Consequently,
ot = TthSOO(Q[,I_’) 'Thli/{soo(%’g)w = Thzflsoo(w’ <$S).
(¢) Let Py, ..., P,_; C w.Fori< k< w, we define
A= ({iso. k1), S PH{ion k—1}).

By the Theorem of Ramsey, there exist a theory 7 € @;(m) and an infinite
sequence ko < k; < --- of positions such that

Thf/[soo(glki,kj) =71, forali<j<w.

Setting 0 := Thyo_ (Yo, k,), it follows that

Thijso, (@, P) = Thiiso, (Yo,k, + X ke,) = 07

i<w

119

III. Infinite Words

Theorem 2.6 (Biichi). Thyso(w, <) is decidable.

Proof. We prove by induction on |7 that, given 71 € w*, we can compute
i i
Thyse, (@, <). For i = (), we have

Thil/[soo(“"ﬁ) =0.

Hence, suppose that 7 = mn’ and that we already know how to compute
7 f o gal 1er
Thyso, (w0, <), for all 7 € w* with |7 = [4'].

To compute Th;;goo (w, <) it is sufficient to decide whether or not
(w, <) E IXoIX ry,

for all MSO? -formulae y(X). Hence, given an MSO” -formula y(X), we
have to decide whether there are sets P, ..., P,,_; € w such that

(0, <) Ey(P).

By Lemma 2.5, this is equivalent to the question of whether there are theories
0,7 € ©;(m) such that

y(X)eor”.

Therefore, it is sufficient to compute 0 7%, for all of the finitely many possible
choices of ¢ and 7. This we can do with the help of Proposition 2.3 and
Lemma 2.4 since, by inductive hypothesis, we can compute Thyso (@, <),
for all ¥ € w* with |7| = |#/]. O

3 w-Semigroups

To study languages of infinite words, we extend the notion of a semigroup
by adding an infinite product.

Definition 3.1. (a) An w-semigroup is a two-sorted structure & = (S, S,)
with three products

-:8x8->8, -:8S%xS8,—->S,, and m:S8Y->S,

120

3 W-semigroups

that satisfy the following associative laws:

(ab)c = a(be),

(ab)u = a(bu),

b-n(ao, ar,...) =7n(b,a0,a1,...),

7(ao,az,eo.) = (a0 ary—1), (3, " dk,—1)s+++)
forall a,b,¢,a5,a;,... € Sand u € S, and all increasing sequences o <
ko < k; < -+ < w. Informally, we refer to the element of S as the finite

elements and to those of S, as the infinite elements of &.
(b) The w-power of an element a € S is

a®:=mn(a,a,a,...).

(c) A homomorphism 1 : & — X of w-semigroups consists of two maps
Ho:S—=>T and #4:80w—~ To
that commute with products, i.e., for a,b, a5, a;,... € Sand u € S,
Mo(a) - 10(b) = 1o(ab),
1o(a) 1w () = no(au),
(16(a0), N0 (a1),--.) = 1o (7(ao, ar,...)). ,

Definition 3.2. Let X be a set.
(a) The free w-semigroup over X is (X*, X*). By abuse of notation we also

denote it simply by 2*°.
(b) A language L € 2¢ is recognised by a homomorphism 7 : 2*° — & to
an w-semigroup & if there exists a set P € S,, such that L = #7*[P].)

Example. Let & = (S, S,) be the w-semigroup with S := {o,1} and §,, :=
{o,1} where

a-b:=max{a, b}, fora,bes,

a-u:=u, foraeS,uesS,,

n(ao, ay,...) =limsupa,, foray, a;...€S.

n—o0o

121

III. Infinite Words

The language L of all w-words w containing infinitely many letters a is
recognised by the morphism sending the letter a to 1 and every other letter

to 0. |

Example. In the previous section we have already introduced the w-semi-
group (0; (m), ©;(m)) of all MSO? -theories over the signature {<, Py, ..., Py }.
Note that the function % : 2*° — 0;(m) mapping a word u € Z° to its
theory, is a homomorphism.
IfL € 2 is a language defined by an MSO? -formula ¢, then

L= {wes* | peTho, ()} = 17°[P]

where P := {0 € O;(m) | ¢ € 0}. Thus, every definable language is
recognised by 7.

4

Exercise 3.1. Find homomorphisms into finite w-semigroups that recognise
the following languages over the alphabet {a, b, c}.
(a) The language of all w-words containing infinitely many 4, but only
finitely many b.
(b) The language of all w-words where immediately after or immediately
before every letter a there is another a.
(c) The language of all w-words containing an even (and finite) number
of a.
(d) The language of all w-words where after every letter a there is a later
position with a letter b,
(e) The language of all w-words where, for every prefix p, the numbers of
the letters a, b, c differ by at most 1.

4

Exercise 3.2. Prove that a language L € X is recognised by homomorph-
isms into a finite w-semigroup if, and only if, it is of the form

L= UV®,

i<m

where m < w, U;, V; € 2 are MSO-definable languages of finite words,
and V¢ := {vovv,...|v; eV})

122

3 W-semigroups

Exercise 3.3. Let & be a finite semigroup, # : 2 — & a homomorphism,
and let L € 2 be a language of the form

L= U q_l(bi)(ﬂ_l(ei))w , forn<wandb;,e €S,
i<n

where X¢ := { xpx;x, ... | x; € X }.
Prove that the complement X \ L is also of the form

3O ([= U r]_!(ci)(i’]_l(fi))w;

for suitable m < w and ¢;, f; € S.

a

Exercise 3.4. Prove that the free w-semigroup (X%, X¢) really is free: show
that, for every w-semigroup S and everymap b : £ — §, there exists a unique
homomorphism # : 2*° — & such that n(a) = h(a), foralla € X.

a

Exercise 3.5. Let U = (S, S,) be an w-semigroup where each element is
invertible, ie., for every a € S, there is some element a™' € S such that
aa” ' =1=a""a (for some fixed 1 € S). Prove that

7(ao, a1, ...) = (bo, by,...), foralla;b;eS.

a

In order to prove that a language is recognisable precisely when it is MSO-
definable, we employ the Theorem of Ramsey.

Definition 3.3. (a) Let & be a semigroup and (4,)<, a sequence of semi-
group q
group elements. For i < k < w, we write

A[i,k) = FiGitr "Gk—1 ¢

A Ramsey factorisation of (a,) < is a sequence of indices 0 < ko < k; <
.-+ < w such that

ki k) = Ok ky) foralli < jandi' < j.

123

III. Infinite Words

The type of such a factorisation is the pair

(@[0,k0)r O[ks k)) -

(b) Let & be an w-semigroup and # : £°° — & a homomorphism. A Ram-
sey factorisation of a word w € X¢ is a Ramsey factorisation of the sequence

(n(w()))n<o- p

Lemma 3.4. Let G be a finite semigroup and (a,) n<w @ sequence of semigroup
elements.

(a) (a4)n<w has a Ramsey factorisation.
(b) If (b, e) is the type of @ Ramsey factorisation of (ay)n<w then

be=b and ee=e.

(c) If(b,e) and {c, f) are the types of two Ramsey factorisations of (@) n<e

then there are elements u,v € S such that
c=bu, e=uv, and f=vu.

Proof. (a) We define a colouring A : [w]* — S by assigning to a pair i < j of
indices the colour A(i, j) = aLi,j)- By the Theorem of Ramsey, there exists
an infinite set I C w such that A(i, j) = A(i’, j'), forall i < jand i’ < §
in I. We can choose for k, < k; < --- an increasing enumeration of I.

(b) Let ko, < k, < --- be a Ramsey factorisation with type (b, e). Set
€= a[ok,) and dy, = afp, k,,), for n < w. Thenb = c¢d, and e = d,.
Furthermore,

didivedj = afk, ki) = Ok k) = dirdinerdj,

ji+

foralli < jand i’ < j'. In particular, d; = d, for all i, j. Consequently, we
have

be=cdod, =cdo=b and ee=dd;,=d,d,=d,=e.

(c) Let kg < k; <---and I, < I; < --- be Ramsey factorisations with types
(b, e) and (c, f), respectively. Replacing (k) <o and (1) <w by suitable

124

3 W-semigroups

subsequences we may assume without loss of generality that k, < [, <k, <
[, <+ Forn< w,set

Un 1= Olk,,1,) and v, = ap k) -
Then ¢ = bu, and
e =UoVo = UgVy = and f:youI:vIuZ:...‘

Since the number of possible pairs (u,,, v,) is finite, there exist elements
u,v € S and an infinite set I C w such that

(4, vn) =(u,v), forallnel.
Fix elements m, n € I with n > m + 1. Then
c=cf™ = (buo)(otr) - (Vi—rtim)

=b(uovo) (merVm—r)ty = be™u = bu,

e=e> =u,vme=uve,

f = fn—m = (Vmumﬂ)'"(vn—lun)

= Vm(”m+IVm+I)"'(”n—rvn—l)“n =pe"™""

I
u=veu.
Consequently, the elements # and ve have the desired properties. O

Lemma3.s. Letyy: 2% — & be a homomorphism into a finite w-semigroup &.
Foru € S,, set

F,:={(a,b)eS*|ab’=u}.
Then #(w) = u if, and only if, w has a Ramsey factorisation with type in F,,.

Proof. (<=) If w has a Ramsey factorisation k, < k, < --- of type (a,b) € F,
then

’7(“’) = ’7(“’[0’ k!)W[kv kz)w[kw ks)"')
=n(wlo, ki) - n(wlks, ka)) - n(wlks, k)

=agbb---=ab" =u.

125

III. Infinite Words

(=) Suppose that (w) = u. By Lemma 3.4 (a), w has a Ramsey factor-
isation ko, < k; < -+~ Let (b, e} be its type. Then

u=n(w) =n(wlo k) - n(wlks k.)) - n(wlka, ks))---

=bee--- =be”.
Hence, (b, e) eF,. O

Lemma 3.6. Let & be a finite w-semigroup. For every pair (b, e) € S?, there
exists an MSO-formula @y, . defining the set of all w-words with a Ramsey
factorisation of type (b, e).

Proof. Let c € S. We start by defining a formula y, (x, y) stating that the
factor from position x to y — 1is mapped to c. We use set variables (Z4) 4es
containing all positions x < z < y such that the factor from x to z is mapped
to d. The formula ¥, (x, y) states that there are sets (Z4) ges such that

* ZynZy=gford+d,
o if g is the letter at position x, then x € Zy(a)
¢ if x < z < y and the letter at position z is a, then z — 1 € Z; implies
2 € Zgy(a), and
e y-1€Z.
Clearly, each of these statements can be expressed in MSO.

Having defined the formulae ., the desired formula ¢;, . states that there
exists an infinite set Z such that

* 3, (0, x) holds, where x is the second element of Z, and

¢ y.(x,y) holds for all elements x < y of Z. O

Theorem 3.7. Let X be a finite alphabet. A language L € 2% is MSO-definable
if, and only if, there exists a homomorphism 1 : 2% — & into a finite w-
semigroup © recognising L.

Proof. (=) We have seen in the example after Definition 3.2 that every
MSOg -definable language is recognised by a homomorphism into the w-
semigroup ©@;(m) of all MSO? -theories.

126

3 W-semigroups
(<) Let 7 : £*° — & be a morphism such that L = #7'[P], for some
P c S,. We have seen in Lemma 3.5 that
n(w)=u iff w hasaRamsey factorisation with type in F, .

Consequently, the formula

Y= \/ \/ Pb,e

u€P (b,e)eF,
defines L, where @}, . are the formulae from Lemma 3.6. O

If we want to compute with an w-semigroup, we face the problem that
we cannot write down the multiplication table of the infinite product since
it is infinite. For algorithmic applications we need to represent this table in a
finite way.

Definition 3.8. A Wilke algebra is a structure (S, Sw, -, ®) with two products
-:SxS8S—-S and -:SxS,-—>S,

and one unary w-power operation
“:8->8,.

These operations satisfy the following associative laws:

(ab)c = a(be), (ab)? =a(ba)?,
a(bu) = (ab)u, (a") =a",
fora,b,ceS,ueS,,ando<n < w.

a

Theorem 3.9. Let & be a finite Wilke algebra. There exists a unique function
: 8% = S, turning & into an w-semigroup with

n(a,a,a,...)=a".

127

III. Infinite Words

Proof. Given a sequence (4,)<, we define
7(ao, a1,...) = be”,

where (b, e) is the type of a Ramsey factorisation of (a,),<«. To see that
this is well-defined, first note that, according to Lemma 3.4 (a), every se-
quence does have a Ramsey factorisation. Furthermore, if (b, ¢) and (¢, f)
are the types of two Ramsey factorisations of (,),<, then we can use
Lemma 3.4 (c) to find elements u, v € St such that

c=bu, e=wv, and f=vu.
Hence,
cf¥ =bu(vu)® =b(uv)” = be”.

To prove that this operation turns & into an w-semigroup, we have to show
associativity. For the first equation, let (@,)<, be a sequence of semigroup
elements and let ¢ € S. If k, < k, < -+~ is a Ramsey factorisation of (a,) n<w,
then ko +1 < k;+1 < ---isa Ramsey factorisation of the sequence ¢, a,, 4, . . .
and we have

c(ao - ar,—1) (ar, ak,)"
= (caoap,—1) (ar, k1)

(¢, ao, ryee)

c-ﬂ(uo,a,,.”)

For the second equation, let (a,) <« be a sequence of semigroup elements
andlet I, < I; < -+ < w be a sequence of indices. Suppose that k, < k; < -+
is a Ramsey factorisation of the sequence (a;,--a1,,,_;)n<w. Then [y, <
lg, < ---is a Ramsey factorisation of (4,)<, and we have

(ao“'ﬂlkl,l)(ulkl “'alszl)w

=7(ag, s,).

n(aoal,—y, a1, 1,1y ++-)

It remains to show that the product 7 is unique. Suppose that 7’ : S —
Sy is any associative operation such that 7'(a,4,4,...) = a“, foralla € S.

128

3 W-semigroups

To prove that 71" = 71, consider a sequence (@,)n<e in S and let ko < ky < -+
be a Ramsey factorisation of (4,),<e of type (b, e). Then it follows that

T[’(ao, Aryeen) = ﬂ’(ﬂ[o,k,)’ ko ky)r Fka,ks)r oo e)
ﬂ'(b, e,e,e,...)

=b-7'(e,e,e,...) =be’ = n(ao, ay,...). O

Exercise 3.6. (a) Let L, and L, be languages that are recognised by homo-
morphisms 77, : 2% - &, and %, : £*° — &, into finite w-semigroups.
Prove that the languages L, N L;, Lo U L;, and X \ L, are also recognised
by a homomorphism into some finite w-semigroup.

(b) Let L € 2 be recognised by a homomorphism 7 : 2*° — Ginto a
finite w-semigroup & and let 7 : £ — I be a function. Prove that

n[L]:={n(w)|welL}

is also recognised by a homomorphism into a finite w-semigroup. (This
exercise is a bit more involved.)

(c) Use (a) and (b) to give an alternative proof of the fact that every
MSO-definable language is recognised by a homomorphism into a finite
w-semigroup. Show furthermore that, given a formula ¢ one can effectively
construct a description of the corresponding homomorphism and Wilke
algebra.

(d) Use (c) to give an alternative decidability proof for the monadic theory
of (w, <).)

Exercise 3.7. The syntactic congruence of a language L € X is the relation

x~py ciff u(xw)? el e u(yw)? el
and uxelL<uyel, foralluveZX”.

(a) Prove that the syntactic congruence is a congruence of the free w-
semigroup.

(b) Prove that a language L € X is MSO-definable if, and only if,
~1, has only finitely many classes and L is a union of languages of the form
K,K,K, ..., where each K; is an ~ -class.

129

III. Infinite Words

(c) Show that ~p, = ~x where L := (0*1)* and

K :={0"10™10™1... | no,n,, n,,... is unbounded } .

4 w-2Automata

As usual, instead of algebras we can also use automata to recognise languages.
For w-words, we have to modify our notion of acceptance since, when reading
an infinite word, an automaton cannot simply use the final state to decide
whether or not to accept its input. A workable alternative turns out to be to
look at the states that appear infinitely often during the run of the automaton.
One common choice is to decide acceptance based on the set of all these states.
A simpler, better behaved, but equivalent alternative is to fix an ordering of
the states and just use the least state appearing infinitely often. We will adopt
this simpler method, although slightly reformulated for technical reasons.
It is easy to check that the following definition is equivalent to using an
ordering on the states.

Definition 4.1. (a) An (nondeterministic) w-automatonisatuple A = (Q, 2, A, 4,, Q)
where where Q is a finite set of states, X is a finite input alphabet, q, € Q is
the initial state, 0 : Q — w is a priority function, and A € Q x X x Q is the

transition relation. Instead of (p, a, q) € A, we also write p — .
(b) A run of an w-automaton A = (Q, 2, A, 4o, Q) onan w-word w € X%
is an w-word p € Q¢ such that
(p(n), w(n), p(n+ 1)> €A, foralln<ow.
A run p is accepting if p(0) = g, and p satisfies the parity condition

liminf Q(p(n)) is even.

(¢) An w-automaton A accepts an w-word w if there exists an accepting
run of A on w. The language recognised by A is the set L(\A) of all w-words

it accepts.

130

4 w-automata

(d) An w-automaton A = (Q, 2, A, 4o, Q) is deterministic if, for all states
q € Q and all letters a € %, there is a unique state q' € Q with (q, a, q') €A,
In this case, we can replace the transition relation A by a transition function

0:0Q x X2 — Q such that

A={(q4,8(q0))|qeQ acz}.

(e) A Biichi automaton is an w-automaton A = <Q, 2,4, 90, Q) where
mgQ ¢ {o,1}.)

Example. The language of all words w € {a, b}* with infinitely many a is
recognised by the w-automaton

b a
oW O

b

where the numbers labelling the states indicate their priority. We obtain an
w-automaton for the language of all words w € {a, b} with only finitely
many a by changing the priorities:

b a
B @0
b J
Exercise 4.1. Find w-automata recognising the following languages over the

alphabet {a,b,c}.

(a) The language of all w-words containing infinitely many 4, but only
finitely many b.

(b) The language of all w-words where immediately after or immediately
before every letter a there is another 4.

(c) The language of all w-words containing an even (and finite) number
of a.

131

III. Infinite Words

(d) The language of all w-words where after every letter a there is a later
position with a letter b,

(e) The language of all w-words where, for every prefix p, the numbers of
the letters a, b, ¢ differ by at most 1. .

Exercise 4.2. (a) Prove that, for every w-automaton A, there exists a Biichi
automaton B recognising the same language.

(b) Prove that a language L € X is recognised by a Biichi automaton if,
and only if, it is of the form

L= UV®,
i<m

where m < w and U;, V; € Z* are MSO-definable languages of finite words.

(c) Find a Biichi automaton recognising the language of all w-words with
only finitely many letters a. Prove that this language is not recognised by a
deterministic Biichi automaton, i.e., one where the transition relation A is
the graph of a function Q x £ — Q.

(d) Prove that the class of languages recognised by Biichi automata is
closed under union, intersection, complement, and projection.

(e) Prove that a language is recognised by a Biichi automaton if, and only
if, it is MSO-definable. ,

Example. Let F € X. We will construct a (deterministic) automaton A
recognising all words w € Z¢ such that F is the set of letters appearing
infinitely often in w. The idea is as follows. The automaton maintains a
record of all letters it has seen and their ordering. More precisely it stores
a permutation ¢, . .. ¢,—; of X such that letters on the right have been seen
more frequently than those on the left. Everytime the automaton reads a
new input letter a this letter is removed from its position in the permutation
and moved to the end. In addition, the automaton remembers what the
. Hence, the states of A are
permutations of X U {|}, which we will call latest appearance records. For

old position was, by adding a special marker

instance, when reading the word

aababccbaab...

132

4 w-automata

the run of the automaton looks as follows. (The initial state does not matter.)

abc| = [bea —° be|a =Y |cab —° c|ba »° c|ab —¢ |abc ~° ab]c

- alcb »* |cba »° cbla »° c|ab -

We assign the priority 2 to all states of the form ¢, ... cp—s|ck . .. 4=, Where
{¢ks++., cu—r} = F, and priority 1 to all other states.

We claim that A accepts w if, and only if, the set of letters appearing
infinitely often in w is equal to F.

