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Part A

Fundamental+





I Logi$+ and Their Expre^ive
Power+

The two central topics of this book are (i) the model checking
problem for specific structures and (ii) the study of the expressive

power of various logics. To this end we will develop techniques to compute
and compare the theories of given structures.This obviously solves themodel
checking problem since, if we know the theory of a structureA, we can decide
whether a formula is satisfied by it. But this also helps us to prove that certain
things are not expressible in a given logic L. If we can find two structures
A and B with the same L-theory such that A has a given property P, but
B does not, then the property P cannot be expressed in L.

Notation. The following basic notation will be used throughout the
book. For n < ω, we set [n] ∶= {0, . . . , n − 1}. We tacitly identify a tuple
ā = ⟨a0 , . . . , an−1⟩ with the set {a0 , . . . , an−1} of its components. This
allows us to write ā ⊆ C or c ∈ ā. The empty tuple is ⟨⟩.
℘(A) denotes the power set of A, and A + B is the disjoint union of

A and B. For a function f ∶ A→ B, we denote the domain by dom f ∶= A
and its range by rng f ⊆ B. We write f ↾ X ∶ X → B for the restriction of f
to the set X.
For a partial order ⟨A, ≤⟩ and a subset X ⊆ A, we set

⇑X ∶= { a ∈ A ∣ a ≥ x for some x ∈ X } ,

⇓X ∶= { a ∈ A ∣ a ≤ x for some x ∈ X } .

We denote the infimum and the supremum of two elements x and y by,
respectively, x ⊓ y and x ⊔ y.

monadic second-order model theory 2025-02-23 — ©achim blumensath 3



I. Logics and Their Expressive Powers

1 Stru$ture+ and Logi$+

Logics are formal languages designed to talk about mathematical objects. As
we will deal with several different logics in the course of this book it is useful
to adopt an abstract point of view. In general a logic consists of (i) a class of
objects to talk about; (ii) a set of statements we can make about them; and
(iii) a relation telling us which statements hold for a given object.

Definition 1.1. A logic is a triple ⟨L,M,⊧⟩ consisting of a set L of formulae,
a classM ofmodels, and a satisfaction relation ⊧ ⊆M× L. To keep notation
light, we usually identify a logic with its set of formulae L. ⌟

For instance, we can define first-order logic as a triple ⟨FO[Σ], STR[Σ],⊧⟩
where FO[Σ] is the set of all first-order formulae (without free variables)
over the signature Σ and STR[Σ] is the class of all Σ-structures. For formulae
with free variables we can use the logic ⟨FO[Σ,X], STR[Σ,X],⊧⟩ where
FO[Σ,X] is the set of all first-order formulae with free variables in the setX
and STR[Σ,X] is the class of all pairs ⟨A, β⟩ consisting of a Σ-structure A
and a variable assignment β ∶ X → A.
The logics we consider in this book are mostly variants of first-order

logic and monadic second-order logic. Let us quickly recall their definitions.
A signature Σ is a set of relation symbols and function symbols, each of which
has an associated arity. A Σ-structure A = ⟨A, (ξA)ξ∈Σ⟩ consists of a set A
together with

◆ one n-ary relation RA ⊆ An , for every relation symbol R ∈ Σ of arity n,

◆ one n-ary function f
A ∶ An → A, for every function symbol f ∈ Σ of

arity n.

Note that we allow functions of arity 0, which correspond to constants.Most
of the time in this book we assume that all signatures are finite and purely
relational.

Most of the timewewill onlyworkwith 1-sorted structures, but sometimes
many-sorted ones are more convenient. An S-sorted structure

A = ⟨(As)s∈S , (ξA)ξ∈Σ⟩

4



1 Structures and logics

has one domain As , for each sort s ∈ S, and each relation symbol and
function symbol has an associated type. For an n-ary relation symbol R, this
type is an n-tuple s̄ ∈ Sn , for an n-ary function symbol f , it is an (n + 1)-
tuple s̄t ∈ Sn+1, which we will usually write at s̄ → t. If R has type s̄, the
corresponding relation is of the form R

A ⊆ ∏i As i . Similarly, if f has type
s̄ → t, we are given a function f

A ∶ ∏i As i → At .

Example. (a)The field of real numbers ⟨R,+, ⋅ , 0, 1, ≤⟩ is a structure with
signature {+, ⋅ , 0, 1, ≤}, where + and ⋅ are binary function symbols, 0 and 1
are 0-ary function symbols, and ≤ is a binary relation symbol.

(b) A graph is a structure ⟨V , E⟩ with a single binary relation E ⊆ V ×V .
(c) We can represent a vector space V over a field K either as a 1-sorted

structure of the form V = ⟨V ,+, 0, ( fa)a∈K⟩ where scalar multiplication
is split into separate functions fa ∶ V → V , for each a ∈ K, or we can
use a two-sorted structure V = ⟨V ,K,+, 0, ⋅ ⟩ with + ∶ V × V → V and
⋅ ∶ K ×V → V . ⌟

Themain logics we are concerned with in this book are first-order logic
and various variants of monadic second-order logic. Recall that first-order
logic FO[Σ] consist of formulae that are built up from atomic formulae of the
form s = t and Rt0 . . . tn−1, where R ∈ Σ is an n-ary relation symbol and
s, t, t0 , . . . , tn−1 are terms built up from variables and the function symbols
in Σ. Such atomic formulae can be combined using boolean operations
∧ (conjunction), ∨ (disjunction), ¬ (negation), and first-order quantifiers
∃x and ∀x.

Definition 1.2. Let Σ be a signature. The formulae of monadic second-order
logicMSO[Σ] are built up from atomic formulae of the form s = t, Zt, and
Rt0 . . . tn−1, where R ∈ Σ is an n-ary relation symbol, Z is a set variable,
and s, t, t0 , . . . , tn−1 are terms built up from first-order variables and the
function symbols in Σ. Such atomic formulae can be combined using boolean
operations ∧ (conjunction), ∨ (disjunction), ¬ (negation), and quantifiers
∃x, ∀x, ∃Z, and ∀Z, where x is a first-order variable and Z is a set variable.
The semantics of such a formula is defined as follows. Given a formula

φ(x̄ , Z̄) ∈ MSO[Σ] with free first-order variables x̄ and free set variables Z̄

5



I. Logics and Their Expressive Powers

and given a Σ-structureA, a tuple of elements ā ofA, and a tuple of subsets P̄
of A, we define the satisfaction relation

A ⊧ φ(ā, P̄)

by induction on φ.The definition is analogous to that for first-order logic. An
atomic formula Zt holds in A if the element denoted by the term t belongs
to the set denoted by Z. A formula of the form ∃Zψ holds if there exists a
set satisfying ψ, and ∀Zψ holds if every set satisfies ψ.
Throughout we use lower case letters for first-order variables and upper

case ones for set variable. For readability we will sometimes use common
short-hands such as, s ≠ t instead of ¬(s = t), or t ∈ Z instead of Zt.

As above we writeMSO[Σ,X] for the set ofMSO-formulae with free vari-
ables in a given set X. A model of such a formula consists of a Σ-structure A
and a variable assignment β. We usually write φ(x̄ , Z̄) for a formula φ to
indicate that the free variables of φ are among the variables x̄ Z̄. This allows
us to use the more common notation

A ⊧ φ(ā, P̄) iff ⟨A, β⟩ ⊧ φ ,

where β is the variable assignment mapping x i to a i and Z i to Pi . Since
Σ and X can usually be inferred from the context, we will frequently simplify
notation by writing MSO instead of MSO[Σ,X], and similarly for other
logics. ⌟

Example. (a) For a linear order A = ⟨A, ≤, ⟩, we can say that y is the imme-
diate successor of x by the FO-formula

φ(x , y) ∶= x ≤ y ∧ x ≠ y ∧ ∀z[x ≤ z ∧ z ≤ y → (z = x ∨ z = y)] .

(b) For a tree T = ⟨T , ≤⟩ where ≤ is the predecessor order, we can express
that a set variable X contains an infinite branch by theMSO-formula

∃Z[Z ⊆ X ∧ Z ≠ ∅ ∧ ∀x∀y[Zx ∧ Zy → (x ≤ y ∨ y ≤ x)]

∧ ∀x∃y[Zx → x < y ∧ Zy]] .

6



1 Structures and logics

(c) Given a graph G = ⟨V , E⟩, theMSO-formula

φ(x , y) ∶= ∀Z[Zx ∧ ∀u∀v(Zu ∧ Euv → Zv) → Zy]

expresses that there exists a path from x to y.
(d) We can say that a graph G = ⟨V , E⟩ is connected by the formula

∀x∀yφ(x , y) ,

where φ is the formula from (c). ⌟

We will also study the following variants of monadic second-order logic.

Definition 1.3. Let Σ be a signature.
(a)Weak monadic-second order logicWMSO[Σ] has the same syntax as

MSO[Σ], but all set variables range over finite sets only.
(b) Monadic-second order logic with first-order counting CMSO[Σ], or

counting monadic-second order logic for short, is the extension ofMSO[Σ] by
statements of the form

∣X∣ < ℵ0 and ∣X∣ ≡ k (mod m) ,

for a set variable X and finite numbers k,m < ω. A statement of the form
∣X∣ < ℵ0 holds if X is a finite set, and ∣X∣ ≡ k (mod m) is true if, X is finite
and its size is congruent k modulo m. We writeMSO[inf] if we only allow
predicates of the first form.
(c) Let A be a Σ-structure. A tuple ā ∈ An is guarded if there exists a

relation R of A containing a tuple c̄ ∈ R with ā ⊆ c̄. Here, we allow R to
be the equality relation =, even though it is not present in the signature.
A relation S ⊆ An is guarded if every tuple ā ∈ S is guarded.

(d)Guarded second-order logicGSO[Σ] extends first-order logic by atomic
formulae of the form Zt0 . . . tn−1, where t0 , . . . , tn−1 are terms and Z is
a relation variable of arity n, and by quantifiers ∃Z and ∀Z over relation
variables. A formula of the form ∃Zψ holds if there exists a guarded relation
satisfying ψ, and ∀Zψ holds if every guarded relation satisfies ψ. ⌟

7



I. Logics and Their Expressive Powers

Example. We consider undirected graphs G = ⟨V , E⟩ as structures over
the signature {E} consisting of one binary edge relation (irreflexive and
symmetric).

(a) To express that a graph has a Hamiltonian cycle we can write down a
GSO-formula stating that there is a guarded binary relation Z (i.e., a set of
edges) such that

◆ for every vertex x there are unique vertices y and z with (y, x) ∈ Z and
(x , z) ∈ Z,

◆ every two vertices are connected by a sequence of Z-edges.

(b) A minor of a graph G is a graph H obtained from the first graph by
deleting vertices and edges and by contracting edges. To say that a fixed finite
graph H is a minor of the given graph, we can use anMSO-formula stating
that, for each vertex v of H, there exists a set Xv such that

◆ the subgraph induced by Xv is connected and

◆ for every edge ⟨u, v⟩ of H there is an edge connecting some vertex of Xu
with some vertex of Xv . ⌟

As defined above the logicMSO is not always convenient to use in proofs.
Therefore, we introduce a simplified version that still has the same expressive
power.

Definition 1.4. Let Σ be a relational signature. The logic MSO0[Σ] has
atomic formulae of the form

X ⊆ Y , sing(X) , RX0 . . .Xn−1 ,

X ∩ Y = ∅ , cover(X0 , . . . ,Xn−1) ,

where R ∈ Σ is an n-ary relation symbol andX,Y ,X0 , . . . ,Xn−1 are set vari-
ables. The logic is closed under boolean operations and set quantifiers. The
formulae X ⊆ Y and X ∩ Y = ∅ have the obvious meaning. sing(X) states
that ∣X∣ = 1. An atomic formula of the form cover(X0 , . . . ,Xn−1) holds if
the union X0 ∪ ⋅ ⋅ ⋅ ∪ Xn−1 contains the whole universe, while a formula of
the form RX0 . . .Xn−1 holds if each set X i is a singleton {a i} and the tuple
⟨a0 , . . . , an−1⟩ of elements belongs to R. ⌟

8



1 Structures and logics

Remark. (a) We frequently use abbreviations like

(X = Y) ∶= (X ⊆ Y) ∧ (Y ⊆ X) ,

(X ⊂ Y) ∶= (X ⊆ Y) ∧ ¬(Y ⊆ X) ,

(X = ∅) ∶= (X ∩ X = ∅) .

(b) Note that every MSO0-formula is equivalent to one that does not
contain atomic formulae of the form X ∩ X

′ = ∅, sing(X), or cover(X̄)
since we can define these in terms of ⊆.

X ∩ X
′ = ∅ ≡ ∀Y[Y ⊆ X ∧ Y ⊆ X′ → ∀Z(Y ⊆ Z)] ,

sing(X) ≡ X ≠ ∅ ∧ ∀Y[Y ⊂ X → Y = ∅] ,

cover(X̄) ≡ ∀Z[sing(Z) → ⋁
i
Z ⊆ X i] .

But note that this translation does increase the quantifier rank. ⌟

Lemma 1.5. Let Σ be a relational signature. For every formula φ(x̄ , Z̄) ∈
MSO[Σ], there is a formula φ○(X̄, Z̄) ∈ MSO0[Σ] such that

A ⊧ φ○({a0}, . . . , {am−1}, P̄) iff A ⊧ φ(a0 , . . . , am−1 , P̄) ,

for every Σ-structure A and all parameters ā and P̄.

Proof. We define φ○ by induction as follows.

(x = y)○ ∶= sing(X) ∧ sing(Y) ∧ X ⊆ Y ∧ Y ⊆ X ,

(Rx0 . . . xn−1)○ ∶= RX0 . . .Xn−1 ,

(φ ∧ ψ)○ ∶= φ○ ∧ ψ○ , (∃xψ)○ ∶= ∃X[sing(X) ∧ ψ○] ,
(φ ∨ ψ)○ ∶= φ○ ∨ ψ○ , (∀xψ)○ ∶= ∀X[sing(X) → ψ○] ,
(¬φ)○ ∶= ¬φ○ , (∃Zψ)○ ∶= ∃Zψ○ ,

(∀Zψ)○ ∶= ∀Zψ○ .

Analogous statements hold for the other variants ofMSO.

9



I. Logics and Their Expressive Powers

Exercise 1.1. We consider coloured linear orders of the form ⟨A, ≤, P⟩where
P ⊆ A is a unary predicate. FindMSO-formulae expressing the following
statements:
(a) The set P is dense, i.e., it is non-empty and between any two elements

of A there is an element of P.
(b) The set P contains infinitely many elements.
(c) The set P is finite and it has an even number of elements. ⌟

Exercise 1.2. An (m × n)-grid is a graph G = ⟨V , E⟩ where

V ∶= [m] × [n] ,

E ∶= { ⟨⟨i , k⟩, ⟨ j, l⟩⟩ ∣ ∣i − j∣ + ∣k − l ∣ = 1} .

(a) Construct anMSO-formula expressing that a graph is a grid.
(b) For each of the following functions f ∶ ω → ω, find anMSO-formula

stating that the given graph is an (n × f (n))-grid, for some n.

(i) f (n) = n , (ii) f (n) = n2 , (iii) f (n) = 2n . ⌟

Exercise 1.3. We can encode a finite word w = a0 . . . an−1 ∈ Σ∗ over the
alphabet Σ by a word structure

ŵ ∶= ⟨[n], ≤, (Pa)a∈Σ⟩ ,

where the universe [n] = {0, . . . , n − 1} is the set of positions in the word w
and the predicates

Pa ∶= { i < n ∣ a i = a }

contain all positions carrying the corresponding letter. Prove that, for every
regular expression α, there exists anMSO-formula φ such that

ŵ ⊧ φ iff w ∈ L(α) .

Hint.First construct, for each regular expression α, anMSO-formulaφ(x , y)
such that

ŵ ⊧ φ(x , y) iff w[x , y] ∈ L(α) ,

where w[x , y] denotes the factor of w between positions x and y. ⌟

10



2 Simple translations between logics

2 Simple Tranªation+ Between Logi$+

In this section we relate the various logics introduced above to each other,
and we provide translations between them.We start withMSO and FO.

Definition 2.1. Let Σ be a relational signature.
(a)The power-set structure of a Σ-structure A is the structure ℘(A) with

signature Σ+{⊆}whose universe is the power set ℘(A) of the universe ofA.
The relation symbol ⊆ denotes the usual subset relation on ℘(A). For each
n-ary relation symbol R ∈ Σ, ℘(A) has the relation

R
℘(A) ∶= { P̄ ∈ ℘(A)n ∣ each Pi = {a i} is a singleton and ā ∈ RA } .

(b) The finite power-set structure of a Σ-structure A is the substructure
℘fin(A) of ℘(A) consisting of all finite subsets of A. ⌟

It is straightforward to check thatMSO over Σ-structures corresponds to
FO over their power-set structures.

Proposition 2.2. Let Σ be a relational signature.

(a) For everyMSO[Σ]-formula φ(X̄), there exists an FO[Σ+{⊆}]-formula
φ′(x̄) such that

A ⊧ φ(P̄) iff ℘(A) ⊧ φ′(P̄) ,

for all Σ-structures A and all sets P̄ in A.
(b) For every FO[Σ+{⊆}]-formula φ(x̄), there exists anMSO[Σ]-formula

φ′(X̄) such that

℘(A) ⊧ φ(P̄) iff A ⊧ φ′(P̄) ,

for all Σ-structures A and all sets P̄ in A.

Proof. (a) By Lemma 1.5 and the remark after Definition 1.4, we may as-
sume that φ is anMSO0-formula without subformulae of the form sing(X),
X ∩ Y = ∅, or cover(X̄). Then we obtain the desired formula φ′ from φ by
replacing every set variable X by a corresponding first-order variable x.
(b) It is sufficient to construct anMSO0-formula. We obtain it from φ by

replacing every first-order variable x by a corresponding set variable X.

11



I. Logics and Their Expressive Powers

We obtain the analogous result for finite power-sets and weakMSO. The
proof is identical to the one above.

Proposition 2.3. Let Σ be a relational signature.

(a) For every WMSO[Σ]-formula φ(X̄), there exists an FO[Σ + {⊆}]-
formula φ′(x̄) such that

A ⊧ φ(P̄) iff ℘fin(A) ⊧ φ′(P̄) ,

for all Σ-structures A and all finite sets P̄ in A.
(b) For every FO[Σ + {⊆}]-formula φ(x̄), there exists an WMSO[Σ]-

formula φ′(X̄) such that

℘fin(A) ⊧ φ(P̄) iff A ⊧ φ′(P̄) ,

for all Σ-structures A and all finite sets P̄ in A.

There is also a variant for CMSO, again with basically the same proof.

Proposition 2.4. Let Σ be a relational signature and m < ω a constant.

(a) Let φ(X̄) be a CMSO[Σ]-formula such that, in every subformula of

the form ∣X∣ ≡ k (mod n), the constant n divides m. Then there exists an

FO[Σ + {⊆, M̄}]-formula φ′(x̄) such that

A ⊧ φ(P̄) iff ⟨℘(A), M̄⟩ ⊧ φ′(P̄) ,

for all Σ-structures A and all sets P̄ in A, where

Mk ∶= { S ⊆ A ∣ ∣S∣ ≡ k (mod m) } .

(b) For every FO[Σ + {⊆, M̄}]-formula φ(x̄), there exists a CMSO[Σ]-
formula φ′(X̄) such that

⟨℘(A), M̄⟩ ⊧ φ(P̄) iff A ⊧ φ′(P̄) ,

for all Σ-structures A and all sets P̄ in A, where the predicates M̄ = (Mk)k<m
are defined as above.

12



2 Simple translations between logics

Finally, we can also relateMSO to GSO via a suitable operation.

Definition 2.5. Let Σ be a relational signature.The incidence structure of a
Σ-structure A is the 2-sorted Σin-structure

Ain ∶= ⟨A, E , (Pc)c , in0 , in1 , . . . ⟩

with domains A and

E ∶= { c̄ ∈ A<ω ∣ c̄ guarded, all components distinct} .

For every relation R ∈ Σ of arity n and every surjective monotone function
σ ∶ [n] → [k] with k ≤ n, we have a unary predicate

PR ,σ ∶= { c̄ ∈ E ∣ d̄ ∈ R
A , d i = cσ(i) } ,

containing all tuples that are guarded by some tuple in RA. In addition, for
every k < ω, there is an incidence relation

ink ∶= { ⟨a, c̄⟩ ∈ A× E ∣ ck = a } . ⌟

Example. Let G = ⟨V , E⟩ be a graph.Then

Gin = ⟨V , E′ , (PE ,σ)σ , in0 , in1⟩

where

E
′ ∶= V ∪ { ⟨u, v⟩ ∣ u ≠ v , ⟨u, v⟩ ∈ E or ⟨v , u⟩ ∈ E } ,

PE ,σ ∶= { ⟨u, v⟩ ∣ u ≠ v , ⟨u, v⟩ ∈ E } , σ ∶ [2] → [2] ,

PE ,τ ∶= { ⟨v⟩ ∣ ⟨v , v⟩ ∈ E } , τ ∶ [2] → [1] . ⌟

Let us check that GSO over Σ-structures corresponds toMSO over their
incidence structures.

Proposition 2.6. Let Σ be a finite relational signature.

13



I. Logics and Their Expressive Powers

(a) For every GSO[Σ]-formula φ, there is an MSO[Σin]-formula φ′ such
that

A ⊧ φ iff Ain ⊧ φ′ , for all Σ-structures A .

(b) For every MSO[Σin]-formula φ, there is a GSO[Σ]-formula φ′ such
that

Ain ⊧ φ iff A ⊧ φ′ , for all Σ-structures A .

Proof. (a) For every n-ary relation variable Z of φ, the formula φ′ will use
a tuple Z̄ = (Zσ)σ of variables that is indexed by all surjective functions
σ ∶ [n] → [k] with k < ω. We define φ′ by induction on φ as follows.

(Rx0 . . . xn−1)′ ∶= ∃z⋁
σ
[PR ,σz ∧ ⋀

k<n
inσ(k)(xk , z)] ,

(Zx0 . . . xn−1)′ ∶= ∃z⋁
σ
[Zσz ∧ ⋀

k<n
inσ(k)(xk , z)] ,

(x = y)′ ∶= x = y , (∃xψ)′ ∶= ∃xψ′ ,
(φ ∧ ψ)′ ∶= φ′ ∧ ψ′ , (∀xψ)′ ∶= ∀xψ′ ,
(φ ∨ ψ)′ ∶= φ′ ∨ ψ′ , (∃Zψ)′ ∶= ∃Z̄ψ′ ,
(¬φ)′ ∶= ¬φ′ , (∀Zψ)′ ∶= ∀Z̄ψ′ .

(b) We may assume that φ is an MSO0-formula without subformulae
of the form sing(X), X ∩ Y = ∅, or cover(X̄). We denote variables of φ
representing a set of elements by X

e and variables representing a set of
guarded tuples by Xg. For every variable Xg of φ the formula φ′ will use a
tuple X̄ = ⟨X1 , . . . ,Xm⟩ where Xn is an n-ary relation variable and m is the
maximal arity of a relation symbol in Σ. Variables Xe remain unchanged.
We define φ′ by induction on φ as follows.

(PR ,σX
g)′ ∶= ∃x̄∃ ȳ[Xn x̄ ∧ Rȳ ∧⋀

i
y i = xσ(i)] ,

where σ ∶ [k] → [n] ,

(ink(X
e ,Yg))′ ∶=

m
⋁
n=k

∃ ȳ[Yn = { ȳ} ∧ X = {yk} ∧ ⋀
i≠n

Yi = ∅] ,

14
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(Xe ⊆ Ye)′ ∶= X ⊆ Y , (Xg ⊆ Yg)′ ∶=
m
⋀
n=1

Xn ⊆ Yn ,

(φ ∧ ψ)′ ∶= φ′ ∧ ψ′ , (∃Xeψ)′ ∶= ∃Xψ′ ,
(φ ∨ ψ)′ ∶= φ′ ∨ ψ′ , (∀Xeψ)′ ∶= ∀Xψ′ ,
(¬φ)′ ∶= ¬φ′ , (∃Xgψ)′ ∶= ∃X̄ψ′ ,

(∀Xgψ)′ ∶= ∀X̄ψ′ .

Using these two lemmas we could in theory reduce any question we have
aboutMSO orGSO to FO. In practice this is not always the most convenient
thing to do since it does make the underlying structures more complicated.
In particular working with power-set structures can be quite unwieldy. Nev-
ertheless the operations ℘ and −in will have many uses throughout this
book.
There are many operations that behave like the above ones. This first

chapter and, to a somewhat lesser extend, the whole book is devoted to their
study. Let us give a name to capture the general situation.

Definition 2.7. Let ⟨L,M,⊧⟩ and ⟨L′ ,M′ ,⊧⟩ be two logics. A unary
operation f ∶ M →M′ is (L, L′)-compatible if, for every formula φ′ ∈ L′,
we can effectively compute a formula φ ∈ L such that

f (A) ⊧ φ′ iff A ⊧ φ , for every A ∈ M .

We call f (L, L′)-bicompatible if, furthermore, for every formula φ ∈ L, we
can effectively compute a formula φ′ ∈ L′ such that

A ⊧ φ iff f (A) ⊧ φ′ , for every A ∈ M .

For the case that L = L′ we simply speak of L-compatible and L-bicompatible
operations. ⌟

Example. In this terminology, Proposition 2.2 states that the operation ℘ is
(MSO, FO)-bicompatible, andProposition 2.6 states that−in is (GSO,MSO)-
bicompatible. ⌟

15
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Note that it follows immediately from the definition that compatible
operations compose.

Lemma 2.8. If f is (L, L′)-compatible operation and g (L′ , L′′)-compatible,
then g ○ f is (L, L′′)-compatible. If f and g are bicompatible, so is g ○ f .

3 Theorie+ and Ba%-and-Forth Argument+

As already remarked above we are interested in computing the theory of
certain structures.The problem is that such theories are infinite objects since
our logics have infinitely many different formulae.The usual way around this
issue is to write the logic in question as a union of finite sublogics indexed
by some complexity parameter. In our case, the standard such parameter is
the quantifier-rank of a formula.

Definition 3.1. (a)The quantifier rank qr(φ) of a formula φ is the number
of nested (first-order and second-order) quantifiers in φ.
(b) We denote by FOm[Σ,X],MSOm[Σ,X],. . . the corresponding sub-

logic consisting of all formulae of quantifier-rank at most m. For CMSO, we
use a slightly different definition:CMSOm denotes the sublogic consisting of
all formulae of quantifier-frank at most m that only use counting predicates
∣X∣ ≅ k (mod p) with p ≤ m. ⌟

Example. The formula ∀x[∃yRxy ∧ ∃zRzx] has quantifier-rank 2 since
the two innermost quantifiers are not nested. ⌟

Let us formally define our notion of a theory. We also introduce an equi-
valence relation on structures for ‘having the same theory’, which will be
central to much of this book.

Definition 3.2. Let ⟨L,M,⊧⟩ be a logic.
(a)The L-theory of a modelM ∈ M is

ThL(M) ∶= {φ ∈ L ∣M ⊧ φ } .

16



3 Theories and back-and-forth arguments

If L is a logic for which the notion of a quantifier-rank is defined, we also set

Thm
L (M) ∶= {φ ∈ L ∣ qr(φ) ≤ m, M ⊧ φ } .

(b) A set Φ ⊆ L of formulae is a theory if it is of the form Φ =ThL(M),
for someM ∈ M.
(c) For two modelsM and N, we define

M ⊑L N : iff ThL(M) ⊆ThL(N) ,

M ≡L N : iff ThL(M) =ThL(N) .

If M ≡L N, we call M and N L-equivalent. Again, for logics that have a
notion of a quantifier-rank, we use the notation

M ⊑mL N : iff Thm
L (M) ⊆Th

m
L (N) ,

M ≡mL N : iff Thm
L (M) =Th

m
L (N) .

If the logic L is understood, we will speak of m-equivalence in this case. If
we want to indicate the logic in question, we will use the terms first-order
m-equivalence, monadic m-equivalence, or guarded m-equivalence instead.
(d)The class of models of a formula φ ∈ L is the set

Mod(φ) ∶= {M ∈ M ∣M ⊧ φ } .

A class C ⊆M is L-definable if C =Mod(φ), for some φ ∈ L.
(e) A logic L is lattice closed if the collection of all L-definable classes is

closed under finite intersections and unions. ⌟

Remark. In the common case where the logics in question are closed under
negation, the relations ⊑L and ≡L coincide. The more general definitions
above are only needed to support logics like, e.g., existential first-order logic
that are not closed under negation ⌟

We can use L-equivalence to give a simple but useful conditions for when
a class of models is definable.

17
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Lemma 3.3. Let ⟨L,M,⊧⟩ be a lattice-closed logic. A class C ⊆ M is L-

definable if, and only if, there exists a finite subset ∆ ⊆ L such that

M ∈ C and M ⊑∆ N implies N ∈ C .

Proof. (⇒) Let φ ∈ L be a formula defining C and set ∆ ∶= {φ}. Suppose
thatM ∈ C andM ⊑∆ N. ThenM ⊧ φ, which implies that N ⊧ φ. Hence,
N ∈ C.
(⇐) Set

φ ∶= ⋁{⋀Th∆(M) ∣M ∈ C } .

Note that this disjunction is finite since there are only finitely many subsets
of ∆. For N ∈ M, it follows that

N ⊧ φ iff N ⊧ ⋀Th∆(M) , for someM ∈ C

iff M ⊑∆ N , for someM ∈ C

iff N ∈ C .

As explained above, the reason why we consider bounded-quantifier the-
ories is that they are finite objects that can be manipulated algorithmically.
Let us prove this fact.

Proposition 3.4. Let L be one of the logics defined above, Σ a finite relational

signature, k,m, r < ω, and let L
k
m ,r[Σ] be the set of all L[Σ]-formulae of

quantifier-rank at most m with at most k free variables and such that all constants

i , p appearing in counting predicates ∣X∣ ≅ i (mod p) are bounded by r.

(a) Up to logical equivalence, there are only finitely many L
k
m ,r[Σ]-formu-

lae. Furthermore, given m, k, r < ω, we can compute a finite set Φk
m ,r of

L
k
m ,r[Σ]-formulae such that every Lk

m ,r[Σ]-formula is equivalent to one
in Φk

m ,r .

(b) There are only finitely many L
k
m ,r[Σ]-theories.

(c) For every L
k
m ,r[Σ]-theory T, there exists a single L

k
m ,r[Σ]-formula θ such

that

A ⊧ θ iff ThLk
m ,r
(A) ⊆ T .
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Remark. Note that, in (a), it is in general undecidablewhich formula in Φk
m ,r

is equivalent to a given L
k
m ,r[Σ]-formula. We only know there is at least

one. ⌟

Proof. (a) We prove the claim by induction on m. First, consider the case
where m = 0. Every quantifier-free L-formula can be written in disjunctive
normal form. Since the signature, the number of variables, and the number
of possible counting predicates ∣X∣ ≅ i (mod p) are all finite, there are
only finitely many atomic formulae and only finitely many negated atomic
formulae. (For L = MSO0, we may assume w.l.o.g. that all variables in an
atom cover(X̄) are distinct.) Since, up to logical equivalence, a conjunction of
such formulae is uniquely determined by the set of formulae appearing in it,
it follows that there are only finitelymany such conjunctions. In the sameway,
we see that, up to logical equivalence, there are only finitelymany disjunctions
of such conjunctions. Hence, there are only finitely many quantifier-free
formulae in disjunctive normal form.
For the inductive step, suppose that m > 0. As above, every L-formula

of quantifier-rank at most m can be written as a boolean combination
of (i) atomic formulae and (ii) formulae of the form ∃xψ or ∃Xψ with
qr(ψ) < m. By inductive hypothesis, there are only finitely many formulae
of these two forms. Writing the boolean combination of them in disjunctive
normal form, we can use the same argument as above to show that there are
only finitely many such combinations.
For the desired set Φk

m ,r of representatives, we can take the set of all
formulae in disjunctive normal form (without repetitions) built up from
subformulae of the form ∃xψ and ∃Xψ with ψ ∈ Φk+1

m−1,r .
(b) By (a), we can fix a finite set Φk

m ,r of L[Σ]-formulae such that every
L
k
m ,r[Σ]-formula is equivalent to one inΦk

m ,r .Then everyLk
m ,r[Σ]-theoryT

is uniquely determined by the intersection T ∩ Φk
m ,r . Since there are only

finitely many sets of the form T ∩ Φk
m ,r , the number of theories is finite.

(c) By (a), we can compute a finite set Φk
m ,r of L

k
m ,r[Σ]-formulae such

that every Lk
m ,r[Σ]-formula is equivalent to one in Φk

m ,r . For every L
k
m ,r[Σ]-
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theory T, the formula

θ ∶= ⋀(T ∩ Φk
m ,r)

has the desired property.

Example. Inspecting the proofs of Propositions 2.2 and 2.3, we see that the
quantifier-rank does not increase during the translation (if we work with
MSO0-formulae). But the translation in Proposition 2.6 does introduce new
quantifiers, although only a bounded number of them that depends only on
the maximal arity of a relation in the signature. Consequently, we can restate
these three lemmas in our new terminology as follows.

A ≡mMSO0 B iff ℘(A) ≡mFO ℘(B) ,

A ≡mWMSO0 B iff ℘fin(A) ≡
m
FO ℘fin(B) ,

A ≡mGSO B ⇒ Ain ≡
m+k
MSO0 Bin ,

Ain ≡
m
MSO0 Bin ⇒ A ≡m+lGSO B ,

for some constants k, l depending on the signature, but independent of m.
⌟

Themost basic way to compute the theory of a structure is by induction
on the quantifier rank. When doing so, we have to deal with formulae with
free variables. We call the values provided for these variables parameters.

Definition 3.5. Let A be a structure. A parameter in A is a value α that can
be assigned to a variable. There are three kinds of parameters:

◆ first-order parameters are elements α ∈ A;

◆ monadic parameters are sets α ⊆ A; and

◆ guarded parameters are guarded relations α ⊆ An .

We say that α is a

◆ second-order parameter, if it is a monadic parameter or a guarded para-
meter;
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◆ FO-parameter, if it is a first-order parameter;

◆ MSO0
-parameter, if it is a monadic parameter;

◆ MSO-parameter, if it is a first-order parameter or a monadic parameter;

◆ GSO-parameter, if it is a first-order parameter, a monadic parameter, or
a guarded parameter. ⌟

Our main tool to inductively compute a theory consists in the following
kind of argument.

Proposition 3.6. Let L be one of the logics defined above, Σ a finite signature,

A and B Σ-structures with L-parameters ᾱ and β̄, and m < ω. Then

A, ᾱ ≡m+1L B, β̄

if, and only if, the following two properties are satisfied.

(Forth Property) For every L-parameter α′ inA, there exists an L-parameter β′
in B such that

A, ᾱα′ ≡mL B, β̄β′ .

(Back Property) For every L-parameter β′ inB, there exists an L-parameter α′
in A such that

A, ᾱα′ ≡mL B, β̄β′ .

Proof. (⇐) Suppose that both properties are satisfied. We have to show
that

A ⊧ φ(ᾱ) iff B ⊧ φ(β̄) ,

for allL-formulaeφ(x̄) of quantifier rank atmostm+1. Every such formula is
a boolean combination of formulae of the form ∃x′ψ(x̄ , x′) where qr(ψ) ≤
m and the variable x′ is either first-order, monadic, or guarded.Therefore, it
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is sufficient to prove the claim for such formulae. By symmetry, it is further
enough to prove that

A ⊧ ∃x′ψ(ᾱ, x′) implies B ⊧ ∃x′ψ(β̄, x′) ,

for all ψ(x̄ , x′) with qr(ψ) ≤ m. Hence, suppose that A ⊧ ∃x′ψ(ᾱ, x′).
Then there exists an L-parameter α′ in A such that A ⊧ ψ(ᾱ, α′). By
assumption, we can find an L-parameter β′ in B with

A, ᾱα′ ≡mL B, β̄β′ .

Consequently, B ⊧ ψ(β̄, β′), which implies that B ⊧ ∃x′ψ(β̄, x′).
(⇒) By Proposition 3.4 (a), there exists a finite set Φ of L-formulae of

quantifier rank at most m such that every formula of quantifier rank at
most m is equivalent to some formula in Φ.
Suppose that there exists an L-parameter α′ in A such that

A, ᾱα′ ≢mL B, β̄β′ , for all β′ in B .

We have to prove that A, ᾱ ≢m+1L B, β̄. Set

Θ ∶= {ψ(x̄ , x′) ∈ Φ ∣ A ⊧ ψ(ᾱ, α′) } ,

and let ϑ ∶= ⋀Θ be the conjunction of all formulae in Θ. It is sufficient to
show that

A ⊧ ∃x′ϑ(ᾱ, x′) and B ⊭ ∃x′ϑ(β̄, x′) .

Since A ⊧ ϑ(ᾱ, α′), we have A ⊧ ∃x′ϑ(ᾱ, x′). Furthermore, for every
β′ in B, we have

A, ᾱα′ ≢mL B, β̄β′ .

Hence, there exists a formula η(x̄ , x′) of quantifier rank at most m such
that

A ⊧ η(ᾱ, α′) and B ⊭ η(β̄, β′) .
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4 Operations for monadic second-order logic

By choice of the set Φ, we may choose η ∈ Φ. Hence, η ∈ Θ and

B ⊭ η(β̄, β′) implies B ⊭ ϑ(β̄, β′) .

We have shown that

B ⊭ ϑ(β̄, β′) , for every L-parameter β′ in B .

Hence, B ⊭ ∃x′ϑ(β̄, x′).

Exercise 3.1. Let m < ω and suppose that ā, b̄ ∈ Qn are tuples such that

a i ≤ a j ⇐⇒ b i ≤ b j , for all i , j < n .

Prove that ⟨Q, ≤⟩, ā ≡mFO ⟨Q, ≤⟩, b̄. ⌟

Exercise 3.2. FindMSO-formulae distinguishing the following structures:

N ∶= ⟨N, ≤⟩ , Z ∶= ⟨Z, ≤⟩ , Q ∶= ⟨Q, ≤⟩ , R ∶= ⟨R, ≤⟩ .

Which of these structures are FO-equivalent? ⌟

Exercise 3.3. Let A = ⟨A, ≤⟩ and B = ⟨B, ≤⟩ be finite linear orders and
m < ω. Prove that

A ≡mFO B iff ∣A∣ = ∣B∣ or ∣A∣, ∣B∣ ≥ 2m − 1 . ⌟

4 Operation+ for Monadi$ Se$ond-Order Logi$

In non-trivial cases the complexities involved in carrying out a back-and-forth
argument quickly become unmanageable. Instead of computing a theory from
first principles, it is often easier to preform a reduction to another theory
which is already known.This approach is known as the composition method.
In this section and the next one, we present several operations on structures
that can be used for such reductions and we establish so-called composition
theorems for them: statements to the effect that they are compatible with the
logic in question. We start with operations that are compatible withMSO.
Those compatible with FO we defer to the next section.
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I. Logics and Their Expressive Powers

Disjoint Union+

One of the most basic operations, but a surprisingly versatile one, is that of
forming a disjoint union.

Definition 4.1. Let Σ be a relational signature. The disjoint union of two Σ-
structuresA andB is the (Σ+{Left, Right})-structureA⊕Bwith universe
A+ B and relations

R
A⊕B ∶= RA + R

B , for R ∈ Σ ,

LeftA⊕B ∶= A ,

RightA⊕B ∶= B . ⌟

The composition theorem for disjoint unions reads as follows.

Proposition 4.2. Let L be one of the logics defined above, let Σ be a finite

relational signature, A, A′
, B and B′ Σ-structures with first-order paramet-

ers ā, ā′ , b̄, b̄′ and second-order parameters P̄, P̄′ , Q̄ , Q̄ ′
, respectively, and let

m < ω. Then

A, P̄, ā ≡mL A′ , P̄′ , ā′ and B, Q̄ , b̄ ≡mL B′ , Q̄ ′ , b̄′

implies

A⊕B, P̄ ∪ Q̄ , āb̄ ≡mL A′ ⊕B′ , P̄′ ∪ Q̄
′ , ā′b̄′ .

(We write P̄ ∪ Q̄ for the tuple whose i-th component is Pi ∪Q i . We assume that

the parameters are appropriate for the logic L, i.e., if L = MSO0
there are no

first-order parameters and if L = FO, there are only first-order parameters.)

Proof. We prove the claim by induction on m. First, consider the case where
m = 0. Since quantifier-free formulae are boolean combinations of atomic
formulae, it is sufficient to consider such formulae. By symmetry, we therefore
only need to show that

A⊕B ⊧ φ(P̄ ∪ Q̄ , ā, b̄) implies A′ ⊕B′ ⊧ φ(P̄′ ∪ Q̄
′ , ā′ , b̄′) ,
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4 Operations for monadic second-order logic

for every atomic formula φ(X̄, x̄ , ȳ). We distinguish several cases. (I encour-
age the reader to skip most of them.)

If φ is an equality z = z′ and A⊕B ⊧ φ(P̄ ∪ Q̄ , ā, b̄), then the variables
z and z′ are either both among the x̄ or among the ȳ. By symmetry, we may
assume the former, i.e., φ = (x i = x j). Then a i = a j and

A, P̄, ā ≡0L A′ , P̄′ , ā′

implies that a′i = a
′
j . Hence, A′ ⊕B′ ⊧ φ(P̄′ ∪ Q̄

′ , ā′ , b̄′).
If φ = Rz̄ for R ∈ Σ, then again z̄ must be a subtuple of x̄ or of ȳ. Say it is

the former. Then A, P̄, ā ⊧ Rz̄ and

A, P̄, ā ≡0L A′ , P̄′ , ā′

implies that A′ , P̄′ , ā′ ⊧ Rz̄. Hence, A′ ⊕B′ ⊧ φ(P̄′ ∪ Q̄
′ , ā′ , b̄′).

For φ = Left(x) or φ = Right(x), the proof is similar.
If φ = X i ⊆ X j , then

A⊕B, P̄ ∪ Q̄ ⊧ X i ⊆ Y j

⇒ Pi ∪ Q i ⊆ P j ∪ Q j

⇒ Pi ⊆ P j and Q i ⊆ Q j

⇒ P
′
i ⊆ P

′
j and Q

′
i ⊆ Q

′
j

⇒ P
′
i ∪ Q

′
i ⊆ P

′
j ∪ Q

′
j

⇒ A′ ⊕B′ , P̄′ ∪ Q̄
′ ⊧ X i ⊆ Y j .

The proofs for φ = X ∩ Y = ∅ and cover(X̄) are analogous.
Suppose that φ = RX0 . . .Xn−1, i.e., that

A⊕B, P̄ ∪ Q̄ ⊧ RX̄ .

Then there are elements a i ∈ Pi ∪ Q i such that ā ∈ RA⊕B. Since RA⊕B =
R

A ∪ R
B, it follows that ā ∈ RA or ā ∈ RB. By symmetry, we may assume

the former. Then A, P̄ ⊧ RX̄, which implies that A′ , P̄′ ⊧ RX̄. It follows
that

A′ ⊕B′ , P̄′ ∪ Q̄
′ ⊧ RX̄ .
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For φ = Left(X) or φ = Right(X), the proof is similar.
If φ = ∣X i ∣ < ∞, then

A⊕B, P̄ ∪ Q̄ ⊧ ∣X i ∣ < ∞

⇒ Pi ∪ Q i is finite

⇒ Pi is finite and Q i is finite

⇒ P
′
i is finite and Q

′
i is finite

⇒ P
′
i ∪ Q

′
i is finite

⇒ A′ ⊕B′ , P̄′ ∪ Q̄
′ ⊧ ∣X i ∣ < ∞ .

Finally, suppose that φ = ∣X i ∣ ≡ k (mod p). then

A⊕B, P̄ ∪ Q̄ ⊧ ∣X i ∣ ≡ k (mod p)

⇒ ∣Pi ∪ Q i ∣ ≡ k (mod p)

⇒ ∣Pi ∣ ≡ k1 (mod p) and ∣Q i ∣ ≡ k2 (mod p)

with k1 + k2 = k

⇒ ∣P′i ∣ ≡ k1 (mod p) and ∣Q ′
i ∣ ≡ k2 (mod p)

with k1 + k2 = k

⇒ ∣P′i ∪ Q
′
i ∣ ≡ k (mod p)

⇒ A′ ⊕B′ , P̄′ ∪ Q̄
′ ⊧ ∣X i ∣ ≡ k (mod p) .

For the inductive step, suppose that we have already established the claim
for m, and consider structures

A, P̄, ā ≡m+1L A′ , P̄′ , ā′ and B, Q̄ , b̄ ≡m+1L B′ , Q̄ ′ , b̄′ .

We have to show that

A⊕B, P̄ ∪ Q̄ , āb̄ ≡m+1L A′ ⊕B′ , P̄′ ∪ Q̄
′ , ā′b̄′ .

By symmetry and Proposition 3.6, it is sufficient to prove that, for every
L-parameter α in A⊕B, there exists an L-parameter α′ in A′ ⊕B′ such
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that

A⊕B, P̄ ∪ Q̄ , āb̄, α ≡mL A′ ⊕B′ , P̄′ ∪ Q̄
′ , ā′b̄′ , α′ .

Hence, consider a parameter α in A⊕B. We distinguish two cases.
If α is a first-order parameter, then α ∈ A or α ∈ B. By symmetry, we may

assume the former. According to Proposition 3.6, we can find an L-para-
meter α′ in A′ such that

A, P̄, āα ≡mL A′ , P̄′ , ā′α′ .

By inductive hypothesis, this implies that

A⊕B, P̄ ∪ Q̄ , āb̄α ≡mL A′ ⊕B′ , P̄′ ∪ Q̄
′ , ā′b̄′α′ ,

as desired.
Hence, suppose that α is a second-order parameter. According to Propos-

ition 3.6, we can find parameters α′0 in A′ and α′1 in B′ such that

A, P̄, ā, α ↾ A ≡mL A′ , P̄′ , ā′ , α′0
and B, Q̄ , b̄, α ↾ B ≡mL B′ , Q̄ ′ , b̄′ , α′1 .

By inductive hypothesis, this implies that

A⊕B, P̄ ∪ Q̄ , āb̄, α ≡mL A′ ⊕B′ , P̄′ ∪ Q̄
′ , ā′b̄′ , α′0 ∪ α′1 .

Hence, we can set α′ ∶= α′0 ∪ α′1.

Let us present some applications.We start with structures over the empty
signature.

Proposition 4.3. Let A and B be structures over the empty signature. Then

(a) A ≡mFO B iff ∣A∣ = ∣B∣ or ∣A∣, ∣B∣ ≥ m .

(b) A ≡m+1MSO B iff ∣A∣ = ∣B∣ or ∣A∣, ∣B∣ ≥ 2m .
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Proof. (a) (⇒) Suppose that k ∶= ∣A∣ < ∣B∣ with k < m. Then the formula

∃x0⋯∃xk ⋀
0≤i< j≤k

x i ≠ x j

holds in B, but not in A. It quantifier-rank is k + 1 ≤ m.
(⇐) Clearly, if ∣A∣ = ∣B∣ then A ≅ B and both structures have the

same theory. Hence, it remains to consider the case where ∣A∣, ∣B∣ ≥ m. We
have to show that A ≡mFO B. For m = 0 the claim is trivial, since there are
no quantifier-free FO[∅]-formulae without free variables. Hence, we may
assume that m > 0. In this case, according to Proposition 3.6, it is enough
to prove the Back-and-Forth Property. As usually it is further sufficient
to consider only the Forth Property. The Back Property then follows by
symmetry. Hence, let a ∈ A. We pick an arbitrary element b ∈ B. Let
A0 and B0 be the substructures of A and B induced by the sets A0 ∶=
A∖{a} and B0 ∶= B∖{b}, and let A1 and B1 be the substructures induced
by {a} and {b}. By inductive hypothesis,

∣A0∣, ∣B0∣ ≥ m − 1 implies A0 ≡
m−1
FO B0 .

Since A1 ≅ B1, we also have A1 , a ≡m−1FO B1 , b. Consequently, it follows by
Proposition 4.2 that

A, a ≅ A0 ⊕ A1 , a ≡m−1FO B0 ⊕B1 , b ≅ B, b .

(Strictly speaking, instead of the disjoint unions A0 ⊕ A1 and B0 ⊕B1, we
have to take their reducts that omit the new relations Left and Right.)
(b) (⇒) Suppose that k ∶= ∣A∣ < ∣B∣ with k < 2m and let n be the largest

number such that 2n ≤ k. For i ≤ 2n+1, set

ϑ i(X0 , . . . ,Xn) ∶= ∃y ⋀
0≤ j≤n

χ i , j(X̄, y)

where

χ i , j(X̄, y) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

X j y if the j-th bit of i is 1 ,
¬X j y if the j-th bit of i is 0 .
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The formula

∃X0⋯∃Xn ⋀
0≤i≤k

ϑ i

holds in B, but not in A. It has quantifier rank n + 2 ≤ m + 1.
(⇐) Again it is sufficient to consider the case where ∣A∣, ∣B∣ ≥ 2m . We

prove the claim by induction on m. First, suppose that m = 0. Every for-
mula φ of quantifier rank 1 contains only one bound variable. As the signature
is empty, it follows that the only atomic formulae appearing in φ are of the
form x = x. Consequently, φ either states that the structure is non-empty, or
that it is empty. Since A and B are both non-empty, such formulae therefore
hold either in both structures, or in none of them.

For the inductive step, suppose that m > 0. Again it is sufficient to check
the Forth Property. We distinguish two cases, depending on whether we
deal with a first-order parameter or with a monadic one. First, consider a
monadic parameter P ⊆ A. If P = ∅, we choose Q ∶= ∅. If P = A, we choose
Q ∶= B. In both cases it follows by inductive hypothesis that

A, P ≡mMSO B,Q .

Hence, we may assume that P is neither empty, nor all of A. If ∣P∣ ≤ 2m−1,
choose a subset Q ⊆ B of size ∣Q ∣ = ∣P∣. Otherwise, choose a subset Q ⊆ B
with ∣B ∖ Q ∣ = ∣A ∖ P∣. Let A0 and B0 be the substructures of A and B
induced by P and Q , and let A1 and B1 be the substructures induced by
A∖ P and B ∖ Q . It follows that

◆ ∣P∣ = ∣Q ∣ or ∣P∣, ∣Q ∣ ≥ 2m−1 ;

◆ ∣A∖ P∣ = ∣B ∖ Q ∣ or ∣A∖ P∣, ∣B ∖ Q ∣ ≥ 2m−1.

By inductive hypothesis, this implies that

A0 ≡
m
MSO B0 and A1 ≡

m
MSO B1 .

By Proposition 4.2, it follows that

A, P ≅ A0 , P ⊕ A1 ,∅ ≡mMSO B0 ,Q ⊕B1 ,∅ ≅ B,Q .
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(Again, we have to omit the relations Left and Right.)
For a first-order parameter a ∈ A, we choose an arbitrary element b ∈ B.

We denote by A0 and B0 the substructures of A and B induced by {a} and
{b}, and we write A1 and B1 for the substructures induced by A∖ {a} and
B ∖ {b}. Then

A0 , a ≅ B0 , b implies A0 , a ≡mMSO B0 , b .

Furthermore, it follows by inductive hypothesis that

A1 ≡
m
MSO B1 .

By Proposition 4.2, this implies that

A, a ≅ A0 , a ⊕ A1 ≡
m
MSO B0 , b ⊕B1 ≅ B, b .

Example. There is no MSO[Σ]-formula φ such that, for every finite Σ-
structure A,

A ⊧ φ iff ∣A∣ is even.

For the proof, let m ∶= qr(φ) and let A and B be Σ-structures of size 2m
and 2m + 1, respectively, where every relation is empty. By Proposition 4.3,
we have A ≡m+1MSO B. Consequently,

A ⊧ φ iff B ⊧ φ .

A contradiction. ⌟

Exercise 4.1. We consider structures of the form A = ⟨A, E⟩ where E is an
equivalence relation. For an equivalence relation E, we denote by N=k(E)
the number of E-classes [a]E of size ∣[a]E ∣ = k and N

>
k(E) denotes the

number of classes of size ∣[a]E ∣ > k. We write m =k n iff m = n or m, n ≥ k.
Let E and F be equivalence relations on the sets A and B, respectively.

Prove that ⟨A, E⟩ ≡mFO ⟨B, F⟩ if, and only if, for all k ≤ m,

N
=
k(E) =m−k N

=
k(F) and N

>
k(E) =m−k N

>
k(F) . ⌟
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Interpretation+

Disjoint unions alone are not that interesting as they cannot be used to
modify the relations of a structure. The next operation, called an interpreta-
tion, fills that hole. We will present the definition for of many-sorted struc-
tures since this more general case is what is needed in Chapter VII below.

Definition 4.4. Let L be one of the logics FO,MSO,WMSO, or CMSO,
let Σ and Γ be relational signatures, and assume that Γ is S-sorted. An L-

interpretation from Σ to Γ is an operation τ transforming Σ-structures into
Γ-structures that is defined by a list

⟨(δs(x))s∈S , (φR(x̄))R∈Γ⟩

of L-formulae over the signature Σ as follows. We assume that the formu-
lae δs have one free variable, while the number of free variables of φR matches
the arity of R. Then τ maps a Σ-structure A to the Γ-structure

τ(A) ∶= ⟨(δA
s )s , (φ

A
R)R∈Γ⟩

whose domain of sort s is the set

δA
s ∶= { a ∈ A ∣ A ⊧ δ(a) }

defined by δs and whose relations are

φA
R ∶= { ā ∣ A ⊧ φR(ā) } , for R ∈ Σ .

We call the list ⟨(δs)s , (φR)R∈Γ⟩ the definition scheme of τ. The quantifier
rank of τ is the maximal quantifier rank of a formula in its definition scheme.

⌟

Let us show that L-interpretations are L-compatible.

Proposition 4.5. Let L be one of the logics FO,MSO,WMSO, or CMSO, and
let τ = ⟨(δs(x))s∈S , (φR(x̄))R∈Γ⟩ be an L-interpretation from Σ to Γ with
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quantifier rank m. For every L[Γ]-formula ψ(X̄), there exists an L[Σ]-formula
ψτ(X̄) with quantifier rank at most qr(ψ) + m such that

τ(A) ⊧ ψ(ᾱ) iff A ⊧ ψτ(ᾱ) ,

for all Σ-structures A and all parameters ᾱ in τ(A).

Proof. We define ψτ by induction on ψ as follows.

(x = y)τ ∶= x = y , (φ ∧ ψ)τ ∶= φτ ∧ ψτ ,

(Xy)τ ∶= Xy , (φ ∨ ψ)τ ∶= φτ ∨ ψτ ,

(Rx̄)τ ∶= φR(x̄) , (¬φ)τ ∶= ¬φτ ,

(∃yψ)τ ∶= ∃y[δs(y) ∧ ψτ] , (∃Yψ)τ ∶= ∃Yψτ ,

(∀yψ)τ ∶= ∀y[δs(y) → ψτ] , (∀Yψ)τ ∶= ∀Yψτ ,

where s is the sort of the variable y.

Remark. Note that this statement fails for L = GSO since guarded tuples in
τ(A) are not necessarily guarded in A. ⌟

Corollary 4.6. Let τ be an L-interpretation from Σ to Γ with quantifier rank m.

A ≡k+mL A′
implies τ(A) ≡kL τ(A′) . for all Σ-structures A,A′ .

Proof. By symmetry, it is sufficient to prove that

τ(A) ⊧ φ implies τ(A′) ⊧ φ , for all φ with qr(φ) ≤ k .

Hence, suppose that τ(A) ⊧ φ and let φτ be the formula from Proposi-
tion 4.5. Then

A ⊧ φτ and qr(φτ) ≤ k + m .

Thus, A ≡k+mL A′ implies that A′ ⊧ φτ . It follows that τ(A′) ⊧ φ.

Lemma 4.7. Let σ and τ be L-interpretations. Then so is τ ○ σ .
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Proof. Suppose that τ = ⟨(δs(x))s∈S , (φR(x̄))R∈Γ⟩. We claim that τ ○ σ
has the definition scheme

⟨(δσ
s (x))s∈S , (φ

σ
R(x̄))R∈Γ⟩ .

Note that, given a structure A, the elements τ(σ(A)) of sort s are exactly
those a ∈ A satisfying

σ(A) ⊧ δs(a) .

By Proposition 4.5, this condition is equivalent to

A ⊧ δσ
s (a) .

Similarly, a tuple ā belongs to a relation R if, and only if,

σ(A) ⊧ φR(ā) iff A ⊧ φσ
R(ā) .

Frequently, disjoint unions and interpretations are all one needs to com-
pute a theory. As an example, let us show how to generalise Proposition 4.3
to structures with unary predicates.

Proposition 4.8. Let Σ = {U0 , . . . ,Um−1} be a signature consisting of unary
predicates only. Over the class of all Σ-structures, every GSO-formula φ(X̄, x̄)
is equivalent to an FO-formula.

Proof. Since the only guarded tuples over a unary signature are singletons,
every GSO-formula can trivially be translated to anMSO-formula. Hence,
by Lemma 3.3, it is sufficient to prove that, for every quantifier-rank r < ω,
there exists some p < ω such that

A, P̄ā ≡pFO B, Q̄ b̄ implies A, P̄ā ≡rMSO B, Q̄ b̄ ,

for all A,B with parameters P̄ā and Q̄ b̄. To simplify notation, we will
not work with parameters but with structures A = ⟨A, P̄, c̄⟩ where the
parameters are part of the structure itself. Hence, let Um ,n be the class of all
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such structures with m unary predicates P0 , . . . , Pm−1 ⊆ A and n constant
symbols c0 , . . . , cn−1, Given A ∈ Um ,n and a set θ ⊆ [m], we set

Pθ ∶= ⋂
i∈θ

Pi ∖ ⋃
i∈[m]∖θ

Pi ,

we denote by Aθ the substructure induced by Pθ ∖ c̄, and ⟪c̄⟫A is the sub-
structure generated by c̄. Then we can write A as a disjoint union

A ≅ ⟪c̄⟫A ⊕ ⊕
θ⊆[m]

Aθ .

Let us make the following observations.
(i) For every structure C of size at most k, there exists a first-order for-

mula of quantifier-rank k + 1 that characterises C up to isomorphisms. Con-
sequently, for ā ∈ Ak and b̄ ∈ Bk ,

⟪c̄⟫A ≡
k+1
FO ⟪d̄⟫B implies ⟪c̄⟫A ≅ ⟪d̄⟫B .

(ii) For everyMSO-formula φ, we can use Proposition 4.3 to find a finite
setH ⊆ ω and a number N < ω such that,

C ⊧ φ iff ∣C∣ ∈ H ,

or C ⊧ φ iff ∣C∣ ∈ H or ∣C∣ ≥ N ,

for all C ∈ U0.0. Since, for every k < ω, we can construct an FO-formula ψk
stating that the structure has at least k elements, it follows that there exists
some number f (r) such that

A ≡ f (r)FO B implies A ≡rMSO B , for all A,B ∈ U0,0 .

(iii) For every θ ⊆ [m], there exists a quantifier-free interpretation σθ
mapping C ∈ U0.0 to a structure σθ(C) ∈ Um ,0 with predicates

Pi ∶=

⎧⎪⎪
⎨
⎪⎪⎩

C if i ∈ θ ,
∅ if i ∉ θ .
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In particular,

Aθ = σθ((Aθ)∣∅) , for A ∈ Um ,n and θ ⊆ [m] ,

where C∣∅ denotes the reduct to the empty signature. For A,B ∈ Um ,n and
θ ⊆ [m], it follows that

(Aθ)∣∅ ≡
r
MSO (Bθ)∣∅ implies Aθ ≡

r
MSO Bθ .

(iv)There exists quantifier-free interpretations τ○ and τθ such that

τ○(A) = ⟪ā⟫A and τθ(A) = (Aθ)∅ .

Hence,

A ≡kFO B implies ⟪c̄⟫A ≡
k
FO ⟪d̄⟫B and (Aθ)∣∅ ≡

k
FO (Bθ)∣∅ .

We can conclude the proof as follows. Set p ∶= max{ f (r), n + 1} and let
A,B ∈ Um ,n . Combining the above observations it follows byProposition 4.2
that

A ≡pFO B

⇒ ⟪c̄⟫A ≡
p
FO ⟪d̄⟫B and (Aθ)∣∅ ≡

p
FO (Bθ)∣∅ , for all θ ,

⇒ ⟪c̄⟫A ≅ ⟪d̄⟫B and (Aθ)∣∅ ≡
r
MSO (Bθ)∣∅ , for all θ ,

⇒ ⟪c̄⟫A ≡
r
MSO ⟪d̄⟫B and Aθ ≡

r
MSO Bθ , for all θ ,

⇒ A ≡rMSO B .

As a second example, let us give the example of an ordered sum, which
corresponds to concatenations of words.

Definition 4.9. Let C be a set of colours.
(a) A C-coloured order is a structure of the form A = ⟨A, ≤, (Pc)c∈C⟩

where ≤ is a linear ordering on A and the Pc are unary predicates.
(b) Let I = ⟨I, ≤⟩ be a linear order and let Ai ∶= ⟨A i , ≤i , P̄i⟩, i ∈ I, be a

family or C-coloured linear orders indexed by I. The ordered sum

∑
i∈I

Ai
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is the linear order with universe

L ∶= { ⟨i , a⟩ ∣ i ∈ I , a ∈ A i }

and order

⟨i , a⟩ ≤ ⟨ j, b⟩ : iff i < j or (i = j and a ≤i b) .

The colour predicates are

Pc ∶= ⋃
i∈I
(Pi)c .

If I = [2], we simply write A0 + A1 for the ordered sum. ⌟

Proposition 4.10. Let A0 ,A1 ,B0 ,B1 be C-coloured linear orders and let L be

FO,MSO,WMSO, or CMSO. Then

A0 ≡
m
L B0 and A1 ≡

m
L B1 implies A0 + A1 ≡

m
L B0 +B1 .

Proof. We have

A0 + A1 ≅ τ(A0 ⊕ A1) ,

where τ is a quantifier-free L-interpretation that corrects the order relation.
It has the definition scheme

δ(x) ∶= true ,
φ≤(x , y) ∶= x ≤ y ∨ (Left(x) ∧Right(y)) ,

φPc(x) ∶= Pcx .

As a final application let us show that first-order logic cannot compute
the length of a linear order.

Proposition 4.11. Let A be a C-coloured linear order and m < ω a constant.

Then

k × A ≡mFO l × A , for all k, l ≥ 2m − 1 ,

where k × A ∶= ∑i<k A denotes the k-fold ordered sum of A with itself.
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Proof. We proceed by induction on m. For m = 0, we have k ×A ≡0FO l ×A,
for all k, l , since there are no quantifier-free first-order formulae without free
variables (over the signature of C-coloured linear orders). For the inductive
step, suppose that m > 0.We check the forth property. (As usual the back
property follows by symmetry.) Hence, let a be an element of k × A and
suppose that a belongs to the i-th copy of A. In l × A, we choose the same
element in the j-th copy of A where

j ∶=

⎧⎪⎪
⎨
⎪⎪⎩

i if i ≤ 2m−1 ,
l − (k − i) otherwise .

Let us denote this element by b. By inductive hypothesis it follows that

k × A, a ≅ (i − 1) × A + A, a + (k − i) × A

≡m−1FO ( j − 1) × A + A, b + (l − j) × A ≅ l × A, b .

ForMSO and CMSO, we obtain the following result.

Proposition 4.12. For every m < ω, there exist numbers k, k, l ′ , l ′ < ω such

that

⟨A, ≤⟩ ≡mMSO ⟨B, ≤⟩ iff ∣A∣ = ∣B∣ < k , or

∣A∣, ∣B∣ ≥ k and ∣A∣ ≡ ∣B∣ (mod l) ,

⟨A, ≤⟩ ≡mCMSO ⟨B, ≤⟩ iff ∣A∣ = ∣B∣ < k′ , or

∣A∣, ∣B∣ ≥ k′ and ∣A∣ ≡ ∣B∣ (mod l
′) ,

for all finite linear orders ⟨A, ≤⟩ and ⟨B, ≤⟩.

Proof. Let L be one ofMSO or CMSO. Let Θ be the set of all Lm-theories
of finite linear orders. It follows by Proposition 4.10 that we can define a
binary operation + on Θ such that

Thm
L (A) +Thm

L (B) =Th
m
L (A +B) ,

for all finite linear orders A and B. This turns Θ into a finite semigroup. Let
σ be the theory of the 1-element linear order. Since Θ is finite, there is some
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number n > 1 such that σ n = σ k , for some k < n. We choose n minimal. Let
l ∶= n − k. Then

σ k+i l+ j = σ k+ j , for all i , j ,

and it follows that

σ i = σ j iff i = j or i , j ≥ k and i − k ≡ j − k (mod l) .

SinceThm
L (A) = σ ∣A∣ the claim follows.

Corollary 4.13. For each CMSO-formula φ there exists an CMSO-formula φ∗
such that

⟨A, ≤⟩ ⊧ φ iff ⟨A⟩ ⊧ φ∗ .

Proof. Let m be the quantifier-rank of φ and k
′ , l ′ the constants from the

preceding lemma. By the lemma, there exist sets K ⊆ [k′] and L ⊆ [l ′] such
that

⟨A, ≤⟩ ⊧ φ iff ∣A∣ ∈ K , or ∣A∣ ≥ k′ and ∣A∣ mod l
′ ∈ L .

This is a condition that can be expressed in CMSO.

Remark. We can rephrase this statement by saying that the reduct operation
⟨A, ≤⟩ ↦ ⟨A⟩ is CMSO-compatible. ⌟

Example. (a)There does not exist an FO-formula φ that holds in an undir-
ected graph if, and only if, the graph is connected.
For a contradiction, suppose that such a formula φ exists. We will con-

struct a new formula ψ that holds in a finite linear order if, and only if, this
order has an even number of elements. Let m be the quantifier rank of ψ
and let A and B be linear orders of size 2m and 2m + 1, respectively. Then

A ⊧ ψ and B ⊭ ψ ,

in contradiction to the statement in the above exercise.
To construct the desired formula ψ, we define an FO-interpretation τ =

⟨δ, φE⟩mapping linear orders to undirected graphs as follows.The formula δ
is true while φE(x , y) states that
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◆ in the order ≤ there is exactly one element between x and y, or

◆ x is the first element and y is the last one, or

◆ y is the first element and x is the last one.

Then τ maps finite linear orders of even size to paths and finite linear orders
of odd size (at least 3) to the disjoint union of a path and a cycle. Orders of
size 1 are mapped to a loop.

Hence,

τ(A) ⊧ φ iff A has either exactly one, or an even number

of elements.

Consequently, the formula ψ ∶= φτ ∧∃xy(x ≠ y) has the desired properties.
(b)There does not exist an FO-formula φ(x , y) such that

G ⊧ φ(u, v) iff the graph G contains a path from u to v .

Otherwise, the formula

∀x∀yφ(x , y)

would express that the graph is connected. ⌟

Example. We consider undirected graphs as structures over the signature
{E}.

(a)There does not exist anMSO-formula φ that holds in a finite complete
bipartite graph Km ,n if, and only if, m = n. The proof is similar to that
of Proposition 4.10. Suppose that such a formula φ exists and let k be
its quantifier rank. Let A and B be graphs without any edges that have,
respectively, m ∶= 2k and n ∶= 2k + 1 vertices. Then

Km ,m ∶= τ(A⊕ A) and Km ,n ∶= τ(A⊕B) ,
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where τ is a quantifier-free interpretation that adds all edges between a vertex
in Left and a vertex in Right. Since A ≡kMSO B it follows that

Km ,m = τ(A⊕ A) ≡kMSO τ(A⊕B) = Km ,n .

A contradiction, since φ distinguishes between these two graphs.
(b)There does not exist anMSO-formula φ that holds in a finite graph

if, and only if, all vertices have the same number of neighbours. For a con-
tradiction, suppose that such a formula φ exists. For a complete bipartite
graph Km ,n it follows that

Km ,n ⊧ φ iff m = n .

This contradicts (a).
(c) There does not exist an MSO-formula φ that holds in a finite un-

directed graph if, and only if, the graph has a Hamiltonian cycle. For a
contradiction, suppose that such a formula φ exists. Since a complete bi-
partite graph Km ,n contains an Hamiltonian cycle if, and only if, m = n, it
follows that

Km ,n ⊧ φ iff m = n .

This contradicts (a). ⌟

Quotient+

In some contexts it is usual to combine interpretations with a quotient oper-
ation. To simplify the presentation we present these operations separately.

Definition 4.14. Let A be a (Σ + ≈)-structure where ≈A is an equivalence
relation on A. The quotient of A by ≈ is the Σ-structure A/≈ with universe

A/≈ ∶= { [a]≈ ∣ a ∈ A}

and relations

R
A/≈ ∶= { ⟨[a0]≈ , . . . , [an−1]≈⟩ ∣ ā ∈ RA } . ⌟
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4 Operations for monadic second-order logic

Proposition 4.15. Let L be one of FO, MSO, WMSO, or GSO, let Σ be a

signature with relations of arity at most r, and let A,B be a (Σ + ≈)-structures
such that ≈A

and ≈B
are equivalence relations. Then

A ≡m+rL B implies A/≈ ≡mL B/≈ .

Proof. Given φ ∈ Lm , we construct a formula φ′ ∈ Lm+r such that

A/≈ ⊧ φ iff A ⊧ φ′ .

We obtain φ′ by
◆ replacing each atomic subformula of the form x = y by x ≈ y,

◆ replacing each atomic subformula of the form Rx̄ (where R is either a
relation symbol or a guarded second-order variable) by

∃ ȳ[⋀
i
y i ≈ x i ∧ Rȳ] .

To reach the desired quantifier-rank for L = GSO, we have to make sure
in this translation that the arity of guarded variables is bounded by r. But
note that, since every guarded tuple has at most r distinct components, we
can replace each guarded variable Z of arity n > r by one of arity r (or
rather a tuple (Zσ)σ of such variables indexed by all surjective functions
σ ∶ [n] → [r]).

In the above lemma the quantifier rank increases when going from a struc-
ture to its quotient. Sometimes this can be avoided by using the following
simple version of a quotient.

Definition 4.16. LetA be a (Σ+{P})-structurewhere P is a unary predicate.
The fusion fuseP(A) of A is the Σ-reduct of the quotient A/≈ where

a ≈ b : iff a = b or a, b ∈ P . ⌟

Since a fusion is a quotient by an equivalence relation with just one non-
trivial class, we can avoid increasing the quantifier rank by annotating the
structure by information about the elements in this class.
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Proposition 4.17. Let L be one of FO,MSO,WMSO, CMSO, or GSO, and
let A and B be (Σ + {P})-structures. Then

⟨A∣A∖P , Ū⟩ ≡mL ⟨B∣B∖P , V̄⟩ implies fuseP(A) ≡mL fuseP(B) ,

where the parameters Ū = (UR ,w)R ,w and V̄ = (VR ,w)R ,w contain, for every

R ∈ Σ of arity n and every set w ⊆ [n], the predicate

UR ,w ∶= { ā∣w ∣ ā ∈ R
A , a i ∈ P⇔ i ∉ w }

(and similarly for V̄).

Proof. LetC be the Σ-structure with one element and empty relations.There
exists a quantifier-free interpretation τ such that

fuseP(A) = τ(⟨A∣A∖P , Ū⟩ ⊕ C) .

Hence, the result follows from Propositions 4.2 and 4.5.

It turns out that when constructing a structure A from smaller parts, we
can often construct the annotated substructure ⟨A∣A∖P , Ū⟩ instead, which
then allows us to compute fuseP(A) by the above proposition.

Exercise 4.2. Prove that, for every L-interpretation τ, there is some L-
interpretation σ such that

τ(A/≈) = σ(A)/≈ . ⌟

Exercise 4.3. Prove that, for every L-interpretation τ, there is some L-
interpretation σ such that

℘(τ(A)) = σ(℘(A)) . ⌟

The Copying Operation

Next, let us introduce a variant of the disjoint union that will be used ex-
tensively in Chapter X.
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4 Operations for monadic second-order logic

Definition 4.18. The k-copy operation is of the form

copyk(A) ∶= ⟨A⊕ ⋅ ⋅ ⋅ ⊕ A,H0 , . . . ,Hk−1 , I⟩ .

That is copyk(A) consists of k disjoint copies of A with unary predicates

H i ∶= { ⟨i , a⟩ ∣ a ∈ A}

containing the i-th copy, and a binary relation

I ∶= { ⟨⟨i , a⟩, ⟨ j, a⟩⟩ ∣ a ∈ A , i , j < k }

that relates all copies of the same element. ⌟

Proposition 4.19. Let L be one of FO,MSO,WMSO, CMSO, or GSO, and
let m, k < ω. For every Lm -formula φ(x̄ , Ȳ) with ∣x̄∣ = r and ∣Ȳ∣ = s and

every tuple ū ∈ [k]s , there exists an Lmk -formula φ′ū(x̄ , Ȳ′) with ∣Y′∣ = sk
such that

copyk(A) ⊧ φ(a0 , . . . , ar−1 , P0 , . . . , Ps−1)
iff A ⊧ φ′ū(a

′
0 , . . . , a

′
r−1 , P̄

′
0 , . . . P̄

′
s−1) ,

for all structures A, elements ā, ā′, and sets P̄, P̄′ that are related via

a i = ⟨u i , a′i⟩ and (P′i )v = { b ∈ A ∣ ⟨v , b⟩ ∈ Pi } .

Proof. We can construct φ′ū by induction on φ. We replace each variable Yi
by a k-tuple Ȳ′

i = ⟨Y
′
i ,0 , . . . ,Y

′
i ,k−1⟩.

(x i = x j)
′
ū ∶=

⎧⎪⎪
⎨
⎪⎪⎩

x i = x j if u i = u j ,
false otherwise ,

(Rx i0 . . . x in−1)
′
ū ∶=

⎧⎪⎪
⎨
⎪⎪⎩

Rx i0 . . . x in−1 if u i0 = ⋅ ⋅ ⋅ = u in−1 ,
false otherwise ,
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(Yix j)
′
ū ∶= Y

′
i ,u j

x j , (∃zφ)′ū ∶= ⋁
v<k

∃z¬φ′ūv ,

(φ ∨ ψ)′ū ∶= φ′ū ∨ ψ′ū , (∀zφ)′ū ∶= ⋀
v<k

∀z¬φ′ūv ,

(φ ∧ ψ)′ū ∶= φ′ū ∧ ψ′ū , (∃Zφ)′ū ∶= ∃Z̄
′¬φ′ū ,

(¬φ)′ū ∶= ¬φ′ū , (∀Zφ)′ū ∶= ∀Z̄
′¬φ′ū ,

(∣Yi ∣ < ∞)
′
ū ∶= ⋀

v<k
∣Y′

i ,v ∣ < ∞ ,

(∣Yi ∣ ≡ n (mod p))′ū ∶=

⋁{ ⋀v<k ∣Y
′
i ,v ∣ ≡ g(v) (mod p) ∣

g ∶ [k] → [p] with ∑v<k g(v) ≡ n (mod p) } .