(<=) We can factorise the input word as w = uou;u, ... such that u, con-
tains all letters that appear only finitely often in w and each u; with i > o
contain every letter in F at least once. After reading the prefix uou,, the
automaton A will only see states of the form ¢, ... cp_|ck ... cy—y With
Cky+++yCu_y € F. Furthermore, in each factor u;, i > 1, there will be at least
one state of the form ¢, . . . cp_yck - - - cp—y With {cg, ..., cp—r } = F.

(=) Fixastate g := co ... Cp—y|ck - - - Cn—; that appears infinitely often in
the run of A on w, and let w = uu, ... be the factorisation of w such that
q occurs after each factor ;. As A accepts w, we have {cg,...,c,_} = F.
Furthermore, every letter ¢ g with k < k < n must occur somewhere in u;, for
i > 0. Hence, every ¢ € F occurse infinitely often in w. For a contradiction,
suppose that there is some other letter ¢ € X \ F that also occurs infinitely
often. Then some state p occurs infinitely often in the run where ¢ appears
on the right of |. But such states have priority 1, which means the run cannot
be accepting. ,

Similarly to automata for finite words, we can associate a transition semi-
group with an w-automaton.

Definition 4.2. Let A = (Q, 2,4, 90, Q) be an w-automaton and let D :=
rng be the set of priorities used. The transition w-semigroup S 4 := (S, S)
of A has domains

S=P(QxDxQ) and S,:=R(Q).

133

III. Infinite Words

Binary multiplication is defined by

A-B::{(p,min{d,d'},r) | (p.d,q) €A, (q,d',r)EB},
A~U::{p|(p,d,q)eA,qu},

for A, B € Sand U € §,,. The infinite product is given by

(Ao, Ap,...) = {po | there are (p,,, dy, ppis) € Ay, forn < w,

such that liminf d,, is even } .
n—>oo 4

Theorem 4.3. Let X be a finite alphabet and L € X a language of w-words.
The following statements are equivalent:

(1) L is recognised by an w-automaton.

(2) L is recognised by a Biichi automaton.

(3) L isrecognised by a homomorphism 1 : 2°° — S into a finite w-semigroup.
Proof. (2) = (1) is trivial.

(1) = (3) Let A= (Q, %, 4, g0, 2) be an w-automaton recognising L
and let & 4 be its transition w-semigroup. We define a homomorphism
n: 2% — &4 by mapping finite words w € X* to the set of all triples
(p,d, q) such that there exists a run of A on w starting in state p, ending in
state g, and having the minimal priority d. Similarly, infinite words w € £¢

are mapped to the set of all states p such that there exists a run of A on w
starting in state p and satisfying the parity condition. Then

L=y""[P] where P:={UcCQ|qocU}.

Hence, 77 recognises L.
(3) = (2) Suppose that L = #7*[P] for some 7 : 2= — &. We have

seen in Lemma 3.5 that
#(w)=u if w hasaRamsey factorisation with type in F,, .

Consequently, we can construct a Biichi automaton that, on input w, guesses
avalue 4 € P and a type (b, e) € F, and then checks that w has a Ramsey

134

4 w-automata

factorisation with type (b, e). This can be done as follows. After reading a
prefix v the automaton remembers the image #(v). The automaton can do
this since, if the current value is 7(v) and the next letter is ¢, the next value
will be 57(vc) = n(v)n(c). Hence, when reading a letter c it only needs to
multiply the current value by 7(c). If the current value is equal to b, the
automaton can nondeterministically decide that it has read the first factor
of the factorisation. In this case, it resets the stored value and reads letters
until it reaches the value e. After having found a factor with value e, the
automaton can again nondeterministically decide that it has found the next
factor of the factorisation. It resets its stored value and reads the next factor.
The automaton accepts if this reset was performed infinitely many times.
Formally, we have states

Q:={o,1,2} xSU{go}
and the following transitions, for 4 € S and ¢ € %,
go — (0, 7(c)),
o,an(c)), {0,b) = (17(c)),
can(e)), {ne) = (un(e),
an(e)), (ze) = (un(e)).

The initial state is g, and the priority function is

(o
(

sa) =
La) =
{2,0) = (

2
2

o ifk=1,

1 otherwise. O

Q(go) =1 and Q((k,a)):=

Our next aim is to show that every w-automaton is equivalent to a de-
terministic one.

Lemma 4.4. Let & be a finite w-semigroup and let ey, ey, ... € S be elements
such that

ejep =e;, foralli,k<w.

Then mt(eo, €1, €5,...) = €2,

135

III. Infinite Words

Proof.

(o, 1y €5,ev-) = T(e0, €160, €260, ...
=7(eoer, €0€s, o€z ---)

:ﬂ(eo,eo,eo,”‘):e;‘)‘ O

Theorem 4.5 (McNaughton). For every homomorphism 1 : 2*° — & into
a finite w-semigroup and every set P C S, we can construct a deterministic
w-automaton A recognising [P].

Proof. Given an w-word w € X, we consider the colouring
A(i, k) =n(w[i,k)), fori<k<w.

This colouring is additive. Hence, we can use Theorem 1.10 to construct a
deterministic finite-state transducer 7 = (Q, S, [N], 9o, 0, u) that, given A,
produces some weak Ramseyan split 0 : w — [N] for &.

The idea of the construction is as follows. To compute #(w) we find an
infinite increasing sequence z, E4 2; g - ... Then it follows by Lemma 4.4
that

f(w) =2A(0,20) - AM20,21)".

When trying to do this deterministically we face the problem that we do not
know the value k = 0(z;). Therefore, the automaton has to do the above
computation simultaneously for all possible values of k.

To make this idea precise, let us introduce some terminology. Given a
position 7 in the input word, we call a position z visible (from n) ifo < z < n
and there is no position z < x < n with g(x) > 0(z). The level of a visible
position z is the number 0(z).

136

4 w-automata

At each input position n, the sequence z, S, *++ E4 z(—; of all visible
positions at level k might be the start of the infinite factorisation we are
looking for. Therefore, the automaton needs to remember the values A(o, 2,)
and A(zo, z;)- In order to update this information, it also needs to know
the value A(z;, n). Hence, for each k < N, the automaton will use three
registers containing values from S*. Their values y), () at position #, can
be defined as follows. Let z, 4 - - - S, z;_; be an enumeration of all visible
positions at level k. Since we have to support the cases where [<10rz; = 1,
we obtain

(1,1, A(o,n)) ifl =o,
Xe(n) =1(A(0,20), 1, A(z0, 1)) ifl =1,
(Ao,20), M2o,21), Mz, n)) ifl >1
(using the convention that A(x, x) =1).

‘The memory of the automaton will consist of the state of 7 and the values
Xo(n), ..., xn-1(n). This is possible as we can compute xi(n + 1) from
Xk (n), a(n + 1) (which is provided by T), and A(n, n + 1) = n(w[n]). To

see this, note that
xe(n) ={ar, br,cr) and A(m,n+1)=4d,
implies that
xe(n+1) = (11, arbrcd), fork<o(n+1),
xe(n+1) = (ag, by, cpd), fork>o(n+1),
(cxd,1,1) ifap =1, by =1,

Xe(n+1) =3 (ag, cpd, 1) ifap #1, b =1,
(ak,bk,ckd) ifap #1, by, #1,

fork=o(n+1).

After these preparations we are finally able to formally define the auto-
maton A we are looking for. Its states are

Q=0 x (S x st x SHN,

137

III. Infinite Words

After reading the first n letters of its input, A is in the state

(g xo(n), s xn—a()),
where g,, is the state of 7. The initial state is

(dor (1), (1,1))
We assign to a state

p=(a (a0, bosco)s - (an-s, bn-r cn1))
with (q) = k the priority

(p) = {2(N —k) %fak, b # 1and a by € P,
2(N~-k)-1 ifag=1,bp =1, oragby ¢ P.

We claim that this automaton A accepts an w-word w if, and only if,

n(w) € P.

(<) Suppose that #7(w) € P. Let k := limsup, ,__ 0(n) and let z, <
z; < ... be an increasing enumeration of all positions in 0" (k). By choice
of k, there is some index | < w such that 0(x) < k, for all x > z;. Set

a:=MAo,z;) and e; = A(z14i,214i41), fori<w.
At position z(,;, the automaton is in a state of the form

(q,...,(u,eo,ck),”.) with u(q) =k.
N—
k-th component

Hence, the minimal priority seen infinitely often is either 2(N — k) or
2(N-k)—1depending on whether or not ae?’ € P. As 0 is a weak Ramseyan
spilt, we have ;e = ¢;, for all i, k. Therefore, it follows by Lemma 4.4 that

aed =m(a,eq €1 4,...) =1(w) €eP.

138

4 w-automata

Hence, A accepts w.

(=) Suppose that there exists an accepting run p of A on w and let
2(N — k) be the minimal priority occurring infinitely often in it. Then
p contains infinitely many states of the form

<q,..',(ak,ek,ck),...) where age; € Pand p(q) =k.
—_———

k-th component

Let z, < z; < ... be an enumeration of all positions with such a state. Since
p does not contain infinitely many states with priority smaller than 2(N —k),
it follows that there is some index # < w such that 0(x) <k, for all x > z,,.
Since 0(z;) = k, for all i, we therefore have

2iNg 2L, fori,k>n.
Setting a := A(0, 2,) and e; := A(2p+i) Zn+i+r) it follows that
p(zn+i) = (q,..., (a,e0,ci)yeee > , forsomec; €S,
and that e;ej, = ¢;, for all i, k. Hence, Lemma 4.4 implies that
w
n(w):ﬂ(a,eo,el,e”...):aeo eP. O

The results of the previous sections are summarised in the following
theorem. We also add one further logical characterisation.

Definition 4.6. Weak monadic second-order logic WMSO has the same syntax
as MSO, but all set quantifiers range over finite sets only. ,

Theorem 4.7. Let L € X be a language of w-words. The following statements
are equivalent:

(1) L is definable in MSO.

(2) L is definable in WMSO.

(3) L is recognised by a homomorphism into a finite w-semigroup.
)

(4) L is recognised by a nondeterministic w-automaton.

139

III. Infinite Words

(5) L is recognised by a deterministic w-automaton.
(6) L is recognised by a nondeterministic Biichi automaton.

Furthermore, all translations between these formalisms are effective.

Proof. The equivalences (1) < (3) < (4) < (6) were already proved in
Theorems 3.7 and 4.3, respectively. (2) = (1) is trivial, and (3) = (5) follows
from Theorem 4.5. Hence, it remains to prove (5) = (2).

Let A = (Q, 2,8, 90, 2) be a deterministic w-automaton that recog-
nises L. We start by constructing formulae STATE, (x), for q € Q, stating
that p(x) = g, where p is the unique run of A on the input word. These
formulae guess finite sets Z,, p € Q, containing all positions (up to x) with
state p. We set

STATEy(x) := 3(Z,) peo[ADM AINIT A TRANS(x) A Zgx],
where

ADM:=Vy N\ ~(Z,ynZyy)
p*p’

states that every position is labelled by at most one state,
INIT := 3y[Vz(y <z) A Zg,y]

states that the first state is q,,

TRANS(x) := Vsz[suc(y, Z)Az<x

-V \/(ZpyAPay/\Za(p,a)Z)]
peQ aeX

states that at every position a valid transition is used, and

suc(x,y) =x<yA-Iz[x<zAz<y]

140

4 w-automata

states that y is the immediate successor of x.
Using these formulae STATE (x), we can construct a formula y defin-
ing L as follows. Let

Hp:={qeQ|0(q) <k}
be the set of all states with priority at most k. We use the formula
INF, := Vx3y[x < y ASTATE,(y)]

stating that the run contains infinitely many occurrences of the state ¢, and
the formula

MINj := \/ INF;A /\ -INF,
qeH;, qeHy,_,

stating that the minimal priority seen infinitely often is k. Then we can set

Y= \/ MIN, ,

k<n

where n is chosen such that the maximal priority of A is smaller than2n. [

Together with the following result we obtain an alternative proof that the
monadic theory of (w, <) is decidable.

Theorem 4.8, Given an w-automaton A= (Q, X, A, qo, Q), we can decide
whether L(A) = @.

Proof. We claim that L(A) # @ if, and only if, there exist two finite words
u,v € Z* and a state p € Q such that
¢ thereis a run of A on u leading from the initial state g, to p and
¢ there is a run of A on v leading from p to p whose minimal priority is
even.
(«=) Clearly, if there are such words « and v, then A has an accepting run
on uv®. Hence, L(A) # @.
(=) Let w € L(A) and let p be an accepting run of A on w. Let d be the
minimal priority occurring infinitely often in p and fix a state p that occurs
infinitely often in p. Let k < n < @ be numbers such that

141

III. Infinite Words

s plk)=p,
s p(n)=p
¢ no state p(i) with i > k has a priority smaller than d,

o there is some k < i < n such that p(i) has priority d.

Let u be the prefix of w of length k and let v be the factor of w from position k
to # — 1. These two words have the desired properties. O

Exercise 4.3. Let X be a finite alphabet. The Cantor topology on ¢ is given
by the following basis of open sets:

O, ={x€X’|wisaprefixof x }, forweZX".

(a) Show that every basic open set O, is also closed.

(b) Show thataset U C X is open if, and only if, there exists aset W € X*
such that

U={xe2"|somewe Wisaprefixof x }.

(c) Show that a set C € X is closed if, and only if, there exists a set
W ¢ X* such that

C = {x € Z“ | every finite prefix of x belongs to W }.

(d) Prove that ¢ is a compact HausdorfF space.

(e) AsetU < X®isalIIg-setif it can be written as a countable intersection
of open sets. Prove that every language L C X“ recognised by a determ-
inistic w-automaton is a finite boolean combination of IT-sets. |

Exercise 4.4. (a) Let A, and A, be w-automata. Show that there are w-
automata recognising the languages L(Ao) N L(A;), L(Ao) UL(A,), and
2% N L(A)- (The case of the complement is a bit more involved.)

(b) Let A=(Q, %, A, g, 2) be an w-automaton and let 77 : X — I' be a
function. Prove that there exists an w-automaton recognising the language

n[L(A)] = {n(w) |weL(A)}.

142

4 w-automata

(¢) Use (a) and (b) to prove that, given an MSO-formula ¢, we can effect-
ively construct an w-automaton recognising the language defined by ¢.

(d) Show that we can decide whether a given w-automaton A recognises
the empty language.

(e) Use (c) and (d) to give an alternative decidability proof for the monadic
theory of (w, <).

a

Yotes

For a good introduction to formal language theory for w-words, w-semigroups,
and automata see [153].

The original proof of the decidability of the theory of w is due to Biichi [35].
It combines automata-theoretic techniques with a Ramsey argument, see
also [202] for a survey. The proof we presented is due to Shelah [193]. An
exposition can be found in [203].

Ramseyan splits were introduced by Colcombet, extending results by
Simon on so-called factorisation forests. An exposition that also includes a
proof of Theorem 1.10 can be found in [51].

The Theorem of McNaughton (Theorem 4.5) is from [141]. A good ex-

position is [204]. Our proof is new and based on ideas by Colcombet.

143

IV DParity Bames

1 Jofitional Bames

EFORE GENERALISING THE THEORY DEVELOPED in the two preceding
B chapters from words to trees, we need to develop a bit of combinatorial
machinery. In particular, we need a substitute for the various versions of
Ramsey’s Theorem that works for trees. One such substitute is based on the
notion of a combinatorial game, in particular, that of a parity game.

Many games like go, chess, and checkers can be modelled as a directed
graph where the vertices represent the different states, or positions, of the
game and the edges correspond to possible moves. Starting in a given initial
state such a game consists of a sequence of moves which forms a path in
the game graph. We call such a path a partial play of the game. The path is
a (complete) play if it is either infinite or if it ends in some vertex without
outgoing edges. For simplicity, we will only consider games with two players,
Player & and Player O, and we assume that the outcome of each play is either
a win for one of the two players, or a draw.

How exactly the actions of the players determine the next move depends
on the specific kind of game we are considering. The three main options
are: (i) positional games where the current position determines which player
may choose where to move next; (ii) alternating games where the players
alternate making this choice; and (iii) simultaneous games where both players
act simultaneously and the resulting move is then determined by combining
their choices in some way. In this book we only consider positional games.

Definition 1.1. A positional game is a tuple

8 = (V<>; VEI; E; Q(}; QD>1

MONADIC SECOND-ORDER MODEL THEORY 2025-02-23 — ©ACHIM BLUMENSATH 145

IV. Parity Games

where V., is the set of positions belonging to Player &, V are the positions
for Player O, V := V¢ U Vg is the set of all positions, E € V x V is the
(directed) edge relation, and Q¢ and Qp are disjoint sets of infinite plays
that determine the winning condition of the game as follows. A player that
has to make a move, but cannot, loses. If this does not happen, the game
results in an infinite play and player o wins if this play belongs to Q. If the
play does not belong to either set, the result is a draw. |

The central problem associated with a positional game is which player wins
when the game is started in a given initial position and to find a corresponding
strategy.

Definition 1.2. Let & be a game.

(a) A strategy for player 0 is a function s that, given a partial play p ending
in a position v € V;; chooses one of the outgoing edges. If the value of s(p)
does not depend on all of p, but only on the final position, we say that s is
positional or memory-free.

(b) We say that a partial play p conforms to such a strategy s if, for every
proper prefix p, of p ending in a position for Player ¢ the extension of p,
by the edge s(p,) is again a prefix of p.

(c) Finally, a strategy s for Player o is winning from a position v € V if he
wins every (complete) play that starts in v and conforms to s. The winning
region W, of Player ¢ is the set of all positions v € V from which he has a
winning strategy. R

Informally, we will say that a player wins a game if the given starting
position belongs to his winning region. These notions of course only make
sense if the game is determined.

Definition 1.3. A game & is determined if, from every initial position, either
one of the players has a winning strategy, or both players have a strategy that
guarantees at least a draw.)

While most of the games one encounters ‘in the wild” are in fact determ-
ined, we will see below that, although hard to find, there indeed exist games

146

2 Reachability games

which are not. The class of games we will consider below is even more well-
behaved: they are not only determined but the corresponding strategies can
always be chosen to be positional.

Definition 1.4. A game & is positional determined if, from every initial po-
sition, either one of the players has a positional winning strategy, or both
players have a positional strategy that guarantees at least a draw.)

In the terminology we have just established we can rephrase the central
problem thus as:

Given a determined game @, find the winning regions and the
corresponding winning strategies.

In the rest of this chapter we will consider this context for several classes of
positional games.

2 Readyability Bames

We start with the simplest form of a positional game.

Definition 2.1. A reachability game & = (V, Vo, E, Q¢, Qn) is a posi-
tional game where the sets 0, and Qp are both empty, that is, 2 game where
all infinite plays are considered draws.

a

As an example, in the game

R

o—3O '.>|:|—><>—>

(where the label <& denotes positions for Player <& and O positions for
Player 0O) the shaded part constitutes the winning region for Player &, while
the remaining ones constitute the winning region for Player O

147

IV. Parity Games

The winning regions of a reachability game are easy to compute recursively:
a player wins from some position v if either v belongs to him and at least
one outgoing edge leads to a winning position, or it belongs to his opponent
and all the outgoing edges lead to winning positions. To define this formally
we introduce the following notation. For X € V, we set
OX:={veV|{v,w)eEforsomewe X},
O0X:={veV|(v,w) € Eimplieswe X }.
We denote the opponent of Player ¢ by 0, i.e., $ = 0Oand O := ©. Then
we can define the winning region for Player ¢ as the least set W, such that

W, = (VenOW,)u(VanoW,).
Hence, W is the least fixed-point of the following function.
Definition 2.2. The step function associated with a game & is
Step,(X) := (Vo nOX)u (VenoX).)

It is easy to see that Step (X)) contains all the positions from which
Player 0 can ensure that in the next step the game either reaches some
position in X or the game ends with a win for him. Thus, by iterating the
step function we obtain the set of all positions from which the player either
wins or eventually reaches a position in X. This iteration of Step is call the
o -attractor of the set X. The formal definition is as follows.

Definition 2.3. The o-attractor of a set X is

Attry (X) = | Steps (X),

where a ranges over all ordinals (actually, it is sufficient to take the union for
all @ < |V|") and Step?, the a-th iteration of the step function, is defined as
follows
Step) (X) := X,
Stepsy (X)) := Step, (Step’ (X)),

Stepi (X) = U StepZ (X), for limit ordinals § .

a<d Fl

148

2 Reachability games

Lemma 2.4. Let & be a positional game and X C V a set of positions. Player o
has a positional strategy s such that, every play p that starts in some position
v € Attry(X) and that conforms to s is winning or contains some position
from X.