Let us also note that copying operations commute with interpretations.

Lemma 4.20. Let L be one of FO,MSO,WMSO, or CMSO, and let k < ω.
For every L-interpretation τ, there exists an L-interpretation τ′ such that

copyk ○ τ = τ′ ○ copyk .

Proof. The transduction τ′ applies τ separately to each copyH i . That is, if
τ is defined by ⟨δ(x), (φR(x̄))⟩, we define τ′ by

δ′(x) ∶= ⋁
i<k
[H ix ∧ δ(H i)(x)] ,

and φ′R(x̄) ∶= ⋁
i<k
[⋀

j
H ix j ∧ φ(H i)

R (x̄)] ,

where ψ(P) denotes the relativisation of ψ to the set P.

Exercise 4.4. Let k, l < ω. Find a quantifier-free interpretation τ such that

copyk(copyl(A)) = τ(copyk l(A)) . ⌟
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4 Operations for monadic second-order logic

Generalised Sum+

So far, we have only looked finite unions. It is straightforward to generalise
the arguments from Section 4 to infinite ones. But it turns out that, for
many applications, an even more general approach is needed where we allow
the number of structures in the two unions to differ. We use a union of Σ-
structureswhere the index set is itself a Γ-structure, for some signature Γ.The
result the has all relations in Σ and Γ. This leads to the following definition.

Definition 4.21. Let Γ and Σ be relational signatures, I a Γ-structure and,
for every element i ∈ I, let Ai be a Σ-structure.The generalised sum of the Ai
over I is the (Γ + Σ + {∼})-structure∑i∈I Ai with universe

U ∶= { ⟨i , a⟩ ∣ i ∈ I , a ∈ A i }

and the following relations. For every n-ary relation symbol R ∈ Σ, it has the
relation

R ∶= { ⟨⟨i , a0⟩, . . . , ⟨i , an−1⟩⟩ ∣ i ∈ I , ⟨a0 , . . . , an−1⟩ ∈ RAi } ,

for every n-ary relation symbol R ∈ Γ, it has the relation

R ∶= { ⟨⟨i0 , a0⟩, . . . , ⟨in−1 , an−1⟩⟩ ∣ ⟨i0 , . . . , in−1⟩ ∈ RI , a j ∈ A j } ,

and additionally it has the equivalence relation

∼ ∶= { ⟨⟨i , a⟩, ⟨i , b⟩⟩ ∣ i ∈ I , a, b ∈ A i } . ⌟

Example. (a) The disjoint union A0 ⊕ A1 can be written (up to a quantifier-
free interpretation) as a generalised sum∑i∈I Ai where

I = ⟨[2], Left, Right⟩ with Left = {0} and Right = {1} .

(b) Given linear orders I = ⟨I, ⊑⟩ and Ai ∶= ⟨A i , ≤i⟩, for i ∈ I, the
generalised sum is the structure ⟨U , ⊑, ≤, ∼⟩ with relations

⟨i , a⟩ ⊑ ⟨ j, b⟩ iff i ⊑ j ,

⟨i , a⟩ ≤ ⟨ j, b⟩ iff i = j and a ≤i b ,

⟨i , a⟩ ∼ ⟨ j, b⟩ iff i = j .
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We can interpret the ordered sum of the Ai in this structure via the inter-
pretation τ = ⟨δ, φ≤⟩ with

δ(x) ∶= true and φ≤(x , y) ∶= x ⊑ y ∧ [x ∼ y → x ≤ y] . ⌟

For an application in Section III.2 below, we will need to prove the com-
position theorem for generalised sums using a finer notion than just the
quantifier rank: we will not only need to count the number of quantifiers,
but also their alternation. We call this combined measure the quantifier
structure of a formula.

Definition 4.22. Let n̄ ∈ ω∗.
(a) We define the set MSO0

n̄[Σ] of all MSO0-formulae with quantifier

structure n̄ as follows. MSO0
⟨⟩
[Σ] contains all quantifier-free MSO0[Σ]-

formulae, and MSO0
mn̄[Σ] contains all formulae that can be written as

boolean combinations of formulae of the form

∃X0⋯∃Xm−1ψ with ψ ∈ MSO0
n̄[Σ] .

(b) We denote byThn̄
MSO0(A, P̄) theMSO0

n̄-theory of A, P̄ and we set

A, P̄ ≡n̄MSO0 B, Q̄ : iff Thn̄
MSO0(A, P̄) =Thn̄

MSO0(B, Q̄) . ⌟

The composition theorem for generalised sums not only states that the
theory of the resulting structure only depends on the theories of the argu-
ments, but also that we can compute this theory by evaluating a formula on
the index structure.

Definition 4.23. Let∑i∈I Ai be a generalised sum and let P̄ be a tuple of
monadic parameters. For anMSO0[Σ]-formula χ(X̄), we define

⟦χ(P̄)⟧ ∶= { i ∈ I ∣ Ai ⊧ χ(P̄ ↾ A i) } . ⌟

Theorem 4.24. Let Γ and Σ be relational signatures. Given a formula φ(X̄) ∈
MSO0

n̄[Γ + Σ + {∼}], we can compute a tuple r̄ ∈ ω∗ of length ∣r̄∣ = ∣n̄∣ and
formulae

χ0(X̄), . . . , χm−1(X̄) ∈ MSO0
n̄[Σ]
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and ψ(Z0 , . . . ,Zm−1) ∈ MSO0
r̄ [Γ]

such that

∑
i∈I

Ai ⊧ φ(P̄) iff I ⊧ φ′(⟦χ0(P̄)⟧, . . . , ⟦χm−1(P̄)⟧) ,

for all Γ-structures I, Σ-structures Ai , and monadic parameters P̄.

Proof. We construct r̄, ψ(Z̄), and χ0(X̄) . . . , χm−1(X̄) by induction on φ.
First, suppose that φ is atomic. We distinguish several cases. For φ = (X ⊆
Y) we set

ψ ∶= cover(Z0) and χ0(X,Y) ∶= X ⊆ Y .

For φ = (X ∩ Y = ∅) we set

ψ ∶= cover(Z0) and χ0(X,Y) ∶= X ∩ Y = ∅ .

For φ = cover(X̄) we set

ψ ∶= cover(Z0) and χ0(X̄) ∶= cover(X̄) .

For φ = RX̄ with R ∈ Σ, we set

ψ ∶= sing(Z0) and χ0(X̄) ∶= RX̄ .

For φ = RX̄ with R ∈ Γ and R of arity m, we set

ψ ∶= RZ̄ ∧ cover(Zm) ,

χ i(X̄) ∶= sing(X i) , for i < m ,

χm(X̄) ∶= ⋀
i<m
[sing(X i) ∨ X i = ∅] .

For φ = (X ∼ Y), we set

ψ ∶= Z0 ∩ Z1 ≠ ∅ ∧ sing(Z0) ∧ sing(Z1) ∧ cover(Z2) ,

χ0(X,Y) ∶= sing(X) ,

χ1(X,Y) ∶= sing(Y) ,

χ2(X,Y) ∶= [sing(X) ∨ X = ∅] ∧ [sing(Y) ∨ Y = ∅] .
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For the inductive step, suppose that we have already computed formulae
ψ′, χ′0 , . . . , χ′m′−1 and ψ′′ , χ′′0 , . . . , χ′′m′′−1 for, respectively, φ′ and φ′′. For
the conjunction φ = φ′ ∧ φ′′, we set

ψ(Z̄ , Z̄′) ∶= ψ′(Z̄) ∧ ψ′′(Z̄′) and χ i ∶=
⎧⎪⎪
⎨
⎪⎪⎩

χ′i if i < m′ ,
χ′′i−m′′ if i ≥ m′ .

The construction for φ = φ′ ∨ φ′′ is analogous. For a negation φ = ¬φ′, we
set

ψ(Z̄) ∶= ¬ψ′(Z̄) and χ i ∶= χ′i .

It remains to consider the case where φ(X̄) = ∃Ȳφ′(X̄, Ȳ). Again we
may assume that we have already constructed formulae ψ′, χ′0 , . . . , χ′m−1
for φ′. A first attempt might be to use the formulae ψ ∶= ψ′ and χ j ∶= ∃Ȳ χ′j
for φ. But this does not work since, for example, the sets Ȳ we use to make
χ′0 true might be different from those we take for χ′1. Instead, we have to
know which of the χ′j we can satisfy at the same time. Consequently, we set

χw(X̄) ∶= ∃Ȳ[⋀
j∈w

χ′j(X̄, Ȳ) ∧ ⋀
j∈[m]∖w

¬χ′j(X̄, Ȳ)] , for w ⊆ [m] ,

and ψ ∶= ∃Z̄′[ψ′(Z̄′) ∧ ∀x ⋁
w⊆[m]

[Zwx ∧ ⋀
j∈w

Z
′
jx ∧ ⋀

j∉w
¬Z′

jx]] .

It remains to check that these formulae have the desired properties. We have

∑
i∈I

Ai ⊧ ∃Ȳφ′(P̄, Ȳ)

iff ∑
i∈I

Ai ⊧ φ′(P̄, Q̄) , for some Q̄ ,

iff I ⊧ ψ′(⟦χ′0(P̄, Q̄)⟧, . . . , ⟦χ
′
m−1(P̄, Q̄)⟧) , for some Q̄ .

We claim that the latter is equivalent to

I ⊧ ψ(⟦χw(P̄)⟧w⊆[m]) .
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(⇒)Given sets Q̄ as above, we set

U j ∶= ⟦χ′j(P̄, Q̄)⟧ and w i ∶= { j ∣ i ∈ U j } , for i ∈ I .

Then

I ⊧ ψ′(Ū) , i ∈ ⟦χw i (P̄)⟧ and i ∈ U j⇔ j ∈ w i , for i ∈ I ,

which implies that

I ⊧ ψ(⟦χw(P̄)⟧w⊆[m]) .

(⇐) Suppose that I ⊧ ψ(⟦χw(P̄)⟧w⊆[m]). Then there exists sets Ū and
w i ⊆ [m], for i ∈ I, such that

I ⊧ ψ′(Ū) , i ∈ ⟦χw i (P̄)⟧ , and w i = { j ∣ i ∈ U j } .

For each i ∈ I, we can therefore choose sets Q̄ i in Ai such that

Ai ⊧ ⋀
j∈w i

χ′j(P̄ ↾ A i , Q̄ i) ∧ ⋀
j∉w i

¬χ′j(P̄ ↾ A i , Q̄ i) .

Setting Q̄ ∶= ⋃i Q̄
i , it follows that

I ⊧ ψ′(Ū) and U j = ⟦χ′j(P̄, Q̄)⟧ .

We have seen above that an ordered sum can be expressed as a generalised
sum followed by an interpretation. Therefore, we obtain a composition
theorem for ordered sum as an easy application of the one for generalised
sums.

Proposition 4.25. Let I be a linear order and let (Ai)i∈I and (Bi)i∈I be two
families of C-coloured linear orders indexed by I. If

Ai ≡
n̄
MSO0 Bi , for all i ∈ I ,

then∑i∈I Ai ≡
n̄
MSO0 ∑i∈I Bi .
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Proof. Let φ ∈ MSO0
n̄ , and let φ′ and χ0 , . . . , χn−1 be the formulae obtained

viaTheorem 4.24. By assumption, the sets ⟦χ i⟧ have the same value when
evaluated for the sequence (Ai)i∈I and for (Bi)i∈I . Consequently, we have

∑
i∈I

Ai ⊧ φ iff I ⊧ φ′(⟦χ0⟧, . . . , ⟦χn−1⟧)

iff ∑
i∈I

Bi ⊧ φ .

So far, we have only considered disjoint unions. Let us give an example
showing how to extend our approach to certain unions that are not disjoint.

Example. Let A be a Σ-structure and k < ω a constant. We consider a non-
disjoint decomposition A = C ∪⋃H of the following form where the set C
is called the center of the decomposition and the sets inH its petals.
◆ Every guarded tuple of A is entirely contained in C or in one of the

H ∈ H.
◆ ∣H ∩ C∣ ≤ k, for allH ∈ H.
◆ H ∩K ⊆ C, for allH ≠ K inH.
◆ For everyH ∈ H, there is some element cH ∈ C that belongs toH but

not to any other petal K ∈ H.
For H ∈ H, let āH ∈ Ak be an enumeration of H ∩ C that starts with the
element cH . (IfH ∩ C has fewer than k elements, we repeat some of them
to obtain a k-tuple.) Let C0 ∶= A∣C be the restriction of A to the set C and
define

C ∶= ⟨C0 , (Uθ)θ⟩ ,

where, for everyMSO0-theory θ of quantifier rank m, we have added the
relation

Uθ ∶= { āH ∣Th
m
MSO0(A∣H , āH) = θ } .

Then, for everyMSO-formula φ, we can construct anMSO-formula φ′ such
that

A ⊧ φ iff C ⊧ φ′ .
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To see this, note that we can express A as a generalised sum followed by an
interpretation

A = τ(∑
c∈C

Bc) ,

where

Bc ∶=

⎧⎪⎪
⎨
⎪⎪⎩

⟨A∣H , āH⟩ if c = cH ,
A∣{c} if c ∉ { cH ∣ H ∈ H} . ⌟

Exercise 4.5. Given a graph G = ⟨V , E⟩, we call a pair ⟨A, B⟩ of subsets
A, B ⊆ V a separation of G if A ∪ B = V and there is no edge between a
vertex in A∖ B and one in B ∖A.

LetG = ⟨V , E⟩ andG′ = ⟨V ′ , E′⟩ be two graphs with separations ⟨A, B⟩
and ⟨A′ , B′⟩, respectively. LetA,B,A′, andB be the subgraphs ofG andG′

induced by the sets A, B, A′, and B
′, respectively, let c̄ be an enumeration

of A∩ B, and let c̄′ be one of A′ ∩ B
′. Suppose that A∩ B and A′ ∩ B

′ are
finite. Prove that

A, c̄ ≡mMSO A′ , c̄′ and B, c̄ ≡mMSO B′ , c̄′ implies G ≡mMSO G′ .

Hint. Express G and G′ as a generalised sums followed by a quantifier-free
interpretation. ⌟

5 Operation+ for Fir#-Order Logi$

The operations in the previous section are compatible for a wide variety of
logics. In this section we take a look at operations that are FO-compatible,
but notMSO-compatible.

Produ$t+

Most of the operations introduced in the previous section were based on
sums. Here, we present analogous operations that are based on products
instead. We start with the simplest one: the binary direct product.
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Definition 5.1. Let A and B be two Σ-structures. The direct product of
A and B is the Σ-structure A ×B with universe A× B and relations

R
A×B = { ⟨⟨a0 , b0⟩, . . . , ⟨an−1 , bn−1⟩⟩ ∣ ā ∈ RA , b̄ ∈ RB } ,

for R ∈ Σ. ⌟

Proposition 5.2. A ≡mFO A′
and B ≡mFO B′

implies A×B ≡mFO A′×B′ .

Proof. For every FOm-formula φ(x̄), we construct two finite sequences of
FOm-formulae ψ0(x̄), . . . ,ψ l−1(x̄) and ϑ0(x̄), . . . , ϑ l−1(x̄) such that

A ×B ⊧ φ(⟨a0 , b0⟩, . . . , ⟨an−1 , bn−1⟩)

iff A ⊧ ψ i(ā) and B ⊧ ϑ i(b̄) , for some i < l .

We proceed by induction on φ. If φ is of the form x = y or R̄, we can take

ψ0 ∶= φ and ϑ0 ∶= φ .

For the inductive step, suppose that we have already constructed the se-
quences of formulae ψ0 , . . . ,ψ l−1, ϑ0 , . . . , ϑ l−1 corresponding to φ, and
ψ′0 , . . . ,ψ′l ′−1, ϑ′0 , . . . , ϑ′l ′−1 corresponding to φ′. Then the sequences cor-
responding to φ ∨ φ′ are

ψ0 , . . . ,ψ l−1 ,ψ′0 , . . . ,ψ
′
l ′−1 and ϑ0 , . . . , ϑ l−1 , ϑ′0 , . . . , ϑ′l ′−1 .

For φ ∧ φ′, we can take

ψ i ∧ ψ′j , and ϑ i ∧ ϑ′j , for all i < l and j < l ′ .

For ¬φ, we use all formulae of the form

ψ¬w and ϑ¬w , for w ⊆ [l] ,

where

ψ¬w ∶= ⋀
i∈[l]∖w

¬ψ i and ϑ¬w ∶= ⋀
i∈w

¬ϑ i .

Finally, for ∃xφ, we can take

∃xψ0 , . . . , ∃xψ l−1 and ∃xϑ0 , . . . , ∃xϑ l−1 .
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Example. The ordered product of two linear orders A = ⟨A, ≤A⟩ and B =
⟨B, ≤B⟩ is the linear order A ⋅B with universe A× B and ordering

⟨a, b⟩ ≤ ⟨c, d⟩ : iff b < d or b = d and a ≤ c .

We can express this product using the direct product A ×B followed by an
FO-interpretation. ⌟

Exercise 5.1. Find FO-interpretations ρ, σ , τ such that

℘(A⊕B) = τ(ρ(℘(A)) × σ(℘(B))) . ⌟

Finite Power+

Our analogue for the copying operation is the finite power of a structure.

Definition 5.3. LetA be a Σ-structure and k < ω.The k-th power ofA is the
structure Ak obtained from the k-fold direct product A × ⋅ ⋅ ⋅ × A by adding
the relations

I i j ∶= { ⟨ā, b̄⟩ ∈ Ak ×A
k ∣ a i = b j } , for i , j < k . ⌟

Proposition 5.4. A ≡mFO B implies Ak ≡mk
FO Bk .

Proof. Given an FOm-formula φ(x0 , . . . , xn−1), we construct an FOmk-
formula φ′(x̄0 , . . . , x̄n−1) such that

Ak ⊧ φ(ā0 , . . . , ān−1) iff A ⊧ φ′(ā0 , . . . , ān−1) .

We construct φ′ by induction on φ.

(x = y)′ ∶= ⋀
i<k

x i = y i , (I i jxy)
′ ∶= x i = y j ,

(Rx0 . . . xn−1)′ ∶= ⋀
i<k

Rx
0
i . . . x

n−1
i , (¬φ)′ ∶= ¬φ′ ,

(φ ∧ ψ)′ ∶= φ′ ∧ ψ′ , (∃xφ)′ ∶= ∃x̄φ′ ,
(φ ∨ ψ)′ ∶= φ′ ∨ ψ′ , (∀xφ)′ ∶= ∀x̄φ′ .
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I. Logics and Their Expressive Powers

Exercise 5.2. Find an FO-interpretation τ such that

℘(copyk(A)) = τ(℘(A)k) . ⌟

Finite powers are frequently combined with first-order interpretations.

Definition 5.5. Let k < ω. A k-dimensional FO-interpretation is an operation
of the form

τ = ρ ○ τ0 ○ (−)k ,

where ρ is a quotient operation and τ0 a normal FO-interpretation. ⌟

Remark. We can compactly specify a k-dimensional FO-interpretation by a
list of formula

⟨δ(x̄), ε(x̄ , ȳ), (φR(x̄0 , x̄1 , . . . ))R⟩

where each tuple x̄ , ȳ, x̄0 , . . . consists of k-variables. The formula δ defines
the universe of the new structure, ε defines the new equality relation, and
the formulae φR define the relations. ⌟

Examples. (a) Let R = ⟨R,+, ⋅ , 0, 1⟩ and C = ⟨C,+, ⋅ , 0, 1⟩ be the fields of
real and complex numbers.There exists a 2-dimensional FO-interpretation τ
mapping R to C which is given by

δ(xx′) ∶= true ,

ε(xx′ , yy′) ∶= true ,

φ+(xx′ , yy′ , zz′) ∶= z = x + y ∧ z
′ = x′ + y

′ ,

φ∗(xx′ , yy′ , zz′) ∶= z = xy − x
′
y
′ ∧ z

′ = x′y + xy
′ ,

φ0(xx
′) ∶= x = 0 ∧ x

′ = 0 ,

φ1(xx
′) ∶= x = 1 ∧ x

′ = 0 .

(b)There exists a 2-dimensional FO-interpretation mapping N ∶= ⟨N,+⟩
to Z ∶= ⟨Z,+⟩. It is given by the formulae

δ(xx′) ∶= true ,

ε(xx′ , yy′) ∶= x + y
′ = y′ + x ,

φ+(xx′ , yy′ , zz′) ∶= z = x + y ∧ z
′ = x′ + y

′ . ⌟
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5 Operations for first-order logic

Generalised Produ$t+

Similarly to generalised sums forMSO, we can define a general version of a
product for FO where the index set is equipped with additional relations.

Definition 5.6. Let I be a set, I a Γ-structure with universe ℘(I), and
(Ai)i∈I a family of Σ-structure. The generalised product

∏
i∈I

Ai

is obtained from the (Σ + Γ + {↾})-structure with universe

∑
K⊆I
∏
i∈K

A i ≅∏
i∈I
(A i + {�})

relations

R ∶= { ⟨a0 , . . . , an−1⟩ ∣ dom(a0) = ⋅ ⋅ ⋅ = dom(an−1) and

⟨a0(i), . . . , an−1(i)⟩ ∈ RAi , for all i ∈ dom(a0) } ,

for every R ∈ Σ,

S ∶= { ⟨a0 , . . . , an−1⟩ ∣ ⟨dom(a0), . . . , dom(an−1)⟩ ∈ SI } ,

for every S ∈ Γ, and one binary function

a ↾ b ∶= a∣dom(a)∩dom(b) . ⌟

Definition 5.7. Let I be a Γ-structure and (Ai)i∈I a family of Σ-structures.
Given an FO-formula χ(x̄) and a tuple ā in∏i∈I(A i + �), we define

⟦χ(ā)⟧ ∶= { i ∈ I ∣ Ai ⊕ 1 ⊧ χ(ā i) } ,

where ā i denotes the projection of ā to the i-th component, and 1 denotes
the 1-element Σ-structure where all relations are non-empty, i.e., the terminal
object in the category of all Σ-structures. ⌟
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I. Logics and Their Expressive Powers

The following composition theorem and its proof closely follow that for
generalised sums. In fact, the case of generalised sums can be derived from
the one for products using the power-set operation.

Theorem 5.8 (Feferman, Vaught). For every formula φ(x̄) ∈ FOm , there

exist formulae ψ(x̄ , ȳ) ∈ FO and χ0(x̄), . . . , χn(x̄) ∈ FOm such that

∏
i∈I

Ai ⊧ φ(ā) iff ⟨I, ⊆⟩ ⊧ ψ(⟦χ0(ā)⟧, . . . , ⟦χn−1(ā)⟧) .

Proof. We prove the claim by induction on φ. In the formulae χ i (which are
evaluated in a disjoint union Ai ⊕ 1), we will for readability use the notation
x = � in instead of Right(x). If φ = (x i = x j), we can set

ψ(p) ∶= (p = I) with χ(x̄) ∶= (x i = x j) .

If φ = (xk = x i ↾ x j), we can set

ψ(p, p′ ,p′′ , p∗) ∶= p = p′ ∩ p
′′ ∧ p = p∗ ,

χ(x̄) ∶= (xk ≠ �) , χ′(x̄) ∶= (x i ≠ �) ,
χ′′(x̄) ∶= (x j ≠ �) , χ∗(x̄) ∶= (xk = x i) .

If φ = (x i ∼ x j), we can set

ψ(p, p′) ∶= p = p′ , χ(x̄) ∶= (x i ≠ �) , χ′(x̄) ∶= (x j ≠ �) .

If φ = Rx i0 . . . x ik−1 with R ∈ Σ, we can set

ψ(p) ∶= (p = I) and χ0(x̄) ∶= Rx i0 . . . x ik−1 .

If φ = Sx i0 . . . x ik−1 with S ∈ Γ, we can set

ψ(p0 , . . . , pk−1) ∶= Sp0 . . . pk−1 ,

and χ j(x̄) ∶= (x i j ≠ �) , for j < k .

For boolean operations, we can simply take the corresponding boolean
combination of the formulae ψ (after renaming the predicates p i to make
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5 Operations for first-order logic

them disjoint), and we take the union of all formulae χ i . For instance, for
φ = φ0 ∧ φ1, we can set

ψ(p̄0 , p̄1) ∶= ψ0(p̄0) ∧ ψ1(p̄1) .

Finally, suppose that φ = ∃x′φ′(x̄ , x′). Let

ψ′( ȳ) and χ′0(x̄x
′), . . . , χ′n−1(x̄x

′)

be the formulae obtained by applying the inductive hypothesis to φ′. We set

ψ( ȳ) ∶= ∃z̄[ψ′(z̄) ∧ ⋃
w⊆[m]

[yw ∩ ⋂
j∈w

z j ∖ ⋃
j∉w

z j] = I] ,

χw(x̄) ∶= ∃x′[⋀
j∈w

χ′j(x̄x
′) ∧ ⋀

j∈[m]∖w
¬χ′j(x̄x

′)] , for w ⊆ [n] .

It remains to check that these formulae have the desired properties. We have

∏
i∈I

Ai ⊧ ∃x
′φ′(ā, x′)

iff ∏
i∈I

Ai ⊧ φ′(ā, b) , for some b ,

iff ⟨I, ⊆⟩ ⊧ ψ′(⟦χ′0(ā, b)⟧, . . . , ⟦χ
′
n−1(ā, b)⟧) , for some b .

We claim that the latter is equivalent to

⟨I, ⊆⟩ ⊧ ψ(⟦χw(ā)⟧w⊆[m]) .

(⇒)Given an element b as above, we set

p j ∶= ⟦χ′j(ā, b)⟧ and w i ∶= { j ∣ i ∈ p j } , for j < n and i ∈ I .

Then

⟨I, ⊆⟩ ⊧ ψ′(p̄) , i ∈ ⟦χw i (ā)⟧ , and i ∈ p j⇔ j ∈ w i ,
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I. Logics and Their Expressive Powers

for j < m and i ∈ I, which implies that

i ∈ ⟦χw i (ā)⟧ ∩ ⋂
j∈w i

p j ∖ ⋃
j∉w i

p j , for all i ∈ I .

Hence,

⟨I, ⊆⟩ ⊧ ψ(⟦χw(ā)⟧w⊆[m]) .

(⇐) Suppose that I ⊧ ψ(⟦χw(ā)⟧w⊆[m]). Then there exists sets p̄ such
that

⟨I, ⊆⟩ ⊧ ψ′(p̄)

and, for every i ∈ I, there is some w i ⊆ [m] such that

i ∈ ⟦χw i (ā)⟧ ∩ ⋂
j∈w i

p j ∖ ⋃
j∉w i

p j .

This implies that w i = { j ∣ i ∈ p j }. The fact that i ∈ ⟦χw i (ā)⟧∩ therefore
implies that there is some element b i ∈ A i + 1 such that

Ai ⊧ ⋀
j∈w i

χ′j(ā i , b i) ∧ ⋀
j∉w i

¬χ′j(ā i , b i) .

Setting b ∶= (b i)i , it follows that

⟨I, ⊆⟩ ⊧ ψ′(p̄) and p j = ⟦χ′j(ā, b)⟧ .

Example. We can use generalised products to construct ultraproducts and,
more generally, quotients of products by arbitrary filters. To this end, let
F ⊆ ℘(I) be a filter on I. Recall that

∏
i∈I

Ai/F

denotes the quotient of the direct product∏i∈I Ai by the relation

a ≈ b : iff { i ∈ I ∣ a i = b i } ∈ F .
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5 Operations for first-order logic

Using the index structure I ∶= ⟨℘(I), F⟩ we can define such a product in
the generalised product

∏
i∈I

Ai

using an FO-interpretation defining the relation ≈, followed by a quotient
by ≈. ⌟

Note+

Composition arguments were popularised by Shelah [193], although their
use is much older. For instance, the composition theorem for generalised
products is from [80]. Good surveys include [136, 22, 60].
The logicMSO0 was invented byThomas to simplify composition argu-

ments [203], while guarded second-order logic was introduced in [89]. The
latter generalises a logic for graphs defined by Courcelle, which is usually
calledMSO2 or MS2, cf. [60].
The power-set construction was first systematically investigated in [52].

The example with the composition theorem for overlapping unions is taken
from [67]. Exercise 1.2 on axiomatisations of grids was inspired by [140].
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II Finite Word+

1 Word+ and Language+

Our first deeper study of the expressive power of monadic second-
order logic concerns the definability of languages of finite or infinite

words. We start by setting up our terminology regarding such languages.

Definition 1.1. (a) A binary relation ≤ ⊆ A×A is a partial ordering if it has
the following properties:

Reflexivity. a ≤ a, for all a ∈ A.

Anti-Symmetry. a ≤ b and b ≤ a implies a = b, for all a, b ∈ A.

Transitivity. a ≤ b ≤ c implies a ≤ c, for all a, b, c ∈ A.

A partial order is a structure ⟨A, ≤⟩ where ≤ is a partial ordering on A.
(b) A linear order is a partial order ⟨A, ≤⟩ where

a ≤ b or b ≤ a , for all a, b ∈ A .

(c) A linear order ⟨A, ≤⟩ is a well-order if every non-empty subset X ⊆ A
has a minimal element, that is, if there exists no infinite, strictly descending
sequence a0 > a1 > a2 > ⋯. An ordinal is the isomorphism type of a
well-order.

(d)We denote by ω the first infinite ordinal. It is isomorphic to the linear
order of the natural numbers. ⌟

Formal language theory deals with linear orders whose positions are
labelled with elements of a given set Σ.
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II. Finite Words

Definition 1.2. (a) An alphabet is a finite set Σ whose elements are called
letters.

(b) A (finite) word over an alphabet Σ is a finite sequence

w = ⟨a0 , . . . , an−1⟩

of elements a i ∈ Σ. The empty word is the empty sequence ⟨⟩. We denote the
length of a word w by ∣w∣. We write Σ∗ for the set of all finite words over Σ,
and Σ+ for the set of all non-empty finite words.
(c) An ω-word over an alphabet Σ is an infinite sequence w = (a i)i<ω

of elements a i ∈ Σ. The set of all ω-words is denoted by Σω . We also set
Σ∞ ∶= Σ∗ ∪ Σω .
(d) A language is a set of words or a set of ω-words. ⌟

In order to define languages in some logic, we have to encode words as
structures.

Definition 1.3. Let Σ be an alphabet.
(a) We can associate with every word w ∈ Σ∗ a relational structure

⟨W , ≤, (Pa)a∈Σ⟩

over the signature {≤} ∪ { Pa ∣ a ∈ Σ } whereW is the set of positions of w,
≤ is the ordering of the positions, and Pa is a set containing all positions
labelled by the letter a. Structures of this form are called word structures.
(b) A language K ⊆ Σ∞ is definable in a logic L if there exists a formula

φ ∈ L such that

w ∈ K iff w ⊧ φ .

(In the right-hand side, we have identified w with the associated word struc-
ture.) ⌟
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Example. The language of all words over the alphabet Σ ∶= {a, b, c} with
an even number of letters a can be defined by theMSO-formula

φ ∶= ∃X[∀x∀y[x < y ∧ Pax ∧ Pa y ∧ ¬∃z(x < z ∧ z < y ∧ Paz)

→ (Xx ↔ ¬Xy)]

∧ ∀x[Pax ∧ ¬∃y(y < x ∧ Pa y) → Xx]

∧ ∀x[Pax ∧ ¬∃y(x < y ∧ Pa y) → ¬Xy]] . ⌟

Exercise 1.1. Prove that the language in the above example is notFO-definable.
⌟

Definition 1.4. Let Σ be an alphabet.
(a) If w ∈ Σ∞ and i ≤ k < ∣w∣, we write w(i) for the element of w at

position i and

w[i , k) ∶= ⟨w(i),w(i + 1), . . . ,w(k − 1)⟩

for the factor of w from position i to k − 1.
(b) The concatenation of two words u ∈ Σ∗ and v ∈ Σ∞ is the word u⌢v

that consists of the elements of u, followed by the elements of v. Formally,

(u⌢v)(i) =
⎧⎪⎪
⎨
⎪⎪⎩

u(i) if i < ∣u∣ ,
v(i − ∣u∣) if i ≥ ∣u∣ .

Frequently, we omit the symbol ⌢and simply write uv instead.
(c) A word u is a prefix of a word w ∈ Σ∞ if w = u⌢v, for some v ∈ Σ∞

Similarly, u is a suffix of w if w = v⌢u, for some v. Finally, u is a factor of w if
w = x⌢u⌢y, for some x , y. ⌟

2 Semigroup+ and Green’+ Relation+

When studying languages of words, an algebraic approach based on semi-
group theory sometimes proves to be quite convenient. The starting point is
the observation that the set Σ∗ of all finite words together with the concat-
enation operation ⌢ forms a monoid.
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Definition 2.1. (a) A semigroup is a structure S = ⟨S , ⋅ ⟩ where the multi-
plication ⋅ ∶ S × S → S is associative:

a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c .

We usually omit the dot and simply write ab for the product.
(b) A monoid M = ⟨M, ⋅ , 1⟩ is a semigroup with a neutral element 1, i.e.,

an element satisfying

1 ⋅ a = a = a ⋅ 1 , for all a ∈M .

To each semigroupSwe can associate a monoidS1 by adding a new neutral
element 1.
(c) An element e of a semigroup is idempotent if ee = e. ⌟

Examples. (a) For every alphabet Σ, we have the free semigroup ⟨Σ+ , ⋅⟩ over Σ
and the free monoid ⟨Σ∗ , ⋅ , ⟨⟩⟩ over Σ. The only idempotent element is the
empty word ⟨⟩.
(b) The natural numbers form the monoid ⟨N,+, 0⟩ and the monoid

⟨N, ⋅ , 1⟩. The former is called Presburger arithmetic, the latter Skolem arith-

metic.

(c)The set of functions f ∶ X → X forms a monoid ⟨XX , ○ , id⟩ where
○ denotes function composition. A function f ∶ X → X is idempotent if,
and only if, it is a projection, i.e., f ↾ rng f = id.
(d) Similarly, the set of all binary relations R ⊆ X × X forms a monoid

⟨℘(X × X), ○ , id⟩ where ○ denotes the composition of relations and id is
the diagonal. If R ⊆ X × X is reflexive and transitive, it is idempotent.
Conversely, every idempotent element R ⊆ X × X is transitive, but not
necessarily reflexive.
(e) Every semilattice ⟨L,⊔⟩ is a semigroup where all elements are idem-

potent. ⌟

Exercise 2.1. Prove that every semigroup has at most one neutral element.
⌟

We will be mostly dealing with finite semigroups or, more generally, ones
that are cyclically finite.
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2 Semigroups and Green’s relations

Definition 2.2. A semigroup S is cyclically finite if

⟪a⟫S ∶= { an ∣ 0 < n < ω } is finite , for every a ∈ S . ⌟

While a semigroup does not need to have a neutral element, a cyclically fi-
nite one will always contain at least some idempotent (which can be regarded
as a weak form of a neutral element).

Lemma 2.3. If S is a cyclically finite semigroup, every element a ∈ S1 has an
idempotent power.

Proof. The unit 1 is itself idempotent. Let a ∈ S. As S is cyclically finite,
there are exponents 0 < i < j < ω such that a i = a j . Set k ∶= j − i. Iterating
the equation a

i = a i+k , we obtain

a
i = a i+k = a i+2k = ⋅ ⋅ ⋅ = a i+i k .

Hence,

a
i k = a ia i k−i = a i+i ka i k−i = a i k+i k

and a i k is our desired idempotent element.

Example. If X is a non-empty, finite set, this lemma tells us that there is
some number n such that, for every function f ∶ X → X, the n-th power
f
n ∶ X → X is a projection. In particular, f n has a fixed point. ⌟

Exercise 2.2. Let S be a finite semigroup. Prove that there exists a number
0 < n < ω such that an is idempotent, for every a ∈ S. ⌟

Themain technical result the following material is based on, is the follow-
ing property of cyclically finite semigroups.

Lemma 2.4. Let S be a cyclically finite semigroup, and a ∈ S and s, t, u, v ∈ S1

elements. Then

a = stauv implies xta = a = auy , for some x , y ∈ S1 .
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Proof. Iterating the equation a = (st)a(uv), we obtain

a = (st)ia(uv)i , for all i < ω .

By Lemma 2.3, there is some exponent 0 < n < ω such that (st)n and (uv)n

are both idempotents. It follows that

(st)na = (st)n(st)na(uv)n = (st)na(uv)n = a .

Similarly, we obtain a(uv)n = a. Hence, we can set x ∶= (st)n−1s and
y ∶= v(uv)n−1.

Green’+ Relation+

There exists a rich structure theory for cyclically finite semigroups (andmore
generally for compact semigroups). The starting point are the following
divisibility relations.There are several of them since semigroups do not need
to be commutative and we therefore have to distinguish between dividing
from the left, from the right, or from somewhere in the middle.

Definition 2.5. Greene’s relations consist of the divisibility relations

a ≤L b : iff a = xb for some x ∈ S1 ,

a ≤R b : iff a = bx for some x ∈ S1 ,

a ≤J b : iff a = xby for some x , y ∈ S1 .

together with the associated equivalence relations

a ≡L b : iff a ≤L b and b ≤L a ,

a ≡R b : iff a ≤R b and b ≤R a ,

a ≡J b : iff a ≤J b and b ≤J a .

Furthermore, we set

a ≡H b : iff a ≡L b and a ≡R b .
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2 Semigroups and Green’s relations

We call the equivalence classes of the relations ≡L, ≡R, ≡J, ≡H L-classes, R-
classes, J-classes, andH-classes, respectively, andweuse the notation [a]L, [a]R,
[a]J, and [a]H for the class of a. ⌟

Examples. (a) LetM = {1, a, b, ab, ba, aba, 0} be the monoid with unit 1,
zero 0 and relations

aa = 1 , bab = 0 , bb = 0 .

The Greene’s relations are depicted in the following schema:

1, a

b ba

ab aba

0

Here each field represents a single H-class, each group of fields a J-class,
each column inside a group an L-class, and each row an R-class. So we have
three J-classes

{0} ≤J {b, ba, ab, aba} ≤J {1, a} ,

where themiddle J-class is divided into twoL-classes:{ba, aba} and{b, ab} ;
and into two R-classes: {b, ba} and {ab, aba}. The only non-trivialH-class
is {1, a}.
(b) In the monoid of all relations R ⊆ [2] × [2] we have the following

classes.

,
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Again there is only one non-trivial H-class. ⌟

The diagram in the previous example is typical for Green’s relations. The
next series of lemmas shows that it is always the case that every J-class
consists of a rectangular grid of H-classes where the columns are the L-
classes and the rows the R-classes.

Lemma 2.6. Let S be a semigroup and a, b, c ∈ S.

(a) a ≤L b implies ac ≤L bc.

(b) a ≤R b implies ca ≤R cb.

(c) ≤L ○ ≤R = ≤R ○ ≤L.

Proof. (a) a = xb implies ac = xbc.
(b) a = bx implies ca = cbx.
(c) Suppose that a ≤L b ≤R c.Then there are elements x , y ∈ S1 such that

a = xb and b = c y. Hence, a = xcy ≤R xc ≤L c.Therefore, ≤L○≤R ⊆ ≤R○≤L.
The other inclusion follows in the same way.

Proposition 2.7. Let S be a finite semigroup. Then

≡J = ≡L ○ ≡R .

Proof. Suppose that a ≡L c ≡R b. Then a ≤L c ≤R b and a ≥L c ≥R b which,
by Lemma 2.6 (c), implies that a ≤J b and a ≥J b.
Conversely, suppose that a ≡J b. Then there are elements s, t, u, v ∈ S1

such that a = sbu and b = tav. Hence, a = stauv and it follows by Lemma 2.4
that xta = a = auy, for some x , y ∈ S1. In particular, a ≤L ta and a ≤R au.
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Since, trivially, ta ≤L a and au ≤R a, it follows that ta ≡L a ≡R au. Using
Lemma 2.6 (a) we obtain b = tau ≡L au ≡R a.

Since L-equivalence and R-equivalence both imply J-equivalence, we can
partition every J-class into L-classes and intoR-classes. By the above lemma,
these two partitions intersect such that every L-class meets every R-class.
Hence, we always obtain a picture as in the above example.The following
lemma states that all the L-classes have the same size and the same holds for
the R-classes.

Lemma 2.8 (Green). Let S be a cyclically finite semigroup and a, b ∈ S. Any
two elements s, t ∈ S1 with b = as and a = bt induce bijections

φ ∶ [a]L → [b]L ∶ x ↦ xs and ψ ∶ [b]L → [a]L ∶ x ↦ xt

which are inverses of each other.

Proof. Let c ≡L a. First, note that cs ≡L as = b. Hence, φ maps [a]L to [b]L.
Furthermore, if x ∈ S1 is an element with c = xa, then

ψ(φ(c)) = cst = xast = xbt = xa = c .

In the same way, we can show that ψ maps [b]L to [a]L and that φ ○ψ is the
identity on [b]L.

Remarks. (a) Applying this result to the dual semigroup Sop (with product
a ⋅op b ∶= ba) gives the analogous statement for R-classes.
(b) The maps φ and ψ above preserve H-equivalence (see the proof of

Lemma 2.14 below). ⌟

The Stru$ture of J-Cla^e+

Next, let us take a closer look at some properties of the J-relation that turn
out to be useful when studying FO-definability.

Lemma 2.9. Let S be a cyclically finite semigroup and a, b ∈ S.

(a) b ≤J ab implies b ≡L ab.
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(b) a ≤J ab implies a ≡R ab.

(c) If a ≡J ab ≡J b, there is some idempotent e ∈ S with a ≡L e ≡R b.

Proof. (a) Suppose that b ≤J ab. Then there are elements s, u ∈ S1 such that
b = sabu. By Lemma 2.4, it follows that xab = b, for some x ∈ S1. Hence,
b ≤L ab. Since, trivially, ab ≤L b, the claim follows.
(b) follows in exactly the same way.
(c) Suppose that a ≡J ab ≡J b. By (a) and (b), it follows that a ≡R ab ≡L b.

Fix an element s ∈ S1 with abs = a. We have seen in Lemma 2.8 that the
function φ ∶ x ↦ xb is a bijection between the L-classes of a and ab with
inverse ψ ∶ x ↦ xs. Setting e ∶= ψ(b), it therefore follows that e ≡L a and

ee = eψ(b) = ebs = φ(e)s = φ(ψ(b))s = bs = ψ(b) = e .

Thus, e is idempotent. Finally, we have e ≡R b since, by definition,φ(x) ≤R x

and ψ(x) ≤R x, for all x.

Let us note a few consequences of this lemma that will turn out to be
particularly useful.

Corollary 2.10. Let J be a J-class of a cyclically finite semigroup S and let

a, b ∈ J be elements such that ab ∈ J. Then

a ≡R ab ≡L b

and there exists an idempotent e ∈ J such that

a ≡L e ≡R b .

Corollary 2.11. Let S be a cyclically finite semigroup and a, b, c ∈ S.
(a) ab ≡J b ≡J bc implies abc ≡J b .
(b) ab = a ≡J b implies ac = a ⇔ bc = b .

Proof. (a) By Lemma 2.9 (b), we have b ≡R bc. This implies that abc ≡R ab.
In particular, abc ≡J ab ≡J b.
(b) (⇐) bc = b implies ac = abc = ab = a.
(⇒) By Lemma 2.9 (a), b ≡J ab implies b ≡L ab = a. Hence, b = xa, for

some x ∈ S1, and we have bc = xac = xa = b.
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We obtain the following structure result for J-classes.

Definition 2.12. Let S be a semigroup. An element a ∈ S is regular if there
exists some c ∈ S with aca = a. A J-class is regular if it contains a regular
element. ⌟

Proposition 2.13. Let J be a J-class of a cyclically finite semigroup S. The

following statements are equivalent.

(1) J is regular.

(2) J contains an idempotent.

(3) Every L-class in J contains an idempotent.

(4) There are elements a, b ∈ J such that ab ∈ J.

Proof. (3)⇒ (2) is trivial and (4)⇒ (2) follows by Lemma 2.9.
(2)⇒ (1) If e ∈ J is idempotent, then eee = e. Hence, e is regular.
(1)⇒ (4) Suppose that there are elements a ∈ J and c ∈ S with aca = a.

Then a ≤J ac and acac = ac. Since ac ≤J a holds trivially, it follows that
ac ∈ J and that it is an idempotent.
(2)⇒ (3) Let e ∈ J be idempotent. Given an element a ∈ J, we have to

find an idempotent that is L-equivalent to a. By Proposition 2.7, there exists
some b with e ≡R b ≡L a. Consequently, there are x , y ∈ S1 with ex = b and
e = by. It follows that eb = eex = ex = b and yb = yeb = ybyb. Hence, yb is
idempotent. Furthermore, byb = eb = b implies yb ≤L b. Since we trivially
have b ≤L yb, it follows that yb ≡L b ≡L a.

The Stru$ture of H-Cla^e+

We conclude this section with a similar look at H-classes. Let us start by
noting that all H-classes in a given J-class have the same size.

Lemma 2.14. Let S be a cyclically finite semigroup and let H,H′
be two H-

classes that belong to the same J-class. Then there are elements s, t ∈ S1 such that
the function

φ ∶ H → H
′ ∶ x ↦ sxt

is bijective.
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Proof. Fix a ∈ H and a
′ ∈ H′. Since a ≡J a′, it follows by Proposition 2.7

that a ≡L b ≡R a
′ for some b. Fix elements s, t ∈ S1 with b = sa and a′ = bt.

By Lemma 2.8 and the corresponding statement for R-classes, the functions

ψ ∶ [a]L → [b]L ∶ x ↦ sx and ψ′ ∶ [b]R → [a′]R ∶ x ↦ xt

are bijective. To show that φ = ψ ○ ψ′ is a bijectionH → H
′ it is therefore

sufficient to prove that ψ and ψ′ preserve H-equivalence.
Hence, suppose that c ≡H d. Then c ≡R d implies sc ≡R sd. Since all

elements in the range of ψ are L-equivalent, we also have sc ≡L sd, as desired.
In the same way it follows that tc ≡H td.

Lemma 2.15. a ≡H b ≡J ab implies a ≡H ab.

Proof. Since a ≡J ab and b ≡J ab, it follows by Lemma 2.9 that ab ≡R a and
ab ≡L b. As a ≡H b, the latter implies a ≡L b ≡L ab. Thus, ab ≡H a.

Proposition 2.16. Let H be an H-class of a cyclically finite semigroup S. The

following statements are equivalent.

(1) H contains an idempotent element.

(2) There are a, b ∈ H with ab ≡J a.

(3) There are a, b ∈ H with ab ∈ H.

(4) H is closed under multiplication.

(5) H is closed under multiplication and the subsemigroup ⟨H, ⋅ ⟩ is a group.

Proof. The implications (5)⇒ (4) and (1)⇒ (2) are trivial, while (2)⇒ (3)
follows immediately by Lemma 2.15.
(4)⇒ (1) Given a ∈ H, we can use Lemma 2.3 to find a number 0 < n < ω

such that an is idempotent. Furthermore, we have an ∈ H sinceH is closed
under multiplication.
(3)⇒ (4) Fix a, b ∈ H with ab ∈ H and consider two arbitrary elements

c, d ∈ H. Since a ≤R c and b ≤L d, there are s, t ∈ S1 with a = sc and b = dt.
It follows that

cd ≥J scdt = ab ∈ H ,
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3 Simon’s Lemma

which implies that cd ≡J c. Hence, we have cd ∈ H by Lemma 2.15.
(4) ⇒ (5) Suppose that H is closed under multiplication. Fix c ∈ H.

By Lemma 2.3, there exists some number 0 < n < ω such that e ∶= c
n is

idempotent. By assumption, it follows that e ∈ H. We start by showing that
e acts as a neutral element. Hence, consider a ∈ H. Then a ≡L e implies that
a = se, for some s ∈ S1. Therefore,

ae = see = se = a .

In the same way a ≡R e implies that ea = a.
To conclude the proof, it remains to show that each element a ∈ H has

an inverse. Given a we use Lemma 2.3 to find some number k > 0 such that
b ∶= ak is idempotent. By Corollary 2.11 (b),

be = b ≡J e and bb = b implies eb = e .

Consequently, ak = b = eb = e and ak−1 is the desired inverse of a.

3 Simon’+ Lemma

Since the semigroup operation ⋅ is associative, we can evaluate a product
a0⋯an−1 inmany different ways, depending onwhere we put the parenthesis.
For instance, we can do the evaluation left-to-right or right-to-left:

(⋯((a0a1)a2)⋯an−1) , (a0(a1(⋯(an−2an−1)⋯))) .

If we want to do as much of the computation as possible in parallel, we can
instead use the following scheme:

[((a0a1)(a2a3))((a4a5)(a6a7))]⋯

Each of these possible ways of putting the parentheses can be visualised as a
tree.
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a7

a6

a5

a4

a3

a2

a1a0

a0 a1 a2 a3 a4 a5 a6 a7

We call such trees factorisation trees.

Definition 3.1. Let S be a semigroup and w ∈ S+ a sequence of elements.
A factorisation tree of w is an S-labelled, successor-ordered tree where

◆ the leaves are labelled by the elements in w (in left-to-right order) and

◆ each internal vertex is labelled by the product of the labels of its suc-
cessors. ⌟

Note that we do not require a factorisation tree to be binary. A typical
application of factorisation trees is the following problem. Suppose we are
given a sequence w = ⟨a0 , . . . , an−1⟩ of semigroup elements and want to
compute the product a i⋯a j of some factor. If we know a factorisation tree
ofw, we can do so by traversing the subtree corresponding to the subsequence
⟨a i , . . . , a j⟩. For instance, given the tree

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a11 a12

we can evaluate the product a3⋯a11 by multiplying the labels of the marked
vertices. The amount of work we have to do for this depends both on the
height of the tree and on its branching factor. Thus, we would ideally like
to minimise both. If we prioritise the branching and take a binary tree, the
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3 Simon’s Lemma

height is at least logarithmic. If, on the other hand, we minimise the height
and take a tree of height one, the branching is the same as the length of our
sequence and the tree becomes useless. It turns out that there is a middle
ground where the height is still bounded by a constant, while all vertices
with more than two successors have a labelling that makes it easy to compute
the product: we can ensure that every vertex of this kind corresponds to a
product of the form e⋯e where e is idempotent. This leads to the following
definition.

Definition 3.2. A Simon tree of a sequence w is a factorisation tree where

◆ no vertex has exactly one successor, and

◆ for each vertex v withmore than two successors u0 , . . . .un−1, there exists
some idempotent e ∈ S such that u0 , . . . , un−1 (and thus also v) are all
labelled by e.

We call an internal vertex v of a Simon tree binary if it has two successors
and idempotent if it has more than two. ⌟

For technical reasons, we will not work with factorisation trees directly
but a different encoding which behaves better with respect to compositions.
Since we will use these results also in Chapter VI below, we will present
the definition and the proofs for arbitrary linear orders instead of just finite
ones.

Definition 3.3. Let A be a linear order and S a finite semigroup (written
additively).
(a) An additive labelling of A is a function λ mapping each pair i < j of

elements of A to some element λ(i , j) ∈ S such that

λ(i , k) = λ(i , j) + λ( j, k) , for all i < j < k .

(b) A split of A is a function σ ∶ A→ [n]mapping each element a ∈ A to
some number σ(x) < n. We call n the height of σ .
(c) A split σ ∶ A → [n] is right-guarded if σ−1(n − 1) either contains

the maximal element of A, or it is unbounded from above. Similarly, σ is
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left-guarded if σ−1(n − 1) either contains the minimal element of A, or it is
unbounded from below.

(d) Given a split σ ∶ A→ [n] of A, we define a binary relation ⊏σ onA by

x ⊏σ y iff x < y , σ(x) = σ(y) , and

σ(z) ≤ σ(x) , for all x ≤ z ≤ y .

As usual, ⊑σ denotes the reflexive version of ⊏σ .

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

(e) A split σ ∶ A→ [n] of A is Ramseyan for an additive labelling λ if

x ⊏σ y and x ⊑σ u ⊏σ v implies λ(x , y) = λ(u, v) . ⌟

Clearly, splits are just another way to encode factorisation trees. There is
also a correspondence between Simon trees and Ramseyan splits, although
it is less direct.

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

Lemma 3.4. Let S be a semigroup, w = ⟨a0 , . . . , an−1⟩ ∈ S+ a sequence of

elements, and let λ be the additive labelling of [n + 1] defined by

λ(i , k) ∶= a i ⋅ ⋯ ⋅ ak , for 0 ≤ i < k ≤ n .
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3 Simon’s Lemma

(a) If there exists a Ramseyan split of λ of height k, the word w has a Simon

tree of height at most 3k − 2.

(b) If w has a Simon tree of height k, there exists a Ramseyan split of λ of

height at most k.

Proof. (a) We prove the claim by induction on k. If k = 1, then we have

λ(x , y) = λ(u, v) , for all cuts x < y and u < v .

This means that either n ≤ 2 and w has a Simon tree of height 0 or 1, or
n > 2 and there is some element e such that

a0 = ⋅ ⋅ ⋅ = an−1 = e = a0a1 .

Hence, e is idempotent and w has a Simon tree of height 1 where the root is
an idempotent vertex.
For the inductive step, suppose that k > 1. Let z1 < ⋅ ⋅ ⋅ < zm be an

enumeration of σ−1(k − 1) and set u i ∶= w[z i , z i+1), for 0 ≤ i ≤ m (where
we have set z0 ∶= 0 and zm+1 ∶= n). Then σ induces a Ramseyan split of
height k − 1 for each factor u i . Hence, we can use the inductive hypothesis to
get a Simon tree t i of height 3(k − 1) − 2 for each u i . We define the desired
tree for w as follows. If m = 1, we use a binary vertex to combine t0 and t1.
Similarly, if m = 2, we use two binary vertices to combine first t0 and t1 and
then the resulting tree with t2. Finally, for m > 2, we use an idempotent
vertex to combine t1 , . . . , tm−1, and then two binary vertices to combine
the resulting tree, first with t0 and then with tm . Note that the products
c1 ∶= λ(u1), . . . , cm−1 ∶= λ(um−1) are indeed equal and idempotent since

z i ⊏σ z i+1 ⊏σ z i+2 implies c i = c i+1 and c i = c i c i+1 .
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t0 t1 t2 tm−2 tm−1 tm⋯

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

3

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

3(k − 1) − 2

(b) Let t be a Simon tree ofw of height k and let p0 , . . . , pn−1 be its leaves
in left-to-right order. We set

σ(x) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 if x = 0 ,
k − 1 − ∣px−1 ⊓ px ∣ if 0 < x < n ,
0 if x = n .

where as usual we have identified the vertices of t with words over some
set D of directions, and u ⊓ v denotes the longest common prefix of u and v.
We claim that σ is Ramseyan. Hence, suppose that x ⊏σ y and x ⊑σ u ⊏σ v.

We first consider the case where all cuts x , y, u, v are proper. By definition
of σ , there exists a vertex z with ∣z∣ = k − 1 − σ(x) such that

z = px−1 ⊓ px = py−1 ⊓ py = pu−1 ⊓ pu = pv−1 ⊓ pv .

One of the subtrees attached to z corresponds to the factor w[x , y) and
one to w[u, v). Let us denote these by, respectively, r and s. The roots of
r and s are labelled by, respectively, λ(x , y) and λ(u, v). As z has at least
one successor to the left of r (the one above px−1), and one successor to the
right of r and s (the one containing py or pv ), it follows that z has more than
2 successors. Consequently, z is an idempotent vertex of t. Since λ(x , y) and
λ(u, v) are the labels of successors of z, it follows in particular that their
values coincide.

It remains to consider the cases where x = 0, y = n, or v = n. Suppose
that x = 0. (The other two cases follow analogously.) Then σ(x) = 0 and it
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follows by definition of σ that there is some vertex z with ∣z∣ = k − 1 such
that px , py , pu , and pv are all successors of z. If z is binary, we have x = u
and y = v and there is nothing to do. Otherwise, z is idempotent with label e
and λ(x , y) = e = λ(u, v).

After these preparations let us finally prove that Ramseyan splits of
bounded height exist. We start with two special cases.

Lemma 3.5. Let λ be an additive labelling of a linear order A by a finite semi-

group S and let H be an H-class of S containing an idempotent. If

λ(a, b) ∈ H , for all a < b ,

then λ has a right-guarded Ramseyan split σ of height at most ∣H∣.

Proof. By Proposition 2.16,H forms a group. Hence, we can define

λ∗(a, b) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

λ(a, b) if a < b ,
0 if a = b ,
−λ(b, a) if a > b .

It follows that

λ∗(a, b) + λ∗(b, c) = λ∗(a, c) , for all a, b, c ∈ A .

We fix an element a0 ∈ A and we choose some c ∈ H such that the set

{ b ∈ A ∣ λ∗(a0 , b) = c }

either contains the maximal element of A, or it is unbounded. Let µ ∶ H →
[n] be some bijection with µ(c) = n − 1. We claim that the split

σ(a) ∶= µ(λ∗(a0 , a)) , for a ∈ A ,

is Ramseyan and right-bounded. Right-boundedness follows by choice of µ.
To see that it is Ramseyan, consider elements x ⊏σ y and x ⊑σ u ⊏σ v.Then
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σ(x) = σ(y) implies that

λ(x , y) = λ∗(x , y) = λ∗(x , a0) + λ∗(a0 , y)
= λ∗(a0 , y) − λ∗(a0 , x) = 0 .

Similarly, it follows that λ(u, v) = 0. In particular, λ(x , y) = λ(u, v).

Lemma 3.6. Let λ be an additive labelling of a linear order A by a finite semi-

group S and let J be a regular J-class of S. If

λ(a, b) ∈ J , for all a < b ,

then λ has a right-guarded Ramseyan split σ of height at most ∣ J∣.

Proof. If ∣A∣ ≤ 1, the claim is trivial. Hence, we may assume that A has at
least two elements. For every non-maximal a ∈ A, we fix some element b > a
and we set

R(a) ∶= [λ(a, b)]R .

Note that R(a) does not depend on b since, given a < b < b′, it follows by
Corollary 2.10 that

λ(a, b′) = λ(a, b) + λ(b, b′) ≡J λ(a, b) ≡J λ(b, b′)

implies λ(a, b′) ≡R λ(a, b). Similarly, for every non-minimal a ∈ A, we set

L(a) ∶= [λ(b, a)]L , for b < a .

If A has a maximal element a, we set

R(a) ∶= [e]R , for some idempotent e ∈ L(a) .

(Such an idempotent exists by Proposition 2.13.) Similarly, ifA has aminimal
element a, we set

L(a) ∶= [e]L , for some idempotent e ∈ R(a) .
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Let

H(a) ∶= R(a) ∩ L(a) .

We start by proving that H(a) forms a group, for every a ∈ A. If a is
maximal or minimal, this follows from Proposition 2.16 and the fact that, by
definition,H(a) contains an idempotent. Otherwise, fix elements b < a < b′.
Then

λ(b, a) ∈ L(a) and λ(a, b′) ∈ R(a) .

Then λ(b, a) + λ(a, b′) = λ(b, b′) ∈ J and we can use Corollary 2.10 to
find an idempotent e such that

λ(b, a) ≡L e ≡R λ(a, b′) .

Consequently, e ∈ L(a) ∩ R(a) = H(a) and it follows by Proposition 2.16
thatH(a) forms a group.
Let H0 , . . . ,Hk−1 be an enumeration of all H-classes in J that form

groups and set

B i ∶= { a ∈ A ∣ H(a) = H i } , for i < k .

We choose the enumerationH0 , . . . ,Hk−1 such that B i either contains the
maximal element of A, or such that it is unbounded in A. By Corollary 2.10,
it follows that

λ(a, b) ∈ H i , for all a < b in B i .

Hence, we can use Lemma 3.5 to construct a right-guarded Ramseyan
split τ i of B i of height at most ∣H i ∣. Note that, according to Lemma 2.14, all
classesH i have the same size n. We set

σ(a) ∶= ni + τ i(a) , for a ∈ B i .

Then σ is a split of height nk ≤ ∣ J∣. Furthermore, it is right-guarded since
B i is unbounded in A. To see that σ is also Ramseyan, consider elements
x ⊏σ y and x ⊑σ u ⊏σ v. Then x , y, u, v ∈ B i , for some i. Since τ i is
Ramseyan for λ, it follows that λ(x , y) = λ(u, v).
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Theorem 3.7. Let λ be an additive labelling of a linear order A by a finite

semigroup S. Then λ has a Ramseyan split of height at most 2 ⋅ ∣S∣.

Proof. Let J be a maximal J-class of S. We call a set C ⊆ A a J-set if

λ(i , j) ∈ J , for all i < j in C .

We use two different orders on J-sets: inclusion ⊆ and the order

C ≺ D : iff there is some c ∈ C with c < d , for all d ∈ D .

We call a J-set maximal if it is maximal with respect to ⊆. Let us start be
establishing the following claims.

(i) The convex hull of a J-set is a J-set.

(ii) The restriction of ≺ to the maximal J-sets forms a strict linear order.

(iii) Every J-set is contained in a maximal one.

(iv) Two different maximal J-sets have at most one element in common.

(v) Every element a ∈ A is contained in at least one, but at most two
maximal J-sets.

(i) LetD be the convex hull of a J-setC. To show that it is a J-set, consider
elements a < b ofD.Then there are elements a′ , b′ ∈ C with a′ ≤ a < b ≤ b′.
By additivity, it follows that

λ(a′ , b′) = λ(a′ , a) + λ(a, b) + λ(b, b′) .

(If a′ = a or b = b′, we omit the corresponding terms.) Hence,

λ(a′ , b′) ≤J λ(a, b) .

By maximality of J, it follows that λ(a′ , b′) ∈ J implies λ(a, b) ∈ J.
(ii) Irreflexivity and transitivity are immediate. For linearity, fix two max-

imal J-sets C and D. Then there are elements a ∈ C ∖ D and b ∈ D ∖ C.
If a < b it follows by convexity that C ≺ D. Otherwise, D ≺ C.
(iii) By Zorn’s Lemma, it is sufficient to prove that the class of J-sets is

closed under unions of increasing sequences. Hence, let (C i)i<α be such a
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sequence and let D ∶= ⋃i<α C i be its union. Fix a < b in D. Then there is
some index i < α with a, b ∈ C i . As C i is a J-set, it follows that λ(a, b) ∈ J.
(iv) Let C and D be maximal J-sets with ∣C ∩ D∣ ≥ 2. By (ii) and

symmetry, we may assume that C ≺ D. We will prove that C ∪ D is also a
J-set. By maximality, this implies that C = C ∪ D = D. Hence, fix elements
a < b in C ∩ D and consider two elements a′ < b′ in C ∪ D. If a′ , b′ ∈ C or
a
′ , b′ ∈ D, we have λ(a′ , b′) ∈ J by assumption. Otherwise, C ≺ D implies
that a′ ∈ C ∖ D and b′ ∈ D ∖ C, and that a′ < a < b < b′. Since

λ(a′ , a) + λ(a, b) ≡J λ(a, b) ≡J λ(a, b) + λ(b, b′) ,

it follows by Corollary 2.11 (a) that

λ(a′ , b′) = λ(a′ , a) + λ(a, b) + λ(b, b′) ∈ J .

(v) Let a ∈ A. The singleton {a} is a J-set since it does not contain two
elements b < b′. By (iii), it is therefore contained in some maximal J-set C.
To conclude the proof, suppose for a contradiction that a is contained in at
least three different maximal J-setsC0 ,C1 ,C2. By maximality, none of these
sets can be a singleton. It follows that either at least two of them contain
an element less than a, or at least two contain an element greater than a.
By symmetry, suppose that there are b0 , b1 < a with b0 ∈ C0 and b1 ∈ C1.
Furthermore, we may assume by symmetry that b0 ≤ b1. As C0 is convex,
this implies that b1 ∈ C0. Hence, a, b1 ∈ C0 ∩C1, which implies by (iv) that
C0 = C1. A contradiction.

Having established the above claims we now construct the desired split σ
by induction on ∣S∣. Fix a maximal set B ⊆ A that contains at most 1 element
of each maximal J-set. (We can use Zorn’s Lemma to prove that such a set
exists.) For a < b in B it follows that λ(a, b) ∈ S ∖ J. As J is maximal, the
complement S ∖ J forms a subsemigroup of S. Therefore, we can use the
inductive hypothesis to construct a Ramseyan split σ ′ of B of height at most
2(∣S∣ − ∣ J∣).
To turn σ ′ into a split of all of A, we consider a maximal convex subset

C ⊆ Awith C ∩B = ∅. It is sufficient to construct a Ramseyan split τC of C
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of height at most 2∣ J∣. Then we obtain the desired split σ of A by

σ(a) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

σ ′(a) + 2∣ J∣ if a ∈ B ,
τC(a) if a ∈ C and C as above.

} 2(∣S∣ − ∣ J∣)

} 2∣ J∣

To see that σ is Ramseyan, consider elements x ⊏σ y and x ⊑σ u ⊏σ v.
If σ(x) < 2∣ J∣, it follows that x , y, u, v ∈ C for some set C as above and
that x ⊏τC y and x ⊑τC u ⊏τC v. Since τC is Ramseyan, this implies that
λ(x , y) = λ(u, v). Hence, suppose that σ(x) ≥ 2∣ J∣. Then x , y, u, v ∈ B
and x ⊏σ ′ y and x ⊑σ ′ u ⊏σ ′ v. Since σ ′ is Ramseyan, this implies that
λ(x , y) = λ(u, v).
Hence, it remains to construct the splits τC . Let B− be the set of all

elements of B that are smaller than those of C and let B+ be those that are
larger. By (i) and (v), there is at most one maximal J-set that intersects
both B− and Z. Similarly, there is at most one maximal J-set intersecting
Z and B+. We denote these two sets by D− and D+ (setting D− ∶= ∅
or D+ ∶= ∅ if such sets do not exist). We claim that C ⊆ D− ∪ D+. For
a contradiction, suppose that there is some element c ∈ C ∖ (D− ∪ D+).
By (v), the element c is contained in somemaximal J-set E. If E intersects B−,
(v) would imply have E = C−. Similarly, if E intersects B+, we would have
E = C+. Hence, E ⊆ C. It follows that

∣(B ∪ {c}) ∩ X∣ ≤ 1 , for every J-set X .

A contradiction to the maximality of B.
If ∣C∣ ≤ 2, we can take any injective function τC ∶ C → [2] as the desired

Ramseyan split. It height is 2 ≤ 2∣ J∣. Hence, suppose that C has at least 3
elements. By the above claim, it follows that one of C ∩ D− or C ∩ D+ has
at least 2 elements. By symmetry, we may assume that it is the former. Since
D− ∩ B ≠ ∅, the set D− also has at least 3 elements. Fix elements a < b < c
in D−. Then

λ(a, b) ∈ J , λ(b, c) ∈ J , and λ(a, b) + λ(b, c) = λ(a, c) ∈ J .
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3 Simon’s Lemma

Consequently, it follows by Proposition 2.13 that the J-class J is regular.
Hence, we can use Lemma 3.6 to construct a right-guarded Ramseyan
split τ− of D− of height at most ∣ J∣. In the samy way we can use (the dual
version of ) Lemma 3.6 to construct a left-guarded Ramseyan split τ+ of
D+ ∖ D− of height at most ∣ J∣. We set

τC(a) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

τ−(a) if a ∈ C ∩ D− ,
τ+(a) + 1 if a ∈ C ∩ D+ ∖ D− .

To see that τC is Ramseyan, consider elements x ⊏τC y and x ⊑τC u ⊏τC v.
If x , y, u, v ∈ C∩D− or x , y, u, v ∈ C∩D+, we have λ(x , y) = λ(u, v) since
τ− and τ+ are Ramseyan. Hence, suppose otherwise. Then x ∈ D− while
w ∶= max{y, v} ∈ D+ ∖D−. Since τ+ is left-guarded, there is some element
z ∈ D+ ∖ D− with x < w < z and τ+(w) = ∣ J∣ − 1. Hence,

τC(w) = τC(x) = τ−(a) < ∣ J∣ = τ+(z) + 1 = τC(z) ,

which implies that x ⋢τC w. A contradiction.

The following rephrasing of this result is frequently more convenient in
applications.

Corollary 3.8. Let φ ∶ S → T be a semigroup homomorphism where S is

finitely generated and T is finite. If f ∶ ω → ω and µ ∶ S → ω are functions

such that

µ(a0⋯an−1) ≤ f (max
i<n

µ(a i)) ,

holds for all elements a0 , . . . , an−1 ∈ S satisfying

◆ n = 2, or

◆ φ(a1) = ⋅ ⋅ ⋅ = φ(an) = e for some idempotent e ∈ T,

then rng µ is finite.

Proof. LetG be a set of generators of S. Given w = ⟨a0 , . . . , an−1⟩ ∈ G+, let
t be a Simon tree of the sequence ⟨φ(a0), . . . , φ(an−1)⟩ of height at most
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3∣S∣. By induction on the height k of t, it follows that

µ(π(w)) ≤ f
k(max

g∈G
µ(g)) ,

which is independent of w. As k is bounded by 3∣S∣ the claim follows.

Exercise 3.1. Let φ ∶ Σ+ → S be a semigroup homomorphism where
Σ and S are finite. Prove that there exists a constant k > 0 such that every
word w ∈ Σ+ of length nk with n > 2 has a factorisation

w = w0 . . .wn+1 with φ(w1) = ⋅ ⋅ ⋅ = φ(wn) . ⌟

4 Regular Language+ of Finite Word+

Before considering infinite words, we start with finite ones. For these it is
quite simple to characterise which languages areMSO-definable.We present
several equivalent ways to describe such languages. The first one is in terms
of automata.

Definition 4.1. (a) A nondeterministic automatonA = ⟨Q , Σ, ∆, q0 , F⟩ con-
sists of a finite set Q of states, a finite input alphabet Σ, an initial state q0 ∈ Q ,
a set F ⊆ Q of final states, and a transition relation ∆ ⊆ Q × Σ ×Q . Instead of
⟨p, a, q⟩ ∈ ∆, we also write p a

Ð→ q.
(b) A run of an automatonA = ⟨Q , Σ, ∆, q0 , F⟩ on an input word w =

⟨a0 , . . . , an−1⟩ ∈ Σ∗ is a sequence p0 , . . . , pn of states starting with p0 = q0
such that

⟨p i , a i , p i+1⟩ ∈ ∆ , for all i < n .

A run p0 , . . . , pn is accepting if pn ∈ F.
(c) An automatonA accepts a wordw if there exists an accepting run ofA

onw.The language recognised byA is the set L(A) of all words it accepts. ⌟
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4 Regular languages of finite words

Example. The language of all words over the alphabet Σ ∶= {a, b, c} with
an even number of letters a is recognised by the automaton

A = ⟨Q , Σ, ∆, q0 , F⟩

with states Q = {q0 , q1}, final state F = {q0}, and transitions

q0
a
Ð→ q1 , q1

a
Ð→ q0 , q0

b ,c
Ð→ q0 , q1

b ,c
Ð→ q1 .

q0 q1

a

a

b, c b, c

⌟

The second way to describe languages is in terms of semigroups.

Definition 4.2. Let L ⊆ Σ∗.
(a) A homomorphism η ∶ Σ+ → S into a semigroup S recognises L if

L ∖ {⟨⟩} = η−1[P] , for some P ⊆ S .

(b)The syntactic congruence of L is the relation on Σ∗ defined by

x ∼L y : iff uxw ∈ L⇔ uyw ∈ L for all u,w ∈ Σ∗ . ⌟

Note that in the definition of recognition by a homomorphism we have
ignored the empty word.This can be avoided by using monoids instead of
semigroups. But later on when we study infinite words, monoids would
cause technical problems of their own.

Example. Let L be the language of all words over the alphabet Σ ∶= {a, b, c}
with an even number of letters a. L is recognised by the homomorphism
η ∶ Σ+ → Z/2Z that maps a to 1 and b, c to 0. Its syntactic congruence is

x ∼L y iff modulo 2 , x and y have the same number of

letters a

iff η(x) = η(y) . ⌟
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Example. Let us show that every language recognised by an automaton
A = ⟨Q , Σ, ∆, q0 , F⟩ can also be recognised by some finite semigroup.This
semigroup isS ∶= ⟨℘(Q ×Q), ○⟩ consisting of all relations R ⊆ Q ×Q with
the usual composition

R ○ T ∶= { ⟨a, c⟩ ∣ ⟨a, b⟩ ∈ R , ⟨b, c⟩ ∈ T }

as multiplication. To define the homomorphism η ∶ Σ+ → S we only need
to say what it does on single letters. For a ∈ Σ, we set

η(⟨a⟩) ∶= { ⟨p, q⟩ ∣ ⟨p, a, q⟩ ∈ ∆ } .

For words w = ⟨a0 , . . . , an−1⟩ it then follows that

η(w) = η(⟨a0⟩) ○ ⋅ ⋅ ⋅ ○ η(⟨an−1⟩) .

To see that η recognises the desired language, note that L(A) = η−1[P]
where

P ∶= {R ⊆ Q × Q ∣ ⟨q0 , p⟩ ∈ R for some p ∈ F } .

The subsemigroup of S induced by the elements in the range of η is also
called the transition semigroup ofA. ⌟

Example. The construction in the previous example simplifies for determ-
inistic automata. Such automata take the formA = ⟨Q , Σ, δ, q0 , F⟩ where,
instead of a transition relation ∆ ⊆ Q ×Σ×Q , we now have a transition func-
tion δ ∶ Q ×Σ → Q . In this case, we can take the semigroupS ∶= ⟨QQ , ○op⟩
of all functions Q → Q with ‘mirrored’ function composition as multiplica-
tion:

f ○op g ∶= g ○ f .

The homomorphism η ∶ Σ+ → S maps a letter a ∈ Σ to the function

δa(q) ∶= δ(q, a) .

Then L(A) = η−1[P] for P ∶= { f ∶ Q → Q ∣ f (q0) ∈ F }. ⌟
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Lemma 4.3. The syntactic congruence ∼L is a congruence relation (of the free

semigroups ⟨Σ+ , ⋅ ⟩).

Proof. ∼L is obviously reflexive and symmetric. For transitivity, suppose that
x ∼L y ∼L z. To show that x ∼L z, let u,w ∈ Σ∗. Then

uxw ∈ L⇔ uyw ∈ L⇔ uzw ∈ L .

Finally, suppose that x ∼L x
′ and y ∼L y

′. To show that xy ∼L x
′
y
′,

consider words u,w ∈ Σ∗. Then

uxyw ∈ L⇔ ux
′
yw ∈ L⇔ ux

′
y
′
w ∈ L .

We obtain the following characterisations of the class ofMSO-definable
languages.

Theorem 4.4. Let L ⊆ Σ∗. The following statements are equivalent:

(1) L is definable inMSO.

(2) L is recognised by a homomorphism to a finite semigroup.

(3) L is recognised by an automaton.

(4) The syntactic congruence of L has finite index.

Proof. (1)⇒ (4) Suppose that there is anMSO-formula φ defining L. and
set m ∶= qr(φ). Since

v ≡mMSO v
′ and w ≡mMSO w

′ implies v
⌢
w ≡mMSO v

′⌢
w
′ ,

for v , v′ ,w ,w′ ∈ Σ+, the relation ≡mMSO is a congruence relation on Σ+.
Furthermore, if x ≡mMSO y then uxw ≡mMSO uyw implies that

uxw ∈ L iff uxw ⊧ φ iff uyw ⊧ φ iff uyw ∈ L .

Hence, ≡mMSO ⊆ ∼L . We have seen in Proposition I.3.4 that there are only
finitely many ≡mMSO-classes. As every ≡

m
MSO-class is contained in a ∼L-class,

it follows that ∼L also has only finitely many classes.
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(4)⇒ (2) If ∼L has only finitely many classes, the quotient Σ+/∼L is a
finite semigroup.We claim that L∖{⟨⟩} = π−1(P) where π ∶ Σ+ → Σ+/∼L
is the canonical projection mapping every word w to its ∼L-class [w] and

P ∶= { [w] ∣ w ∈ L } .

Clearly, w ∈ L implies π(w) ∈ P. Conversely, if π(w) ∈ P, there is some
v ∼L w with v ∈ L. By definition of ∼L , it follows that w ∈ L.
(2)⇒ (3) Suppose that L∖{⟨⟩} = η−1(P), where η ∶ Σ+ → S is a homo-

morphism to a finite semigroup S and P ⊆ S. We obtain an automatonA
recognising L by settingA ∶= ⟨S1 , Σ, ∆, 1, F⟩ where

F ∶=

⎧⎪⎪
⎨
⎪⎪⎩

P if ⟨⟩ ∉ L ,
P ∪ {1} if ⟨⟩ ∈ L ,

and ∆ ∶= { ⟨s, a, s ⋅ η(a)⟩ ∣ s ∈ S , a ∈ Σ } .

(3)⇒ (1) LetA = ⟨Q , Σ, ∆, q0 , F⟩ be an automaton recognising L. We
obtain a formula φ defining L as follows. φ guesses a run ofA on the given
word. It encodes this run by a tuple (Zq)q∈Q of set variables, where Zq con-
tains all positions such that the automaton is in state q after having read that
position. In the case where ⟨⟩ ∉ L, we set

φ ∶= ∃(Zq)q∈Q[ADM ∧ INIT ∧ TRANS ∧ ACC]

where ADM states that every position is labelled by at most one state:

ADM ∶= ∀x ⋀
p≠q

¬(Zpx ∧ Zqx) ,

INIT states that the first state is correct:

INIT ∶= ∃x[∀y(x ≤ y) ∧ ⋁
⟨q0 ,a ,q⟩∈∆

(Zqx ∧ Pax)] ,
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TRANS states that at every position a valid transition is used:

TRANS ∶= ∀x∀y[suc(x , y) → ⋁
⟨p,a ,q⟩∈∆

(Zpx ∧ Zq y ∧ Pa y)] ,

and ACC states that the last state is final:

ACC ∶= ⋁
q∈F

∃x[Zqx ∧ ∀y(y ≤ x)] .

If ⟨⟩ ∈ L, we use the formula ∀zφ instead, where φ is defined as above.

Example. Let us use the preceding theorem to show that the language

L ∶= { anbn ∣ n < ω }

is not MSO-definable. We give three different proofs, one for each of the
above characterisations.

The easiest way is to argue in terms of the syntactic congruence. Form < n,
we have ambm ∈ L and a

n
b
m ∉ L. Hence, am ≁L a

n for all m < n and the
index of ∼L is infinite.

Using semigroups we can proceed as follows. For a contradiction, suppose
that L wereMSO-definable. Then it would be recognised by a homomorph-
ism η ∶ Σ+ → S to some finite semigroup S. It follows that there must be
two numbers m < n with η(am) = η(an). Consequently,

η(ambm) = η(am) ⋅ η(bm) = η(an) ⋅ η(bm) = η(anbm) .

Hence, ambm ∈ L implies anbm ∈ L. A contradiction.
Finally, let us argue in terms of automata. Again, suppose that L is regular.

Then there exists an automaton A = ⟨Q , Σ, ∆, q0 , F⟩ recognising L. Let
n ∶= ∣Q ∣ be its number of states. Then anbn ∈ L implies that there exists an
accepting run (p i)i≤2n ofA on anbn . As there are only n states, we can find
two indices 0 ≤ j < k ≤ n with p j = pk . We construct a new input word
and a corresponding accepting run on it by taking the given word and its
run and repeating the part between the indices j and k. (In automata theory,
this process is called pumping.)
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a j ak− j an−k bn
p j p j

a j ak− j ak− j an−k bn
p j p j p j

This produces the word an+(k− j)
b
n (note that k ≤ n, so both indices corres-

pond to positions in the first half of the word) and the run (p′i)i≤2n+(k− j)
where

p
′
i ∶=

⎧⎪⎪
⎨
⎪⎪⎩

p i if i ≤ k ,
p i−(k− j) if i > k .

It follows thatA also accepts the input an+(k− j)
b
n ∉ L. A contradiction. ⌟

Exercise 4.1. Give direct proofs for the following implications fromThe-
orem 4.4:

(1) ⇒ (2) , (2) ⇒ (1) ,

(3) ⇒ (4) , (4) ⇒ (3) , (4) ⇒ (1) . ⌟

Exercise 4.2. For each of the following languages over the alphabet Σ ∶=
{a, b, c}, find (i) anMSO-formula defining them, (ii) an automaton recog-
nising them, and (iii) a homomorphism recognising them.

(a) The language of all words of the form a
m
b
n with m, n < ω.

(b) The language of all words such that, after every letter a, there is some
later position with a b.

(c) The language of all words such that between any two a there is at least
one b.

(d) The language of all words with exactly 2 occurrences of the letter a.

(e) The language of all words of the from xay with x , y ∈ Σ∗ and ∣y∣ =
n. ⌟

Exercise 4.3. Prove that the following languages over Σ ∶= {a, b} are not
MSO-definable.

92



5 First-order logic

(a) The language of all words of the form a
m
b
n with m > n.

(b) The language of all words of the form ww for w ∈ Σ∗.
(c) The language of all words of length n2 for n < ω.
(d) The language of all words with the same number of letters a and b.

(e) The language of all well-bracketed words where we consider a as an
opening bracket and b as a closing one. ⌟

Exercise 4.4. Let L be an MSO-definable language over the alphabet Σ.
Prove that there exists a constant 0 < n < ω such that every word w ∈ L of
length ∣w∣ ≥ n has a factorisation w = xyz satisfying

∣xy∣ ≤ n , y ≠ ⟨⟩ , and xy
k
z ∈ L for all k < ω . ⌟

5 Fir#-Order Logi$

We can derive a similar characterisation of the class of first-order definable
word languages. The goal of this section is to prove the following theorem,
which contains logical and algebraic descriptions of this class. We omit the
automata-theoretic characterisation, as it is more technical.

Theorem 5.1 (Schützenberger, McNaughton, Papert, Kamp). Let L ⊆ Σ∗.
The following statements are equivalent.

(1) L is definable in FO.

(2) L is definable in LTL.

(3) L = L(α), for some star-free regular expression α.
(4) L is recognised by a homomorphism into a finite aperiodic semigroup.

We have not yet defined all the notions figuring in this statement. This will
be done below.

Semigroup+

We start with the algebraic characterisation.
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Definition 5.2. A semigroup S is aperiodic if everyH-class of S has a single
element. ⌟

Let us mention several alternative definitions of aperiodicity that some-
times are more convenient.

Lemma 5.3. Let S be a finite semigroup. The following statements are equival-

ent.

(1) S is aperiodic.

(2) For every a ∈ S, there is some number n > 0 such that an+1 = an .

(3) No subsemigroup H ⊆ S with more than one element forms a group.

Proof. (2)⇒ (1) Suppose that a ≡H b.Then there are elements u, v , s, t ∈ S1

such that

a = sb = bu and b = ta = av .

By assumption, there is some n with sn+1 = sn . Consequently,

b = av = sbv = snbvn = sn+1bvn = sb = a .

(1)⇒ (3) Suppose thatH ⊆ S is a subsemigroupwith at least two elements
that forms a group. For all a, b ∈ H, it follows that a ≤L b and a ≤R b.
Consequently, all elements of H are contained in the same H-class and at
least one H-class of S has more than one element.
(3)⇒ (2) Given a ∈ S, we consider the sequence a, a2 , a3 , a4 , . . . . Since

S is finite there are numbers n, k > 0 such that an = an+k . We choose them
minimal. If k = 1, we are done. Hence, suppose that k > 1. Let m be the
number such that n ≤ m < n + k and m ≡ 1 modulo k. It follows that

(am)i = ami = am+i−1 .

Hence, the element am generates the subsemigroup{am−1 , am , . . . , am+k−1}
which is isomorphic to Z/kZ, a group with k > 1 elements.

We can already prove the following part ofTheorem 5.1.
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Proposition 5.4. A language L ⊆ Σ∗ is FO-definable if, and only if, it is

recognised by a homomorphism into a finite aperiodic semigroup.

Proof. (⇒) Suppose that L is defined by an FO-formula of quantifier-
rankm. It follows by Proposition I.4.10 that we can define a binary operation
on the set Θm of all FOm-theories that turns Θm into a semigroup and the
theory mapThm

FO ∶ Σ+ → Θm into a semigroup homomorphism. As this
homomorphism recognises every FOm-definable language, it is therefore
sufficient to show that Θm is aperiodic. By Proposition I.4.11, we have

Thm
FO(w

n+1) =Thm
FO(w

n) ,

for every w ∈ Σ+ and every n ≥ 2m − 1. Consequently, aperiodicity follows
by Lemma 5.3.
(⇐) Let η ∶ Σ+ → S be a homomorphism recognising L where S is

finite and aperiodic. We will construct FO-formulae φa(x , y), for a ∈ S,
such that

w ⊧ φa(i , k) iff η(w[i , k)) = a .

We proceed by induction on the J-class J of a. By inductive hypothesis, we
have already constructed formulae φc for all c >J a. First, we construct a
formula ϑ J such that

w ⊧ ϑ J iff η(w) ∈ J .

Let us call a factor w[i , k) of a word w an J-factor if

◆ η(w[i , k)) >J a,
◆ either k = ∣w∣ or η(w[i , k + 1)) ≤J a,

◆ either i = 0 or η(w[i − 1, k)) ≤J a.

We can define a formula ψJ
c(x , y) stating that x[x , y − 1) is a J-factor and

η(w[x , y)) = c by expressing that
◆ φb(x , y − 1) holds for some b >J a,

◆ Pd y holds for some d with b ⋅ η(d) = c ≤J a, and
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◆ x is either the least element, or we have Pd′(x − 1) for some d′ with
η(d′) ⋅ b ≤J a.

Let ϑ J be the formula saying that
◆ every J-factor u of w satisfies η(u) ≥J a,
◆ if u and v are consecutive J-factors of w, then η(uv) ≥J a.
Then it follows by Corollary 2.11 (b) that w ⊧ ϑ J implies η(w) ≥J a, as
desired.
To conclude the proof note that, S being aperiodic, we have

η(w) = a iff η(w) ≡H a iff η(w) ≡L a and η(w) ≡R a .

Furthermore,

η(w) ≡L η(v) and η(w) ≡R η(u) ,

where u is the first J-factor of w and v the last one.
Consequently, we obtain the desired formula φa(x , y) by stating the

following three conditions:
◆ η(w) ∈ J .
◆ η(u) ≡R a, where u is the first J-factor of w,
◆ η(v) ≡L a, where v is the first J-factor of w.
By the above remarks, each of them can be expressed in first-order logic.

Remark. This result can be used to decidewhether a given regular languageL
is first-order definable. Given an automaton for L, we start by computing
a semigroup recognising it using the construction from the proof above.
Unfortunately, simply checking this semigroup for aperiodicity is not enough
since we need to know whether some semigroup recognising L is aperiodic.
One can show that amoung all semigroups recognising a given language L
there is always a minimal one, the so-called syntactic semigroup of L. This
semigroup can be computed from any other semigroup recognising L by
taking a suitable quotient. As aperiodicity is presvered under quotients it
follows that, if any semigroup recognising L is aperiodic, so is its syntactic
semigroup.Hence, from the semigroup we computed above we can construct
the syntactic semigroup and check it for aperiodicity. ⌟
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Star-Free Expre^ion+

We can also characterise the first-order definable languages via a certain kind
of regular expressions.

Definition 5.5. (a) A star-free regular expression α over an alphabet Σ is a
term built up from binary operations ⋅ , ∩, ∪, a unary operation ∼, and
constant symbols ∅ and a, for each letter a ∈ Σ.

(b)The languageL(α) ⊆ Σ∗ of such an expression α is defined inductively
as follows.

L(∅) ∶= ∅ ,

L(a) ∶= {a} , for a ∈ Σ ,

L(α ∩ β) ∶= L(α) ∩ L(β) ,
L(α ∪ β) ∶= L(α) ∪ L(β) ,

L(∼α) ∶= Σ∗ ∖ L(α) ,
L(α ⋅ β) ∶= L(α) ⋅ L(β) . ⌟

Examples. (a) ∼∅ ⋅ a ⋅ ∼∅ ⋅ a ⋅ ∼∅ describes the language of all words
containing at least two occurrences of the letter a.

(b) ∼(∼∅ ⋅ (aa ∪ bb) ⋅ ∼∅) ∩ (a ⋅ ∼∅ ⋅ b) defines (ab)+. ⌟

To show the equivalence of star-free expressions and first-order logic, we
use the following variant of the back-and-forth property for FO.

Lemma 5.6. For words u, v ∈ Σ∗ and a number m < ω, we have

u ≡m+1FO v iff (u ∈ EaF⇔ v ∈ EaF)

for all a ∈ Σ and all ≡mFO-classes E , F ∈ Σ∗/≡mFO .
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Proof. By Proposition I.3.6, we have

u ≡m+1FO v

iff for every i < ∣u∣ there is some k < ∣v∣ with u, i ≡mFO v , k , and

for every k < ∣v∣ there is some i < ∣u∣ with u, i ≡mFO v , k

iff for every factorisation u = u0au1 (with a ∈ Σ) there is some

factorisation v = v0av1 with u0 ≡mFO v0 and u1 ≡mFO v1 , and

for every factorisation v = v0av1 (with a ∈ Σ) there is some

factorisation u = u0au1 with u0 ≡mFO v0 and u1 ≡mFO v1

iff u ∈ EaF ⇒ v ∈ EaF , for all ≡mFO-classes E , F and a ∈ Σ
v ∈ EaF ⇒ u ∈ EaF , for all ≡mFO-classes E , F and a ∈ Σ

iff u ∈ EaF⇔ v ∈ EaF , for all ≡mFO-classes E , F .

Exercise 5.1. Show that, over the class of all finite words, every first-order
formula is equivalent to a formula that uses only three variables (which can
be quantified several times). ⌟

Proposition 5.7. A language L ⊆ Σ∗ is FO-definable if, and only if, it can be
expressed by a star-free regular expression.

Proof. (⇐) Given a star-free expression α we construct an FO-formula
φα(x , y) such that

w ⊧ φα(i , j) iff w[i , j] ∈ L(α) .

As usual the definition proceeds by induction on α.

φ∅(x , y) ∶= false ,
φa(x , y) ∶= x = y ∧ Pax ,

φα∩β(x , y) ∶= φα(x , y) ∧ φβ(x , y) ,

φα∪β(x , y) ∶= φα(x , y) ∨ φβ(x , y) ,

φ∼α(x , y) ∶= x ≤ y ∧ ¬φα(x , y) ,
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5 First-order logic

φα⋅β(x , y) ∶= ∃u∃v[x ≤ u ∧ u + 1 = v ∧ v ≤ y

∧ φα(x , u) ∧ φβ(v , y)]

∨ ψα ,β(x , y) ∨ ψβ ,α(x , y) ,

where in the last definition we have used the formula

ψα ,β(x , y) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

φβ(x , y) if ⟨⟩ ∈ L(α) ,
false otherwise .

(⇒) It is sufficient to construct, for every ≡mFO-class K ∈ Σ+/≡mFO, a
star-free expression defining K. We do so by induction on m.

Ifm = 0, all words are ≡mFO-equivalent. Hence,K = Σ+ and we can use the
star-free expression ∼∅. For the inductive step, let K be an ≡m+1FO -class. By
Lemma 5.6, it follows that K can be written as a finite boolean combination
of languages of the form EaF where a ∈ Σ and E , F are ≡mFO-classes. We can
use the inductive hypothesis to obtain expressions α and β for, respectively,
E and F. Hence, α ⋅ a ⋅ β defines EaF. As star-free expressions are closed
under boolean operations, we can combine these expressions to get one
for K.

Linear Temporal Logi$

Finally, we can also use a certain form of modal logic.

Definition 5.8. Let Σ be an alphabet. The formulae of linear temporal logic
LTL are built up from atomic formulae of the form Pa with a ∈ Σ using
(i) boolean operations and (ii) a binary modal operator U. We read φ U ψ
as ‘φ until ψ’.The semantics is defined as follows. Given a word w ∈ Σ+ of
length n > 0, we set

w ⊧ Pa : iff w(0) = a ,

w ⊧ φ U ψ : iff there is some 0 < k < n such that w[k, n) ⊧ ψ
and w[i , n) ⊧ φ for all 0 < i < k .
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The boolean operations are interpreted in the usual way. In addition we use
the following abbreviations:

Xφ ∶= false U φ (‘next φ’) ,
Fφ ∶= true U φ (‘finally φ’) ,
Gφ ∶= ¬F¬φ (‘generally φ’) .

We also introduce reflexive versions of U, F, G :

φ U∗ ψ ∶= ψ ∨ (φ U ψ) ,
F∗φ ∶= φ ∨ Fφ ,

G∗φ ∶= φ ∧Gφ . ⌟

Examples. (a) F∗(Pa ∧F∗Pa) defines the language of all words containing
at least two occurrences of the letter a.

(b) G∗(Pa → F∗Pb) says that every letter a is followed (not necessarily
immediately) by a b.

(c) ¬Xtrue states that the word consists of a single letter.
(d) Pa ∧ Pa UGPb defines the language a∗b+. ⌟

Clearly, the logic LTL can be embedded into first-order logic.

Lemma 5.9. For every LTL-formula φ, there exists an FO-formula ψ such that

w ⊧ φ iff w ⊧ ψ , for all words w .

Proof. Given φ we construct an FO-formula φ∗(x) such that

w ⊧ φ iff uw ⊧ φ∗(∣u∣) , for all w , u ∈ Σ∗ .

The definition proceeds by induction on φ.

P
∗
a (x) ∶= Pax ,

(φ ∧ ψ)∗(x) ∶= φ∗(x) ∧ ψ∗(x) ,
(¬φ)∗(x) ∶= ¬φ∗(x) ,

(φ U ψ)∗(x) ∶= ∃y[x < y ∧ ψ∗(y) ∧ ∀z[x < z < y → φ∗(z)]] .
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5 First-order logic

To conclude the proof of Theorem 5.1 it is now sufficient to show that
first-order definable languages can also be defined in LTL.This is the hardest
part of the theorem and requirese a bit of preparation.

Lemma 5.10. For every LTL-formula φ and every set ∆ ⊆ Σ, there exists an
LTL-formula φ(∆) such that

w ⊧ φ(∆) iff u ⊧ φ for the maximal prefix u of w with u ∈ ∆+ .

Proof. We start by transforming the given formula φ into negation normal
form where negations are only allowed in front of the atomic predicates Pa .
This can be done using the laws of de Morgan and the equivalences

¬Fψ ≡ G¬ψ ,

¬Gψ ≡ F¬ψ ,

¬(ψ U ϑ) ≡ G(ψ ∧ ¬ϑ) ∨ (ψ ∧ ¬ϑ)U (¬ψ ∧ ¬ϑ) .

After this simplification, we can construct φ(∆) by induction on φ as follows.
Setting P∆ ∶= ⋁c∈∆ Pc , we define

P
(∆)
a ∶=

⎧⎪⎪
⎨
⎪⎪⎩

Pa if a ∈ ∆ ,
false otherwise ,

¬P(∆)a ∶=

⎧⎪⎪
⎨
⎪⎪⎩

¬Pa ∧ P∆ if a ∈ ∆ ,
true otherwise ,

(φ ∧ ψ)(∆) ∶= φ(∆) ∧ ψ(∆) ,

(φ ∨ ψ)(∆) ∶= φ(∆) ∨ ψ(∆) ,

(φ U ψ)(∆) ∶= P∆ ∧ [φ(∆) ∧ P∆]U ψ(∆) .

The second construction we need is the following analogue of an inter-
pretation for LTL.

Definition 5.11. Let Σ and Γ be alphabets, ◻ ∉ Γ a new letter, and let
(ψc)c∈Γ∪{◻} be a family of LTL-formulae such that, for every w ∈ Σ+, there
exists exactly one c ∈ Γ ∪ {◻} with w ⊧ ψc .
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II. Finite Words

The LTL-transduction τ ∶ Σ+ → Γ+ defined by (ψc)c is the following
function. Given a word w ∈ Σ+ of length n ∶= ∣w∣, let c i ∈ Γ ∪ {◻}, for i < n,
be the letters such that

w , i ⊧ ψc i .

Then τ(w) is the word obtained from ⟨c0 , . . . , cn−1⟩ by deleting all letters
that are equal to ◻. ⌟

Lemma 5.12. Let τ ∶ Σ+ → Γ+ be an LTL-transduction. For every LTL-
formula φ, there exists an LTL-formula φτ

such that

τ(w) ⊧ φ iff w ⊧ φτ , for all w ∈ Σ+ .

Proof. Given φ, we will define a formula φ∗ such that

τ(w) ⊧ φ iff w ⊧ φ∗ , for all w ∈ Σ+ with w ⊧ ¬ψ◻ .

Then we can set

φτ ∶= ψ◻ U∗ (¬ψ◻ ∧ φ∗).

To define φ∗ we proceed by induction on φ.

P
∗
a ∶= ψa ,

(φ ∧ ϑ)∗ ∶= φ∗ ∧ ϑ∗ ,
(¬φ)∗ ∶= ¬(φ∗) ,

(φ U ϑ)∗ ∶= (¬ψ◻ → φ∗)U (¬ψ◻ ∧ ϑ∗) .

As an application, let us show how to compute products in aperiodic
semigroups using LTL.

Proposition 5.13. Let S be a finite, aperiodic semigroup. For every element

d ∈ S, there exists an LTL-formula φd such that

w ⊧ φd iff π(w) = d , for all w ∈ S+ .
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Proof. We will prove the following more general claim. Given a finite, aperi-
odic semigroup S, a non-empty subset C ⊆ S, and an element d ∈ S, there
exists an LTL-formula φd such that

w ⊧ φd iff π(u) = d where u is the maximal prefix of w

with u ∈ C+ .

The proof proceeds by induction on ∣S∣ and ∣C∣.
If S = {c}, we can set φc ∶= true. If C = {c}, we have to check whether

w = cnv where cn = d and v does not start with c. As S is aperiodic, there
exists some number k such that cn = ck , for all n ≥ k. Setting

ψ1 ∶= Pc and ψn+1 ∶= Pc ∧Xψn ,

we obtain formulae such that

w ⊧ ψn iff w = cnv , for some v ∈ S∗ .

Since there exists at most one number n ≤ k with cn = d, we can now set

φd ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

ψn ∧ ¬ψn+1 if d = cn with n < k ,
ψk if d = ck ,
false if cn ≠ d for all n ≤ k .

For the inductive step, suppose that we have already proved the claim
for all semigroups S′ and all subsets C′ ⊆ S′ such that either ∣S′∣ < ∣S∣, or
∣S′∣ = ∣S∣ and ∣C′∣ < ∣C∣. We first consider the case where, for every element
c ∈ C, left-multiplication σc ∶= a ↦ ca by c is bijective. Since S is aperiodic,
there exists some number k such that ck+1 = ck . Consequently, σ k+1

c = σ k
c .

As σc is bijective, we can divide this equvation by σ k
c and obtain σc = id.

Hence, we have ca = a, for all c ∈ C and a ∈ S, and it follows that

π(w) = d iff the last element of w is equal to d , for w ∈ C+ .

Thus, we can set

φd ∶= [⋁
c∈C

Pc]U [Pd ∧ ¬X⋁
c∈C

Pc] .

103



II. Finite Words

It remains to consider the case where there is some c ∈ C such that
the function a ↦ ca is not bijective. Set T ∶= cS and D ∶= C ∖ {c}. By
assumption, T ⊂ S. Furthermore, T induces a subsemigroup of S since
ca ⋅ cb = c(acb) ∈ T.
Let us define a block of w ∈ C+ to be a maximal factor of the form c

n
u

with n < ω and u ∈ D∗. To compute π(w) we will proceed in two steps:
first we multiply every block of w and then we multiply the results.
To accomplish the former we define formulae ψd , for d ∈ S, such that

w ⊧ ψd iff w = acnuv and π(cnu) = d
where cnu is a block of w , a ∈ D , v ∈ C∗ .

Note that this formula is supposed to be evaluated at the position preceding
the block in question. This is because we need to verify that we are at the
beginning of a block and we cannot look backwards in LTL. By inductive hy-
pothesis, we can construct formulae (φc

a)a and (φD
a )a evaluating products

of sequences in, respectively, {c}+ and D+. We set

ψd ∶= ¬Pc ∧X(Pc ∧ ψ′d)

where

ψ′d ∶= [φ
c
d ∧GPc] ∨ ⋁

a ,b∈S
ab=d

[φc
a ∧ [Pc U φD

b ]] .

(The first part deals with the special case where we are in the last block and
this block is of the form c

n without elements from D. The second part is
for the more common case where the current block does contain elements
from D.) Together with the formula

ψ◻ ∶= Pc ∨ ¬XPc

we obtain a family (ψd)d∈S∪{◻} that defines an LTL-transduction τ that
maps w to the sequence of products of the blocks (excluding the first block
which we treat separately).This sequence belongs to T+. Since T is a proper
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subsemigroup of S we can use the inductive hypothesis to obtain formu-
lae φT

d for evaluating the resulting product. This leads to the following
definition.

φd ∶= [ψ′d ∧Gψ◻] ∨ ⋁
a ,b∈S
ab=d

[ψ′a ∧ [ψ◻ U (φT
b )

τ]] .

(The first clause is for the case where there is only one block, the second one
if there are more.)

As we have already established the equivalence between FO-definability
and recognisability in an aperiodic semigroup, we now immediately obtain
the last missing piece for the proof ofTheorem 5.1.

Corollary 5.14. Every FO-definable language is LTL-definable.

Proof. Let L ⊆ Σ+ be FO-definable. By Proposition 5.4, we can find a ho-
momorphism η ∶ Σ+ → S to a finite aperiodic semigroup S such that
L = η−1[P] for some P ⊆ S. We construct an LTL-formula ψ defining L as
follows. Let φd , d ∈ S, be the LTL-formulae from Proposition 5.13. Given
a word w = a0 . . . an−1 ∈ Σ+, let wη = η(a0) . . . η(an−1) ∈ S+ be the word
obtained fromw by replacing each letter by its image under η. It follows that

w ∈ L iff η(w) ∈ P iff w
η ⊧ ⋁

a∈P
φa iff w ⊧ ψ ,

where ψ is the formula obtained from ⋁a∈P φa by replacing every predic-
ate Pc with c ∈ S by the formula

ϑc ∶= ⋁
b∈η−1(c)∩Σ

Pb .

Note+

Ramseyan splits were introduced by Colcombet, extending earlier results by
Simon [195] on factorisation trees.Their existence for arbitrary linear orders
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is due to [50]. Our presentation follows expositions by Bojańczyk [26] and
Colcombet [51].

The equivalence between monadic second-order logic and automata was
independently discovered by Büchi [34], Elgot [78], and Trakhtenbrot [206].
The equivalence between star-free regular expressions and aperiodicmonoids
is due to Schützenberge [190], the one between star-free regular expressions
and first-order logic due to McNaughton and Papert [142], and the equival-
ence to LTL is due to Kamp [113].
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III In[nite Word+

1 Ramsey Theory

Our next aim is to do what we just did in Section II.4 for languages of
infinite words. Unfortunately this entails a bit of technical overhead.

In particular, we need a few results from a branch of combinatorics called
Ramsey Theory.We have already seen one result of this kind in Section II.3:
the Lemma of Simon. In this sectionwewill derive severalmore.The simplest
example of such a result is the statement that every infinite undirected graph
contains an infinite clique or an infinite independent set.

Definition 1.1. Let A be a linear order.
(a) We denote by [A]2 the set of all pairs ⟨i , k⟩ ∈ A2 with i < k.
(b) A finite colouring of A is a function λ ∶ [A]2 → C where C is a finite

set of colours.
(c) LetS be a finite semigroup. A finite colouring λ ∶ [A]2 → S is additive

if

λ(x , y) ⋅ λ(y, z) = λ(x , z) , for all x < y < z . ⌟

Theorem 1.2 (Ramsey). Let λ ∶ [ω]2 → C be a finite colouring of ω.
There exists an infinite subset I ⊆ ω such that

λ(i , k) = λ( j, l) , for all i < k and j < l in I .

Proof. We construct an increasing sequence n0 < n1 < ⋯ of indices, a
sequence c0 , c1 , . . . ∈ C of colours, and a decreasing sequence J0 ⊇ J1 ⊇ ⋯
of infinite sets such that, for every i < ω,

n i ∈ J i and λ(n i , k) = c i , for all k ∈ J i+1 .
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III. Infinite Words

We start with n0 ∶= 0 and J0 ∶= ω. By induction, suppose that we have
already defined n i and J i . For c ∈ C, set

Lc ∶= { k ∈ J i ∣ k > n i and λ(n i , k) = c } .

Then J i ∖ [n i + 1] = ⋃c∈C Lc . As J i is infinite and C is finite, there is some
element c i ∈ C such that Lc i is infinite. We set

J i+1 ∶= Lc i and n i+1 ∶= min J i+1 .

Having defined (n i)i<ω , (c i)i<ω , and ( J i)i<ω , we consider the sets

Mc ∶= { i < ω ∣ c i = c } , for c ∈ C .

Note that n j ∈ J j ⊆ J i+1, for j > i, implies that

λ(n i , n j) = c , for all i < j inMc .

Since ⋃c∈C Mc = ω, there is some c ∈ C such that Mc is infinite. We set
I ∶= { n i ∣ i ∈Mc }.

Remark. This theorem holds more generally for colourings of k-tuples
instead of pairs. The proof is a straightforward induction on k using

the argument from the above proof for the inductive step. ⌟

Exercise 1.1. (a) Let G = ⟨V , E⟩ be an infinite undirected graph. Prove
that there exists an infinite set X ⊆ V such that either all vertices in X are
adjacent, or none of them are.

(b) Let G = ⟨V , E⟩ be an undirected graph with at least 6 vertices. Prove
that there exists three vertices x , y, z ∈ V that are either all connected by an
edge, or none of them are. ⌟

Exercise 1.2. LetS be a finite semigroup and a0 , a1 , . . . an infinite sequence
of elements of S. Prove that there exists an increasing sequence k0 < k1 < . . .
of indices and two elements b, e ∈ S such that

be = b , ee = e , b = a0⋯ak0−1 , and e = ak i⋯ak i+1−1 ,

for all i < ω. ⌟
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Exercise 1.3. Let S be a finite semigroup, η ∶ Σ+ → S a homomorphism,
and let L ⊆ Σω be a language of the form

L = ⋃
i<n

η−1(b i)(η−1(e i))
ω
, for n < ω and b i , e i ∈ S ,

where Xω ∶= { x0x1x2 . . . ∣ x i ∈ X }.
Prove that the complement Σω ∖ L is also of the form

Σω ∖ L = ⋃
i<m

η−1(c i)(η−1( f i))
ω
,

for suitable m < ω and c i , f i ∈ S. ⌟

Exercise 1.4. Awell-quasi-order is a partial order ⟨A, ≤⟩ that does not contain
any infinite descending sequence and any infinite antichain (i.e., a set of
pairwise incomparable elements).
(a) Prove that every infinite partial order contains an infinite set that is

either an ascending chain, a descending chain, or an antichain.
(b) Prove that ⟨A, ≤⟩ is a well-quasi-order if, and only if, for every infinite

sequence a0 , a1 , a2 , . . . in A there are indices i < k with a i ≤ ak .
(c) Let Σ be a finite alphabet. We define an ordering on Σ∗ by setting

x ≤ y if the word x can be obtained from y by deleting some letters. Prove
that ⟨Σ∗ , ≤⟩ is a well-quasi-order.
Hint. Assume that ⟨Σ∗ , ≤⟩ is not a well-quasi-order and find words

w0 ,w1 , . . . such that, for every n < ω, the sequence w0 , . . . ,wn can be
continued to an infinite sequence violating the condition in (b). ⌟

For additive colourings, we can improve the Theorem of Ramsey. One
such result is the Lemma of Simon that we proved in Section II.3. We can
interpret Simon’s Lemma as a recursive version of theTheorem of Ramsey
where we partition the input word not only once, but each of the resulting
factors recursively until only single letters are left. Of course we could just
repeatedly use theTheorem of Ramsey to get such a decomposition. The
point of Simon’s Lemma is that a bounded number of iterations is sufficient
for this.
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While Simon’s Lemma is a powerful result, it does have one drawback:
the split we obtain depends on the whole input word. Below we will need
a way to compute a split while reading the word from left-to-right in a
deterministic fashion without having to know how the part we have not
seen yet looks like. In the following we will prove a result of Colcombet
which shows how this can be done. The resulting split will unfortunately
not be fully Ramseyan, it will only satisfy a slightly weaker property, which
is nonetheless still sufficient for many applications.
The starting point is the following problem: given an additive colouring

λ ∶ [I]2 → S of a linear order I, we would like to find a colouring χ ∶ I → C

of the elements of I such that we can recover λ from χ. That is, we want to
reduce a labelling of pairs to a labelling of singletons.Theproof use techniques
from semigroup theory and Green’s relations.

Definition 1.3. Let S be a finite semigroup.
(a) A right action of S on a set Q is a function ▹ ∶ Q × S → Q satisfying

the equation

q ▹ (ab) = (q ▹ a) ▹ b , for all q ∈ Q and a, b ∈ S .

(b) A J-chain of S is a tuple ā = ⟨a0 , . . . , am⟩ ∈ S+ such that

a0 <J ⋅ ⋅ ⋅ <J am .

We denote the set of all J-chains of S by ChainJ(S).
(c) We define a right action ▹ of S on ChainJ(S) by

⟨a0 , . . . , am⟩ ▹ b ∶= ⟨a0 , . . . , ak−1 , (ak⋯amb)⟩ ,

where 0 ≤ k ≤ m + 1 is the maximal index such that the above tuple is a
J-chain.

(d) Let α ≤ ω and let λ ∶ [α]2 → S be an additive colouring. A function
χ ∶ α → ChainJ(S) is a J-chain labelling for λ if, for all 0 < i < α,

χ(i) = χ(i − 1) ▹ λ(i − 1, 1) . ⌟
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Example. LetM = {1, a, b, ab, ba, aba, 0} be the monoid from the example
on page 67 with three J-classes:

{0} ≤J {b, ba, ab, aba} ≤J {1, a} .

For the colouring λ ∶ [10]2 →M with

0
b
Ð→ 1

a
Ð→ 2

a
Ð→ 3

b
Ð→ 4

b
Ð→ 5

a
Ð→ 6

a
Ð→ 7

a
Ð→ 8

b
Ð→ 9 ,

we obtain a J-chain labelling

∣ a ∣
b
Ð→ ∣ ab ∣

a
Ð→

a

ab

a
Ð→

1
ab

b
Ð→ ∣0 ∣

b
Ð→

b

0
a
Ð→

a
Ð→

a

b

0
a
Ð→

1
b

0
a
Ð→

a

b

0
b
Ð→ ∣0 ∣

where we have written a J-chain ⟨a0 , . . . , am−1⟩ as a column

am−1
⋮
a0

.
⌟

We will prove that we can recover λ from a J-chain labelling.

Definition 1.4. Let χ ∶ α → ChainJ(S) be a J-chain labelling for λ ∶
[α]2 → S.
(a) Let µ ∶ S+ → S be the function mapping a tuple ⟨a0 , . . . , am−1⟩ to

its last element am−1, and let π ∶ S∗ → S
1 be the function mapping a tuple

⟨a0 , . . . , am−1⟩ to the product a0⋯am−1 of its components.
(b) For positions i , k < α, we define

i ⋖0χ k : iff i < k and µχ( j) ≮J µχ(i) , for all i ≤ j ≤ k ,

i tχ k : iff i ⋖0χ k and µχ(i) = µχ(k) . ⌟
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Lemma 1.5. Let α ≤ ω, let χ ∶ α → ChainJ(S) be a J-chain labelling for

λ ∶ [α2] → S, and let i ≤ k < α be positions with

i t0χ k , χ(i) = sa , and χ(k) = t , for s, t ∈ S∗ , a ∈ S .

(a) There exist b ∈ S and x ∈ S∗ such that

t = s⌢b⌢x , b ≡J a , and π(b⌢x) = a ⋅ λ(i , k) .

(b) If t = s
⌢
b
⌢
x with x ≠ ⟨⟩, there is some position i ≤ j < k such that

λ( j, k) = π(x).
(c) If t = s⌢b and i < k, then a ≡J λ(i , k).

Proof. (a) We prove the statement by induction on the number of positions
between i and k. If i = k, then

t = χ(k) = χ(i) = s⌢a ,

and we can set b ∶= a and x ∶= ⟨⟩.
For the inductive step, let k′ be the immediate predecessor of k and assume

that i ≤ k′. By inductive hypothesis, it follows that

χ(k′) = s⌢b⌢x ,

for some b ∈ S and x ∈ S∗ such that

b ≡J a and π(b⌢x) = a ⋅ λ(i , k′) .

By definition of χ, there is a factorisation u⌢v of s⌢b⌢x such that

t = u⌢π(v⌢c) , where c ∶= λ(k′ , k) .

We claim that s is a prefix of u. For a contradiction, suppose otherwise.Then
s = u⌢d⌢y and v = d⌢y⌢b⌢x where y ∈ S∗ and d ∈ S is the first element of v.
Setting d′ ∶= π(v⌢c) we obtain

d
′ = π(d⌢y⌢b⌢x⌢c) ≤J d .
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Since s⌢b⌢x = u
⌢
d
⌢
y
⌢
b
⌢
x is a valid configuration, it follows that d <J b.

Consequently,

µχ(k′) = d′ ≤J d <J b ≡J a .

A contradiction.
We have shown that t is of the form

t = s⌢z⌢d′ where d
′ ∶= π(v⌢c) and z

⌢
v = b⌢x .

By definition of χ and by inductive hypothesis, it further follows that

a ⋅ λ(i , k) = a ⋅ λ(i , k′) ⋅ λ(k′ , k)
= π(b⌢x) ⋅ c = π(z⌢v⌢c) = π(z) ⋅ π(v⌢c) = π(z⌢d′) .

It therefore remains to prove that the first element of z⌢d′ is J-equivalent
to a. If z ≠ ⟨⟩, then z = b⌢z′, for some z′ ∈ S∗. Hence, t = s⌢b⌢z′⌢d′ where
b ≡J a. If z = ⟨⟩, then t = s⌢d′ where

d
′ = π(v⌢c) = π(z⌢v⌢c) = π(b⌢x⌢c) ≤J b ≡J a .

Since d′ = µχ(k′) ≮J a, it follows that d′ ≡J a.
(b), (c)We prove both statements by induction on the number of positions

between i and k If i = k, then b = a, x = ⟨⟩, and (b) and (c) hold trivially.
For the inductive step, let k′ be the immediate predecessor of k and sup-

pose that i ≤ k′. By (a), it follows that χ(k′) = s⌢b′⌢x′ where

b
′ ≡J a ≡J b and π(b⌢x) = a ⋅ λ(i , k) .

Set c ∶= λ(k′ , k). The definition of χ implies that either

x = ⟨⟩ and b = π(b′⌢x′⌢c) ,

or b = b′ , x
′ = y⌢z , and x = y⌢π(z⌢c) , for some y, z ∈ S∗ .

To prove (b), suppose that x ≠ ⟨⟩. Then π(x) = π(y⌢z⌢c) = π(x′⌢c).
Thus, it is sufficient to find a position i ≤ j < k such that λ( j, k) = π(x′⌢c).
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If x′ = ⟨⟩, we can take j ∶= k′. If x′ ≠ ⟨⟩, we can use the inductive hypothesis
to obtain a position i ≤ j < k

′ with λ( j, k′) = π(x′). Then λ( j, k) =
λ( j, k′) ⋅ c = π(x′⌢c).
To prove (c), suppose that x = ⟨⟩. Set d′ ∶= π(x′⌢c). Then b = b

′ ⋅ d′

and, by definition of χ, the sequence s⌢b′⌢d′ is not a J-chain, while s⌢b
is one. Furthermore, we have b′ ≡J a ≡J b = b

′
d
′, which implies that

b
′ ≤J d

′. Hence, the only possible reason for s⌢b′⌢d′ not being a J-chain is
that b′ ≮J d′. Consequently, d′ ≡J b′ ≡J a. We choose a position i ≤ j < k
as follows. If x′ = ⟨⟩, we set j ∶= k′. If x′ ≠ ⟨⟩, we use (b) to choose j such
that λ( j, k′) = π(x′). In both cases it follows that

λ(i , k) ≤J λ( j, k) = π(x′⌢c) = d′ ≡J a .

Moreover, we have seen above that b = π(b⌢x) = a ⋅ λ(i , k). Therefore,
λ(i , k) ≥J b ≡J a and it follows that a ≡J λ(i , k).

Corollary 1.6. Let α ≤ ω and let χ ∶ α → ChainJ(S) be a J-chain labelling
for λ ∶ [α2] → S. If i tχ k, then

µχ(i) ⋅ λ(i , k) = µχ(i) and µχ(i) ≡J λ(i , k) .

Proof. By Lemma 1.5 (a), we have

χ(i) = s⌢a and χ(k) = s⌢b⌢x ,

for some s, x ∈ S∗ and a, b ∈ S such that b ≡J a and π(b⌢x) = a ⋅ λ(i , k).
Note that, if x ≠ ⟨⟩, then x = y⌢a, for some y ∈ S∗, and b ≮J a implies that
t
⌢
a = s⌢b⌢y⌢a is not a J-chain. Hence, x = ⟨⟩. This implies that

t = s , b = a , and a ⋅ λ(i , k) = π(b⌢x) = b = a .

Furthermore, it follows by Lemma 1.5 (c) that a ≡J λ(i , k).

We are finally able to state our deterministic version of Simon’s Lemma.
Recall the notion of a split σ and the corresponding preorder ⊏σ from Sec-
tion II.3.
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Definition 1.7. Let A and B be linear orders and λ ∶ [A]2 → S an additive
colouring. A function σ ∶ A→ B is a weak Ramseyan split of λ if

λ(x , y) = λ(x , y) ⋅ λ(x′ , y′) , for all x ⊏σ y and x′ ⊏σ y
′

such that x ⊑σ x
′ or x′ ⊑σ x . ⌟

The above results allow us to construct a weak Ramseyan split as follows.

Lemma 1.8. Let S be a finite semigroup of size N ∶= ∣S∣ and χ ∶ α →
ChainJ(S) a J-chain labelling for an additive colouring λ ∶ [α]2 → S. If

υ ∶ S → [N] is a bijection such that

a <J b implies υ(a) > υ(b) ,

then σ ∶= υ ○ µ ○ χ is a weak Ramseyan split for λ.

Proof. Consider positions x < y and x′ < y′ with x ≈σ y ≈σ x
′ ≈σ y

′. Then

a ∶= µχ(x) = µχ(y) = µχ(x′) = µχ(y′)

and µχ(z) ≮J a , for all z between any two of x , y, x′ , y′ .

Consequently, x tχ y and x′ tχ y′. By Corollary 1.6 it follows that

a ⋅ λ(x , y) = a and a ≡J λ(x , y) ,
a ⋅ λ(x′ , y′) = a and a ≡J λ(x′ , y′) .

Applying Corollary II.2.11 (a) to the values b ∶= λ(x , y) and c ∶= λ(x′ , y′),
we obtain

λ(x , y) ⋅ λ(x′ , y′) = b ⋅ c = b = λ(x , y) .

We can compute weak Ramseyan splits by an automaton.

Definition 1.9. (a) A deterministic finite-state transducer

T = ⟨Q , Σ, Γ , q0 , δ, η⟩
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consists of a finite set Q of states, an input alphabet Σ, an output alphabet Γ,
an initial state q0 ∈ Q , an output function η ∶ Q → Γ, and a transition function
δ ∶ Q × Σ → Q .
Let T = ⟨Q , Σ, Γ , q0 , δ, η⟩ be a transducer. The run of T on a word

w = (c i)i<α ∈ Σ∞ is the sequence (q i)i<β of states where q0 is the initial
state and

q i+1 ∶= δ(q i , c i) , for all i , and β ∶=
⎧⎪⎪
⎨
⎪⎪⎩

α + 1 if α < ω ,
ω if α = ω .

Every transducer T defines a function T ∶ Σ∞ → Γ∞ that maps an input
word w ∈ Σ∞ to the word

T (w) = (η(q i))i<β , where (q i)i<β is the run of T on w.

(b) Let S a finite semigroup and N < ω a natural number. We say that a
transducer T = ⟨Q , S , [N], q0 , δ, η⟩ computes weak Ramseyan splits for S
if, for every additive colouring λ ∶ [α]2 → S with α ≤ ω, the function
σ ∶ α → [N] defined by

σ = T (w) where w ∶= (λ(i , i + 1))i+1<α ,

is a weak Ramseyan split of λ. ⌟

Theorem 1.10 (Colcombet). Given a finite semigroup S of size N ∶= ∣S∣, we
can effectively construct a deterministic finite-state transducer

T = ⟨Q , S , [N], q0 , δ, η⟩

that computes weak Ramseyan splits for S.

Proof. We use the set Q ∶= ChainJ(S) of all J-chains as states of the trans-
ducer. Note that this set is finite, since there are at most ∣S∣ J-classes. The
initial state q0 is an arbitrary J-chain. We define the transition function δ
using the right action ▹ ∶ ChainJ(S) × S → ChainJ(S) by

δ(q, a) ∶= q ▹ a .
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Then the run of T on a given input λ is a J-chain labelling χ for λ. Fixing a
bijection υ ∶ S → [N] as in Lemma 1.8, we can define the output function
η ∶ Q → [N] by η(q) ∶= υ(µ(q)).

Exercise 1.5. (a) Let Σ be a finite alphabet, w ∈ Σω , and k < ω. Prove
that there are sets Q0 , . . . ,Qn−1 ⊆ ω such that, for everyMSO-theory θ of
quantifier rank k, there exists an FO-formula φθ(x , y) such that

⟨ω, Q̄⟩ ⊧ φθ(x , y) iff Thk
MSO(w[x , y)) = θ .

(b) Let τ be an MSO-interpretation τ and P0 , . . . , Pm−1 ⊆ ω monadic
parameters. Prove that there exist anFO-interpretation σ and setsQ0 , . . . ,Qn−1 ⊆
ω such that

τ(⟨ω, P̄⟩) = σ(⟨ω, Q̄⟩) . ⌟

2 The Theory of ω
Büchi was the first one to show that the monadic second-order theory of
⟨ω, ≤⟩ is decidable. His origninal proof uses automata for ω-words. In this
section we present an alternative model-theoretic proof due to Shelah. We
start with computing the theories of finite linear orders.

Definition 2.1. For n̄ ∈ ω∗ and m < ω, we denote by Θn̄(m) the set of all
sets ofMSOn̄

0[≤]-formulae with free variables X0 , . . . ,Xm−1. And we set

Φn̄(m) ∶= {Th
n̄
MSO0
(A, P0 . . . Pm−1) ∣ A a finite linear order and

P0 , . . . , Pm−1 ⊆ A} . ⌟

Lemma 2.2. We can equip Θn̄(m) with two operations ⋅ and
ω
such that

Thn̄
MSO0
(A, P̄ +B, Q̄) =Thn̄

MSO0
(A, P̄) ⋅Thn̄

MSO0
(B, Q̄)

and Thn̄
MSO0
(∑i<ω A, P̄) =Thn̄

MSO0
(A, P̄)ω ,

for all linear orders A and B and all parameters P̄, Q̄ .
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Proof. This follows immediately from Proposition I.4.25.

Proposition 2.3. Given n̄ ∈ ω∗ and m < ω, we can compute Φn̄(m).

Proof. The set

Ψ ∶= {Thn̄
MSO0
(A, P̄) ∣ A = ⟨A, ≤⟩ a linear order with ∣A∣ ≤ 1}

is a finite subset of Θn̄(m) which we can compute from n̄ and m. As every
finite linear order can be written as a finite ordered sum of one-element
linear orders, it follows that Φn̄(m) is the subsemigroup of ⟨Θn̄(m), ⋅ ⟩
generated by the set Ψ . Hence, we can compute Φn̄(m) from Θn̄(m) and
Ψ .

The next lemma allows us to go from finite orders to infinite ones.

Lemma 2.4. Let n̄ ∈ ω∗ and m < ω. There exists a tuple r̄ ∈ ω∗ of length
∣r̄∣ = ∣n̄∣ such that, for every σ ∈ Φn̄(m), we can compute σω ∈ Θn̄(m) from
σ andThr̄

MSO0
(ω, ≤).

Proof. Note that

σω =Thn̄
MSO0
(∑i<ω A, P̄) ,

where A is any finite linear order withThn̄
MSO0
(A, P̄) = σ . Let τ ∈ Θn̄(m)

and let ϑτ be anMSOn̄
0-formula equivalent to τ. It follows that

σω = τ iff ∑
i<ω

A, P̄ ⊧ ϑτ .

According to Theorem I.4.24, we can compute formulae ϑ′τ(Z̄) ∈ MSOr̄
0

and χ0 , . . . , χ l−1 ∈ MSOn̄
0 such that

∑
i<ω

A, P̄ ⊧ ϑτ iff ⟨ω, ≤⟩ ⊧ ϑ′τ(⟦χ0⟧, . . . , ⟦χ l−1⟧) .

As all terms in the sum above are equal, we have

⟦χ i⟧ =
⎧⎪⎪
⎨
⎪⎪⎩

ω if χ i ∈ σ ,
∅ if χ i ∉ σ .
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Let ϑ′′τ be the formula obtained from ϑ′τ(Z̄) by replacing every variable Z i
by

⎧⎪⎪
⎨
⎪⎪⎩

true if χ i ∈ σ ,
false if χ i ∉ σ .

Then it follows that

σω = τ iff ⟨ω, ≤⟩ ⊧ ϑ′′τ iff ϑ′′τ ∈Th
r̄
MSO0
(ω, ≤) .

The key argument in our decidability proof below is the following lemma,
which states that every labelling of ω is equivalent to an ultimately periodic
one. It is a direct application of theTheorem of Ramsey.

Lemma 2.5. Let n̄ ∈ ω∗ and m < ω. Then

{Thn̄
MSO0
(ω, ≤, P̄) ∣ P0 , . . . , Pm−1 ⊆ ω } = { σ τω ∣ σ , τ ∈ Φn̄(m) } .

Proof. (⊇)Given σ , τ ∈ Φn̄(m), fix finite linear orders A and B and para-
meters P̄ and Q̄ with theories σ and τ, respectively. Then

A, P̄ + ∑
i<ω

B, Q̄ ≅ ⟨ω, ≤, S̄⟩ , for some S0 , . . . , Sm−1 ⊆ ω .

Consequently,

σ τω =Thn̄
MSO0
(A, P̄) ⋅Thn̄

MSO0
(B, Q̄)ω =Thn̄

MSO0
(ω, ≤, S̄) .

(⊆) Let P0 , . . . , Pm−1 ⊆ ω. For i < k < ω, we define

Ai ,k ∶= ⟨{i , . . . , k − 1}, ≤, P̄ ↾ {i , . . . , k − 1}⟩ .

By theTheorem of Ramsey, there exist a theory τ ∈ Φn̄(m) and an infinite
sequence k0 < k1 < ⋯ of positions such that

Thn̄
MSO0
(Ak i ,k j) = τ , for all i < j < ω .

Setting σ ∶=Thn̄
MSO0
(A0,k0), it follows that

Thn̄
MSO0
(ω, ≤, P̄) =Thn̄

MSO0
(A0,k0 + ∑

i<ω
Ak i ,k i+1) = σ τω .
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Theorem 2.6 (Büchi). ThMSO(ω, ≤) is decidable.

Proof. We prove by induction on ∣n̄∣ that, given n̄ ∈ ω∗, we can compute
Thn̄

MSO0
(ω, ≤). For n̄ = ⟨⟩, we have

Thn̄
MSO0
(ω, ≤) = ∅ .

Hence, suppose that n̄ = mn̄
′ and that we already know how to compute

Thr̄
MSO0
(ω, ≤), for all r̄ ∈ ω∗ with ∣r̄∣ = ∣n̄′∣.

To computeThmn̄′
MSO0
(ω, ≤) it is sufficient to decide whether or not

⟨ω, ≤⟩ ⊧ ∃X0⋯∃Xm−1ψ ,

for allMSOn̄
0-formulae ψ(X̄). Hence, given anMSOn̄

0-formula ψ(X̄), we
have to decide whether there are sets P0 , . . . , Pm−1 ⊆ ω such that

⟨ω, ≤⟩ ⊧ ψ(P̄) .

By Lemma 2.5, this is equivalent to the question of whether there are theories
σ , τ ∈ Φn̄(m) such that

ψ(X̄) ∈ σ τω .

Therefore, it is sufficient to compute σ τω , for all of the finitely many possible
choices of σ and τ. This we can do with the help of Proposition 2.3 and
Lemma 2.4 since, by inductive hypothesis, we can computeThr̄

MSO0
(ω, ≤),

for all r̄ ∈ ω∗ with ∣r̄∣ = ∣n̄′∣.

3 ω-Semigroup+

To study languages of infinite words, we extend the notion of a semigroup
by adding an infinite product.

Definition 3.1. (a) An ω-semigroup is a two-sorted structure S = ⟨S , Sω⟩
with three products

⋅ ∶ S × S → S , ⋅ ∶ S × Sω → Sω , and π ∶ Sω → Sω
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that satisfy the following associative laws:

(ab)c = a(bc) ,

(ab)u = a(bu) ,

b ⋅ π(a0 , a1 , . . . ) = π(b, a0 , a1 , . . . ) ,
π(a0 , a1 , . . . ) = π((a0⋯ak0−1), (ak0⋯ak1−1), . . . )

for all a, b, c, a0 , a1 , . . . ∈ S and u ∈ Sω , and all increasing sequences 0 <
k0 < k1 < ⋅ ⋅ ⋅ < ω. Informally, we refer to the element of S as the finite
elements and to those of Sω as the infinite elements of S.
(b)The ω-power of an element a ∈ S is

a
ω ∶= π(a, a, a, . . . ) .

(c) A homomorphism η ∶ S→ T of ω-semigroups consists of two maps

η0 ∶ S → T and ηω ∶ Sω → Tω

that commute with products, i.e., for a, b, a0 , a1 , . . . ∈ S and u ∈ Sω ,

η0(a) ⋅ η0(b) = η0(ab) ,
η0(a) ⋅ ηω(u) = ηω(au) ,
π(η0(a0), η0(a1), . . . ) = ηω(π(a0 , a1 , . . . )) . ⌟

Definition 3.2. Let Σ be a set.
(a)The free ω-semigroup over Σ is ⟨Σ+ , Σω⟩. By abuse of notation we also

denote it simply by Σ∞.
(b) A language L ⊆ Σω is recognised by a homomorphism η ∶ Σ∞ → S to

an ω-semigroup S if there exists a set P ⊆ Sω such that L = η−1[P]. ⌟

Example. Let S = ⟨S , Sω⟩ be the ω-semigroup with S ∶= {0, 1} and Sω ∶=
{0, 1} where

a ⋅ b ∶= max{a, b} , for a, b ∈ S ,

a ⋅ u ∶= u , for a ∈ S , u ∈ Sω ,

π(a0 , a1 , . . . ) ∶= lim sup
n→∞

an , for a0 , a1 , . . . ∈ S .
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The language L of all ω-words w containing infinitely many letters a is
recognised by the morphism sending the letter a to 1 and every other letter
to 0. ⌟

Example. In the previous section we have already introduced the ω-semi-
group ⟨Θn̄(m), Θn̄(m)⟩ of allMSOn̄

0-theories over the signature{≤, P0 , . . . , Pm−1}.
Note that the function η ∶ Σ∞ → Θn̄(m) mapping a word u ∈ Σ∞ to its
theory, is a homomorphism.
If L ⊆ Σω is a language defined by anMSOn̄

0-formula φ, then

L = {w ∈ Σω ∣ φ ∈Thn̄
MSO0
(w) } = η−1[P]

where P ∶= { θ ∈ Θn̄(m) ∣ φ ∈ θ } . Thus, every definable language is
recognised by η. ⌟

Exercise 3.1. Find homomorphisms into finite ω-semigroups that recognise
the following languages over the alphabet {a, b, c}.

(a) The language of all ω-words containing infinitely many a, but only
finitely many b.

(b) The language of all ω-words where immediately after or immediately
before every letter a there is another a.

(c) The language of all ω-words containing an even (and finite) number
of a.

(d) The language of all ω-words where after every letter a there is a later
position with a letter b.

(e) The language of all ω-words where, for every prefix p, the numbers of
the letters a, b, c differ by at most 1. ⌟

Exercise 3.2. Prove that a language L ⊆ Σω is recognised by homomorph-
isms into a finite ω-semigroup if, and only if, it is of the form

L = ⋃
i<m

U iV
ω
i ,

where m < ω, U i ,Vi ⊆ Σ+ are MSO-definable languages of finite words,
and Vω ∶= { v0v1v2 . . . ∣ v i ∈ V }. ⌟
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Exercise 3.3. Let S be a finite semigroup, η ∶ Σ+ → S a homomorphism,
and let L ⊆ Σω be a language of the form

L = ⋃
i<n

η−1(b i)(η−1(e i))
ω
, for n < ω and b i , e i ∈ S ,

where Xω ∶= { x0x1x2 . . . ∣ x i ∈ X }.
Prove that the complement Σω ∖ L is also of the form

Σω ∖ L = ⋃
i<m

η−1(c i)(η−1( f i))
ω
,

for suitable m < ω and c i , f i ⊆ S. ⌟

Exercise 3.4. Prove that the free ω-semigroup ⟨Σ+ , Σω⟩ really is free: show
that, for everyω-semigroupS and everymap h ∶ Σ → S, there exists a unique
homomorphism η ∶ Σ∞ → S such that η(a) = h(a), for all a ∈ Σ. ⌟

Exercise 3.5. Let A = ⟨S , Sω⟩ be an ω-semigroup where each element is
invertible, i.e., for every a ∈ S, there is some element a−1 ∈ S such that
aa

−1 = 1 = a−1a (for some fixed 1 ∈ S). Prove that

π(a0 , a1 , . . . ) = π(b0 , b1 , . . . ) , for all a i , b i ∈ S . ⌟

In order to prove that a language is recognisable precisely when it isMSO-
definable, we employ theTheorem of Ramsey.

Definition 3.3. (a) Let S be a semigroup and (an)n<ω a sequence of semi-
group elements. For i < k < ω, we write

a[i ,k) ∶= a ia i+1⋯ak−1 .

A Ramsey factorisation of (an)n<ω is a sequence of indices 0 < k0 < k1 <
⋅ ⋅ ⋅ < ω such that

a[k i ,k j) = a[k i′ ,k j′) , for all i < j and i
′ < j

′ .
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The type of such a factorisation is the pair

⟨a[0,k1) , a[k1 ,k2)⟩ .

(b) LetS be anω-semigroup and η ∶ Σ∞ → S a homomorphism. ARam-

sey factorisation of a word w ∈ Σω is a Ramsey factorisation of the sequence
(η(w(n)))n<ω . ⌟

Lemma 3.4. Let S be a finite semigroup and (an)n<ω a sequence of semigroup

elements.

(a) (an)n<ω has a Ramsey factorisation.

(b) If ⟨b, e⟩ is the type of a Ramsey factorisation of (an)n<ω then

be = b and ee = e .

(c) If ⟨b, e⟩ and ⟨c, f ⟩ are the types of two Ramsey factorisations of (an)n<ω
then there are elements u, v ∈ S1 such that

c = bu , e = uv , and f = vu .

Proof. (a)We define a colouring λ ∶ [ω]2 → S by assigning to a pair i < j of
indices the colour λ(i , j) ∶= a[i , j). By theTheorem of Ramsey, there exists
an infinite set I ⊆ ω such that λ(i , j) = λ(i′ , j′), for all i < j and i

′ < j
′

in I. We can choose for k0 < k1 < ⋯ an increasing enumeration of I.
(b) Let k0 < k1 < ⋯ be a Ramsey factorisation with type ⟨b, e⟩. Set

c ∶= a[0,k0) and dn ∶= a[kn ,kn+1), for n < ω. Then b = cd0 and e = d1.
Furthermore,

d id i+1⋯d j = a[k i ,k j+1) = a[k i′ ,k j′+1) = d i′d i′+1⋯d j′ ,

for all i ≤ j and i
′ ≤ j

′. In particular, d i = d j , for all i , j. Consequently, we
have

be = cd0d1 = cd0 = b and ee = d1d1 = d1d2 = d1 = e .

(c) Let k0 < k1 < ⋯ and l0 < l1 < ⋯ be Ramsey factorisations with types
⟨b, e⟩ and ⟨c, f ⟩, respectively. Replacing (kn)n<ω and (ln)n<ω by suitable
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subsequences we may assume without loss of generality that k0 ≤ l0 ≤ k1 ≤
l1 ≤ ⋯. For n < ω, set

un ∶= a[kn , ln) and vn ∶= a[ln ,kn+1) .

Then c = bu1 and

e = u0v0 = u1v1 = ⋯ and f = v0u1 = v1u2 = ⋯ .

Since the number of possible pairs ⟨un , vn⟩ is finite, there exist elements
u, v ∈ S and an infinite set I ⊆ ω such that

⟨un , vn⟩ = ⟨u, v⟩ , for all n ∈ I .

Fix elements m, n ∈ I with n > m + 1. Then

c = c f m = (bu0)(v0u1)⋯(vm−1um)

= b(u0v0)⋯(um−1vm−1)um = be
m
u = bu ,

e = e2 = umvm e = uve ,

f = f
n−m = (vmum+1)⋯(vn−1un)

= vm(um+1vm+1)⋯(un−1vn−1)un = ve
n−m−1

u = veu .

Consequently, the elements u and ve have the desired properties.

Lemma 3.5. Let η ∶ Σ∞ → S be a homomorphism into a finite ω-semigroupS.

For u ∈ Sω , set

Fu ∶= { ⟨a, b⟩ ∈ S2 ∣ abω = u } .

Then η(w) = u if, and only if, w has a Ramsey factorisation with type in Fu .

Proof. (⇐) Ifw has a Ramsey factorisation k0 < k1 < ⋯ of type ⟨a, b⟩ ∈ Fu
then

η(w) = η(w[0, k1)w[k1 , k2)w[k2 , k3)⋯)

= η(w[0, k1)) ⋅ η(w[k1 , k2)) ⋅ η(w[k2 , k3))⋯
= abb ⋅ ⋅ ⋅ = abω = u .
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(⇒) Suppose that η(w) = u. By Lemma 3.4 (a), w has a Ramsey factor-
isation k0 < k1 < ⋯. Let ⟨b, e⟩ be its type. Then

u = η(w) = η(w[0, k1)) ⋅ η(w[k1 , k2)) ⋅ η(w[k2 , k3))⋯
= bee ⋅ ⋅ ⋅ = beω .

Hence, ⟨b, e⟩ ∈ Fu .

Lemma 3.6. Let S be a finite ω-semigroup. For every pair ⟨b, e⟩ ∈ S2, there
exists an MSO-formula φb ,e defining the set of all ω-words with a Ramsey

factorisation of type ⟨b, e⟩.

Proof. Let c ∈ S. We start by defining a formula ψc(x , y) stating that the
factor from position x to y − 1 is mapped to c. We use set variables (Zd)d∈S
containing all positions x ≤ z < y such that the factor from x to z is mapped
to d. The formula ψc(x , y) states that there are sets (Zd)d∈S such that

◆ Zd ∩ Zd′ = ∅ for d ≠ d′,

◆ if a is the letter at position x, then x ∈ Zη(a),

◆ if x < z < y and the letter at position z is a, then z − 1 ∈ Zd implies
z ∈ Zdη(a), and

◆ y − 1 ∈ Zc .

Clearly, each of these statements can be expressed inMSO.
Having defined the formulaeψc , the desired formula φb ,e states that there

exists an infinite set Z such that

◆ ψb(0, x) holds, where x is the second element of Z, and

◆ ψe(x , y) holds for all elements x < y of Z.

Theorem 3.7. Let Σ be a finite alphabet. A language L ⊆ Σω
isMSO-definable

if, and only if, there exists a homomorphism η ∶ Σ∞ → S into a finite ω-
semigroup S recognising L.

Proof. (⇒)We have seen in the example after Definition 3.2 that every
MSOn̄

0-definable language is recognised by a homomorphism into the ω-
semigroup Θn̄(m) of allMSOn̄

0-theories.
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(⇐) Let η ∶ Σ∞ → S be a morphism such that L = η−1[P], for some
P ⊆ Sω . We have seen in Lemma 3.5 that

η(w) = u iff w has a Ramsey factorisation with type in Fu .

Consequently, the formula

ψ ∶= ⋁
u∈P

⋁
⟨b ,e⟩∈Fu

φb ,e

defines L, where φb ,e are the formulae from Lemma 3.6.

If we want to compute with an ω-semigroup, we face the problem that
we cannot write down the multiplication table of the infinite product since
it is infinite. For algorithmic applications we need to represent this table in a
finite way.

Definition 3.8. AWilke algebra is a structure ⟨S , Sω , ⋅ , ω⟩with two products

⋅ ∶ S × S → S and ⋅ ∶ S × Sω → Sω

and one unary ω-power operation

ω ∶ S → Sω .

These operations satisfy the following associative laws:

(ab)c = a(bc) , (ab)ω = a(ba)ω ,

a(bu) = (ab)u , (an)ω = aω ,

for a, b, c ∈ S, u ∈ Sω , and 0 < n < ω. ⌟

Theorem 3.9. Let S be a finite Wilke algebra. There exists a unique function

π ∶ Sω → Sω turning S into an ω-semigroup with

π(a, a, a, . . . ) = aω .
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Proof. Given a sequence (an)n<ω we define

π(a0 , a1 , . . . ) ∶= beω ,

where ⟨b, e⟩ is the type of a Ramsey factorisation of (an)n<ω . To see that
this is well-defined, first note that, according to Lemma 3.4 (a), every se-
quence does have a Ramsey factorisation. Furthermore, if ⟨b, e⟩ and ⟨c, f ⟩
are the types of two Ramsey factorisations of (an)n<ω then we can use
Lemma 3.4 (c) to find elements u, v ∈ S1 such that

c = bu , e = uv , and f = vu .

Hence,

c f
ω = bu(vu)ω = b(uv)ω = beω .

To prove that this operation turnsS into anω-semigroup,we have to show
associativity. For the first equation, let (an)n<ω be a sequence of semigroup
elements and let c ∈ S. If k0 < k1 < ⋯ is a Ramsey factorisation of (an)n<ω ,
then k0+1 < k1+1 < ⋯ is a Ramsey factorisation of the sequence c, a0 , a1 , . . .
and we have

c ⋅ π(a0 , a1 , . . . ) = c(a0⋯ak1−1)(ak1⋯ak2−1)
ω

= (ca0⋯ak1−1)(ak1⋯ak2−1)
ω

= π(c, a0 , a1 , . . . ) .

For the second equation, let (an)n<ω be a sequence of semigroup elements
and let l0 < l1 < ⋅ ⋅ ⋅ < ω be a sequence of indices. Suppose that k0 < k1 < ⋯
is a Ramsey factorisation of the sequence (a ln⋯a ln+1−1)n<ω . Then lk0 <
lk1 < ⋯ is a Ramsey factorisation of (an)n<ω and we have

π(a0⋯a l0−1 , a l0⋯a l1−1 , . . . ) = (a0⋯a lk1−1)(a lk1⋯a lk2−1)
ω

= π(a0 , a1 , . . . ) .

It remains to show that the product π is unique. Suppose that π′ ∶ Sω →
Sω is any associative operation such that π′(a, a, a, . . . ) = aω , for all a ∈ S.
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To prove that π′ = π, consider a sequence (an)n<ω in S and let k0 < k1 < ⋯
be a Ramsey factorisation of (an)n<ω of type ⟨b, e⟩. Then it follows that

π′(a0 , a1 , . . . ) = π′(a[0,k1) , a[k1 ,k2) , a[k2 ,k3) , . . . )

= π′(b, e , e , e , . . . )
= b ⋅ π′(e , e , e , . . . ) = beω = π(a0 , a1 , . . . ) .

Exercise 3.6. (a) Let L0 and L1 be languages that are recognised by homo-
morphisms η0 ∶ Σ∞ → S0 and η1 ∶ Σ∞ → S1 into finite ω-semigroups.
Prove that the languages L0 ∩ L1, L0 ∪ L1, and Σω ∖ L0 are also recognised
by a homomorphism into some finite ω-semigroup.
(b) Let L ⊆ Σω be recognised by a homomorphism η ∶ Σ∞ → S into a

finite ω-semigroup S and let π ∶ Σ → Γ be a function. Prove that

π[L] ∶= { π(w) ∣ w ∈ L }

is also recognised by a homomorphism into a finite ω-semigroup. (This
exercise is a bit more involved.)
(c) Use (a) and (b) to give an alternative proof of the fact that every

MSO-definable language is recognised by a homomorphism into a finite
ω-semigroup. Show furthermore that, given a formula φ one can effectively
construct a description of the corresponding homomorphism and Wilke
algebra.

(d) Use (c) to give an alternative decidability proof for the monadic theory
of ⟨ω, ≤⟩. ⌟

Exercise 3.7. The syntactic congruence of a language L ⊆ Σω is the relation

x ∼L y : iff u(xv)ω ∈ L⇔ u(yv)ω ∈ L

and ux ∈ L⇔ uy ∈ L , for all u, v ∈ Σ∗ .

(a) Prove that the syntactic congruence is a congruence of the free ω-
semigroup.
(b) Prove that a language L ⊆ Σω is MSO-definable if, and only if,

∼L has only finitely many classes and L is a union of languages of the form
K0K1K2 . . . , where each K i is an ∼L-class.
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(c) Show that ∼L = ∼K where L ∶= (0∗1)ω and

K ∶= {0n0 10n1 10n2 1 . . . ∣ n0 , n1 , n2 , . . . is unbounded} . ⌟

4 ω-Automata

As usual, instead of algebras we can also use automata to recognise languages.
Forω-words, we have tomodify our notion of acceptance since, when reading
an infinite word, an automaton cannot simply use the final state to decide
whether or not to accept its input. A workable alternative turns out to be to
look at the states that appear infinitely often during the run of the automaton.
One common choice is to decide acceptance based on the set of all these states.
A simpler, better behaved, but equivalent alternative is to fix an ordering of
the states and just use the least state appearing infinitely often.Wewill adopt
this simpler method, although slightly reformulated for technical reasons.
It is easy to check that the following definition is equivalent to using an
ordering on the states.

Definition4.1. (a)An (nondeterministic)ω-automaton is a tupleA = ⟨Q , Σ, ∆, q0 ,Ω⟩
where where Q is a finite set of states, Σ is a finite input alphabet, q0 ∈ Q is
the initial state, Ω ∶ Q → ω is a priority function, and ∆ ⊆ Q × Σ × Q is the
transition relation. Instead of ⟨p, a, q⟩ ∈ ∆, we also write p a

Ð→ q.
(b) A run of an ω-automatonA = ⟨Q , Σ, ∆, q0 ,Ω⟩ on an ω-wordw ∈ Σω

is an ω-word ρ ∈ Qω such that

⟨ρ(n),w(n), ρ(n + 1)⟩ ∈ ∆ , for all n < ω .

A run ρ is accepting if ρ(0) = q0 and ρ satisfies the parity condition

lim inf
n→∞

Ω(ρ(n)) is even .

(c) An ω-automatonA accepts an ω-word w if there exists an accepting
run ofA on w. The language recognised byA is the set L(A) of all ω-words
it accepts.
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(d) An ω-automatonA = ⟨Q , Σ, ∆, q0 ,Ω⟩ is deterministic if, for all states
q ∈ Q and all letters a ∈ Σ, there is a unique state q′ ∈ Q with ⟨q, a, q′⟩ ∈ ∆.
In this case, we can replace the transition relation ∆ by a transition function
δ ∶ Q × Σ → Q such that

∆ = { ⟨q, a, δ(q, a)⟩ ∣ q ∈ Q , a ∈ Σ } .

(e) A Büchi automaton is an ω-automaton A = ⟨Q , Σ, ∆, q0 ,Ω⟩ where
rngΩ ⊆ {0, 1}. ⌟

Example. The language of all words w ∈ {a, b}ω with infinitely many a is
recognised by the ω-automaton

1 0

a

b

b a

where the numbers labelling the states indicate their priority. We obtain an
ω-automaton for the language of all words w ∈ {a, b}ω with only finitely
many a by changing the priorities:

2 1

a

b

b a

⌟

Exercise 4.1. Find ω-automata recognising the following languages over the
alphabet {a, b, c}.

(a) The language of all ω-words containing infinitely many a, but only
finitely many b.

(b) The language of all ω-words where immediately after or immediately
before every letter a there is another a.

(c) The language of all ω-words containing an even (and finite) number
of a.
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(d) The language of all ω-words where after every letter a there is a later
position with a letter b.