Proof. Let v € Attry(X). Then v € Step, (X), for some ordinal a. We
prove the claim by induction on a.

If & = o, then v € X and the claim is trivial. For the successor step,
suppose that « = S+ 1. Then v ¢ StepJ(Stepg(X)) and Player ¢ has a
strategy to either win in one step, or to reach some vertex of Step{,3 (X).
In the first case we are done. In the second one, we can continue with the
strategy from the inductive hypothesis. Finally, if « is a limit ordinal, then
ve Stepg (X), for some 8 < &, and the claim follows immediately from the
inductive hypothesis. O

Using the notion of an attractor we can define a measure for how long
it takes from a given position to win. The rank of a position v is the least
ordinal « such that

v € Step (@)

o

If there is no such ordinal, we set the rank to co. In the above example the
ranks for Player < are

o 1 6 o
O+«—O«—O«—O

N

O
Q(—D(—(}—)D—)J}I

L,

O

Lo 1o L

o—3 O—s 3 —
Next let us take a look at complements of attractors.

Definition 2.5. We call a subset U € V a g-trap if Step (VN U) € V\ U,
that is, if the opponent can ensure that Player 0 never leaves the set U once
the game has entered it.

a

149

IV. Parity Games

An easy way to find traps is by computing attractors.

Lemma 2.6. A set U is a o-trap if, and only if, it is of the form
U=V ~Attr,(X), forsomeX.

Proof. (<=) is obvious since Step (Attry (X)) S Attr, (X). For (=), note
that Step (VN U) € V \ Uimplies U = V' \ Attr(V N\ U). O

Lemma 2.7. For every o-trap U, Player 0 has a positional strategy s ensuring
that, starting from any vertex v € U, the game never leaves U.

Proof. Setting A := V \ U, we know that A = Attr(X), for some set X.
Hence,

Vo NA=V,\Step, (A) = Vs N\ CA
and VzN A= Vz\Step (A) = Vz\DOA.

In particular, (1) no vertex v € V, N U has an outgoing edge leading to a
vertex in A and (11) every vertex v € V5 N U has at least one outgoing edge
(v, u) € E with u € U. Consequently, if the game starts in some vertex v € U
Player 0 can never move into A, while Player 0 always has the option to stay

in U. O

Theorem 2.8. Every reachability game is positionally determined with winning
regions W, := Attr, ().

Proof. Given 0, let s be the strategy for Player ¢ from Lemma 2.4 for W, =
Attr;(2), and let ¢ be the strategy from Lemma 2.7 for V \ W,. As no play
can ever reach a position in &, it follows that s is winning for Player ¢ from
every position v € W,. While, t ensures that Player & does not lose when
starting from a position in V' \ Wj. This implies that W, is the winning
region for Player ¢ and that, for V' \ (W, U W), each player has a positional
strategy ensuring that he does not lose. O

Having shown that winning regions exist, we next take a look at how to
efficiently compute them.

150

2 Reachability games

function Win(v, o) // Does Player ¢ win from position v?

if v € V, then
if there is an edge v — « with Win(u, o) then
return true
else
return false

if v € V5 then
if for every edge v — u we have Win(u, o) then
return true
else
return false

end

Figure 1: Quadratic time algorithm

Theorem 2.9. The winning regions of a finite reachability game can be computed
in linear time.

Before presenting the linear time algorithm we start with a simpler, non-
linear version which is depicted in Figure 1 and which is just a direct trans-
lation of the definition of an attractor. There are several obvious problems
with this algorithm. First of all, it might not terminate if the game graph
contains a cycle. And secondly, it is very inefficient (exponential time) as it
does not remember if it has already computed the winner of a position and
recomputes this information every time. There is a rather straightforward
fix for both of these issues: we introduce an array where we store whether
we have already visited a position and who the winner is. (Thus each entry
can have one of four values: (1) not visited yet, (11) already visited, but we
do not know the winner yet, (111) Player & wins, and (1v) Player O wins.)
With this modification, the algorithm will run in quadratic time.

To improve the runtime to linear, we need to be more clever. In the al-
gorithm in Figure 2, we introduce two more arrays with auxiliary data that
helps us to avoid unnecessary work. To see that this algorithm works in

151

IV. Parity Games

Input: agame (Vo, Vg, E)

Output: an array containing the winner for every position
// initialise auxiliary arrays

forallv € V do

win[v] == 1 // the winner of the position
Plv]:=2 // the set of predecessors of v
n[v]:=o // the number of (not yet processed)
// successors of v

end

forall (u,v) € E do
P[v]:=P[v]u{u}
nlu] :=nlu] +1

end

// compute the winning regions

forallv € V5 do

if n[v] = o then Propagate(v, D)
forallv € V5 do

if n[v] = o then Propagate(v, <)

return win

procedure Propagate(v, o) =
if win[v] # L then return
win[v] =0
forallu € P[v] do
nlu] :=nlu] -1
if u € V; or n[u] = o then Propagate(u, o)
end
end

Figure 2: Linear time algorithm

152

2 Reachability games

linear time (in the number of positions plus the number of edges), note that
the body of the procedure Propagate (except for the first line) is executed
exactly once for each vertex v. Furthermore, the loop in Propagate is executed
once for each incoming edge which means that, in total, it is executed at
most as many times as there are edges in the game. Since the precomputation
steps are also linear in the number of vertices or edges, it follows that so is
the total runtime of the algorithm.

It remains to show that the algorithm really computes the winning regions
W and Wp. To see this it is sufficient to note that, every time the procedure
Propagate(v, o) is called and we still have win[v] = L, then the vertex v really
belongs to the winning region for Player o. This is clear for the two calls of
Propagate in the main part of the algorithm, where only vertices v without
successors are considered. For the recursive call inside the body of Propagate
we need to distinguish two cases. If u € V;; and v already belongs to W,, then
Player 0 can take the edge from u to v to win. Hence, u € W,,. Otherwise,
we have u € V5 and n[u] = o, which means that we already know for all
SUCCESSOrs Wo, . . ., W, of u to which region they belong. If there is some
w; € W5 then we have already called Propagate(u, 0) when processing w;
and win[u] is already set. Otherwise, all successors belong to W, which
means that u belongs to it as well.

Horn Sormulae

As an application of reachability games let us take a look at the satisfiability
problem for propositional Horn formulae. Such a formula is an implication
of the form

A AN---NA, =B,

where we allow both the left-hand side and the right-hand side to be empty,
i.e., we allow implications of the form1 — Band A; A--- A A, — 0. We are
interested in deciding in whether a given set of such formulae is satisfiable.
Note that such a set is always satisfiable if there are no implications where
the right-hand side is 0. We call such implications purely negative. It is not
diflicult to prove that every set of Horn formulae with no purely negative

153

IV. Parity Games

implications has a minimal model, that is, there exists a unique variable
assignment that satisfies all the formulae and that only assigns 1 to those
variables that are true in every satisfying variable assignment. We will use
games to show that this minimal model can be computed in linear time.
Then we can check for satisfiability of a given set @ of Horn formulae by
(1) removing all the purely negative implications from @,
(2) computing the minimal model, and

(3) checking that every of the removed implications is true in this model.

As an example, let us consider the following set of Horn formulae.

11— A AANCAF—=D E-G
AAND - B BAEAG—>D 1— E
F-C G->D

The minimal model assigns the value 1 to A, B, D, E, and G, and the value o
toCand F.

The game corresponding to a set @ of Horn formulae looks as follows. The
positions for Player < are of the form (A}, where A is a variable appearing
in @, the positions for Player O are of the form [¢] with ¢ € @. For each
formula Ag A--- A A,_; = B € O, we have edges

(BY — [AoA--+AA,_,— B]
and [AoA-ANA,.,—>B] — (A)), fori<mn.

Intuitively, in the resulting game Player < tries to prove that a variable A
must have value 1 by choosing an implication B, A+ A B,,_; — A that forces
it to be true, while Player O tries to prove that such an implication is not
applicable by finding some condition B; that is not met. With this intuition
it is straightforward to show that our game has the desired properties.

Lemma 2.10. Let @ be a set of Horn formulae that does not contain any purely
negative implications. A position of the form (A) belongs to the winning region
of Player < if, and only if, the variable A is true in the minimal model of .

154

2 Reachability games

The game corresponding to the above set of formulae is the following one,
whose winning regions we have already computed above.

[1—>A] (A) [AAB— D]J«——(B) [1 > E]

T | T T

(C)«—[AACAF - D]«—(D)—>[BAEAG —> D]—> (E)

l | | l T

[F > Cl——(F) (G~ D] (G) [E~G]

Hodal Logic

As a second application let us take a look at the model-checking problem
for propositional modal logic. Recall that (propositional) modal logic is the
extension of propositional logic by two modal operators & and O¢. For-
mulae of this logic are evaluated over transition systems & = (S,E, 13), ie.,
directed graphs expanded by additional unary predicates P. The satisfaction
relation for modal logic takes the form &, s £ ¢, where & is a transition
system, s € S a state, and ¢ a formula. It is defined is by induction on ¢ as
follows.

S,s=P iff SGPG,
S,s=0p :iff thereisanedges - twith S, t k= ¢,
S,sE=0¢ :iff &,tE ¢, foreveryedges — ¢,

and the definition for boolean operations is the usual one.
Given a transition system & and a formula ¢, we can construct a game

that is won by Player < if, and only if, &, s E ¢.

Definition 2.11. Let S = (S, E, 13) be a transition system with starting state
s € S and let ¢ be a modal formula in negation normal form. The model-
checking game G (S, ¢) is defined as follows. The positions are of the form
(t,) where t is a state of & and y is a subformula of . Intuitively, in such a
position Player < tries to prove that G, ¢ = v, while Player O tries to show

155

IV. Parity Games

® (s, O(PV Q)) (s, O=P)
P
(t,PvQ) (u,PvQ) (t,=P) [u,-P]
¢:=O(PVQ)AO-P \

[(tP] (6Q) (w,P) [uQ]

Figure 3: Model-checking game for modal logic

that &, t # y. The moves are as follows.

(t, vo V) > (t,y:), fori=o,1,

(t, wo Ayn) > (t,01), fori=o,1,
(t, 09) = (u,9), ift > yisanedgeof &,
(t,09) > (u,9), ift > yisanedgeof &.

Finally, positions of the form (t, ¥, Vv y;) and (¢, &9) belong to Player <;
those of the form (t, ¥, Ay,) and (¢, O9) belong to Player O; and a position
of the form (¢, P) belongs to Player & if t ¢ P; otherwise, it belongs to
Player O. Similarly, a position of the form (t, =P} belongs to Player < if
teP, B

Example. For the transition system & and the formula ¢ on the left of
Figure 3, the resulting game (or at least its reachable part) is depicted on the
right. 1

It is straightforward to check by induction on ¢ that the game G(&, ¢)
has the desired properties.

Theorem 2.12. In the game G(S, @), Player & has a winning strategy from a
position (t, y) if, and only if, S, t = y.

156

3 Gale-Stewart games

3 Bale-Stewart Bames

Reachability games are very simple since we can ignore infinite plays. Let
us now take a look at what happens for games where every infinite play is
winning for one player or the other. We start by games played on a tree
(which is not really a restriction since every game can be unravelled to one of
this form).

Definition 3.1. A Gale-Stewart game is a game & = (V, Vg, E, Q¢, Qn)
where the set of positions is of the form V = A”, for some set A. Every
position v € V has outgoing edges to all vertices of the form va with a € A.
The players strictly alternate, that is, positions v € (A*)* of even length
belong to Player <> and those v € A(A*)* of odd length to Player O. Finally,
we assume that there are no draws, that is, that Q¢ U Qg = A®. We denote
such a game by the pair (A*, Q).)

Proposition 3.2. There exist Gale-Stewart games that are not determined.

Proof. 'We play on the complete binary tree with vertices V := {o,1}*. As
the game graph is acyclic, every strategy is automatically positional. Thus,
a strategy for Player 0 is a function V, — {o,1} where V; is either the
setof allv € {o0,1}* of even length, or the set of all v of odd length. There
are x := 2™° such functions. We fix enumerations (s4)q<x and (£4)q<x of
all strategies for, respectively, Player <> and Player 0. To construct a non-
determined game we have to find two disjoint sets Q¢, Q5 € {0,1}* of
infinite paths such that none of the s, and t, are winning strategies in the
game with winning condition Q, Q.

We start with a bit of notation. Given a strategy s, we denote by [s] the
set of all infinite plays p € A® that conform to s. With this notation we can
say that a strategy s for Player ¢ is a winning if, and only if, [s] € Q,.

By induction on i < k, we construct two sequences (fi)k,(and ((i)i<,<
of elements of A“ as follows. Suppose that we have already defined &; and (,
for all i < a. Then we pick some element &, € [s,] that is different from
& and (;, for all i < a, and we pick some element {,, € [,] that is different
from &; and {;, for all i < «, and also from the &, we have just chosen. Note

157

IV. Parity Games

that we can do so since [s,] has size x, while the set
{&li<alu{li|i<a}

has size || < k. The same holds for [t,].
We claim that the game with winning conditions

Qc={{ i<k} and OQp:=A\0Q¢

is not determined. For the proof, consider a strategy s for Player <. Then
s = s,, for some a < . Since &, € [s4] N Qg, we have [s] ¢ Q. Hence,
s is not a winning strategy. In the same way it follows that no strategy t for
Player O is winning. O

As Gale-Stewart games can be non-determined in general, we have to
put restrictions on the allowed winning conditions to get positive results.
One handy way to do so is by equipping the set of all infinite plays with a
topology. We call a set O of infinite plays open if there exists a set P of finite
partial plays such that contains all infinite plays starting with some p € P,
The complement of an open set is called closed. Note that the open sets are
closed under arbitrary unions and finite intersections. Hence, they form a
topology. A set is Borel if it is contained in the smallest class of sets that
contains the open ones and that is closed under complement and countable
unions.

Theorem 3.3 (Martin). If Q € A® is Borel, then (A*, Q) is determined.

The proofis a bit involved. Instead of proving the result in its full generality,
we will only consider the much simpler case of open and closed winning
conditions, i.e., where Q. is open and Q closed, or vice versa. By symmetry,
we may assume that the winning condition for Player <> is open. Then Q. is
determined by some set P € A” of prefixes and every play containing a
position from P is winning. Thus, open winning condition corresponds to a
reachability game: Player < has to reach a position in P. As we have seen
in Section 2, the winning region for Player <> in such a game is given by
Attr, (P). The complement of Attre, (P) is a O-trap. Since every infinite

158

4 Regular games and parity games

play inside this complement cannot contain positions from P, all such plays
are winning for Player 0. Consequently, the game is determined with winning
regions

Attro, (P) and A"\ Attrg (P).

4 Regular Bames and Parity Bames

In general, Gale-Stewart games have no finite representation as the winning
set (2 can be an arbitrary set of infinite sequences. In this section we take a
look at a simple way to represent certain Gale-Stewart games in a finite way:
if the winning set (is a regular set of infinite plays, we can use an automaton
to represent it. Or we can use w-semigroups instead of automata. This leads
to the following definition.

Definition 4.1. A regular game over an w-semigroup & = (S, S,) is a game
8=(Vy, Vo, E, A, Q)

where A : E — S is an edge-labelling and the winning set is given by a subset
Q¢ S,. Player & wins an infinite play p if the product of the corresponding
edge labels evaluates to an element of Q. ,

Example. Consider the w-semigroup & = (S, S,) where S = #{o,1} and
Sw = £{o,1}. We define the product by

a-b:=aub, fora,beS,
a-u:i=u, foraeSanduceS,,
7(ao, ay, ... ::ﬂ U a;, for ag,ar,...€8S.
i<w i<k<w

In the game

159

IV. Parity Games

with winning set Q = {{0, 1} } Player <> has a winning strategy by alternating
between the two edges. But note that he does not have a positional winning
strategy as using only one of the edges will result in a loss. j

Computing the winning regions of a regular game is more complicated
than for open games. The difference is that, instead of reaching a certain set
once, we have to be able to reach it over and over again. To simplify our task,
let us start by considering a special case of regular games of the following
form.

Definition 4.2. A parity game is a game of the form
8 =(Vy, Vo, E, Q)

where Q : V. — D for some finite set D € w. We call Q the priority
function and Q(v) the priority of the position v. Player <> wins an infinite
play p = (v) <o if it satisfies the parity condition:

liminf Q(v;) is even.
1<w Bl
Example. In the following parity game Player < wins from every position
except for the one in the lower right. (The numbers denote the priorities.)

NV ENN

O Rl—C 2B B J

As we will show below, parity games are simpler than general regular
games. In particular, they are positionally determined. In fact, a regular game
is positionally determined if, and only if; it is a parity game. Let us start our
investigation of parity games by noting that they are regular. We can turn
the set D of priorities into an w-semigroup D = (D, D,,) with two infinite

160

4 Regular games and parity games

elements Dy, := {0, 1} and the product

k-1:=min{k,1}, fork,1 e D,
k-b:=b, forke Dand b€ D,,,
7t(ko, ks, ...) := (liminf k;) mod 2, for ko, ki, ..., €D,
1<w

Then a parity game & can be turned into a regular game by labelling every
edge (u, v) by Q(v). In the above example we get:

—_ Q;D—><><—
INETLZINE

Jofitional Determinacy

For the proof that parity games are positionally determined, we introduce
some terminology.

Definition 4.3. (a) We say that a strategy s for Player 0 is winning on some
set U € V if every play p that conforms to s and starts at a vertex in U is
winning for 0 and p never leaves the set U.

(b) We call a subset U € V a 0-domain if it is a 0-trap and Player 0 has a
positional strategy that is winning on U. ,

Lemma 4.4. The union of a set of 0-domains is again a 0-domain.

Proof. Let W = U1 U;, where each Uj is a 0-domain. We start by proving
that W is a o-trap. Let v € W. Then v € Uj, for some i € I. We distinguish
two cases. If v € V; it follows that there is an edge (v, u) with u € U; € W.
If v € V5 then every edge (v, u) leads to a vertex u € U; € W. This implies
that W is a 0-trap.

It remains to construct a positional strategy s for Player o on W. By
assumption, there are positional strategies t; that are winning on U;. Fix a

161

IV. Parity Games

well-order < on I and define
s(v):=t;(v), fortheleastie IwithveU;.

We claim that every play p starting at a vertex in W and conforming to s
is winning for Player o and that p never leaves W. The second part is clear
since the opponent cannot leave W and the choices of Player ¢ satisfy

s(v) =ti(v) e U; €W, foreveryvertexv e V, n W,

For the first part of the above claim, note that, if p contains a vertex of U;
then the rest of p will be contained in [i<i Uj. As I was well-ordered, it
follows that there is some index i € I such that, after finitely many steps,
p will remain in U; and the corresponding suffix q of p will conform to ¢;.
Since t; is winning, it follows that g satisfies the parity condition. Hence, so

does p. O

Theorem 4.5. Parity games are positionally determined.

Proof. Let & = Vo, Vg, E, Q) be a parity game. We prove the claim by
induction on the number of priorities used. Let k be be the minimal priority
of 8 and o the player it belongs to. Let W5 be the union of all ¢-domains. By
Lemma 4.4, W5 is also a 0-domain. In particular, Player ¢ has a positional
strategy that is winning from every vertex in W5. It is therefore sufficient to
prove that W, := V \ W5 is a 0-domain.

Since Attrz(W5) is a 0-domain, it follows by definition of W3 that
Attrg(W5) = Wx. Consequently, Lemma 2.6 implies that the complement
W, = V N\ Attrg(Wy) is a 0-trap. For a set X C V, we denote by &[X] the
subgame of & consisting of all positions in X. Define

K:==W,nQ7"(k) and U:=W,\ Attr,(K/W,),

where Attr, (K/W,) is the o-attractor of K computed in &[] W,]. Since no
position in U uses the priority k, we can apply the inductive hypothesis to the
game B[U] and obtain a partition U = U, U Uz of U into a 0-domain U,
and a 0-domain Usg.

162

4 Regular games and parity games

We will show next that W5 U Uy is a 0-domain. By definition of W5, it
then follows that Uz = @. To see that Wy U Uy is a 0-trap, we distinguish
four cases.