(e) The language of all ω-words where, for every prefix p, the numbers of
the letters a, b, c differ by at most 1. ⌟

Exercise 4.2. (a) Prove that, for every ω-automatonA, there exists a Büchi
automaton B recognising the same language.
(b) Prove that a language L ⊆ Σω is recognised by a Büchi automaton if,

and only if, it is of the form

L = ⋃
i<m

U iV
ω
i ,

where m < ω andU i ,Vi ⊆ Σ+ areMSO-definable languages of finite words.
(c) Find a Büchi automaton recognising the language of all ω-words with

only finitely many letters a. Prove that this language is not recognised by a
deterministic Büchi automaton, i.e., one where the transition relation ∆ is
the graph of a function Q × Σ → Q .
(d) Prove that the class of languages recognised by Büchi automata is

closed under union, intersection, complement, and projection.
(e) Prove that a language is recognised by a Büchi automaton if, and only

if, it isMSO-definable. ⌟

Example. Let F ⊆ Σ. We will construct a (deterministic) automaton A
recognising all words w ∈ Σω such that F is the set of letters appearing
infinitely often in w. The idea is as follows. The automaton maintains a
record of all letters it has seen and their ordering. More precisely it stores
a permutation c0 . . . cn−1 of Σ such that letters on the right have been seen
more frequently than those on the left. Everytime the automaton reads a
new input letter a this letter is removed from its position in the permutation
and moved to the end. In addition, the automaton remembers what the
old position was, by adding a special marker ∣. Hence, the states ofA are
permutations of Σ ∪ {∣}, which we will call latest appearance records. For
instance, when reading the word

a a b a b c c b a a b . . .
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the run of the automaton looks as follows. (The initial state does not matter.)

abc∣ →a ∣bca →a
bc∣a →b ∣cab →a

c∣ba →b
c∣ab →c ∣abc →c

ab∣c

→b
a∣cb →a ∣cba →a

cb∣a →b
c∣ab ⋯

We assign the priority 2 to all states of the form c0 . . . ck−1∣ck . . . cn−1 where
{ck , . . . , cn−1} = F, and priority 1 to all other states.
We claim that A accepts w if, and only if, the set of letters appearing

infinitely often in w is equal to F.
(⇐)We can factorise the input word asw = u0u1u2 . . . such that u0 con-

tains all letters that appear only finitely often in w and each u i with i > 0
contain every letter in F at least once. After reading the prefix u0u1, the
automaton A will only see states of the form c0 . . . ck−1∣ck . . . cn−1 with
ck , . . . , cn−1 ∈ F. Furthermore, in each factor u i , i > 1, there will be at least
one state of the form c0 . . . ck−1∣ck . . . cn−1 with {ck , . . . , cn−1} = F.
(⇒) Fix a state q ∶= c0 . . . ck−1∣ck . . . cn−1 that appears infinitely often in

the run ofA on w, and let w = u0u1 . . . be the factorisation of w such that
q occurs after each factor u i . AsA accepts w, we have {ck , . . . , cn−1} = F.
Furthermore, every letter c j with k ≤ k < nmust occur somewhere in u i , for
i > 0. Hence, every c ∈ F occurse infinitely often in w. For a contradiction,
suppose that there is some other letter c ∈ Σ ∖ F that also occurs infinitely
often.Then some state p occurs infinitely often in the run where c appears
on the right of ∣. But such states have priority 1, which means the run cannot
be accepting. ⌟

Similarly to automata for finite words, we can associate a transition semi-
group with an ω-automaton.

Definition 4.2. LetA = ⟨Q , Σ, ∆, q0 ,Ω⟩ be an ω-automaton and let D ∶=
rngΩ be the set of priorities used.The transition ω-semigroupSA ∶= ⟨S , Sω⟩
ofA has domains

S ∶= ℘(Q × D × Q) and Sω ∶= ℘(Q) .
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Binary multiplication is defined by

A ⋅ B ∶= { ⟨p, min{d , d′}, r⟩ ∣ ⟨p, d , q⟩ ∈ A , ⟨q, d′ , r⟩ ∈ B } ,

A ⋅U ∶= { p ∣ ⟨p, d , q⟩ ∈ A , q ∈ U } ,

for A, B ∈ S andU ∈ Sω . The infinite product is given by

π(A0 ,A1 , . . . ) ∶= { p0 ∣ there are ⟨pn , dn , pn+1⟩ ∈ An , for n < ω ,

such that lim inf
n→∞

dn is even} . ⌟

Theorem 4.3. Let Σ be a finite alphabet and L ⊆ Σω
a language of ω-words.

The following statements are equivalent:

(1) L is recognised by an ω-automaton.
(2) L is recognised by a Büchi automaton.

(3) L is recognised by a homomorphism η ∶ Σ∞ → S into a finiteω-semigroup.

Proof. (2) ⇒ (1) is trivial.
(1) ⇒ (3) LetA = ⟨Q , Σ, ∆, q0 ,Ω⟩ be an ω-automaton recognising L

and let SA be its transition ω-semigroup. We define a homomorphism
η ∶ Σ∞ → SA by mapping finite words w ∈ Σ∗ to the set of all triples
⟨p, d , q⟩ such that there exists a run ofA on w starting in state p, ending in
state q, and having the minimal priority d. Similarly, infinite words w ∈ Σω

are mapped to the set of all states p such that there exists a run ofA on w
starting in state p and satisfying the parity condition.Then

L = η−1[P] where P ∶= {U ⊆ Q ∣ q0 ∈ U } .

Hence, η recognises L.
(3) ⇒ (2) Suppose that L = η−1[P] for some η ∶ Σ∞ → S. We have

seen in Lemma 3.5 that

η(w) = u iff w has a Ramsey factorisation with type in Fu .

Consequently, we can construct a Büchi automaton that, on inputw, guesses
a value u ∈ P and a type ⟨b, e⟩ ∈ Fu and then checks that w has a Ramsey
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factorisation with type ⟨b, e⟩. This can be done as follows. After reading a
prefix v the automaton remembers the image η(v). The automaton can do
this since, if the current value is η(v) and the next letter is c, the next value
will be η(vc) = η(v)η(c). Hence, when reading a letter c it only needs to
multiply the current value by η(c). If the current value is equal to b, the
automaton can nondeterministically decide that it has read the first factor
of the factorisation. In this case, it resets the stored value and reads letters
until it reaches the value e. After having found a factor with value e, the
automaton can again nondeterministically decide that it has found the next
factor of the factorisation. It resets its stored value and reads the next factor.
The automaton accepts if this reset was performed infinitely many times.
Formally, we have states

Q ∶= {0, 1, 2} × S ∪ {q0}

and the following transitions, for a ∈ S and c ∈ Σ,

q0
c
Ð→ ⟨0, η(c)⟩ ,

⟨0, a⟩
c
Ð→ ⟨0, aη(c)⟩ , ⟨0, b⟩

c
Ð→ ⟨1, η(c)⟩ ,

⟨1, a⟩
c
Ð→ ⟨2, aη(c)⟩ , ⟨1, e⟩

c
Ð→ ⟨1, η(c)⟩ ,

⟨2, a⟩
c
Ð→ ⟨2, aη(c)⟩ , ⟨2, e⟩

c
Ð→ ⟨1, η(c)⟩ .

The initial state is q0 and the priority function is

Ω(q0) ∶= 1 and Ω(⟨k, a⟩) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

0 if k = 1 ,
1 otherwise .

Our next aim is to show that every ω-automaton is equivalent to a de-
terministic one.

Lemma 4.4. Let S be a finite ω-semigroup and let e0 , e1 , . . . ∈ S be elements

such that

e i ek = e i , for all i , k < ω .

Then π(e0 , e1 , e2 , . . . ) = eω0 .
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Proof.

π(e0 , e1 , e2 , . . . ) = π(e0 , e1e0 , e2e0 , . . . )
= π(e0e1 , e0e2 , e0e3 , . . . )
= π(e0 , e0 , e0 , . . . ) = eω0 .

Theorem 4.5 (McNaughton). For every homomorphism η ∶ Σ∞ → S into

a finite ω-semigroup and every set P ⊆ Sω , we can construct a deterministic

ω-automatonA recognising η−1[P].

Proof. Given an ω-word w ∈ Σω , we consider the colouring

λ(i , k) ∶= η(w[i , k)) , for i < k < ω .

This colouring is additive. Hence, we can useTheorem 1.10 to construct a
deterministic finite-state transducer T = ⟨Q , S , [N], q0 , δ, µ⟩ that, given λ,
produces some weak Ramseyan split σ ∶ ω → [N] for S.
The idea of the construction is as follows. To compute η(w) we find an

infinite increasing sequence z0 ⊑σ z1 ⊑σ . . . . Then it follows by Lemma 4.4
that

η(w) = λ(0, z0) ⋅ λ(z0 , z1)ω .

When trying to do this deterministically we face the problem that we do not
know the value k = σ(z i). Therefore, the automaton has to do the above
computation simultaneously for all possible values of k.
To make this idea precise, let us introduce some terminology. Given a

position n in the input word, we call a position z visible (from n) if 0 < z ≤ n
and there is no position z < x ≤ n with σ(x) > σ(z). The level of a visible
position z is the number σ(z).

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

2

1

0

n
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At each input position n, the sequence z0 ⊑σ ⋅ ⋅ ⋅ ⊑σ z l−1 of all visible
positions at level k might be the start of the infinite factorisation we are
looking for.Therefore, the automaton needs to remember the values λ(0, z0)
and λ(z0 , z1). In order to update this information, it also needs to know
the value λ(z1 , n). Hence, for each k < N, the automaton will use three
registers containing values from S

1. Their values χk(n) at position n, can
be defined as follows. Let z0 ⊑σ ⋅ ⋅ ⋅ ⊑σ z l−1 be an enumeration of all visible
positions at level k. Since we have to support the cases where l ≤ 1 or z1 = n,
we obtain

χk(n) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

⟨1, 1, λ(0, n)⟩ if l = 0 ,
⟨λ(0, z0), 1, λ(z0 , n)⟩ if l = 1 ,
⟨λ(0, z0), λ(z0 , z1), λ(z1 , n)⟩ if l > 1

(using the convention that λ(x , x) = 1).
Thememory of the automaton will consist of the state of T and the values

χ0(n), . . . , χN−1(n). This is possible as we can compute χk(n + 1) from
χk(n), σ(n + 1) (which is provided by T ), and λ(n, n + 1) = η(w[n]). To
see this, note that

χk(n) = ⟨ak , bk , ck⟩ and λ(n, n + 1) = d ,

implies that

χk(n + 1) = ⟨1, 1, akbk ckd⟩ , for k < σ(n + 1) ,

χk(n + 1) = ⟨ak , bk , ckd⟩ , for k > σ(n + 1) ,

χk(n + 1) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

⟨ckd , 1, 1⟩ if ak = 1 , bk = 1 ,
⟨ak , ckd , 1⟩ if ak ≠ 1 , bk = 1 ,
⟨ak , bk , ckd⟩ if ak ≠ 1 , bk ≠ 1 ,

for k = σ(n + 1) .

After these preparations we are finally able to formally define the auto-
matonA we are looking for. Its states are

Q
′ ∶= Q × (S1 × S

1 × S
1)N .
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After reading the first n letters of its input,A is in the state

⟨qn , χ0(n), . . . , χN−1(n)⟩ ,

where qn is the state of T . The initial state is

⟨q0 , ⟨1, 1, 1⟩, . . . , ⟨1, 1, 1⟩⟩ .

We assign to a state

p = ⟨q, ⟨a0 , b0 , c0⟩, . . . , ⟨aN−1 , bN−1 , cN−1⟩⟩

with µ(q) = k the priority

Ω(p) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

2(N − k) if ak , bk ≠ 1 and akbωk ∈ P ,
2(N − k) − 1 if ak = 1 , bk = 1 , or akbωk ∉ P .

We claim that this automaton A accepts an ω-word w if, and only if,
η(w) ∈ P.
(⇐) Suppose that η(w) ∈ P. Let k ∶= lim supn→∞ σ(n) and let z0 <

z1 < . . . be an increasing enumeration of all positions in σ−1(k). By choice
of k, there is some index l < ω such that σ(x) ≤ k, for all x ≥ z l . Set

a ∶= λ(0, z l) and e i ∶= λ(z l+i , z l+i+1) , for i < ω .

At position z l+i , the automaton is in a state of the form

⟨q, . . . , ⟨a, e0 , ck⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k-th component

, . . . ⟩ with µ(q) = k .

Hence, the minimal priority seen infinitely often is either 2(N − k) or
2(N−k)−1 depending on whether or not aeω0 ∈ P. As σ is a weak Ramseyan
spilt, we have e i ek = e i , for all i , k. Therefore, it follows by Lemma 4.4 that

ae
ω
0 = π(a, e0 , e1 , e2 , . . . ) = η(w) ∈ P .
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Hence,A accepts w.
(⇒) Suppose that there exists an accepting run ρ of A on w and let

2(N − k) be the minimal priority occurring infinitely often in it. Then
ρ contains infinitely many states of the form

⟨q, . . . , ⟨ak , ek , ck⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k-th component

, . . . ⟩ where ak e
ω
k ∈ P and µ(q) = k .

Let z0 < z1 < . . . be an enumeration of all positions with such a state. Since
ρ does not contain infinitely many states with priority smaller than 2(N−k),
it follows that there is some index n < ω such that σ(x) ≤ k, for all x ≥ zn .
Since σ(z i) = k, for all i, we therefore have

z i ≈σ zk , for i , k ≥ n .

Setting a ∶= λ(0, zn) and e i ∶= λ(zn+i , zn+i+1) it follows that

ρ(zn+i) = ⟨q, . . . , ⟨a, e0 , c i⟩, . . . ⟩ , for some c i ∈ S ,

and that e i ek = e i , for all i , k. Hence, Lemma 4.4 implies that

η(w) = π(a, e0 , e1 , e2 , . . . ) = aeω0 ∈ P .

The results of the previous sections are summarised in the following
theorem.We also add one further logical characterisation.

Definition 4.6. Weakmonadic second-order logicWMSO has the same syntax
asMSO, but all set quantifiers range over finite sets only. ⌟

Theorem 4.7. Let L ⊆ Σω
be a language of ω-words. The following statements

are equivalent:

(1) L is definable inMSO.

(2) L is definable inWMSO.

(3) L is recognised by a homomorphism into a finite ω-semigroup.
(4) L is recognised by a nondeterministic ω-automaton.
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III. Infinite Words

(5) L is recognised by a deterministic ω-automaton.
(6) L is recognised by a nondeterministic Büchi automaton.

Furthermore, all translations between these formalisms are effective.

Proof. The equivalences (1)⇔ (3)⇔ (4)⇔ (6) were already proved in
Theorems 3.7 and 4.3, respectively. (2)⇒ (1) is trivial, and (3)⇒ (5) follows
fromTheorem 4.5. Hence, it remains to prove (5)⇒ (2).
Let A = ⟨Q , Σ, δ, q0 ,Ω⟩ be a deterministic ω-automaton that recog-

nises L. We start by constructing formulae STATEq(x), for q ∈ Q , stating
that ρ(x) = q, where ρ is the unique run of A on the input word. These
formulae guess finite sets Zp , p ∈ Q , containing all positions (up to x) with
state p. We set

STATEq(x) ∶= ∃(Zp)p∈Q[ADM ∧ INIT ∧ TRANS(x) ∧ Zqx] ,

where

ADM ∶= ∀y ⋀
p≠p′

¬(Zp y ∧ Zp′ y)

states that every position is labelled by at most one state,

INIT ∶= ∃y[∀z(y ≤ z) ∧ Zq0 y]

states that the first state is q0,

TRANS(x) ∶= ∀y∀z[suc(y, z) ∧ z ≤ x

→ ⋁
p∈Q
⋁
a∈Σ
(Zp y ∧ Pa y ∧ Zδ(p,a)z)]

states that at every position a valid transition is used, and

suc(x , y) ∶= x < y ∧ ¬∃z[x < z ∧ z < y]
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4 ω-automata

states that y is the immediate successor of x.
Using these formulae STATEq(x), we can construct a formula ψ defin-

ing L as follows. Let

Hk ∶= { q ∈ Q ∣ Ω(q) ≤ k }

be the set of all states with priority at most k. We use the formula

INFq ∶= ∀x∃y[x ≤ y ∧ STATEq(y)]

stating that the run contains infinitely many occurrences of the state q, and
the formula

MINk ∶= ⋁
q∈Hk

INFq ∧ ⋀
q∈Hk−1

¬INFq

stating that the minimal priority seen infinitely often is k. Then we can set

ψ ∶= ⋁
k<n

MIN2k ,

where n is chosen such that themaximal priority ofA is smaller than 2n.

Together with the following result we obtain an alternative proof that the
monadic theory of ⟨ω, ≤⟩ is decidable.

Theorem 4.8. Given an ω-automatonA = ⟨Q , Σ, ∆, q0 ,Ω⟩, we can decide
whether L(A) = ∅.

Proof. We claim that L(A) ≠ ∅ if, and only if, there exist two finite words
u, v ∈ Σ∗ and a state p ∈ Q such that
◆ there is a run ofA on u leading from the initial state q0 to p and
◆ there is a run ofA on v leading from p to p whose minimal priority is

even.
(⇐)Clearly, if there are such words u and v, thenA has an accepting run

on uvω . Hence, L(A) ≠ ∅.
(⇒) Let w ∈ L(A) and let ρ be an accepting run ofA on w. Let d be the

minimal priority occurring infinitely often in ρ and fix a state p that occurs
infinitely often in ρ. Let k < n < ω be numbers such that
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III. Infinite Words

◆ ρ(k) = p,
◆ ρ(n) = p,
◆ no state ρ(i) with i ≥ k has a priority smaller than d,

◆ there is some k ≤ i < n such that ρ(i) has priority d.
Let u be the prefix ofw of length k and let v be the factor ofw from position k
to n − 1. These two words have the desired properties.

Exercise 4.3. Let Σ be a finite alphabet. The Cantor topology on Σω is given
by the following basis of open sets:

Ow ∶= { x ∈ Σω ∣ w is a prefix of x } , for w ∈ Σ∗ .

(a) Show that every basic open set Ow is also closed.

(b) Show that a setU ⊆ Σω is open if, and only if, there exists a setW ⊆ Σ∗
such that

U = { x ∈ Σω ∣ some w ∈W is a prefix of x } .

(c) Show that a set C ⊆ Σω is closed if, and only if, there exists a set
W ⊆ Σ∗ such that

C = { x ∈ Σω ∣ every finite prefix of x belongs toW } .

(d) Prove that Σω is a compact Hausdorff space.

(e) A setU ⊆ Σω is aΠ0
2 -set if it can be written as a countable intersection

of open sets. Prove that every language L ⊆ Σω recognised by a determ-
inistic ω-automaton is a finite boolean combination of Π0

2 -sets. ⌟

Exercise 4.4. (a) LetA0 andA1 be ω-automata. Show that there are ω-
automata recognising the languages L(A0)∩L(A1), L(A0)∪L(A1), and
Σω ∖ L(A0). (The case of the complement is a bit more involved.)
(b) LetA = ⟨Q , Σ, ∆, q0 ,Ω⟩ be an ω-automaton and let π ∶ Σ → Γ be a

function. Prove that there exists an ω-automaton recognising the language

π[L(A)] ∶= { π(w) ∣ w ∈ L(A)} .
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4 ω-automata

(c) Use (a) and (b) to prove that, given anMSO-formula φ, we can effect-
ively construct an ω-automaton recognising the language defined by φ.

(d) Show that we can decide whether a given ω-automatonA recognises
the empty language.

(e) Use (c) and (d) to give an alternative decidability proof for the monadic
theory of ⟨ω, ≤⟩. ⌟

Note+

For a good introduction to formal language theory forω-words,ω-semigroups,
and automata see [153].

The original proof of the decidability of the theory ofω is due to Büchi [35].
It combines automata-theoretic techniques with a Ramsey argument, see
also [202] for a survey. The proof we presented is due to Shelah [193]. An
exposition can be found in [203].
Ramseyan splits were introduced by Colcombet, extending results by

Simon on so-called factorisation forests. An exposition that also includes a
proof ofTheorem 1.10 can be found in [51].
TheTheorem of McNaughton (Theorem 4.5) is from [141]. A good ex-

position is [204]. Our proof is new and based on ideas by Colcombet.
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IV Parity Game+

1 Po@tional Game+

Before generalising the theory developed in the two preceding
chapters from words to trees, we need to develop a bit of combinatorial

machinery. In particular, we need a substitute for the various versions of
Ramsey’s Theorem that works for trees. One such substitute is based on the
notion of a combinatorial game, in particular, that of a parity game.
Many games like go, chess, and checkers can be modelled as a directed

graph where the vertices represent the different states, or positions, of the
game and the edges correspond to possible moves. Starting in a given initial
state such a game consists of a sequence of moves which forms a path in
the game graph. We call such a path a partial play of the game.The path is
a (complete) play if it is either infinite or if it ends in some vertex without
outgoing edges. For simplicity, we will only consider games with two players,
Player◇ and Player ◻, and we assume that the outcome of each play is either
a win for one of the two players, or a draw.

How exactly the actions of the players determine the next move depends
on the specific kind of game we are considering. The three main options
are: (i) positional games where the current position determines which player
may choose where to move next; (ii) alternating games where the players
alternate making this choice; and (iii) simultaneous games where both players
act simultaneously and the resulting move is then determined by combining
their choices in some way. In this book we only consider positional games.

Definition 1.1. A positional game is a tuple

G = ⟨V◇ ,V◻ , E ,Ω◇ ,Ω◻⟩ ,
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IV. Parity Games

where V◇ is the set of positions belonging to Player◇, V◻ are the positions
for Player ◻, V ∶= V◇ ∪ V◻ is the set of all positions, E ⊆ V × V is the
(directed) edge relation, and Ω◇ and Ω◻ are disjoint sets of infinite plays
that determine the winning condition of the game as follows. A player that
has to make a move, but cannot, loses. If this does not happen, the game
results in an infinite play and player σ wins if this play belongs to Ωσ . If the
play does not belong to either set, the result is a draw. ⌟

Thecentral problem associatedwith a positional game is which playerwins
when the game is started in a given initial position and to find a corresponding
strategy.

Definition 1.2. Let G be a game.
(a) A strategy for player σ is a function s that, given a partial play p ending

in a position v ∈ Vσ chooses one of the outgoing edges. If the value of s(p)
does not depend on all of p, but only on the final position, we say that s is
positional or memory-free.
(b) We say that a partial play p conforms to such a strategy s if, for every

proper prefix p0 of p ending in a position for Player σ the extension of p0
by the edge s(p0) is again a prefix of p.

(c) Finally, a strategy s for Player σ is winning from a position v ∈ V if he
wins every (complete) play that starts in v and conforms to s. The winning
region Wσ of Player σ is the set of all positions v ∈ V from which he has a
winning strategy. ⌟

Informally, we will say that a player wins a game if the given starting
position belongs to his winning region.These notions of course only make
sense if the game is determined.

Definition 1.3. A game G is determined if, from every initial position, either
one of the players has a winning strategy, or both players have a strategy that
guarantees at least a draw. ⌟

While most of the games one encounters ‘in the wild’ are in fact determ-
ined, we will see below that, although hard to find, there indeed exist games
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2 Reachability games

which are not. The class of games we will consider below is even more well-
behaved: they are not only determined but the corresponding strategies can
always be chosen to be positional.

Definition 1.4. A game G is positional determined if, from every initial po-
sition, either one of the players has a positional winning strategy, or both
players have a positional strategy that guarantees at least a draw. ⌟

In the terminology we have just established we can rephrase the central
problem thus as:

Given a determined game G, find the winning regions and the
corresponding winning strategies.

In the rest of this chapter we will consider this context for several classes of
positional games.

2 Reacability Game+

We start with the simplest form of a positional game.

Definition 2.1. A reachability game G = ⟨V◇ ,V◻ , E ,Ω◇ ,Ω◻⟩ is a posi-
tional game where the setsΩ◇ andΩ◻ are both empty, that is, a game where
all infinite plays are considered draws. ⌟

As an example, in the game

◻ ◇ ◻ ◇ ◻

◇ ◻ ◇ ◻ ◇

◻ ◇ ◻ ◇ ◻

(where the label ◇ denotes positions for Player ◇ and ◻ positions for
Player ◻) the shaded part constitutes the winning region for Player◇, while
the remaining ones constitute the winning region for Player ◻.
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IV. Parity Games

Thewinning regions of a reachability game are easy to compute recursively:
a player wins from some position v if either v belongs to him and at least
one outgoing edge leads to a winning position, or it belongs to his opponent
and all the outgoing edges lead to winning positions. To define this formally
we introduce the following notation. For X ⊆ V , we set

◇X ∶= { v ∈ V ∣ ⟨v ,w⟩ ∈ E for some w ∈ X } ,

◻X ∶= { v ∈ V ∣ ⟨v ,w⟩ ∈ E implies w ∈ X } .

We denote the opponent of Player σ by σ , i.e.,◇ ∶= ◻ and ◻ ∶= ◇. Then
we can define the winning region for Player σ as the least setWσ such that

Wσ = (Vσ ∩◇Wσ) ∪ (Vσ ∩ ◻Wσ) .

Hence,Wσ is the least fixed-point of the following function.

Definition 2.2. The step function associated with a game G is

Stepσ(X) ∶= (Vσ ∩◇X) ∪ (Vσ ∩ ◻X) . ⌟

It is easy to see that Stepσ(X) contains all the positions from which
Player σ can ensure that in the next step the game either reaches some
position in X or the game ends with a win for him.Thus, by iterating the
step function we obtain the set of all positions from which the player either
wins or eventually reaches a position in X. This iteration of Stepσ is call the
σ -attractor of the set X. The formal definition is as follows.

Definition 2.3. The σ -attractor of a set X is

Attrσ(X) ∶= ⋃
α
Stepασ (X) ,

where α ranges over all ordinals (actually, it is sufficient to take the union for
all α < ∣V ∣+) and Stepασ , the α-th iteration of the step function, is defined as
follows

Step0σ(X) ∶= X ,

Stepα+1σ (X) ∶= Stepσ(Step
α
σ (X)) ,

Stepδσ(X) ∶= ⋃
α<δ

Stepασ (X) , for limit ordinals δ .
⌟
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Lemma 2.4. Let G be a positional game and X ⊆ V a set of positions. Player σ
has a positional strategy s such that, every play p that starts in some position

v ∈ Attrσ(X) and that conforms to s is winning or contains some position

from X.

Proof. Let v ∈ Attrσ(X). Then v ∈ Stepασ(X), for some ordinal α. We
prove the claim by induction on α.
If α = 0, then v ∈ X and the claim is trivial. For the successor step,

suppose that α = β + 1. Then v ∈ Stepσ(Step
β
σ(X)) and Player σ has a

strategy to either win in one step, or to reach some vertex of Stepβσ(X).
In the first case we are done. In the second one, we can continue with the
strategy from the inductive hypothesis. Finally, if α is a limit ordinal, then
v ∈ Stepβσ(X), for some β < α, and the claim follows immediately from the
inductive hypothesis.

Using the notion of an attractor we can define a measure for how long
it takes from a given position to win. The rank of a position v is the least
ordinal α such that

v ∈ Stepα+1σ (∅) .

If there is no such ordinal, we set the rank to∞. In the above example the
ranks for Player◇ are

◻ ◇ ◻ ◇ ◻

◇ ◻ ◇ ◻ ◇

◻ ◇ ◻ ◇ ◻

0 1 6 7 0

∞ ∞ 5 8 1

∞ ∞ 4 3 2

Next let us take a look at complements of attractors.

Definition 2.5. We call a subsetU ⊆ V a σ -trap if Stepσ(V ∖U) ⊆ V ∖U,
that is, if the opponent can ensure that Player σ never leaves the setU once
the game has entered it. ⌟
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An easy way to find traps is by computing attractors.

Lemma 2.6. A set U is a σ -trap if, and only if, it is of the form

U = V ∖Attrσ(X) , for some X .

Proof. (⇐) is obvious since Stepσ(Attrσ(X)) ⊆ Attrσ(X). For (⇒), note
that Stepσ(V ∖U) ⊆ V ∖U impliesU = V ∖Attrσ(V ∖U).

Lemma 2.7. For every σ -trap U, Player σ has a positional strategy s ensuring

that, starting from any vertex v ∈ U, the game never leaves U.

Proof. Setting A ∶= V ∖U, we know that A = Attrσ(X), for some set X.
Hence,

Vσ ∖A = Vσ ∖ Stepσ(A) = Vσ ∖◇A

and Vσ ∖A = Vσ ∖ Stepσ(A) = Vσ ∖ ◻A .

In particular, (i) no vertex v ∈ Vσ ∩ U has an outgoing edge leading to a
vertex in A and (ii) every vertex v ∈ Vσ ∩U has at least one outgoing edge
⟨v , u⟩ ∈ E with u ∈ U. Consequently, if the game starts in some vertex v ∈ U
Player σ can never move intoA, while Player σ always has the option to stay
inU.

Theorem 2.8. Every reachability game is positionally determined with winning

regions Wσ ∶= Attrσ(∅).

Proof. Given σ , let s be the strategy for Player σ from Lemma 2.4 forWσ =
Attrσ(∅), and let t be the strategy from Lemma 2.7 for V ∖Wσ . As no play
can ever reach a position in ∅, it follows that s is winning for Player σ from
every position v ∈Wσ . While, t ensures that Player σ does not lose when
starting from a position in V ∖Wσ . This implies thatWσ is the winning
region for Player σ and that, forV∖(W◇∪W◻), each player has a positional
strategy ensuring that he does not lose.

Having shown that winning regions exist, we next take a look at how to
efficiently compute them.
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functionWin(v , σ) // Does Player σ win from position v ?

if v ∈ Vσ then
if there is an edge v → u withWin(u, σ) then

return true
else
return false

if v ∈ Vσ then
if for every edge v → u we haveWin(u, σ) then

return true
else
return false

end

Figure 1: Quadratic time algorithm

Theorem 2.9. Thewinning regions of a finite reachability game can be computed

in linear time.

Before presenting the linear time algorithm we start with a simpler, non-
linear version which is depicted in Figure 1 and which is just a direct trans-
lation of the definition of an attractor.There are several obvious problems
with this algorithm. First of all, it might not terminate if the game graph
contains a cycle. And secondly, it is very inefficient (exponential time) as it
does not remember if it has already computed the winner of a position and
recomputes this information every time.There is a rather straightforward
fix for both of these issues: we introduce an array where we store whether
we have already visited a position and who the winner is. (Thus each entry
can have one of four values: (i) not visited yet, (ii) already visited, but we
do not know the winner yet, (iii) Player◇ wins, and (iv) Player ◻ wins.)
With this modification, the algorithm will run in quadratic time.

To improve the runtime to linear, we need to be more clever. In the al-
gorithm in Figure 2, we introduce two more arrays with auxiliary data that
helps us to avoid unnecessary work. To see that this algorithm works in
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Input: a game ⟨V◇ ,V◻ , E⟩
Output: an array containing the winner for every position

// initialise auxiliary arrays

forall v ∈ V do
win[v] ∶= � // the winner of the position
P[v] ∶= ∅ // the set of predecessors of v
n[v] ∶= 0 // the number of (not yet processed)

// successors of v
end

forall ⟨u, v⟩ ∈ E do
P[v] ∶= P[v] ∪ {u}
n[u] ∶= n[u] + 1

end

// compute the winning regions

forall v ∈ V◇ do
if n[v] = 0 then Propagate(v ,◻)

forall v ∈ V◻ do
if n[v] = 0 then Propagate(v ,◇)

return win

procedure Propagate(v , σ) =
if win[v] ≠ � then return
win[v] ∶= σ
forall u ∈ P[v] do

n[u] ∶= n[u] − 1
if u ∈ Vσ or n[u] = 0 then Propagate(u, σ)

end
end

Figure 2: Linear time algorithm
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linear time (in the number of positions plus the number of edges), note that
the body of the procedure Propagate (except for the first line) is executed
exactly once for each vertex v. Furthermore, the loop in Propagate is executed
once for each incoming edge which means that, in total, it is executed at
most as many times as there are edges in the game. Since the precomputation
steps are also linear in the number of vertices or edges, it follows that so is
the total runtime of the algorithm.

It remains to show that the algorithm really computes the winning regions
W◇ andW◻. To see this it is sufficient to note that, every time the procedure
Propagate(v , σ) is called and we still havewin[v] = �, then the vertex v really
belongs to the winning region for Player σ . This is clear for the two calls of
Propagate in the main part of the algorithm, where only vertices v without
successors are considered. For the recursive call inside the body of Propagate
we need to distinguish two cases. If u ∈ Vσ and v already belongs toWσ then
Player σ can take the edge from u to v to win. Hence, u ∈Wσ . Otherwise,
we have u ∈ Vσ and n[u] = 0, which means that we already know for all
successors w0 , . . . ,wn of u to which region they belong. If there is some
w i ∈Wσ then we have already called Propagate(u, σ) when processing w i
and win[u] is already set. Otherwise, all successors belong to Wσ , which
means that u belongs to it as well.

Horn Formulae

As an application of reachability games let us take a look at the satisfiability
problem for propositional Horn formulae. Such a formula is an implication
of the form

A1 ∧ ⋅ ⋅ ⋅ ∧An → B ,

where we allow both the left-hand side and the right-hand side to be empty,
i.e., we allow implications of the form 1→ B and A1 ∧ ⋅ ⋅ ⋅ ∧An → 0.We are
interested in deciding in whether a given set of such formulae is satisfiable.
Note that such a set is always satisfiable if there are no implications where
the right-hand side is 0. We call such implications purely negative. It is not
difficult to prove that every set of Horn formulae with no purely negative
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implications has a minimal model, that is, there exists a unique variable
assignment that satisfies all the formulae and that only assigns 1 to those
variables that are true in every satisfying variable assignment. We will use
games to show that this minimal model can be computed in linear time.
Then we can check for satisfiability of a given set Φ of Horn formulae by

(1) removing all the purely negative implications from Φ,

(2) computing the minimal model, and

(3) checking that every of the removed implications is true in this model.

As an example, let us consider the following set of Horn formulae.

1→ A A∧ C ∧ F → D E → G

A∧ D → B B ∧ E ∧G → D 1→ E

F → C G → D

Theminimal model assigns the value 1 toA, B, D, E, andG, and the value 0
to C and F.

The game corresponding to a set Φ ofHorn formulae looks as follows.The
positions for Player◇ are of the form ⟨A⟩, where A is a variable appearing
in Φ, the positions for Player ◻ are of the form [φ] with φ ∈ Φ. For each
formula A0 ∧ ⋅ ⋅ ⋅ ∧An−1 → B ∈ Φ, we have edges

⟨B⟩ Ð→ [A0 ∧ ⋅ ⋅ ⋅ ∧An−1 → B]

and [A0 ∧ ⋅ ⋅ ⋅ ∧An−1 → B] Ð→ ⟨A i⟩ , for i < n .

Intuitively, in the resulting game Player◇ tries to prove that a variable A
must have value 1 by choosing an implication B0∧⋅ ⋅ ⋅∧Bn−1 → A that forces
it to be true, while Player ◻ tries to prove that such an implication is not
applicable by finding some condition B i that is not met. With this intuition
it is straightforward to show that our game has the desired properties.

Lemma 2.10. Let Φ be a set of Horn formulae that does not contain any purely

negative implications. A position of the form ⟨A⟩ belongs to the winning region
of Player◇ if, and only if, the variable A is true in the minimal model of Φ.
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The game corresponding to the above set of formulae is the following one,
whose winning regions we have already computed above.

[1→ A] ⟨A⟩ [A∧ B → D] ⟨B⟩ [1→ E]

⟨C⟩ [A∧ C ∧ F → D] ⟨D⟩ [B ∧ E ∧G → D] ⟨E⟩

[F → C] ⟨F⟩ [G → D] ⟨G⟩ [E → G]

Modal Logi$

As a second application let us take a look at the model-checking problem
for propositional modal logic. Recall that (propositional) modal logic is the
extension of propositional logic by two modal operators◇φ and ◻φ. For-
mulae of this logic are evaluated over transition systems S = ⟨S , E , P̄⟩, i.e.,
directed graphs expanded by additional unary predicates P̄. The satisfaction
relation for modal logic takes the form S, s ⊧ φ, where S is a transition
system, s ∈ S a state, and φ a formula. It is defined is by induction on φ as
follows.

S, s ⊧ P : iff s ∈ PS ,

S, s ⊧ ◇φ : iff there is an edge s → t with S, t ⊧ φ ,

S, s ⊧ ◻φ : iff S, t ⊧ φ , for every edge s → t ,

and the definition for boolean operations is the usual one.
Given a transition system S and a formula φ, we can construct a game

that is won by Player◇ if, and only if, S, s ⊧ φ.

Definition 2.11. Let S = ⟨S , E , P̄⟩ be a transition system with starting state
s ∈ S and let φ be a modal formula in negation normal form. The model-
checking game G(S, φ) is defined as follows.The positions are of the form
⟨t,ψ⟩ where t is a state of S and ψ is a subformula of φ. Intuitively, in such a
position Player◇ tries to prove that S, t ⊧ ψ, while Player ◻ tries to show
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S s

t

u

P

Q

φ ∶= ◇(P ∨ Q) ∧◇¬P

[s, φ]

⟨s,◇(P ∨ Q)⟩ ⟨s,◇¬P⟩

⟨t, P ∨ Q⟩ ⟨u, P ∨ Q⟩ ⟨t,¬P⟩ [u,¬P]

[t, P] ⟨t,Q⟩ ⟨u, P⟩ [u,Q]

Figure 3: Model-checking game for modal logic

that S, t ⊭ ψ. The moves are as follows.

⟨t,ψ0 ∨ ψ1⟩ → ⟨t,ψ i⟩ , for i = 0, 1 ,

⟨t,ψ0 ∧ ψ1⟩ → ⟨t,ψ i⟩ , for i = 0, 1 ,

⟨t,◇ϑ⟩ → ⟨u, ϑ⟩ , if t → u is an edge of S ,

⟨t,◻ϑ⟩ → ⟨u, ϑ⟩ , if t → u is an edge of S .

Finally, positions of the form ⟨t,ψ0 ∨ ψ1⟩ and ⟨t,◇ϑ⟩ belong to Player◇ ;
those of the form ⟨t,ψ0 ∧ψ1⟩ and ⟨t,◻ϑ⟩ belong to Player◻ ; and a position
of the form ⟨t, P⟩ belongs to Player ◇ if t ∉ P ; otherwise, it belongs to
Player ◻. Similarly, a position of the form ⟨t,¬P⟩ belongs to Player ◇ if
t ∈ P. ⌟

Example. For the transition system S and the formula φ on the left of
Figure 3, the resulting game (or at least its reachable part) is depicted on the
right. ⌟

It is straightforward to check by induction on φ that the game G(S, φ)
has the desired properties.

Theorem 2.12. In the game G(S, φ), Player◇ has a winning strategy from a

position ⟨t,ψ⟩ if, and only if, S, t ⊧ ψ.
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3 Gale-Stewart games

3 Gale-Stewart Game+

Reachability games are very simple since we can ignore infinite plays. Let
us now take a look at what happens for games where every infinite play is
winning for one player or the other. We start by games played on a tree
(which is not really a restriction since every game can be unravelled to one of
this form).

Definition 3.1. AGale-Stewart game is a game G = ⟨V◇ ,V◻ , E ,Ω◇ ,Ω◻⟩
where the set of positions is of the form V = A

∗, for some set A. Every
position v ∈ V has outgoing edges to all vertices of the form va with a ∈ A.
The players strictly alternate, that is, positions v ∈ (A2)∗ of even length
belong to Player◇ and those v ∈ A(A2)∗ of odd length to Player ◻. Finally,
we assume that there are no draws, that is, that Ω◇ ∪Ω◻ = A

ω . We denote
such a game by the pair ⟨A∗ ,Ω◇⟩. ⌟

Proposition 3.2. There exist Gale-Stewart games that are not determined.

Proof. We play on the complete binary tree with vertices V ∶= {0, 1}∗. As
the game graph is acyclic, every strategy is automatically positional. Thus,
a strategy for Player σ is a function Vσ → {0, 1} where Vσ is either the
set of all v ∈ {0, 1}∗ of even length, or the set of all v of odd length.There
are κ ∶= 2ℵ0 such functions. We fix enumerations (sα)α<κ and (tα)α<κ of
all strategies for, respectively, Player◇ and Player ◻. To construct a non-
determined game we have to find two disjoint sets Ω◇ ,Ω◻ ⊆ {0, 1}ω of
infinite paths such that none of the sα and tα are winning strategies in the
game with winning condition Ω◇ ,Ω◻.
We start with a bit of notation. Given a strategy s, we denote by [s] the

set of all infinite plays p ∈ Aω that conform to s. With this notation we can
say that a strategy s for Player σ is a winning if, and only if, [s] ⊆ Ωσ .
By induction on i < κ, we construct two sequences (ξ i)i<κ and (ζ i)i<κ

of elements ofAω as follows. Suppose that we have already defined ξ i and ζ i ,
for all i < α. Then we pick some element ξα ∈ [sα] that is different from
ξ i and ζ i , for all i < α, and we pick some element ζα ∈ [tα] that is different
from ξ i and ζ i , for all i ≤ α, and also from the ξα we have just chosen. Note
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IV. Parity Games

that we can do so since [sα] has size κ, while the set

{ ξ i ∣ i < α } ∪ { ζ i ∣ i < α }

has size ∣α∣ < κ. The same holds for [tα].
We claim that the game with winning conditions

Ω◇ ∶= { ζ i ∣ i < κ } and Ω◻ ∶= A
ω ∖Ω◇

is not determined. For the proof, consider a strategy s for Player◇. Then
s = sα , for some α < κ. Since ξα ∈ [sα] ∩ Ω◻, we have [s] ⊈ Ω◇. Hence,
s is not a winning strategy. In the same way it follows that no strategy t for
Player ◻ is winning.

As Gale-Stewart games can be non-determined in general, we have to
put restrictions on the allowed winning conditions to get positive results.
One handy way to do so is by equipping the set of all infinite plays with a
topology. We call a set O of infinite plays open if there exists a set P of finite
partial plays such that contains all infinite plays starting with some p ∈ P.
The complement of an open set is called closed.Note that the open sets are
closed under arbitrary unions and finite intersections. Hence, they form a
topology. A set is Borel if it is contained in the smallest class of sets that
contains the open ones and that is closed under complement and countable
unions.

Theorem 3.3 (Martin). If Ω ⊆ Aω
is Borel, then ⟨A∗ ,Ω⟩ is determined.

Theproof is a bit involved. Instead of proving the result in its full generality,
we will only consider the much simpler case of open and closed winning
conditions, i.e., whereΩ◇ is open andΩ◻ closed, or vice versa. By symmetry,
we may assume that the winning condition for Player◇ is open.ThenΩ◇ is
determined by some set P ⊆ A

∗ of prefixes and every play containing a
position from P is winning. Thus, open winning condition corresponds to a
reachability game: Player◇ has to reach a position in P. As we have seen
in Section 2, the winning region for Player ◇ in such a game is given by
Attr◇(P). The complement of Attr◇(P) is a◇-trap. Since every infinite

158
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play inside this complement cannot contain positions from P, all such plays
arewinning for Player◻. Consequently, the game is determinedwithwinning
regions

Attr◇(P) and A
∗ ∖Attr◇(P) .

4 Regular Game+ and Parity Game+

In general, Gale-Stewart games have no finite representation as the winning
set Ω can be an arbitrary set of infinite sequences. In this section we take a
look at a simple way to represent certain Gale-Stewart games in a finite way:
if the winning setΩ is a regular set of infinite plays, we can use an automaton
to represent it. Or we can use ω-semigroups instead of automata. This leads
to the following definition.

Definition 4.1. A regular game over an ω-semigroup S = ⟨S , Sω⟩ is a game

G = ⟨V◇ ,V◻ , E , λ,Ω⟩

where λ ∶ E → S is an edge-labelling and the winning set is given by a subset
Ω ⊆ Sω . Player◇ wins an infinite play p if the product of the corresponding
edge labels evaluates to an element of Ω. ⌟

Example. Consider the ω-semigroup S = ⟨S , Sω⟩ where S = ℘{0, 1} and
Sω = ℘{0, 1}. We define the product by

a ⋅ b ∶= a ∪ b , for a, b ∈ S ,

a ⋅ u ∶= u , for a ∈ S and u ∈ Sω ,

π(a0 , a1 , . . . ) ∶= ⋂
i<ω
⋃

i≤k<ω
a i , for a0 , a1 , . . . ∈ S .

In the game

{0} {1}
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IV. Parity Games

withwinning setΩ = {{0, 1}}Player◇has awinning strategy by alternating
between the two edges. But note that he does not have a positional winning
strategy as using only one of the edges will result in a loss. ⌟

Computing the winning regions of a regular game is more complicated
than for open games. The difference is that, instead of reaching a certain set
once, we have to be able to reach it over and over again. To simplify our task,
let us start by considering a special case of regular games of the following
form.

Definition 4.2. A parity game is a game of the form

G = ⟨V◇ ,V◻ , E ,Ω⟩

where Ω ∶ V → D for some finite set D ⊆ ω. We call Ω the priority
function and Ω(v) the priority of the position v. Player◇ wins an infinite
play p = (v i)i<ω if it satisfies the parity condition:

lim inf
i<ω

Ω(v i) is even. ⌟

Example. In the following parity game Player◇ wins from every position
except for the one in the lower right. (The numbers denote the priorities.)

3

2

5

2

1

2

0

3

2

3 ⌟

As we will show below, parity games are simpler than general regular
games. In particular, they are positionally determined. In fact, a regular game
is positionally determined if, and only if, it is a parity game. Let us start our
investigation of parity games by noting that they are regular. We can turn
the set D of priorities into an ω-semigroup D = ⟨D,Dω⟩ with two infinite
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4 Regular games and parity games

elements Dω ∶= {0, 1} and the product

k ⋅ l ∶= min{k, l} , for k, l ∈ D ,

k ⋅ b ∶= b , for k ∈ D and b ∈ Dω ,

π(k0 , k1 , . . . ) ∶= (lim inf
i<ω

k i) mod 2 , for k0 , k1 , . . . , ∈ D .

Then a parity game G can be turned into a regular game by labelling every
edge ⟨u, v⟩ by Ω(v). In the above example we get:

2 3 2

2

2

3 1

5
5

2

2

0

3

2

2
30

0

2

3

Po@tional Determina$y

For the proof that parity games are positionally determined, we introduce
some terminology.

Definition 4.3. (a) We say that a strategy s for Player σ is winning on some
set U ⊆ V if every play p that conforms to s and starts at a vertex in U is
winning for σ and p never leaves the setU.

(b) We call a subsetU ⊆ V a σ -domain if it is a σ-trap and Player σ has a
positional strategy that is winning onU. ⌟

Lemma 4.4. The union of a set of σ -domains is again a σ -domain.

Proof. LetW = ⋃i∈I U i , where eachU i is a σ-domain.We start by proving
thatW is a σ-trap. Let v ∈W . Then v ∈ U i , for some i ∈ I. We distinguish
two cases. If v ∈ Vσ it follows that there is an edge ⟨v , u⟩ with u ∈ U i ⊆W.
If v ∈ Vσ then every edge ⟨v , u⟩ leads to a vertex u ∈ U i ⊆W. This implies
thatW is a σ-trap.
It remains to construct a positional strategy s for Player σ on W. By

assumption, there are positional strategies t i that are winning onU i . Fix a

161



IV. Parity Games

well-order ≤ on I and define

s(v) ∶= t i(v) , for the least i ∈ I with v ∈ U i .

We claim that every play p starting at a vertex inW and conforming to s
is winning for Player σ and that p never leavesW . The second part is clear
since the opponent cannot leaveW and the choices of Player σ satisfy

s(v) = t i(v) ∈ U i ⊆W , for every vertex v ∈ Vσ ∩W .

For the first part of the above claim, note that, if p contains a vertex ofU i
then the rest of p will be contained in ⋃ j≤i U j . As I was well-ordered, it
follows that there is some index i ∈ I such that, after finitely many steps,
p will remain inU i and the corresponding suffix q of p will conform to t i .
Since t i is winning, it follows that q satisfies the parity condition. Hence, so
does p.

Theorem 4.5. Parity games are positionally determined.

Proof. Let G = ⟨V◇ ,V◻ , E ,Ω⟩ be a parity game. We prove the claim by
induction on the number of priorities used. Let k be be the minimal priority
ofG and σ the player it belongs to. LetWσ be the union of all σ-domains. By
Lemma 4.4,Wσ is also a σ-domain. In particular, Player σ has a positional
strategy that is winning from every vertex inWσ . It is therefore sufficient to
prove thatWσ ∶= V ∖Wσ is a σ-domain.
Since Attrσ(Wσ) is a σ-domain, it follows by definition of Wσ that

Attrσ(Wσ) =Wσ . Consequently, Lemma 2.6 implies that the complement
Wσ = V ∖Attrσ(Wσ) is a σ-trap. For a set X ⊆ V , we denote by G[X] the
subgame of G consisting of all positions in X. Define

K ∶=Wσ ∩Ω−1(k) and U ∶=Wσ ∖Attrσ(K/Wσ) ,

where Attrσ(K/Wσ) is the σ-attractor ofK computed in G[Wσ]. Since no
position inU uses the priority k, we can apply the inductive hypothesis to the
game G[U] and obtain a partitionU = Uσ ⊍Uσ ofU into a σ-domainUσ
and a σ-domainUσ .
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3

2

5

2

1

2

0

3

2

3

K

W◻U = U◇

We will show next thatWσ ∪Uσ is a σ-domain. By definition ofWσ , it
then follows thatUσ = ∅. To see thatWσ ∪Uσ is a σ-trap, we distinguish
four cases.

(i) Let v ∈ Vσ ∩Wσ . AsWσ is a σ-domain, we can find a successor u of v
that belongs toWσ ⊆Wσ ∪Uσ .

(ii) Let v ∈ Vσ ∩Wσ . AsWσ is a σ-domain, every successor u of v belongs
toWσ ⊆Wσ ∪Uσ .
(iii) Let v ∈ Vσ ∩ Uσ . As Uσ is a σ-domain in G[U], we can find a

successor u of v that belongs toUσ ⊆Wσ ∪Uσ .
(iv) Let v ∈ Vσ ∩Uσ . AsUσ is a σ-domain in G[U], every successor u

of v either belongs toUσ or to V ∖U. SinceU is a σ-trap in the subgame
G[Wσ], the latter is only possible if u ∉Wσ , i.e., u ∈Wσ . Consequently, all
successors belong toWσ ∪Uσ .
It remains to find a positional strategy for Player σ on Wσ ∪ Uσ . As

Wσ andUσ are σ-domains in, respectively,G andG[U], there are positional
strategies tW and tU for Player σ on these to sets. We define a strategy s by

s(v) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

tU(v) if v ∈ U ,
tW(v) otherwise .

To show that s is winning, consider a play p conforming to s and starting
in some position inWσ ∪Uσ . If p entersWσ , it never leaves this set. Con-
sequently, the rest of p conforms to tW and is therefore winning. Otherwise,
the play stays the whole time in Uσ and conforms to tU . Thus, it is also
winning.
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We have shown that U = Uσ which, by inductive hypothesis, is a σ-
domain in G[U]. Let t be the corresponding strategy. To conclude the
proof it is sufficient to show thatWσ = V ∖Wσ is a σ-domain in G. We
have already seen above that it is a σ-trap. Hence, it remains to construct a
positional strategy for Player σ onWσ . Note thatWσ = Uσ∪Attrσ(K/Wσ).
For positions v ∈ U, we use the strategy t for G[U]. For positions v ∈ K,
we choose an arbitrary successor in Wσ . For the remaining positions, we
use the attractor strategy that ensures that we visit K. Let s be the resulting
strategy. To show that it is winning, consider a play p conforming to s and
starting in some position inWσ . If p enters Uσ it will stay in this set and
the remainder of the play conforms to t. Hence, p is winning. Otherwise,
p is entirely contained in Attrσ(K/Wσ). This implies that p either ends in
a terminal vertex belonging to Player σ , or it visits the set K infinitely often.
In both cases Player σ wins.

Finite-Memory Strategie+

One can show that all regular games are Borel. Hence, determinacy follows
from theTheorem ofMartin. But we can prove a stronger statement: regular
games admit what is called finite-memory strategies.

Definition 4.6. A finite-memory strategy for Player σ is given by a finite setM
(thememory) and two functions s ∶ M ×Vσ → E and α ∶ M × E →M such
that, given a state m ∈M and a vertex v ∈ Vσ , s(m, v) returns the outgoing
edge e to be chosen by Player σ after which α(m, e)will be the newmemory
state. (If there is no outgoing edge, we let s remain undefined.) Formally, we
say that a play p = (e i)i (which, for regular games where the edge labelling
matters, we consider as a sequence of edges) conforms to such a strategy if
there exists a sequence (m i)i of memory states such that, for every step i,
◆ if e i = ⟨v i , v i+1⟩ with v i ∈ Vσ , then e i = s(m i , v i), and
◆ m i+1 ∶= α(m i , e i). ⌟

Example. In the game

{0} {1}
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from above, Player ◇ has a finite-memory strategy with M = {0, 1}. If
m = 0, he takes the left edge and sets the memory state to 1. Otherwise,
he takes the right edge and sets the state to 0.This results in alternatingly
taking the two edges, which is winning for him. ⌟

We can reformulate the definition of a finite-memory strategy as follows.
For a regular game G = ⟨V◇ ,V◻ , E , λ,Ω⟩ and a function α ∶ M × E →M,
we define the product game

G ×α M ∶= ⟨V ′
◇ ,V

′
◻ , E

′ , λ′ ,Ω′⟩

with positions

V
′
◇ ∶= V◇ ×M and V

′
◻ ∶= V◻ ×M ,

edge relations

E
′ ∶= { ⟨⟨u,m⟩, ⟨v , n⟩⟩ ∣ ⟨u, v⟩ ∈ E and n = α(u, ⟨u, v⟩) } ,

edge labelling λ′(⟨u,m⟩, ⟨v , n⟩⟩) ∶= λ(⟨u, v⟩), and the same winning con-
dition Ω′ ∶= Ω. Then a strategy is finite-memory for G if, and only if, there
exists a finite setM and a function α ∶ M×E →M such that s is a positional
strategy in the game G ×α M.

Example. In the above example, the product G ×α M is the game

0 1
{0}

{1}

which clearly has a positional winning strategy. ⌟

Remark. Note that this operation of equipping a game with memory does
not change the gamemuch.There exist one-to-one correspondences between

◆ plays of G and of G ×α M ;

◆ strategies of G and of G ×α M ;
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◆ winning strategies of G and of G ×α M.

The only difference between these two games is the amount of memory a
strategy needs. In particular, some positional strategies of G ×α M might
correspond to strategies of G which are not positional. ⌟

This is exactly what we need to prove the following result.

Theorem 4.7 (Büchi, Landweber). In every regular game both players have a
finite-memory winning strategy on their respective winning regions.

Proof. Let G = ⟨V◇ ,V◻ , E , λ,Ω⟩ be a regular game. We fix a deterministic
parity automaton A = ⟨Q , S , δ, q0 ,Ω⟩ recognising the set Ω of winning
plays and construct the product game G ×δ Q . In this game a play p is
winning for Player◇ if, and only if, its projection to the second component
produces an accepting run ofA. Consequently, we can turn G ×δ Q into a
parity game by using as priority function the function Ω fromA applied to
the second component. Since parity games are positionally determined, we
obtain two positional winning strategies s◇ and s◻ for the two players in
their respective winning regions. As we have seen in the remark before the
theorem, these two strategies induce finite-memory strategies in the original
game.

Po@tiona\y Determined Game+

We have seen that parity games admit positional strategies while arbitrary
regular games in general only admit finite-memory ones. One might wonder
whether there exists a larger class of games with positional strategies. It
turns out that this is not the case. We will prove below that (nearly) every
regular, positionally determined game is equivalent to a parity game – with
one notable caveat: we will only be able to establish this statement for games
with a winning condition of the following form.

Definition 4.8. A winning condition Ω ⊆ Sω is called prefix-invariant if

w ∈ Ω⇔ aw ∈ Ω , for all a ∈ S and w ∈ Sω . ⌟
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Note that this is not much of a restriction since most of the common
winning conditions used in game theory or automata theory are of this form.
To analyse such conditions we start with an observation from semigroup
theory. We have seen in Lemma III.3.4 that, in a finite ω-semigroup S, every
infinite product a0a1a2⋯ has a factorisation of the form be

ω . If Ω is prefix-
invariant, we have beω ∈ Ω ⇔ e

ω ∈ Ω. Thus, the set Ω is completely
determined by the powers eω it contains.

Definition 4.9. Let G = ⟨V◇ ,V◻ , E , λ,Ω⟩ be a regular game over an ω-
semigroup S.

(a) We write Ω◇ ∶= Ω and Ω◻ ∶= Sω ∖Ω.
(b)The winning condition of G is the pair ⟨S,Ω⟩.
(c) We call the set

Pσ ∶= { e ∈ S ∣ e
ω ∈ Ωσ }

the period set for Player σ .
(d) Finally, let us say that ⟨S,Ω⟩ is equivalent to a parity condition if there

exists a function Ω ∶ S → ω such that

π(a0 , a1 , . . . ) ∈ Ω iff lim inf
i

Ω(a i) is even. ⌟

If ⟨S,Ω⟩ is equivalent to a parity condition, we can turn every game G
with winning condition ⟨S,Ω⟩ into a parity game as follows.We first replace
all edge labels by their image under Ω. In this way we obtain a kind of parity
game where the priorities are attached to the edges instead of the vertices.
We can turn the resulting game into an ordinary parity game by adding
intermediate vertices to the edges where we can put the priorities.

Theorem 4.10 (Colcombet, Niwiński). Let S be an ω-semigroup (not neces-
sarily finite) and Ω ⊆ Sω prefix-invariant. If all games with winning condition

⟨S,Ω⟩ are positionally determined, then ⟨S,Ω⟩ is equivalent to a parity condi-
tion.

We split the proof of this theorem into two lemmas.The first one collects
some basic properties of the period sets.
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Lemma 4.11. Let S be an ω-semigroup and Ω ⊆ Sω prefix-invariant. If all

games with winning condition ⟨S,Ω⟩ are positionally determined, then the

following condition holds:

(a) a, b ∈ Pσ implies ab ∈ Pσ .

(b) ab ∈ Pσ implies ba ∈ Pσ .

(c) Every element w ∈ Sω that can be written as an infinite product of elements

of Pσ belongs to Ωσ .

(d) For all A, B ⊆ S,

(∃a ∈ A)(∀b ∈ B)[ab ∈ Pσ] ⇔ (∀b ∈ B)(∃a ∈ A)[ab ∈ Pσ] .

(e) For every a ∈ S, there exists some n > 0 such that

ab0 , . . . , abk ∈ Pσ ⇒ a
n
b0⋯bk ∈ Pσ , for all b0 , . . . , bk ∈ S .

(f ) For a ∈ Pσ and B ⊆ S,

aB ⊆ Pσ implies aB
∗ ⊆ Pσ .

Proof. (c) Suppose that w = π(a0 , a1 , . . . ) ∉ Ωσ . We have to show that
there is some index k with a

ω
k ∉ Ωσ . Consider the game G with a single

position v belonging to Player σ and one a i-labelled edge v → v, for every
i < ω.

v

a0

a1 a2

. .
.

Sincew ∉ Ωσ , Player σ has a winning strategy inG by choosing in turn i the
edge with label a i . By assumption, he also has a positional winning strategy s.
Let ak be the label of the edge chosen by s. As the resulting play is winning,
it follows that aωk ∉ Ωσ . Hence, ak ∉ Pσ .
(a) If a, b ∈ Pσ , then (ab)ω ∈ Ωσ by (c).
(b) Let ab ∈ Pσ .Then a(ba)ω = (ab)ω ∈ Ωσ implies, by prefix-invariance,

that (ba)ω ∈ Ωσ .
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(d) (⇒) is trivial. For (⇐), consider the gameGwith positionsVσ = {u}
and Vσ = {v}. For every a ∈ A, we add an a-labelled edge u → v, and for
every b ∈ B, a b-labelled edge v → u.

u v

a, a′ , . . .

b, b′ , . . .

Then Player σ can win this game by playing as follows. Every time Player σ
chooses a b-labelled edge, Player σ responds with an a-labelled edge for some
ab ∈ P. By assumption, Player σ also has a positional winning strategy s.
Let a be the label of the edge chosen by s. For every b ∈ B, there exists a play
with labelling (ab)ω conforming to s. Since these plays must be winning, it
follows that (ab)ω ∈ Ωσ , i.e., ab ∈ Pσ , for all b.
(e) Fix a ∈ S and set B0 ∶= { b ∈ S ∣ ab ∈ Pσ }. Applying (d) to the sets

A ∶= { an ∣ n > 0} and B ∶= { b0⋯bk ∣ b0 , . . . , bk ∈ B0 } ,

we see that it is sufficient to prove that

a
k+1

b0⋯bk ∈ Pσ , for b0 , . . . , bk ∈ B0 .

We do so by induction on k. If k = 0, then b0 ∈ B0 implies that a1b0 ∈ Pσ .
Hence, suppose that k > 0. By inductive hypothesis and the fact that bk ∈
B0, we have akb0⋯bk−1 ∈ Pσ and abk ∈ Pσ . Hence, (abk)ω ∈ Ωσ . Since
a(bka)

ω = (abk)
ω ∈ Ωσ , prefix-invariance implies that (bka)ω ∈ Ωσ , i.e.,

bka ∈ Pσ . Consequently, it follows by (c) that (akb0⋯bk−1bka)
ω ∈ Ωσ and

we can again use prefix-invariance to show that

(ak+1b0⋯bk)
ω = a(akb0⋯bk−1bka)

ω ∈ Ωσ .

Thus, ak+1b0⋯bk ∈ Pσ .
(f ) Fix a ∈ Pσ and B ⊆ S with aB ⊆ Pσ . By (e) the set

N ∶= { n ≥ 1 ∣ anB+ ⊆ Ω◇ }
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IV. Parity Games

is non-empty.Note that, if n ∈ N then anu ∈ Pσ , for all u ∈ B+. By (a) this im-
plies that aanu ∈ Pσ . Consequently, n+1 ∈ N.Thus,N = {k, k+1, k+2, . . . }
for some k < ω.
We claim that k = 1. Then aB

+ ⊆ Pσ . Since also a ∈ Pσ , it follows
that aB∗ ⊆ Pσ , as desired. Hence, it remains to prove the claim. For a
contradiction, suppose that k > 1 and set m ∶= k − 1. Then m ∉ N, but
2m ∈ N. Hence, there is some u ∈ B+ with a

m
u ∈ Pσ . By (a) and (b), it

follows that uam ∈ Pσ , amuuam ∈ Pσ , and a
2m

uu ∈ Pσ . Hence, 2m ∉ N.
A contradiction.

The second lemma now concludes the proof ofTheorem 4.10.

Lemma 4.12. Let S be an ω-semigroup and Ω ⊆ Sω a prefix-invariant set

such that all games with winning condition ⟨S,Ω⟩ are positionally determined.
There exists a function Ω ∶ S → [2m + 1], for some m < ω, such that
(1) Ω maps P◇ to even numbers and P◻ to odd ones,

(2) Ω(a) ≤ Ω(b) implies Ω(ab) ≡ Ω(a) (mod 2) .

(3) π(a0 , a1 , . . . ) ∈ Ω◇ iff lim inf i Ω(a i) is even.

Proof. Consider the relation ⊑ ⊆ P◻ × P◻ defined by

a ⊑ b : iff ac ∈ P◻ ⇒ bc ∈ P◻ , for all c ∈ S .

We start by proving that it is a linear preorder of finite index.
Reflexivity and transitivity of ⊑ follow immediately from the definition.

For linearity, suppose that a and b are non-comparable. Then there are
elements c and d such that

ac ∈ P◻ , bc ∉ P◻ , ad ∉ P◻ , bd ∈ P◻ .

By Lemma 4.11 (a) and (b), it follows that

acbd ∈ P◻ , da ∈ P◇ , cb ∈ P◇ , dacb ∈ P◇ , acbd ∈ P◇ .

A contradiction.
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4 Regular games and parity games

It remains to prove that ⊑ has finite index. For a contradiction, suppose
otherwise. We distinguish two cases. If there exists an infinite strictly in-
creasing chain a0 ⊏ a1 ⊏ a2 ⊏ ⋯, we can fix elements c i ∈ S with a i c i ∉ P◻
and a i+1c i ∈ P◻. Then Lemma 4.11 (a) and (c) implies that c ia i+1 ∈ P◻ and

c0a1c1a2c2a3⋯ ∈ Ω◻ .

But by the same argument as above, a i c i ∈ P◇ implies that

a0c0a1c1a2c2a3⋯ ∈ Ω◇ .

A contradiction to prefix-invariance.
Similarly, if there exists an infinite strictly decreasing chain a0 ⊐ a1 ⊐

a2 ⊐ ⋯, we can fix elements c i ∈ S with a i c i ∈ P◻ and a i+1c i ∉ P◻. In the
same way as above it follows that

c0a1c1a2c2a3⋯ ∈ Ω◇ and a0c0a1c1a2c2a3⋯ ∈ Ω◻ .

Again a contradiction.
To conclude the proof, let B0 ⊐ ⋅ ⋅ ⋅ ⊐ Bm−1 be a decreasing enumeration

of all ⊑-classes and set

A i ∶= { c ∈ P◇ ∣ ac ∈ P◻ for some/all a ∈ B i } , for 0 ≤ i < m .

In addition, we set A−1 ∶= P◇ and Am ∶= ∅. Note that, by definition of ⊑,
we have P◇ = A−1 ⊇ A0 ⊇ ⋅ ⋅ ⋅ ⊇ Am−1 = Am = ∅. We claim that the
function Ω ∶ S → [2m + 1] defined by

Ω(a) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

2k if a ∈ Ak−1 ∖Ak ,
2k + 1 if a ∈ Bk ,

has the desired properties.
(1) Clearly, Ω maps each Ak ⊆ P◇ to an even number and each Bk ⊆ P◻

to an odd one.
(2) Suppose that Ω(a) ≤ Ω(b). We distinguish four cases. If both Ω(a)

and Ω(b) are even, then a, b ∈ P◇, which implies by Lemma 4.11 (a) that
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IV. Parity Games

ab ∈ P◇. Hence,Ω(ab) is also even. In the same way it follows that, ifΩ(a)
and Ω(b) are odd, then so is Ω(ab).
Suppose that Ω(a) = 2k + 1 and Ω(b) = 2i. Then k < i, a ∈ Bk and

b ∈ A i−1 ∖ A i ⊆ Ak . By definition of Ak it follows that ab ∈ P◻. Hence,
Ω(ab) is odd.
Finally, suppose that Ω(a) = 2k and Ω(b) = 2i + 1. Then k ≤ i, a ∈

Ak−1 ∖ Ak and b ∈ B i ⊆ Bk . By definition of Ak and the fact that a ∉ Ak ,
it follows that ba ∈ P◇. Hence, Lemma 4.11 (a) implies that ab ∈ P◇ and
Ω(ab) is even.
(3) Fix a0 , a1 , . . . ∈ S and set k ∶= lim inf i Ω(a i). Since Ω is prefix-

invariant, we may assume w.l.o.g. that there is no i with Ω(a i) < k. Set

B ∶= Ω−1(k) and C ∶= Ω−1[{k + 1, . . . , 2m}] .

Then we can factorise the sequence (a i)i into words u0 , u1 , . . . ∈ BC∗. Let
c i be the product of u i . If k is even, it follows by (b) that bc ∈ P◇, for all
b ∈ B and c ∈ C. Consequently, we can use Lemma 4.11 (f ) and (c) to show
that c i ∈ P◇ and π(a0 , a1 , . . . ) = π(c0 , c1 , . . . ) ∈ Ω◇. If k is odd, it follows
in the same way that π(a0 , a1 , . . . ) ∈ Ω◻.

Solving Parity Game+

To solve reachability games, we introduced the notion of a rank which,
intuitively counts how far away from the goal we are. For parity games
the situation is more complicated since we have to reach the goal not only
once but repeatedly. It is possible to define ranks also for parity games. The
difference is that, instead of a single ordinal, we have to use a tuple with
one component for each priority k that counts how far away we are from a
position of that priority. As this turns out to be a bit technical and not very
enlightening, we will not do so.

Instead, we will present an algorithm for computing the winning regions
of a parity game which is similar to the construction in the Theorem of
Büchi and Landweber. We will prove that, for every parity game G, there
exists an action α ∶ M × E → M that turns the product game G ×α M

into a reachability game. Then we can use the linear time algorithm from
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Section 2 to compute the winning regions.ThememoryM we will construct
below has size nO(log d). As we can solve reachability games in linear time,
we therefore obtain the following complexity bound.

Theorem 4.13. The winning regions of a parity game G with n positions and

d priorities can be computed in time n
O(log d)

.

The precise complexity of computing the winning regions of a parity game
are still unknown. One can show that the problem belongs to the complexity
class U ∩ co-U, which means that it is probably not NP-complete. It might
even belong to P, but no one has found a polynomial time algorithm so far.
Let us present the algorithm the above theorem is based on. Consider

a parity game G and let p be a play of G ×α M. We say that p contains an
even cycle if p = xyz where y is a non-empty path starting and ending at
the same position of G (the memory contents may differ) and such that the
least priority seen along y is even. Note that, whether or not a given play p
contains an even cycle is a reachability property: once we have found the
end of the cycle, we do not need to look at the rest of p. We will design our
memory M in such a way that detection of such cycles becomes easy. But
first, let us show that the existence of even cycles is equivalent to winning.

Lemma 4.14. Let G be a finite parity game and α ∶ M × E →M an action.

The following statements are equivalent.

(1) Player◇ has a winning strategy s in G.

(2) Player◇ has a strategy s
′
for G ×α M such that all cycles in every play

conforming to s
′
are even.

(3) Player◇ has a strategy s
′
for G ×α M such that every play conforming

to s
′
has an even cycle.

Proof. (2)⇒ (3) is trivial.
(3)⇒ (1) Suppose that Player◇ does not have awinning strategy forG. By

determinacy, it then follows that Player ◻ has a positional winning strategy s
in that game. This strategy induces a strategy s′ for Player ◻ in the game
G ×α M. Let p′ be a play conforming to s′ and let p be the corresponding
play of G. Then p conforms to s. If p′ contained an even cycle then, s being
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positional, it would follow that p contained infinite repetitions of this cycle.
In particular, the least priority seen infinitely often in p would be even and
p would be winning for Player◇. A contradiction to our choice of s.
(1)⇒ (2) Let s be a winning strategy for Player◇ in G. W.l.o.g. we may

assume that s is positional. Let s′ be the strategy inG×α M induced by s. To
show that it has the desired property, consider a play p′ conforming to s′ and
let p be the corresponding play in G. Then p conforms to s and is, therefore,
winning. Since s is positional, p consists of a path leading to a cycle which
is repeated infinitely often. Let k be the minimal priority along this cycle.
As p is winning, it follows that k is even. Hence, so is (every copy of ) the
cycle.

How can we detect an even cycle? The easiest way would be to store
all the positions of G we have already seen. Once we see one of them for
the second time, we have found a cycle. Unfortunately, storing that many
positions requires too much memory. So instead, we resort to a counting
trick.

Let G be a parity game with n positions and priorities {0, . . . , d − 1}. We
use the ω-semigroup S with domains S ∶= [d] and Sω ∶= [d] and product

k ⋅ k′ ∶= min{k, k′} , for k, k′ ∈ S ,

k ⋅ l ∶= l , for k ∈ S and l ∈ Sω ,

π(k0 , k1 , k2 , . . . ) ∶= lim inf
i<ω

k i , for k i ∈ S ,

and we label an edge u → v of G by the semigroup element Ω(u) ∈ S.
Given a finite word w = k0⋯kn−1 ∈ [d]

∗, we call a sequence z0 < ⋅ ⋅ ⋅ <
zm−1 < n an even factorisation of w if

◆ kz i is even, for all i < m,

◆ k j ≥ min{kz i , kz i+1}, for all z i ≤ j ≤ z i+1, i < m − 1,

◆ k j ≥ kz0 , for j ≤ z0,

◆ k j ≥ kzm−1 , for j ≥ zm−1.

We call m the length of the factorisation and the number mini kz i its value.
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4 Regular games and parity games

0
1
2
3
4
5

z0 z1 z2 z3 z4

Note that, if w has an even factorisation of length m and value k and w′ has
one of length m

′ and value k′, the ww′ has an even factorisation of length
m + m

′ and value min{k, k′}.
For each l < ω, we will define a deterministic automaton Al over the

alphabet [d] that computes the length and value of an even factorisation
of (some suffix of ) its input. The precise definition is as follows.The set of
statesM l consists of a special accepting state ∗ plus all triples

⟨s, k̄, n̄⟩ ∈ [l + 1] × [d]∗ × [l]∗ ,

where s ≤ l is the size of the state, k̄ is a non-decreasing sequence of priorities
of length s, and n̄ a strictly decreasing sequence of counters, also of length s. To
compute the cardinality ofM l , note that we can encode each state ⟨s, k̄, n̄⟩
as a word c0 . . . c l−1 ∈ ([d] + ◻)l where

c i ∶=

⎧⎪⎪
⎨
⎪⎪⎩

k j if n j = i ,
◻ otherwise .

⟨3, ⟨0, 3, 4⟩, ⟨5, 2, 1⟩⟩

4 3 0

Below we will choose l such that 2l−1 ≤ n < 2l . Then it follows

∣M l ∣ ≤ (d + 1)l + 1 ≤ (d + 1)log(n+1) + 1

= (n + 1)log(d+1) + 1 ∈ nO(log d) ,

which is the right size for the theorem.
Before defining the transition relation of Al , let us state the intended

behaviour of the automaton.
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Lemma 4.15. Suppose that after having read a word w ∈ [d]∗ the auto-

matonAl enters the state ⟨s, k̄, n̄⟩. Then

w = w′w0 . . .ws−1 ,

where each w i has an even factorisation of length at least 2n i
with value k i . In

particular, the word w has a suffix with an even factorisation of length at least

∑
i<s

2n i .

Before giving the proof, we have to finish the definition ofAl . The ini-
tial state is the pair ⟨0, ⟨⟩, ⟨⟩⟩ consisting of two empty sequences. In a
state ⟨s, k̄, n̄⟩ when reading the letter c, the automaton can enter the state
⟨s′ , k̄′ , n̄′⟩ if one of the following three conditions is met.

(i) s = 0 or ks−1 ≤ c,

s
′ = s , k̄

′ = k̄ , and n̄
′ = n̄ .

(ii) There is some 0 < i < s such that k i−1 < c < k i ,

s
′ = i + 1 , k̄

′ = ⟨k0 , . . . , k i−1 , c⟩ , n̄
′ = ⟨n0 , . . . , n i−1 , n i⟩ .

(iii) There is some 0 < i < s such that k i−1 ≤ c, the priorities k i , . . . , ks−1
are even, ⟨n i , . . . , ns−1⟩ = ⟨s − i − 1, s − i − 2, . . . , 1, 0⟩,

s
′ = i + 1 , k̄

′ = ⟨k0 , . . . , k i−1 , c⟩ , n̄
′ = ⟨n0 , . . . n i−1 , n i + 1⟩ .

(iv) There is some 0 < i < s such that k i−1 ≤ c, the priority k i is odd, while
k i+1 , . . . , ks−1 are even,

⟨n i , . . . , ns−1⟩ = ⟨s − i − 1, s − i − 2, . . . , 1, 0⟩ ,

s
′ = i + 1 , k̄

′ = ⟨k0 , . . . , k i−1 , c⟩ , n̄
′ = ⟨n0 , . . . , n i−1 , n i + 1⟩.

(v) s = l , each priority k i is even, c is even, and the next state is ∗.

(vi) OnceAl has reached the state ∗, it remains there.
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If there are several possible transitions, we choose the one that leads to a
state of minimal length.

Proof of Lemma 4.15. We prove the claim by induction on the length of w.
For w = ⟨⟩,Al is in the initial state ⟨0, ⟨⟩, ⟨⟩⟩ and the claim is trivial.
For the inductive step, suppose that the input is wc with w ∈ [d]∗ and

c ∈ [d], and let ⟨s, k̄, c̄⟩ be the state after reading w. By inductive hypothesis,
w has a suffix of the form w0⋯ws−1 where each w i has an even factorisation
of length at least 2n i with value k i . We distinguish several cases, depending
on which transition the automaton takes while reading the last letter c.
If the last transition is of the form (i), we can obtain the desired suffix

w
′
0 . . .w

′
s−1 of wc by setting w

′
i ∶= w i , for i < s − 1, and w′s−1 ∶= ws−1c.

If the last transition is of the form (ii), let i be the index such that k i−1 <
c < k i . We setw′j ∶= w j , for j < i, andw′i ∶= w i⋯ws−1c.Thenw′i has an even
factorisation of length at least 2n i + ⋅ ⋅ ⋅ + 2ns−1 + 1 ≥ 2n i .
If the last transition is of the form (iii) or (iv), let i be the index from

the above definition. We set w′j ∶= w j , for j < i, and w′i ∶= w i⋯wm−1c. Then
w
′
i has an even factorisation of length at least

2n i + ⋅ ⋅ ⋅ + 2ns−1 + 1 = 2s−i−1 + 2s−i−2 + ⋅ ⋅ ⋅ + 21 + 20 + 1 = 2s−i .

With the help of Lemma 4.15, we are able to show that the information
contained in the states ofAl is sufficient to detect whether the input contains
an even cycle.

Lemma 4.16. Let p be an infinite play in a parity game G with n positions,

and let w = (c i)i<ω be the sequence of priorities along p. If l > log n and

Al accepts w, then p contains an even cycle.

Proof. Let ⟨l , k̄, n̄⟩ ∈ M l be the last state in the run ofAl before it enters
the state ∗, let w′ be the prefix of w leading to this state, and let c be the
next input letter. By Lemma 4.15, the word w

′ has a suffix with an even
factorisation of length at least

2l−1 + ⋅ ⋅ ⋅ + 20 = 2l − 1 ≥ n ,
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while w′c has a suffix with an even factorisation z0 < ⋅ ⋅ ⋅ < zm−1 of length
m ≥ 2l − 1 + 1 > n. By the Pigeon Hole Principle it follows that, after
reading the additional letter c, there must be two positions z i < z j in the
factorisation that correspond to the same vertex v of G. Let p0 be the part
of p corresponding to the path between these two positions. To see that p0
is an even cycle, note that the minimal priority seen along the closed path is
the minimal value of cz i , . . . , cz j . In particular, it is even. Hence, the play is
winning.

Lemma 4.17. The automaton Al accepts every word w satisfying the parity

condition.

Proof. By induction on l we will prove that, starting from an arbitrary state
⟨s, k̄, n̄⟩ the automatonAl accepts every infinite word w that satisfies the
parity condition. Hence, fix l and a run ρ of Al on w. If ρ contains the
accepting state ∗, we are done. Hence, suppose otherwise.

If every state of size l appears only finitely often in ρ, some suffix of ρ is a
run ofAl−1. By inductive hypothesis, this suffix is accepting. Hence, so is ρ.

Consequently, we may assume that some state ⟨l , k̄′ , n̄′⟩ of size l appears
infinitely often in ρ. The way the transitions are defined it follows that,
after the first appearance of ⟨l , k̄′ , n̄′⟩ every state ⟨s, k̄′′ , n̄′′⟩ in ρ satisfies
k
′′
0 = k

′
0. Let ρ′ be the sequence of states obtained from ρ by (i) removing

the part before the first appearance of ⟨l , k̄′ , n̄′⟩ and (ii) removing the first
components of all remaining states, i.e., replacing ⟨s, k̄′′ , n̄′′⟩ by

⟨s − 1, ⟨k′′1 , . . . , k
′′
s−1⟩, ⟨n

′′
1 , . . . , n

′′
s−1⟩⟩ .

Then ρ′ is a run ofAl−1 on the corresponding suffix of w. Again it follows
by inductive hypothesis that this run is accepting. Hence, so is ρ.

Proof of Theorem 4.13. Set l ∶= ⌊log n⌋ + 1 and let α ∶ M l × E → M l be
the action induced byAl . We claim that a position v of G belongs to the
winning region of Player ◇ in G if, and only if, Player ◇ has a strategy
in the game G ×α M l from the position ⟨v , ⟨0, ⟨⟩, ⟨⟩⟩⟩ to reach some posi-
tion of the form ⟨u, ∗⟩. Since the latter game is a reachability game of size
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n×O(nlog n) = O(nlog n) and we can compute its winning regions in linear
time, the theorem follows. Hence, it remains to prove the claim.
(⇐) follows immediately by Lemma 4.16 and the implication (2)⇒ (1) in

Lemma 4.14, while (⇒) follows by Lemma 4.17 and the implication (1)⇒ (3)
in Lemma 4.14.

5 The Modal µ-Cal$ulu+

We have seen above that the model-checking game for modal logic is a
reachability game. There also exists a logic whose model-checking game
is a parity game. As with every modal logic, this logic does not talk about
arbitrary structures, but only about transition systems.

Definition 5.1. A transition system is a structure of the from

S = ⟨S , (Ea)a∈A, (Pc)c∈C⟩ ,

where the Ea are binary relations and the Pc are unary ones. ⌟

The logic we are interested in is obtained from basic modal logic by adding
a fixed-point operator.

Definition 5.2. LetA andC be two sets of labels andV a set of propositional
variables. The modal µ-calculus Lµ is the logic with formulae of the form

◆ atomic propositions Pc , for c ∈ C,

◆ variables X ∈ V ,

◆ boolean operations φ ∨ ψ, φ ∧ ψ, and ¬φ, for φ,ψ ∈ Lµ ,

◆ modal operators ⟨a⟩φ and [a]φ, for φ ∈ Lµ and a ∈ A,

◆ fixed point operators µXφ and νXφ, for a variable X ∈ V and a for-
mula φ ∈ Lµ where every occurrence of X is under an even number of
negations.

For a transition system S = ⟨S , (Ea)a∈A, (Pc)c∈C⟩, a state s ∈ S, a for-
mula φ ∈ Lµ , and a variable assignment β ∶ V → ℘(S), we define the
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IV. Parity Games

satisfaction relation S, s ⊧ φ[β] by induction on φ as follows.

S, s ⊧ Pa[β] : iff s ∈ Pa ,

S, s ⊧ X[β] : iff s ∈ β(X) ,
S, s ⊧ (φ ∨ ψ)[β] : iff S, s ⊧ φ[β] or S, s ⊧ ψ[β] ,
S, s ⊧ (φ ∧ ψ)[β] : iff S, s ⊧ φ[β] and S, s ⊧ ψ[β] ,
S, s ⊧ (¬φ)[β] : iff S, s ⊭ φ[β] ,
S, s ⊧ (⟨a⟩φ)[β] : iff there is some edge ⟨s, t⟩ ∈ Ea such

that S, t ⊧ φ[β] ,
S, s ⊧ ([a]φ)[β] : iff for every edge ⟨s, t⟩ ∈ Ea we have

S, t ⊧ φ[β] ,
S, s ⊧ (µX.φ)[β] : iff s belongs to the least fixed-point of the

operation Fφ below ,

S, s ⊧ (νX.φ)[β] : iff s belongs to the greatest fixed-point of

the operation Fφ below ,

where the function Fφ ∶ ℘(S) → ℘(S) in the last two lines is defined by

Fφ(U) ∶= { s ∈ S ∣ S, s ⊧ φ[β[X ↦ U]] } .

Here, the variable assignment β[X ↦ U] is given by

Y ↦

⎧⎪⎪
⎨
⎪⎪⎩

U if Y = X ,
β(Y) otherwise .

If ∣A∣ = 1, we usually simplify notation by writing◇φ and ◻φ without
the edge label. Furthermore, if the formula φ has no free variables, we drop
the variable assignment β from the notation and simply write S, s ⊧ φ. ⌟

Remark. Note that the requirement on X occurring only positively in φ
ensures that the function Fφ is monotone. Hence, the least and the greatest
fixed-point do exist. ⌟
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Examples. The formula

µX[P ∨◇X]

states that there exists a path from the current state to some state in P.

µX◻X

states that there is no infinite path starting at the current state.

νX[P ∧◇X]

states that there exists an infinite path from the current state where every
visited state belongs to P.

νXµY[◇Y ∨ (P ∧◇X)]

states that there is an infinite path containing infinitely many states in P. ⌟

Exercise 5.1. Show that, for every Lµ-formula φ(X̄), there exists anMSO-
formula φ∗(x , X̄) such that

S, s ⊧ φ(P̄) iff S ⊧ φ∗(s, P̄) ,

for all transition systems S, states s ∈ S, and predicates P̄. ⌟

Next let us introduce themodel-checking game for Lµ . As usual, Player◇
tries to prove that the formula holds in the given state, while Player ◻ tries
to prove that it does not.

Definition 5.3. Let S = ⟨S , (Ea)a∈A, (Pc)c∈C⟩ be a transition system and
φ an Lµ-formula in negation normal form.Themodel-checking gameG(S, φ)
is the following parity game. As positions ofGwe use the pairs ⟨s,ψ⟩ ∈ S×Φ
where Φ is the set of all subformulae of φ. The set V◇ of positions for
Player ◇ consists of all pairs ⟨s,ψ⟩ where an existential choice has to be
made to satisfy ψ, that is, where
◆ ψ = Pc is atomic and s ∉ PS

c ,
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IV. Parity Games

◆ ψ = ¬Pc and s ∈ PS
c ,

◆ ψ = ϑ ∨ ϑ′,
◆ ψ = ⟨a⟩ϑ, or
◆ ψ = µXϑ.
The other positions belong to Player ◻. The edge relation is defined as
follows.

⟨s,ψ0 ∨ ψ1⟩ → ⟨s,ψ i⟩ , for i = 0, 1 ,

⟨s,ψ0 ∧ ψ1⟩ → ⟨s,ψ i⟩ , for i = 0, 1 ,

⟨s, ⟨a⟩ψ⟩ → ⟨t,ψ⟩ , for every transition s →a
t ,

⟨s, [a]ψ⟩ → ⟨t,ψ⟩ , for every transition s →a
t ,

⟨s, µXψ⟩ → ⟨s,ψ⟩ ,
⟨s, νXψ⟩ → ⟨s,ψ⟩ ,
⟨s,X⟩ → ⟨s,ψ⟩ , where ψ is the definition of X ,

where the definition of a fixed-point variable X is the formula ψ that appears
as the body in the fixed-point formula µXψ or νXψ binding X.

Finally, the priorities are as follows. For a subformula of the form µXψ or
νXψ that occurs inside of k other fixed-point operators, we set

Ω(⟨s, µXψ⟩) ∶= 2k + 1 and Ω(⟨s, νXψ⟩) ∶= 2k .

All other other priorities are larger than those. ⌟

Remark. Note that every cycle in G(S, φ) contains a position of the form
⟨s, µXψ⟩ or ⟨s, νXψ⟩. Since the priorities of such positions are smaller than
all other priorities, these are the only positions thatmatter when determining
the winner. ⌟

Example. Given the following transition system and formula

S = s t P φ = µX(P ∨◇X)

we construct the game
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5 The modal µ-calculus

⟨s, µX(P ∨◇X)⟩

⟨t, µX(P ∨◇X)⟩

⟨s, P ∨◇X⟩

⟨t, P ∨◇X⟩

⟨s, P⟩

[t, P]

⟨s,◇X⟩

⟨t,◇X⟩

⟨s,X⟩

⟨t,X⟩

1

1

where the priorities are the numbers in the circles. (All other priorities are
larger than 1.) ⌟

Let us prove that this game has the desired properties.

Theorem 5.4. In the game G(S, φ), Player◇ has a winning strategy from a

position ⟨t, φ⟩ if, and only if, S, t ⊧ φ.

Proof. To prove the statement by induction on φ, we have to deal with
formulae φ that have free variables. Hence, suppose that φ has free variables
X0 , . . . ,Xn−1 and let P̄ be a corresponding tuple of subsets Pi ⊆ S. We
define a variant G(S, φ, P̄) of the model-checking game in the same way as
above where the variables X i are treated as propositions with value Pi . That
is, positions of the form ⟨u,X i⟩ are considered to be winning for Player◇
if, and only if, u ∈ Pi .
For this more general version of the model-checking game we can now

prove by induction on the formula φ(X̄) that Player◇ wins G(S, φ, P̄)
with starting position ⟨t, φ⟩ if, and only if, S, t ⊧ φ(P̄).

If φ is an atomic formula or a negated atomic formula, the claim follows
immediately from the definition of G(S, φ, P̄). If φ starts with a boolean
operation or a modal operator, the claim follows by inductive hypothesis.
Hence, it remains to consider the case where φ = µYψ(X̄,Y) or φ =
νYψ(X̄,Y).

First, suppose that φ consists of a least fixed-point. We have to prove two
directions.
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IV. Parity Games

(⇐) LetQα ∶= (Fψ)
α(∅), for α < κ, be the α-th stage of the correspond-

ing fixed-point induction. Since S, t ⊧ µYψ(P̄,Y), there is some ordinal α
such that t ∈ Qα+1. We construct the desired winning strategy by induction
on α. By the inductive hypothesis for ψ, we have a winning strategy s∗ for
the game G(S,ψ, P̄Qα) with starting position ⟨t,ψ⟩, and by the inductive
hypothesis for α there exists, for every u ∈ Qα , a winning strategy su for
the game G(S, φ, P̄) with starting position ⟨u, µYψ⟩. We combine these
strategies into a single one as follows. Player◇ starts by following s∗ until he
reaches a position of the form ⟨u,Y⟩ with u ∈ Qα . Then he switches to the
strategy su and follows it until the end of the game. By choice of s∗ and su ,
this combined strategy is winning for the starting position ⟨t, µYψ⟩.
(⇒) Let Q ′ ⊆ S be the set of all states t such that Player◇ has a win-

ning strategy in the game G(S, µYψ, P̄) with starting position ⟨t, µYψ⟩.
Furthermore, we inductively define sets Qα ⊆ S as follows.

Q0 ∶= ∅ and Qδ ∶= ⋃
α<δ

Qα for limit ordinals δ .

For the successor step, let Qα+1 be the set of all states t such that Player◇
has a winning strategy in the game G(S,ψ, P̄Qα) with starting position
⟨t,ψ⟩. Since every position of the form ⟨t, µYψ⟩ has priority 1 and the game
G(S, µYψ, P̄) has are no positions with priority 0, it follows that

Q
′ = ⋃

α
Qα .

Furthermore, it follows by inductive hypothesis that

S, t ⊧ ψ(P̄,Qα) , for all t ∈ Qα+1 .

Consequently, the union⋃α Qα = Q
′ is contained in the least fixed-point

of the operator Fψ . Hence,

S, t ⊧ µYψ(P̄,Y) , for all t ∈ Q ′ .

It remains to consider the case where φ = νXψ(X̄,Y) is a greatest fixed-
point. Again we have to prove two directions.
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5 The modal µ-calculus

(⇐) LetQ ⊆ S be the greatest fixed-point of Fψ . By inductive hypothesis,
there exists a strategy s for Player◇ in the gameG(S,ψ, P̄Q) that is winning
for every starting position ⟨t,ψ⟩with t ∈ Q . We claim that the same strategy
is also winning in the game G(S, νYψ, P̄) with starting position ⟨t, νYψ⟩,
for t ∈ Q . Hence, let p be a play conforming to s starting in ⟨t, νYψ⟩ with
t ∈ Q . If p contains infinitely many positions of the form ⟨u, νYψ⟩, it is
winning since these positions have priority 0. Otherwise, the suffix of p after
these positions is a play in G(S,ψ, P̄Q) and, therefore, also winning.
(⇒) Let Q ⊆ S be the set of all states t such that Player◇ has a winning

strategy for the starting position ⟨t, νYψ⟩. We claim that

S, t ⊧ ψ(P̄,Q) , for all t ∈ Q .

Then Q is contained in the greatest fixed-point of Fψ , which implies that

S, t ⊧ νYψ(P̄,Y) , for all t ∈ Q ,

as desired. For the proof, fix t ∈ Q . By assumption, there exists a winning
strategy s for Player◇ starting in ⟨t, νYψ⟩.We claim that s is also a winning
strategy in the game G(S,ψ, P̄Q) with starting position ⟨t,ψ⟩. Hence, let
p be a play conforming to s in that game. If p is also a play in the original game
G(S, νYψ, P̄), it is winning for Player◇ by choice of s. Suppose otherwise.
Since the game G(S,ψ, P̄Q) is obtained from G(S, νYψ, P̄) by deleting
some edges, it follows that p is a partial play in the game G(S, νYψ, P̄)
which ends in a position of the form ⟨u,Y⟩. By choice of s and Q , no partial
play conforming to s can lead to such a position where u ∉ Q . Consequently,
we have u ∈ Q , which implies that the position ⟨u,Y⟩ is winning for Player◇.

Intuitively, this theorem states that parity games are as expressive as the
µ-calculus. Conversely, we can show that the winning condition for parity
games can be expressed in Lµ . Before giving the proof, let us take a look at
the simpler case of reachability games.

Example. Let G be a reachability game.The formula

ψ ∶= (Vσ ∧◇X) ∨ (Vσ ∧ ◻X)
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IV. Parity Games

expresses the step function Stepσ . As the winning region for Player σ is the
least fixed-point of this function, we can define it by the formula

φ ∶= µX[(Vσ ∧◇X) ∨ (Vσ ∧ ◻X)] . ⌟

Definition 5.5. LetG = ⟨V◇ ,V◻ , E ,Ω⟩ andG′ = ⟨V ′
◇ ,V

′
◻ , E

′ ,Ω′⟩ be two
parity games. An immersion ι ∶ G → G′ is a function ι ∶ V → V

′ with the
following property.

For each Player σ , each position v ∈ Vσ , and each successor u of v, Player σ
has a strategy s in the game G′ with starting position ι(v) ensuring that
every play conforming to s either

◆ is winning and does not contain any position in rng ι (except the one
before the first move of course), or

◆ the first such position is equal to ι(u) and the least priorty seen between
ι(v) and ι(u) (inclusive) is equal to min{Ω(v),Ω(u)}. ⌟

Example. A simple kind of immersion is a homomorphism of games, that is,
a function h ∶ V → V

′ such that

h[V◇] ⊆ V
′
◇ , h[V◻] ⊆ V

′
◻ , h[E] ⊆ E′ ,

Ω(h(v)) = Ω(v) , for all v ∈ V ,

and such that h is locally surjective in the sense that, for every v ∈ V , each
successor of h(v) belongs to rng h. ⌟

Lemma 5.6. Let ι ∶ G→ G′
be an immersion between two parity games G =

⟨V◇ ,V◻ , E ,Ω⟩ and G′ = ⟨V ′
◇ ,V

′
◻ , E

′ ,Ω′⟩ and let W◇ ,W◻ ,W′
◇ ,W

′
◻ be

the winning regions of the respective games. Then

ι[W◇] ⊆W
′
◇ and ι[W◻] ⊆W

′
◻ .

Proof. Let v ∈Wσ and let s be a corresponding winning strategy. We con-
struct a winning strategy s′ for Player σ in the gameG′ with starting position
ι(v) as follows. For every vertex w ∈ Vσ , let tw be a strategy in G′ with start-
ing position ι(w) as in the definition of an immersion. We construct s′ by
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5 The modal µ-calculus

combining these strategies. That is, when in a position of the form ι(w),
Player σ follows tw until the play is either won or it reaches a position of the
form ι(u), for some successor u of w. Then the game continues using tu and
so on.
We claim that the resulting strategy s′ is winning. Fix a play p′ conforming

to s′. If p′ contains only finitely many positions in rng ι, let w be the last of
them.Then a suffix of p′ conforms to the corresponding strategy tw and is,
therefore, winning for Player σ . Otherwise, p′ induces a play p = (v i)i<ω
in G and p

′ has a factorisation p
′ = p

′
0p

′
1 . . . such that the least priority

seen along p′i is equal to min{Ω(v i),Ω(v i+1)}. Since the least priority seen
infinitely often in p is winning for Player σ , so is the least one in p

′.

Theorem 5.7. Let G be a parity game that only uses priorities from the set [2k].
The winning region for Player◇ is defined by the formula

νX0µX1⋯νX2k−2µX2k−1 ⋀
i<2k
[Pi → [(V◇ ∧◇X i) ∨ (V◻ ∧ ◻X i)]] ,

where Pi ∶= Ω−1(i) is the set of positions of priority i.

Proof. For j ≤ 2k, we set

ψ ∶= ⋀
i<2k
[Pi → [(V◇ ∧◇X i) ∨ (V◻ ∧ ◻X i)]] ,

φ j ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

ψ if j = 2k ,
µX jφ j+1 if j < 2k is odd ,
νX jφ j+1 if j < 2k is even .

Let ι ∶ G → G(G, φ) be the function mapping a position v of G to the
position ⟨v , φΩ(v)⟩. We claim that ι is an immersion. By Lemma 5.6 and
Theorem 5.4, it then follows that

Player◇ wins G with starting position v

iff Player◇ wins G with starting position ι(v)
iff G, v ⊧ φΩ(v)(P̄)

iff G, v ⊧ φ ,
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IV. Parity Games

where P j is the set defined by φ j .
Hence, it remains to prove the above claim. Let v ∈ V be a position of G.

Starting from position ⟨v , φ i⟩ in the game G(G, φ) (ignoring positions with
a unique outgoing edge), Player◻ has to choose an index i in the conjunction
and Player ◇ has to reply with a choice between ¬Pi , V◇ ∧ ◇X i , and
V◻ ∧ ◻X i . Finally, one of the two players has to pick a successor of v for
◇X i or ◻X i . If they do not want to lose immediately, Player ◻ has to pick
i ∶= Ω(v) and Player◇ has to pick one of the two latter formulae depending
on which player the vertex v belongs to. Thus, these two choices are forced,
which means that the only relevant choices for Players◇ and ◻ are picking
the successor for the formulae◇X i or ◻X i .
To show that ι is an immersions, let u be a successor of v. By the remarks

above, if v ∈ V◇, Player ◻ has to pick i ∶= Ω(v) and Player ◇ has to
reply with the subformula V◇ ∧ ◇X i . Then Player ◻ has to choose the
subformula◇X i , after which Player◇ can pick ι(u), as desired.
Similarly, if v ∈ V◻, Player ◻ picks i ∶= Ω(v), Player ◇ replies with

V◻ ∧ ◻X i . Then ◻ chooses ◻X i folllowed by the position ι(u).
Thus, in both cases the respective player has a strategy to reach ι(u) (or

to win the game immediately). Furthermore, the priorities seen between
ι(v) and ι(u) are Ω(v),Ω(v) + 1, . . . , 2k,Ω(u).

Alternating Parity Game+

Theaimof this section is to derive a special version of the formula defining the
winning regions of a parity game where the players take turns alternatingly.
This will come in handy in the next chapter.

Definition 5.8. (a) A parity game G = ⟨V◇ ,V◻ , E ,Ω⟩ is alternating if

u ∈ V◇⇔ v ∈ V◻ , for every edge ⟨u, v⟩ ∈ E .

(b) An alternating parity game is normalised if all positions of Player ◻
have maximal priority, while all positions of Player◇ have some priority
that is not maximal. ⌟

First, let us prove that we can normalise every alternating game.
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5 The modal µ-calculus

Lemma 5.9. For every alternating parity game G = ⟨V◇ ,V◻ , E ,Ω⟩, there
exists a normalised alternative parity game G′ = ⟨V ′

◇ ,V
′
◻ , E

′ ,Ω′⟩ and a

surjective function ρ ∶ V ′ → V such that Player ◇ has a winning strategy

starting at a position v
′
in G′

if, and only if, he has a winning strategy starting

at ρ(v′) in G.

Proof. To be able to remove the priorities of V◻-positions, we will store
them in the V◇-positions. Choose some number m larger than all priorities
of G. To define G′, we set

V
′
◇ ∶= V◇ × [m] ,

V
′
◻ ∶= V◻ ,

E
′ ∶= { ⟨⟨u, k⟩, v⟩ ∣ ⟨u, v⟩ ∈ E ∩ (V◇ ×V◻) }

∪ { ⟨u, ⟨v ,Ω(u)⟩⟩ ∣ ⟨u, v⟩ ∈ E ∩ (V◻ ×V◇) } ,

Ω′(⟨v , k⟩) ∶= min{Ω(v), k} , for ⟨v , k⟩ ∈ V ′
◇ ,

Ω′(v) ∶= m , for v ∈ V ′
◻ .

Let ρ ∶ V ′ → V be the function that maps positions v ∈ V ′
◻ = V◻ to itself

and positions ⟨v , k⟩ ∈ V ′
◇ to the corresponding V◇-position v. We claim

that ρ is the desired surjection.
Let σ ′ be a positional winning strategy for Player◇ in G′. We define a

(non-positional) strategy σ in G by setting

σ(v0 , . . . , vn) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

σ ′(⟨vn ,Ω(vn−1)⟩) if n > 0 ,
σ ′(⟨vn ,m − 1⟩) if n = 0 .

If p = (vn)n<ω is a play in G conforming to σ , there is a unique play p′ =
(v′n)n<ω in G′ such that ρ(v′n) = vn , for all n. This play conforms to σ ′
and is therefore winning for Player◇. By definition of ρ, it follows that the
play p′ has the form

⟨v0 , k⟩, v1 , ⟨v2 ,Ω(v1)⟩, v3 , ⟨v4 ,Ω(v3)⟩, . . . , for some k < m .
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(For simplicity, we have assumed that the play starts in V ′
◇. Otherwise, we

have to remove the first entry.) The corresponding sequence of priorities is

min{Ω(v0), k}, m, min{Ω(v1),Ω(v2)},
m, min{Ω(v3),Ω(v4)}, . . . .

As p satisfies the parity condition, it follows that so does p′.
Conversely, consider a positional winning strategy σ for Player◇ in G.

We define a positional strategy σ ′ in G′ by setting

σ ′(⟨v , k⟩) ∶= σ(v) , for ⟨v , k⟩ ∈ V ′
◇ ,

σ ′(v) ∶= ⟨σ(v),Ω(v)⟩ , for v ∈ V ′
◻ .

Let p′ = (v′n)n<ω be a play in G′ following σ ′. Then p ∶= (ρ(v′n))n<ω is a
play in G following σ . As above it follows that the fact that p satisfies the
parity condition implies that so does p′.

For normalised alternating games we can compute the winning regions in
a different way by taking two steps at a time.

Proposition 5.10. LetG be a normalised alternating parity game with maximal

priority m and let k be some constant with m < 2k. We can define the set

W◇ ∩V◇ of all positions for Player◇ where he has a winning strategy by the

formula

νX0µX1⋯νX2k−2µX2k−1 ⋀
i<m
[Pi →◇◻X i] ,

where Pi ∶= Ω−1(i) is the set of positions of priority i.

Proof. We have shown inTheorem 5.7 that the formula

νX0µX1⋯νX2k−2µX2k−1 ⋀
i<2k
[Pi → [(V◇ ∧◇X i) ∨ (V◻ ∧ ◻X i)]]

defines W◇. Since G is normalised we have Pm ⊆ V◻ and Pi ⊆ V◇, for
i < m. Hence, the above formula simplifies to

φ ∶= νX0µX1⋯νX2k−2µX2k−1[⋀
i<m
[Pi →◇X i] ∧ [Pm → ◻Xm]] .
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5 The modal µ-calculus

We claim that, for positions v ∈ V◇, this formula is equivalent to

ψ ∶= νX0µX1⋯νX2k−2µX2k−1 ⋀
i<m
[Pi →◇◻X i] .

ByTheorem 5.4, it is sufficient to show that, for every v ∈ V◇, the position
⟨v , φ⟩ is winning for Player◇ in G(G, φ) if, and only if, the position ⟨v ,ψ⟩
is winning in G(G,ψ).
(⇒) Let s be a winning strategy for Player◇ in G(G, φ) with starting

position ⟨v , φ⟩. We define a strategy s′ in G(G,ψ) as follows. In this game
there are two non-trivial choices for Player◇ : (i) in a position of the form
⟨u, Pi →◇◻X i⟩, he has to choose between the formulae ¬Pi and◇◻X i ;
and (ii) in a position of the form ⟨u,◇◻X i⟩, he has to choose a successor
of u.
Choice (i) is easy: if u ∈ Pi , Player◇ has to pick ⟨u,◇◻X i⟩, otherwise

he chooses ⟨u,¬Pi⟩. For Choice (ii), Player◇ follows the strategry s, i.e.,
he chooses the successor w of u such that

s(⟨u,◇X i⟩) = ⟨w ,X i⟩ .

We claim that the resulting strategy s′ is winning. Hence, let p′ be a play
in G(G,ψ) conforming to s′ with starting position ⟨v ,ψ⟩. By construction
of s′, this play corresponds to some play p in G(G, φ) conforming to s with
starting position ⟨v , φ⟩ such that the sequences of first components of the
positions in p and those in p

′ coincide. (‘Coincide’ here means that the two
sequences contain the same positions ofG in the same order, but the number
of times each position appears may be different.) Note that the least priority
seen infinitely often along p is determined by the positions of p containing a
fixed-point formula.The same holds for p′. Comparing φ and ψ, we see that
this sequence of fixed-point formulae for p contains twice as many entries,
while that for p′ omits every second one. But the omitted entries correspond
to the fixed-point associated with the variableXm , whose priorities are larger
than all other ones. Hence, the least priority seen infinitely often is the same
in both sequences. Since p conforms to s, it is winning. Hence, so is p′.
(⇐) Let s′ be a winning strategy for Player◇ in G(G,ψ) with starting

position ⟨v ,ψ⟩. We define a strategy s in G(G, φ) as follows. In this game
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there are two non-trivial choices for Player◇ : (i) in a position of the form
⟨u, Pi →◇X i⟩, he has to choose between the formulae ¬Pi and◇X i ; and
(ii) in a position of the form ⟨u,◇X i⟩, he has to choose a successor of u.

Choice (i) is easy: if u ∈ Pi , Player◇ has to pick ⟨u,◇X i⟩, otherwise he
chooses ⟨u,¬Pi⟩. For Choice (ii), Player◇ follows the strategry s′, i.e., he
chooses the successor w of u such that

s
′(⟨u,◇◻X i⟩) = ⟨w ,◻X i⟩ .

We claim that the resulting strategy s is winning. Hence, let p be a play
in G(G, φ) conforming to s with starting position ⟨v , φ⟩. By construction
of s, this play corresponds to some play p′ in G(G,ψ) conforming to s′ with
starting position ⟨v ,ψ⟩ such that the sequences of first components of the
positions in p

′ and those in p coincide (with the same meaning of ‘coincide’
as above). As above, it follows that the least priority seen infinitely often in p

is the same one as in p
′. Since p′ is winning, so is therefore p.

Note+

One of the first articles on games is by Zermelo [212], who proved the
determinacy of chess. Gale and Stewart [84] proved the existence of inde-
termined games and the determinacy for open games.The full proof of Borel
determinacy is by Martin [137].

The section on parity games follows [213] and [90].TheTheorem of Büchi
and Landweber was originally proved in [36], andTheorem 4.10 is taken
from [53]. The algorithm to solve parity games inTheorem 4.13 is from [37].
Our presentation owes much to a set of lecture notes by Bojańczyk and
Czerwiński [27].

192



V Tree+

1 Compo@tion Theorem+

Trees can be naturally decomposed. But before stating the corres-
ponding composition theorems, let us fixing our terminology regarding

trees. We will use several different versions, depending on which one is most
convenient at the time. We start with the graph-theoretic notion.

Definition 1.1. An undirected tree is an undirected graph T which is connec-
ted and acyclic. ⌟

Undirected trees will be mostly used in the more graph-theoretic chapters
of this book. In the current chapter, we are mainly interested in directed
ones. These come in several different variants. We start by defining them as
plain sets.

Definition 1.2. Let D be a set of directions.
(a)The prefix ordering on D

∗ is defined by

x ≤pf y : iff y = xz , for some z ∈ D∗ .

(b) A tree domain is a subset T ⊆ D∗ that is prefix-closed, i.e., such that
x ≤pf y ∈ T implies x ∈ T. If T is a tree domain and x , y ∈ T, we call x an
(immediate) successor of y if y = xd, for some d ∈ D. In this case, we also say
that y is an (immediate) predecessor of x. We write Suc(x) for the set of all
successors of x and Suc∗(x) for {x} ∪ Suc(x).
(c) A branch β of a tree domain T is a maximal linearly ordered set of

vertices. For a branch β of T, we write β(n) for the n-th vertex of β and we
write w ≤pf β to indicate that w is some vertex of β. That is, we sometimes
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V. Trees

identify a branch β ⊆ T of length α with a function α → T or with a word
in D

α .
(d)The subtree of T attached at a vertex v ∈ T is the tree domain

T∣v ∶= { u ∈ D
∗ ∣ vu ∈ T } . ⌟

In language theory trees are usually labelled by some alphabet.

Definition 1.3. Let C be a set. A C-labelled tree is a function t ∶ T → C

where T is a tree domain. We usually denote the domain T by dom(t), and
we write t(v) for the label at the vertex v. ⌟

There are several possible ways to encode a tree as a relational structure.

Definition 1.4. (a) An order-tree is a structure isomorphic to one of the form
⟨T , ≤pf ⟩ for some tree domain T. The elements of a tree are called vertices.
(b) A successor-tree is a structure of the form ⟨T , suc⟩ where T is a tree

domain and

suc ∶= { ⟨u, v⟩ ∣ u, v ∈ T and v = ud for some d ∈ D } .

(c) An order-tree or a successor-tree T is successor-ordered if it is equipped
with an additional partial order ≤so such that

◆ ≤so linearly orders the set of successors of every vertex v ∈ T, and

◆ successors of distinct vertices are incomparable.

Given a successor-ordered successor-tree T = ⟨T , E , ≤so⟩ where the set
D = {d0 , . . . , dn−1} of directions is finite, we will often use the format
T = ⟨T , suc0 , . . . , sucn−1⟩ where

suci ∶= { ⟨u, v⟩ ∣ u, v ∈ T with v = ud i } .

(d) A C-labelled tree is a structure obtained from an order-tree or a
successor-tree by adding unary predicates (Pc)c∈C containing the vertices
with label c. We will use the names labelled tree and coloured tree interchange-
ably. ⌟
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We also consider trees equipped with additional relations between the
successors of a vertex.

Definition 1.5. Let Σ be a relational signature. A Σ-enriched tree T is a
(Σ + {≤})-structure ⟨T , ≤, R̄⟩ such that ⟨T , ≤⟩ forms an order-tree and
each relation R i only contains tuples ā such that ā ⊆ {⟨⟩} or ā ⊆ Suc(w),
for some w ∈ T. ⌟

Remark. In particular, a C-labelled tree is P̄-enriched, for a set of unary
predicates P̄. ⌟

Sometimes it is possible to give a single proof for a result that holds both
for trees and linear orders. To do so, we have to introduce a generalised
notion of a tree that also covers all linear orders. In a normal tree, the path
from the root to a given vertex is always a finite chain.We relax this condition
to allow arbitrary linear orders. This leads to the following definition.

Definition 1.6. (a) A generalised tree is a meet-semilattice T = ⟨T , ≤⟩ where
every set of the form ⇓v with v ∈ T forms a chain. We denote the meet of
u, v ∈ T by u ⊓ v.

(b) A branch of a generalised tree T is a maximal chain β ⊆ T.
(c) A subtree of a generalised tree T is a subset S ⊆ T that is upwards-

closed with respect to the ordering and closed under ⊓. ⌟

Example. Every linear order is a generalised tree. ⌟

We will prove several composition theorems for generalised trees. The
first one concerns replacing subtrees.

Proposition 1.7. Let T be a coloured generalised tree and let T′ be the gener-
alised tree obtained from T by replacing an arbitrary number of subtrees Si by

generalised trees S′
i , for i ∈ I, such that

Si ≡
m
MSO S′

i , for all i ∈ I .

Then

T ≡mMSO T′ .
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Proof. We can write T as a generalised sum followed by a quantifier-free
interpretation:

T ≅ τ(∑
k∈K

Ck) ,

whereK is the generalised tree obtained fromT by replacing every subtreeSi
by a single vertex, and where each component Ck is either (i) a singleton or
(ii) isomorphic to Si , for some i. The interpretation τ is given by

δ(x) ∶= true ,
φ≤(x , y) ∶= x ≤K y ∨ (x ∼ y ∧ x ≤C y) ,

φP(x) ∶= Px

(where ≤K denotes the relation ≤ of the index tree K and ≤C the relation ≤
of the components). Similarly, we can write

T′ ≅ τ(∑
k∈K

C′k) ,

where τ is the same interpretation as above and either

C′k = Ck , or C′k = S′
i and Ck = Si , for some i .

By assumption, we have Ck ≡
m
MSO C′k , for all k. Since τ is quantifier-free, the

claim therefore follows byTheorem I.4.24 and Corollary I.4.6.

Instead of cutting a tree along an antichain, we can also decompose it
along a branch.

Definition 1.8. Let I be a partial order. A subset C ⊆ I is convex if

x , y ∈ C implies z ∈ C for all x ≤ z ≤ y .

Similarly, we call an equivalence relation ∼ on I convex if every ∼-class is
convex. ⌟
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Proposition 1.9. Let T and T′ be coloured generalised trees, β and β′ branches
of T and T′, respectively, and ∼ and ∼′ convex equivalence relations on β and β′.
For a convex set I ⊆ T, we set

Tβ[I] ∶= ⟨T∣C , I⟩ , where C ∶= ⇑I ∖ ⋃
v∈β∖⇓I

⇑v .

If there exists an isomorphism σ ∶ β/∼ ≅ β′/∼′ of linear orders such that

Tβ[I] ≡
m
MSO T′β′[σ(I)] , for every ∼-class I ,

then T ≡mMSO T′.

Proof. We can write T as a generalised sum of the factors Tβ[I], followed
by a quantifier free interpretation τ, and similarly for T′.

T ≅ τ( ∑
I∈β/∼

Tβ[I]) and T′ ≅ τ( ∑
I∈β′/∼′

T′β′[I]) ,

where σ uses the formula

δ(x) ∶= true ,
φ≤(x , y) ∶= [x ∼ y ∧ x ≤T y] ∨ [x <β y ∧ Ix] ,

where ≤T denotes the ordering of the factors Tβ[I], ≤β the ordering of the
index set β/∼, and I is the additional predicate added to Tβ[I] = ⟨T∣C , I⟩.

Finally, there is a composition theorem that allows us to also replace
interior parts of the tree.

Definition 1.10. Let T be a generalised tree and S ⊆ T a finite set closed
under meets (which then has to form a tree). Let p ∶ S → S be the function
mapping every vertex s ∈ S to its parent in S (hence, p(s) is undefined for
the root s), and set

U(s) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

T if s is the minimal element of S ,

⋃{⇑t ∣ p(s) < t ≤ s } otherwise ,
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for s ∈ S. The decomposition of T induced by S is the partition of T with the
classes

Ts ∶= U(s) ∖⋃
t>s

U(t) , for s ∈ S .

s

t
u

v w

⌟

Remark. The above formula forU(s) is made complicated by the fact that
it has to work for generalised trees. If T is a tree, we can use the simpler
definition

U(s) ∶= ⇑u ,

where u is the successor of p(x)with p(x) < u ≤ x. (If p(x) does not exists,
we take for u the root of T.) ⌟

Proposition 1.11. Let T be a generalised tree, ā a finite tuple of vertices, S the

closure of ā under meets, and (Ts)s∈S the decomposition of T induced by S.

ThenThm
MSO(T, ā) can be computed from (the isomorphism type of) the tree

⟨S , ≤, ā⟩ and the family (θs)s∈S where

θs ∶=Th
m
MSO(⟨Ts , ≤, ⇓s⟩) .

Proof. Set Ts ∶= ⟨Ts , ≤, ⇓s⟩ and S ∶= ⟨S , ≤, ā⟩. Then

⟨T, ā⟩ ≅ σ(∑
s∈S

Ts) ,
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where σ is the quantifier-free interpretation with formulae

δ(x) ∶= true ,
φ≤(x , y) ∶= [x ∼ y ∧ x ≤T y] ∨ [x ≁ y ∧ x <S y ∧ Px] ,

where

◆ ∼ is the equivalence relation whose classes are the components Ts of the
generalised sum,

◆ ≤S is the ordering of the index structure S,

◆ ≤T is the one of the components Ts , and

◆ P denotes the predicate ⇓s in Ts .

For everyMSOm-formula φ(x̄) it follows byTheorem I.4.24 that there
exists anMSO-formula ψ such that

T ⊧ φ(ā) iff ⟨S, Ū⟩ ⊧ ψ ,

where Uθ ∶= { s ∈ S ∣ Thm
MSO(Ts) = θ }. Fix an MSOm-theory θ. For

φ(x̄) ∶= ⋀ θ, we obtain some formula ψθ such that

Thm
MSO(T, ā) = θ iff ⟨S, Ū⟩ ⊧ ψθ .

In particular, ⟨S, Ū⟩ determinesThm
MSO(T, ā). As the family (θs)s∈S con-

tains a complete description of ⟨S, Ū⟩ the claim follows.

Exercise 1.1. Prove that, over the class of all generalised trees, everyMSO-
formula φ(x̄)with ∣x̄∣ ≥ 1 is equivalent to a boolean combination of formulae
of the form

ψ(x i ⊓ x j , xk ⊓ x l) and ϑ(x i) ,

where ψ is anMSO-formula with two free variables and ϑ anMSO-formula
with one free variable. ⌟
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Comparing FO and MSO

As an application let us use composition arguments to compare the expressive
powers of FO andMSO over trees. Over most classes of structures,MSO is
strictly stronger than FO. But there is a little trick that, for trees, allows us
to translateMSO-formulae into FO, if we allow the FO-formulae to access
additional information in the form of a certain colouring. We start with a
lemma.

Lemma 1.12. Let S be a finite semigroup and (φc(x , y))c∈S a family ofMSO-
formulae. There exist FO-formulae (ψc(x , y; Z̄))c∈S and finitely manyMSO-
formulae (ϑ i(x))i<n such that, for every coloured order-tree T such that (φc)c
defines an additive labelling λ on T, we have

T ⊧ ψc(u, v; ϑT
0 , . . . , ϑT

n−1) iff λ(u, v) = c .

Proof. Fix a tree T and let λ be the labelling defined by (φc)c . By The-
orem III.1.10, there exists a weak Ramseyan split σ ∶ T → [N] for λ. For
n < N and c ∈ S, we define

Qn ∶= σ−1(n) ,

Rc ∶= { v ∈ T ∣ there is u ⊏σ v such that λ(u, v) = c and

there is no w with u ⊏σ w ⊏σ v } ,

Uc ∶= { v ∈ T ∣ λ(u, v) = c where u is the predecessor of v } .

Note that these predicates can be defined inMSO using the formulae (φc)c .
We claim that λ can be defined in terms of these two predicates. For each

n < N, we construct FO-formulae ψn
c such that

T ⊧ ψn
c (u, v; ϑT

0 , . . . , ϑT
n−1) iff λ(u, v) = c and

σ(w) ≤ n for all u ≤ w ≤ v .

Then the formulae ψc ∶= ψN−1
c have the desired properties.

We define ψn
c by induction on n. If n = 0, we have u ⊏σ v, which implies

that

λ(u, v) = λ(u, u′) ⋅ λ(u′ , v) = λ(u, u′) ,
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where u′ is the immediate successor of u. Hence, can use

ψ0
c (x , y) ∶= x < y ∧ ∀z[x ≤ z ≤ y → Q0z]

∧ ∃x′[x < x′ ≤ y ∧ ¬∃z[x < z < x′] ∧ Rcx
′] .

For the inductive step, suppose that we have already defined ψn
c . Given

u < v, let w0 < ⋯ < wk−1 be an enumeration of all vertices w with u ≤ w ≤ v
and σ(w) = n + 1. We distinguish several cases. If k = 0, we can compute
λ(u, v) by inductive hypothesis. If k = 1, we have

λ(u, v) = λ(u,w0) ⋅ λ(w0 , v)

= λ(u,w′) ⋅ λ(w′ ,w0) ⋅ λ(w0 ,w′′) ⋅ λ(w′′ , v) ,

where the first and the last factor can be computed by inductive hypothesis,
and the twomiddle factors can be obtained from the predicates Ū. (If u = w′,
or u = w0, or v = w′′, or v = w0, we have to omit some of the factors above.)

Finally, suppose that k > 1. If u < w0 and wk−1 < v, we have

λ(u, v) = λ(u,w0) ⋅ λ(w0 ,w1) ⋅ λ(w1 ,wk−1) ⋅ λ(wk−1 , v)

= λ(u,w0) ⋅ λ(w0 ,w1) ⋅ λ(wk−1 , v) .

The first and the last factor can be computed as in the case k = 1 above, while
the middle one can be obtained using the predicates R̄.

If u = w0 or v = wk−1, we proceed similarly, just omitting the correspond-
ing factors.

Theorem 1.13. Given anMSO-formula φ(x̄), we can compute an FO-formula
φ∗(x̄) and finitely manyMSO-formulaeψ0(z), . . . ,ψn−1(z) with a single free
variable z such that

T ⊧ φ(v̄) iff ⟨T,ψT
0 , . . . ,ψ

T
n−1⟩ ⊧ φ∗(v̄) ,

for all coloured order-trees T.

Proof. Let T = ⟨T , ≤pf , P̄⟩ be a coloured order-tree (possibly successor-
ordered) and letm be the quantifier-rank of φ. Consider a finite tuple ā ⊆ T,
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let S be its closure under meets, and let (Us)s∈S be the decomposition of T
induced by S as in Definition 1.10. By Proposition 1.11, the theories

θs ∶=Th
m
MSO(⟨Us , ≤pf , ⇓s⟩) , for s ∈ S ,

determine Thm
MSO(T, ā). Below we will construct MSO-definable unary

predicates Q̄ and FO-formula (ϑθ)θ (that both do not dependent on ā)
such that

⟨T, Q̄⟩ ⊧ ϑθ(s; ā) iff s ∈ S and θs = θ .

Since the size of S is bounded by ∣S∣ ≤ 2 ⋅ ∣ā∣ and since every element of S is
definable from ā, we can therefore set

φ∗(x̄) ∶= ⋁
θ̄
(∀s ∈ S)ϑθ s(s; x̄) ,

where the disjunction ranges over all families (θs)s that imply the formula φ.
It remains to explain how to define the predicates Q̄ . For vertices u <pf v,

we set

Wuv ∶= ⇑u
′ ∖ (⇑v ∖ {v}) ,

where u′ is the successor of u with u′ <pf v. Let λ be the function mapping
a pair of vertices u <pf v to

λ(u, v) ∶=Thm
MSO(Wuv) where Wuv ∶= ⟨Wuv , ≤, ⇓v , v⟩ .

For u <pf v <pf w, it follows that

Wuw = σ(Wuv ⊕Wvw) ,

for some fixed quantifier-free interpretation σ . Consequently, the labelling λ
is additive. As it is alsoMSO-definable, it follows by Lemma 1.12 that it is
FO-definable using suitable MSO-definable monadic parameters Q̄ . Fur-
thermore, for eachMSOm-theory θ, we define the sets

Q
′
θ ∶= { v ∈ T ∣Th

m
MSO(T∣⇑v∖{v}) = θ } ,

Q
′′
θ ∶= { v ∈ T ∣Thm

MSO(T∣⇑v) = θ } ,

Q
′′′
θ ∶= { v ∈ T ∣Thm

MSO(T∣T∖(⇑v∖{v})) = θ } ,
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We can express the theories θs as follows.
First, suppose that s is the minimal element of S. Then we can writeUs

as a generalised sum

T∣Us = T∣T∖(⇑s∖{s}) + ∑
v∈Suc(s)∖⇓S

T∣⇑v

over the index structure Suc∗(s) ∖ (⇓S ∩ Suc(s)) (followed by a quantifier-
free interpretation, which we omit for readability). Since this index structure
is a tree of height 1 and since every MSO-formula over such a tree only
depends on (i) the label of the root and (ii) the number (up to some bound k)
of leaves with a given label, it follows that we can compute θs from (i) the
theory σ such that s ∈ Q ′′′

σ and (ii), for each theory τ, the number (up to k)
of successors v of s with v ∈ Q ′′

τ . This data can be determined by an FO-
formula.

Similarly, if s is a maximal element of S with immediate predecessor t, we
can writeUs as a generalised sum

T∣Us = T∣Wts + T∣⇑s∖{s} .

Consequently, we can compute θs from λ(t, s) and Q̄ ′.
Finally, suppose that s ∈ S is neither minimal nor maximal and let t be its

immediate predecessor. Then

T∣Us = T∣Wts + ∑
v∈Suc(s)∖⇓S

T∣⇑v .

Hence, θs can be computed from λ(s, t) and the statements v ∈ Q ′′
τ , for

v ∈ Suc(s).
In each of these three cases, the computation of θs can be done by an

FO-formula with parameters s and ā.

We can rephrase this result in terms of interpretations. Let us call an
MSO-interpretation τ anMSO-colouring if τ only adds unary predicates, but
otherwise leaves the input structure unchanged.
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Corollary 1.14. For everyMSO-interpretation τ, there exists an FO-interpret-
ation σ and anMSO-colouring ρ such that

τ(T ) = σ(ρ(T )) , for every class T of coloured order-trees.

Proof. ByTheorem 1.13, we can replace each formula φ(x̄) in τ by an FO-
formula φ∗(x̄). Let σ be the interpretation using these FO-formulae. Each
formula in σ uses auxiliaryMSO-formulae ψ(z) with a single free variable.
Let ρ be the interpretation adding all the relations defined by these formu-
lae ψ(z). Then τ = σ ○ ρ (over trees).

Lemma 1.15. Let C be a finite set. There exists an FO-interpretation σ such

that, for every class of C-labelled order-trees T , we have

T = σ(T0) , for some class T0 of unlabelled order-trees.

Proof. Suppose that C = {c0 , . . . , cn−1}. Given a tree T ∈ T , let T0 be the
uncoloured tree obtained from T by attaching i + 1 new leaves as successors
to every vertex v with label c i . Then we can recover T from T0 by the FO-
interpretation σ = ⟨δ, φ≤ , (ψPc i

)i<n⟩ defined by

δ(x) ∶= ‘x is not a leaf.’
φ≤(x , y) ∶= x ≤ y
ψPc i
(x) ∶= ⋁

k
‘x has exactly i + 1 successors that are leaves.

It follows that T = σ(T0) where T0 ∶= {T0 ∣ T ∈ T }.

Corollary 1.16. A class isMSO-interpretable in some class of order-trees if, and
only if, it is FO-interpretable in such a class (but possibly a different one).

Proof. Suppose that C = τ(T ) where τ is anMSO-interpretation and T a
class of trees. By Corollary 1.14, it follows that C = σ(ρ(T )), where σ is an
FO-interpretation and ρ anMSO-colouring. Note that S ∶= ρ(T ) is a class
of coloured trees. Let υ and S0 be the FO-interpretation and the class of
trees from Lemma 1.15. Then C = (σ ○ υ)(S0), as desired.

204



1 Composition theorems

For trees of bounded height, we can do better by removing the need of a
colouring.

Proposition 1.17. Let n < ω and let Σ be a signature consisting of unary

predicates only. Over the class of all Σ-enriched trees of height at most n, every
MSO-formula φ(X̄, x̄) is equivalent to an FO-formula.

Proof. The statement follows from the fact that, over the empty signature,
allMSO can do is to count up to some constant depending on the quantifier-
rank. To simplify notation, we include the parameters in the structure. That
is, we work with structures of the form T = ⟨T , ≤, P̄, c̄⟩ where ⟨T , ≤⟩ is
an order-tree of height at most n and P̄ and c̄ are parameters. We prove by
induction on n that there exists some function fn ∶ ω → ω such that

S ≡ fn(m)FO T implies S ≡mMSO T , for every m < ω .

Then the claim follows by Lemma I.3.3.
If n = 0, the trees consist of a single vertex. Structures of size 1 can be

characterised up to isomorphism by an FO-formula of quantifier-rank 2.
Hence,

S ≡2FO T implies S ≡mMSO T , for all m .

For the inductive step, suppose that n > 0. Given a treeS of height at most n,
let (Si)i∈I be an enumeration of the subtrees attached at the root and let
S0 be the substructure consisting only of the root. Then we can write S as

S ≅ σ(S0 ⊕⊕
i∈I

Si) ,

where σ is a quantifier-free interpretation that adds the order relations
between the root and the other elements. We can replace the disjoint union
by a generalised sum and we obtain

S ≅ σ ′(S0 ⊕∑
i∈I

Si) ,

205



V. Trees

for a slightly different interpretation σ ′. ByTheorem I.4.24, it follows that
there exists some function g such that

S0 ≡mMSO T0 and ⟨I, Q̄⟩ ≡g(m)MSO ⟨I
′ , Q̄ ′⟩ implies S ≡mMSO T ,

where

Qθ ∶= { i ∈ I ∣Th
m
MSO(Si) = θ }

and similarly for Q ′
θ and the Ti .

By inductive hypothesis, there exists an FO-interpretation of quantifier-
rank fn−1(m)+ 2 mappingS to the index structure ⟨I, Q̄⟩.There also exists
an FO-interpretation of quantifier-rank 1 mapping S to S0. Furthermore,
by Proposition I.4.8, there exists some function h such that

⟨I, Q̄⟩ ≡h(k)FO ⟨I′ , Q̄ ′⟩ implies ⟨I, Q̄⟩ ≡kMSO ⟨I
′ , Q̄ ′⟩ .

Consequently,

S ≡ fn−1(m)+2+h(g(m))FO T

⇒ S0 ≡2FO T0 and ⟨I, Q̄⟩ ≡h(g(m))FO ⟨I′ , Q̄ ′⟩

⇒ S0 ≅ T0 and ⟨I, Q̄⟩ ≡g(m)MSO ⟨I
′ , Q̄ ′⟩

⇒ S ≡mMSO T .

2 Tree Automata

The Theorem of Büchi about the decidability of ⟨ω, ≤⟩ can be extended
to the monadic second-order theory of the infinite complete binary tree
T ∶= ⟨{0, 1}∗ , suc0 , suc1⟩. As there currently does not exist a purely model-
theoretic proof of this fact, we present the standard automata-theoretic
version here. In this section we prove that, over enriched trees, monadic
second-order logic is equivalent to tree automata. In the next one, we will
then prove several decidability results.
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Nondetermini#i$ Automata

Let us define our model of an automaton. We start with a nondeterministic
version. Intuitively, an automaton labels each vertex of the given input tree
by some state and this labelling has to satisfy two consistency conditions:
(i) the labelling of the successors of a vertex v have to match the state at v
and the letter at v, and (ii) each infinite branch has to satisfy the parity
condition. For (i), the automaton is equipped with anMSO-formula that
checks whether the states match.The details are as follows.

Definition 2.1. Let L be a logic.
(a) Let Σ be a relational signature and Q a set. We write

ΣQ ∶= Σ + {rt} + { Sq ∣ q ∈ Q }

for the expanded signature where rt is a constant symbol and the Sq are unary
predicates.The transition logicTLL[Σ,Q] consists of those L[ΣQ]-formulae
where every subformula of the form Sqx, for q ∈ Q , only appears positively,
i.e., under an even number of negation signs.
(b) Let T be a Σ-enriched tree and ρ ∶ T → Q a function.The successor

structure Su$∗(v; ρ) associated with a vertex v ∈ T is the ΣQ -structure

Su$∗(v; ρ) ∶= ⟨S, (Sq)q∈Q , v⟩ ,

where S is the substructure of T induced by the set Suc∗(v) and

Sq ∶= { x ∈ Suc(v) ∣ ρ(x) = q } , for q ∈ Q .

(c) A nondeterministic L-automaton is a tupleA = ⟨Q , Σ, δ, q0 ,Ω⟩ where
Q is a finite set of states, Σ is a finite input signature of enriched trees, q0 ∈ Q
is the initial state, Ω ∶ Q → ω is a priority function, and δ ∶ Q → TLL[Σ,Q]
is the transition function.

(d) A run of a tree automatonA = ⟨Q , Σ, δ, q0 ,Ω⟩ on an enriched tree T
over the signature Σ is a function ρ ∶ T → Q such that

Su$∗(v; ρ) ⊧ δ(ρ(v)) , for all v ∈ T .
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A run ρ is accepting if ρ(⟨⟩) = q0 and, for every infinite branch β of T,

lim inf
n→∞

Ω(ρ(β(n))) is even.

(e) An L-automaton A accepts a Σ-enriched tree T if there exists an
accepting run ofA on T. The language recognised byA is the set Lnd(A) of
all trees it accepts. ⌟

Example. Let K be the language of all trees over the alphabet {a, b} the
contain at least one letter a. We regard such trees as {Pa , Pb}-enriched
where Pa and Pb are two unary predicates encoding the labelling. We can
recognise K by the following nondeterministicMSO-automaton.

A ∶= ⟨Q , Σ, δ, q,Ω⟩

where Q ∶= {q}, Ω(q) ∶= 1, and

δ(q) ∶= Pa(rt) ∨ ∃x[x ≠ rt ∧ Sqx] . ⌟

Exercise 2.1. Find tree automata recognising the following languages over
the alphabet {a, b}.

(a) The language of all trees containing infinitely many letters a.

(b) The language of all trees such that below every vertex there is some
vertex with the letter a.

(c) The language of all trees such that there is some vertex below which
there are only letters a.

(d) The language of all trees such that some branch contains only letters a.

(e) The language of all trees such that every branch contains at least one a.

(f ) The language of all trees such that every branch contains only finitely
many a. ⌟

Exercise 2.2.
(a) Let K ⊆ Σω be an MSO-definable language. Construct an MSO-

automatonA accepting the language of all trees where each infinite branch
belongs to L.

208
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(b) Let K ⊆ {0, 1}∗ be anMSO-definable language. Construct anMSO-
automaton A accepting the language of all trees over the alphabet {a, b}
such that a vertex v is labelled by a if, and only if, v ∈ K. ⌟

Exercise 2.3. LetA be a nondeterministicMSO-automaton. Find anMSO-
formula defining L(A). ⌟

For the translation ofMSO into tree automata, we have to establish several
closure properties for languages recognised by automata. We start with the
closure under union and projection.

Proposition 2.2. Let L be one of MSO, CMSO, GSO, or CGSO. Given two
nondeterministic L-automataA andA′, we can compute an nondeterministic
L-automaton that recognises the language Lnd(A) ∪ Lnd(A

′).

Proof. LetA = ⟨Q , Σ, δ, q0 ,Ω⟩ andA′ = ⟨Q ′ , Σ, δ′ , q′0 ,Ω′⟩. We set

B ∶= ⟨Q + Q
′ + {q+}, Σ, δ+ , q+ ,Ω+⟩

where

δ+(q) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

δ(q) if q ∈ Q ,
δ′(q) if q ∈ Q ′ ,
δ(q0) ∨ δ′(q′0) if q = q+ ,

Ω(q) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Ω(q) if q ∈ Q ,
Ω′(q) if q ∈ Q ′ ,
0 if q = q+ .

We claim that Lnd(B) = Lnd(A) ∪ Lnd(A
′).

(⊇)Given an accepting run ρ ofA on some tree T, we obtain an run of
B on T by replacing the initial state ρ(∅) = q0 by q+. This run is again
accepting. In the same way, we can turn an accepting run ofA′ on T into
one of B.
(⊆) Let ρ be an accepting run of B on some tree T. By definition of

δ+(q+), we have

Su$∗(⟨⟩; ρ) ⊧ δ(q0) ∨ δ′(q′0) .
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By symmetry, we may suppose that

Su$∗(⟨⟩; ρ) ⊧ δ(q0) .

Then we can replace the state ρ(⟨⟩) = q+ by q0 and we obtain a run ofA
on T which is again accepting.

Proposition 2.3. Let L be one of MSO, CMSO, GSO, or CGSO. Let Σ be

a signature and let U ∉ Σ be an additional unary predicate. For every non-

deterministic L-automatonA over the signature Σ + {U}, we can compute a
nondeterministic L-automaton B over the signature Σ such that

L(B) = {T ∣ ⟨T,U⟩ ∈ L(A) for some U ⊆ T } .

Proof. GivenA = ⟨Q , Σ, δ, q0 ,Ω⟩, we set

B ∶= ⟨Q × {0, 1} + {q+}, Σ, δ′ , q+ , Ω′⟩

where the priority function is

Ω′(⟨q, b⟩) ∶= Ω(q) and Ω′(q+) ∶= 0 ,

and the transition function is

δ′(q+) ∶= ∃Uδ(q0)[Sp ↦ ϑp]p∈Q ,

δ′(⟨q, 0⟩) ∶= ∃U[¬U(rt) ∧ δ(q)][Sp ↦ ϑp]p∈Q ,

δ′(⟨q, 1⟩) ∶= ∃U[U(rt) ∧ δ(q)][Sp ↦ ϑp]p∈Q ,

where φ[Sp ↦ ϑp]p denotes the formula obtained from φ by replacing every
atom of the form Spx by the formula

ϑp(x) ∶= [¬Ux ∧ S⟨p,0⟩x] ∨ [Ux ∧ S⟨p,1⟩x] .

We claim that B accepts a tree T if, and only if,A accepts ⟨T ,U⟩, for some
U ⊆ U.
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(⇐) Suppose that ⟨T,U⟩ ∈ L(A) and let ρ be a corresponding accepting
run. We obtain an accepting run ρ′ of B on T by setting

ρ′(⟨⟩) ∶= q+ and ρ′(v) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

⟨ρ(v), 0⟩ if v ∉ U ,
⟨ρ(v), 1⟩ if v ∈ U ,

for v ≠ ⟨⟩ .

(⇒) Suppose that T ∈ L(B) and let ρ be a corresponding accepting run.
For every vertex v ∈ T with ρ(v) = ⟨q, b⟩, there exists a setUv ⊆ Suc∗(v)
such that

v ∈ Uv ⇔ b = 1 and ⟨Su$∗(v; ρ),Uv⟩ ⊧ δ(q)[Sp ↦ ϑp]p∈Q .

SetU ∶= ⋃v∈T(Uv ∖ {v}) and let ρ′ ∶ T → Q be the function ρ′ ∶= f ○ ρ
where

f (q+) ∶= q0 and f (⟨q, b⟩) ∶= q .

Then ρ′ is an accepting run ofA on ⟨T,U⟩.

Alternating Automata

Closure under complement is difficult to prove using nondeterministic auto-
mata. To simplify the proof, we therefore introduce a second automaton
model. An alternating automaton can make not only existential choices of
states but also universal ones. Intuitively, one can think of the automaton
splitting into several different copies, each of which reading the remainder
of the tree independently.

Definition 2.4. Let L be a logic. An alternating L-automaton

A = ⟨Q , Σ, δ, q0 ,Ω⟩

has the same form as a nondeterministic one, but the notions of a run and a
successor structure are defined differently.

A run of an alternating automatonA = ⟨Q , Σ, δ, q0 ,Ω⟩ on a Σ-enriched
tree T is a function ρ ∶ T → ℘(Q × Q) such that

Su$∗(v; ρ/q) ⊧ δ(q) , for all ⟨p, q⟩ ∈ ρ(v) and all v ∈ T ,
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where the successor structure Su$∗(v; ρ/q) is obtained from the substructure
of T induced by the set Suc∗(v) by adding the predicates

Sp ∶= { x ∈ Suc(v) ∣ ⟨q, p⟩ ∈ ρ(x) } , for p ∈ Q .

A trace of a run ρ is a sequence (pn)n<ω of states such that, for some
branch β of ρ,

⟨pn , pn+1⟩ ∈ ρ(β(n)) , for all n < ω .

A run ρ is accepting if ⟨q0 , q0⟩ ∈ ρ(⟨⟩) and

lim inf
n→∞

Ω(pn) is even, for every trace (pn)n<ω of ρ .

The language recognised byA is denoted Lalt(A). ⌟

Note that the traces of a run correspond to the various copies of the
automaton as it reads the tree. To reconstruct these traces from the run, we
not only have to know the current state, but also the previous one.This is
why we use pairs of states.

Example. The following alternating MSO-automaton recognises the lan-
guage of all trees over the alphabet {a, b, c} that contain at least one letter a
and at least one letter b.

A = ⟨Q , Σ, δ, q0 ,Ω⟩

where Q ∶= {q0 , qa , qb}, Ω(q0) = Ω(qa) = Ω(qb) = 1, and

δ(q0) ∶= [Pa(rt) ∨ ∃x[x ≠ rt ∧ Sqa x]]

∧ [Pb(rt) ∨ ∃x[x ≠ rt ∧ Sqb x]] ,

δ(qa) ∶= Pa(rt) ∨ ∃x[x ≠ rt ∧ Sqa x] ,

δ(qb) ∶= Pb(rt) ∨ ∃x[x ≠ rt ∧ Sqb x] . ⌟

When working with alternating automata it is often easier to base accept-
ance not on runs but on a certain parity game.The definition is very similar
to the model-checking game for the modal µ-calculus.
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Definition 2.5. LetA = ⟨Q , Σ, δ, q0 ,Ω⟩ be an alternating automaton and
let T be an enriched tree over Σ. The automaton game G(A,T) forA on T is
the parity game where the positions of Player◇, also called Automaton, are

V◇ ∶= T × Q

and the positions of Player ◻, also called Tracer, are

V◻ ∶= ⋃
v∈T

℘(Suc(v) × Q) .

The initial position is ⟨⟨⟩, q0⟩.
The edge relation is defined as follows. From a V◻-positionH there are

edges to every V◇-position ⟨u, p⟩ ∈ H. From a V◇-position ⟨v , q⟩ there are
edges to every V◻-positionH ⊆ Suc(v) × Q such that

⟨S, S̄ , v⟩ ⊧ δ(q) ,

where, similarly to the definition of Su$∗(v; ρ), S is the substructure of T
induced by the set Suc∗(v) and

Sp ∶= { u ∈ Suc(v) ∣ ⟨u, p⟩ ∈ H } , for p ∈ Q .

Finally, we assign to positions ⟨v , q⟩ ∈ V◇ the priority Ω(q) and to
positionsH ∈ V◻ an arbitrary priority greater than all priorities used byA.

⌟

Proposition 2.6. Automaton has a winning strategy in G(A,T) if, and only
if, T ∈ Lalt(A).

Proof. (⇐) Given an accepting run ρ ofA on T, we construct a winning
strategy σ for Automaton in G(A,T) as follows. In a position ⟨v , q⟩ ∈ V◇,
Automaton chooses the new position

H ∶= { ⟨u, p⟩ ∈ Suc(v) × Q ∣ ⟨q, p⟩ ∈ ρ(u) } .

To see that this strategy is winning, consider a play

⟨v0 , q0⟩,H0 , ⟨v1 , q1⟩,H1 , . . .
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conforming to σ . By definition of σ , it follows that the sequence q0 , q1 , . . .
of states appearing in this play is a trace of ρ. As ρ is accepting, this trace
satisfies the parity condition. Consequently, the above play also satisfies the
parity condition and Automaton wins the game.
(⇒) Let σ be a winning strategy for Automaton in G(A,T). We con-

struct a run ρ of A on T inductively as follows. We start with ρ(⟨⟩) ∶=
{⟨q0 , q0⟩}. For the inductive step, suppose that ρ(v) has already been
defined. Let

U ∶= { q ∈ Q ∣ ⟨p, q⟩ ∈ ρ(v) for some p } .

For u ∈ Suc(v), set

ρ(u) ∶= { ⟨q, p⟩ ∣ q ∈ U , ⟨u, p⟩ ∈ σ(⟨v , q⟩) } .

Then ρ is a run ofA on T.
To see that it is accepting, consider a trace (qn)n<ω of ρ along a branch β.

Let

⟨v0 , q0⟩,H0 , ⟨v1 , q1⟩,H1 , . . .

be a play of G(A,T) conforming to σ where Tracer chooses in step n some
pair ⟨vn , qn⟩ ∈ Hn−1 such that vn is the successor of vn−1 that lies on the
branch β. Since σ was assumed to be winning, this play satisfies the parity
condition. Hence, so does the trace (qn)n<ω .

After these preparations, we are finally able to prove closure under com-
plement.

Definition 2.7. Let φ ∈ TLL[Σ,Q].The dual of φ is the formula φ obtained
from ¬φ by negating all atomic formulae of the form Sqx with q ∈ Q . ⌟

Let us note the following property of this operation.

Lemma 2.8. LetC be a Σ-structure, a ∈ C, and φ ∈ TLL[Σ,Q]. For a family S̄
of subsets Sq ⊆ C, we have

⟨C, S̄ , a⟩ ⊧ φ iff for all S̄
′
in C with ⟨C, S̄′ , a⟩ ⊧ φ there is

some q ∈ Q with Sq ∩ S
′
q ≠ ∅ .
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Proof. Set Scq ∶= C ∖ Sq . Then

⟨C, S̄ , a⟩ ⊧ φ iff ⟨C, S̄c , a⟩ ⊧ ¬φ

iff there is no S̄′ in C with ⟨C, S̄′ , a⟩ ⊧ φ
and S′q ⊆ S

c
q for all q ∈ Q

iff for all S̄′ in C with ⟨C, S̄′ , a⟩ ⊧ φ , there

is some q ∈ Q with Sq ∩ S
′
q ≠ ∅ ,

where the second step follows from the fact that the formula φ is monotone
in S̄.

Proposition 2.9. Let L be one of MSO, CMSO, GSO, or CGSO. Given an
alternating L-automatonA, we can compute an alternating L-automaton that
recognises the complement of Lalt(A).

Proof. Suppose thatA = ⟨Q , Σ, δ, q0 ,Ω⟩. We construct a new automaton
B ∶= ⟨Q , Σ, δ̃, q0 , Ω̃⟩ where, for q ∈ Q ,

δ̃(q) ∶= δ(q) and Ω̃(q) ∶= Ω(q) + 1 .

We claim that B recognises the complement of Lalt(A).
First, let T ∈ Lalt(A) and let ρ be an accepting run ofA on T. Consider

any run ρ′ of B on T. We have to show that ρ′ is not accepting. We define a
branch (vn)n<ω of T and a sequence (pn)n<ω of states such that

⟨pn , pn+1⟩ ∈ ρ(vn+1) ∩ ρ′(vn+1) , for all n < ω .

We start with v0 ∶= ⟨⟩ and p0 ∶= q0. Suppose that vn and pn have already
been defined.Then

Su$∗(vn ; ρ/pn) ⊧ δ(pn) and Su$∗(vn ; ρ′/pn) ⊧ δ(pn) .

Hence, we can use Lemma 2.8 to find vn+1 ∈ Suc(vn) and pn+1 ∈ Q with

⟨pn , pn+1⟩ ∈ ρ(vn+1) ∩ ρ′(vn+1) .
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Note that the sequence (pn)n<ω we constructed is a trace of both runs.
Since ρ is accepting, it follows that this trace satisfies the parity condition,
that is,

lim inf
n→∞

Ω(pn) is even.

Consequently,

lim inf
n→∞

Ω̃(pn) = lim inf
n→∞

Ω(pn) + 1 is odd.

We found a trace of ρ′ that does not satisfy the parity condition. Con-
sequently, ρ′ is not accepting.
To conclude the proof we have to show that every tree T ∉ Lalt(A) has an

accepting run for the automatonB. By Proposition 2.6, Tracer has a winning
strategy σ in G(A,T) and it is sufficient to construct a winning strategy σ ′
for Automaton in G(B,T). For ⟨v , q⟩ ∈ V◇, we set

σ ′(⟨v , q⟩) ∶= { σ(K) ∣ ⟨v , q⟩ → K an edge in G(A,T) } .

First, let us prove that H ∶= σ ′(⟨v , q⟩) is actually a successor of ⟨v , q⟩
in G(B,T). Let C be the substructure of T induced by Suc∗(v) and set

Sp ∶= { u ∈ Suc(v) ∣ ⟨u, p⟩ ∈ H } .

We have to show that ⟨C, S̄ , v⟩ ⊧ δ(q). By Lemma 2.8, it is sufficient to
prove that, for all S̄′ in C,

⟨C, S̄′ , v⟩ ⊧ δ(q) implies Sp ∩ S
′
p ≠ ∅ , for some p ∈ Q .

Hence, suppose that ⟨C, S̄′ , v⟩ ⊧ δ(q). Set

K ∶= { ⟨u, p⟩ ∈ Suc(v) × Q ∣ u ∈ S′p } .

By choice of S̄′, the position K is a successor of ⟨v , q⟩ in G(A,T). Let
⟨u, p⟩ ∶= σ(K). By definition of H, it follows that ⟨u, p⟩ ∈ H, i.e., u ∈ Sp .
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As ⟨u, p⟩ is a successor of K in G(A,T), we further have ⟨u, p⟩ ∈ K, i.e.,
u ∈ S′p . Consequently, u ∈ Sp ∩ S

′
p ≠ ∅, as desired.

It remains to prove that σ ′ is a winning strategy for Automaton. Let

⟨v0 , q0⟩,H0 , ⟨v1 , q1⟩,H1 , . . .

be a play in G(B,T) conforming to σ ′. Then ⟨vn , qn⟩ ∈ Hn−1, for n < ω. By
definition of σ ′, it follows that in G(A,T) there are edges

⟨vn−1 , qn−1⟩ → Kn−1 with σ(Kn−1) = ⟨vn , qn⟩ , for n < ω .

Consequently,

⟨v0 , q0⟩,K0 , ⟨v1 , q1⟩,K1 , . . .

is a play in G(A,T) following the strategy σ . Since σ is winning for Tracer,
it follows that the sequence (qn)n<ω does not satisfy the parity condition
in G(A,T). As the priorities in G(B,T) are shifted by 1, this implies that
(qn)n<ω does satisfy the parity condition in G(B,T). Hence, the play is
winning for Automaton.

Equivalen$e Of The Automaton Model+

It remains to prove that alternating automata are equivalent to nondetermin-
istic ones. One direction is straightforward.