(1) Let v € V5N W5. As W is a 0-domain, we can find a successor u of v
that belongs to Wz € W5 U Ug.

(11) Let v € VN Wg As Wy is a 0-domain, every successor u of v belongs
to Wg c W? @] UE'

(1) Let v € V45 n Uz. As Uy is a 0-domain in 8[U], we can find a
successor u of v that belongs to Uz € W5 u Us.

(1v) Let v € V; N Ug. As Uz is a 0-domain in &[U], every successor u
of v either belongs to Uz or to V \ U. Since U is a 0-trap in the subgame
@[Wg], the latter is only possible if u ¢ Wy, i.e.,, u € W5. Consequently, all
successors belong to W5 U Us.

It remains to find a positional strategy for Player 0 on W5 U Ug. As
Wz and Uy are 0-domains in, respectively, & and &[U], there are positional
strategies ty and ty for Player 0 on these to sets. We define a strategy s by

ty(v) ifveU,
s(v) = ,
tw(v) otherwise.

To show that s is winning, consider a play p conforming to s and starting
in some position in W5 U Ug. If p enters W5, it never leaves this set. Con-
sequently, the rest of p conforms to tyw and is therefore winning. Otherwise,
the play stays the whole time in Uz and conforms to tyy. Thus, it is also
winning,

163

IV. Parity Games

We have shown that U = U, which, by inductive hypothesis, is a -
domain in 8[U]. Let t be the corresponding strategy. To conclude the
proof it is sufficient to show that W, = V' \ W5 is a 0-domain in 8. We
have already seen above that it is a o-trap. Hence, it remains to construct a
positional strategy for Player o on W, Note that W, = Uy UAttr, (K/ W,).
For positions v € U, we use the strategy ¢ for &[U]. For positions v € K,
we choose an arbitrary successor in Wy For the remaining positions, we
use the attractor strategy that ensures that we visit K. Let s be the resulting
strategy. To show that it is winning, consider a play p conforming to s and
starting in some position in W;. If p enters Uy, it will stay in this set and
the remainder of the play conforms to t. Hence, p is winning. Otherwise,
p is entirely contained in Attr, (K/W,). This implies that p either ends in
a terminal vertex belonging to Player o, or it visits the set K infinitely often.
In both cases Player o wins. O

Sinite-BRemory Strategies

One can show that all regular games are Borel. Hence, determinacy follows
from the Theorem of Martin. But we can prove a stronger statement: regular
games admit what is called finite-memory strategies.

Definition 4.6. A finite-memory strategy for Player o is given by a finite set M
(the memory) and two functions s : M x V; - Eand : M x E - M such
that, given a state m € M and a vertex v € V, s(m,v) returns the outgoing
edge ¢ to be chosen by Player ¢ after which a(m, e) will be the new memory
state. (If there is no outgoing edge, we let s remain undefined.) Formally, we
say that a play p = (e;); (which, for regular games where the edge labelling
matters, we consider as a sequence of edges) conforms to such a strategy if
there exists a sequence (m;); of memory states such that, for every step i,

o ife; = (v, vy,) withv; € Vy, then e; = s(m;, v;), and

® Mipp = (X(mi, E,'). 1

L CO W

Example. In the game

164

4 Regular games and parity games

from above, Player & has a finite-memory strategy with M = {o,1}. If
m = 0, he takes the left edge and sets the memory state to 1. Otherwise,
he takes the right edge and sets the state to o. This results in alternatingly
taking the two edges, which is winning for him. ,

We can reformulate the definition of a finite-memory strategy as follows.
For a regular game & = (V,, Vg, E, A, Q) and a function ¢ : M x E - M,
we define the product game

& xo M= (VS, V2, E, N, Q)
with positions
Vii=VexM and Vi:=VgxM,
edge relations
E':= { ((u, m), (v, n)) | (u,v) e Eand n = a(u, (u,v)) },

edge labelling A’ ({u, m), (v, n))) := A({#,v)), and the same winning con-
dition Q' := Q. Then a strategy is finite-memory for & if, and only if, there
exists a finite set M and a function & : M x E = M such that s is a positional
strategy in the game & x, M.

Example. In the above example, the product & x, M is the game

{o}

T >
W

which clearly has a positional winning strategy. ,

Remark. Note that this operation of equipping a game with memory does
not change the game much. There exist one-to-one correspondences between

¢ plays of 8 and of & x, M;
o strategies of & and of & x, M;

165

IV. Parity Games

¢ winning strategies of & and of & x, M.

The only difference between these two games is the amount of memory a
strategy needs. In particular, some positional strategies of & x, M might
correspond to strategies of & which are not positional. |

This is exactly what we need to prove the following result.

Theorem 4.7 (Biichi, Landweber). In every regular game both players have a
finite-memory winning strategy on their respective winning regions.

Proof. Let® = (Ve Vo, E, A, Q) be a regular game. We fix a deterministic
parity automaton A = (Q, S,6, 40, Q) recognising the set 2 of winning
plays and construct the product game & x5 Q. In this game a play p is
winning for Player < if, and only if, its projection to the second component
produces an accepting run of A. Consequently, we can turn & x5 Q into a
parity game by using as priority function the function Q from A applied to
the second component. Since parity games are positionally determined, we
obtain two positional winning strategies s¢, and sg for the two players in
their respective winning regions. As we have seen in the remark before the
theorem, these two strategies induce finite-memory strategies in the original

game. O

Jofitionally Determined Bames

We have seen that parity games admit positional strategies while arbitrary
regular games in general only admit finite-memory ones. One might wonder
whether there exists a larger class of games with positional strategies. It
turns out that this is not the case. We will prove below that (nearly) every
regular, positionally determined game is equivalent to a parity game — with
one notable caveat: we will only be able to establish this statement for games
with a winning condition of the following form.

Definition 4.8. A winning condition Q C §,, is called prefix-invariant if

weQ<oaweD, forallaeSandweS,. |

166

4 Regular games and parity games

Note that this is not much of a restriction since most of the common
winning conditions used in game theory or automata theory are of this form.
To analyse such conditions we start with an observation from semigroup
theory. We have seen in Lemma IIL.3.4 that, in a finite w-semigroup &, every
infinite product a,a,4,- - has a factorisation of the form be®. If Q is prefix-
invariant, we have be” € Q < ¢ € Q. Thus, the set Q is completely
determined by the powers e® it contains.

Definition 4.9. Let & = (V, V5, E, A, Q) bea regular game over an w-
semigroup &.

(a) We write Q¢ := Qand Qg := S, \ Q.

(b) The winning condition of & is the pair (S, Q).

(c) We call the set

Pyi={ecS|e“ecQ,}

the period set for Player 0.
(d) Finally, let us say that (&, Q) is equivalent to a parity condition if there
exists a function Q : § - w such that

(ao,ay,...)€Q iff liminf Q(a;) is even.
1 4
If (&, Q) is equivalent to a parity condition, we can turn every game &
with winning condition (&, Q) into a parity game as follows. We first replace
all edge labels by their image under Q. In this way we obtain a kind of parity
game where the priorities are attached to the edges instead of the vertices.
We can turn the resulting game into an ordinary parity game by adding
intermediate vertices to the edges where we can put the priorities.

Theorem 4.10 (Colcombet, Niwiniski). Let & be an w-semigroup (not neces-
sarily finite) and Q C S, prefix-invariant. If all games with winning condition
(S, Q) are positionally determined, then (&, Q) is equivalent to a parity condi-

tion.

We split the proof of this theorem into two lemmas. The first one collects
some basic properties of the period sets.

167

IV. Parity Games

Lemma 4.11. Let S be an w-semigroup and Q C S, prefix-invariant. If all
games with winning condition (&, Q) are positionally determined, then the
following condition holds:

(a) a,b € Py implies ab € P,.
(b) ab € P, implies ba € Py,.

(c) Everyelementw € S, that can be written as an infinite product of elements
of Py belongs to Q.

(d) Forall A,BCS,

(Jae A)(VbeB)[abeP,] < (VbeB)(Jac A)[abeP,].
(e) Forevery a € S, there exists some n > 0 such that

abo,...,ab, € P, = a"bo--bp € Py, forallby,...,bp€S.
(f) Forae Pyand BC S,

aBc P, implies aB* CP,.

Proof. (c) Suppose that w = 7(ao, day,...) ¢ Q4. We have to show that
there is some index k with ay ¢ Q,. Consider the game & with a single
position v belonging to Player 0 and one a;-labelled edge v — v, for every
i<w.

Since w ¢ Q, Player ¢ has a winning strategy in & by choosing in turn i the
edge with label ;. By assumption, he also has a positional winning strategy s.
Let aj, be the label of the edge chosen by s. As the resulting play is winning,
it follows that a;/ ¢ Q5. Hence, ay ¢ P,.

(a) Ifa,b € Py, then (ab)® € Q, by (c).

(b)Letab € Py. Thena(ba)® = (ab)® € Q, implies, by prefix-invariance,
that (ba)® € Q,.

168

4 Regular games and parity games

(d) (=) is trivial. For (<=), consider the game & with positions V; = {u}
and Vz = {v}. For every a € A, we add an a-labelled edge 4 — v, and for
every b € B, a b-labelled edge v — u.

a,a’,...

o
b,b,...

Then Player 0 can win this game by playing as follows. Every time Player o
chooses a b-labelled edge, Player 0 responds with an a-labelled edge for some
ab € P. By assumption, Player ¢ also has a positional winning strategy s.
Let a be the label of the edge chosen by s. For every b € B, there exists a play
with labelling (ab)“ conforming to s. Since these plays must be winning, it
follows that (ab)®“ € Q,, i.e., ab € P, for all b.

(e) Fixa € Sandset B, := { b € S | ab € P, }. Applying (d) to the sets

A:={a"|n>0} and B:={boby|bo,...,bp€Bs},
we see that it is sufficient to prove that
a¥byby € Py, forbo,..., by €Bo.

We do so by induction on k. If k = o, then b, € B, implies that a'b, € P,.
Hence, suppose that k > 0. By inductive hypothesis and the fact that by, €
B, we have a*b,---b,_, € P, and ab;, € P,. Hence, (ab)® € Q. Since
a(bra)® = (aby)® € Q,, prefix-invariance implies that (bra)® € Q,, i.e.,
bia € P,. Consequently, it follows by (c) that (akb0~--bk_1bka)“’ € Q, and
we can again use prefix-invariance to show that

(6" bo--bg) = a(a*bo---by_ bra)® € Q.

Thus, ak*"bo---by, € Py,
(f) Fix a € P, and B € S with aB € P,. By (e) the set

N:={n21|a"B"c Qs }

169

IV. Parity Games

is non-empty. Note that, if n € N then a”u € P,, forallu € B*. By (a) this im-
plies that aa”u € P,. Consequently, n+1 € N. Thus, N = {k, k+1, k+2,...}
for some k < w.

We claim that k = 1. Then aB* ¢ P,. Since also a € P,, it follows
that aB* C P,, as desired. Hence, it remains to prove the claim. For a
contradiction, suppose that k > 1 and set m := k — 1. Then m ¢ N, but
2m € N. Hence, there is some u € B* with a”u € Pz By (a) and (b), it
follows that ua™ € P, a™uua™ € P5, and a®”uu € P;. Hence, 2m ¢ N.

A contradiction. O
The second lemma now concludes the proof of Theorem 4.10.

Lemma 4.12. Let S be an w-semigroup and Q € S, a prefix-invariant set
such that all games with winning condition (S, Q) are positionally determined.
There exists a function Q : S — [2m + 1], for some m < w, such that

(1) Q maps Py to even numbers and Py to odd ones,
(2) Q(a) <Q(b) implies Q(ab) = Q(a) (mod2).
(3) n(ao, a1,...) € Qe iff liminf; Q(a;) is even.
Proof. Consider the relation E € Py x Py defined by
acb :iff acePg=>bcePy, forallcesS.
We start by proving that it is a linear preorder of finite index.
Reflexivity and transitivity of £ follow immediately from the definition.

For linearity, suppose that 4 and b are non-comparable. Then there are
elements ¢ and d such that

ac€Py, bcé¢Py, adé¢Py, bdelPy.
By Lemma 4.11 (a) and (b), it follows that
acbd € Py, daeP,, cbePy, dacbePy, acbdeP.

A contradiction.

170

4 Regular games and parity games

It remains to prove that £ has finite index. For a contradiction, suppose
otherwise. We distinguish two cases. If there exists an infinite strictly in-
creasing chain a, C 4, C a, C -+, we can fix elements ¢; € S with a;c; ¢ Py
and a;4,¢; € Pg. Then Lemma 4.11 (a) and (c) implies that ¢;a;,, € Py and

CoB1C1a,C,a5 - € Q.
But by the same argument as above, a;c; € P, implies that
GoCoB1C10,C, a5 € Qg .

A contradiction to prefix-invariance.

Similarly, if there exists an infinite strictly decreasing chain a, 3 4, 2
a, 3 -+, we can fix elements ¢; € S with a;c; € Pg and a;,,c; ¢ Pg. In the
same way as above it follows that

CoB1C1a,0205 - € Qo and aocod 615,05 € Q.

Again a contradiction.
To conclude the proof, let B, = -+ 2 B,,_, be a decreasing enumeration
of all E-classes and set

A;:={cePy|acePyforsome/allacB;}, foro<i<m.

In addition, we set A_; := P¢y, and A, := @. Note that, by definition of &,
we have P = A, 2 A, 22 A,y = A, = @ We claim that the
function Q : S — [2m + 1] defined by

.Q() 2k ifaEAk_I \Ak,
a) =
2k+1 ifaeBy,

has the desired properties.

(1) Clearly, Q maps each Ay, C P, to an even number and each By € Py
to an odd one.

(2) Suppose that Q(a) < Q(b). We distinguish four cases. If both Q(a)
and Q(b) are even, then a, b € P, which implies by Lemma 4.11 (a) that

171

IV. Parity Games

ab € P¢,. Hence, Q(ab) is also even. In the same way it follows that, if Q(a)
and Q(b) are odd, then so is 2(ab).

Suppose that Q(a) = 2k + 1and Q(b) = 2i. Thenk < i, a € By and
beA;;\A; C Ay By definition of Ay it follows that ab € Py. Hence,
Q(ab) is odd.

Finally, suppose that Q(a) = 2k and Q(b) = 2i + 1. Thenk < i, a €
Ap_; N A, and b € B; C By, By definition of A, and the fact that a ¢ Ay,
it follows that ba € Pi,. Hence, Lemma 4.11 (a) implies that ab € P¢, and
Q(ab) is even.

(3) Fix ao,a;,... € S and set k := liminf; Q(a;). Since Q is prefix-
invariant, we may assume w.l.o.g. that there is no i with Q(a;) < k. Set

B:=Q""(k) and C:=Q '[{k+1,...,2m}].

Then we can factorise the sequence (a;); into words u,, t,, ... € BC*. Let
¢; be the product of u;. If k is even, it follows by (b) that bc € P, for all
b € Band ¢ € C. Consequently, we can use Lemma 4.11 (f) and (c) to show
that ¢; € Ps and (a0, a4, ...) = 1(co, ¢1s- -) € Q. If kis 0dd, it follows
in the same way that 7(a,, a,...) € Q.]

Solving Parity BGames

To solve reachability games, we introduced the notion of a rank which,
intuitively counts how far away from the goal we are. For parity games
the situation is more complicated since we have to reach the goal not only
once but repeatedly. It is possible to define ranks also for parity games. The
difference is that, instead of a single ordinal, we have to use a tuple with
one component for each priority k that counts how far away we are from a
position of that priority. As this turns out to be a bit technical and not very
enlightening, we will not do so.

Instead, we will present an algorithm for computing the winning regions
of a parity game which is similar to the construction in the Theorem of
Biichi and Landweber. We will prove that, for every parity game &, there
exists an action & : M x E — M that turns the product game & x, M
into a reachability game. Then we can use the linear time algorithm from

172

4 Regular games and parity games

Section 2 to compute the winning regions. The memory M we will construct
below has size n°(1°89) | As we can solve reachability games in linear time,
we therefore obtain the following complexity bound.

Theorem 4.13. The winning regions of a parity game & with n positions and
d priorities can be computed in time n©(1084),

The precise complexity of computing the winning regions of a parity game
are still unknown. One can show that the problem belongs to the complexity
class U N co-U, which means that it is probably not NP-complete. It might
even belong to P, but no one has found a polynomial time algorithm so far.

Let us present the algorithm the above theorem is based on. Consider
a parity game & and let p be a play of & x, M. We say that p contains an
even cycle if p = xyz where y is a non-empty path starting and ending at
the same position of & (the memory contents may differ) and such that the
least priority seen along y is even. Note that, whether or not a given play p
contains an even cycle is a reachability property: once we have found the
end of the cycle, we do not need to look at the rest of p. We will design our
memory M in such a way that detection of such cycles becomes easy. But
first, let us show that the existence of even cycles is equivalent to winning.

Lemma 4.14. Let & be a finite parity game and o« : M x E — M an action.
The following statements are equivalent.

(1) Player & has a winning strategy s in 6.

(2) Player < has a strategy s’ for & x, M such that all cycles in every play
conforming to s’ are even.

(3) Player & has a strategy s’ for & x o M such that every play conforming
to s” has an even cycle.

Proof. (2) = (3) is trivial.

(3) = (1) Suppose that Player <> does not have a winning strategy for &. By
determinacy, it then follows that Player O has a positional winning strategy s
in that game. This strategy induces a strategy s’ for Player O in the game
& %y M. Let p’ be a play conforming to s” and let p be the corresponding
play of &. Then p conforms to s. If p’ contained an even cycle then, s being

173

IV. Parity Games

positional, it would follow that p contained infinite repetitions of this cycle.
In particular, the least priority seen infinitely often in p would be even and
p would be winning for Player . A contradiction to our choice of s.

(1) = (2) Let s be a winning strategy for Player & in 8. Wil.o.g. we may
assume that s is positional. Let s” be the strategy in & x, M induced by s. To
show that it has the desired property, consider a play p’ conforming to s” and
let p be the corresponding play in €. Then p conforms to s and is, therefore,
winning, Since s is positional, p consists of a path leading to a cycle which
is repeated infinitely often. Let k be the minimal priority along this cycle.
As p is winning, it follows that k is even. Hence, so is (every copy of) the

cycle. O

How can we detect an even cycle? The easiest way would be to store
all the positions of & we have already seen. Once we see one of them for
the second time, we have found a cycle. Unfortunately, storing that many
positions requires too much memory. So instead, we resort to a counting
trick.

Let & be a parity game with # positions and priorities {0, ...,d —1}. We
use the w-semigroup & with domains S := [d] and S,, := [d] and product

k-k = min{k, k’}, fork,k' €S,
k-1:=1, forkeSandl€S,,
7(ko, ki, ks, ...) = liminf k;, fork; €S,

i<w

and we label an edge # — v of & by the semigroup element Q(u) € S.
Given a finite word w = ko---k,_, € [d]*, we call a sequence z, < -+- <
Zm—r < n an even factorisation of w if

¢ k,, iseven, forall i < m,

o kj>min{k,, k;, },forallz; < j<zi,i<m-—1,
. kj > kg, for j < z,,

o kj2k,, , forj>z, .

We call m the length of the factorisation and the number min; k,, its value.

174

4 Regular games and parity games

Note that, if w has an even factorisation of length m and value k and w’ has
one of length m” and value k', the ww’ has an even factorisation of length
m + m’ and value min {k, k'}.

For each | < w, we will define a deterministic automaton A; over the
alphabet [d] that computes the length and value of an even factorisation
of (some suffix of) its input. The precise definition is as follows. The set of
states M consists of a special accepting state * plus all triples

(s, k,) e[l+1] x[d]" x[1]7,

where s < | is the size of the state, k is 2 non-decreasing sequence of priorities
of length s, and 7 a strictly decreasing sequence of counters, also of length s. To

compute the cardinality of M, note that we can encode each state (s, k, 71)
asaword co ...c;_; € ([d] +0)" where

kj ifnj=i (3.(0,3,4), (5,2,1))
¢ == J J ’

O otherwise. "4‘3“‘0‘

Below we will choose [such that 2! ™ < n < 2!. Then it follows
IM;| < (d+1)' +1< (d+1)l°80*D) 1y

_ (71 n I)log(d+1) +1€ n@(logd)’

which is the right size for the theorem.
Before defining the transition relation of A;, let us state the intended
behaviour of the automaton.

175

IV. Parity Games

Lemma 4.15. Suppose that after having read a word w € [d]* the auto-
maton A; enters the state (s, k,). Then

!
W=WWg.uoWs_p,

where each w; has an even factorisation of length at least 2™ with value k;. In
particular, the word w has a suffix with an even factorisation of length at least

Zz”".

i<s

Before giving the proof, we have to finish the definition of A;. The ini-
tial state is the pair (o, (), ()) consisting of two empty sequences. In a
state (s, k, i) when reading the letter ¢, the automaton can enter the state
(s', k, i1") if one of the following three conditions is met.

(1) s=oork,_; <g
s'=s, k'=k, and #'=n.
(11) Thereis some o < i < s such that k;_; < ¢ <k;,
s'=i+1, l;':(ko,.”,k,',l,c), ﬁ':<no,..‘,n,’,l,n,’>,

(111) Thereis some o < i < s such that k;_, < ¢, the priorities k;, ..., ks_;
are even, (n,»,‘..,ns,l) = (5— 1—1,s—1 —2,...,1,0),

s'=ivr, kK =(ko,..., ki c), 7 ={(no,...niy,ni+1).

(1v) Thereis some o < i < s such that k;_; <, the priority k; is odd, while
Kitir+.., ke_; are even,

(niyeoo,msy)={(s—i-1,s—i—2,...,1,0),
sS=i+, I;':(ko,...,ki_l,c), i = (no,.ee, nig, mi +1).

(v) s =1, each priority k; is even, c is even, and the next state is *.

(vi) Once A; has reached the state %, it remains there.

176

4 Regular games and parity games

If there are several possible transitions, we choose the one that leads to a
state of minimal length.

Proof of Lemma 4.15. We prove the claim by induction on the length of w.
For w = (), Aj is in the initial state (o, (), ()} and the claim is trivial.

For the inductive step, suppose that the input is wc with w € [d]* and
¢ € [d], and let (s, k¢) be the state after reading w. By inductive hypothesis,
w has a suffix of the form w,---w,_; where each w; has an even factorisation
of length at least 2" with value k;. We distinguish several cases, depending
on which transition the automaton takes while reading the last letter c.

If the last transition is of the form (1), we can obtain the desired sufhix
wl .. wi_, of we by setting w! := w;, for i <s—1,and w,_, = w,_,c.

If the last transition is of the form (11), let i be the index such that k;_; <
¢ < ki. Wesetw’, := wj, for j <i,and w! = w;-ws_sc. Then W:{ has an even
factorisation of length at least 2™ + - -+ + 2" + 1> 2™,

If the last transition is of the form (111) or (1v), let i be the index from
the above definition. We set w} :=wj, for j <i,and w! = wi--wpy_sc. Then
w! has an even factorisation of length at least

o2 =2 T T T T 2 2% =25 O

2"

With the help of Lemma 4.15, we are able to show that the information
contained in the states of A; is sufficient to detect whether the input contains
an even cycle.

Lemma 4.16. Let p be an infinite play in a parity game & with n positions,
and let w = (c;)i<o be the sequence of priorities along p. If | > logn and
A accepts w, then p contains an even cycle.

Proof. Let (1, k, 1) € M; be the last state in the run of A; before it enters
the state *, let w’ be the prefix of w leading to this state, and let ¢ be the
next input letter. By Lemma 4.15, the word w’ has a suffix with an even
factorisation of length at least

177

IV. Parity Games

while w’c has a suffix with an even factorisation z, < -+ < z,,_, of length
m>2l—1+1> n By the Pigeon Hole Principle it follows that, after
reading the additional letter ¢, there must be two positions z; < z ;in the
factorisation that correspond to the same vertex v of &. Let p, be the part
of p corresponding to the path between these two positions. To see that p,
is an even cycle, note that the minimal priority seen along the closed path is
the minimal value of ¢, .. ., Czje In particular, it is even. Hence, the play is
winning, O

Lemma 4.17. The automaton A; accepts every word w satisfying the parity
condition.

Proof. By induction on [we will prove that, starting from an arbitrary state
(s, k, #1) the automaton 4; accepts every infinite word w that satisfies the
parity condition. Hence, fix [and a run p of A; on w. If p contains the
accepting state *, we are done. Hence, suppose otherwise.

If every state of size | appears only finitely often in p, some suffix of p is a
run of A;_;. By inductive hypothesis, this suffix is accepting. Hence, so is p.

Consequently, we may assume that some state (I, K, 7'} of size | appears
infinitely often in p. The way the transitions are defined it follows that,
after the first appearance of (I, k,) every state (s, k', ") in p satisfies
kg = kg. Let p’ be the sequence of states obtained from p by (i) removing
the part before the first appearance of (I, k', #’) and (ii) removing the first
components of all remaining states, i.e., replacing (s, k", n") by

(s -1 (k) .. k), (), ...,n;'_l)) .

Then p’ is a run of A;_; on the corresponding suffix of w. Again it follows
by inductive hypothesis that this run is accepting. Hence, so is p. O

Proof of Theorem 4.13. Set | := |[logn| + 1and let « : M; x E - M; be
the action induced by 4;. We claim that a position v of & belongs to the
winning region of Player < in & if, and only if, Player < has a strategy
in the game & x, M; from the position (v, (0,), (})) to reach some posi-
tion of the form (u, *). Since the latter game is a reachability game of size

178

5 The modal p-calculus

nx O(n!°8") = O(n'°8") and we can compute its winning regions in linear
time, the theorem follows. Hence, it remains to prove the claim.

(«=) follows immediately by Lemma 4.16 and the implication (2) = (1) in
Lemma 4.14, while (=) follows by Lemma 4.17 and the implication (1) = (3)
in Lemma 4.14. O

5 dbe Brodal py~Talculus

We have seen above that the model-checking game for modal logic is a
reachability game. There also exists a logic whose model-checking game
is a parity game. As with every modal logic, this logic does not talk about
arbitrary structures, but only about transition systems.

Definition 5.1. A transition system is a structure of the from
G = (S; (-Ea)aeA: (PC)CEC> s

where the E, are binary relations and the P, are unary ones. ,

The logic we are interested in is obtained from basic modal logic by adding
a fixed-point operator.

Definition 5.2. Let A and C be two sets of labels and V' a set of propositional
variables. The modal y-calculus L, is the logic with formulae of the form

* atomic propositions P, forceC,

o variables X € V,

& boolean operations ¢ vV, ¢ Ay, and -, for ¢,y € L,
+ modal operators (a)¢ and [a]¢, for p € L, and a € A,

& fixed point operators yX¢ and vX¢, for a variable X € V and a for-
mula ¢ € L, where every occurrence of X is under an even number of
negations.

For a transition system & = (S, (E;)gea, (P)cec), a state s € S, a for-
mula ¢ ¢ Ly, and a variable assignment § : V — £(S), we define the

179

IV. Parity Games

satisfaction relation &, s = @[] by induction on ¢ as follows.

S, sk P,[f] :iff seP,,
&, sk X[f] A s e f(X),
S se(pvy)[B] :iff Ssep[florS,sEy[f]

(B :

C,se=(paw)[f] :iff &sEe[fland S, s = y[B],

S, sk (-9)[B] dff - S5 ¥ 9[B],

S,s= ({a)p)[B] :iff thereissomeedge (s,t) € E, such
that &, t = ¢[f],

S,s k= ([a]e)[B] :iff foreveryedge (s, t) € E, we have
S, t= 9Bl

S, s = (uX.9)[B] :iff s belongs to the least fixed-point of the
operation F, below,

S,skE= (vX.9)[B] :iff sbelongs to the greatest fixed-point of

the operation F, below,
where the function F(P : P(S) — KJ(S) in the last two lines is defined by
Fo(U):={seS|&,s=o[B[X~U]l}.

Here, the variable assignment [X — U] is given by

U fY=X,
Y —
B(Y) otherwise.

If|A| = 1, we usually simplify notation by writing &¢ and O¢ without
the edge label. Furthermore, if the formula ¢ has no free variables, we drop
the variable assignment f3 from the notation and simply write &,s = ¢. |

Remark. Note that the requirement on X occurring only positively in ¢
ensures that the function F, is monotone. Hence, the least and the greatest
fixed-point do exist. |

180

5 The modal p-calculus

Examples. The formula
uX[Pv OX]

states that there exists a path from the current state to some state in P.
uXoX

states that there is no infinite path starting at the current state.
vX[P A OX]

states that there exists an infinite path from the current state where every
visited state belongs to P.

vXuY[OY Vv (PASX)]
states that there is an infinite path containing infinitely many states in P. |

Exercise 5.1. Show that, for every L, -formula @(X), there exists an MSO-
formula ¢ (x, X) such that

S,sEo(P) iff Skg*(sP),
for all transition systems &, states s € S, and predicates p. ,

Next let us introduce the model-checking game for L e As usual, Player &
tries to prove that the formula holds in the given state, while Player O tries
to prove that it does not.

Definition 5.3. Let & = (S, (E;)ea, (P)cec) be a transition system and
¢ an L, -formula in negation normal form. The model-checking game G (S, ¢)
is the following parity game. As positions of & we use the pairs (s,) € Sx @
where @ is the set of all subformulae of ¢. The set V., of positions for
Player <> consists of all pairs (s,) where an existential choice has to be
made to satisfy y, that is, where

¢ y =P, isatomicands ¢ Pce,

181

IV. Parity Games

¢ y=-P andse PC@,
e y=9vY,
o y=(a)9, or
e y=uX9.
The other positions belong to Player O. The edge relation is defined as
follows.
(s;wo V)= (s,y:), fori=o,1,
(s, o Avy) = (s,¥;), fori=o,1,
(s, (a)y) > (t,y), for every transitions > ¢,
(s,[a]v) = (t,¥), for every transition s > ¢,
(s, uXy) > (s,),
(s, vXy) = (s,),
(s, X) = (s,y¥), where y is the definition of X ,

where the definition of a fixed-point variable X is the formula y that appears
as the body in the fixed-point formula y Xy or vXy binding X.

Finally, the priorities are as follows. For a subformula of the form yXvy or
vX that occurs inside of k other fixed-point operators, we set

Q((s, uXy)) :==2k+1 and Q({s, vXy)) :=2k.
All other other priorities are larger than those. ,

Remark. Note that every cycle in G(&, ¢) contains a position of the form
(s, uXw) or (s, vXy). Since the priorities of such positions are smaller than
all other priorities, these are the only positions that matter when determining

the winner. j

Example. Given the following transition system and formula

¢=CO—®r ¢=ux(PvoOX)

we construct the game

182

5 The modal p-calculus

/;h&x)

s, uX(P v OX)—>(s, P v OX)
(s, P)

[t, P]
Ot pX(P v OX)—>(t, PV OX)
(t, OX) (t, X)

where the priorities are the numbers in the circles. (All other priorities are
larger than 1.) 1

Let us prove that this game has the desired properties.

Theorem 5.4. In the game G(&, ¢), Player < has a winning strategy from a
position (t, @) if, and only if, S, t E .

Proof. To prove the statement by induction on ¢, we have to deal with
formulae ¢ that have free variables. Hence, suppose that ¢ has free variables
Xoyeoiy Xy and let P be a corresponding tuple of subsets P; € S. We
define a variant G(S, ¢, 13) of the model-checking game in the same way as
above where the variables X; are treated as propositions with value P;. That
is, positions of the form (u, X;) are considered to be winning for Player &
if, and only if, u € P;.

For this more general version of the model-checking game we can now
prove by induction on the formula (p(X) that Player & wins G(S, ¢, 13)
with starting position (t,) if, and only if, S, t = ga(l-))

If ¢ is an atomic formula or a negated atomic formula, the claim follows
immediately from the definition of G(&, ¢, P). If ¢ starts with a boolean
operation or a modal operator, the claim follows by inductive hypothesis.
Hence, it remains to consider the case where ¢ = uYy(X,Y) or ¢ =
vYy(X,Y).

First, suppose that ¢ consists of a least fixed-point. We have to prove two
directions.

183

IV. Parity Games

(=) Let Qq := (Fy)*(@), for a < «, be the a-th stage of the correspond-
ing fixed-point induction. Since &, t = uYy(P, Y), there is some ordinal o
such that t € Q4;. We construct the desired winning strategy by induction
on a. By the inductive hypothesis for y, we have a winning strategy s« for
the game G (S,v, I-’Qa) with starting position (t,v), and by the inductive
hypothesis for « there exists, for every u € Q,, a winning strategy s, for
the game G(&, ¢, P) with starting position (u, 4 Y). We combine these
strategies into a single one as follows. Player < starts by following s, until he
reaches a position of the form (4, Y) with u € Q. Then he switches to the
strategy s, and follows it until the end of the game. By choice of s, and s,,,
this combined strategy is winning for the starting position (t, uYy).

(=) Let Q' C S be the set of all states ¢ such that Player ¢ has a win-
ning strategy in the game G(&, uYy, P) with starting position (t, uYv).

Furthermore, we inductively define sets Q, C S as follows.

Qo=@ and Qj:=|JQ« forlimitordinals §.

a<d

For the successor step, let Qq4; be the set of all states ¢ such that Player &
has a winning strategy in the game G (S v, PQQ) with starting position
(t, ¥). Since every position of the form (t, y Y y) has priority 1 and the game
G(s, uYy, 13) has are no positions with priority o, it follows that

Q' =UQa-
Furthermore, it follows by inductive hypothesis that

S, tEe 1//(13, Qa) , forallte QaH .

Consequently, the union U, Qn = Q” is contained in the least fixed-point
of the operator Fy.. Hence,

S,tEuYy(P,Y), forallteQ’.

It remains to consider the case where ¢ = vXy/(X, Y) is a greatest fixed-
point. Again we have to prove two directions.

184

5 The modal p-calculus

(<) Let Q < S be the greatest fixed-point of Fy,. By inductive hypothesis,
there exists a strategy s for Player < in the game G(&, y, PQ) thatis winning
for every starting position (¢,) with t € Q. We claim that the same strategy
is also winning in the game G (&, vYy, P) with starting position (¢, vYy),
for t € Q. Hence, let p be a play conforming to s starting in (¢, vYy) with
t € Q. If p contains infinitely many positions of the form (u, vYy), it is
winning since these positions have priority 0. Otherwise, the suffix of p after
these positions is a play in G(S,vy, P Q) and, therefore, also winning.

(=) Let Q C S be the set of all states t such that Player <> has a winning
strategy for the starting position (¢, vYy). We claim that

C‘b‘,tr:w(P,Q), forallte Q.
Then Q is contained in the greatest fixed-point of Fy, which implies that
S,tEvYy(P,Y), forallteQ,

as desired. For the proof, fix t € Q. By assumption, there exists a winning
strategy s for Player < starting in (¢, vY'y). We claim that s is also a winning
strategy in the game G (S, y, PQ) with starting position (¢, y/). Hence, let
p be aplay conforming to s in that game. If p is also a play in the original game
G(8,vYy, P), it is winning for Player <> by choice of s. Suppose otherwise.
Since the game G(&, y, PQ) is obtained from G(&, vYy, P) by deleting
some edges, it follows that p is a partial play in the game G(&, vYy, P)
which ends in a position of the form {u, Y). By choice of s and Q, no partial
play conforming to s can lead to such a position where u ¢ Q. Consequently,
we have u € Q, which implies that the position («, Y') is winning for Player <.

O

Intuitively, this theorem states that parity games are as expressive as the
u-calculus. Conversely, we can show that the winning condition for parity
games can be expressed in L. Before giving the proof, let us take a look at
the simpler case of reachability games.

Example. Let & be a reachability game. The formula
vi=(Vo AOX) v (V5AOX)

185

IV. Parity Games

expresses the step function Step . As the winning region for Player o is the
least fixed-point of this function, we can define it by the formula

¢ = uX[(Vo A OX) v (V7 AOX)]. .

Definition 5.5. Let & = (Vo,, Vg, E, Q) and &' = (V<'>, VE',, E’, Q) be two
parity games. An immersion 1 : 8 — &' is a function s : V — V' with the
following property.

For each Player 0, each position v € V;, and each successor u of v, Player 0
has a strategy s in the game &’ with starting position ((v) ensuring that
every play conforming to s either

¢ is winning and does not contain any position in rng (except the one
before the first move of course), or

o the first such position is equal to 1(«) and the least priorty seen between

1(v) and 1(u) (inclusive) is equal to min {Q(v), Q(u)}.)

Example. A simple kind of immersion is a homomorphism of games, that is,
afunction h : V — V' such that

Vele Vs, hVale Vs, bEICE,
Q(h(v)) =Q(v), forallveV,

and such that b is locally surjective in the sense that, for every v € V, each

a

successor of h(v) belongs to rng h.

Lemma 5.6, Let 1 : & — &' be an immersion between two parity games & =
(Voo, Vo, E, Q) and 8" = (V, VI, E', Q') and let Wy, Wy, W[, W] be
the winning regions of the respective games. Then

{Wole WS and 1[Wg] € WS,

Proof. Letv € W, and let s be a corresponding winning strategy. We con-
struct a winning strategy s’ for Player o in the game &’ with starting position
1(v) as follows. For every vertex w € Vy, let t,, be a strategy in &’ with start-
ing position 1(w) as in the definition of an immersion. We construct s’ by

186

5 The modal p-calculus

combining these strategies. That is, when in a position of the form 1(w),
Player o follows t,, until the play is either won or it reaches a position of the
form 1(u), for some successor u of w. Then the game continues using t, and
so on.

We claim that the resulting strategy s’ is winning. Fix a play p’ conforming
tos’. If p’ contains only finitely many positions in rng 1, let w be the last of
them. Then a suffix of p conforms to the corresponding strategy t,, and is,
therefore, winning for Player 0. Otherwise, p’ induces a play p = (v;) i<
in & and p’ has a factorisation p’ = plp!... such that the least priority
seen along p, is equal to min {Q(v;), Q(v;4) }. Since the least priority seen
infinitely often in p is winning for Player 0, so is the least one in p. O

Theorem 5.7. Let & be a parity game that only uses priorities from the set [2k].
The winning region for Player < is defined by the formula

VXX VX koo i Xokr N [Pi = [(Voo A OXi) v (Vo ADX))]],
i<2k
where P; := Q7" (i) is the set of positions of priority i.
Proof. For j < 2k, we set
yi= A\ [P~ [(Vo AOXi) v (Vo ADX))]],
i<2k
4 if j =2k,
@j=uXjpj if j<2kisodd,
vX @i if j<2kiseven.
Let: : & — G(8, ¢) be the function mapping a position v of & to the
position (v, @ (,)). We claim that ¢ is an immersion. By Lemma 5.6 and
Theorem 5.4, it then follows that
Player & wins & with starting position v
iff Player & wins & with starting position ¢(v)
iff &S,vE ¢Q(v)(13)
iff SvEgp,

187

IV. Parity Games

where Pj is the set defined by ¢ ;.

Hence, it remains to prove the above claim. Let v € V be a position of &,
Starting from position (v, ¢;) in the game G(&, ¢) (ignoring positions with
a unique outgoing edge), Player O has to choose an index i in the conjunction
and Player < has to reply with a choice between -P;, Vi, A OX, and
Vo A OX;. Finally, one of the two players has to pick a successor of v for
X or 0X. If they do not want to lose immediately, Player O has to pick
i := O(v) and Player < has to pick one of the two latter formulae depending
on which player the vertex v belongs to. Thus, these two choices are forced,
which means that the only relevant choices for Players <> and O are picking
the successor for the formulae G X; or OX.

To show that 1 is an immersions, let u be a successor of v. By the remarks
above, if v € Vi, Player O has to pick i := Q(v) and Player < has to
reply with the subformula Vi, A OX;. Then Player O has to choose the
subformula O X, after which Player ¢ can pick 1(u), as desired.

Similarly, if v € Vg, Player O picks i := Q(v), Player < replies with
Vo A 0X;. Then O chooses OX; folllowed by the position ¢(«).

Thus, in both cases the respective player has a strategy to reach 1(u) (or
to win the game immediately). Furthermore, the priorities seen between

t(v)and t(u) are Q(v), Q(v) +1,...,2k, Q(u). O
2lternating Parity Games

The aim of this section is to derive a special version of the formula defining the
winning regions of a parity game where the players take turns alternatingly.
This will come in handy in the next chapter.