Proposition 2.10. Let L be one of MSO, CMSO, GSO, or CGSO. For every
nondeterministic L-automaton, we can compute an alternating L-automaton

recognising the same language.

Proof. LetA = ⟨Q , Σ, δ, q0 ,Ω⟩ be a nondeterministic automaton. We con-
struct the automaton Ã ∶= ⟨Q , Σ, δ̃, q0 ,Ω⟩ with transition function

δ̃(q) ∶= ∃Z̄[refine(Z̄ , S̄) ∧ δ(q)[S̄ ↦ Z̄]]
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where the formula

refine(Z̄ , S̄) ∶= ⋀
p∈Q

Zp ⊆ Sp ∧ ⋀
p≠q

Zp ∩ Zq = ∅

∧ ∀x[x ≠ rt→ ⋁
p∈Q

Zp]

states that Z̄ is a partition of all non-root vertices that is contained in S̄.
(φ[S̄ ↦ Z̄] denotes the formula obtained from φ by replacing each atomic
subformula of the form S ix by the corresponding formula Z ix.) We claim
that

Lnd(A) = Lnd(Ã) = Lalt(Ã) .

For the first equation, let ρ ∶ T → Q be a run of a nondeterministic auto-
maton.Then the predicates S̄ of the structure Su$∗(v; ρ) form a partition
of the non-root vertices. Hence, Z̄ = S̄ is the unique family of sets satisfying
the formula refine(Z̄ , S̄). Consequently,

Su$∗(v; ρ) ⊧ δ̃(q) iff Su$∗(v; ρ) ⊧ δ(q) .

It follows that ρ is an accepting run of Ã if, and only if, it is an accepting run
ofA.
For the second equation, let ρ ∶ T → Q be an accepting run of Ã, con-

sidered as a nondeterministic automaton.Thenwe obtain an accepting run ρ′
of the corresponding alternating automaton by setting

ρ′(⟨⟩) ∶= {⟨q0 , q0⟩} and ρ′(v) ∶= {⟨ρ(u), ρ(v)⟩} ,

for every vertex v with immediate predecessor u.
Conversely, let ρ ∶ T → ℘(Q × Q) be an accepting run of Ã, considered

as an alternating automaton. As we have already established the first equality,
it is sufficient to construct an accepting run ρ′ ofA. We do so by induction.
We start with ρ′(⟨⟩) ∶= q0. For the inductive step, suppose that ρ′(v) has
already been defined. Since

Su$∗(v; ρ/ρ′(v)) ⊧ δ̃(ρ′(v))
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there exists a family S̄′ of sets such that

Su$∗(v; ρ/ρ′(v)) ⊧ refine(S̄′ , S̄) ∧ δ(ρ′(v))[S̄ ↦ S̄
′] .

For each u ∈ Suc(v), we define

ρ′(u) ∶= q where u ∈ S′q .

(As S̄′ is a partition of Suc(v), this is well-defined.)Then

Su$∗(v; ρ′) ⊧ δ(ρ′(v)) , for all v ∈ T ,

which means that ρ′ is a run of A. It is accepting since, in the above con-
struction, the sets S̄′ are chosen as subsets of S̄.

The converse is more involved since the obvious power-set construction
produces an automaton whose acceptance condition is not a parity condition.

Definition 2.11. Let Q be a set and Ω ∶ Q → ω a priority function. The
trace semigroup is the semigroup SΩ(Q) ∶= ⟨S , Sω⟩ where

S ∶= ℘(Q × Q) and Sω ∶= ℘(Q) .

For A, B ∈ S and P ∈ Sω , the binary products are defined by

A ⋅ B ∶= { ⟨p, r⟩ ∣ ⟨p, q⟩ ∈ A and ⟨q, r⟩ ∈ B for some q } ,

A ⋅ P ∶= { p ∈ Q ∣ q ∈ P for all q with ⟨p, q⟩ ∈ A} .

Given an infinite sequence A0 ,A1 , . . . ∈ S, we define the infinite product
π(A0 ,A1 , . . . ) as follows. We call a sequence (pn)n<ω of states a trace of
(An)n<ω if

⟨pn , pn+1⟩ ∈ An , for all n < ω .

The set π(A0 ,A1 , . . . ) consists of all states p ∈ Q such that every trace
(pn)n<ω of (An)n<ω starting with p0 = p satisfies the parity condition Ω.

⌟
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Proposition 2.12. Let L be one of MSO, CMSO, GSO, or CGSO. For every
alternating L-automaton, we can compute a nondeterministic L-automaton

recognising the same language.

Proof. LetA = ⟨Q , Σ, δ, q0 ,Ω⟩ be an alternating L-automaton. We start
by constructing a nondeterministic L-automaton C with set of states Q ′ ∶=
℘(Q×Q) such that every run ρ ∶ T → ℘(Q×Q) ofA is also a runT → Q

′

of C, and vice verse. This can be done by defining the transition function as

δ′(A) ∶= ⋀
⟨p,q⟩∈A

δ(q)[Sr ↦ ϑq
r ]r∈Q

where

ϑq
r (x) ∶= ⋁{ SBx ∣ B ∈ Q

′ with ⟨q, r⟩ ∈ B } ,

and where we denote by φ[Sr ↦ ϑr]r∈Q the formula obtained from φ by
replacing every subformula of the form Srx, for r ∈ Q , by the corresponding
formula ϑr(x).
Clearly, every run ofA is a run of C and every run of C is one ofA. Un-

fortunately, the same is not true for accepting runs. Therefore, we modify C
as follows.
Let SΩ(Q) = ⟨Q

′ ,℘(Q)⟩ be the trace semigroup of Q . According to
Theorem III.4.5 we can effectively construct a deterministic automatonD =
⟨Q̃ ,Q ′ , δ̃, q̃0 , Ω̃⟩ that recognises the language of all ω-words w ∈ (Q ′)ω

whose product π(w) ∈ ℘(Q) contains the state q0.
The automaton B = ⟨Q ′′ , Σ, δ′′ , q′′0 ,Ω′′⟩ is the product of C andD. The

set of states is Q ′′ ∶= Q ′ × Q̃ , the initial state is q′′0 ∶= ⟨{⟨q0 , q0⟩}, q̃0⟩, the
priority function is

Ω′′(⟨A, p⟩) ∶= Ω̃(p) ,

and the transition function is defined by

δ′′(⟨A, p⟩) ∶= δ′(A)[SB ↦ ϑB]B∈Q′ ∧ ∀x[x ≠ rt→ ηδ̃(p,A)(x)] .

where

ϑB(x) ∶= ⋁
p∈Q̃

S⟨B ,p⟩x and ηp(x) ∶= ⋁
B∈Q′

S⟨B ,p⟩x .
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We claim that B accepts the same trees as A. Suppose that T ∈ L(A)
and let ρ ∶ T → ℘(Q × Q) be an accepting run ofA on T. Then ρ is also a
run of C. We define a function τ ∶ T → Q̃ by setting

τ(v) ∶= δ̃∗(q̃0 , v) ,

where δ̃∗ is the extension of δ̃ ∶ Q̃ ×Q ′ → Q̃ to a function Q̃ ×(Q ′)∗ → Q̃ .
We obtain a run ρ′ ∶ T → Q

′′ by setting

ρ′(v) ∶= ⟨ρ(v), τ(v)⟩ .

To show that ρ′ is accepting, consider a branch β of T. Since every trace of ρ
satisfies the parity condition, the product

π(ρ(v))v≺β

evaluates to a set containing the state q0. Consequently,D accepts the word
(ρ(v))v≺β and the run (τ(v))v≺β is accepting, i.e., it satisfies the parity
condition. By definition of Ω′′, it follows that (ρ′(v))v≺β also satisfies the
parity condition.

Conversely, suppose that T ∈ L(B) and let ρ ∶ T → Q
′′ be a correspond-

ing accepting run. Let ρ′ ∶ T → Q
′ and τ ∶ T → Q̃ be the functions such

that

ρ(v) = ⟨ρ′(v), τ(v)⟩ .

Then ρ′ is a run ofC and, hence, one ofA. To show that it is accepting, let β be
a branch of T. Since the sequence (ρ(v))v≺β satisfies the parity condition,
it follows by definition of Ω′′ that so does the projection (τ(v))v≺β . By
definition of the trace semigroup, this implies that every trace of (ρ′(v))v≺β
satisfies the parity condition.

Equivalen$e to MSO

Using the closure properties established above, it is now straightforward to
translate betweenMSO-formulae and automata.
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V. Trees

Definition 2.13. A set of trees is regular if it is recognised by an MSO-
automaton. ⌟

Theorem2.14. Let L be one of MSO orCMSO. For every L[Σ]-formula φ(X̄)
withmonadic variables X̄, we can effectively construct an alternating L-automatonAφ
such that

Aφ accepts a Σ-enriched tree ⟨T, P̄⟩ iff T ⊧ φ(P̄) .

Proof. We constructAφ by induction on φ. Without loss of generality, we
may assume that φ does contain neither first-order variables, nor subfor-
mulae of the form Y ∩ Z = ∅ or cover(Z̄). Thus, there are the following
cases.
If φ = (X ⊆ Y), we use a single state q checking that X ⊆ Y at each

position. Hence, we setAφ ∶= ⟨{q}, Σ, δ, q,Ω⟩ where Ω(q) ∶= 0 and

δ(q) ∶= ∀x[Xx → Yx] ∧ ∀x[x ≠ rt→ Sqx] .

Ifφ = sing(X), we use two states: q looks for an element inX and∗makes
sure that there are no other elements.Thus, we setAφ ∶= ⟨{q, ∗}, Σ, δ, q,Ω⟩
where

δ(q) ∶= [X = {rt} ∧ ∀x(x ≠ rt→ S∗x)]

∨ [rt ∉ X ∧ ∃x[x ≠ rt ∧ Sqx ∧ ∀y(y ≠ rt ∧ y ≠ x → S∗y)]]

δ(∗) ∶= X = ∅ ∧ ∀x[x ≠ rt→ S∗x] ,

and Ω(q) ∶= 1 , Ω(∗) ∶= 0 .

If φ = ∣X∣ < ∞, we use an automaton A with two states p, q with
Ω(p) = 1 and Ω(q) = 0, where q checks that the set X is empty in the
corresponding subtree. The initial state is p and the transition formulae are

δ(p) ∶= ∃ZpZq[Zp ⊆ Sp ∧ Zq ⊆ Sq ∧ cover(Zp ,Zq , {rt})

∧ ∣Zp ∣ < ∞] ,

δ(q) ∶= X = ∅ ∧ ∀x[x ≠ rt→ Sqx] .
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2 Tree automata

(The formula δ(p) is a bit complicated since it has to be monotone in Sp .)
If φ = ∣X∣ ≡ k (mod m), we use an automaton A with states Q ∶=

{∗} + [m] where Ω(∗) = 0 and Ω(i) = 1, for i ∈ [m]. The state ∗ checks
that the set X is empty in the corresponding subtree while a state i ∈ [m]
checks that ∣X∣ ≡ i (mod m) in this subtree. The initial state is k and the
transition formulae are

δ(∗) ∶= X = ∅ ∧ ∀x[x ≠ rt→ S∗x] ,

δ(i) ∶= ∃Z̄[ ⋀
q∈Q

Zq ⊆ Sq ∧ cover(Z̄ , {rt})

∧ [(rt ∉ X ∧Modi(Z̄)) ∨ (rt ∈ X ∧Modi−1(Z̄))]] ,

where

Modi(Z̄) ∶= ⋁
g
⋀
j<m
∣Z j ∣ ≡ g( j) (mod m)

and the disjunction in this formula ranges over all functions g ∶ [m] → [m]
such that

g(0) + ⋅ ⋅ ⋅ + g(m − 1) ≡ i (mod m) .

Suppose that φ = X ≤pf Y. This formula is equivalent to

sing(X) ∧ sing(Y) ∧ ∃xy[Xx ∧ Yy ∧ x ≤pf y] .

Since we have already constructed an automaton recognising sing(X) and
since automata are closed under intersection, it is therefore sufficient to
find an automaton for the formula ∃xy[Xx ∧ Yy ∧ x ≤pf y]. We use
two states: q looks for an element in X and p for one in Y. Hence, we set
A ∶= ⟨{q, p}, Σ, δ, q,Ω⟩ where

δ(q) ∶= X = {rt} = Y ∨ [X = {rt} ∧ ∃x(x ≠ rt ∧ Spx)]

∨ ∃x[x ≠ rt ∧ Sqx] ,

δ(p) ∶= Y = {rt} ∨ ∃x[x ≠ rt ∧ Spx] ,
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V. Trees

and Ω(q) ∶= 1 , Ω(p) ∶= 1 .

If φ = RX0 . . .Xn−1 withR ∈ Σ, it is again sufficient to find an automaton
for the formula

∃x̄[⋀
i
X ix i ∧ Rx̄] .

We setAφ ∶= ⟨{q}, Σ, δ, q,Ω⟩ where Ω(q) ∶= 1 and

δ(q) ∶= ∃x̄[Rx̄ ∧ ⋀
i<n

x i ∈ X i] ∨ ∃x[x ≠ rt ∧ Sqx] .

Suppose that φ = ψ ∨ ϑ. By inductive hypothesis, we can construct
automataAψ andAϑ for ψ and ϑ. Hence, the desired automaton for φ can
be obtained via Proposition 2.2.
Suppose that φ = ¬ψ. By inductive hypothesis, we can construct an

automaton forAψ . Hence, the desired automaton for φ can be obtained via
Proposition 2.9.

Finally, suppose that φ = ∃Xψ. By inductive hypothesis, we can construct
an automaton forAψ . Since we can translate between alternating automata
and nondeterministic automata, we can therefore obtain the desired auto-
maton for φ by Proposition 2.3.

Theorem 2.15. Let L be one of MSO or CMSO. For every alternating L-
automatonA over the signatureΣ, we can effectively construct an L[Σ]-formula φA
such that

T ⊧ φ iff A accepts T .

Proof. LetA ∶= ⟨Q , Σ, δ, q0 ,Ω⟩. The formula φA guesses sets encoding a
run of the automaton and then checks that the guessed run is accepting. We
set

φA ∶= ∃(Zp,q)p,q∈Q[INIT ∧ TRANS ∧ ACC]
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2 Tree automata

where we use the following formulae.

INIT ∶= ∃x[Zq0 ,q0x ∧ ∀y(x ≤pf y)]

states that the root contains the pair ⟨q0 , q0⟩.

TRANS ∶= ∀x ⋀
p,q∈Q
[Zp,qx → δ̂(q)(x)]

states that at every vertex a correct transition is used. Here, δ̂(q)(x) denotes
the restriction of the formula δ(q) to the set Suc∗(x).

ACC ∶= ∀Y[BRANCH(Y) → PARITY(Z̄ ,Y)]

checks the parity condition.The formula

BRANCH(Y) ∶=

Y ≠ ∅ ∧ ∀x∀y[Yx ∧ Yy → (x ≤pf y ∨ y ≤pf x)]

∧ ∀x∃y[Yx → x <pf y ∧ Yy]

states that the elements in Y form an infinite branch and

PARITY(Z̄ ,Y) ∶=

∀(Xp,q)p,q∈Q[TRACE(Z̄ , X̄,Y) → ⋁
k<n

MIN2k(X̄,Y)]

states that every trace for the branch Y satisfies the parity condition. Here,
n is any number such that the maximal priority ofA is smaller than 2n, the
formula

TRACE(Z̄ , X̄,Y) ∶=

⋀
p,q
[Xp,q ⊆ Zp,q ∩ Y] ∧ ∀x[Yx → ⋁

p,q∈Q
Xp,qx]

states that the sets X̄ encode a trace of the branch Y, and the formula

MINk(X̄,Y) ∶= ⋁
q∈Hk

INFq(X̄,Y) ∧ ⋀
q∈Hk−1

¬INFq(X̄,Y)
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V. Trees

states that the minimal priority seen infinitely often in the trace encoded
by X is equal to k. The set

Hk ∶= { q ∈ Q ∣ Ω(q) ≤ k }

contains all states with priority at most k and the formula

INFq(X̄,Y) ∶= ∀x∃y[x ≤ y ∧ Yy ∧ ⋁
p∈Q

Xp,q y]

states that the trace contains infinitely many occurrences of the state q.

Regular Tree+

As an application of the equivalence between automata andMSO-formulae,
we prove that every non-empty regular tree language contains a regular tree.

Definition 2.16. A tree T is regular if, up to isomorphism, it has only finitely
many subtrees. ⌟

Exercise 2.4. Prove that a finitely-branching tree is regular if, and only if, it
is the unravelling of a finite directed graph. ⌟

Theorem 2.17. Let L be a regular language of enriched trees over the signature Σ.
If L is non-empty, it contains a regular tree. Furthermore, if Σ consists of only

unary predicates, this tree can be effectively constructed from a given automaton

recognising L.

Proof. LetA = ⟨Q , Σ, δ, q0 ,Ω⟩ be anMSO-automaton recognising L and
let m be the maximal quantifier-rank of the formulae δ(q), q ∈ Q . We use a
variant of the automaton game where Player◇ not only chooses the next
transition but also the corresponding input letter. Let S̄ = (Sq)q∈Q be unary
predicates encoding the states ofA.We denote byUn the class of all enriched
trees U over the signature Σ + S̄ + {rt} whose height is at most n and such
that there is exactly one state q ∈ Q with

rtU ∈ SU
q .
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2 Tree automata

Let U0
n ⊆ Un be a set of representatives containing exactly one structure of

eachMSOm-theory. The game uses positions

V◇ ∶= {∗} + Q × U0
0 and V◻ ∶= U

0
1 .

The initial position is ∗ ∈ V◇. In position ∗, Player◇ chooses someV ∈ U0
1

such that

V ⊧ Sq0(rt) ∧ δ(q0) ,

while, in position ⟨q,U⟩, he chooses V ∈ U0
1 satisfying

V ⊧ Sq(rt) ∧ δ(q) and V∣{rt} ≅ U .

Player ◻ responds with some vertex v ∈ V different from the root and some
state p ∈ Q with v ∈ Sp . The game continues in position ⟨p,V′⟩ where
V′ is the structure obtained from V∣{v} by removing the root rt from all
predicates Sq with q ≠ p. Finally, a play is winning if the corresponding
sequence of states satisfies the parity condition.

Note that a winning strategy for Player◇ is determined by a tree T and
an accepting run ofA on T. Conversely, Player ◻ wins the game if no tree
has an accepting run. Since L ≠ ∅, it follows that Player◇ has a positional
winning strategy σ . Let G be the graph obtained from the game by removing
all edges that do not correspond to σ . The unravelling of G is a regular tree
accepted byA.

Finally, note that the construction of G is effective, provided that we can
compute the sets of representativesU0 andU1. If all predicates in Σ are unary,
we can do so since it is decidable whether anMSOm-theory is satisfied by
some extended tree of height 0 or 1 over Σ. (The easiest way to see this is
using Theorem 3.5 below. Alternatively one can use a direct composition
argument to build a tree using disjoint unions.)

Corollary 2.18. Let m < ω. For every tree T, there exists a regular tree S with

S ≡mCMSO T.

Proof. Let θ ∶= Thm
MSO(T) and set φ ∶= ⋀ θ. The language of all trees

satisfying φ is regular and, therefore, it contains some regular tree.
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V. Trees

3 The Mucnik Iteration

Having defined tree automata, we now can used them to study decidability
questions. We consider the theory of enriched trees of the following kind.

Definition 3.1. Let A = ⟨A, R̄⟩ be a Σ-structure.TheMuchnik iteration of A
is the (Σ + {suc, cl})-structure

A∗ ∶= ⟨A∗ , R̄∗ , suc, cl⟩

where

R
∗
i ∶= { ⟨wa0 , . . . ,wan−1⟩ ∣ w ∈ A

∗ , ā ∈ R i } ,

suc ∶= { ⟨w ,wa⟩ ∣ w ∈ A∗ , a ∈ A} ,

cl ∶= {waa ∣ w ∈ A∗ , a ∈ A} .

The predicate cl is called the clone relation. ⌟

Remark. Note that A∗ is a (Σ + {cl})-enriched tree. Hence, we can use the
automata-theoretic tools from the previous section to study theMSO-theory
of such structures. ⌟

Example. The unravelling of a directed graph G = ⟨V , E⟩ is MSO-inter-
pretable in the Muchnik iteration G∗. To do so, we only need to find a
formula φ(x) stating that a sequence x ∈ V∗ of vertices corresponds to a
path of G. Such a formula is given by

φ(x) ∶= ∀y[y ≤pf x → ∃z(cl(z) ∧ Ezy)] . ⌟

To show that the Muchnik iteration is MSO-compatible, we can use
tree automata and the corresponding automaton games. Since trees of the
form A∗ are very regular, we can simplify these games considerably. In par-
ticular, we do not need to remember the precise vertex v ∈ A∗ we are in, but
only its last letter.
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3 The Muchnik Iteration

Definition 3.2. LetA ∶= ⟨Q , Σ + {cl}, δ, q0 ,Ω⟩ be an alternating L-auto-
maton and let A be a Σ-structure. The reduced game

G0(A,A) = ⟨V◇ ,V◻ , E ,Ω′⟩

has positions

V◇ ∶= A× Q + {⟨⟨⟩, q0⟩} and V◻ ∶= ℘(A× Q) .

The initial position is ⟨⟨⟩, q0⟩ and the edge relation E is defined as follows.
From aV◻-positionH there are edges to allV◇-positions ⟨b, q⟩ ∈ H. From a
V◇-position ⟨a, q⟩with a ∈ A∪{⟨⟩}, there are edges to everyV◻-positionH
satisfying

⟨A⊕ a, S̄ , a⟩ ⊧ δ(q) , where Sp ∶= { b ∈ A ∣ ⟨b, p⟩ ∈ H }

and A ⊕ a denotes the substructure Su$∗(a) of A∗, that is, A ⊕ a is the
disjoint union ofA and a singleton structureA∣{a} expanded by the successor
relation suc and the clone predicate cl. Similarly, for a = ⟨⟩, we denote by
A ⊕ ⟨⟩ the substructure of A∗ consisting of the root and its immediate
successors.

The priority function is defined in the same way as for G(A,A∗), i.e., we
set

Ω′(⟨v , q⟩) ∶= Ω(q) , for ⟨v , q⟩ ∈ V◇ ,

while Ω′(H), forH ∈ V◻, is an arbitrary number larger than all priorities
used byA. ⌟

Lemma 3.3. LetA be an alternating L-automaton and let A be a Σ-structure.
Automaton has a winning strategy for G0(A,A) if, and only if, he has one for
G(A,A∗).

Proof. Suppose thatA = ⟨Q , Σ ∪ {cl}, δ, q0 ,Ω⟩,

G(A,A∗) = ⟨V◇ ,V◻ , E ,Ω⟩ and G0(A,A) = ⟨V0
◇ ,V

0
◻ , E

0 ,Ω0⟩ .
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Let r ∶ A+ → A be the function mapping a word to its last letter:

r(va) ∶= a .

We define a projection function h ∶ V → V
0 by applying r to the first

component of every position.

h(⟨v , q⟩) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

⟨⟨⟩, q0⟩ if v = ⟨⟩ ,
⟨r(v), q⟩ otherwise ,

for ⟨v , q⟩ ∈ V◇ ,

h(H) ∶= { ⟨r(v), q⟩ ∣ ⟨v , q⟩ ∈ H } , forH ∈ V◻ .

(Note that, in a play of G(A,A∗), we will never see a position of the form
⟨⟨⟩, q⟩with q ≠ q0. Hence, in the above definition the replacement of q by q0
is harmless.)

The function h is a homomorphism from G(A,A∗) to G0(A,A). In par-
ticular, it is an immersion. Consequently, the claim follows by Lemma IV.5.6.

We can use the reduced game G0(A,A) to compute the winning region
inside the structure A.

Lemma 3.4. LetA be an alternating L-automaton where L is one of MSO or

CMSO, and let A be a Σ-structure. Given anMSO-formula φ where each set

quantifier ranges only over subsets of V◇, we can compute an L[Σ]-formula φ′
such that

G0(A,A) ⊧ φ iff A ⊧ φ′ .

Proof. Suppose thatA = ⟨Q , Σ+{≤pf , cl}, δ, q0 ,Ω⟩ and set s ∶= ∣Q ∣. Recall
that G0(A,A) = ⟨V◇ ,V◻ , E ,Ω′⟩ where

V◇ = A× Q + {⟨⟨⟩, q0⟩} ,
V◻ = ℘(A× Q) = ℘(V◇ ∖ {⟨⟨⟩, q0⟩}) ,
E = { ⟨⟨a, q⟩, S⟩ ∈ V◇ ×V◻ ∣ ⟨A⊕ a, (Sp)p , a⟩ ⊧ δ(q) }

∪ { ⟨S , ⟨a, q⟩⟩ ∈ V◻ ×V◇ ∣ ⟨a, q⟩ ∈ S } ,
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3 The Muchnik Iteration

where we have used the notation Sp ∶= { b ∈ A ∣ ⟨b, p⟩ ∈ S }.
To reduce this structure to A, we construct as an intermediate step the

2-sorted structure

G ∶= ⟨℘(V◇),V◻ , E′ , P̄⟩

where

E
′ ∶= { ⟨{u}, v⟩ ∣ ⟨u, v⟩ ∈ E ∩ (V◇ ×V◻) }

∪ { ⟨u, {v}⟩ ∣ ⟨u, v⟩ ∈ E ∩ (V◻ ×V◇) } ,

Pi ∶= { {v} ∈ ℘(V◇) ∣ Ω(v) = i } ∪ { v ∈ V◻ ∣ Ω(v) = i } .

That is, G is obtained from G(A,A) by applying the power-set operation ℘,
but only to the positions of Player ◇. Since the set quantifiers in φ only
range over subsets of V◇, we can use the construction in Proposition I.2.2
to translate φ to an FO-formula ψ satisfying

G0(A,A) ⊧ φ iff G ⊧ ψ .

To conclude the proof, we shall construct an (L, FO)-compatible opera-
tion σ and an FO-interpretation τ such that

G ≅ τ(σ(A)) .

Then it follows that we can compute an L-formula φ′ such that

A ⊧ φ′ iff σ(A) ⊧ ψτ iff G ⊧ ψ iff G0(A,A) ⊧ φ ,

as desired. Hence, it remains to construct σ and τ. The definition depends
on the logic L.

First, suppose that L = MSO. We set

σ(A) ∶= ℘(1⊕ copy2s(A)) .

This operation is (MSO, FO)-compatible since 1⊕ − and copy2s areMSO-
compatible and ℘ is (MSO, FO)-compatible. Hence, it remains to define τ.

231



V. Trees

Note that, given A = ⟨A, R̄⟩, we have

copy2s(A) = ⟨[2s] ×A, R̄, H̄, I⟩ ,

1⊕ copy2s(A) = ⟨{∗} + [2s] ×A, R̄, H̄, I, Left, Right⟩ ,

σ(A) = ⟨℘({∗} + [2s] ×A), R̄, H̄, I, Left, Right, ⊆⟩ .

where the predicates H i denote the various copies of A, I is the binary
relation indicating which elemets are copies of the same elemet ofA, and the
predicates Left and Right denote the two parts of the disjoint union.We can
identify the universe [2s] ×A of copy2s(A) with (Q + Q) ×A. We use the
first copy ofQ ×A to encode the elements ofV◇ and the second copy forV◻.
The unique element ∗ of 1 represents the initial position ⟨⟨⟩, q0⟩. Using this
encoding we can express that an element x is a subset of V◇ ∖ {⟨⟨⟩, q0⟩} by
the formula

ϑ◇(x) ∶= Right(x) ∧ ∀z[sing(z) ∧ z ⊆ x → ⋁
q∈Q

Hqz] .

we can say that x is the initial position by

ϑ∗(x) ∶= Left(x) ∧ sing(x) ,

and that x is a position for Player ◻ by

ϑ◻(x) ∶= Right(x) ∧ ∀z[sing(z) ∧ z ⊆ x → ⋁
q∈Q

Hq+sz] .

Using these formulae and the transition formulae δ(q) fromA, we can
now define the edge relation E′ of G by the FO-formula

φE(x , y) ∶= [ϑ◻(x) ∧ ϑ◇(y) ∧ sing(y) ∧ ∃y′(Iyy′ ∧ y
′ ⊆ x)]

∨ [ϑ◇(x) ∧ sing(x) ∧ ϑ◻(y) ∧ ⋁
q∈Q
[Hqx ∧ δ̂0q (x , y)]]

∨ [ϑ∗(x) ∧ ϑ◻(y) ∧ δ̂1q0(y)] ,
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3 The Muchnik Iteration

where the formulae δ̂0q (x , y) and δ̂0q (y) are defined as follows. By Proposi-
tion I.2.2, there exists an FO-formula δ′q(x , ȳ) such that

℘(A) ⊧ δ′q({a}, S̄) iff ⟨A⊕ a, S̄ , a⟩ ⊧ δ(q) .

Since ℘(A) can be interpreted in ℘(1 ⊕ copy2s(A)), we obtain an FO-
formula δ′′q (x , ȳ) such that

℘(1⊕ copy2s(A)) ⊧ δ′′q ({⟨p, a⟩}, S̄) iff ℘(A) ⊧ δ′q({a}, S̄
′) ,

where S′i ∶= { b ∈ A ∣ ⟨q, b⟩ ∈ S i for some q ∈ Q }. Setting

δ̂0q (x , y) ∶= ∃ ȳ
′[∀z[sing(z) → ⋀

q∈Q
[z ⊆ y′q ↔ z ⊆ y ∧Hqz]]]

∧ δ′′q (x , ȳ
′)] ,

it follows that

℘(1⊕ copy2s(A)) ⊧ δ̂0q({⟨p, a⟩}, S̄) iff ⟨A⊕ a, S̄ , a⟩ ⊧ δ(q) .

In the same way we obtain an FO-formula δ̂1q(y) such that

℘(1⊕ copy2s(A)) ⊧ δ̂1q(S̄) iff ⟨A⊕ ⟨⟩, S̄⟩ ⊧ δ(q) .

The desired FO-interpretation τ mapping B to G is given by

τ ∶= ⟨χ◇(x), χ◻(x), φE(x , y), (φPk)k⟩ ,

where

χ◇(x) ∶= ϑ∗(x) ∨ ϑ◇(x) ,
χ◻(x) ∶= ϑ◻(x) ,

φPk(x) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

ϑ◻(x) if k is the maximal priority,
ϑ◇(x) ∧ ⋁q∈Ω−1(k)Hqx otherwise.
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It remains to consider the case where L = CMSO. Let m be the least
common multiple of all numbers m′ such that some transition formula δ(q)
contains a subformula of the form ∣X∣ ≡ k (mod m

′). We set

σ(A) ∶= ⟨℘(1⊕ copy2s(A)), M̄⟩ ,

where

Mk ∶= { S ∣ ∣S∣ ≡ k (mod m) } .

Then the proof proceeds as for the case ofMSO except that we use Proposi-
tion I.2.4 instead of Proposition I.2.2.

Theorem 3.5 (Muchnik). Let Σ be a finite relational signature and L one of

MSO or CMSO. For every formula φ ∈ L[Σ + {suc, cl}], we can effectively
construct a formula φ∗ ∈ L[Σ] such that

A∗ ⊧ φ iff A ⊧ φ∗ , for all Σ-structures A .

Proof. Given the formula φ, we can use Theorem 2.14 to construct an L-
automatonA such that

A∗ ⊧ φ iff A accepts A∗ .

By Proposition 2.6 and Lemma 3.3, the latter is equivalent to Automaton
having a winning strategy for the game G0(A,A). Note that this game
is alternating and normalised. Hence, we can use Proposition IV.5.10 to
construct an Lµ-formula χ such that

Automaton wins G0(A,A) iff G0(A,A), ⟨⟨⟩, q0⟩ ⊧ χ .

Let χ′(x) be the translation of χ into MSO. Since we are only interested
in which Automaton positions belong to the fixed-points computed by χ,
we can choose χ′ such that all set quantifiers range over subsets of V0. By
Lemma 3.4, there therefore exists an L-formula φ∗ such that

G0(A,A) ⊧ χ′(⟨⟨⟩, q0⟩) iff A ⊧ φ∗ .
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3 The Muchnik Iteration

It follows that

A∗ ⊧ φ iff Automaton wins G0(A,A)

iff G0(A,A) ⊧ χ′(⟨⟨⟩, q0⟩)
iff A ⊧ φ∗ .

Corollary 3.6. TheMuchnik iteration is L-bicompatible, for L = MSO and

for L = CMSO.

Proof. Compatibility has already been shown inTheorem 3.5. The converse
direction follows form the fact that there exists an FO-interpretation map-
ping A∗ to A. Note that A∗ consists of countably many copies of A arranged
in a tree and that we can define the copy attached to the root in A∗. Con-
sequently, we can use the interpretation with formulae

δ(x) ∶= ∣x∣ = 1 and φR(x̄) ∶= Rx̄ .

In the tree A∗ the root and the first level are special since there is no clone
relation. For technical reasons, we sometimes need to consider a variant
of A∗ where the clone relation is also defined for these vertices. That is, we
consider a subtree A∗∣⇑wa where w ∈ A+, a ∈ A, and ⇑wa = waA

∗. The
following version of the Theorem of Muchnik is proved in the same was
asTheorem 3.5, the only difference being that we start the game G0(A,A)
from the position ⟨a, q0⟩ instead of ⟨⟨⟩, q0⟩.

Theorem 3.7. Let Σ be a finite relational signature and L one of MSO or

CMSO. For every formula φ ∈ L[Σ + {suc, cl}], we can effectively construct a
formula φ∗(x) ∈ L[Σ] such that

A∗∣wa ⊧ φ iff A ⊧ φ∗(a), for all Σ-structures A

and all w ∈ A+ .

TheTheorem of Muchnik is one of the strongest decidability results for
MSO known. Let us collect a few immediate consequences, the most well-
known being the result that theMSO-theory of the infinite binary tree is
decidable.
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V. Trees

Definition 3.8. The infinite binary tree is the successor-tree

Tbin ∶= ⟨{0, 1}∗ , suc0 , suc1⟩ . ⌟

Corollary 3.9 (Rabin). The MSO-theory of the infinite binary tree Tbin is

decidable.

Proof. We consider the two-element structure A ∶= ⟨{0, 1}, P0 , P1⟩ where
Pc ∶= {c}. The binary tree Tfin can be obtained from

A∗ = ⟨{0, 1}∗ , suc, cl, P0 , P1⟩

by an FO-interpretation τ. It follows that

Tbin ⊧ φ iff A∗ ⊧ φτ iff A ⊧ φ∗ ,

where φ∗ is the formula obtained from φτ viaTheorem 3.5. As A is finite,
the latter property is decidable.

Corollary 3.10. ThMSO(Q, ≤) is decidable.

Proof. It is sufficient to construct an interpretation

τ = ⟨δ(x), φ≤(x , y)⟩

mapping the binary tree Tbin to the order of the rationals Q ∶= ⟨Q, ≤⟩. We
take for the universe all words ending in the letter 1 and for the order ≤ the
lexicographic ordering. Formally, we set

δ(x) ∶= ∃y[suc1(y, x)] ,
φ(x , y) ∶= x ≤pf y ∨ ∃z∃u∃v[suc0(z, u) ∧ suc1(z, v)

∧ u ≤pf x ∧ v ≤pf y] ,

where ≤pf can be computed by anMSO-formula as the transitive closure of
suc0 ∪ suc1.

Corollary 3.11. The unravelling operation on directed graphs isMSO-compat-
ible.
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Proof. As shown in the Example on page 228 we can interpret the unravelling
of a graph G in its iteration G∗.

Finally, let us note that Muchnik iterations commute with interpretations.

Lemma 3.12. For everyMSO-interpretation τ, there exists anMSO-interpret-
ation σ such that

τ(A)∗ = σ(A∗) .

Proof. Given τ = ⟨δ(x), (φR(x̄))R⟩, we set

σ ∶= ⟨δ′(x), φ′suc(x , y), φ′cl(x), (φ
′
R(x̄))R⟩ ,

where

δ′(x) ∶= ∀y∀z[suc(y, z) ∧ z ≤pf x → δ y(z)] ,
φ′suc(x , y) ∶= suc(x , y) ,

φ′cl(x) ∶= cl(x) ,

φ′R(x̄) ∶= ∃y[⋀
i
suc(y, x i) ∧ φy

R(x̄)] ,

where ψy denotes the relativisation of ψ to the set { z ∣ suc(y, z) }.

4 Löwenheim-Skolem Theorem+

We can use tree automata to derive a number of Löwenheim-Skolem the-
orems forMSO over trees. Our key argument is contained in the following
lemma.

Lemma 4.1. LetA be anMSO-automaton and T a coloured tree accepted byA.
There exist a number N < ω and a family (Wv)v∈T of subsets Wv ⊆ T with

the following properties.

◆ Wv ⊆ Suc(v) and ∣Wv ∣ < N for all v ∈ T.
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◆ A accepts T∣P , for every non-empty prefix-closed set P ⊆ T that is closed

under (Wv)v in the sense that v ∈ P⇒Wv ⊆ P.

Proof. Suppose thatA = ⟨Q , Σ, δ, q0 ,Ω⟩ is non-deterministic and fix an
accepting run ρ ofA on T. To defineWv , we fix a vertex v ∈ T. By definition
of an accepting run, we know that

Su$∗(v; ρ) ⊧ δ(ρ(v)) .

Let m be the maximal quantifier rank of the transition formulae δ(q), q ∈
Q , and set K ∶= 2m−1. We have shown in Proposition I.4.3 (b) that, for
structures X and Y with the empty signature,

X ≡mMSO Y iff ∣X∣ = ∣Y∣ or ∣X∣, ∣Y∣ ≥ K .

Set Sq ∶= ρ−1(q) ∩ Suc(v). For every state q ⊆ Q , we select a set Xq ⊆ Sq
as follows. If ∣Sq ∣ ≤ K, we set Xq ∶= Sq . Otherwise, we choose an arbitrary
subset Xq ⊆ Sq of size ∣Xq ∣ = K. Then we set

Wv ∶= ⋃
q∈Q

Xq .

By construction, it follows that ∣Wv ∣ ≤ K ⋅ ∣Q ∣ =∶ N and

⟨Sq , Sq⟩ ≡mMSO ⟨Xq ,Xq⟩ , for every q ∈ Q .

As Su$∗(v; ρ) can be obtained from the disjoint union of these structures
by adding a root, it follows by Proposition I.4.2 that

Su$∗(v; ρ) ≡mMSO Su$∗(v; ρ)∣Wv∪{v} .

Let P ⊆ T be a prefix closed subset satisfying v ∈ P ⇒ Wv ⊆ P. We
claim that the restriction ρ∣P is an accepting run of A on T∣P . Obviously,
every infinite branch of ρ∣P is an infinite branch of ρ and, hence, satisfies the
parity condition. Furthermore, for every vertex v ∈ P,

Su$∗(v; ρ) ⊧ δ(ρ(v)) implies Su$∗(v; ρ)∣P ⊧ δ(ρ(v)) .
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As an immediate consequence we obtain two downward Löwenheim-
Skolem theorems, one for single formulae and one forMSO-theories.

Theorem 4.2. For everyMSO-formula φ, there exists a finite number N < ω
such that every coloured tree T satisfying φ has a prefix-closed subset P ⊆ T such

that

T∣P ⊧ φ

and every vertex has at most N successors in P.

Proof. LetA be an automaton equivalent to φ, let (Wv)v∈T be the family
from Lemma 4.1, and let P ⊆ T be the least (w.r.t. inclusion) subset of T
that contains the root and satisfies v ∈ P ⇒ Wv ⊆ P, for all v ∈ P. Then
T∣P ⊧ φ and the branching of P is bounded by N.

Theorem 4.3. Let κ be an infinite cardinal and Σ a unary signature of size at

most κ. For every Σ-enriched tree T and every cardinal κ ≤ λ ≤ ∣T∣, there exists
a prefix-closed set P ⊆ T of size ∣P∣ = λ such that T∣P ≡MSO T.

Proof. For everyMSO-formula φ ∈ThMSO(T), we fix an equivalent auto-
matonAφ . Let (W

φ
v )v∈T be the family from Lemma 4.1 forAφ . Fix some

subset P0 ⊆ T of size ∣P0∣ = λ and let P ⊆ T be the least (w.r.t. inclusion)
subset of T that contains P0 and satisfies

v ∈ P⇒W
φ
v ⊆ P , for all v ∈ P and all φ .

Then T∣P ⊧ φ, for all formulae φ. Furthermore, the set P has size ∣P∣ =
λ ⋅ κ = λ it is the union of that many finite sets.

Corollary 4.4. Let κ be an infinite cardinal and Σ a unary signature of size

at most κ. Every MSO-axiomatisable non-empty class C of Σ-enriched trees

contains a tree of size at most κ.

Finally, let us also prove corresponding upwards versions of these two
theorems.
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Theorem 4.5. Let Σ be a unary signature and φ ∈ MSO a formula. If there

exists an uncountable Σ-enriched tree T satisfying φ, then φ is satisfied by Σ-
enriched trees of size κ, for every infinite cardinal κ.

Proof. Suppose that T ⊧ φ and fix an infinite cardinal κ. If κ ≤ ∣T∣, the
claim follows by Theorem 4.3. Hence, suppose that κ > ∣T∣. LetA be an
automaton equivalent to φ and let ρ be an accepting run ofA on T. Since
T is uncountable, there exists some vertex v ∈ T with uncountably many
successors.Hence, we can find some state q ofA such that uncountablymany
successors of v are labelled by q. Fix one such successor u of v. Let S be the
tree obtained from T by attaching κ additional copies of the subtree T∣u to v
and let σ be the run on S induced by ρ. Since in both runs the vertex v has
infinitely many successors with label q, it follows as in the proof of Lemma 4.1
that

Su$∗(v; ρ) ≡MSO Su$∗(v; σ) .

In particular,

Su$∗(v; ρ) ⊧ δ(ρ(v)) implies Su$∗(v; σ) ⊧ δ(σ(v)) .

Hence, σ is an accepting run ofA on S, which implies that S ⊧ φ. Since
∣S∣ = λ the claim follows.

Theorem 4.6. Let κ be an infinite cardinal and Σ a unary signature of size at

most κ. For every Σ-enriched tree T of size ∣T∣ > 22
κ
and every λ ≥ κ, there

exists a Σ-enriched tree S such that

S ≡MSO T and ∣S∣ = λ .

Proof. Fix a tree T ∈ C of size ∣T∣ > 22
κ
and let Θ be theMSO-theory of T.

If λ ≤ ∣T∣, we obtain the desired tree S byTheorem 4.3. Hence, suppose
that λ > ∣T∣.
For every formula φ ∈ Θ, letAφ be anMSO-automaton equivalent to φ

and let ρφ be an accepting run ofAφ on T. We define a combined labelling ρ
of T by setting

ρ(v) ∶= (ρφ(v))φ∈Θ , for v ∈ T .
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4 Löwenheim-Skolem theorems

Since

∣rng ρ∣ ≤ ∏
φ∈Θ
∣Qφ ∣ ≤ 2∣Θ∣ ≤ 22

κ
< ∣T∣ ,

there is some vertex v ∈ T with infinitely many successors that are labelled
by ρ by the same value (qφ)φ . Let u be one such successor and let S be the
tree obtained from T by attaching λ additional copies of the subtree T∣u to v.
To prove thatS ≡MSO T, it is sufficient to show that every automatonAφ

accepts S. Hence, fix φ ∈ Θ and let σ be the labelling of S induced by ρφ .
Since the vertex v has infinitely many successors labelled by the state qφ it
follows that

Su$∗(v; ρ) ≡MSO Su$∗(v; σ) .

In particular,

Su$∗(v; ρ) ⊧ δ(ρ(v)) implies Su$∗(v; σ) ⊧ δ(σ(v)) .

Hence, σ is an accepting run ofAφ on S.

Examples. Let us show that these theorems do not hold for structures that
are not trees.

(a)We consider 2-sorted structures of the form ⟨A, B, E , ≤⟩with relations
E ⊆ A× B and ≤ ⊆ A×A. There exists anMSO-formula φ expressing the
following conditions.
◆ ≤ is a linear order on A of order type ω.
◆ For every subset X ⊆ A, there exists a unique element b ∈ B such that

⟨a, b⟩ ∈ E iff a ∈ X .

Then φ has a unique model where ∣A∣ = ℵ0 and B = ℘(A). This model has
size 2ℵ0 .
(b)We can construct formulae with larger models by iterating the con-

struction from (a). Consider 2-sorted structures of the form ⟨A, I, E , p, h, ≤⟩
with two relations E ⊆ A× A and ≤ ⊆ I × I and two functions p ∶ A→ I,
and h ∶ I → A. There exists an MSO-formula φ expressing the following
conditions.
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V. Trees

◆ ≤ is a linear order on I of order type ω.
◆ p ∶ A→ I is surjective and h ∶ I → A is injective with rng h = p−1(0).

◆ ⟨a, b⟩ ∈ E implies p(b) = p(a) + 1.

◆ For every i ∈ I and every subset X ⊆ p
−1(i), there exists a unique

element b ∈ p−1(i + 1) such that

⟨a, b⟩ ∈ E iff a ∈ X .

Then φ has a uniquemodel where ∣p−1(0)∣ = ℵ0 and p−1(i+1) = ℘(p−1(i)).
This model has size ℶω . ⌟

Exercise 4.1. Can you use the constructions from the preceding two ex-
amples to find formulae with even larger unique models? ⌟

Finally, let us noe that that the theory of all trees is decidable.

Theorem 4.7. The monadic second-order theory of the class T of all order-trees

is decidable.

Proof. Let φ ∈ MSO. We have φ ∈ThMSO(T ) if, and only if,

⟨κ<ω , ≤pf ⟩ ⊧ ∀X[‘X is prefix-closed’→ φX] , for all κ ≥ ℵ0 .

Hence, it is sufficient to show that theMSO-theory of the class of all trees
of the form ⟨κ<ω , ≤pf ⟩ is decidable.
We claim that

⟨κ<ω , ≤pf ⟩ ≡MSO ⟨ℵ
<ω
0 , ≤pf ⟩ , for κ ≥ ℵ0 .

Let Cκ be the structure of size κ with empty signature. By Proposition I.4.3,
it follows that

Cκ ≡MSO Cℵ0 , for all κ ≥ ℵ0 .

Hence, theTheorem of Muchnik implies that

C∗κ ≡MSO C∗ℵ0
.
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5 The Cantor Topology

Since there exists anMSO-interpretation τ with

⟨κ<ω , ≤pf ⟩ = τ(C∗κ ) , for all κ ,

it follows that

⟨κ<ω , ≤pf ⟩ ≡MSO ⟨ℵ
<ω
0 , ≤pf ⟩ ,

as desired.
We have seen that φ ∈ThMSO(T ) if, and only if,

⟨ℵ<ω0 , ≤pf ⟩ ⊧ ∀X(“X is prefix-closed”→ φX) .

Furthermore, by theTheorem of Muchnik, the decidability ofThMSO(Cℵ0)
implies the one ofThMSO(ℵ

<ω
0 , ≤pf).

By contrast, the theory of trees κ<α with α > ω is undecidable.

Theorem 4.8. LetK be any class that contains some tree of the form ⟨κ<α , ≤pf ⟩
where κ > 1 is a cardinal and α > ω an ordinal. The monadic second-order

theory of K is undecidable.

Proof. We will prove in Corollary VI.5.9 below that the monadic theory of
the real line ⟨R, ≤⟩ is undecidable. Since ⟨R, ≤⟩ can beMSO-interpreted in
⟨2<ω+1 , ≤pf , P0 , P1⟩ where Pc ∶= {wc ∣ w ∈ 2<ω }, it follows that theMSO-
theory of ⟨2<ω+1 , ≤pf , P0 , P1⟩ is also undecidable. Let ψ(X,Y0 ,Y1) ∈ MSO
be a formula stating that the substructure induced by the set X when
expanded by the unary predicates Y0 and Y1 is isomorphic to the tree
⟨2<ω+1 , ≤pf , P0 , P1⟩. It follows that, for φ ∈ MSO,

⟨2<ω+1 , ≤pf ⟩ ⊧ φ(P0 , P1)

iff ∀X∀Y0∀Y1[ψ(X,Y0 ,Y1) → φX(Y0 ,Y1)] ∈ThMSO(K) .

5 The Cantor Topology

Sometimes it is advantageous to use topological tools when studying defin-
ability issues for trees. To do so, we can equip the set of branches of a tree
with a topology.
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Definition 5.1. Given a generalised tree T, we denote by [T] the set of all
branches of T. The Cantor topology on [T] is the topology whose open sets
are of the form

⟨W⟩ ∶= { β ∈ [T] ∣ β ∩W ≠ ∅} , forW ⊆ T .

In particular, ifT is a tree of the formD
∗, the open sets are of the formWD

ω ,
for someW ⊆ D∗. For singletonsW = {w}, we simply write ⟨w⟩. ⌟

Before using the topology on the set of branches, let us note that the space
[T] is well-behaved.

Proposition 5.2. Let T be a generalised tree. The space [T] is Hausdorff and

zero-dimensional.

Proof. To see that [T] is Hausdorff, fix two different branches β and γ.Then
there exist vertices u ∈ β ∖ γ and v ∈ γ ∖ β. It follows that ⟨u⟩ and ⟨v⟩ are
disjoint open sets with β ∈ ⟨u⟩ and γ ∈ ⟨v⟩.
To see that [T] is zero-dimensional, note that its topology has a basis

consisting of all sets of the form ⟨v⟩, for v ∈ T. We claim that these sets are
clopen. Hence, fix v ∈ T and letW be the set of all vertices of T that are
incomparable to v. Then ⟨W⟩ ∩ ⟨v⟩ = ∅ and ⟨W⟩ ∪ ⟨v⟩ = T. Hence, ⟨v⟩ is
closed.

Proposition 5.3. Let T be a tree. The space [T] is compact if, and only if, T is

finitely branching.

Proof. (⇒) Suppose that T has some vertex v with infinitely many suc-
cessors, letU be the set of these successors, and letV be the set of all vertices
that are incomparable to v. Then we obtain an open cover of T that consists
of the sets ⟨V⟩ and ⟨u⟩, for u ∈ U. This cover has no finite subcover.
(⇐) Suppose thatT is finitely branching and let (U i)i∈I be an open cover

of [T]. If there is some n < ω such that eachw ∈ T of length ∣w∣ = n belongs
to someU i(w), we obtain a finite subcover

(U i(w))∣w∣=n .
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Suppose otherwise. Let F ⊆ T be the set of all words w ∈ T with w ∉

⋃i∈I U i . By assumption, F contains words of arbitrarily high length. Since
F is downwards closed, it follows that ⟨F , ≤⟩ is a finitely branching infinite
tree. By the Lemma of Kőnig, this tree has an infinite branch β. Since F ⊆ T,
β is also a branch of T. Furthermore, by definition of F, we have β ∉ ⟨U i⟩,
for every i ∈ I. A contradiction to the fact that (U i)i is a cover.

Thin Tree+

One way to measure the complexity of a topological space is to distinguish
between spaces with ‘many’ points and those with ‘few’ points. We can make
this precise by using the following definition.

Definition 5.4. Let X be a topological space.
(a) A point x ∈ X is isolated if the set {x} is clopen.
(b)TheCantor-Bendixson derivative ∂X ofX is the subspace ofT consisting

of all non-isolated points.
(c) The Cantor-Bendixson rank CB(X) of X is the smallest ordinal α such

that ∂α+1X is empty (where ∂α denotes the α-th iteration of ∂). If no such
ordinal exists, we set CB(X) = ∞ and we say that X has no Cantor-Bendixson

rank.

(c)TheCantor-Bendixson rank of a point x ∈ X, is the least ordinal α such
that x ∉ ∂α+1X. We denote it by CB(x/X).
(d) A subset C ⊆ X is perfect if it is closed and satisfies δC = C. ⌟

Example. Let us consider the following subsets of the real lineR.
(a) The set U ∶= {0} ∪ { 1/n ∣ n ∈ N, n > 0} (or rather the subspace

induced by it) has Cantor-Bendixson rank CB(U) = 1. The points 1/n are
isolated and have rank 0, while the limit 0 has rank 1.

(b) No interval I ⊆ R has a Cantor-Bendixson rank.The same holds for
every non-trivial curve inRn . ⌟

Cantor-Bendixson ranks were originally introduced to prove a version of
the ContinuumHypothesis for well-behaved sets in topological spaces. We
present the proof for the simplest case, that of closed sets of real numbers.
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Theorem 5.5 (Cantor, Bendixson). Every closed subset of the real line R can

be written as a disjoint union of a countable set and a perfect set.

Proof. Given a closed set C ⊆ R, let α be the smallest ordinal such that
∂
α+1

C = ∂
α
C. Then P ∶= ∂

α
C is perfect and it remains to show that

S ∶= C∖P is countable. Every point x ∈ S has some rank α ∶= CB(x/C) < ∞.
Thus, x is isolated in ∂αC, which means that there is some open neighbour-
hood Ix of x with Ix ∩ ∂

α
C = {x}. As the topology of R is generated by

open intervals with rational end-points, we may assume that Ix = (a, b), for
some a, b ∈ Q. Since there are only countably many such intervals, it is now
sufficient to prove that Ix ≠ Iy for x ≠ y.

Hence, consider distinct points x ≠ y in P with ranks α ∶= CB(x/C) and
β ∶= CB(y/C). By symmetry, we may assume that α ≤ β. Then Ix ∩ ∂

α =
{x} implies that y ∉ Ix . Since y ∈ Iy , it follows that Ix ≠ Iy .

Corollary 5.6. Let C ⊆ R be closed. Then ∣C∣ ≤ ℵ0 or ∣C∣ = 2ℵ0
.

Proof. By the preceding theoremwe canwriteC = S+P, where S is countable
and P is perfect. If P = ∅, we have ∣C∣ = ∣S∣ ≤ ℵ0. Suppose otherwise. We
claim that ∣P∣ = 2ℵ0 . We construct a family (Uw)w∈{0,1}∗ of non-empty
closed intervalsUw ⊆ P such that

◆ u ≤pf v implies Uu ⊇ Uv ,

◆ Uu ∩Uv = 0 , for incomparable u, v .

◆ P ∩⋂w<pf β Uw ≠ ∅ , for every branch β ∈ {0, 1}ω .
Then the function η ∶ [Tbin] → P mapping each branch β ∈ {0, 1}ω to some
element in⋂w<pf β Uw is injective. In particular,

∣P∣ ≥ ∣rng η∣ = ∣[Tbin]∣ = 2ℵ0 ,

as desired.
To construct the sets (Uw)w , we will make use of the following observa-

tions.

(i) If P is perfect and non-empty, then ∣P∣ > 1.

(ii) IfU is open and P perfect, thenU ∩ P is also perfect.
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The proofs are straightforward.
(i) If P = {x}, the point x would be isolated.
(ii) For a contradiction, suppose thatU∩P is not perfect.Then it has some

isolated point x.This means there is some open setV withV ∩U∩P = {x}.
Since V ∩U is open, it follows that the point x is isolated in P. A contradic-
tion.

We start the construction of (Uw)w with the set U⟨⟩ ∶= R. For the
inductive step, suppose that we have already definedUw . By (i) and (ii), the
setUw ∩ P has at least two elements. Fix different points x , y ∈ Uw ∩ P. As
R is Hausdorff, we can choose disjoint open neighbourhoods V andW of
x and y. We setUw0 ∶= V andUw1 ∶=W .
It remains to show that⋂w<pf β Uw ≠ ∅ for every branch β ∈ {0, 1}ω . For

a contradiction, suppose that there is somebranch βwithP∩⋂w<pf β Uw = ∅.
By induction onw, we chose a decreasing sequence (Kw)w<pf β of closed inter-
valsKw ⊆ Uw with non-empty interior. SinceK⟨⟩ is compact and the family
(Kw)w has the finite intersection property, it follows that ⋂w<pf β Kw ≠
∅.

In the above prove, we have constructed an embedding of the binary tree
into the family of open subsets of R. This idea can be adapted to give a
definition of when a tree has ‘few’ branches.

Definition 5.7. Let S and T be generalised trees.
(a) An embedding φ ∶ S→ T of generalised trees is a map such that

φ(u ⊓ v) = φ(u) ⊓ φ(v) , for all u, v ∈ S .

(b) A generalised tree T is thin if the complete binary tree Tbin cannot be
embedded into it. ⌟

We can characterise thinness in terms of the Cantor-Bendixson rank
of [T]. But it turns out that, for generalised trees, our definition of the rank
has to be modified a bit.

Definition 5.8. Let T be a generalised tree.
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(a) A branch β of T is isolated if there exists a vertex v ∈ β such that
⇑v ⊆ β.
(b)The Lifsches-Shelah derivative ∂T of T is the prefix of T consisting of

all vertices that lie on some non-isolated branch of T.
(c)The Lifsches-Shelah rank LS(T) of T is the smallest ordinal α such that

∂
α+1T is the empty tree. Similarly, we define theLifsches-Shelah rankLS(v ,T)

of a vertex v ∈ T as the least ordinal α such that v ∉ ∂α+1T.
(d) A subranch of T is an upwards closed subset of a branch.
(e) A skeleton S of T is a partition of T such that every class forms a

subbranch of T and every branch of T intersects only finitely many different
classes. ⌟

Remark. Note that ∂[T] ⊆ [∂T], where the first ∂ denotes the Cantor-
Bendixson derivative and the second one the Lifsches-Shelah derivative.
This implies that CB([T]) ≤ LS(T). ⌟

Exercise 5.1. Let T be a generalised tree and α an ordinal. Prove that

LS(v/T) ≥ α iff for every β < α , there are two incomparable
vertices u, u′ > v with LS(u/T) ≥ β and

LS(u′/T) ≥ β . ⌟

Proposition 5.9. Let T be a generalised tree. The following statements are

equivalent.

(1) T is thin.

(2) T has a skeleton.

(3) LS(T) < ∞

Proof. (2)⇒ (1) For a contradiction, suppose that there exists an embedding
φ ∶ Tbin → T and that T has a skeleton S. We define an infinite branch
v0 , v1 , . . . of Tbin as follows. We start with the root v0 ∶= ⟨⟩. For the in-
ductive step, suppose that we have already defined vn and let β ∈ S be the
subbranch containing φ(vn). There exists a least one direction d ∈ {0, 1}
with φ(sucd(vn)) ∉ β. We set vn+1 ∶= sucd(vn). Let β be some branch of T
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containing the image φ(v0), φ(v1), . . . of the sequence constructed in this
way. Then β intersects infinitely many different classes from S. A contradic-
tion.
(1)⇒ (3) Suppose that LS(T) = ∞ and fix an ordinal α such that ∂α+1T =

∂
αT. By assumption, S ∶= ∂αT is not empty. We construct an embedding

η ∶ Tbin → S ⊆ T as follows. For the root, we pick an arbitrary element
η(⟨⟩) ∈ S. Inductively, suppose that we have already chosen η(v) ∈ S. Since
∂S = S, the subtree ⇑η(v) ∩ S contains 2 incomparable vertices u0 and u1.
We set η(sucd(v)) ∶= ud , for d < 2.

(3)⇒ (2) We construct a skeleton S of T by induction on α ∶= LS(T). If
LS(T) = 0, the tree T consists of a single branch β and we can set S ∶= {β}.
For the inductive step, suppose that α > 0. Note that, for every vertex v ∈ T,
the set of vertices u ≥ v with rank LS(u/T) = LS(v/T) forms a chain. Let
β be some branch containing all vertices v with LS(v/T) = α. (There might
be none.) We call the maximal ⊓-closed subsets C ⊆ T ∖ β the components
of T ∖ β. For every such component C of T ∖ β, we can find a skeleton SC
by inductive hypothesis. Let S be the set consisting of β and the union of
all sets SC . We claim that S is a skeleton of T. Clearly, S is a set of disjoint
subbranches with union T. For the second condition, fix a branch γ of T.
If γ = β, it intersects with only one class in S. Otherwise, there is some
component C such that γ ⊆ β ∪ C. Since SC is a skeleton, γ intersects only
finitely many classes in SC .

Example. Note that this theorem does not hold if we replace the Lifsches-
Shelah rank by the Cantor-Bendixson rank. Let T = ⟨T , ≤pf ⟩ be the general-
ised tree with domain T ∶= {0, 1}<ω+1, that is, T is obtained from the binary
tree Tbin by adding a new maximal element to every branch. Then every
branch is isolated and CB(T) = 0. But there clearly exists an embedding
Tbin → T. ⌟

For finitely branching treesT, matters are particularly simple. In particular,
in this case we can use the following variant of the Lifsches-Shelah rank
which is closer in value to the Cantor-Bendixson rank of [T].

249



V. Trees

Definition 5.10. Let T be a finitely branching tree.The Cantor-Bendixson
rank CB(T) of T is the least ordinal α such that the tree obtained from T be
removing all vertices v with CB(T∣v) < α has only finitely many infinite
branches. If no such ordinal exists, we set CB(T) ∶= ∞. ⌟

Proposition 5.11. Let T be a finitely branching order-tree. The following state-

ments are equivalent.

(1) T is thin.

(2) T has a skeleton.

(3) LS(T) < ω1

(4) CB([T]) < ω1

(5) CB(T) < ω1

(6) T has only countably many infinite branches.

(7) T has less than 2ℵ0
infinite branches.

Proof. (1)⇔ (2) has already been proved in Proposition 5.9.
(6)⇒ (7) is trivial.
(7)⇒ (1)The infinite binary tree Tbin has 2ℵ0 infinite branches. If there

exists an embedding Tbin → T, the tree T has at least as many infinite
branches as Tbin.
(1) ⇒ (3) If T is thin, we have α ∶= LS(T) < ∞, by Proposition 5.9.

Consequently, we have ∂β+1T ∖ ∂
βT ≠ ∅, for all β < α. This implies that

∣T∣ ≥ ∣α∣. As finitely branching trees have only countably many vertices, it
follows that α < ω1.
(3)⇒ (4)⇒ (5) By definition, we have CB(T) ≤ CB([T]) ≤ LS(T).
(5)⇒ (6) we prove the claim by induction on α ∶= CB(T). Let

U ∶= { v ∈ T ∣ CB(T∣v) = α } .

Since T is countable, the complement T ∖U is a union of countably many
trees of Cantor-Bendixson rank less than α. By inductive hypothesis, it
therefore follows that T ∖U contains only countably many branches. Fur-
thermore, by definition, there are only finitely many branches inU. Since
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5 The Cantor Topology

every branch of T is either a branch ofU or it contains a suffix in T ∖U, it
follows that T has only countably many branches as well.

Exercise 5.2. Prove that a tree T is thin if, and only if, one can assign ordinal
numbers to the vertices of T in such a way that the successors of a vertex
with label α are assigned ordinals β ≤ α and at most one of them gets the
label α itself. ⌟

Next, let us take a look at definability questions related to the Cantor-
Bendixson rank.

Proposition 5.12. The class of all finitely-branching order-trees that are thin is

MSO-definable.

Proof. Note that, for ordinary trees, we can encode a skeleton S as a set of
vertices by taking the first vertex of every subbranch in S. Using this encoding,
we can express inMSO that the given tree has a skeleton by stating that there
exists a set S of vertices such that
◆ every connected component of T ∖ S forms a chain and
◆ no branch of T contains infinitely many elements from S.

Lemma 5.13. For every n < ω, there exists anWMSO-formula φ such that

T ⊧ φ iff T is a finitely branching tree with CB(T) ≤ n .

Proof. Let ϑ be the formula stating that T is a finitely branching tree. We
can set φ ∶= ϑ ∧ ψn where the formula ψn states that the set

U ∶= { v ∈ T ∣ T∣v ⊭ ψn−1 }

contains only finitely many infinite branches. (For simplicity, we have set
ψ−1 ∶= false.) To see that the latter can be expressed inWMSO let

W ∶= { v ∈ U ∣ ⇑v ∩U is infinite} .

Then U contains only finitely many branches if, and only if, there exists a
finite downwards-closed set P ⊆W such thatW ∖ P is a disjoint union of
infinite paths. This can be expressed inWMSO.
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Let us show that skeletons of thin trees correspond to well-orders and
vice versa. Going from a skeleton to a well-order is straightforward.

Proposition 5.14. There exists an FO-formula φ(x , y;Z) such that, for every
finitely-branching successor-ordered thin treeT with skeleton S, φ(x , y; S) defines
a well-order on T.

Proof. Given a skeleton S, let ⊑so be the ordering obtained from the suc-
cessor-ordering of T by rearranging the ordering of Suc(v), for every vertex
v ∈ T, such that the successor singled out by an edge in S is the max-
imal element, while the relative ordering of the other successors is left un-
changed. Furthermore, let ⊑ be the lexicographic ordering induced by this
new successor-ordering⊑so.Note that, given S, we can define⊑ in FO.Hence,
it remains to show that ⊑ is a well-ordering on T.

For a contradiction, suppose that there exists a strictly descending chain
v0 ⊐ v1 ⊐ ⋯. Note that, for every v i , there are only finitely many v j ≤pf v i .
Replacing the above chain by a subchain, we may therefore assume that
v i ≮pf v j , for all i , j. Applying the Lemma of Kőnig to the tree with vertices
F ∶= ⋃i ⇓v i , we obtain an infinite branch β ⊆ F. Let w i be the maximal
vertex in β with w i ≤pf v i . Since every vertex of β is less than some of the v i ,
we can construct an infinite infinite subset I ⊆ ω such that the subsequence
(w i)i∈I is strictly increasing (with respect to ≤pf ). Let g ∶ ω → I be an
increasing enumeration of I. Then

wg(i) = vg(i) ⊓ wg(i+1) , for all i .

Since vg(i+1) ⊏ vg(i), it follows that the edge going out from wg(i) in dir-
ection of wg(i+1) does not belong to S. Consequently, the branch containg
the wg(i) contains infinitely many edges that do not belong to S. A contra-
diction to the definition of a skeleton.

Remark. If we impose additional restrictions to the possible orderings on
each branch, we can extend this result to generalised trees.We will postpone
the proof toTheorem VI.6.3 below. ⌟

The converse is slightly more involved.
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Proposition 5.15. Let m < ω. There exists anMSO-formula φ(x) such that,
for every finitely-branching successor-ordered thin treeTwith anMSOm -definable

well-ordering ⊑, φ(x) defines a skeleton of T.

Proof. We claim that the relation

x ⊑so y : iff x = y or there is some v ≥pf y such that

u ⊑ v for all u ≥pf x

has the following properties.

(i) The restriction of ⊑so to Suc(v) forms a partial order, for every v ∈ T.

(ii) If u and u′ are successors of the same vertex, then u ⊑so u′ or u′ ⊑so u.

(iii) ⊑so induces a successor-ordering on T.

(iv) The set

S ∶= { ⟨u, v⟩ ∣ v is the ⊑so-maximal vertex in Suc(u) }

forms a skeleton of T.

Since S is definable from ⊑, the proposition then follows.
(i) Reflexivity holds by definition. To prove transitivity, suppose that

x ⊑so y ⊑so z. To show that x ⊑so z, let w ≥pf z be the element such that

v ⊑ w , for all v ≥pf y .

Similarly, let v ≥pf y be the element such that

u ⊑ v , for all u ≥pf x .

For every u ≥pf x, it follows that u ⊑ v ⊑ w, as desired.
For anti-symmetry, suppose that x ⊑so y and y ⊑so x. Let u ≥pf x and

v ≥pf y be the elements such that

u
′ ⊑ v , for all u′ ≥pf x ,

v
′ ⊑ u , for all v′ ≥pf y .
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It follows that u ⊑ v and v ⊑ u. Hence, u = v. Since u ≥pf x, v ≥pf y, and
x and y are successors of the same vertex, this implies that x = y.
(ii) For a contradiction, suppose that u ⋢so u′ and u′ ⋢so u. By definition

of ⊑ so, it follows that
◆ for every v′ ≥pf u′ there is some v ≥pf u with v ⊑ v′,
◆ for every v ≥pf u there is some v′ ≥pf u′ with v′ ⊑ v.
Using these two conditions, we can inductively construct two sequences
(v i)i in T∣u and (v′i)i in T∣u′ such that

v i ⊑ v
′
i and v

′
i ⊑ v i+1 , for all i < ω .

Fix i < j < ω, with

T∣u , v i ≡mMSO T∣u , v j .

Since ⊑ isMSOm-definable and v′i ∉ T∣u , it follows by Proposition 1.7 that

v i ⊑ v
′
i implies v j ⊑ v

′
i .

But the latter contradicts the fact that v′i ⊑ v j .
(iii) follows immediately from (i) and (ii).
(iv) Clearly, every internal vertex u of T has exactly one out-going edge

that belongs to S. So, S is a set of subbranches. For a contradiction, suppose
that there exists an infinite branch β infinitely many edges of which do not
belong to S. Let

u0 → v0 , u1 → v1 , . . .

be the sequence of these edges and let w i be the ⊑so-maximal successor of u i .
By definition of S it follows that v i ⊏so w i . For every i, we can therefore find
some vertex y i ≥pf w i such that

x ⊑ y i , for every x ≥pf v i .

Hence, v i ≤pf u i+1 <pf w i+1 ≤pf y i+1 implies that y i+1 ⊑ y i . Consequently,
y0 ⊐ y1 ⊐ ⋯ forms an infinite strictly descending sequence. A contradiction
to the fact that ⊑ is a well-order.
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5 The Cantor Topology

Finally, let us remark that we can define skeletons if the tree has finite
Cantor-Bendixson rank.

Lemma 5.16. For every n < ω, there exists anMSO-formula φ(Z) such that,
for every finitely branching successor-ordered tree T with CB(T) ≤ n,

T ⊧ φ(S) iff S encodes a skeleton of T .

Proof. We define the following relations on T.

u →0 v : iff v is a successor of u with CB(T∣u) = CB(T∣v) ,

u → v : iff v is the ≤so-minimal successor of u with u →0 v .

According to Lemma 5.13, these relations are definable. Hence, we can take
for φ the formula stating that S consists of the connected components of→.

Corollary 5.17. For every finitely branching successor-ordered tree T with rank

CB(T) < ω, there exists anMSO-formula φ(x , y) (without parameters) that
defines a well-order on T.

Borel Set+

Besides the Cantor-Bendixson rank, there is a second way of measuring the
complexity of a subspace: we can look at how it is composed from simpler
sets.The topological simplest sets are the open and the closed ones. As oper-
ation for composition we take countable unions. This leads to the following
definition.

Definition 5.18. Let X be a topological space.
(a) A set U ⊆ X is Borel if it belongs to the closure of the class of open

sets under complement and countable unions.
(b) A function f ∶ X → Y between topological spaces is Borel if

f
−1[U] is Borel, for every Borel setU ⊆ X .

(c) Similarly, a relation R ⊆ Xn is Borel if it is Borel as a subset of Xn . ⌟
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Remark. (a)We can associate an ordinal rank to eachBorel setU by counting
how many unions we need to express it. This induces a hierarchy on the
Borel sets of length ω1. We omit the definition, since we will not use this
additional information.
(b) We have already used Borel sets in Section IV.3 where we showed

that games with a Borel accepting condition are determined. ⌟

The following properties of Borel sets follow immediately from the defini-
tion.

Lemma 5.19. Let X and Y be topological spaces.

(a) The preimage of a Borel set under a continuous function f ∶ X → Y is also

Borel.

(b) The class of Borel relations on X is closed under countable unions, countable

intersections, complement, and finite direct products.

(c) If R ⊆ X × Y is Borel, so is every fibre

Rc ∶= { x ∈ X ∣ ⟨x , c⟩ ∈ R } , for all c ∈ Y .

Proof. (a) Let f ∶ X → Y be continuous and U ⊆ Y Borel. We prove the
claim by induction on the number of operations needed to produceU from
open sets. By assumption, the preimage of every open set is open. For the
inductive step, note that

f
−1[Yn ∖U] = Xn ∖ f

−1[U] ,

f
−1[⋃n Un] = ⋃

n<ω
f
−1[Un] .

(b) is immediate.
(c) Note that Rc = f

−1[R], where f ∶ X → X × Y is the function map-
ping x to ⟨x , c⟩. By (b), it is therefore sufficient to prove that f is continuous.
Every open set in X ×Y is of the formU ×V , whereU ⊆ X and V ⊆ Y are
open. Furthermore, we have

f
−1[U ×V] =

⎧⎪⎪
⎨
⎪⎪⎩

U if c ∈ V ,
∅ if c ∉ V ,
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both of which are open.

We need some more substantial results whose proofs are too involved
to be reproduced here. The first two can be found as, respectively, The-
orem 14.12 andTheorem 13.6 in [115], while a proof of the third one is given
in Example 1.6 (2) of [102].

Lemma 5.20. A function f ∶ X → Y is Borel if, and only if, its graph is Borel

in X ×Y.

Theorem 5.21. Let T be a finitely-branching tree and B ⊆ [T] Borel. Then

B is uncountable if, and only if, there exists a subset S ⊆ T such that ⟨S , ≤pf ⟩ is
isomorphic to the infinite binary tree and every branch of ⟨S , ≤pf ⟩ belongs to B.

Theorem 5.22. There exists no Borel function f ∶ Dω → D
ω
such that

f (α) = f (β) iff α ≈∗ β ,

where

α ≈∗ β iff there are only finitely many positions x with

α(x) ≠ β(x) .

The connection between logic and topology is given by the following
two results. The first one concerns languages of ω-words, the second one
branches in a tree.

Lemma 5.23. Every regular language L ⊆ Σω
is Borel.

Proof. LetA = ⟨Q , Σ, ∆, q0 ,Ω⟩ be a deterministic parity automaton recog-
nising L. Fix a number m < ω such that all priorities used byA are smaller
than 2m. For k < 2m, letWk

n be the set of all words w ∈ Σ∗ such that the
(unique) run ofA on w contains exactly n states with priority k. Setting

U
k ∶= ⋂

n<ω
W

k
n Σω ,
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we then have

L = ⋃
k<m
[U2k ∖ ⋃

i<2k
U

i] .

As each setWk
n Σω is open, it follows that L is Borel.

Proposition 5.24. Let T be a finitely-branching tree,ψ(X, Z̄) ∈ MSO, P̄ mon-

adic parameters, and

B ∶= { β ∣ β infinite branch with T ⊧ ψ(β, P̄) } .

(a) B is Borel.

(b) The following statements are equivalent.

(1) B is countable.

(2) ∣B∣ < 2ℵ0
.

(3) There is no subset S ⊆ T such that ⟨S , ≤pf ⟩ is isomorphic to the
infinite binary tree and every branch of ⟨S , ≤pf ⟩ belongs to B.

Proof. (a) Given a branch β and unary predicates P̄, we can write

⟨T, β, P̄⟩ ≅ σ[ ∑
v∈⟨β ,≤pf ⟩

Sv]

as a generalised sum followed by an interpretation σ , where Sv is the sub-
structure of ⟨T, β, P̄⟩ with universe

Sv ∶= ⇑v ∖ ⋃
u∈β∖⇓v

⇑u .