Definition 5.8. (a) A parity game & = (V,,, Vg, E, Q) is alternating if
ueVe < veVy, foreveryedge(u,v)eE.

(b) An alternating parity game is normalised if all positions of Player O
have maximal priority, while all positions of Player <> have some priority
that is not maximal.)

First, let us prove that we can normalise every alternating game.

188

5 The modal p-calculus

Lemma 5.9. For every alternating parity game & = (Vo,, Vi, E, Q), there
exists a normalised alternative parity game 8" = (V{, VL, E', Q') and a
surjective function p : V' = V such that Player & has a winning strategy
starting at a position v’ in &' if, and only if, be has a winning strategy starting
at p(v') in &.

Proof. To be able to remove the priorities of V-positions, we will store
them in the Vi, -positions. Choose some number m larger than all priorities

of 8. To define &', we set

Vi = Vo x [m],
VEIV = VD,
EI = {<<u,k>, V) | (u,v) eEn (V<> X VD)}
U{{u (v, Q@))) | (wv) e En(Vax Vo) },
Q' ({v, k) = min{Q(v), k}, for (v, k) € V<,> ,
Q'(v)=m, forve V.

Let p : V' — V be the function that maps positions v € V = V to itself
and positions (v, k) € V{ to the corresponding V., -position v. We claim
that p is the desired surjection.

Let o’ bea positional winning strategy for Player & in &', We define a
(non-positional) strategy o in & by setting

o' ({v,, Q(v,_ ifn>o,
g(vo,””vn):: ,(< (I)))]
o' ((vy, m—1)) ifn=o.
If p = (vy) n<w is a play in & conforming to 0, there is a unique play p’ =
(v]) n<w in &' such that p(v,) = v,, for all n. This play conforms to ¢’

and is therefore winning for Player &. By definition of p, it follows that the
play p’ has the form

(vo, k), ve, (vo, Q(v1)), v3, (ve, Q(v;)), ..., forsomek <m.

189

IV. Parity Games

(For simplicity, we have assumed that the play starts in V. Otherwise, we
have to remove the first entry.) The corresponding sequence of priorities is
min{Q(v,), k}, m, min{Q(v,), Q(v,)},
m, min{Q(v,), Q(v,)},....
As p satisfies the parity condition, it follows that so does p'.

Conversely, consider a positional winning strategy o for Player & in &.
We define a positional strategy ¢’ in &' by setting

o' ({v,k)) =0o(v), for (v, k) € V,
o' (v):=(a(v), Q(v)), forveV..
Let p’ = (v,) u<e be a play in &' following 0’. Then p := (p(v},)) n<w is a
play in & following 0. As above it follows that the fact that p satisfies the

parity condition implies that so does p'. O

For normalised alternating games we can compute the winning regions in
a different way by taking two steps at a time.

Proposition 5.10. Let & be a normalised alternating parity game with maximal
priority m and let k be some constant with m < 2k. We can define the set
W N Vi of all positions for Player <> where he has a winning strategy by the
formula

VXU Xy Xk i Xokos A\ [P = ©OXi],

i<m
where P; := Q7' (i) is the set of positions of priority i.
Proof. We have shown in Theorem 5.7 that the formula

VXX VX koo i Xak—r N\ [Pi = [(Vo A OXi) v (Vo A DX)]]

i<2k

defines W,. Since & is normalised we have P,, € V5 and P; € V., for
i < m. Hence, the above formula simplifies to

9 = VXop Xy VX apXaka| A [P > OXi] A [Py > DX,]|

i<m

190

5 The modal p-calculus

We claim that, for positions v € Vy, this formula is equivalent to

Y= VXoyXI"'VXZk—zﬂxzk—I /\ [Pt - <>DX1‘:| .
1<m
By Theorem 5.4, it is sufficient to show that, for every v € V., the position
(v, @) is winning for Player < in G(&, @) if, and only if, the position (v,)
is winning in G(8,).

(=) Let s be a winning strategy for Player < in G(&, ¢) with starting
position (v, ¢). We define a strategy s’ in G(&, y) as follows. In this game
there are two non-trivial choices for Player < : (1) in a position of the form
(u, P; > ©OX;), he has to choose between the formulae —P; and &0OX;;
and (11) in a position of the form (u, <&0OX;), he has to choose a successor
of u.

Choice (1) is easy: if u € P;, Player < has to pick (u, ©OX;), otherwise
he chooses (u, =P;). For Choice (11), Player < follows the strategry s, i.e.,
he chooses the successor w of u such that

s({u, ©Xi)) = {w, X5).

We claim that the resulting strategy s’ is winning. Hence, let p’ be a play
in G(&, y) conforming to s” with starting position (v,). By construction
of s', this play corresponds to some play p in G(&, ¢) conforming to s with
starting position (v, @) such that the sequences of first components of the
positions in p and those in p’ coincide. (‘Coincide’ here means that the two
sequences contain the same positions of & in the same order, but the number
of times each position appears may be different.) Note that the least priority
seen infinitely often along p is determined by the positions of p containing a
fixed-point formula. The same holds for p’. Comparing ¢ and y, we see that
this sequence of fixed-point formulae for p contains twice as many entries,
while that for p” omits every second one. But the omitted entries correspond
to the fixed-point associated with the variable X ,,, whose priorities are larger
than all other ones. Hence, the least priority seen infinitely often is the same
in both sequences. Since p conforms to s, it is winning. Hence, so is p’.

(«<=) Let s’ be a winning strategy for Player <> in G(&, v) with starting
position (v,). We define a strategy s in G(&, ¢) as follows. In this game

191

IV. Parity Games

there are two non-trivial choices for Player < : (1) in a position of the form
(u, P; > &X;), he has to choose between the formulae —P; and & X;; and
(11) in a position of the form (u, & X;), he has to choose a successor of u.
Choice (1) is easy: if u € P;, Player < has to pick (u, ©X;), otherwise he
chooses (u, —P;). For Choice (11), Player < follows the strategry s’ ie., he

chooses the successor w of u such that
5'((14, ODXi)) = (w, IZIXi) .

We claim that the resulting strategy s is winning. Hence, let p be a play
in G(8, ¢) conforming to s with starting position (v, ¢). By construction
of s, this play corresponds to some play p’ in G(&, y) conforming to s” with
starting position (v,) such that the sequences of first components of the
positions in p’ and those in p coincide (with the same meaning of ‘coincide
as above). As above, it follows that the least priority seen infinitely often in p
is the same one as in p’. Since p’ is winning, so is therefore p. O

Yotes

One of the first articles on games is by Zermelo [212], who proved the
determinacy of chess. Gale and Stewart [84] proved the existence of inde-
termined games and the determinacy for open games. The full proof of Borel
determinacy is by Martin [137].

The section on parity games follows [213] and [90]. The Theorem of Biichi
and Landweber was originally proved in [36], and Theorem 4.10 is taken
from [53]. The algorithm to solve parity games in Theorem 4.13 is from [37].
Our presentation owes much to a set of lecture notes by Bojariczyk and
Czerwinski [27].

192

V drees

1 Tompo[ition Theorems

REES CAN BE NATURALLY DECOMPOSED. But before stating the corres-
T ponding composition theorems, let us fixing our terminology regarding
trees. We will use several different versions, depending on which one is most
convenient at the time. We start with the graph-theoretic notion.

Definition 1.1. An undirected tree is an undirected graph ¥ which is connec-
ted and acyclic. ,

Undirected trees will be mostly used in the more graph-theoretic chapters
of this book. In the current chapter, we are mainly interested in directed
ones. These come in several different variants. We start by defining them as
plain sets.

Definition 1.2. Let D be a set of directions.
(a) The prefix ordering on D* is defined by

x<pry :iff y=xz, forsomezeD".

(b) A tree domain is a subset T C D* that is prefix-closed, i.e., such that
x<pry€eT implies x € T.If T is a tree domain and x, y € T, we call x an
(immediate) successor of y if y = xd, for some d € D. In this case, we also say
that y is an (immediate) predecessor of x. We write Suc(x) for the set of all
successors of x and Suc, (x) for {x} U Suc(x).

(c) A branch f of a tree domain T is a maximal linearly ordered set of
vertices. For a branch f8 of T, we write (1) for the n-th vertex of 5 and we
write w <p¢ B to indicate that w is some vertex of B. That is, we sometimes

MONADIC SECOND-ORDER MODEL THEORY 2025-02-23 — ©ACHIM BLUMENSATH 193

V. Trees

identify a branch B € T of length & with a function @ — T or with a word
in D¥.
(d) The subtree of T attached at a vertex v € T is the tree domain

T|,:={ueD"|vueT}.
In language theory trees are usually labelled by some alphabet.

Definition 1.3. Let C be a set. A C-labelled tree is a function t : T — C
where T is a tree domain. We usually denote the domain T by dom(t), and

we write t(v) for the label at the vertex v.)

There are several possible ways to encode a tree as a relational structure.

Definition 1.4. (a) An order-tree is a structure isomorphic to one of the form
(T, <pf) for some tree domain T. The elements of a tree are called vertices.

(b) A successor-tree is a structure of the form (T, suc) where T is a tree
domain and

suc:= {(u,v) | u,v e Tandv = ud for somed € D }.

(c) An order-tree or a successor-tree ¥ is successor-ordered if it is equipped
with an additional partial order <, such that
¢ <, linearly orders the set of successors of every vertex v € T, and
successors of distinct vertices are incomparable.
Given a successor-ordered successor-tree £ = (T, E, <s,) where the set

D = {do,...,dy—1} of directions is finite, we will often use the format
% =(T,suco,...,suc,_;) where

suc; == {{u,v) |u,v € T withv = ud; }.

(d) A C-labelled tree is a structure obtained from an order-tree or a
successor-tree by adding unary predicates (P,) ec containing the vertices
with label c. We will use the names labelled tree and coloured tree interchange-
ably.

a

194

1 Composition theorems

We also consider trees equipped with additional relations between the
successors of a vertex.

Definition 1.5. Let X be a r_elational signature. A X-enriched tree T is a
(2 + {<})-structure (T, <, R) such that (T, <) forms an order-tree and
each relation R; only contains tuples g such that d € {()} or a € Suc(w),

for somew € T, 1

Remark. Ir} particular, a C-labelled tree is P-enriched, for a set of unary
predicates P.)

Sometimes it is possible to give a single proof for a result that holds both
for trees and linear orders. To do so, we have to introduce a generalised
notion of a tree that also covers all linear orders. In a normal tree, the path
from the root to a given vertex is always a finite chain. We relax this condition
to allow arbitrary linear orders. This leads to the following definition.

Definition 1.6. (a) A generalised tree is a meet-semilattice € = (T, <) where
every set of the form v with v € T forms a chain. We denote the meet of
u,veTbyunv.

(b) A branch of a generalised tree ¥ is a maximal chain f ¢ T.

(c) A subtree of a generalised tree ¥ is a subset S € T that is upwards-
closed with respect to the ordering and closed under . .

Example. Every linear order is a generalised tree.)

We will prove several composition theorems for generalised trees. The
first one concerns replacing subtrees.

Proposition 1.7. Let < be a coloured generalised tree and let T be the gener-
alised tree obtained from T by replacing an arbitrary number of subtrees &; by
generalised trees &, for i € I, such that

S =pso Si, foralliel.
Then

—_m /
=MSO g

195

V. Trees

Proof. We can write ¥ as a generalised sum followed by a quantifier-free
interpretation:

3;‘[(2(&),

ke

where K is the generalised tree obtained from ¥ by replacing every subtree &;
by a single vertex, and where each component € is either (1) a singleton or
(11) isomorphic to &;, for some i. The interpretation T is given by

8(x) = true,
p<(x,y)=x<xyv(x~yrx<cy),
¢p(x) = Px

(where <k denotes the relation < of the index tree & and <¢ the relation <
of the components). Similarly, we can write

3’;1(2@@),

ke
where 7 is the same interpretation as above and either
L =¢., or (f'k 262 and €, =68;, forsomei.

By assumption, we have €, =[5 G:'k, for all k. Since 7 is quantifier-free, the
claim therefore follows by Theorem 1.4.24 and Corollary I.4.6. O

Instead of cutting a tree along an antichain, we can also decompose it
along a branch.

Definition 1.8. Let I be a partial order. A subset C C I is convex if
x,y€C implies zeC forallx<z<y.

Similatly, we call an equivalence relation ~ on I convex if every ~-class is
convex,)

196

1 Composition theorems

Proposition 1.9. Let S and &' be coloured generalised trees, § and B’ branches
of S and ', respectively, and ~ and ~" convex equivalence relations on 8 and f3'.
For a convex set I € T, we set

p[I] = (2, I), where C:=fIN |J fv.
vepN|I

If there exists an isomorphism 0 : 3/~ = ' [~ of linear orders such that
[I] =Niso 3;3,[0(1)] , forevery ~class I,
then T =f1s0 2.

Proof. We can write ¥ as a generalised sum of the factors $3[I], followed
by a quantifier free interpretation 7, and similarly for £'.

T T(> sﬁ[r]) and ¥z Y F[1]),
Tep/~ Tep’/~'
where ¢ uses the formula
0(x) = true,
o<(x,y)=[x~yAx<ry]Vvx <ﬁy/\1x],

where <7 denotes the ordering of the factors T[], <g the ordering of the
index set 8/~, and I is the additional predicate added to Tg[I] = (Z|c, I).
O

Finally, there is a composition theorem that allows us to also replace
interior parts of the tree.

Definition 1.10. Let ¥ be a generalised tree and S € T a finite set closed
under meets (which then has to form a tree). Let p : S — S be the function
mapping every vertex s € S to its parent in S (hence, p(s) is undefined for
the root s), and set

if s is the minimal element of S,

us)=1 7
. U{ft|p(s)<t<s} otherwise,

197

V. Trees

for s € S. The decomposition of T induced by S is the partition of T with the
classes

T, :=U(s)NJU(t), forseS.

t>s

a

Remark. The above formula for U(s) is made complicated by the fact that
it has to work for generalised trees. If ¥ is a tree, we can use the simpler
definition

U(s) = fu,

where u is the successor of p(x) with p(x) < u < x. (If p(x) does not exists,
we take for u the root of T'.) |

Proposition r.11. Let T be a generalised tree, 4 a finite tuple of vertices, S the
closure of a under meets, and (T;)ses the decomposition of T induced by S.
Then Thyso (S, a) can be computed from (the isomorphism type of) the tree
(S, <, a) and the family (6;)ses where

0, = s (T <)
Proof. Set %, := (T, <, |s) and & := (S, <, a). Then

(Tazo(N3),

se@

198

1 Composition theorems

where 0 is the quantifier-free interpretation with formulae

0(x) :=true,
o<(x,y) =[x ~yAx<ry]V[x+yAx<syAPx],

where

¢ ~ is the equivalence relation whose classes are the components T of the
generalised sum,

¢ <gis the ordering of the index structure &,
¢ <t is the one of the components ¥, and
¢ P denotes the predicate ||s in <.

For every MSO,,-formula ¢(x) it follows by Theorem I.4.24 that there
exists an MSO-formula v such that

Tep(a) f (S U)krvy,

where Uy := {s € S | Thyjso(2:) = 0 }. Fix an MSO,,-theory 6. For
¢(x) := A\ 0, we obtain some formula ¥y such that

Thiiso(2,8)=0 if (S,U)Eys.

In particular, (&, U) determines Thyso (%,). As the family (6;);es con-
tains a complete description of (&, U) the claim follows. O

Exercise 1.1. Prove that, over the class of all generalised trees, every MSO-
formula (%) with || > 1is equivalent to a boolean combination of formulae
of the form

y(xiNxj, xgNx;) and 9(x;),

where ¥ is an MSO-formula with two free variables and 9 an MSO-formula
with one free variable. |

199

V. Trees

Tomparing FO and MSO

As an application let us use composition arguments to compare the expressive
powers of FO and MSO over trees. Over most classes of structures, MSO is
strictly stronger than FO. But there is a little trick that, for trees, allows us
to translate MSO-formulae into FO, if we allow the FO-formulae to access
additional information in the form of a certain colouring. We start with a
lemma.

Lemma .12, Let & be a finite semigroup and (@.(x, y))ces a family of MSO-
formulae. There exist FO-formulae (¢ (x, y; Z)) ces and finitely many MSO-
formulae (9;(x))i<n such that, for every coloured order-tree € such that (¢.).
defines an additive labelling A on T, we have

ey (v 95,...,95) iff Adwv)=c.
Proof. Fix a tree ¥ and let A be the labelling defined by (¢.).. By The-

orem IIL.1L10, there exists a weak Ramseyan split 0 : T — [N] for A. For
n < Nandc € S, we define

Qu=0""(n),

R.:={ve T |thereisu c, vsuch that A(s,v) = c and
thereisnow withu c, wcy v } ,

U.:={veT|Au,v)=cwhere u is the predecessor of v } .

Note that these predicates can be defined in MSO using the formulae (¢,)..
We claim that A can be defined in terms of these two predicates. For each
n < N, we construct FO-formulae ! such that

ey (u,v;95,...,95) iff A(4,v)=cand
o(w)<nforallu<w<uwv.

Then the formulae ¥, := YN " have the desired properties.
We define y? by induction on n. If n = o, we have u ©, v, which implies
that

AMu,v) =A(u, u") - Ao’ v) = A(u, v'),

200

1 Composition theorems

where u' is the immediate successor of . Hence, can use

Vo(x,y) =x<yAVz[x<z<y—> Qoz]
A [x<x"<yA-Te[x<z<x']ARXT.

For the inductive step, suppose that we have already defined y”. Given
u <v,letwy < -+ < wi_,; be an enumeration of all vertices w with u < w < v
and 0(w) = n + 1. We distinguish several cases. If k = o, we can compute

A(u,v) by inductive hypothesis. If k = 1, we have

AMu,v) = AMu, wo) - Awo, v)
=AM, w') - A(w', wo) - Awo, w”) - A(w",v),

where the first and the last factor can be computed by inductive hypothesis,

and the two middle factors can be obtained from the predicates U. (Ifu =w’,

or u = wy, orv =w", or v = w,, we have to omit some of the factors above.)
Finally, suppose that k > 1. If 4 < w, and w_, < v, we have

AMu,v) = AMu, wo) - Mwo, wy) - Awy, we_;) - AMwg_y, v)
= AMu,wo) - AMwo, wy) - AMwp_y,v).
The first and the last factor can be computed as in the case k = 1above, while
the middle one can be obtained using the predicates R.

If u = w, or v = wy_;, we proceed similarly, just omitting the correspond-
ing factors. O

Theorem 1.13. Given an MSO-formula ¢ (), we can compute an FO-formula
¢* (x) and finitely many MSO-formulae Yo (z), . . ., Wn_y (z) with a single free
variable z such that

Teo() iff (BY... V) e (D),
for all coloured order-trees X.

Proof. Let T = (T,<us, P) be a coloured order-tree (possibly successor-
ordered) and let m be the quantifier-rank of ¢. Consider a finite tuple a € T,

201

V. Trees

let S be its closure under meets, and let (Uj);es be the decomposition of €
induced by S as in Definition 1.10. By Proposition .11, the theories

65 = Thﬁso((Us’Spf’US))’ forsES,

determine Thy;4o (%, @). Below we will construct MSO-definable unary
predicates Q and FO-formula (94)g (that both do not dependent on 4)
such that

(2,0)E9%(s;a) iff seSandf,=86.

Since the size of S is bounded by |S| < 2 - |a| and since every element of S is
definable from 4, we can therefore set

9" (%)= \/(¥s € 8)9, (5 %),
%}

where the disjunction ranges over all families (6;) that imply the formula ¢.
It remains to explain how to define the predicates Q. For vertices u <y¢ v,
we set

Wy = ﬂ“, N (fvs{v}),

where u” is the successor of u with 4’ <y¢ v. Let A be the function mapping
a pair of vertices u <pf v to

AMu,v) := Thyjeo (W,,) where W, = (W,,, <, Jv,v).
For u <p¢ v <p¢ w, it follows that
quw = O'(QBuV 6BQBVW) ’

for some fixed quantifier-free interpretation 0. Consequently, the labelling A
is additive. As it is also MSO-definable, it follows by Lemma r.12 that it is
FO-definable using suitable MSO-definable monadic parameters Q. Fur-
thermore, for each MSO,,-theory 0, we define the sets

Qé = {U eT | Th{clso(shv\{v}) =0 } ’
Q= {veT| Thiiso () = 6,
Qé" = {v eT | Thﬂso(sh\(ﬂvx{v})) =0 } ’

202

1 Composition theorems

We can express the theories 8 as follows,
First, suppose that s is the minimal element of S. Then we can write U,
as a generalised sum

Yo, =¥Urapogsp 2
veSuc(s)\|S

over the index structure Suc. (s) N (IS N Suc(s)) (followed by a quantifier-
free interpretation, which we omit for readability). Since this index structure
is a tree of height 1 and since every MSO-formula over such a tree only
depends on (1) the label of the root and (11) the number (up to some bound k)
of leaves with a given label, it follows that we can compute 6, from (1) the
theory o such that s € Q! and (11), for each theory 7, the number (up to k)
of successors v of s with v € QY. This data can be determined by an FO-
formula.

Similatly, if s is a maximal element of S with immediate predecessor ¢, we
can write Uy as a generalised sum

S|US = S|Wts + s|ﬂs\{s} .

Consequently, we can compute 0; from A(t,s) and Q.
Finally, suppose that s € S is neither minimal nor maximal and let ¢ be its
immediate predecessor. Then

Yo, =%lw.+ 2 -
veSuc(s)\|S

Hence, 0, can be computed from A(s, t) and the statements v € Q;’, for
v € Suc(s).

In each of these three cases, the computation of 6, can be done by an
FO-formula with parameters s and 4. O

We can rephrase this result in terms of interpretations. Let us call an

MSO-interpretation T an MSO-colouring if T only adds unary predicates, but
otherwise leaves the input structure unchanged.

203

V. Trees

Corollary r.14. For every MSO-interpretation T, there exists an FO-interpret-
ation o and an MSO-colouring p such that

7(T)=0(p(T)), foreveryclass T of coloured order-trees.

Proof. By Theorem 1.13, we can replace each formula ¢ (%) in 7 by an FO-
formula ¢*(x). Let 0 be the interpretation using these FO-formulae. Each
formula in 0 uses auxiliary MSO-formulae y(z) with a single free variable.
Let p be the interpretation adding all the relations defined by these formu-
lae y(2). Then 7 = 0 o p (over trees). O

Lemma 1.15. Let C be a finite set. There exists an FO-interpretation 0 such
that, for every class of C-labelled order-trees T, we have

T =0(T5), forsome class T, of unlabelled order-trees.

Proof. Suppose that C = {co,..., ¢y }. Givenatree T € T, let £, be the
uncoloured tree obtained from ¥ by attaching i + 1 new leaves as successors
to every vertex v with label ¢;. Then we can recover ¥ from ¥, by the FO-

interpretation 0 = (8, ¢<, (¥p,)i<n) defined by

0(x) :="x is not a leaf!

p<(x,y) =x<y

\/ ¢ .
vp, (x):= \k/ x has exactly i + 1 successors that are leaves.

It follows that 7 = 0(7,) where o := {3, |2 €T }. O

Corollary 1.16. A class is MSO-interpretable in some class of order-trees if, and
only if, it is FO-interpretable in such a class (but possibly a different one).

Proof. Suppose that C = 7(T") where 7 is an MSO-interpretation and 7 a
class of trees. By Corollary 1.14, it follows that C = d(p (7)), where 0 is an
FO-interpretation and p an MSO-colouring. Note that S := p(7T) is a class
of coloured trees. Let v and S, be the FO-interpretation and the class of
trees from Lemma 1.15. Then C = (0 0 v)(S,), as desired. O

204

1 Composition theorems

For trees of bounded height, we can do better by removing the need of a
colouring.

Proposition r.17. Let n < w and let 2 be a signature consisting of unary
predicates only. Over the class of all Z-enriched trees of height at most n, every
MSO-formula ¢(X, %) is equivalent to an FO-formula.

Proof. The statement follows from the fact that, over the empty signature,
all MSO can do is to count up to some constant depending on the quantifier-
rank. To simplify notation, we include the parameters in the structure, That
is, we work with structures of the form € = (T, <, P, ¢) where (T, S) is
an order-tree of height at most # and P and ¢ are parameters. We prove by
induction on # that there exists some function f, : @ - w such that

S EJF("O(m) 2 implies S={jo T, foreverym<w.

Then the claim follows by Lemma L.3.3.

If n = o, the trees consist of a single vertex. Structures of size 1 can be
characterised up to isomorphism by an FO-formula of quantifier-rank 2.
Hence,

=352 implies S={j5o %, forallm.

For the inductive step, suppose that n > 0. Given a tree & of height at most n,
let (&;);e1 be an enumeration of the subtrees attached at the root and let
©&° be the substructure consisting only of the root. Then we can write & as

S:0(e°0@ei),
iel

where 0 is a quantifier-free interpretation that adds the order relations
between the root and the other elements. We can replace the disjoint union
by a generalised sum and we obtain

s=d(e° 0y),

i€l

205

V. Trees

for a slightly different interpretation ¢’ By Theorem I.4.24, it follows that
there exists some function g such that

S° =pso 2° and (I,Q) Eﬁ;no) (I'Q") implies S=pso T,
where
Qo:={iel|Thjso(S;) =6}

and similarly for Q and the T;.

By inductive hypothesis, there exists an FO-interpretation of quantifier-
rank f,_;(m) +2 mapping & to the index structure (I, Q). There also exists
an FO-interpretation of quantifier-rank 1 mapping & to &°. Furthermore,
by Proposition 1.4.8, there exists some function b such that

_h(k)

(LQ)=po (ILQ") implies (L, Q) 51%450 (r,.Q").
Consequently,
S Eé‘no—x(m)“%(g(m» kS
S° =2 3° d (I 3\ —h(g(m)) 70
= =Fo an Q) =k (I, Q')
= ©°=2%° and (LQ)=5 (I'Q)
= G=x=2. O

2 ree 2utomata

The Theorem of Biichi about the decidability of (w, <) can be extended
to the monadic second-order theory of the infinite complete binary tree
2 := ({o,1}*, suc,, suc,). As there currently does not exist a purely model-
theoretic proof of this fact, we present the standard automata-theoretic
version here, In this section we prove that, over enriched trees, monadic
second-order logic is equivalent to tree automata. In the next one, we will
then prove several decidability results.

206

2 Tree automata

Tondeterminiftic 2Automata

Let us define our model of an automaton. We start with a nondeterministic
version. Intuitively, an automaton labels each vertex of the given input tree
by some state and this labelling has to satisfy two consistency conditions:
(1) the labelling of the successors of a vertex v have to match the state at v
and the letter at v, and (11) each infinite branch has to satisfy the parity
condition. For (1), the automaton is equipped with an MSO-formula that
checks whether the states match. The details are as follows.

Definition 2.1. Let L be a logic.
(a) Let X be a relational signature and Q a set. We write

ZQ::Z+{rt}+{Sq|qEQ}

for the expanded signature where rt is a constant symbol and the S, are unary
predicates. The transition logic TL [X, Q] consists of those L[X¢]-formulae
where every subformula of the form S, x, for g € Q, only appears positively,
i.e,, under an even number of negation signs.

(b) Let T be a X-enriched tree and p : T — Q a function. The successor
structure Suc, (v; p) associated with a vertex v € T is the o -structure

Suc.(v;p) = (S, (84)ge0: v)

where & is the substructure of € induced by the set Suc, (v) and

Sgi={xeSuc(v) |p(x)=q}, forqeQ.

(c) A nondeterministic L-automaton is a tuple A = (Q, 2,9, 90, Q) where
Q is a finite set of states, X is a finite input signature of enriched trees, g, € Q
is the initial state, Q : Q — w is a priority function,and § : Q — TLy[Z, Q]
is the transition function.

(d) A run of a tree automaton A = (Q, 2,98,90, Q) on an enriched tree €
over the signature X is a function p : T — Q such that

Cue.(v;p) = d(p(v)), forallveT.

207

V. Trees

A run p is accepting if p({)) = 9o and, for every infinite branch f§ of §,
liminf Q(p(B(n))) iseven.

(e) An L-automaton A accepts a Z-enriched tree ¥ if there exists an
accepting run of A on 2. The language recognised by A is the set L4 (A) of

all trees it accepts. s

Example. Let K be the language of all trees over the alphabet {a, b} the
contain at least one letter a. We regard such trees as {P,, P, }-enriched
where P, and P}, are two unary predicates encoding the labelling. We can
recognise K by the following nondeterministic MSO-automaton.

A=(Q,2,8,9.0)
where Q := {q}, 2(q) :=1,and
8(q) = Pa(rt) v Ix[x # rt A Syx].)

Exercise 2.1. Find tree automata recognising the following languages over

the alphabet {a, b}.
(a) The language of all trees containing infinitely many letters a.

(b) The language of all trees such that below every vertex there is some
vertex with the letter a.

(c) The language of all trees such that there is some vertex below which
there are only letters a.

(d) The language of all trees such that some branch contains only letters a.
(e) The language of all trees such that every branch contains at least one a.

(f) The language of all trees such that every branch contains only finitely
many 4.)

Exercise 2.2.

(a) Let K € 2“ be an MSO-definable language. Construct an MSO-
automaton A accepting the language of all trees where each infinite branch
belongs to L.

208

2 Tree automata

(b) Let K € {0,1}* be an MSO-definable language. Construct an MSO-
automaton A accepting the language of all trees over the alphabet {a, b}
such that a vertex v is labelled by a if, and only if, v € K. ,

Exercise 2.3. Let A be a nondeterministic MSO-automaton. Find an MSO-

formula defining L(A). 3

For the translation of MSO into tree automata, we have to establish several
closure properties for languages recognised by automata. We start with the
closure under union and projection.

Proposition 2.2. Let L be one of MSO, CMSO, GSO, or CGSO. Given two
nondeterministic L-automata A and A, we can compute an nondeterministic

L-automaton that recognises the language L4 (A) U Lyq(A').
Proof. Let A = (Q, 2,8,40,Q)and A" = (Q', 2,8, 4., Q). We set

B:=(Q+0Q" +{q:}, 2,81, 4+, Q)

where
8(q) ifgeQ,
8:+(q) =49"(q) ifgeQ’,
8(q0) v 0'(q5) ifq=qs,
Q(q) ifq €Q,
Q(q) =10'(q) ifqeQ’,
o ifg=qs.

We claim that L,g(B) = Lyg(A) U Lg(A").

(2) Given an accepting run p of A on some tree ¥, we obtain an run of
B on £ by replacing the initial state p(&) = g, by ¢4+ This run is again
accepting. In the same way, we can turn an accepting run of A’ on £ into
one of B.

(S) Let p be an accepting run of B on some tree <. By definition of
0+(q+), we have

Suc. (();p) F 8(q0) v &' (45)-

209

V. Trees

By symmetry, we may suppose that

Gue.(();p) £ (40) -

Then we can replace the state p(()) = 9+ by ¢, and we obtain a run of A
on ¥ which is again accepting. O

Proposition 2.3. Let L be one of MSO, CMSO, GSO, or CGSO. Let X be
a signature and let U ¢ X be an additional unary predicate. For every non-
deterministic L-automaton A over the signature X + {U}, we can compute a
nondeterministic L-automaton BB over the signature X such that

L(B)={2%| (3, U) e L(A) forsome Uc T }.
Proof. Given A =(0Q,Z%, 0, g0, 2), we set

B:=(Q x{o,1} +{q.}, Z, &', g1, Q')
where the priority function is

Q'({¢:0)) = Q(q) and Q'(44):=0,
and the transition function is

8'(q4) = AUS(q0)[Sp = plpe
8'({g,0)) = 3U[-U(rt) A 8(9)][Sp = 9plpeq
8'({g,1)) = 3ULU(rt) A 6()][Sp = Oplpeq s

where 9[S, = 9,], denotes the formula obtained from ¢ by replacing every
atom of the form S, x by the formula

9p(x) = [~Ux A S(p,0yx] v [Ux A Sy 1y x].

We claim that B accepts a tree £ if, and only if, A accepts (T, U), for some
UcU.

210

2 Tree automata

(«<=) Suppose that (3, U) € L(.A) and let p be a corresponding accepting

run. We obtain an accepting run p’ of 5 on ¥ by setting

(p(v),0) ifveU,

(o)) ifveu, UED

PI(O) =g+ and p,(v) = {

(=) Suppose that £ € L(B) and let p be a corresponding accepting run.
For every vertex v € T with p(v) = (g, b), there exists a set U, C Suc.(v)
such that

veU,<b=1 and (@ut*(v;p), UV) E0(q)[Sp = Oplpeo -
Set U := U,e7(U, N {v}) and let p’ : T — Q be the function p’ := fop
where

f(g+)=q0 and f({g,b)):=9q.
Then p’ is an accepting run of A on (%, U). O

2llternating 2lutomata

Closure under complement is difficult to prove using nondeterministic auto-
mata. To simplify the proof, we therefore introduce a second automaton
model. An alternating automaton can make not only existential choices of
states but also universal ones. Intuitively, one can think of the automaton
splitting into several different copies, each of which reading the remainder
of the tree independently.

Definition 2.4. Let L be alogic. An alternating L-automaton
A = <Q; Zr 6; o Q)

has the same form as a nondeterministic one, but the notions of a run and a
successor structure are defined differently.

A run of an alternating automaton A = (Q,2,6, 49, Q) on a Z-enriched
tree T is a function p : T — £(Q x Q) such that

Gue.(v;p/q) E8(q), forall(p,q)ep(v)andallve T,

211

V. Trees

where the successor structure Suc, (v; p/q) is obtained from the substructure

of ¥ induced by the set Suc, (v) by adding the predicates

S, :={x€Suc(u) | (q,p)ep(x)}, forpeQ.

A trace of a run p is a sequence (p,)n<w of states such that, for some

branch 8 of p,

(PWP”H) € p(/_)’(n)), foralln < w.
A run p is accepting if(qo, 610) € P(()) and

liminf Q(p,) is even, for every trace (p,)n<w Of p .

'The language recognised by A is denoted L, (\A). .

Note that the traces of a run correspond to the various copies of the
automaton as it reads the tree. To reconstruct these traces from the run, we
not only have to know the current state, but also the previous one. This is
why we use pairs of states.

Example. The following alternating MSO-automaton recognises the lan-
guage of all trees over the alphabet {a, b, ¢} that contain at least one letter a
and at least one letter b.

'A = (Q’ Z’ 6’ me}

where Q := {40, 44, 9}, 2(q0) = 2(44) = 2(qy) =1,and
8(q0) = [Pa(rt) v 3x[x £ rtA Sqax]]
APy (rt) v 3x[x # 1t A Sgux]],
8(qa) = Py(rt) v Ix[x # re A Sy x],
0(qp) = Pyp(rt) v 3x[x # re A Sg, x]. J

When working with alternating automata it is often easier to base accept-
ance not on runs but on a certain parity game. The definition is very similar
to the model-checking game for the modal p-calculus.

212

2 Tree automata

Definition 2.5, Let A = (Q, %, 8, 4o, Q) be an alternating automaton and
let T be an enriched tree over 2. The automaton game G(A, %) for Aon T is

the parity game where the positions of Player ©, also called Automaton, are
Voi=TxQ
and the positions of Player 0, also called Tracer, are

Vo= J P(Suc(v) x Q).

veT

The initial position is ({), 9o)-

The edge relation is defined as follows. From a V5-position H there are
edges to every Vi, -position (4, p) € H. From a Vi -position (v, q) there are
edges to every Vg-position H € Suc(v) x Q such that

(6,3,1}) Ed(q),

where, similatly to the definition of Guc, (v; p), S is the substructure of T
induced by the set Suc, (v) and

Sy={ueSuc(v)|(u,p)eH}, forpeQ.

Finally, we assign to positions (v, q) € Vi the priority Q(q) and to
positions H € Vj an arbitrary priority greater than all priorities used by A.

a

Proposition 2.6, Automaton has a winning strategy in G(A, <) if, and only
if, T € Ly (A).

Proof. (<) Given an accepting run p of A on €, we construct a winning
strategy o for Automaton in G (A, %) as follows. In a position (v, q) € Vo,
Automaton chooses the new position

H:={(u,p) € Suc(v) xQ [(g p) € p(u) } .

To see that this strategy is winning, consider a play

(VO) qo): HO) <V1r QI>1 HI} AR

213

V. Trees

conforming to 0. By definition of g, it follows that the sequence g, g1, . . .
of states appearing in this play is a trace of p. As p is accepting, this trace
satisfies the parity condition. Consequently, the above play also satisfies the
parity condition and Automaton wins the game.

(=) Let 0 be a winning strategy for Automaton in G(A, T). We con-
struct a run p of A on £ inductively as follows. We start with p(()) :=
{{40,90)}- For the inductive step, suppose that p(v) has already been
defined. Let

Ut={qeQ|(pq) € p(v) forsome p}.

For u € Suc(v), set

p(u) ={{qp)[qeU,(u,p)ea({v.q))}.
Thenpisarunof Aong.

To see that it is accepting, consider a trace (g,) <o of p along a branch 8.

Let
(vo,90), Ho» (ve, q1) His v o

be a play of G(.A,) conforming to 0 where Tracer chooses in step n some
pair (v, qn) € Hy—; such that v, is the successor of v,,_, that lies on the
branch f. Since 0 was assumed to be winning, this play satisfies the parity
condition. Hence, so does the trace (¢,) n<o-]

After these preparations, we are finally able to prove closure under com-
plement.

Definition 2.7. Let ¢ € TLy[Z, Q]. The dual of ¢ is the formula ¢ obtained
from —¢ by negating all atomic formulae of the form S;x withge Q. |

Let us note the following property of this operation.

Lemma2.8. Let§ bea S-structure, a € C,and ¢ € TLL[Z, Q). Fora family S
of subsets Sg € C, we have

(€,S,a) @ iff forall S"in Cwith (€,S',a) E ¢ there is
somequwitkSqﬂS; +Q.

214

2 Tree automata

Proof. Set §g := C ~ S;. Then

(€S,a)rg if (€S%a)F ¢
iff thereisno S" in € with (€, S',4) = ¢
and S; c S; forallge Q
iff forall S’ in € with (€, S',a) E ¢, there
issomquQwithSqu; +J,

where the second step follows from the fact that the formula ¢ is monotone

in S. O

Proposition 2.9. Let L be one of MSO, CMSO, GSO, or CGSO. Given an
alternating L-automaton A, we can compute an alternating L-automaton that

recognises the complement of L1 (A).

Proof. Suppose that A = (Q, X, §, g0, 2). We construct a new automaton
B:= (Q’ 2,8, 90, Q) where, for g € Q,

3(g) =08(g) and Q(q):=Q(q) +1.

We claim that BB recognises the complement of L, (A).

First, let € € Ly (A) and let p be an accepting run of A on Z. Consider
any run p’ of B on 2. We have to show that p’ is not accepting. We define a
branch (v,) n<w of T and a sequence (p,) 4, of states such that

(Ps Prt1) € P(Vnsr) NP (Vpyy), foralln<w.

We start with v, := () and p,, = 9. Suppose that v,, and p, have already
been defined. Then

Guc, (va; p/pn) EO(pyn) and Suck(v,;p’'/pn) E 6(pn)-

Hence, we can use Lemma 2.8 to find v,,4; € Suc(v,) and p,1, € Q with

(Pn: pn+1> € p(Vn-H) n P,(Vn+1) .

215

V. Trees

Note that the sequence (p,,)<, we constructed is a trace of both runs.
Since p is accepting, it follows that this trace satisfies the parity condition,
that is,

liminf Q(p,) is even.
Consequently,
liminf Q(p,) = liminf Q(p,) + 1is odd.
n—oo n—>00
We found a trace of p’ that does not satisfy the parity condition. Con-
sequently, p’ is not accepting.
To conclude the proof we have to show that every tree T ¢ L,j.(A) hasan
accepting run for the automaton B. By Proposition 2.6, Tracer has a winning

strategy 0 in G(A,) and it is sufficient to construct a winning strategy ¢
for Automaton in G(BB,%). For (v, q) € Vi, we set

o' ({(v,q)) ={0(K) | (v,q) > KanedgeinG(A4,%) }.

First, let us prove that H := ¢'({v, q)) is actually a successor of (v, q)
in G(B,). Let € be the substructure of ¥ induced by Suc. (v) and set

Sp:={ueSuc(v)|(u,p)eH}.