Therefore, Theorem I.4.24 yields formulae ϑ, χ0 , . . . , χn−1 such that

T ⊧ ψ(β, P̄) iff ⟨β, ≤pf ⟩ ⊧ ϑ(⟦χ0(P̄)⟧, . . . , ⟦χn−1(P̄)⟧) ,

for all β and P̄. By Lemma 5.23, the language K of ω-words defined by ϑ is
Borel. Let f be the function mapping a branch β to the tuple

f (β) ∶= (⟦χ i(P̄)⟧)i<n .
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This function is continuous since every prefix ρ of f (β) is completely de-
termined by the prefix v ∈ β of the same length ∣v∣ = ∣ρ∣. Consequently,
B = f

−1[K] is also Borel.
(b) (1)⇒ (2) is trivial.
(2)⇒ (3) If there exists a set S as in (3), the tree ⟨S , ≤pf ⟩ has 2ℵ0 infinite

branches. As each of them belongs to B, it follows that ∣B∣ = 2ℵ0 .
(3)⇒ (1) By (a), B is Borel. If B is uncountable, it therefore follows by

Theorem 5.21 that we can find a set S as in (3).

Remark. Note that there are regular languages of infinite trees that are not
Borel. ⌟

6 Counting Quanti[er+

Let us take a look at the extension ofMSO by various counting quantifiers.
We have already defined CMSO in Chapter I. There is a second, more ex-
pressive version of this logic where we count not elements but sets. We will
show below that in certain cases such quantifiers can be eliminated.

Definition6.1. C2MSO,monadic-second order logicwith second-order count-
ing, is the extension ofMSO by counting quantifiers of the form

∃κYφ(X̄,Y) ‘There exists at least κ sets satisfying φ.’

∃k ,m
Yφ(X̄,Y) ‘The number of sets Y satisfying φ is finite and

congruent k modulo m.’

If we want to explicitly specify which quantifiers are allowed, we write
MSO[∃ℵ0],MSO[∃k ,m],MSO[∃ℵ0 , ∃2

ℵ0
], etc. ⌟

Remark. The expressive power of C2MSO does not increase if we add car-
dinality quantifiers over tuples of sets since

(∃κXȲ)φ ≡ ∃κX[∃Ȳφ] ∨ ∃κ Ȳ[∃Xφ] , for infinite cardinals κ .⌟

We start with a few simple cases where (some of the) counting quantifiers
can be eliminated.The first one is well-orders.

259



V. Trees

Lemma 6.2. Over the class of all well-orders, CMSO is equivalent toMSO.

Proof. Over a well-order, we can express the predicate ∣X∣ ≥ ℵ0 by the
formula

∀z∃x[z < x ∧ Xx] ∨ ∃y(∀z < y)∃x[z < x < y ∧ Xx] ,

where the first part handles the case where X is unbounded and the second
one the case where X has a least upper bound y.
A predicate of the form ∣X∣ ≡ k (mod m) holds if, and only if, ∣X∣ < ℵ0

and there are sets Z0 , . . . ,Zm−1 satisfying the following conditions.

◆ minX ∈ Z0 and maxX ∈ Zk .

◆ Every element belongs to at most one set Z i .

◆ If x < y are elements ofX such that no element between x and y belongs
to X, then x ∈ Z i ⇔ y ∈ Z i+1 (indices modulo m).

By the first part of the proof, every of these conditions can be expressed in
MSO.

Let us also note that the second-order version of the quantifier ∃ℵ0 can
always be replaced by the first-order one.

Proposition 6.3. MSO[∃ℵ0] is equivalent toMSO[inf].

Proof. Clearly, we can translate everyMSO[inf]-formula intoMSO[∃ℵ0].
Conversely, note that, if there are only finitely many sets X satisfying a
given formula φ, we can find a finite set Z such that any two sets X and X′

satisfying φ differ in some element of Z. Hence,

∃ℵ0
Xφ(X) ≡

¬∃Z[∣Z∣ < ℵ0 ∧ (∀X.φ(X))(∀X′ .φ(X′))

[X ≠ X′ → X ∩ Z ≠ X′ ∩ Z]] .

Finally, we turn to finitely-branching trees. Our goal is to establish the
following two results.
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Theorem 6.4.

(a) Over finitely-branching trees,MSO[∃ℵ0 , ∃2
ℵ0
] is equivalent toMSO.

(b) Over finitely-branching trees, C2MSO is equivalent to CMSO.

(c) Over finitely-branching successor-ordered trees, C2MSO is equivalent to

MSO.

Theorem 6.5. Over the class of finitely-branching trees, we have

∃ℵ1
Yφ(X̄,Y) ≡ ∃2

ℵ0
Yφ(X̄,Y) , for all C2MSO-formulae φ .

Proof of Theorem+ 6.4 and 6.5

For the proof, we need to be able to evaluate products in finite semigroups.
The following lemma explains how this can be done.

Lemma 6.6. Let S be a finite semigroup.

(a) For every c ∈ S, there exists an MSO-formula φc such that, for every

sequence a0 , . . . , an−1 ∈ S,

⟨[n], ≤, P̄⟩ ⊧ φc iff a0 ⋅ ⋅ ⋅ ⋅ ⋅ an−1 = c ,

where P̄ = (Pb)b∈S is the family with Pb ∶= { i < n ∣ a i = b }, for b ∈ S.

(b) If S is commutative, there exists CMSO-formulae φc such that, for every

sequence a0 , . . . , an−1 ∈ S,

⟨[n], P̄⟩ ⊧ φc iff a0 ⋅ ⋅ ⋅ ⋅ ⋅ an−1 = c .

Proof. (a) We guess a labelling of the positions with elements from S such
that position i is labelled by the value of the product a0⋯a i . Then the label
of the last position is the product of the whole sequence. Thus, φc states
that there are sets Zb , b ∈ S, satisfying the following conditions.

◆ The first position x satisfies x ∈ Zb ⇔ x ∈ Pb .

◆ The last position belongs to Zc .

◆ Every position belongs to exactly one set Zb .
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◆ If y is the successor of x then x ∈ Za ∧ y ∈ Pb ⇒ y ∈ Zab .

Clearly, all of this can be expressed inMSO.
(b) Since S is commutative, the value of a product a0 ⋅ ⋯ ⋅ an−1 only

depends on the cardinalities ∣Pb ∣, for b ∈ S. Furthermore, as S is finite, there
exists a number m < ω such that am = aπ , for every a ∈ S. Then

a
im+k = am+k , for i > 0 ,

implies that the value of the product only depends on the numbers

min{∣Pb ∣,m} and ∣Pb ∣ mod m , for b ∈ S .

These can be computed using modulo predicates.

We start with the simple parts ofTheorem 6.4.

Proposition 6.7.

(a) Over finitely-branching trees,MSO[∃ℵ0] is equivalent toMSO.

(b) Over finitely-branching trees,MSO[∃ℵ0 , ∃k ,m] is equivalent to
CMSO.

(c) Over finitely-branching successor-ordered trees,MSO[∃ℵ0 , ∃k ,m] is equi-
valent toMSO.

Proof. (a) Proposition 6.3 provides a translation ofMSO[∃ℵ0] toMSO[inf].
Hence, it remains to show how to eliminate the predicate inf . Over finitely-
branching trees, we can use Kőnig’s Lemma to do so. Since a set X is infinite
if, and only if, its prefix closure contains an infinite path, we can use the
formula

inf(X) ∶=

∃Z[Z ≠ ∅ ∧ (∀z ∈ Z)(∃x ∈ X)(∃y ∈ Z)[z ≺ x ∧ z ≺ y]] .

(b) We can eliminate the counting quanitfier ∃ℵ0 as in (a). For a modulo-
counting quantifier ∃k ,m

Yφ(X̄,Y) we proceed as as follows. Given values
for X̄, we pick a finite prefix P such that every setY satisfying φ is determined
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by its intersection with P. (As explained in the proof of Proposition 6.3, if
there is no such prefix, then there are infinitely many sets Y satisfying φ.)
Suppose that φ ∈ CMSOr and let Θ be the set of all CMSOr-theories. For
each vertex v ∈ P and every τ ∈ Θ, letUτ

v be the set of all Y0 ⊆ P ∩ ⇑v such
that there exits some Y ⊆ ⇑v with Y0 = P ∩ Y andThr

CMSO(T∣v ,Y) = τ.
For each v and τ, we guess the number

gv(τ) ∶= ∣Uτ
v ∣ mod m

and we label v with the function gv . By choice of the set P, the formula
∃k ,m

Yφ(X̄,Y) is equivalent to the statement that

∑
τ∈Θ
φ∈τ

∣Uτ
⟨⟩
∣ ≡ k (mod m) ,

which we can verify using the labelling g⟨⟩.
To conclude the proof it is therefore sufficient to show that we can ex-

press the correctness of this guessed labelling in CMSO. We can do so going
through the tree bottom–up. For v ∉ P, we have gv(τ) = 0, for all τ. Hence
it suffices to consider vertices v ∈ P. Let u0 , . . . , un−1 be the successors
of v. Note that we can express the subtree T∣v as a generalised sum of the
singleton {v} and the subtrees T∣u0 , . . . ,T∣un−1 . Furthermore, the set Θ of
theories forms a semigroup when equipped with the disjoint union opera-
tion ⊕. We can form a new semigroup with universe mΘ and multiplication

(g ⋅ h)(τ) ∶= ∑{ g(ρ) ⋅ h(σ) ∣ ρ ⊕ σ = τ } mod m .

Since⊕ is commutative, so is this new semigroup. Consequently, we can use
Lemma 6.6 (b) to construct CMSO-formulae ψg , for g ∈ mΘ , such that

⟨[n], N̄⟩ ⊧ ψg

if, and only if, the number of sets Y ⊆ ⇑u0 ∪ ⋅ ⋅ ⋅ ∪ ⇑un−1 with

Thr
CMSO(T∣u0 ,Y ⊕ ⋅ ⋅ ⋅ ⊕ T∣un−1 ,Y) = τ
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is congruent g(τ) modulo m. Since the CMSOr-theory of T∣v ,Y can be
computed from the theories of {v},Y and T∣u0 ,Y ⊕ ⋅ ⋅ ⋅ ⊕ T∣un−1 ,Y, we can
use these formulae ψg to construct a formula ϑg(v) that uses the labelling
of the vertices u0 , . . . , un−1 and that satisfies

T ⊧ ϑg(v) iff the number of sets Y ⊆ ⇑v with

Thr
CMSO(T∣v ,Y) = τ

is congruent g(τ)modulo m .

This formula can check that the labelling of v is correct.
(c) Note that we only use modulo predicates for sets of successors of a

given vertex. If the tree is successor-ordered, the successors of every vertex v
are well-ordered. Hence, we can use Lemma 6.2 to eliminate all modulo
predicates.

It remains to consider quantifiers ∃κXφ(X, Ȳ) for uncountable cardin-
als κ. Without loss of generality, we may assume that we have already elimin-
ated all cardinality quantifiers in φ, that is, φ ∈ CMSOm for some m. In the
following, to simplify notation, we will fix values Q̄ for the free variables Ȳ
and include them in the tree T = ⟨T , ≤pf , Q̄⟩. That way, we can assume that
φ(X) has a single free variable X. Thus, below trees will always implicitly
be assumed to have additional unary predicates Q̄ . We will make use of the
following composition operation for such trees.

Definition 6.8. Let S and Ts , for s ∈ S, be order trees. The ordered tree sum
of the family (Ts)s is the tree

∑
s∈S

Ts

whose universe is the disjoint union∑s Ts and whose order is given by

⟨s, u⟩ ≤ ⟨t, v⟩ : iff s = t and u ≤ v , or

s ≤ t and u is the root of Ts . ⌟
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6 Counting quantifiers

Since an ordered tree sum can be written as a generalised sum followed
by a quantifier-free interpretation, we obtain the following composition
theorem.

Proposition 6.9. For each CMSOm -formula φ(X̄), we can construct CMSO-
formulaeψ(Z̄) and χ0(X̄), . . . , χn−1(X̄) such that each χ i has quantifier-rank
at most m and

∑
s∈S

Ts ⊧ φ(P̄) iff S ⊧ ψ(⟦χ0(P̄)⟧, . . . , ⟦χn−1(P̄)⟧) ,

for all trees S and Ts , s ∈ S, where

⟦χ(P̄)⟧ ∶= { s ∈ S ∣ Ts ⊧ χ(P̄∣Ts) } .

To apply this result, we need a bit of notation and terminology for parts
of a tree.

Definition 6.10. Let T be a finitely-branching tree.
(a) A factor of T is a connected subset D ⊆ T, i.e., a subset such that,

for all u, v ∈ D, the path (ignoring edge directions) between u and v also
belongs to D.
(b) For a vertex v ∈ T and a set D ⊆ T, we set

T[v ,D) ∶= { u ∈ T ∣ v ≤pf u and w ≰pf u for all w ∈ D with v ≺ w } .

So T[v ,D) consists of the subtree attached at v where we have removed
every subtree attached to some w ∈ D with v ≺ w. We denote the substruc-
tures of T induced by these sets by T[v ,D). ⌟

Remark. Given a prefix-closed subsetB ⊆ T, we can expressT as the ordered
tree sum

T ≅ ∑
v∈B

T[v , B) .
⌟

The following special version of Proposition 6.9 will be used below.
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Corollary 6.11. Given an CMSOm -formula φ(X), we can construct CMSO-
formulaeψ(Z̄) and χ0(X), . . . , χn−1(X) such that each χ i has quantifier-rank
at most m and

T ⊧ φ(P) iff ⟨B, ≤pf ⟩ ⊧ ψ(⟦χ0(P)⟧, . . . , ⟦χn−1(P)⟧) ,

for all trees T, sets P ⊆ T, and prefix-closed B ⊆ T, where

⟦χ(P)⟧ ∶= { v ∈ B ∣ T[v , B) ⊧ χ(P ∩ T[v , B)) } .

Let us introduce the central notion the proof of Theorem 6.4 below is
based on.

Definition 6.12. Let T = ⟨T , ≤pf , Q̄⟩ be a finitely-branching tree, φ(X) an
CMSO-formula of quantifier-rank m, and P a set satisfying φ(X).

(a) A factorD is a P-choice factor if P∩D is not determined by itsCMSOm-
theory, i.e., if there exists a set P′ ⊆ D with P′ ≠ P ∩ D such that

T∣D , P′ ≡mCMSO T∣D , P∣D .

(b) If D = T∣v , we call v a P-choice vertex.The set of all P-choice vertices
is denoted by Ch(P).
(c) An infinite branch β ⊆ Ch(P) is called a P-choice branch.We denote

by CB(P) the set of all such branches. ⌟

Remark. (a)The above definition of a P-choice factor depends on the for-
mula φ. We have omitted it from the notation to keep the terminology
light.
(b) Note that Ch(P) is prefix closed. ⌟

First, we check that these notions are definable.

Lemma 6.13. (a) There exists an CMSO-formula ψ(P,D) expressing that
D is a P-choice factor.

(b) There exists an CMSO-formula ψ(P, v) stating that v ∈ Ch(P).
(c) There exists an CMSO-formula ψ(P,D) stating that B ∈ CB(P).
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6 Counting quantifiers

Proof. (a) Let

ϑ(X) ∶= ∀Z⋀
ψ
[[ψ(Z) ↔ ψ(X)] → Z = X] ,

where the conjunction ranges over all formulae ψ of quantifier-rank m. Then
we can set

ψ(P,D) ∶= ‘D is a factor’ ∧ ¬ϑ(D)(P ∩ D) ,

where ϑ(D) denotes the relativisation of ϑ to the set D.
(b) follows immediately by (a).
(c) follows by (b).

In particular, we obtain the following consequence of Corollary 6.11.

Corollary 6.14. There exists CMSO-formulae ψ, χ0 , . . . , χn−1 such that, for
every tree T and every prefix-closed set B ⊆ T,

P ∈ φT
and B ⊆ Ch(P)

if, and only if,

⟨B, ≤pf ⟩ ⊧ ψ(⟦χ0(P)⟧, . . . , ⟦χn−1(P)⟧) .

Proof. ByLemma 6.13 (c), there exists anCMSO-formula stating that P ∈ φT

and β ∈ CB(P). Hence, the claim follows by Corollary 6.11.

Working towards a proof ofTheorems 6.4 and 6.5, we derive a sequence of
combinatorial conditions that are equivalent to the existence of uncountably
many sets satisfying the a given formula φ.

Lemma 6.15. Let φ(X) be a formula and P ∈ φT
.

(a) If Ch(P) contains an infinite antichain, then ∣φT∣ = 2ℵ0
.

(b) CB(P) = ∅ implies ∣φT∣ < ℵ0 .

267



V. Trees

Proof. (a) Fix an infinite antichain C ⊆ Ch(P). By the Lemma of Kőnig, the
set ⇓C contains an infinite branch β. It is sufficient to prove that β ∈ CB(P′),
for 2ℵ0 different sets P′ ∈ φT. Let

S ∶= { v ∈ T ∣ no u ≤pf v belongs to C } .

Then we can decompose T as

T = ∑
v∈S
{v} + ∑

v∈C
T∣v ,

(where∑ denotes the ordered tree sum from Definition 6.8 and the above
expression is considered as a single sum, not two) where {v} denotes the
substructure of T consisting of the single vertex v. As every v ∈ V is a
P-choice vertex, there exist sets P′v ⊆ T∣v , for v ∈ V , such that

P
′
v ≠ P ∩ T∣v and T∣v , P′v ≡

m
MSO T∣v , P ∩ T∣v .

For every function σ ∶ C → [2], define Pσ ⊆ T by

Pσ ∩ S = P ∩ S and Pσ ∩ T∣v ∶=

⎧⎪⎪
⎨
⎪⎪⎩

P ∩ T∣v if σ = 0 ,
P
′
v if σ = 1 .

By Proposition 6.9 it follows that

T, Pσ ≡
m
MSO T, P , for all σ .

In particular, each set Pσ satisfies φ(X). Furthermore, β ⊆ C ⊆ Ch(Pσ).
(b) If Ch(P) does not contain an infinite branch, it follows by Kőnig’s

Lemma thatCh(P) is finite. Furthermore, the set P is completely determined
by (i) the subset P ∩ Ch(P) and (ii) the MSOm-theories of all subtrees
attached at some successor of a vertex in Ch(P). Since there are only finitely
many such subtrees and only finitely many choices for theirMSOm-theory,
it follows that there are only finitely many sets P.

Below we want to prove that there is no difference between the cardin-
als ℵ0 and 2ℵ0 . This is the reason we allow both choices of κ in the next
characterisation.
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Proposition 6.16. Let T be a finitely-branching tree, φ(X) an CMSOm -

formula, and let κ be either ℵ1 or 2ℵ0
. Then

∣φT∣ ≥ κ

if, and only if, at least one of the following conditions is satisfied.

(i) Ch(P) contains an infinite antichain, for some P ∈ φT
.

(ii) The set ⋃{CB(P) ∣ P ∈ φT } is uncountable.

(iii) There exists an branch β with β ∈ CB(P), for at least κ many P ∈ φT
.

Proof. (⇐) (i) implies ∣φT∣ = 2ℵ0 ≥ κ by Lemma 6.15 (a), while (iii) trivially
implies that ∣φT∣ ≥ κ.

It therefore remains to consider the case where (ii) holds, but (i) and (iii)
do not. Then every infinite branch β belongs to less than κ sets CB(P). If
∣φT∣ < κ, it would therefore follow that the size ofB ∶= ⋃{CB(P) ∣ P ∈ φT }
would be less than κ. By Proposition 5.24 it then follows that B is countable.
A contradiction.
(⇒) Suppose that ∣φT∣ ≥ κ and set B ∶= ⋃{CB(P) ∣ P ∈ φT }. If B con-

tains uncountably many infinite branches, then (ii) holds and we are done.
Hence, suppose otherwise. By Lemma 6.15 (b), we have CB(P) ≠ ∅, for all
P ∈ φT. Consequently,

κ ≤ ∣φT∣ ≤ ∑
P∈φT

∣CB(P)∣ = ∑
β∈B
∣{ P ∈ φT ∣ β ∈ CB(P) }∣ .

If there is some infinite branch β with β ∈ CB(P), for at least κ many
P ∈ φT, then (iii) holds are we are done. Otherwise, the above bound on κ
is given by a countable sum of cardinals less than κ. Since the cofinalities
of ℵ1 and 2ℵ0 are both uncountable, this sum is therefore also less than κ.
A contradiction.

It is not clear how to express condition (iii) above in monadic second-
order logic. The following proposition provides an alternative formulation
that is easier to express in logic.
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Definition 6.17. Let T be a finitely-branching tree, B ⊆ T prefix-closed, and
let ψ, χ0 , . . . , χn−1 be theMSO-formulae from the preceding corollary. By
adding more formulae to the list χ0 , . . . , χn−1, if necessary, we may assume
without loss of generality that, for every CMSOm-theory θ there is some
i < n such that

χ i ≡ ⋀ θ .

(a) We set

PB ∶= { P ∈ φT ∣ B ⊆ Ch(P) }

and we define a function τ ∶ PB → ℘(B)n mapping each set P ∈ PB to the
tuple Ū with

U i ∶= ⟦χ i(P)⟧ , for i < n .

(b) A family Ū is an admissible labelling of B if Ū = τ(P), for some P ∈ PB .
In this case we say that Ū is associated with P. ⌟

Proposition 6.18. LetT be a finitely-branching tree, φ(X) anCMSOm -formula,

and β an infinite branch such thatPβ is uncountable. At least one of the following

conditions is satisfied.

(i) There exists some P ∈ φT
and infinitely many v ≺ β such that the set

T[v , β) is a P-choice factor.
(ii) There are uncountably many admissible labellings of β.
(iii) There exists some P ∈ φT

and some v ≺ β such that there are uncountably

many sets P
′ ⊆ T[v , β) with

T[v , β) ⊧ χ i(P′) ⇔ T[v , β) ⊧ χ i(P ∩ T[v , β)) ,

for all i < n.

Proof. We distinguish two cases. First, suppose that τ−1(Ū) is countable,
for all admissible labellings Ū of β. Since dom τ = Pβ is uncountable while
τ−1(Ū) is countable, it then follows that rng τ is countable. This proves (ii).
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Hence, it remains to consider the case where there exists a labelling Ū
such that τ−1(Ū) is uncountable. Suppose that (i) does not hold and fix a
set P ∈ τ−1(Ū). We will prove (iii). By assumption, there are only finitely
many v ≺ β such that T[v , β) is a P-choice factor. Let C ⊆ β be the finite
set of these vertices. Recall that we chose the formulae χ i such that, for every
CMSOm-theory θ, there is some index i with χ i ≡ ⋀ θ. For P′ ∈ τ−1(Ū), it
therefore follows that

T[v , β), P′ ∩ T[v , β) ≡mCMSO T[v , β), P ∩ T[v , β) ,

for all v ≺ β. Consequently,

P
′ ∩ T[v , β) = P ∩ T[v , β) , for all v ∈ β ∖ C .

Since τ−1(Ū) is uncountable, it follows that there is some vertex v ∈ C such
that

P
′ ∩ T[v , β) ≠ P ∩ T[v , β) , for uncountably many P′ ∈ τ−1(Ū) .

This proves (iii).

Lemma 6.19. There exists an CMSO-formula ψ(β, Ū) stating that β is an

infinite branch and Ū an admissible labelling of β.

Proof. Given β, the formula ψ guesses some set P and checks that

◆ P satisfies φ,
◆ β ∈ CB(P),
◆ U i = ⟦χ i(P)⟧.
Note that the second statement can be expressed inMSO by Lemma 6.13.

The following is a special case ofTheorem XII.6.7.

Definition 6.20. Let β be a branch of a tree T. For two labellings Ū and V̄
of β, we write

Ū ≈∗ V̄ : iff Ū and V̄ differ in only finitely many positions. ⌟
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Lemma 6.21. There exists a constant k such that the following statements are

equivalent for every finitely-branching tree T and every infinite branch β.
(1) There are only countably many admissible labellings of β.
(2) There are less than 2ℵ0

admissible labellings of β.
(3) There exist families W̄

0 , . . . , W̄k−1
of subsets of β such that every admiss-

ible labelling Ū of β satisfies

Ū ≈∗ W̄
i , for some i .

Proof. Letψ(β, Ū) be the formula fromLemma 6.19 defining the admissible
labellings of β. Let m be its quantifier-rank, let d be the number of CMSOm-
theories, and set k ∶= d2.
(1)⇒ (2) is trivial.
(3)⇒ (1) For every tuple W̄ there are only countably many labellings Ū

with Ū ≈∗ W̄ .
(2)⇒ (3) Suppose that there are k+ 1 pairwise non-≈∗-equivalent admiss-

ible labellings W̄0 , . . . , W̄k of β. By theTheorem of Ramsey, there exists
an infinite subsetH ⊆ β such that

⟨β, ≤pf , W̄ i⟩∣[⟨⟩,u) ≡CMSOm ⟨β, ≤pf , W̄
i⟩∣[⟨⟩,u′) ,

⟨β, ≤pf , W̄ i⟩∣[u ,v) ≡CMSOm ⟨β, ≤pf , W̄
i⟩∣[u′ ,v′) ,

for all u < v and u′ < v′ inH and all i ≤ k , where

[u, v) ∶= {w ∈ β ∣ u ≤pf w ≺ v } .

As there are only d CMSOm-theories, we can find i < j such that

⟨β, ≤pf , W̄ i⟩∣[⟨⟩,u) ≡CMSOm ⟨β, ≤pf , W̄
j⟩∣[⟨⟩,u) ,

⟨β, ≤pf , W̄ i⟩∣[u ,v) ≡CMSOm ⟨β, ≤pf , W̄
j⟩∣[u ,v) ,

for all u < v inH.W.l.o.g. we may assume that i = 0 and j = 1. Since W̄0 ≉∗
W̄

1, there exists an infinite subset I ⊆ H such that W̄0∣[u ,v) ≠ W̄
1∣[u ,v),
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for all u < v in I. Let u0 < u1 < . . . be an enumeration of I. For every
σ ∶ ω → [2], we define a labelling Ūσ of β by

Ūσ ∣[⟨⟩,u0) ∶= W̄
0∣[⟨⟩,u0)

and Ūσ ∣[u i ,u i+1) ∶= W̄
σ(i)∣[u i ,u i+1) , for i < ω .

Then Ūσ ≠ Ūτ , for σ ≠ τ, and

⟨β, ≤pf , Ūσ⟩ ≡CMSOm ⟨β, ≤pf , W̄
0⟩ , for all σ .

In particular, Ūσ is an admissible labelling of β. Consequently, there are
2ℵ0 such labellings.

Theorem 6.22. Let T be a finitely-branching tree and φ(X) an CMSOm -

formula. The following statements are equivalent.

(1) ∣φT∣ ≥ ℵ1

(2) ∣φT∣ ≥ 2ℵ0

(3) At least one of the following conditions is satisfied.

(i) Ch(P) contains an infinite antichain, for some P ∈ φT
.

(ii) The set ⋃{CB(P) ∣ P ∈ φT } contains uncountably many infinite
branches.

(iii) There exist a branch β and a set P ∈ φT
such that T[v , β) is a choice

factor, for infinitely many v ≺ β.
(iv) There exists an infinite branch β with uncountably many admissible

labellings.

Proof. (2)⇒ (1) is trivial.
(3)⇒ (2) If (i) or (ii) hold, the claim follows by Proposition 6.16. If (iii)

holds, there are 2ℵ0 different sets P ∈ φT with β ∈ CB(P). Finally, suppose
that (iv) holds.ThenLemma 6.21 implies that β has 2ℵ0 admissible labellings.
Since each labelling corresponds to a different set P ∈ φT, it follows that φT

has size 2ℵ0 .
(1)⇒ (3) For a contradiction, suppose that φT is uncountable but (i)–(iv)

do not hold. Since (ii) fails, the set B ∶= ⋃{CB(P) ∣ P ∈ φT } contains only
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countably many infinite paths. Furthermore, by the failure of (i), every set
CB(P) is finite. Since every countable set has only countably many finite
subsets, it follows that there are only countably many sets of the formCB(P),
for P ∈ φT. Since there are uncountably many P ∈ φT, it follows that we can
find a set S such that S = CB(P), for uncountably many sets P ∈ φT. Let
P be the set of all P ∈ φT with CB(P) = S. Let D be the set of vertices lying
on some branch in S, let D1 ⊆ D be the set of vertices v ∈ D with at most
one successor inD and letD2 ⊆ D be the set of remaining vertices. Since S is
finite, so is D2. Furthermore, for every set P ∈ φT and every branch β ⊆ D,
the induced labellings of D and of β coincide on all vertices in β ∩D1. Since
D has only finitely many infinite branches, sinceD2 is finite, and since, by the
failure of (iv), every branch has only countably many admissible labellings, it
follows that there are only countably many admissible labellings ofD. Hence,
there exists some labelling Ū of D that is associated with uncountably many
sets P ∈ φT. As D is countable, we can find some vertex v ∈ D such that the
set

H ∶= { P ∩ T[v ,D) ∣ P ∈ P , Ū associated with P }

is uncountable. Note that T[v ,D) can be decomposted into the vertex v
and a finite number of subtrees T[u), for successors u of v with u ∉ S.
For P ∈ P and u ∉ D, the fact that CB(P) = S implies that P ∩ T[u)
is uniquely determined byThm

CMSO(T[u), P). Since there are only finitely
many CMSOm-theories, it follows thatH is finite. A contradiction.

This theorem immediately impliesTheorem 6.5. To proveTheorem 6.4,
it remains to show that the above conditions can be expressed in CMSO.

Proof of Theorem 6.4. By Proposition 6.7 andTheorem 6.5, it is sufficient
to eliminate the quantifier ∃ℵ1 . We have shown in Lemma 6.13, that the set
Ch(P) isMSO-definable, and in Lemma 6.19 that admissibility is definable.
We therefore obtain the following formulae expressing conditions (i)–(iv)

274



6 Counting quantifiers

fromTheorem 6.22.

ψI ∶= ∃P[φ(P) ∧ ∃Z[‘Z antichain’ ∧ ∣Z∣ ≥ ℵ0 ∧ Z ⊆ Ch(P)]] ,

ψII ∶= ∃Z[‘⟨Z , ≤pf ⟩ ≅ ⟨2
∗ , ≤pf ⟩’

∧ ∀β[β ⊆ Z ∧ ’β branch’→ ∃P[φ(P) ∧ β ⊆ Ch(P)]]] ,

ψIII ∶= ∃β∃P(∀u ≺ β)(∃v ≺ β)[u ≤pf v ∧ v ∈ Ch(P)] ,

ψIV ∶= ∃β∃Ū0⋯∃Ūk[’β branch’ ∧⋀
i≠ j

Ū
i ≉∗ Ū

j

∧ ⋀
i≤k

‘Ū i admissible labelling of β’] ,

where the number k inψIV is the constant from Lemma 6.21 and correctness
of ψII follows by Proposition 5.24. Consequently, we have

∃ℵ1
Yφ(X̄,Y) ≡ ψI ∨ ψII ∨ ψIII ∨ ψIV .

Formulae Without Free Variable+

For formulae without free variables, we can improve the above results. In this
case, the problem is equivalent to checking whether a given regular language
of trees is uncountable. We will derive a simple criterion for this to be the
case. In the following, we will work with Σ-labelled finitely-branching trees,
for some finite alphabet Σ. For various constructions of trees below, it will
be convenient to consider not only trees but also contexts.

Definition 6.23. (a)We consider Σ-labelled trees as functions t ∶ dom(t) →
Σ. For v ∈ dom(t), we denote by t∣v the subtree attached at v.

(b) A context is a Σ-labelled tree p where some of the leaves are labelled by
special variables x0 , . . . , xn−1 (which are assumed not to belong to Σ). We
say that p is n-ary if it contains at most the variables x0 , . . . , xn−1. (Some of
the variables may be missing.)

(c) For an n-ary context p and trees s0 , . . . , sn−1, we write p(s0 , . . . , sn−1)
for the tree obtained from p by replacing every leaf labelled by a variable x i
by a copy of s i .
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For unary contexts, we omit the parentheses and simplywrite ps0. Further-
more, we write pω for the tree obtained as the limit p, pp, ppp, pppp, . . . .

(d) Let p and q be unary contexts. A vertexw distinguishes p and q if either

◆ w ∈ dom(p), w ∈ dom(q), and p(w) ≠ q(w), or

◆ w ∈ dom(p), w ∉ dom(q), and there is no leaf v of q with v ≺ w and
q(v) = x0, or

◆ w ∈ dom(q), w ∉ dom(p), and there is no leaf v of p with v ≺ w and
p(v) = x0.

If such a vertex exists, we call p and q distinguishable.
(e) We call a tree t expandable if it is isomorphic to a proper subtree of

itself, that is, if t = pt, for some non-trivial context p. ⌟

We start with a few lemmas.

Lemma 6.24. Every non-regular tree t has an infinite branch β such that

t∣u ≇ t∣v , for all u ≺ v ≺ β .

Proof. Consider the set

P ∶= { v ∈ T ∣ t∣v ≇ t∣u for all u <llex v } .

By the Lemma of Kőnig, the set ⇓P contains an infinite branch β. We claim
that β has the desired properties. Hence, fix two vertices u ≺ v ≺ β. Let
w be the ≤llex-least vertex in P with v ≤pf w. Suppose that w = vz. Then
∣uz∣ < ∣vz∣ implies that uz <llex vz = w ∈ P. By definition of P, we therefore
have t∣uz ≇ t∣vz . Hence, t∣u ≇ t∣v .

Lemma 6.25. Let p, a i , b i , for i < ω, be unary contexts that each have at least
one occurrence of the variable x0. Suppose that

◆ for every i < ω, a i and b i are either distinguishable or equal,
◆ there is at least one index i with a i ≠ b i .

Then pa0a1a2 . . . ≠ pb0b1b2 . . ..
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Proof. Fix the minimal index i with a i ≠ b i . Let w be the vertex distinguish-
ing a i and b i and let u be some leaf of pa0 . . . a i−1 = pb0 . . . b i−1 labelled
by x0. Then uw distinguishes pa0a1a2 . . . and pb0b1b2 . . . .

In the case of ω-words a regular languageK ⊆ Σω is countable if, and only
if, it is a finite union of languages of the formUv

ω withU ⊆ Σ∗ regular and
v ∈ Σ+. We next theorem contains a similar characterisation for languages
of trees.

Theorem 6.26. Let K be a regular language of finitely-branching Σ-labelled
trees. The following statements are equivalent.

(1) K is countable.

(2) ∣K∣ < 2ℵ0

(3) Every tree in K is regular.

(4) There are only finitely many expandable trees t that are subtrees of some

tree in K.

(5) K = { p(s0 , . . . , sn−1) ∣ p ∈ P }, for some set P of finite contexts and

some finite tuple s0 , . . . , sn−1 of expandable trees.

Proof. (5)⇒ (1) As P is a set of finite contexts, it is countable. Hence, there
are only countably many trees of the form p(s̄) with p ∈ P.
(1)⇒ (3)There are only countably many regular trees.
(3)⇒ (2) Let φ be anMSO-formula definingK and letm be its quantifier-

rank. Fix a non-regular tree t ∈ K and let β be the branch from Lemma 6.24.
By theTheorem of Ramsey, there exists an infinite subsetH ⊆ β such that

t[u, v) ≡mMSO t[u′ , v′) for all u ≺ v and u′ ≺ v′ inH .

SinceH is infinite, we can find vertices u ≺ v and u′ ≺ v′ inH such that the
intervals t[u, v) and t[u′ , v′) are distinguishable. Suppose that v = uz and
v
′ = u′z′. For σ ∈ [2]ω and i < ω, let cσ

i be the context with

c
σ
i ∶=

⎧⎪⎪
⎨
⎪⎪⎩

t[u, v) if σ(i) = 0 ,
t[u′ , v′) if σ(i) = 1 ,
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V. Trees

and let sσ be the tree obtained by concatenating

t[0, u), cσ
0 , c

σ
1 , c

σ
2 , . . . .

For σ ≠ τ, it follows by Lemma 6.25 that sσ ≇ sτ . Furthermore, cσ
i ≡

m
MSO

t[u, v) implies that sσ ≡
m
MSO t. Consequently, we have found 2ℵ0 different

trees sσ ∈ K.
(2)⇒ (4) Fix anMSO-formula φ defining K and let m be its quantifier

rank. For a contradiction, suppose that there are infinitely many expandable
trees as in (4). Then we can find two trees s, t ∈ K of the form s = pu and
t = qv where u ≠ v, the subtrees u = au and v = bv are expandable, and
a ≡mMSO b. In particular, s = pa

ω and a
ω ≠ bω . Consequently, there exists

some vertex w distinguishing aω and bω . For a sufficiently large number n,
the same vertex distinguishes an and bn . For σ ∈ [2]ω , set

sσ ∶= pc0c1c2 . . . where c i ∶=

⎧⎪⎪
⎨
⎪⎪⎩

a
n if σ(i) = 0 ,

b
n if σ(i) = 1 .

Then sσ ≡
m
MSO s implies sσ ∈ K. Furthermore, it follows by Lemma 6.25 that

sσ ≠ sτ for all σ ≠ τ. Consequently, K is uncountable. A contradiction.
(4)⇒ (5) Let S be the set of all expandable trees which are a subtree of

some tree in K. By assumption, S is finite. Suppose that S = {s0 , . . . , sn−1}
and let P be the set of all trees obtained from some tree in K by deleting
every subtree isomorphic to some s i . Then

K = { p(s0 , . . . , sn−1) ∣ p ∈ P }

and it remains to prove that every tree p ∈ P is finite. For a contradiction,
suppose that there is some infinite p ∈ P. Then p has some infinite branch β.
Since p is regular, it has only finitely many different subtrees. Hence, there
are two vertices u ≺ v on the branch β with p∣u ≅ p∣v . Consequently, the
subtree p∣u is expandable. But no tree in P can have an expandable subtree.
A contradiction.

As an application, we show how we can encode the trees in a countable
language by finite ones.
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6 Counting quantifiers

Theorem6.27. Let K be a regular language of finitely-branching Σ-labelled trees.
If K is countable, there exists anMSO-definable injective function σ mapping

each tree in K to some finite tree.

Proof. ByTheorem 6.26 (5), we can write

K = { p(s0 , . . . , sn−1) ∣ p ∈ P , s0 , . . . , sn−1 ∈ S } .

Let σ be the function that maps each tree t ∈ K to the prefix obtained from t

by

◆ deleting ever subtree in S and

◆ replacing it with some leave that is labelled by the isomorphism type of
the deleted subtree.

Since S is a finite set of regular trees, it isMSO-definable. Hence, so is σ .
Furthermore, σ is clearly injective.

Open Questions.

(a) Does Theorem 6.27 hold for formulae with parameters, i.e., for sets of the

form K = φ(X̄; P̄)T with parameters Pi ⊆ T?

(b) Is there an analogue of Theorem 6.22 for sets of the form φT/E, where
E is anMSO-definable equivalence relation (similar to the results of Sec-
tion XII.6)?

Note+

Good introductions to the theory of automata on ω-words and infinite
trees are [202, 204]. The latter also contains a proof that parity games are
positionally determined. Corollary 3.9 is from Rabin [156].

TheTheorem of Muchnik was announced in [192], but a proof was never
published. The proof above was provided byWalukiewicz [208]. This paper
is also the source of the automata constructions presented in Section 2.
Corollary 3.11 was an earlier result by [64].Theorem 4.7 can be found in [205,
193].
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V. Trees

There is one general decidability result strictly subsuming theTheorem
of Muchnik: a certain way of recursively decomposing trees and computing
their theories inductively introduced by Puppis [155].
Theorem 1.13 is due to Colcombet [48]. The downward Löwenheim-

Skolem theorems (Theorems 4.2 and 4.3) are taken from [25].
A standard reference for Borel complexity and Cantor-Bendixson ranks

is [115]. Most of our results on thin trees are extracted from [133]. For further
logical properties of thin trees we refer to [28, 196].Thematerial on counting
quantifiers is based on [150, 10].
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Stru$ture Theory





VI Linear Order+

In this second part of the book we study ways to decompose struc-
tures, consider how these decompositions influence their logical prop-

erties, and show how to utilise them for composition arguments. We start
with the simplest case, that of linear orders.

1 Dense and S$aµered Order+

We can decompose linear orders using sums and products. Ordered sums
were already defined in Section I.4. We repeat the definition here for con-
venience.

Definition 1.1. (a) Let (Ai)i∈I be a family of linear orders indexed by a
linearly ordered set I. The ordered sum ∑i∈I Ai is the linear order with
universe

∑
i∈I

A i

and ordering

⟨i , a⟩ ≤ ⟨ j, b⟩ : iff i < j or (i = j and a ≤ b) .

(b)The ordered product A ×B of two linear orders A and B is the linear
order with universe

A× B

and ordering

⟨a, b⟩ ≤ ⟨a′ , b′⟩ : iff b < b′ or (b = b′ and a ≤ a′) .
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VI. Linear Orders

(c) An embedding of linear orders is a function h ∶ A→ B such that

a ≤ b iff h(a) ≤ h(b) , for all a, b ∈ A .

(d) For A = ⟨A, ≤⟩, we denote by Aop ∶= ⟨A, ≥⟩ the linear order with the
opposite ordering.
(e) An interval is a set of the form

[a, b] ∶= { c ∈ A ∣ a ≤ c ≤ b or b ≤ c ≤ a } ,

[a, b) ∶= { c ∈ A ∣ a ≤ c < b or b ≤ c < a } . ⌟

Example. We have ω × 2 ≅ ω + ω but 2 × ω ≅ ω. ⌟

Exercise 1.1. LetA,B, and C be linear orders. Prove the following equalities.
(a) A ×B ≅ ∑b∈B A

(b) A × (B + C) ≅ (A ×B) + (A × C) ⌟

Exercise 1.2. Find two countable ordinals α and β with α ≡MSO β. ⌟

Exercise 1.3. Let Σ be a finite alphabet. An Σ-labelled countable linear
order w of order type Z is called recurrent if every finite word u ∈ Σ+ occurs
in every prefix and every suffix of w. Prove that w ≡MSO w

′, for all recurrent
orders w and w′. ⌟

Dense Order+

It is not always possible to decompose a linear order into parts that are
‘simpler’ than the given one. One such case is when the order is dense.

Definition 1.2. Let A be a linear order.
(a) Given two sets P,Q ⊆ A, we say that P is dense in Q if, for all a < a′

in Q , there is some b ∈ P with a < b < a′. We call P densely ordered if it has
at least 2 elements and it is dense in itself.
(b) A is scattered if no infinite subset P ⊆ A is densely ordered.
(c) A family (Pi)i∈I of subsets Pi ⊆ A ismutually dense if each Pi is infinite

and, for all i , j ∈ I and all a < a′ in Pi , there is some b ∈ P j with a < b < a′,
that is, if every P j is dense in Pi ∪ P j .
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1 Dense and scattered orders

Similarly, we call a colouring χ ∶ A→ C dense if the sets (χ−1(c))c∈C are
mutually dense. ⌟

Let us start by classifying all countable dense linear orders.

Lemma 1.3. Every countable linear order can be embedded into the rationals.

Proof. Let A = ⟨A, ≤⟩ be countable and fix an enumeration (an)n<ω of A.
We construct an increasing sequence h0 ⊆ h1 ⊆ ⋯ of partial embeddings
hn ∶ A→ Q with

dom hn = {a0 , . . . , an} .

The limit h ∶= ⋃n hn is then the desired embedding A→ Q.
We start with the function h0 ∶ {a0} → Q mapping a0 to 0. For the

inductive step, suppose that we have already defined hn . Set

b ∶= min{ a ∈ dom hn ∣ a < an } ,

c ∶= max{ a ∈ dom hn ∣ a > an }

(if the minimum and the maximum exist). We consider three cases. Note
that at least one of b and c exists. If both do, we set

hn+1(an) ∶=
1
2
[hn(b) + hn(c)] .

If only b exists, we set

hn+1(an) ∶= hn(b) + 1 ,

and if only c exists, we set

hn+1(an) ∶= hn(c) − 1 .

Clearly, the resulting function hn+1 is injective and monotone.

Proposition 1.4. Let C be a finite set of colours and A = ⟨A, ≤, α⟩ and
B = ⟨B, ≤, β⟩ two countable dense linear orders without end-points with dense
colourings α ∶ A→ C and β ∶ B → C. Then A ≅ B.
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VI. Linear Orders

Proof. We repeat the construction in the proof of the preceding lemma
while making sure the resulting map is surjective and that is preserves the
colours. Hence, fix enumerations (an)n<ω and (bn)n<ω of A and B such
that α(a0) = β(b0). We construct an increasing sequence h0 ⊆ h1 ⊆ ⋯ of
partial embeddings hn ∶ A→ B such that dom hn is finite and

{a0 , . . . , an} ⊆ dom hn and {b0 , . . . , bn} ⊆ rng hn .

We start with the function h0 mapping a0 to b0. For the inductive step,
suppose that we have already defined hn . Since β is dense and B has no
end-points, there exists some element b′ ∈ B such that, β(b′) = α(an+1)
and, for all a ∈ dom hn ,

hn(a) ≤ b
′ iff a ≤ an+1 ,

b
′ ≤ hn(a) iff an+1 ≤ a .

Let h′ be the extension of hn mapping an+1 to b
′. Since α is dense and

A has no end-points, we can similarly find some element a′ ∈ A such that,
α(a′) = β(bn+1) and, for all a ∈ dom h

′,

a ≤ a′ iff h
′(a) ≤ bn+1 ,

a
′ ≤ a iff bn+1 ≤ h

′(a) .

For hn+1 we take the extension of h′ mapping a′ to bn+1.

Corollary 1.5 (Cantor). Every countable dense linear order without end-points

is isomorphic to the rationals.

Corollary 1.6. Up to isomorphism, there exist exactly 4 countable dense linear

orders.

It remains to prove the existence of dense colourings.

Lemma 1.7. For every countable set C, there exists a dense colouring χ ∶ Q→ C.

Proof. Set T ∶= {w1 ∣ w ∈ {0, 1}∗ }. Then the order ⟨T , ≤lex⟩ is countable,
dense, and it has no end-points. Consequently, it is isomorphic to ⟨Q, ≤⟩
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1 Dense and scattered orders

and it is sufficient to construct a dense colouring χ ∶ T → C. Let (cn)n<ω
be an enumeration of C (possibly with repetitions). We set

χ(1n) ∶= cn and χ(w01n) ∶= cn , for n < ω .

For every two words u <lex v, there is some w with u <lex w0 <lex v.
Consequently, x ∶= w01n is an element of T with u <lex x <lex v and
χ(x) = cn .

We can generalise this result to uncountable orderings as follows.

Lemma 1.8. Let A be a dense linear ordering and C a countable set. There exists

a dense colouring χ ∶ A→ C.

Proof. LetF be the set of all pairs ⟨D, λ⟩ such thatD ⊆ A is densely ordered
without end-points and λ ∶ D → C is a dense colouring of D. We orderF
by

⟨D, λ⟩ ≤ ⟨D′ , λ′⟩ : iff D ⊆ D′ and λ = λ′ ↾ D .

We will prove the following claims.

(i) F is inductively ordered.

(ii) If ⟨D, λ⟩ ∈ F is maximal, then the suborder A∖ D is scattered.

(iii) If ⟨D, λ⟩ ∈ F is maximal and χ ∶ A → C is some function with
χ ↾ D = λ, then χ is dense.

Then it follows by (i) and Zorn’s Lemma, that F has a maximal element
⟨D, λ⟩. Hence, we can use (iii) to obtain the desired dense colouring of A.
(i) Let ⟨D i , λ i⟩i<α be an increasing sequence inF . Set

E ∶= ⋃
i<α

D i and µ ∶= ⋃
i<α

λ i .

Then E is densely ordered and µ ∶ E → C is a dense colouring of E. Hence,
⟨E , µ⟩ ∈ F is an upper bound of ⟨D i , λ i⟩i<α .

(ii) For a contradiction, suppose that A∖ D is non-scattered. Then there
exists an embedding e ∶ Q → A ∖ D. Hence, we can use Lemma 1.8 to
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find a dense colouring µ ∶ rng e → C of rng e. Setting D′ ∶= D ∪ rng e
and λ′ ∶= λ ∪ µ we obtain a pair ⟨D′ , λ′⟩ ∈ F with ⟨D, ⟨⟩ < ⟨D′ , λ′⟩.
A contradiction to the maximality of ⟨D, λ⟩.

(iii) Fix two elements x < y ofA and a colour c ∈ C. If there exist elements
x
′ , y′ ∈ D with x < x′ < y′ < y, then we can use the denseness of λ to find

some z ∈ D with x
′ < z < y

′ and χ(z) = λ(z) = c. For a contradiction,
suppose that there is at most 1 element of D between x′ and y

′. Since A is
densely ordered, so is the set I ∶= { z ∈ A ∣ x′ < z < y′ }. As I ∩ D contains
at most 1 element, there exists a densely ordered subset J ⊆ I ∖ D. Hence,
A∖ D is not scattered. A contradiction to (ii).

The Condensation Rank

Orders that are scattered can recursively be decomposed into simple orders.
There are several ways to do this, each of which corresponding to a certain
notion of a rank which, intuitively, measures the size and distribution of its
gaps. Many of the proofs below will be by induction on one of these ranks.
We start with one that measures how many ‘limits’ exist in the given order.

Definition 1.9. Let A be a linear order.
(a) We denote by cn ∶ A → A/≈ the quotient map for the equivalence

relation

a ≈ b : iff [a, b] is finite.

We call A/≈ the condensation of A and cn is the corresponding condensation
map.

(b)The finite-condensation rank FC(A), or FC-rank for short, is the least
ordinal α such that

cnα(A) has only 1 element.

If no such ordinal exists, we set FC(A) ∶= ∞.
(c)The generalised finite-condensation rank gFC(A), or generalised FC-rank

for short, is the least ordinal α such that

cnα+1(A) = cnα(A) .
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1 Dense and scattered orders

(d) We denote by FC∗(A) and gFC∗(A) the least ordinal α such that
A can be written as a finite ordered sum of orders of [generalised] FC-rank
at most α. ⌟

Exercise 1.4. Let A be a linear order and ≈ an equivalence relation on A.
Prove that the quotient A/≈ is a linear order if, and only if, every ≈-class is
convex. ⌟

Exercise 1.5. Show that a linear order A is dense if, and only if, cn(A) ≅ A.
⌟

Exercise 1.6. Prove that gFC(A) < ∣A∣+, for all linear orders A. ⌟

Proposition 1.10. A linear order A is scattered if, and only if, FC(A) < ∞.

Proof. (⇐) Suppose that A contains a densely ordered subset C. It is suffi-
cient to prove that, for every ordinal α, the restriction of the quotient map
cnα to the set C is injective. We proceed by induction on α. For α = 0, the
claim is trivial.

For the successor step, suppose that cnα ↾ C is injective. Then the image
D ∶= cnα[C] is densely ordered (as a subset of cnα(A)). For all a < b in D,
it follows that the interval [a, b] is infinite. Hence, the restriction of cn to D
is injective. Consequently, so is the restriction of cnα+1 to C.
Finally, suppose that δ is a limit ordinal such that the restriction of cnα

to C is injective, for all α < δ. By definition of cnδ , it then follows that so is
the restriction of cnδ to C.
(⇒) Let α ∶= gFC(A) and suppose that cnα(A) is not a singleton. Let

ρ ∶= cnα ∶ A→ cnα(A) be the quotient map and fix a set C ⊆ A containing
exactly one element from every set ρ−1(a). We claim that C is densely
ordered. For a contradiction, suppose otherwise. Then there are a < b in C
such that C contains no element c with a < c < b. Hence, the interval
[ρ(a), ρ(b)] of cnα(A) is finite, which implies that it is condensed into
a single element by another application of cn. Thus, cnα+1(A) ≠ cnα(A).
A contradiction.

We obtain the following decomposition theorem for linear orders.
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Theorem 1.11 (Hausdorff ). Every linear order A can be written as an ordered

sum

A ≅ ∑
i∈I

Bi ,

where each factor Bi is scattered and the index order I is either densely ordered

or of size at most 1.

Proof. Set α ∶= gFC(A), let ρ ∶= cnα ∶ A → cnα(A) be the corresponding
quotient map and I ∶= ρ[A] the quotient. Then

A ≅ ∑
i∈I

ρ−1(i) .

By Proposition 1.10, each term ρ−1(i) is scattered. Furthermore, cn(I) = I
implies that ∣I∣ ≤ 1 or I is densely ordered.

Lemma 1.12. gFC(A) = FC(A), for every scattered linear order A.

Exercise 1.7. Prove the preceding lemma. ⌟

The reason why we have introduced the ranks FC∗ and gFC∗ is that they
are better behaved when considering decompositions of a given order. Let
us present one such result.

Lemma 1.13. Let A be a scattered linear order and P0 ∪ ⋅ ⋅ ⋅ ∪ Pn−1 = A a finite

partition of A. Then gFC∗(A) = gFC∗(Pi), for some i.

Proof. Clearly, Pi ⊆ A implies that gFC∗(Pi) ≤ gFC∗(A). For the converse,
it is sufficient to prove that

gFC∗(A) > α implies gFC∗(Pi) > α for some i .

We do so by induction on α. Hence, suppose that gFC∗(A) > α. Using
Lemma 1.12, it follows that

cnα(A) = I , for some infinite order I .
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1 Dense and scattered orders

Let ρ ∶= cnα ∶ A→ I be the corresponding quotient map. For every v ∈ I,
P0 , . . . , Pn−1 induce a partition on the order ρ−1(v). Consequently, it follows
by inductive hypothesis that there is some index iv < n such that

gFC∗(Piv ∩ ρ−1(v)) = gFC∗(ρ−1(v)) = α .

Since I is infinite, we can find an infinite subsetH ⊆ I such that iu = iv , for
all u, v ∈ H. Let i be this common index. It follows that cnα(Pi) is infinite,
which implies that gFC∗(Pi) > α.

The Hausdor{ Rank

The second rank we introduce measures how far the given order is from
being a well-order.

Definition 1.14. Let A be a linear order.
(a)TheHausdorff rankHR(A) of A is inductively defined as follows. If

A is empty, it has rank −1. If it is non-empty and finite, it has rank 0. If A is
infinite, the rank is the least ordinal α such that

A ≅ ∑
i∈I

Bi ,

where I is a well-ordering or the opposite of a well-ordering, and each Bi
is a linear order with HR(Bi) < α. If no such ordinal α exists, we set
HR(A) ∶= ∞.

(b) We denote byHR∗(A) the least ordinal α such that A can be written
as a finite ordered sum of orders ofHR-rank at most α.

(c) The length len(A) of A is the least ordinal β such that there are linear
orders (Bi)i<β with

A ≅ ∑
i∈I

Bi and HR(Bi) < HR(A) ,

where the index order I is either equal to β or to its inverse βop. ⌟

Exercise 1.8. Let h ∶ A → B be an embedding. Prove that HR(B) ≥
HR(A). ⌟
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The relation between the various ranks is as follows.

Lemma 1.15. Let A be a linear order.

(a) HR∗(A) ≤ HR(A) ≤ HR∗(A) + 1

(b) HR∗(A) ≤ FC(A)

Proof. (a) follows directly from the definitions.
(b) We prove the claim by induction on α ∶= FC(A). If α = 0, A is a

singleton andHR∗(A) = 0.
For the successor step, suppose that α = β + 1. Then I ∶= cnα(A) is

an order with more than one element, such that cn(I) is a singleton.This
implies that every interval [a, b] in I is finite. Consequently, I is either finite
or isomorphic to ω, ωop, or Z. Let ρ ∶= cnβ ∶ A → I be the quotient map.
By inductive hypothesis, we have

ρ−1(i) = C i
0 + ⋅ ⋅ ⋅ + C i

n(i) , for n(i) < ω andHR∗(C
i
j) ≤ β .

Depending on whether or not I is isomorphic to Z, we obtain one of the
following decompositions

A = ∑
i<0
[C i

0 + ⋅ ⋅ ⋅ + C i
n(i)] +∑

i≥0
[C i

0 + ⋅ ⋅ ⋅ + C i
n(i)] , if I ≅ Z ,

A = ∑
i∈I
[C i

0 + ⋅ ⋅ ⋅ + C i
n(i)] , if I ≇ Z .

In both cases, it follows thatHR∗(A) ≤ β + 1 = α.
Finally, suppose that α is a limit ordinal. Fixing an element a ∈ A, we can

write

A = ⋃
i<α
[a]i , where [a]i ∶= { b ∈ A ∣ cni(b) = cni(a) } .

For i < α, we set

B i ∶= { b < a ∣ b ∈ [a]i+1 ∖ [a]i } ,

C i ∶= { b > a ∣ b ∈ [a]i+1 ∖ [a]i } .

292



1 Dense and scattered orders

Let Bi and Ci be the corresponding suborders of A. Since

FC([a]i) ≤ i + 1 < α ,

it follows by inductive hypothesis that

Bi = Bi
0 + ⋅ ⋅ ⋅ +Bi

m(i)−1 and Ci = C i
0 + ⋅ ⋅ ⋅ + C i

n(i)−1

whereHR(Bi
j),HR(C i

j) < α and m(i), n(i) < ω. Then

A ≅ ∑
i∈αop

[Bi
0 + ⋅ ⋅ ⋅ +Bi

m(i)−1] + {a} +∑
i<α
[C i

0 + ⋅ ⋅ ⋅ + C i
n(i)−1] .

Hence, A is the sum of 3 orders ofHR-rank at most α, which implies that
HR∗(A) ≤ α.

Proposition 1.16. A linear order A is scattered if, and only if,HR(A) < ∞.

Proof. (⇒) If A is scattered, it follows by Proposition 1.10 and Lemma 1.15
that

HR(A) ≤ HR∗(A) + 1 ≤ FC(A) + 1 < ∞ .

(⇐) Suppose that α ∶= HR(A) < ∞. Then

A ≅ ∑
i∈I

Bi ,

where I is a well-ordering or an inverse well-ordering and each Bi is a linear
order withHR(Bi) < α.
We prove by induction on α thatA is scattered. Suppose that η ∶ Q→ A is

an order-preserving injection. By inductive hypothesis, each Bi is scattered.
Hence, the image of η contains at most one element of B i . Consequently,
we obtain an order-preserving injection η′ ∶ Q → I. But I is scattered.
A contradiction.

Aswith the FC-rank, the variantHR∗ has been introducedmostly because
it is better behaved with respect to decompositions.
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Lemma 1.17. Let A, B, Ai be linear orders.

(a) HR∗(A +B) = max{HR∗(A), HR∗(B)} .

(b) HR∗(∑i∈I Ai) ≤ γ +HR∗(I) where γ ∶= supi HR∗(Ai) .

Proof. (a) Let α be the maximum ofHR∗(A) andHR∗(B). By definition,
we can write

A = A0 + ⋅ ⋅ ⋅ + Am−1 and B = B0 + ⋅ ⋅ ⋅ +Bn−1 ,

for orders of Hausdorff rank at most α. Consequently,

A +B = A0 + ⋅ ⋅ ⋅ + Am−1 +B0 + ⋅ ⋅ ⋅ +Bn−1 ,

which implies thatHR∗(A +B) ≤ α. The other direction follows from the
fact that A and B are embedded in A +B (cf. Exercise 1.8).
(b) We prove the claim by induction on α ∶= HR∗(I). If α = 0, then

I = {i0 , . . . , in−1} is finite and the claim follows by (a). If α > 0, then

I = ∑
k∈K

Jk ,

where HR∗( Jk) < α and K is a well-order or the opposite of one. By
inductive hypothesis, we have

HR∗(∑
j∈ Jk

A j) ≤ γ +HR∗( Jk) < γ + α .

Hence,

HR∗(∑
i∈I

Ai) = HR∗(∑
k∈K
∑
j∈ Jk

A j) ≤ γ + α .

The Lexi$ographi$ Order

As an application, we consider linear orders of the form ⟨T , ≤lex⟩whereT is
a tree domain.
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1 Dense and scattered orders

Definition 1.18. Let D be a linearly ordered set. The lexicographic order-
ing ≤lex on D

∗ is defined by

u ≤lex v : iff u ≤pf v , or

u = wax and v = wby , for a, b ∈ D, w , x , y ∈ D∗

with a < b . ⌟

We start with a lemma.

Lemma 1.19. Let A be a linear order and S ⊆ A a subset of the form S =

∑i∈I C i , where I is some infinite linear order and every C i has a minimal

element and is convex in A. Then

gFC∗(A) ≥ sup
i∈I
(gFC∗(C i) + 1) .

Proof. We prove by induction on α that

gFC∗(C i) ≥ α , for all i , implies gFC∗(A) ≥ α + 1 .

Suppose that gFC∗(C i) ≥ α, for all i. Then cnα(C i) is not a finite sum
of dense orders. We have to show that cnα(A) is infinite but not densely
ordered.
For a contradiction, suppose otherwise. Note that cnα(C i) is a convex

subset of cnα(A). Consequently, if cnα(A) were densely ordered, so would
be every cnα(C i). A contradiction. Hence, we may assume that cnα(A) is
finite. Then there exists an infinite convex subset K ⊆ I such that cnα con-
tracts⋃k∈K Ck to a single element. This implies that cnα(Ck) = 1, for every
k ∈ K. Since gFC∗(Ck) ≥ α, it follows that α is a successor ordinal and
cnα−1(Ck) is finite. Hence, gFC∗(Ck) < α. A contradiction.

It is possible to establish a relationship between the Lifsches-Shelah rank
(cf. Definition V.5.8) of a tree ⟨T , ≤pf ⟩ and the FC-rank of ⟨T , ≤lex⟩. In the
same way we have worked above with the generalised FC-rank instead of the
ordinary one, we need a slight variant of the LS-rank that is also meaningful
for trees that are not thin.
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VI. Linear Orders

Definition 1.20. The generalised Lifsches-Shelah rank gLS(T) of a forest T is
the least ordinal α such that ∂α+1T = ∂αT. ⌟

Proposition 1.21. Let T = ⟨T , ≤pf ⟩ be a finitely-branching order-tree. Then

gLS(T) ≤ gFC∗(⟨T , ≤lex⟩) .

Proof. Set L(T) ∶= ⟨T , ≤lex⟩. We prove by induction on α that

gLS(T∣v) ≥ α implies gFC∗(L(T∣v)) ≥ α , for all v ∈ T .

Fix a vertex v ∈ T with gLS(T∣v) ≥ α. For α = 0, the claim is trivial. If α is
a limit ordinal, it follows by inductive hypothesis that

gFC∗(L(T∣v)) ≥ β , for all β < α .

Consequently, gFC∗(L(T∣v)) ≥ α.
Hence, we only have to consider the successor step. Suppose that α = β+1,

for some β. Then there exists an infinite branch ζ of T∣v such that there are
infinitely many vertices w on ζ with a successor u that is not on the branch
and the attached subtree T∣u has rank at least β. Then

L(T∣v) = ∑
w<pf ζ
(1 + Aw) + ∑

w<pf ζ
in reverse order

Bw ,

for where the ordersAw andBw are finite sums of orders of the form L(T∣z),
for successors z of w. Furthermore, there are infinitely many vertices w such
that the sum for Aw or that for Bw contains a term of the form L(T∣u) with
gLS(T∣u) ≥ β. By symmetry, we may assume that this term belongs to Aw .
Then L(T∣v) contains a suborder of the form

∑
i<ω

Ci where gFC∗(Ci) ≥ β .

Consequently, the claim follows by Lemma 1.19.

Finally, let us show that we the Hausdorff rank of a linear order tells us
which trees we can embed into it.
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1 Dense and scattered orders

Lemma 1.22. Let Tn = ⟨Tn , ≤pf ⟩ be the tree of height n < ω with domain

Tn ∶= {w ∈ Z∗ ∣ ∣w∣ ≤ n, w(i) ≥ 0 for i even, w(i) ≤ 0 for i odd} ,

For every linear order A with Hausdorff rank HR(A) > n, there exists an

embedding η ∶ ⟨Tn , ≤lex⟩ → A.

Proof. LetHR(A) > n. If A contains a densely ordered interval, we can use
Lemma 1.3 to embed ⟨Tn , ≤lex⟩. Hence, we may assume that A is scattered.
Let Ln be the suborder of ⟨Tn , ≤lex⟩ consisting of the leaves of Tn . That is,

L0 ∶= 1 and Ln+1 ∶= ∑
i<ω

Lop
n , for n < ω .

To simplify our task, we we will split the embedding into two parts

⟨Tn , ≤lex⟩ → Ln and Ln → A .

Let Sn = ⟨Sn , ≤pf ⟩ be the tree obtained from Tn by reversing the successor
ordering. That is,

Sn ∶= {w ∈ Z∗ ∣ ∣w∣ ≤ n, w(i) ≥ 0 for i odd, w(i) ≤ 0 for i even} ,

We start by constructing embeddings

ηn ∶ ⟨Tn , ≤lex⟩ → Ln and ζn ∶ ⟨Sn , ≤lex⟩ → 1 + Lop
n

by induction on n. For n = 0, we have

⟨T0 , ≤lex⟩ = 1 = L0 and ⟨S0 , ≤lex⟩ = 1 → 1 + 1 = 1 + Lop
0 .

For the inductive step, suppose that we have already constructed ηn and ζn .
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VI. Linear Orders

We use these to obtain embeddings

⟨Tn+1 , ≤lex⟩ ≅ 1 + ∑
n∈ω
⟨Sn , ≤lex⟩

→ 1 + ∑
n∈ω
(1 + Lop

n )

≅ 2 + ∑
n<ω

Lop
n

→ ∑
n<ω

Lop
n ≅ Ln+1 ,

⟨Sn+1 , ≤lex⟩ ≅ 1 + ∑
n∈ωop
⟨Tn , ≤lex⟩ → 1 + ∑

n∈ωop
Ln ≅ 1 + Lop

n+1 .

To conclude the proof it is now sufficient to show that Ln+1 → A or
Lop
n+1 → A. Then we obtain the desired embedding as

⟨Tn , ≤lex⟩ → Ln → Ln+1 → A or ⟨Tn , ≤lex⟩ → Ln → Lop
n+1 → A .

We will establish the following slightly more precise statement by induction
on n. Suppose thatHR(A) = n + 1 and

A = ∑
i∈I

Bi where HR(Bi) ≤ n and I is a well-order ,

then there exists an embedding Ln+1 → A. (Applying the operation −op it
follows that, if I is the opposite of a well-order, we obtain an embedding
Lop
n+1 → A.)
If n = 0, then A is an infinite well-ordering and there exists an embedding

L1 → A.
Suppose that n > 0. By Lemma 1.17, there exists an infinite subset I0 ⊆ I

such that

HR(Bi) = n , for all i ∈ I0 .

Furthermore, for every i ∈ I0, we can find a decomposition

Bi = ∑
j∈ J i

B′
i j with HR(B′

i j) < n .
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There exists an infinite subset I1 ⊆ I
0 such that, for all i ∈ I1, J i is the

opposite of a well-order since, otherwise, it would follows by Lemma 1.17
that

A ≅ ∑
i∈I
∑
j∈ J i

B′
i j

would have rank at most n. By inductive hypothesis, there exist embeddings
Lop
n → Bi , for i ∈ I1. Combining them we obtain the desired embedding

Ln+1 → ∑i∈I1 Bi → A.

Exercise 1.9. Let C ⊆ {0, 1}∗ be an antichain in the infinite binary tree
such that ⟨C , ≤lex⟩ is well-ordered. Prove that the tree with domain ⇓C has
Cantor-Bendixson rank α if, and only if, ⟨C , ≤lex⟩ has an order type in the
interval [ωα ,ωα+1). ⌟

2 Partition Theorem+

TheTheorem of Ramsey can be generalised from ω and finite linear orders
to arbitrary ones.When doing so new phenomena arise as the homogeneous
subset one obtains might be embedded in the order in different ways. This
gives rise to several different variants of the theorem.We start with a version
of the Pigeon Hole Principle for dense orders.

Proposition 2.1. Let λ ∶ A→ C be a labelling of a dense linear order A by a

finite set C of colours. There exists an infinite convex subset I ⊆ A such that, for

every colour c ∈ λ[I], the preimage λ−1(c) ∩ I is infinite and dense in I.

Proof. Suppose thatC = {c0 , . . . , cn−1}.We inductively define an increasing
sequence C0 ⊆ ⋅ ⋅ ⋅ ⊆ Cn ⊆ C of colours and a decreasing sequence A ⊇
I0 ⊇ ⋅ ⋅ ⋅ ⊇ In of convex subsets as follows. We start with I0 ∶= A and
C0 ∶= ∅. Once we have defines I i and C i , we distinguish two cases. If
c i occurs infinitely often in I i and it is dense in I i , we set

C i+1 ∶= C i ∪ {c i} and I i+1 ∶= I i .
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Otherwise, we set C i+1 ∶= C i and we choose a convex subset I i+1 ⊆ I i such
that c i ∉ λ[I i+1] and ∣I i+1∣ > 1.

It follows that In is a convex subset of Awith at least 2 elements. Hence,
In is infinite and every colour c ∈ Cn = λ[In] is dense in In .

As usual we obtain stronger statements if we assume that the colours form
a semigroup since in that case we can use Ramseyan splits. The following
two Ramsey theorems provide an example.

Theorem 2.2. Let A = ⟨A, ≤⟩ be an infinite linear order, S a finite semigroup,

and λ an additive labelling of A.

(a) If A is a well-order, there exists a cofinal subset H ⊆ A such that the

restriction of λ to H is constant.

(b) If A is densely ordered, there exists an interval I ⊆ A containing a set

H ⊆ I such that H is dense in I and the restriction of λ to H is constant.

Proof. ByTheorem II.3.7, there exists a Ramseyan split σ ∶ A→ [N] of λ
with N < ω.
(a) Let k < N be the largest number such that the set σ−1(k) is cofinal

in A. Then there is some element a0 ∈ A such that

σ(b) ≤ k , for all b ≥ a0 .

We set

H ∶= σ−1(k) ∩ ⇑a0 .

By choice of k, this set is cofinal in A. Furthermore, consider elements
a < b and a

′ < b
′ in H. By symmetry, we may assume that a ≤ a

′. Then
a ⊏σ b and a ⊑σ a

′ ⊏σ b
′, and the fact that σ is Ramseyan implies that

λ(a, b) = λ(a′ , b′).
(b) By Proposition 2.1, there exists an infinite convex set I ⊆ A such that,

for every k ∈ σ[I], the preimage σ−1(k) is infinite and dense in I. Set

k ∶= max σ[I] and H ∶= σ−1(k) ∩ I .
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ThenH is infinite and dense in I and, thus, also inH. Furthermore, consider
elements a < b and a

′ < b′ inH. By symmetry, we may assume that a ≤ a′.
Then a ⊏σ b and a ⊑σ a

′ ⊏σ b
′, and the fact that σ is Ramseyan implies

that λ(a, b) = λ(a′ , b′).

As an application, we present a variant of the Pigeon Hole Principle with
infinitely many colours. To do so, we have to assume that the colours are
definable.

Lemma 2.3. Let A be a linear order and ≈ an MSO-definable equivalence
relation on A (possibly definable using monadic parameters). Then ≈ has only
finitely many unbounded classes.

Proof. Let m be the quantifier rank of the formula defining ≈ and let P̄ be
the monadic parameters used. To simplify the notation, we set A+ ∶= ⟨A, P̄⟩.
Consider the additive labelling

λ(i , j) ∶=Thm+1
MSO(⟨A

+ , i⟩∣[i , j)) .

We fix a strictly increasing cofinal sequence (a i)i<δ inAofminimal length.
For a contradiction, suppose that ≈ has infinitely many unbounded classes.
Then δ must be a limit ordinal. By Theorem 2.2 (a), there exists a cofinal
subset I ⊆ δ and a theory θ such that

λ(a i , a j) = θ , for all i < j in I .

Let (b i)i<δ be an enumeration of (a i)i∈I . Given i < δ and c < b i such that
[c]≈ is unbounded, let i < j < δ be some index such that

[b i , b j) ∩ [c]≈ ≠ ∅ .

This property can be expressed inMSOm+1 by the formula

ψ(b i , b j , c) ∶= ∃x[b i ≤ x < b j ∧ x ≈ c] .
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VI. Linear Orders

Consequently,

Thm+1
MSO(A

+ , b i , b j , c)

=Thm+1
MSO(A

+∣⇓b i , c) +Thm+1
MSO(A

+∣[b i ,b j) , b i)

+Thm+1
MSO(A

+∣[b j ,b j+1) , b j) +Thm+1
MSO(A

+∣⇑b j+1)

=Thm+1
MSO(A

+∣⇓b i , c) +Thm+1
MSO(A

+∣[b i ,b i+1) , b i)

+Thm+1
MSO(A

+∣[b i+1 ,b j+1) , b i+1) +Thm+1
MSO(A

+∣⇑b j+1)

=Thm+1
MSO(A

+ , b i , b i+1 , c) ,

implies that

[b i , b i+1) ∩ [c]≈ ≠ ∅ , for all c < b i .

Let n be the number of allMSOm+2-theories with ∣P̄∣ + 1 monadic para-
meters and fix an index i < δ such that the interval [b0 , b i) intersects more
than n different unbounded ≈-classes, say, C0 , . . . ,Cn . By choice of n, there
are indices k < l such that

⟨A+ ,Ck⟩ ≡
m+2
MSO ⟨A

+ ,C l ⟩ .

Setting

D ∶= (Ck ∩ ⇓b i) ∪ (C l ∩ [b i , b i+1)) ∪ (Ck ∩ ⇑b i+1)

it follows that

Thm+2
MSO(A

+ ,D)

=Thm+2
MSO(⟨A

+ ,Ck⟩∣⇓b i) +Thm+2
MSO(⟨A

+ ,C l ⟩∣[b i ,b i+1))

+Thm+2
MSO(⟨A

+ ,Ck⟩∣⇑b i+1)

=Thm+2
MSO(⟨A

+ ,Ck⟩∣⇓b i) +Thm+2
MSO(⟨A

+ ,Ck⟩∣[b i ,b i+1))

+Thm+2
MSO(⟨A

+ ,Ck⟩∣⇑b i+1)

=Thm+2
MSO(A

+ ,Ck) .
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But Ck is an ≈-class while D is not. We obtain a contradiction since there
exists anMSOm+2-formula

ϑ(X) ∶= ∃x∀z[Xz↔ x ≈ z]

expressing that the set X forms an ≈-class.

Using the lexicographic ordering to turn a tree into a linear order as in
the previous section, we can derive the following partition theorem for trees.

Proposition 2.4. Let T = ⟨T , ≤pf , ≤so⟩ be a non-empty successor-ordered tree
of height at most n < ω, and let λ be an additive labelling of the order ⟨T , ≤lex⟩.
There exists a non-empty prefix P ⊆ T with the following properties.