We have to show that (€, S,v) & 8(q). By Lemma 2.8, it is sufficient to
prove that, forall §" in €,

(€,8",v) = 8(q) implies S,n S; + @, forsomepe Q.
Hence, suppose that (€, S’,v) & 8(q). Set
K::{(u,p)ESuc(v)X/QMES;}‘

By choice of S, the position K is a successor of (v, q) in G(A,Z). Let
(4, p) := 0(K). By definition of H, it follows that (u, p) € H, i.e., u € Sp-

216

2 Tree automata

As (u, p) is a successor of K in G(A, T), we further have (u, p) € K, i.e.,
u€ S;. Consequently, u € Sy N S;, + &, as desired.
It remains to prove that ¢’ is a winning strategy for Automaton. Let

(vor90), Ho» (vi, q1), His v v

be a play in G(BB,) conforming to ¢’. Then (v,,, q,) € H,_y, for n < w. By
definition of ¢, it follows that in G(A,) there are edges

(V-1 gn-1) &> Kyoy with 0(Ky—y) ={(vn,), forn<w.
Consequently,

(vorq0)» Koy (vi, q1), Kps v v

is a play in G(A,) following the strategy g. Since ¢ is winning for Tracer,
it follows that the sequence (g,)<« does not satisfy the parity condition
in G(A, %). As the priorities in G(13, ¥) are shifted by 1, this implies that
(9n) n<w does satisfy the parity condition in G(BB, ¥). Hence, the play is

winning for Automaton. O

Gquivalence Of The Automaton BHodels

It remains to prove that alternating automata are equivalent to nondetermin-
istic ones. One direction is straightforward.

Proposition 2.10. Let L be one of MSO, CMSO, GSO, or CGSO. For every
nondeterministic L-automaton, we can compute an alternating L-automaton
recognising the same language.

Proof. Let A = (Q, 2,9, 40, 2) be a nondeterministic automaton. We con-
struct the automaton A := (Q,2,6, 49, Q) with transition function

S(q) = EIZ[refine(Z,S) A 8(q)[§ > Z]]

217

V. Trees

where the formula

refine(Z,8) = N\ Z, €Sy A N Z,n2Zy=@
peQ p#q

A Vx[x 1t —> \/ ZP]
peQ

states tha_t Zisa partition of all non-root vertices that is contained in S.
(¢[S ~ Z] denotes the formula obtained from ¢ by replacing each atomic
subformula of the form S;x by the corresponding formula Z;x.) We claim
that

Lna(A) = Log(A) = Lae(A).

For the first equation, let p:T—>Q be a run of a nondeterministic auto-
maton. Then the predicates S of _the structure SGuc, (v; p) form a partition
of the non-root vertices. Hence, Z = S is the unique family of sets satisfying
the formula refine(Z, S). Consequently,

Cuc,(v;p) = S(q) iff SGuci(v;p) =(q)-

It follows that p is an accepting run of A if, and only if, it is an accepting run
of A.

For the second equation, let p : T — Q be an accepting run of A, con-
sidered as a nondeterministic automaton. Then we obtain an accepting run p’
of the corresponding alternating automaton by setting

P(()={{g0,00)} and p'(v):={({p(u). p(»))},

for every vertex v with immediate predecessor u.

Conversely, let p : T — £(Q x Q) be an accepting run of A, considered
as an alternating automaton. As we have already established the first equality,
it is sufficient to construct an accepting run p’ of A. We do so by induction.
We start with p’({)) := go-. For the inductive step, suppose that p’(v) has
already been defined. Since

Suc. (vip/p'(v)) £ 5(p' (v)

218

2 Tree automata

there exists a family S’ of sets such that
Suc. (v; p/p’ (v)) E refine(S, 8) A 8(p' (v))[S = §'].

For each u € Suc(v), we define

/

p'(u):=q where ueS,.

(As S' is a partition of Suc(v), this is well-defined.) Then
Suc, (v;p") E8(p'(v)), forallveT,

which means that p’ is a run of \A. It is accepting since, in the above con-
struction, the sets S’ are chosen as subsets of S. O

The converse is more involved since the obvious power-set construction
produces an automaton whose acceptance condition is not a parity condition.

Definition 2.11. Let Q be asetand Q : Q — w a priority function. The
trace semigroup is the semigroup S (Q) := (S, S,) where

S=P(QxQ) and S,=F(Q).
For A,B € S and P € S, the binary products are defined by

A-B:={(p,r)|(p,q) € Aand (q,r) € B for someq },
A-P:={peQ|qePforallgwith (p,q) € A}.

Given an infinite sequence A, A, ... € S, we define the infinite product
(Ao, Ay, ...) as follows. We call a sequence (p,)n<w of states a trace of

(An)n<w if
(Pan+1) €A,, foralln<w.

The set (Ao, Ay, ...) consists of all states p € Q such that every trace
(Pn)n<w of (A,) uco starting with p, = p satisfies the parity condition Q.

a

219

V. Trees

Proposition 2.12. Let L be one of MSO, CMSO, GSO, or CGSO. For every
alternating L-automaton, we can compute a nondeterministic L-automaton
recognising the same language.

Proof. Let A = (Q, 2,8,90, Q) bean alternating L-automaton. We start
by constructing a nondeterministic L-automaton C with set of states Q" :=
£(QxQ)suchthateveryrunp: T — £(Q xQ) of Aisalsoarun T — Q'

of C, and vice verse. This can be done by defining the transition function as

6,(A) = /\ 3(q)[Sr = Bg]rGQ
(p.q)eA
where

91(x) :Z\/{SBx ‘ B e Q' with (q,7) GB},

and where we denote by ¢[S, + 9,],co the formula obtained from ¢ by
replacing every subformula of the form S, x, for r € Q, by the corresponding
formula 9, (x).

Clearly, every run of A is a run of C and every run of C is one of 4. Un-
fortunately, the same is not true for accepting runs. Therefore, we modify C
as follows.

Let 8o(Q) = (Q',#(Q)) be the trace semigroup of Q. According to
Theorem I11.4.5 we can effectively construct a deterministic automaton D =
(0,0, 8,4,, Q) that recognises the language of all w-words w € (Q)¢
whose product 77(w) € £(Q) contains the state qo.

The automaton B = (Q", 2,8”, 4%, Q") is the product of C and D. The
set of states is Q" := Q' x Q, the initial state is ¢ := <{(qo, 90)}s do), the
priority function is

Q"((A p) = Q(p),

and the transition function is defined by
8"((A, p)) = 8'(A)[Sp = 98]eqr A Vax[x # 1t = 15, ()]

where

9p(x) =V Sippyx and 7,(x) = \/ Sippx.
PEQ BeQ’

220

2 Tree automata

We claim that B accepts the same trees as .A. Suppose that € € L(A)
andletp: T — £(Q x Q) be an accepting run of A on £. Then p is also a
run of C. We define a function 7: T — Q by setting

7(v) = 8" (4o v),

where 8* is the extension of § : O x Q" - O to a function Q x (Q")* - Q.
We obtainarun p’ : T — Q" by setting

p'(v) = (p(v), 7(v)).

To show that p’ is accepting, consider a branch 3 of 2. Since every trace of p
satisfies the parity condition, the product

m(p(v))v<p

evaluates to a set containing the state q,. Consequently, D accepts the word
(p(v))v<p and the run (7(v)),<p is accepting, i.e., it satisfies the parity
condition. By definition of Q", it follows that (p’(v)),<g also satisfies the
parity condition.

Conversely, suppose that € € L(B) and let p : T — Q" be a correspond-
ing accepting run. Let p’ : T - Q" and 7: T — Q be the functions such
that

p(v) =(p'(v), 7(v)).

Then p’ is arun of C and, hence, one of A. To show that it is accepting, let S be
a branch of 2. Since the sequence (p(v)),«p satisfies the parity condition,
it follows by definition of Q" that so does the projection (7(v)),<g. By
definition of the trace semigroup, this implies that every trace of (p’(v))v<g
satisfies the parity condition. O

Gquivalence to MSO

Using the closure properties established above, it is now straightforward to
translate between MSO-formulae and automata.

221

V. Trees

Definition 2.13. A set of trees is regular if it is recognised by an MSO-
automaton. ,

Theorem 2.14. Let L be one of MSO or CMSO. For every L[Z]-formula ¢(X)
with monadic variables X, we can effectively construct an alternating L-automaton A,
such that

Ay accepts a Z-enriched tree (3, P) iff Tk ¢(P).

Proof. We construct A, by induction on ¢. Without loss of generality, we
may assume that ¢ does contain neither first-order variables, nor subfor-
mulae of the form Y N Z = @ or cover(Z). Thus, there are the following
cases.
If 9 = (X € Y), we use a single state q checking that X C Y at each
position. Hence, we set A, = ({q}, 2, 8, ¢, Q) where Q(q) = 0 and
0(q) = Vx[Xx - Yx] A Vx[x # rt = Syx].

If ¢ = sing(X), we use two states: q looks for an element in X and * makes
sure that there are no other elements. Thus, weset A, = ({q, *}, X, 8, ¢, Q)
where

8(q) = [X ={rt} AVx(x #rt > S,x)]

V[rt¢X/\E|x[x:/:rt/\qu/\Vy(yirt/\y#:x—>S,fy)]:|

O(#) =X =0 AVx[x #rt > Sux],
and Q(q) =1, Q(x):=o.

If ¢ = |X] < oo, we use an automaton A with two states p, g with
Q(p) = 1and Q(q) = o, where q checks that the set X is empty in the

corresponding subtree. The initial state is p and the transition formulae are
O(p) =32,24[Z, € Sp AN Zy S Sq Acover(Zy, Zg, {rt})
AN|Zy| < 00],

0(q) =X =@ AVx[x#rt > Sgx].

222

2 Tree automata

(The formula 8(p) is a bit complicated since it has to be monotone in S,.)

If 9 = |X| = k (mod m), we use an automaton A with states Q :=
{#} + [m] where Q(*) = 0and Q(i) = 1, for i € [m]. The state * checks
that the set X is empty in the corresponding subtree while a state i € [m]
checks that |X| =i (mod m) in this subtree. The initial state is k and the
transition formulae are

O(#):=X =@ AVx[x +rt > Sux],

8(i) = EIZ[/}2Zq c S, Acover(Z, {rt})
qe

A [(rt ¢ XA Modi(Z)) \% (rt eXA Modi_l(Z))]] ,
where

Mod,(Z) = \/ AIZ)] = g(j) (mod m)

g j<m

and the disjunction in this formula ranges over all functions g : [m] — [m]
such that

glo)+ -+ g(m—-1)=i (mod m).
Suppose that ¢ = X <,¢ Y. This formula is equivalent to
sing(X) Asing(Y) A 3xy[Xx A Yy A x <o 9]

Since we have already constructed an automaton recognising sing(X) and
since automata are closed under intersection, it is therefore sufficient to
find an automaton for the formula Ixy[Xx A Yy A x <p¢ y]. We use
two states: q looks for an element in X and p for one in Y. Hence, we set

A:={{qp}, 2 0,9 Q) where
0(q)=X=A{rt}=Yv [X ={rt} Adx(x £ rt A pr)]

Vv 3x[x # re A Sgx],

8(p) =Y = {re} v Ix[x # re A Spx],

223

V. Trees

and Q(q):=1, Q(p):=1.

Ifp = RX, ... X, withR € %, itis again sufficient to find an automaton
for the formula

E')-CI:/\ Xix; A R}-C:I .
We set A(p ={{q},Z, 9,9, Q) where Q(q) := 1and

8(q) = EI)E[R)'C AN i€ Xi] v 3x[x #re A Sgx].

i<n

Suppose that ¢ = y v 9. By inductive hypothesis, we can construct
automata Ay and Ay for 1 and 9. Hence, the desired automaton for ¢ can
be obtained via Proposition 2.2.

Suppose that ¢ = —y. By inductive hypothesis, we can construct an
automaton for AW' Hence, the desired automaton for ¢ can be obtained via
Proposition 2.9.

Finally, suppose that ¢ = 3Xy. By inductive hypothesis, we can construct
an automaton for A,,. Since we can translate between alternating automata
and nondeterministic automata, we can therefore obtain the desired auto-
maton for ¢ by Proposition 2.3. O

Theorem 2.15. Let L be one of MSO or CMSO. For every alternating L-
automaton A over the signature X, we can effectively construct an L[X]-formula ¢ 4
such that

e it AacceptsZ.
Proof. Let A:=(Q, 2,8, 90, Q). The formula ¢ 4 guesses sets encoding a
run of the automaton and then checks that the guessed run is accepting. We

set

9.4 :=3(Zp,q)p.qe0[INIT ATRANS A ACC]

224

2 Tree automata

where we use the following formulae.
INIT := 3x[Zg,0,% A Vy(x <p¢ y)]
states that the root contains the pair (qo, o)-

TRANS :=Vx A [Z,qx > 8(q)(x)]
p,9€Q

A

states that at every vertex a correct transition is used. Here, 0(q) (x) denotes
the restriction of the formula §(q) to the set Suc, (x).

ACC:= YY[BRANCH(Y) - PARITY(Z,Y)]
checks the parity condition. The formula
BRANCH(Y) :=
Y+ @AVxVY[YXAYy = (x <pry Vy <pe x)]
AVx3y[Yx = x <pr y A Yy]
states that the elements in Y form an infinite branch and
PARITY(Z,Y) :=
V(Xp,0)p.9e0| TRACE(Z, X, Y) > \/ MINL&(X, V)]

k<n

states that every trace for the branch Y satisfies the parity condition. Here,
n is any number such that the maximal priority of A is smaller than 21, the
formula

TRACE(Z,X,Y) :=

A[Xpg € Zpg 0 YIAV[Yx >\ Xy 2]
p.q p,9€Q

states that the sets X encode a trace of the branch Y, and the formula

MINg (X, Y):= \/ INF (X, Y)A A =INEg (X, Y)
qeH;, q€Hp—,

225

V. Trees

states that the minimal priority seen infinitely often in the trace encoded
by X is equal to k. The set

Hy={qeQ[0Q(q) <k}

contains all states with priority at most k and the formula

INEg(X,Y) = Vx3y[x <y n Yya V X,00]
peQ

states that the trace contains infinitely many occurrences of the state g. [J

Regular Trees

As an application of the equivalence between automata and MSO-formulae,
we prove that every non-empty regular tree language contains a regular tree.

Definition 2.16. A tree ¥ is regular if, up to isomorphism, it has only finitely
many subtrees. 3

Exercise 2.4. Prove that a finitely-branching tree is regular if, and only if, it
is the unravelling of a finite directed graph. |

Theotrem 2.17. Let L be a regular language of enriched trees over the signature 2.
If L is non-empty, it contains a regular tree. Furthermore, if 2 consists of only
unary predicates, this tree can be effectively constructed from a given automaton
recognising L.

Proof. Let A = (Q, 2,0,90, Q) be an MSO-automaton recognising L and
let m be the maximal quantifier-rank of the formulae §(q), 9 € Q. We use a
variant of the automaton game where Player < not only chooses the next
transition but also the corresponding input letter. Let S = (S q)qe0 be unary
predicates encoding the states of A. We denote by U, the class of all enriched
trees Ul over the signature X + S + {rt} whose height is at most » and such
that there is exactly one state q € Q with

u u
re ESq.

226

2 Tree automata

Let U, c U, be a set of representatives containing exactly one structure of
each MSO,, -theory. The game uses positions

Vo= {*}+QxUJ and Vy:=U;.

The initial position is * € V. In position #, Player & chooses some B € Uy
such that

BVE Sqo(rt) NO(q0),
while, in position (g, U), he chooses B € U satisfying
VS (rt) Ad(q) and Blg 2U.

Player O responds with some vertex v € V different from the root and some
state p € Q with v € S,,. The game continues in position (p, B') where
Q' is the structure obtained from B|(,} by removing the root rt from all
predicates S, with g # p. Finally, a play is winning if the corresponding
sequence of states satisfies the parity condition.

Note that a winning strategy for Player < is determined by a tree T and
an accepting run of A on £. Conversely, Player O wins the game if no tree
has an accepting run. Since L # &, it follows that Player <> has a positional
winning strategy 0. Let & be the graph obtained from the game by removing
all edges that do not correspond to 0. The unravelling of & is a regular tree
accepted by A.

Finally, note that the construction of & is effective, provided that we can
compute the sets of representatives U, and U;. If all predicates in X are unary,
we can do so since it is decidable whether an MSO,, -theory is satisfied by
some extended tree of height o or 1 over 2. (The easiest way to see this is
using Theorem 3.5 below. Alternatively one can use a direct composition
argument to build a tree using disjoint unions.) O

Corollary 2.18. Let m < w. For every tree T, there exists a regular tree S with
—m
S =lyso &

Proof. Let 0 := Thy;so(%) and set ¢ := A 0. The language of all trees

satisfying ¢ is regular and, therefore, it contains some regular tree. O

227

V. Trees

3 dbe Prudhnit Jteration

Having defined tree automata, we now can used them to study decidability
questions. We consider the theory of enriched trees of the following kind.

Definition 3.1. Let & = (A, R) be a Z-structure. The Muchnik iteration of
is the (2 + {suc, cl})-structure

A* = <A*, R*, suc, cl)
where

Rf:={(wao,...,wan_;) |we A", GeR;},
suc:={(w,wa) |we A", acA},

ci={waa|weA”, acA}.
The predicate cl is called the clone relation.)

Remark. Note that A* isa (X + {cl})-enriched tree. Hence, we can use the
automata-theoretic tools from the previous section to study the MSO-theory
of such structures. j

Example. The unravelling of a directed graph & = (V, E) is MSO-inter-
pretable in the Muchnik iteration 8*. To do so, we only need to find a
formula ¢(x) stating that a sequence x € V* of vertices corresponds to a

path of 8. Such a formula is given by

¢(x) = Vy[y <pe x = 3z(cd(z) A Ezy)].)

To show that the Muchnik iteration is MSO-compatible, we can use
tree automata and the corresponding automaton games. Since trees of the
form A* are very regular, we can simplify these games considerably. In par-
ticular, we do not need to remember the precise vertex v € A* we are in, but
only its last letter.

228

3 The Muchnik Iteration

Definition 3.2. Let A:=(Q, % + {cl}, §, g0, Q) be an alternating L-auto-
maton and let U be a X-structure. The reduced game

Go(A,A) =(Ve, Vi, E, Q)
has positions
Vo= AxQ+{{{(),90)} and V5:=R(AxQ).

The initial position is {(), 4o) and the edge relation E is defined as follows.
From a Vp-position H there are edges to all Vi, -positions (b, q) € H. Froma
Vi -position (a, q) with a € AU{()}, there are edges to every V5-position H

satisfying

(Y@ a,S,a)=8(q), where S,:={beA|(bp)eH}
and 2 @ a denotes the substructure Suc, (a) of A*, that is, A @ a is the
disjoint union of % and a singleton structure |} expanded by the successor
relation suc and the clone predicate cl. Similarly, for a = (), we denote by
A & () the substructure of A* consisting of the root and its immediate
successors.

The priority function is defined in the same way as for G (A, Y~), ie., we

set

Q'({v,q)) =0(q), for(v,q) € Vo,

while Q’(H), for H € Vg, is an arbitrary number larger than all priorities
used by A. ,

Lemma 3.3. Let A be an alternating L-automaton and let A be a Z-structure.
Automaton has a winning strategy for Go (A, N) if, and only if, be bas one for
G(A,U*).

Proof. Suppose that A = (Q, X u{cl},d, g0, Q2),

G(AY")=(Vs, Vo, E, Q) and Go(A,Y) =(VZ, VS, E®, Q°).

229

V. Trees

Letr: A* — A be the function mapping a word to its last letter:
r(va) =a.

We define a projection function h : V' — V° by applying r to the first

component of every position.

((hao) ifv=(),

for (v, q) € Vo,
(r(v),q) otherwise, or (v, q) € Vo

h({v. q)) ¢={
h(H) :={{r(v),q) |{v.q) e H}, for He Vg.

(Note that, in a play of G(A, ¥*), we will never see a position of the form
((), q) with g # g,. Hence, in the above definition the replacement of g by g,
is harmless.)

The function b is a homomorphism from G (A, %*) to G, (A,). In par-
ticular, it is an immersion. Consequently, the claim follows by Lemma IV.5.6.

O

We can use the reduced game G, (A,) to compute the winning region
inside the structure .

Lemma 3.4. Let A be an alternating L-automaton where L is one of MSO or
CMSO, and