◆ For u ≤lex v in P, the colour λ(u, v) only depends on ∣u∣, ∣v∣, and ∣u ⊓pf v∣.

◆ If v ∈ P is a leaf of P, it is also a leaf of T.

◆ If v ∈ P has infinitely many successors in T, it has infinitely many ones in P.

Proof. We prove the claim by induction on T. Hence, we may assume by
inductive hypothesis that, for every u ∈ Suc(⟨⟩), we have already found
some prefix Pu ⊆ T∣u of the subtree T∣u with the above properties.
If Suc(⟨⟩) is finite, we pick one u ∈ Suc(⟨⟩) and set P ∶= {⟨⟩} ∪ Pu .

Suppose otherwise. For every u ∈ Suc(⟨⟩), we choose a subset P0
u ⊆ Pu as

follows. If v ∈ Pu is a vertex with finitely many successors (in Pu), we remove
all but one of them (and the attached subtrees). If v ∈ Pu has infinitely many
successors (in Pu), we remove the least and the greatest of them (if they exist;
again together with the attached subtrees). Let P0

u be the remaining set of
vertices.

By the Pigeon Hole Principle, there exists an infinite subsetU ⊆ Suc(⟨⟩)
such that the colours associated with Pu are the same for every u ∈ U. That
is, there exist colours θ i jk , for 0 < i , j, k ≤ n, such that

λ(v , v′) = θ∣v∣,∣v′∣,∣v⊓v′∣ , for all v <lex v′ in Pu with u ∈ U .

For every v ∈ P
0
u that is not a leaf, we fix a ‘distinguished successor’

s(v) ∈ Suc(v) ∩ P
0
u , and we define an additive labelling ofU by

µ(u, u′) ∶= (λ(s i(u), s j(u′)))i , j<n .
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(If s i(u) or s j(u′) is not defined, we set λ(s i(u), s j(u′)) ∶= �.) By the
Theorem of Ramsey, there exists an infinite subsetU0 ⊆ U and colours σi j
such that

µ(u, u′) = (σi j)i j , for all u <lex u′ inU0 .

We set

P ∶= {⟨⟩} ∪ ⋃
u∈U0

P
0
u .

To show that this set has the desired properties, let v , v′ ∈ P be vertices
with v <lex v′ and set i ∶= ∣v∣, j ∶= ∣v′∣, and k ∶= ∣v ⊓ v

′∣. If k > 0, we have
v , v′ ∈ P0

u , for some u ∈ U, which implies that

λ(v , v′) = θ i jk .

Hence, suppose that k = 0. Then v ∈ P0
u and v′ ∈ P0

u′ , for some u <so u
′

in U0. Let p and q be the maximal numbers such that sp(u) ≤pf v and
s
q(u′) ≤pf v

′. Then sp(u) = v or sp(u) has infinitely many successors, and
similarly for sq(u′). First, suppose that sp(u) ≠ v and sq(u′) ≠ v′. By choice
of P0

u , we can then choose a successor w ∈ Pu of s
p(u) that is larger than

both s
p+1(u) and the successor v0 with v0 ≤pf v. Similarly, sq(u′) has a

successor w ∈ Pu′ that is smaller than both s
q+1(u′) and the successor v′0

with v′0 ≤pf v
′. It follows that

λ(v , v′) = λ(v ,w) + λ(w , v′)
= θ i(p+2)(p+1) + λ(w , v′)

= λ(s i−1(u),w) + λ(w , v′)

= λ(s i−1(u), v′)

= λ(s i−1(u),w′) + λ(w′ , v′)

= λ(s i−1(u),w′) + θ(q+2) j(q+1)
= λ(s i−1(u),w′) + λ(w′ , s j−1(u′))

= λ(s i−1(u), s j−1(u′))
= σ(i−1)( j−1) .
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If sp(u) = v and sq(u′) ≠ v′, we similarly obtain

λ(v , v′) = λ(v ,w′) + λ(w′ , v′)
= λ(v ,w′) + θ(q+2) j(q+1)
= λ(v ,w′) + λ(w′ , s j−1(u′))

= λ(v , s j−1(u′))

= λ(s i−1(u), s j−1(u′)) = σ(i−1)( j−1)

(wherew′ is chosen as above). In the other two cases, it similarly follows that

λ(v , v′) = σ(i−1)( j−1) .

As an application we consider scattered orders, where we obtain homo-
geneous subsets of order type Z.

Theorem 2.5. Let A be a linear order and λ an additive labelling with less

than n colours of A. If HR(A) > n, then there exists a subset Z ⊆ A of order

type Z such that

λ(u, v) = λ(u′ , v′) , for all u < v and u′ < v′ in Z .

Proof. Suppose thatHR(A) > n. Then we can use Lemma 1.22 to find an
embedding ⟨T , ≤lex⟩ → A where T = ⟨T , ≤pf ⟩ is the tree of height n with
domain

T ∶= {w ∈ Z∗ ∣ ∣w∣ ≤ n, w(i) ≥ 0 for i even, w(i) ≤ 0 for i odd} .

Let L ⊆ T be the set of leaves of T and let P ⊆ T be the prefix obtained by
applying Proposition 2.4 to T and λ. It follows that, for every i ≤ n, there is
some theory θ i such that

λ(u, v) = θ∣u ⊓pf v∣ , for all u <lex v in P ∩ L .

By assumption on n, there are indices 0 < i < j ≤ n such that θ i = θ j .
First, suppose that j = i + 1. Pick some vertex w ∈ P of length ∣w∣ = i. If
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Suc(w) has order type ω, let u0 be the first element of Suc(w) ∩ P and set

U0 ∶= Suc(u0) ∩ P ,

V0 ∶= { s(u) ∣ u ∈ Suc(w) ∩ P and u > u0 } ,

U ∶= { sn−( j+1)(u) ∣ u ∈ U0 } ,

V ∶= { sn−( j+1)(v) ∣ v ∈ V0 } .

Then Z ∶= U +V has order type Z and, by choice of P, we have

λ(u, v) = θ j , for all u <lex v with u, v ∈ U ,

λ(u, v) = θ i , for all u <lex v with u ∈ U +V and v ∈ V .

Since θ i = θ j , this implies that

λ(u, v) = λ(u′ , v′) , for all u <lex v and u′ <lex v′ in Z ,

as desired.
Similarly, if Suc(w) has order type ωop, we take for u0 the last element

of Suc(w) ∩ P and we set

U0 ∶= { s(u) ∣ u ∈ Suc(w) ∩ P and u < u0 } ,

V0 ∶= Suc(u0) ∩ P ,

U ∶= { sn−( j+1)(u) ∣ u ∈ U0 } ,

V ∶= { sn−( j+1)(v) ∣ v ∈ V0 } .

Again, it follows that Z ∶= U +V has order type Z and

λ(u, v) = θ i , for all u <lex v with u ∈ U and v ∈ U +V ,

λ(u, v) = θ j , for all u <lex v with u, v ∈ V .

As above, it follows that the set Z is homogeneous.
Finally, suppose that j > i + 1. Let u0 <lex u1 <lex u2 be vertices of P ∩ L

such that ∣u0 ⊓ u2∣ = i and ∣u0 ⊓ u1∣ = j − 1. Then

θ i = λ(u0 , u2) = λ(u0 , u1) + λ(u1 , u2) = θ j−1 + θ i ,
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which implies that θ j = θ j−1 + θ j . Similarly, considering vertices u0 <lex
u1 <lex u2 of length ∣u i ∣ = n such that ∣u0 ⊓ u2∣ = j − 1 and ∣u1 ⊓ u2∣ = j, we
obtain

θ j−1 = λ(u0 , u2) = λ(u0 , u1) + λ(u1 , u2) = θ j−1 + θ j .

Combining these two equations yields θ j = θ j−1 + θ j = θ j−1. Consequently,
the claim follows as in the case j = i + 1 above.

Finally, we take a look at well-orders where the colouring is invariant
under translations.

Proposition 2.6. Let λ be an additive colouring of a well-order A such that the

value λ(i , j) only depends on the order type of the interval [i , j). There exists a

colour e ∈ S such that

λ(i , j) = e , for all i < j such that [i , j) has order type ωk
with

k ≥ ∣S∣ .

Furthermore, e is idempotent, provided that the order type of A is at least ω∣S∣+1 .

Proof. Let µ be the function such that

λ(i , j) = µ(α) , for [i , j) of order type α .

Set n ∶= ∣S∣. If the order type of A is less than ωn , we can choose an arbitrary
idempotent e ∈ S. If the order type is in [ωn ,ωn+1), we can set e ∶= µ(ωn).
Finally, suppose that the order type of A is at least ωn+1. Then there are
exponents k < l ≤ nwith µ(ωk) = µ(ω l). If l = k+1 = n and the order type
of A is less than ωn+2, we can set e ∶= µ(ωk). Then it follows by additivity
of λ that

e + e = µ(ωk) + µ(ωk+1) = µ(ωk + ωk+1) = µ(ωk+1) = e .
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Otherwise, ωk+2 = ∑i<ω(ωk+1 + ωk) implies by additivity of λ that

µ(k + 2) = µ(∑i<ω(ωk+1 + ωk))

= ∑
i<ω
[µ(ωk+1) + µ(ωk)]

= ∑
i<ω
[µ(ωk+1) + µ(ω l)]

= ∑
i<ω

µ(ωk+1 + ω l)

= ∑
i<ω

µ(ω l)

= ∑
i<ω

µ(ωk) = µ(∑i<ω ωk) = µ(ωk+1) .

By induction on j > 0, it therefore follows that

µ(k + j + 1) = µ(∑i<ω(ωk+ j+1 + ωk+ j))

= ∑
i<ω
[µ(ωk+ j+1) + µ(ωk+ j)]

= ∑
i<ω
[µ(ωk+ j) + µ(ωk+ j)]

= ∑
i<ω

µ(ωk+ j)

= µ(∑i<ω ωk+ j) = µ(ωk+ j+1) = µ(ωk+1) .

Thus, we can set e ∶= µ(ωk+1). To see that it is idempotent, note that

e + e = µ(ωk) + µ(ωk+1) = µ(ωk + ωk+1) = µ(ωk+1) = e .

3 Interpretation+

Let us collect a few results about interpretations between linear orders and
interpretations of linear orders in trees. We start with the following obser-
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vation about how to encode a convex equivalence relation by a single unary
predicate.

Lemma 3.1. Let A = ⟨A, ≤⟩ be a linear order and ∼ an equivalence relation
on A where every ∼-class is convex. There exists a set P ⊆ A such that

a ∼ b iff a ∈ P⇔ c ∈ P for all a ≤ c ≤ b .

Proof. We consider the equivalence relation ≈ on A/∼ defined by

C ≈ D : iff there are only finitely many ∼-classes between

C and D .

We use this relation to define a colouring λ ∶ A/∼ → [2] such that the set

P ∶= ⋃{C ∈ A/∼ ∣ λ(C) = 1}

has the desired properties. For every ≈-class E of A/∼, we fix some repres-
entative CE ∈ E, and we set, for D ∈ E,

λ(D) ∶= n mod 2 , where n is the number of ∼-classes between

CE and D (including CE and D).

Then it follows that, for all C < D in A/∼, there is some C < E ≤ D with

λ(C) ≠ λ(E) .

Next, we consider interpretations of linear orders in the binary tree.

Lemma 3.2. There exists an FO-interpretation τ mapping the infinite binary

tree Tbin = ⟨{0, 1}∗ , ≤pf , suc0 , suc1⟩ to the order of the rationals ⟨Q, ≤⟩.

Proof. We set τ ∶= ⟨δ, φ≤⟩ with

δ(x) ∶= ∃y[suc1(y, x)] ,
φ(x , y) ∶= x ≤pf y ∨ ∃z∃u∃v[suc0(z, u) ∧ suc1(z, v)

∧ u ≤pf x ∧ v ≤pf y] .
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Corollary 3.3. ⟨Q, ≤⟩ has a decidableMSO-theory.

Corollary 3.4. There exists an FO-interpretation τ with the following property.

For every countable linear order A, there exists a set P ⊆ {0, 1}∗ such that

A ≅ τ(⟨Tbin , P⟩) .

Proof. Let σ = ⟨δ, φ≤⟩ be the interpretation from Lemma 3.2.We have seen
in Lemma 1.3 that every countable linear order can be embedded into Q.
Consequently, we can obtain the desired interpretation τ by replacing the
formula δ by

δ′(x) ∶= δ(x) ∧ Px .

Corollary 3.5. Given anMSO-formula φ, it is decidable whether or not there
exists a countable C-coloured linear order A with A ⊧ φ.

Proof. Let τ be the FO-interpretation from Corollary 3.4. Modifying τ by
using additional unary predicates Q̄ = (Qc)c∈C for the colours, we can
interpret every countable C-coloured linear order A in ⟨Tbin , P, Q̄⟩. Con-
sequently, φ is satisfied by a countable C-countable linear order if, and only
if,

⟨Tbin , P, Q̄⟩ ⊧ φτ ,

or, equivalently, if

Tbin ⊧ ∃P∃Q̄φτ .

This property is decidable by Corollary V.3.9.

There exists a normal form for interpretations of a linear order in the
infinite binary tree, which is sometimes useful.

Lemma 3.6. Let Tbin be the infinite binary tree. For eachMSO-interpretation τ
such that τ(Tbin) is a coloured linear order, there exists anMSO-interpretation σ
such that
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◆ σ(Tbin) ≅ τ(Tbin),

◆ the universe of σ(Tbin) forms an antichain with respect to the tree-order ≤pf
of Tbin, and

◆ the order of σ(Tbin) is included in the lexicographic order ≤lex on Tbin.

Proof. Suppose that τ = ⟨δ, φ≤⟩, let m be the quantifier-rank of φ≤, and let
Θ be the set of allMSOm-theories (with one first-order parameter). We use
the function

h ∶ {0, 1}∗ → ({0, 1} × Θ + {$})∗

mapping a word w = c0⋯cn−1 to the word

⟨c0 , θ0⟩⋯⟨cn−1 , θn−1⟩ $ where θ i ∶=Th
m
MSO(Tbin∣c0⋯c i−1 ,w) .

Let A be the set defined by δ and let B be its image under h. Then B forms
an antichain with respect to ≤pf . If we could find an ordering on the alphabet
Σ ∶= {0, 1} × Θ + {$} such that ≤ becomes a subset of the corresponding
lexicographic ordering, we would be done. Unfortunately, this usually does
not work. Instead, we have to choose a different ordering on Σ at each
vertex w of the tree.
First note that, given vertices w , u, u′ ∈ {0, 1}∗ and directions k, k′ ∈

{0, 1}, the theories

θ ∶=Thm
MSO(Tbin∣wk , u) and θ′ ∶=Thm

MSO(Tbin∣wk′ , u
′)

determine whether or not Tbin ⊧ φ≤(wku,wk′u′). We define an order-
ing ≤w on Θ by setting θ <w θ′ if θ ≠ θ′ and

Thm
MSO(Tbin∣wk , u) = θ and Thm

MSO(Tbin∣wk′ , u
′) = θ′

implies

Tbin ⊧ φ≤(wku,wk′u′) .
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We define a successor-ordering ≤so on B as follows. For a vertex w ∈ Σ∗ and
directions ⟨k, θ⟩, ⟨k′ , θ′⟩ ∈ Σ, we set

w⟨k, θ⟩ ≤so w⟨k′ , θ′⟩ : iff k < k′ or k = k′ and θ ≤w θ′ .

It remains to determine the relative order of the vertex w$. Let u be the
vertex of Tbin with h(u) = w$. We set

w$ ≤so w⟨k, θ⟩ : iff Thm
MSO(Tbin∣wk , v) = θ implies u ≤ wkv .

Using a binary encoding of Σ in {0, 1}m , for some m, (which depends on
the vertex w) we obtain a function

g ∶ {0, 1}∗ → {0, 1}∗

such that the imageC ∶= g[A] forms an antichain and isMSO-definable. Fur-
thermore, the image g[P] of each colour predicate P is alsoMSO-definable.
Let ≤lex be the lexicographic ordering on C induced by this successor-

ordering ≤so. To conclude the proof, it is sufficient to show that

g(x) ≤lex g(y) implies T ⊧ φ≤(x , y) .

Hence, let x , y ∈ Awith x ≠ y. We distinguish three cases. If x <pf y, we
have

h(x) = w$ and h(y) = w⟨k, θ⟩u , for some w , u, k, θ .

By definition of the ordering on the successors of w, it follows that h(x) <so
w⟨k, θ⟩. By definition of <so, this implies that Tbin ⊧ φ≤(x , y).

If y <pf x, the argument is analogous. Hence, it remains to consider the
case where x and y are incomparable. Set w ∶= x ⊓ y, let u, u′ , k, k′ be such
that x = wku and y = wku′, and set

θ ∶=Thm
MSO(Tbin∣wk , u) and θ′ ∶=Thm

MSO(Tbin∣wk′ , u
′) .

By definition of ≤so it follows that θ ≤w θ′. Consequently,

Tbin ⊧ φ≤(wku,wk′u′) .
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Finally, let us consider structures interpretable in a linear order. The
following result is a variant ofTheorem V.1.13 for linear orders.

Proposition 3.7. Every structureMSO-interpretable in a coloured linear order
is also FO-interpretable in some coloured linear order.

Proof. Let τ be anMSO-interpretation, A a coloured linear order, and B ∶=
τ(A) its image. Let m be the quantifier-rank of τ and let λ be the additive
labelling on A defined by

λ(a, b) ∶=Thm
MSO(A∣[a ,b) , a) , for a < b .

ByTheorem II.3.7, there exists a Ramseyan split σ for λ. Analogous to the
proof of Lemma V.1.12, one can show that λ is FO-definable using suitable
monadic parameters. Since theMSOm-theory of a tuple ā is determined by
its order type and the labels λ(a i , a j) (both of which are FO-definable), it
therefore follows that we can translate everyMSO-formula from τ into an
FO-formula.

4 Regular Linear Order+

We have shown in Theorem V.2.17 that everyMSO-definable set of trees
is uniquely determined by the regular trees it contains. This result can be
generalised to definable sets of countable linear orders. We start by defining
what we mean by a regular linear order.

Definition 4.1. (a) Let A0 , . . . ,An−1 be coloured linear orders. The shuffle
of A0 , . . . ,An−1 is the ordered sum

∑
q∈Q

Aχ(q) ,

where χ ∶ Q→ [n] is a dense colouring ofQ.
(b) Let C be a fixed finite set of colours. A Läuchli-Leonard operation

over C is an operation on C-coloured linear orders that takes one of the
following forms:
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◆ constants 0 and c, for c ∈ C,

◆ a binary operation +,

◆ two unary operations − × ω and − × ωop, and

◆ an n-ary operation − ∐∐⋯ ∐∐ −, for every 0 < n < ω.
The semantics of these operations is as follows. 0 is the empty order; c ∈ C
denotes the singleton order whose element is coloured c ;A+B is the ordered
sum of A and B ; A × ω and A × ωop denote the corresponding ordered
products; and ∐∐ is the shuffle of the given orders.

(c) A C-coloured linear order A is regular if it is the value of a finite term
of Läuchli-Leonard operations. ⌟

Examples. (a)The orders ⟨Z, ≤⟩ and ⟨Q, ≤⟩ are regular
(b) Every ordinal of the form

ωk0
n0 + ⋅ ⋅ ⋅ + ωkm−1

nm−1 with k0 , . . . , km−1 , n0 , . . . , nm−1 < ω

is regular. ⌟

Exercise 4.1. Let A be a regular linear order. Prove that gFC(A) < ω. ⌟

Belowwewill prove that every countable linear order has the sameMSOm-
theory as a regular one.The proof makes use of a decomposition theorem for
linear orders.We start with a general version that also holds for uncountable
orders before presenting a special version for the countable case.

Definition 4.2. LetL be a class of coloured linear orders that is closed under
convex suborders, S a set, and λ ∶ L → S a function.

(a)The function λ isL-additive if, given two families (Ai)i∈I and (Bi)i∈I
of orders in L with∑i∈I Ai ∈ L and∑i∈I Bi ∈ L, we have

λ(Ai) = λ(Bi) , for all i ∈ I , implies λ(∑i Ai) = λ(∑i Bi) .

(b) The bicofinality of a linear order A is the pair ⟨α, β⟩ where α is the
least ordinal such that A contains a strictly decreasing sequence of length α
that is not bounded from below in A, and β is the least ordinal such that
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A contains a strictly increasing sequence of length β that is not bounded
from above inA. (IfA as a minimal element, we set α ∶= 1; if it has a maximal
element, we set β ∶= 1.)
(c) A linear order A is λ-homogeneous if

λ(A∣C) = λ(A∣D) , for all convex C ,D ⊆ Awithout end-points

that have the same bicofinality. ⌟

Before proving the decomposition theorem, let us show how to find λ-
homogeneous subsets.

Lemma 4.3. Let A = ⟨A, ≤, P̄⟩ be a dense linear order and λ-an L-additive
labelling whereL is the class of all convex suborders ofA.There exists a non-empty

open interval I ⊆ A such that A∣I is λ-homogeneous.

Proof. Let λ′ be the additive labelling of A defined by

λ′(a, b) ∶= λ(A∣[a ,b)) , for a < b .

As A is densely ordered, we can applyTheorem 2.2 (b) to λ′ to find a non-
empty open interval I, a subsetH ⊆ I, and a colour θ such thatH is dense
in I and, for all pairs a < b inH, the interval [a, b) has colour θ. We claim
that I is the desired λ-homogeneous interval.
For the proof, let C ⊆ I be non-empty, convex, and without end-points,

and let ⟨α, β⟩ be its bicofinality. It follows that

λ(A∣C) = (αop + β) × θ ,

which does not depend on C. Consequently, we have

A∣C ≡
n̄
MSO A∣D , for all non-empty convex sets C ,D ⊆ I without

end-points with bicofinality ⟨α, β⟩ .

The general decomposition theorem for linear orders can be seen as a
variant of Simon’s Lemma.
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Theorem 4.4. Let C , S ,T be finite sets of colours, L a class of C-coloured

linear orders that is closed under convex suborders, the corresponding class of

uncoloured linear orders, and let Ld be the class of all S-coloured dense linear

orders whose underlying order belongs to L0. Let λ ∶ L → S be an L-additive
labelling and µ ∶ Ld → T an additive one.

Let C be the smallest class satisfying the following conditions.

(i) A ∈ C, for all orders A with ∣A∣ = 1.

(ii) A,B ∈ C and A +B ∈ L implies A +B ∈ C.

(iii) If α is an ordinal and (Ai)i<α a sequence in C such that

∑
i∈α

Ai ∈ L and λ(Ai) = λ(A j) , for all i , j ,

then∑i∈α Ai ∈ C.

(iv) If α is an ordinal and (Ai)i<α a sequence in C such that

∑
i∈αop

Ai ∈ L and λ(Ai) = λ(A j) , for all i , j ,

then∑i∈αop Ai ∈ C.

(v) If A ∈ L and ≈ is a congruence of A such thatA∣[a] ∈ C, for all [a] ∈ A/≈,
and the order ⟨A/≈, ≤, (Pc)c∈S⟩ with

Pc ∶= { [a] ∈ A/≈ ∣ λ([a]) = c } , for c ∈ S ,

is µ-homogeneous and densely ordered without end-points, then A ∈ C.

Then C = L.

Proof. Fix A ∈ L. We call a convex subset D ⊆ A decomposable if

A∣C ∈ C , for every non-empty convex C ⊆ D .

We will show that A is decomposable. Consider the following relation on A.

x ∼ y : iff x = y or the interval (x , y] or (y, x] is decomposable.
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This relation is clearly reflexive and symmetric. For transitivity, suppose
that x ∼ y ∼ z where without loss of generality x < y < z. Every convex
subset J of the interval [x , z) can be factorised as J = D+E whereD ⊆ [x , y)
and E ⊆ [y, z). By assumption,A∣D ,A∣E ∈ C (if they are non-empty). By (ii),
it follows that A∣ J = A∣D + A∣E ∈ C.

Thus ∼ is an equivalence relation. Next, let us show that every ∼-classH
is decomposable. IfH = ∅, this is trivial. Otherwise, fix some index x ∈ H
and set

H− ∶= { y ∈ H ∣ y ≤ x } and H+ ∶= { y ∈ H ∣ y > x } .

As we have already proved above that decomposable sets are closed under
finite sums, it is sufficient to show thatH− andH+ are decomposable.

IfH+ has a greatest element z, then x ∼ z implies thatH+ is decomposable.
Otherwise, fix an increasing sequence (z i)i<α of elements z i ∈ H starting
with z0 = x such that (z i)i is not bounded inH. Then z i ∼ z j implies that
every interval J i j ∶= (z i , z j] with i < j is decomposable. ByTheorem 2.2,
there exist a cofinal set I ⊆ α such that

λ(A∣ J i j) = λ(A∣ J i′ j′ ) , for all i < j and i
′ < j

′ in I.

Let K ⊆ H+ be convex and non-empty. If K is bounded in H+, we have
K ⊆ (x , z i], for some i ∈ I, and x ∼ z i implies that A∣K ∈ C. Suppose
otherwise. Then the set I0 ∶= { i ∈ I ∣ z i ∈ K } is cofinal in I. Let (y i)i<β
be an increasing enumeration of (z i)i∈I0 , for some β ≤ α. It follows that we
can write

K ∶= C +∑
i<β

D i , where C ∶= K ∩ (x , y0] and D i ∶= (y i , y i+1] .

Since x ∼ y0 and y i ∼ y i+1, it follows that

A∣C ∈ C and A∣D i ∈ C .

Furthermore, λ(A∣D i ) = λ(A∣D j), for all i , j. Consequently, we can use
(ii) and (iii) to show that

A∣K ∈ C .
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The proof forH− is analogous.
To conclude the proof, setB ∶= ⟨A/∼, ≤, (Pc)c∈S⟩. IfB is a singleton, the

set A is decomposable and we are done. Hence, suppose otherwise.
Note that A∣[a] ∈ C since each ∼-class [a] is composable. If we can show

that B is densely ordered, we can use Lemma 4.3 to find an open interval
I ⊆ B that is µ-homogeneous. Consequently, it follows by (v) that the union
of all ∼-classes in I is composable. This means that I consists of a single
∼-class. A contradiction.
To prove density, fix two ∼-classes [a]∼ < [b]∼ in A/∼. We have show

above that composable sets are closed under finite sums. Hence, if there is
no class [a]∼ < [c]∼ < [b]∼, the sum [a]∼ + [b]∼ would be composable. In
particular, a ∼ b. A contradiction.

Corollary 4.5. Let C , S ,T be finite sets of colours, L a class of C-coloured

linear orders that is closed under convex suborders, be the corresponding class

of unlabelled linear orderd, and let Ld be the class of all S-coloured dense linear

orders whose underlying order belongs to L0. Let λ ∶ L → S be an L-additive
labelling and µ ∶ Ld → T an additive one.

Let U ⊆ S be a set satisfying the following conditions.

(i) λ(A) ∈ U, for all A ∈ L with ∣A∣ = 1.

(ii) λ(A), λ(B) ∈ U and A +B ∈ L implies λ(A +B) ∈ U.

(iii) If α is an ordinal and (Ai)i<α a sequence such that

∑
i∈α

Ai ∈ L and λ(Ai) = λ(A j) ∈ U , for all i , j ,

then λ(∑i∈α Ai) ∈ U.

(iv) If α is an ordinal and (Ai)i<α a sequence such that

∑
i∈αop

Ai ∈ L and λ(Ai) = λ(A j) ∈ U , for all i , j ,

then λ(∑i∈αop Ai) ∈ U.
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(v) If A ∈ L and ≈ is a congruence of A such that the order ⟨A/≈, ≤, (Pc)c∈S⟩
with

Pc ∶= { [a] ∈ A/≈ ∣ λ([a]) = c } , for c ∈ S , ,

is µ-homogeneous and densely ordered without end-points, and if Pc ≠ ∅
implies c ∈ U, then λ(A) ∈ U.

Then λ(A) ∈ U, for every A ∈ L.

Proof. Setting C ∶= λ−1[U] ∩ L, it follows by Theorem 4.4 that C = L.
Hence, λ[L] ⊆ U.

The most common case is the one where L is the class of all countable
linear orders and λ maps a linear ordering to itsMSOm-theory. In this case,
Theorem 4.4 simplifies to the following statement.

Corollary 4.6. Let C be a finite set of colours and m < ω a constant. The class

of all countable C-coloured linear orders is the least classL satisfying the following

conditions.

◆ Every order with at most one element belongs to L.

◆ A,B ∈ L implies A +B ∈ L.

◆ If A0 ,A1 , . . . ∈ L are orders withThm
MSO(A0) =Th

m
MSO(A1) = ⋯, then

∑i∈ω Ai ∈ L and∑i∈ωop Ai ∈ L.

◆ If (Ai)i∈I is a family of orders from L such that the colouring of I mapping

each i ∈ I toThm
MSO(Ai) is dense, then∑i∈I Ai ∈ L.

Theorem 4.7. Let C be a finite set of colours and m < ω a constant. For every

countable C-coloured linear order A, there exists a regular linear order B with

B ≡mMSO A.

Proof. We have shown that we can construct A in finitely many steps using
the operations of Corollary 4.6. We prove the claim by induction on the
number of steps.

If A has at most one element, it is regular. If A = B +B′, we can use the
inductive hypothesis to find regular orders C and C′ with

C ≡mMSO B and C′ ≡mMSO B′ .
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Hence, A ≡mMSO C + C′.
If A = ∑i∈ω Bi , we obtain by inductive hypothesis regular orders

Ci ≡
m
MSO Bi , for i < ω .

Consequently, A ≡mMSO ∑i∈ω Ci .
The proof for the case where A = ∑i∈ωop Bi is analogous.
Finally, suppose that A = ∑i∈I Bi and that the colouring

µ(i) ∶=Thm
MSO(Bi)

is dense. For every θ ∈ rng µ, we can use the inductive hypothesis to find a
regular order Cθ with

Cθ ≡
m
MSO Bi , for i ∈ µ−1(θ) .

Consequently, it follows by the composition theorem for ordered sums that
A ≡mMSO Cθ0 ∐∐⋯ ∐∐ Cθn−1 , where θ0 , . . . , θn−1 is an enumeration of rng µ.

One of the reasons why Leonard and Läuchli chose that particular set of
operations is that those are what is needed to solve systems of equations.

Definition 4.8. Let C be a finite set of colours, n < ω a number, and

E = {x0 = t0 , . . . , xn−1 = tn−1}

a finite set of n equations where t0 , . . . , tn+1 are terms using binary ordered
sums, the variables x0 , . . . , xn−1, and constants for each colour.
A tuple ⟨A0 , . . . ,An−1⟩ is a solution of E if it satisfies each equation in E

when we substitute Ai for the variable x i and we interpret the constants
c ∈ C as 1-element orders whose single element has colour c. By abuse
of terminology, we also say that Ai is a solution of E omitting the other
components.

The tuple is the least solution of E if, furthermore, the ordersA0 , . . . ,An−1
can be embedded into every other solution of E. ⌟
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Exercise 4.2. Prove that every finite system of equations has a least solution.
⌟

Lemma 4.9. Let E be a finite system of equations. The least solution of E is

regular.

Proof. Let E = {x0 = t0 , . . . , xn−1 = tn−1} be a system of equations. By
introducing new variables if necessary, we can transform this system such
that every term t i is of the form xk + x l or c, for variables xk , x l and a
constant c.
We construct a graph with vertices x0 , . . . , xn−1 as follows. For each equa-

tion x i = xk + x l , we add the edges x i → xk and x i → x l .
We prove the claim by induction on the number of strongly connected

components of this graph. Let X ∶= {x0 , . . . , xm−1} be one such component
and let Y be the set of all variables reachable from the component X. For
each variable y ∈ Y, we can use the inductive hypothesis to construct a
Leonard-Läuchli term denoting the value of y. To construct terms for the
variables in X, we distinguish two cases.

(i) First, suppose that all equations are of the form x = y+x′ or x = x′+ y
with x′ ∈ X and y ∈ Y. By repeatedly replacing the variables x′ ∈ X by their
definitions, we finally obtain equations of the form

x = w + x + w
′

where w and w′ are sums (possibly empty) of variables in Y. This equation
can be solved by the term

x = w × ω + w
′ × ωop .

(ii) Otherwise there is at least one equations of the form x i = xk + x l .
Again we eliminate all equations with only one variable from X on the right-
hand side by replacing this variable by its definition.Then all equations are
of the form

x i = w + xk + w
′ + x l + w

′′
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where x i , xk , x l ∈ X and w ,w′ ,w′′ are sums of variables in Y. Introducing
a new variable y, we can rewrite this equation as

x i = w + xk + y y = w′ + x l + w
′′ .

Replacing x l in the latter equation by its definition we obtain a system of
equations of the form

x i = w + xk + x l + w
′ ,

where x i , xk , x l ∈ X and w ,w′ are sums of variables in Y. For each equation
of this form, we define orders λ i , µ i , ρ i by

λ i = w + λk ,
ρ i = ρ l + w

′ ,

and x i = λ i + µ i + ρ i .

The equations for λ i and ρ i can be solved as above by terms of the form

λ i = (w0 +⋯ + wr) × ω and ρ i = (w
′
0 +⋯ + w

′
s) × ωop .

The orders µ i can equivalently be defined by

µ i = µk + ρk + λ l + µ l .

Let ξ i be the ordering obtained from µ i by replacing the sum ρk + λ l in
each such equation by a constant ck l . Then µ i can be obtained from ξ i
by substituting the ck l by ρk + λ l . Since the ξ i are dense orders without
end-points each µ i denotes the shuffle of the orders ρk + λ l .

Regular linear orders can be characterised in many different ways. (We
have proved an analogous characterisation for regular trees inTheorem ??.)

Theorem 4.10. Let A be a linear order. The following statements are equivalent.

(1) A is regular.

(2) A is the least solution of a finite system of equations.
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(3) A ≅ τ(Tbin), for some MSO-interpretation τ and the infinite binary

tree Tbin.

(4) A ≅ ⟨K, ≤lex , P̄⟩, for some regular language K ⊆ {0, 1}∗ and regular
sets Pc ⊆ K.

(5) A is the unique countable model of a suitableMSO-formula.

Proof. (2)⇒ (1) has already been proved in Lemma 4.9.
(1) ⇒ (3) It is sufficient to show that the class of all linear orders in-

terpretable in the infinite binary tree is closed under all Läuchli-Leonard
operations. For a formula φ(x̄), a vertex z, and a direction k ∈ {0, 1}, we
denote by φ(z ,k)(x̄) the relativisation of φ to the subtree attached to the
k-successor of z. Clearly, every order with at least one element can be inter-
preted in Tbin. Let τ i = ⟨δ i , φ i

≤ , φ i
P j
⟩ be an MSO-interpretation of some

linear order Ai in Tbin. Then the formulae

δ(x) ∶= (δ0)(⟨⟩,0)(x) ∨ (δ1)(⟨⟩,1)(x)

φ≤(x , y) ∶= (φ0
≤)
(⟨⟩,0)(x , y) ∨ (φ1

≤)
(⟨⟩,1)(x , y)

∨ [(δ0)(⟨⟩,0)(x) ∧ (δ1)(⟨⟩,1)(y)]

φP j(x) ∶= (φ
0
P j
)(⟨⟩,0)(x) ∨ (φ1

P j
)(⟨⟩,1)(x)

provide an interpretation of A0 + A1. Similarly, if ψ(x) is a formula stating
that x = 0n , for some n, we obtain interpretations

δ(x) ∶= ∃z[ψ(z) ∧ (δ0)(z ,1)(x)]

φ≤(x , y) ∶= ∃z[ψ(z) ∧ (φ0
≤)
(z ,1)(x , y)]

∨ ∃u∃v[ψ(v) ∧ u ⪯ v ∧ (δ0)(u ,1)(x) ∧ (δ0)(v ,1)(y)]

φP j(x) ∶= ∃z[ψ(z) ∧ (φ
0
P j
)(z ,1)(x)]
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and

δ(x) ∶= ∃z[ψ(z) ∧ (δ0)(z ,1)(x)]

φ≤(x , y) ∶= ∃z[ψ(z) ∧ (φ0
≤)
(z ,1)(x , y)]

∨ ∃u∃v[ψ(v) ∧ u ⪯ v ∧ (δ0)(u ,1)(y) ∧ (δ0)(v ,1)(x)]

φP j(x) ∶= ∃z[ψ(z) ∧ (φ
0
P j
)(z ,1)(x)]

of A0 ×ω and A0 ×ωop. Finally, for A0 ∐∐⋯∐∐An−1, we obtain the desired
interpretation as follows. Let ψ i(w , x) be the formula stating that w ∈
(10+)∗ and x = w10i+11. Then we can use the formulae

δ(x) ∶= ∃w∃z⋁
i<n
[ψ i(w , z) ∧ (δ i)(z ,1)(x)]

φ≤(x , y) ∶= ∃w∃z⋁
i<n
[ψ i(w , z) ∧ (φ i

≤)
(z ,1)(x , y)]

∨ ∃w∃w′∃z∃z′ ⋁
i , j<n
[ψ i(w , z) ∧ ψ j(w

′ , z′) ∧ z ≤lex z
′

∧ (δ i)(z ,1)(x) ∧ (δ j)(z
′ ,1)(y)]

φP j(x) ∶= ∃w∃z⋁
i<n
[ψ i(w , z) ∧ (φ i

P j
)(z ,1)(x)] .

(To see that this works, note that the order ⟨Q , ≤lex⟩ is dense where Q is
the set of vertices statisfying the formula ∃w⋁i<n ψ i(w , x).)
(3)⇒ (4) Let σ = ⟨δ, φ≤ , (φPi )i⟩ be the interpretation from Lemma 3.6.

The set K ⊆ {0, 1}∗ defined by δ, and Q i ⊆ {0, 1}∗ the one defined by φPi .
Then K and Q i are regular and the order ⟨K, ≤lex , Q̄⟩ is isomorphic to A.
(4)⇒ (2) We can combine the automata recognising the universe K and

the predicates Pi into a single deterministic automaton

A = ⟨Q , {0, 1}, δ, q0 , F , Ḡ⟩

with several sets of final states F , Ḡ such that, when using F, it recognises K
and, when using G i , it recognises Pi . (Note that F = ⋃i G i .) Let Aq be the
language recognised byA when starting in state q. The orders Aq ∶= A∣Aq ,
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q ∈ Q , satisfy the equations

Aq = c + Aδ(q ,0) + Aδ(q ,1) , if q ∈ F ∩Gc ,

Aq = Aδ(q ,0) + Aδ(q ,1) , if q ∉ F .

Let E be the system of equations obtained from these equations by repla-
cing Aq by a variable xq , for q ∈ Q . Then A = Aq0 is the least solution of E
(for the variable xq0 ).
(5)⇒ (2) Fix anMSO-formula φ defining A. By Theorem 4.7, φ has a

model that is regular. Since A is the only countable model of φ, it follows
that this model is A.
(1)⇒ (5) Let t be a Leonard-Läuchli term denotingA.We prove the claim

by induction on t. If t is a single constant,A is trivially definable. If t = s+s′, let
φ and φ′ be the formulae defining the values of s and s′, respectively.Thenwe
obtain a formulaψ definingA by stating that there exists a downwards-closed
set Z such that the suborder induced by Z satisfies φ and the complement
of Z satisfies φ′.
Suppose that t = s × ω and let φ be the formula defining s. We obtain a

formula defining t by stating that there exists a set Z such that

◆ Z and its complement are both unbounded and

◆ every maximal convex set contained in either Z or its complement satis-
fies φ.

The construction for s × ωop is analogous.
Finally, suppose that t = s0 ∐∐⋯ ∐∐ sn−1 and let φ i be a formula defining

the value of s i . The formula defining the value of t states that there exists
sets Z0 , . . . ,Zn−1 such that

◆ Z0 , . . . ,Zn−1 form a partition of the universe,

◆ every maximal convex subset of Z i satisfies φ i ,

◆ for all elements x < y, we have either [x , y] ⊆ Z i , for some i < n, or
[x , y] ∩ Zk ≠ ∅, for all k < n.

Corollary 4.11. ThMSO(A) is decidable, for every regular linear order A.
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Proof. We have shown in Corollary V.3.9 that the infinite binary tree Tbin
has a decidable MSO-theory. Hence, the claim follows from the fact that
A can be interpreted in Tbin.

Corollary 4.12. An ordinal α is regular if, and only if, α < ωω
.

Proof. (⇐) Clearly, every ordinal α < ωω can be expressed using Leonard-
Läuchli operations.
(⇒) follows by induction on the Leonard-Läuchli term expressing α.

Clearly, every singleton is less thanωω . If α = β+γ or α = β×ω, then β and γ
must be ordinals and it follows by inductive hypothesis that β, γ < ωω .
Hence, α < ωω . Fianlly, if α = β × ωop or α = β0 ∐∐ ⋯ ∐∐ βn−1, then α is
not an ordinal.

We conclude this section with a few exercises about theWMSO-theories
of ordinals.

Exercise 4.3. Let 1 < m < ω and let β > 0 be an ordinal. Show that

ωm ≡2mFO ωmβ and ωm ≢2m+1FO ωm + β . ⌟

Exercise 4.4. Let 0 < m < ω and let α < β be ordinals with α < ωm . Show
that

ωm ≡mWMSO ωmβ and α ≢mWMSO β . ⌟

Exercise 4.5. Let α, β, γ, δ be ordinals with α, β < ωω . Show that the
following statements are equivalent.

(1) ωωγ + α ≡FO ωωδ + β
(2) ωωγ + α ≡WMSO ωωδ + β
(3) α = β and either γ = 0 = δ, or γ, δ > 0. ⌟

Exercise 4.6. (a) Find anMSO-formula that holds in some uncountable
ordinal, but not in any countable one.
(b) Find two countable ordinals α and β with α ≡MSO β. ⌟

326



5 Modest linear orders

5 Mode# Linear Order+

We have seen in the preceding section that theMSO-theories of countable
linear orders are rather well understood. In particular, we have proved in
Corollary 3.3 that theMSO-theory of the order of rational numbers is de-
cidable. It turns out that this is not the case for real numbers. The aim of
this section is to find the reason for this difference between the rationals
and the reals. We start by introducing some terminology. To keep matters
manageable, we will only consider linear orders of the following kind.

Definition 5.1. Let A be a linear order.
(a) A is short if no subset X ⊆ A has order type ω1 or ω

op
1 .

(b) A is separable if there exists a countable set D such that every open
interval contains an element of D. ⌟

Remark. Every separable linear order is short. ⌟

Exercise 5.1. Prove that every short linear order A has size ∣A∣ ≤ 2ℵ0 . ⌟

Remark. A further reason for the restriction to short orders is that one
encounters set-theoretic issues when studying decidability problems for
general linear orders. For instance, one can show that the decidability of the
MSO-theory of ⟨ω2 , ≤⟩ is independent of ZFC [94]. ⌟

We also need generalisations of the notions of a dense set and a perfect
one.

Definition 5.2. Let A be a linear order.
(a) We use the usual notation for intervals like

(a, b) , [a, b) , (−∞, b] , (a,∞) , . . .

(b)The two-sided closure of X ⊆ A is the set

cl2(X) ∶= { a ∈ A ∣ (b, a) ∩ X ≠ ∅ and (a, c) ∩ X ≠ ∅,

for all b < a < c } .

(c) We call a set X replete if X = cl2(X) ≠ ∅, and coherent if it satisfies
∅ ≠ X ⊆ cl2(X). ⌟
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Example. Every dense subset without end-points is coherent. In particular,
if A is densely ordered without end-points, the set A is replete. ⌟

Exercise 5.2. Prove that cl2(cl2(X)) ⊆ cl2(X), for all sets X. The converse
holds if X is coherent. ⌟

Lemma 5.3. Let A be a linear order, D ⊆ A coherent, and X ⊆ D.

(a) If X is dense in D, then X is coherent.

(b) cl2(D) is replete.

(c) cl2(X/D) = cl2(X/A) ∩ D, where cl2(X/Y) denotes the two-sided
closure of X computed in the linear order ⟨Y , ≤⟩.

(d) X is coherent in the linear order ⟨D, ≤⟩, if, and only if, it is coherent in A.

(e) If D is replete, then X is replete in the linear order ⟨D, ≤⟩ if, and only if, it
is replete in A.

Proof. (a) Fix an element c ∈ X. Since c ∈ D, there exists a strictly increasing
sequence (a i)i of elements a i ∈ D with a i > c and supi a i = c. As X is
dense in D, there is some element x i ∈ X with a i < x i < c. It follows that
supi x i = c. In the same way we can find a strictly decreasing sequence in X
with inf i x i = c. Hence, c ∈ cl2(X).
(b) As D is coherent, we have D ⊆ cl2(D). This implies that cl2(D) ⊆

cl2(cl2(D)). For the converse inclusion, let x ∈ cl2(cl2(D)) and consider
an element a < x. Since x ∈ cl2(cl2(D)), there is some b ∈ (a, x) ∩ cl2(D).
Similarly, b ∈ cl2(D) implies that there is some c ∈ (b, x) ∩ D. We have
shown that, for every a < x, there is some c ∈ D with a < c < x. Similarly,
it follows that, for every a > x, there is some c ∈ D with x < c < a.
Consequently, x ∈ cl2(D).
(c) Let (x i)i be a strictly increasing sequence of elements x i ∈ X. It is

sufficient to show that an element c ∈ D is the supremum of (x i)i in ⟨D, ≤⟩
if, and only if, it is the supremum in A. (The corresponding statement for
strictly decreasing sequences then follows by symmetry.)
(⇐) is trivial since the supremum computed in A is less then or equal to

the supremum computed in ⟨D, ≤⟩.
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(⇒) For a contradiction, suppose that c is the supremum of (x i)i in
⟨D, ≤⟩ but not in A. Then there exists an element a ∈ A with x i < a < c,
for all i. Since D is coherent and c ∈ D ⊆ cl2(D), there is some element
d ∈ (a, c) ∩ D. Consequently, c is not the supremum of (x i)i in ⟨D, ≤⟩.
A contradiction.

(d) Let X be coherent in ⟨D, ≤⟩. Then it follows by (c) that

X ⊆ cl2(X/D) = cl2(X/A) ∩ D ⊆ cl2(X/A) .

Conversely, let X be coherent in A. Then it follows by (c) that

X ⊆ cl2(X/A) ∩ D = cl2(X/D) .

(e) Let X be replete in ⟨D, ≤⟩. Then it follows by (c) that

X = cl2(X/D) = cl2(X/A) ∩ D

= cl2(X/A) ∩ cl2(D/A) = cl2(X/A) .

Conversely, let X be replete in A. Then it follows by (c) that

cl2(X/D) = cl2(X/A) ∩ D

= cl2(X/A) ∩ cl2(D/A) = cl2(X/A) = X .

It turns out that the dividing line between simple and complex linear
orders is given by the following property.

Definition 5.4. Let A be a linear order and p < ω.
(a) We say that a sequence Γ0 , . . . , Γp−1 ⊆ A is a guard for a set D ⊆ A if

◆ the sets Γ0 , . . . , Γp−1 ⊆ D are disjoint and coherent in the linear order
⟨D, ≤⟩,

◆ every Γi is dense in D,

◆ there is no set P ⊆ Γ0 ∪ ⋅ ⋅ ⋅ ∪ Γp−1 such that each Γi is dense in P and
P is replete in the linear order ⟨D, ≤⟩.
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(b) A set X is guarded by a guard Γ̄ for D if X ⊆ D and every Γi is dense
in X.
(c) A is p-modest if it is short and there exists no subset D ⊆ A such

that D is densely ordered without end-points and there exists a guard
Γ0 , . . . , Γp−1 of length p for D. A ismodest if it is p-modest for all p < ω. ⌟

Examples. (a) It follows by Corollary 5.26 below that every countable order
is modest. (The proof is non-trivial.) In particular, ⟨Q, ≤⟩ is modest.

(b) We will show in Lemma 5.19 below that ⟨R, ≤⟩ is not 1-modest. ⌟

Exercise 5.3. Prove that every p-modest linear order A is also q-modest, for
all q ≤ p. ⌟

Lemma 5.5. The class of p-modest linear orders is closed under suborders and

quotients by congruences.

Proof. Let A be p-modest. For closure under suborders, consider a subset
B ⊆ A. For a contradiction, suppose that ⟨B, ≤⟩ is not p-modest. Let D ⊆ B
be the corresponding subset with a guard. Then D is also a subset of A and
witnesses that A is not p-modest.

For closure under quotients, consider a congruence ∼ onA and let q ∶ A→
A/∼ be the corresponding projection. Fix any function e ∶ A/∼ → Awith
q ○ e = id.Then the set B ∶= rng e induces a suborder ofA that is isomorphic
to A/∼. By the first part of the proof, it follows that B is p-modest. Hence,
so is A/∼.

Lemma 5.6. Let A be a linear order and ∼ a congruence. Then A is p-modest

if, and only if, A/∼ is p-modest and A∣[a] is p-modest, for every [a] ∈ A/∼.

Proof. (⇒) follows immediately from Lemma 5.5. For (⇐), consider a sub-
setD ⊆ A that is densely orderedwithout end-points. Fix sets Γ0 , . . . , Γp−1 ⊆
D that are disjoint and coherent in ⟨D, ≤⟩ and such that each Γi is dense
in D. We have to show that Γ̄ is no guard for D.
First, suppose that a ≁ b, for all a, b ∈ D. Then A∣D is isomorphic to a

suborder of A/∼ and it follows by Lemma 5.5 that there is no guard for D.
It remains to consider the case where there are a < b in D with a ∼ b.

Then D has a non-trivial interval I ∶= (a, b) ∩ D that is contained in some
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∼-class. Set Γ′i ∶= Γi ∩ I. Since each ∼-class is p-modest, Γ̄′ is no guard for I.
Hence, we can find some set P ⊆ Γ′0 ∪ ⋅ ⋅ ⋅ ∪ Γ′p−1 that is guarded by Γ̄′ and
replete in ⟨I, ≤⟩. It follows that Γi is dense in P. Furthermore, as I is coherent
in ⟨D, ≤⟩, Lemma 5.3 (c) implies that

P = cl2(P/I) = cl2(P/D) ∩ I = cl2(P/D) .

Hence, P is replete in ⟨D, ≤⟩ and it follows that Γ̄ is not a guard for D.

Let us give an overview of the properties of modest and non-modest
orders. The proofs will be deferred to the end of this section.

Theorem 5.7. Let A be a short separable linear order. Then

A ≡MSO ⟨Q, ≤⟩ iff A is modest and densely ordered without

end-points.

Corollary 5.8. Let A be a short linear order that is separable and dense without

end-points. TheMSO-theory A is decidable if, and only if, A is modest.

Corollary 5.9. TheMSO-theory of ⟨R, ≤⟩ is undecidable.

For modest orders that are not necessarily dense, we obtain the following
results.

Lemma 5.10. Every modest short linear order can be embedded into one that is
densely ordered and has no end-points.

Proof. Every linear order A can be embedded in Q × A via the map a ↦
⟨0, a⟩. Applying Lemma 5.6 to the congruence associated with the projection
Q ×A→ A, it follows thatQ × A is modest.

Theorem 5.11. Let A be a separable linear order. The following statements are

equivalent.

(i) A is modest.

(ii) For every m < ω, there is some countable linear order B with A ≡mMSO B.
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(iii) For every m < ω, there is some regular linear order B with A ≡mMSO B.

Proof. (ii)⇒ (iii) follows byTheorem 4.7.
(iii)⇒ (i) For each p < ω, there exists anMSO-formula ψp expressing

that a linear order is p-modest. Let mp be the quantifier-rank of ψp . By
assumption, there exist regular linear orders Bp with

Bp ≡
mp
MSO A .

Since Bp can be embedded inQ, it is modest by Lemma 5.5. Hence,

Bp ⊧ ψp implies A ⊧ ψp .

Consequently, A is modest.
(i)⇒ (ii) Suppose that A is modest. Then we can use Lemma 5.10 to

embed A in some dense modest order B without end-points. Given m < ω,
set

φ ∶= ∃Xθ(X) , where θ ∶= ⋀Thm
MSO(A)

and θ(X) denotes the relativisation of θ to the set X. ByTheorem 5.7, we
have B ≡MSO ⟨Q, ≤⟩. Hence,

B ⊧ φ implies ⟨Q, ≤⟩ ⊧ φ ,

and there exists some set Xm ⊆ Q such that

A ≡mMSO ⟨Xm , ≤⟩ .

Corollary 5.12. The MSO-theory of the class of all separable modest linear
orders is decidable.

Proof. Let T be theMSO-theory of all separable modest linear orders and
let C be the class of all countable linear orders. For anMSO-formula φ we
denote by φ(X) the relativisation of φ to the set X. Given φ ∈ MSOm , it
follows byTheorem 5.11 and Corollary 5.26 that

φ ∈ T iff A ⊧ φ , for all countable orders A ,

iff ⟨Q, ≤⟩ ⊧ ∀Xφ(X) .

The latter is decidable by Corollary 3.3.
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Open Question. Do Theorems 5.7 and 5.11 hold without the assumption of

separability?

Coherent Set+ and Frame+

It remains to provide the proofs we have omitted above because they require
some preparation. We start with some tools to work with coherent sets. It
will be convenient to use the language of topology.

Definition 5.13. Let A be a linear order.
(a)The order topology on A is generated by the open basis consisting of all

open intervals

(−∞, b) , (a,∞) , (a, b) , for a < b in A .

(b) We denote the topological closure of a set X ⊆ A by cl(X).
(c) A is zero-dimensional if the order topology has a basis consisting of

clopen sets. ⌟

Remark. Let A be a dense linear order. A convex set C ⊆ A is clopen in the
order topology if C has no infimum and no supremum. ⌟

Exercise 5.4. Prove that the order topology is always regular, that is, for
every closed set C and every element a ∉ C, there are two disjoint open sets
U ,V with a ∈ U and C ⊆ V . ⌟

Exercise 5.5. Prove that a linear order A is separable as defined above if,
and only if, its order topology is separable in the usual sense, i.e., if it has a
countable dense subset. ⌟

Our first observation is that, similar to perfect sets, we can characterise
coherent sets via embeddings of certain trees. Instead of binary trees, we
use trees of the form (ω + ωop)∗ although, in order to denote the vertices
of such a tree more easily, we will work instead with Z∗ equipped with the
following non-standard ordering.
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Definition 5.14. (a) We denote by ⊴ the linear ordering on Z∗ defined as
follows. For w , u, v ∈ Z∗ and d , d′ ∈ Z, we set

wdu ⊲ wd′v : iff [d < d′ and (d , d′ < 0 or d , d′ ≥ 0)]

or d ≥ 0 > d′ ,

w ⊴ wd : iff d < 0 .

w0 < w1 < w2 < ⋯ < w < ⋯ < w(−3) < w(−2) < w(−1)

(b) Let A be a linear order. A frame for a set D ⊆ A is a bijective function
φ ∶ Z∗ → D with the following properties.

◆ φ maps ⊴ to ≤.

◆ φ(w) = inf d<0 φ(wd) = supd≥0 φ(wd) , for all w ∈ Z∗ . ⌟

Let us collect some basic facts about how the image of a frame is embedded
in the surrounding linear order.

Lemma 5.15. Let φ be a frame for D. For w ∈ Z∗, we denote by ⟦w⟧ the convex
closure of φ[⇑w].
(i) φ(w) ∈ ⟦w⟧
(ii) ⟦w⟧ is open.

(iii) cl(⟦wd⟧) ⊆ ⟦w⟧ , for d ≠ 0,−1 .

(iv) cl(⟦wd⟧) ∩ cl(⟦wd′⟧) = ∅ , for ∣d − d
′∣ > 1 .

(v) Let (wn)n<ω be a sequence in Z∗ such that a ∶= limn<ω φ(wn) exists.
Then

a ∈ rng φ or a ∈ ⋂
v∈β

cl(⟦v⟧) , for some branch β of Z∗ .

Proof. (i) φ(w) ∈ φ[⇑w] ⊆ ⟦w⟧
(ii) We have

⟦w⟧ = ⋃{(φ(wu), φ(wv)) ∣ u ⊲ v } ,
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which is open.
(iii) LetU be the open interval between φ(w(d − 1)) and φ(w(d + 1)).

Then

⟦wd⟧ ⊆ U implies cl(⟦wd⟧) ⊆ cl(U) ⊆ ⟦w⟧ .

(iv) By symmetry, we may assume that d′ > d + 1 > 0.Then

cl(⟦wd⟧) ⊆ (−∞, φ(w(d + 1)0)] ,

cl(⟦wd′⟧) ⊆ [φ(w(d + 1)(−1)), ∞) .

In particular, these sets are disjoint.
(v) Set

W ∶= {wn ∣ n < ω } and Lm ∶= ⇓W ∩Zm , for m < ω .

We distinguish two cases. First, suppose that Lm is infinite for some m. Let
m0 be the least such index.Then there is some v ∈ Lm−1 such that the set

I ∶= { d ∈ Z ∣ vd ∈ Lm } is finite.

Fix a strictly increasing or strictly decreasing sequence d0 , d1 , . . . of elements
from I. Then

a = lim
n<ω

wn = limn<ω
φ(vdn) = φ(v) ∈ rng φ .

It remains to consider the case where all Lm are finite. Then we can use
Kőnig’s Lemma to find an infinite branch v0 <pf v1 <pf ⋯ with vn ∈ Ln , for
all n < ω. It follows that

a = lim
n<ω

wn = limn<ω
φ(vn) ∈ ⋂

n<ω
cl(⟦vn⟧) .

We can use frames to characterise choherency. One of the directions holds
without further assumption.

Lemma 5.16. Let φ be a frame for D. Then D is coherent.
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Proof. Let φ ∶ Z∗ → D be a frame for D. To show that D is coherent, fix an
element a ∈ D. Then a = φ(w), for some w ∈ Z∗, and it follows that

a = φ(w) = inf
d<0

φ(wd) = sup
d≥0

φ(wd) .

Hence, a ∈ cl2(D).

But without additional assumptions on the linear order, we can only prove
the following weaker form of the converse statement.

Lemma 5.17. Let A be a linear order and D ⊆ A a coherent set. There exists a

frame φ with rng φ ⊆ D.

Proof. We define φ(w) by induction on ∣w∣. For φ(⟨⟩) we choose an ar-
bitrary element of D. For the inductive step, suppose that we have already
defined φ(w) for all w ∈ Z≤n . Let w0 ⊲ ⋅ ⋅ ⋅ ⊲ wm−1 be an enumeration of
all vertices w of length ∣w∣ = n. As D is coherent and, therefore, densely
ordered, we can choose, for every i < m, some interval I i containing φ(w i)
such that

I i ∩ I j = ∅ , for i < j .

Given i < m, we can use coherence to choose a strictly increasing sequence
(x j) j<ω and a strictly decreasing one (y j) j<ω such that

x j , y j ∈ I i ∩ D and sup
j<ω

x j = φ(w i) = inf
j<ω

y j .

For k ∈ Z, we define

φ(w ik) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

xk if k ≥ 0 ,
y−k+1 if k < 0 .

With additional assumptions, we obtain a precise characterisation. We
start with a simple version of the construction. Below we will present two
more elaborate versions with additional requirements on the constructed
frame.
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Lemma 5.18. Let A be a short zero-dimensional linear order. A countable subset

D ⊆ A has a frame if, and only if, D is non-empty and coherent.

Proof. (⇒) has already been proved in Lemma 5.16. For (⇐), let D ⊆ A be
non-empty and coherent. Fix some ordering ⊑ on D of order type ω.
In order to define φ, we construct a family (Cw)w∈Z∗ of clopen subsets

Cw ⊆ AwithD∩Cw ≠ ∅ and then choose for φ(w) the ⊑-minimal element
of D ∩ Cw . We start with C⟨⟩ ∶= A. For the inductive step, suppose that we
have already defined Cw . As A is zero-dimensional and short, there exists a
strictly decreasing sequence Cw = U0 ⊃ U1 ⊃ ⋯ of clopen sets U i , i < ω,
such that

⋂
i<ω

U i = {φ(w)}

and each difference U i ∖U i+1 contains elements strictly above φ(w) and
ones strictly below φ(w). Since D is coherent, there are infinitely many
indices i < ω such that U i ∖ U i+1 contains some element a ∈ D with
a > φ(w). Replacing (U i)i<ω by a suitable subsequence we may therefore
assume that, for every i < ω, there is some a ∈ D ∩ (U i ∖ U i+1) with
a > φ(w). In the same way we may assume that, for every i < ω, there is
some a ∈ D ∩ (U i ∖U i+1) with a < φ(w).
We set

Cwd ∶=

⎧⎪⎪
⎨
⎪⎪⎩

(φ(w),∞) ∩ (U−d−1 ∖U−d) if d < 0 ,
(−∞, φ(w)) ∩ (Ud ∖Ud+1) if d ≥ 0 ,

It follows that

D ∩ Cwd ≠ ∅ and D ∩ Cw = {φ(w)} ∪ ⋃
d∈Z
(D ∩ Cwd) .

We claim that φ is the desired frame for D. Since

D ∩ Cw = {φ(w)} ∪ ⋃
d∈Z
(D ∩ Cwd)

337



VI. Linear Orders

and since φ(w) is the ⊑-minimal suitable element of D, it follows that every
element of D is eventually added to the range of φ. Hence, φ is surjective.
Injectivity follows since φ(w) ∉ Cu , for u >pf w.
Furthermore, we have

φ(wd) ≤ φ(wd′) iff d < d′ < 0 or 0 ≤ d < d′ or d ≥ 0 > d′ ,

φ(w) > φ(wd) , for d ≥ 0 ,

φ(w) < φ(wd) , for d < 0 .

This implies that φ maps ⊴ to ≤.
To show that φ(w) = supd≥0 φ(wd), note that⋂i U i = {φ(w)} implies

that there is no element a with

φ(wd) ≤ a < φ(w) , for all d ≥ 0 .

The fact that φ(w) = inf d<0 φ(wd) follows in the same way.

As an application, let us show that the real numbers are not modest.

Lemma 5.19. ⟨R, ≤⟩ is not 1-modest.

Proof. The set Γ ∶= Q is coherent and dense inR. We claim that it is a guard
for R. For a contradiction, suppose that there exists a guarded replete set
P ⊆ Q. SinceQ is zero-dimensional, we can use Lemma 5.18 to construct a
frame φ0 ∶ Z∗ → Q for P. As the embedding e ∶ Q → R preserves infima
and suprema, it follows that φ ∶= e ○ φ0 ∶ Z∗ → R is also a frame for P.
Let β be a branch of Z∗. As R is Dedekind-complete, there exists some
x ∈ ⋂v∈β cl(⟦v⟧). Note that x ∈ cl2(P) since, for all elements a < x < b,
there is some v ∈ β with cl(⟦v⟧) ⊆ (a, b). This implies that there are
u,w ∈ Z∗ with φ(u) ∈ (a, x) and φ(w) ∈ (x , b). Since cl2(P) = P, it
follows that x = φ(w), for some w ∈ Z∗. This implies that w ∈ β. Fix
a vertex v ∈ β with w <pf v. Then x ∈ cl(⟦v⟧), but φ(w) ∉ cl(⟦v⟧).
A contradiction.

For the undecidability proof below, we will reduce arithmetic to the mon-
adic theory of a non-modest linear order. To do so, we construct a frame
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and colour the levels of Z∗ using one colour for each natural number. Then
we can show that addition and multiplication of colours is definable.

Definition 5.20. (a) For P ⊆ Z∗, we set

len(P) ∶= { ∣v∣ ∣ v ∈ P } .

(b) A stratification of Z∗ is an infinite partition (Sn)n<ω of Z∗ such that
the sets len(Sn), for n < ω, are infinite and disjoint. ⌟

In the following, more complicated construction of a frame, we addition-
ally control the colouring of elements.

Lemma 5.21. Let A be a short zero-dimensional linear order containing disjoint

sets Γ0 , . . . , Γp−1 ⊆ A such that each Γi is countable and dense in A. Let D ⊆ A
be a countable set containing each Γi such that the difference D∖(Γ0∪⋅ ⋅ ⋅∪Γp−1)
is dense in A. Let P be a countably infinite partition of D such that each P ∈ P
is dense in D and Γ0 ∪ ⋅ ⋅ ⋅ ∪ Γp−1 can be written as a union of guarded sets in P .
Then D has a frame φ such that

◆ each set ⟦w⟧ is clopen,

◆ the sets (φ−1[P])P∈P form a stratification of Z∗, and
◆ len(φ−1[Γi]) = { n(p + 1) + i ∣ n < ω } .

Proof. We use a similar construction as in the proof of Lemma 5.18. Fix an
enumeration (Pn)n<ω of P . Let Pg ⊆ P be the set of all sets in P that are
guarded by Γ̄ and let Png ∶= P ∖ Pg be the remaining ones. Note that these
two subsets are both non-empty since D ∖ (Γ0 ∪ ⋅ ⋅ ⋅ ∪ Γp−1) is dense in A
and Γ0 ∪ ⋅ ⋅ ⋅ ∪ Γp−1 can be written as a union of sets in Pg. We choose a
partition (Ln)n<ω of ω such that

◆ each class Ln is infinite,

◆ if Pn ∈ Pg, then Ln contains no element k with k ≡ p (mod p + 1) but,
for every q < p, there are infinitely many k ∈ Ln with k ≡ q (mod p+ 1),

◆ if Pn ∈ Png, then k ≡ p (mod p + 1), for all k ∈ Ln .
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To see that such a partition exists, letQk , for k < p + 1, be a partition of the
set

{ i(p + 1) + k ∣ i < ω }

such that each Q ∈ Qk is infinite, ∣Qp ∣ = ∣Png∣, and ∣Qk ∣ = ∣Pg∣, for k < p.
Then we can set

Ln ∶= Q0 ∪ ⋅ ⋅ ⋅ ∪ Qp−1 or Ln ∶= Qp , for a suitable Qk ∈ Qk .

Fix some ordering ⊑ on D of order type ω.
In order to define φ, we construct a family (Cw)w∈Z∗ of clopen subsets

Cw ⊆ A with Cw ∩ D ≠ ∅ starting with with C⟨⟩ ∶= A. For the inductive
step, suppose that we have already defined Cw . Let n < ω be the index such
that ∣w∣ ∈ Ln . For φ(w) we choose the ⊑-minimal element a ∈ D satisfying
◆ a ∈ Cw ∩ Pn and
◆ Pn ∈ Pg implies a ∈ Γ∣w∣ mod (p+1) .
To see that this is possible note that coherence of D implies that Cw con-
tains infinitely many elements of D. Since Pn is dense in D, it follows that
Cw ∩ Pn ≠ ∅. Furthermore, if Pn ∈ Pg, then each Γi is dense in Pn , which
implies that Γi is dense in D. As above, it follows that Cw ∩ Pn ∩ Γi ≠ ∅.

As in the proof of Lemma 5.18, we construct a strictly decreasing sequence
Cw = U0 ⊃ U1 ⊃ ⋯ of clopen setsU i , i < ω, such that

⋂
i<ω

U i = {φ(w)}

and each difference U i ∖ U i+1 contains elements of D that are strictly
above φ(w) and ones that are strictly below φ(w).

Cwd ∶=

⎧⎪⎪
⎨
⎪⎪⎩

(φ(w),∞) ∩ (U−d−1 ∖U−d) if d < 0 ,
(−∞, φ(w)) ∩ (Ud ∖Ud+1) if d ≥ 0 ,

It follows that

D ∩ Cwd ≠ ∅ and D ∩ Cw = {φ(w)} ∪ ⋃
d∈Z
(D ∩ Cwd) .
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We claim that φ is the desired frame for D. The fact that φ is a frame
for D follows as in the proof of Lemma 5.18. Hence, it remains to prove the
two additional properties.

By choice of φ(w), we have

φ(w) ∈ Pn iff ∣w∣ ∈ Ln .

This implies that

len(φ−1[Pn]) = Ln .

Hence, the sets φ−1[Pn] form a stratification of Z∗.
Furthermore, for q < p, we have

∣w∣ ≡ q (mod p + 1) iff ∣w∣ ∈ Ln for some n with Pn ∈ Pg .

By choice of φ(w), this implies that φ(w) ∈ Γq . Conversely, suppose that
φ(w) ∈ Γq and let n be the index such that φ(w) ∈ Pn . As Γ0 ∪ ⋅ ⋅ ⋅ ∪ Γp−1
can be written as a union of sets in Pg, the set Pn must belong to Pg. By
definition of φ(w), this implies that ∣w∣ ≡ q (mod p + 1).

Finally, by choice of φ(w) and Cwd , we have ⟦w⟧ ⊆ Cw and ⟦w⟧ is dense
in Cw . Since ⟦w⟧ and Cw are both open it, follows that ⟦w⟧ = Cw . In
particular, ⟦w⟧ is clopen.

Subframe+ and Frame Embedding+

Once we have constructed a frame, we can use the tree structure it imposes
for further constructions. In particular, we can find subtrees with additional
properties.

Definition 5.22. A frame embedding is an injective function µ ∶ Z∗ → Z∗
with the following two properties.

◆ µ(u ⊓pf v) = µ(u) ⊓pf µ(v) , for all u, v ∈ Z∗ .
◆ µ(w)d ≤pf µ(wd′) implies d ≥ 0⇔ d

′ ≥ 0 , for all w ∈ Z∗ and
d , d′ ∈ Z . ⌟
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Lemma 5.23. Let φ be a frame for D and µ a frame embedding. Then φ ○ µ is

a frame for some subset of D.

Proof. Set E ∶= rng (φ ○ µ).Then φ○µ is a bijectionZ∗ → E. Furthermore,
φ ○ µ maps ⊴ to ≤ since µ(v)d ≤pf µ(vd′) implies d ≥ 0⇔ d

′ ≥ 0.
Finally, note that the set

I ∶= { d ∈ Z ∣ d ≥ 0, µ(v)d ≤pf φ(vd′) for some d′ ≥ 0}

is infinite. Consequently, we have

sup
d≥0

φ(µ(vd)) = sup
d∈I

φ(µ(v)d) = sup
d≥0

φ(µ(v)d) = φ(µ(v)) .

The lower bound follows analogously.

In the same way we can divide every perfect set into countably many
pairwise disjoint perfect sets, we can divide a coherent set into continuum
many ‘nearly disjoint’ coherent sets.

Proposition 5.24. Let A be a short linear order and G ⊆ ℘(A) a countable
family of sets whose union Γ∗ ∶= ⋃G is coherent and such that each Γ ∈ G is dense
in A. There exist a countable coherent set D ⊆ ⋃G and a family S ⊆ ℘(D)
with the following properties.

◆ ∣S∣ = 2ℵ0

◆ Every S ∈ S is coherent, closed in D, and nowhere dense in D.

◆ Every Γ ∈ G is dense in each S ∈ S .

◆ cl(S) ∩ cl(T) ⊆ D is scattered, for all distinct S ,T ∈ S .

Proof. Fix a surjective function χ ∶ Z→ G. We start by constructing a frame
φ ∶ Z∗ → Γ∗ and a family (Uw)w∈Z∗ of open intervals with the following
properties.

(i) φ(w) ∈ Uw

(ii) Uv ⊆ Uw , for w ≤pf v .

(iii) Uwd ∩Uwd′ = ∅ , for d ≠ d′ .
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(iv) φ(w(5d + i)) ∈ χ(d) , for all d ∈ Z and 0 ≤ i < 5 .
We construct φ(w) and Uw by induction on w. For w = ⟨⟩, we choose

an arbitrary open interval U⟨⟩ and an arbitrary element φ(⟨⟩) ∈ U⟨⟩ ∩ Γ∗.
For the inductive step, suppose that we have already defined φ(w) andUw .
Since A is short, we can choose a strictly increasing sequence a0 < a1 < ⋯
of elements inUw with supn<ω an = φ(w). Similarly,Uw contains a strictly
decreasing sequence b0 > b1 > ⋯ with inf n<ω bn = φ(w). For d ∈ Z, fix an
open interval

Uwd ⊆

⎧⎪⎪
⎨
⎪⎪⎩

(ad+1 , ad) if d ≥ 0 ,
(b−d , b−d−1) if d < 0 .

Since χ(d) is dense, we can choose elements

φ(w(5d + i)) ∈ Uw(5d+i) ∩ χ(d) , for d ∈ Z and 0 ≤ i < 5 .

Clearly, the function φ and the sets (Uw)w satisfy properties (i)–(iv).
Furthermore, we have

φ(w) = inf
d<0

φ(wd) = sup
d≥0

φ(wd) ,

so φ is indeed a frame.
Having defined φ, we set D ∶= rng φ. Then φ is a frame for D, and it

follows by Lemma 5.16 that D is coherent. For each α ∈ 2ω , we define a
frame embedding µα ∶ Z∗ → Z∗ as follows. Let γ0 , γ1 ∶ Z→ Z be the two
functions with

γ i(d) ∶= 5d + 2i + 1 .

We set

µα(⟨⟩) ∶= ⟨⟩ and µα(wd) ∶= µα(w) γα(∣w∣)(d) .

We claim that the family

S ∶= { Sα ∣ α ∈ 2ω } with Sα ∶= rng (φ ○ µα)
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has the desired properties. Since µα is a frame embedding, it follows by
Lemmas 5.23 and 5.16 that each Sα is coherent. Furthermore, (iv) implies
that every Γ ∈ G is dense in Sα .

To see that Sα is closed in D, suppose that φ(w) ∉ Sα . Then (ii) and (iii)
implies thatUw ∩ Sα = ∅. Hence, φ(w) ∉ cl(Sα).

To check that Sα is nowhere dense, let V be non-empty and open. If V is
disjoint from Sα , we are done. Otherwise, fix some w ∈ (φ ○ µα)−1[V] and
set v ∶= µα(w). Since V is open, there is some d such that

Uvd ∩V ≠ ∅ and d ≡ 2 (mod 5) .

This implies thatUvd ∩ Sα = ∅.
Finally, consider an element a ∈ cl(Sα)∩cl(Sα′)where α ≠ α′. Letm < ω

be the least number with α(m) ≠ α′(m). We start by showing that a ∈ D.
For a contradiction, suppose that it is not. By Lemma 5.15 (iv), we can then
find a branch β of ω∗ with a ∈ ⋂v∈β cl(Uv). Let v ∈ β be the vertex with
∣v∣ = m + 1. Then cl(Uv) is disjoint from either Sα or Sα′ . Consequently,
a ∉ Sα ∩ Sα′ . A contradiction.
It remains to show that cl(Sα) ∩ cl(Sα′) is scattered. Let w ∶= φ−1(a).

Note that φ(w) ∈ cl(Sα) ∩ cl(Sα′) implies that m ≤ ∣w∣. Consequently, we
have

cl(Sα) ∩ cl(Sα′) ⊆ {φ(w) ∣ ∣w∣ ≤ m } ,

which is scattered.

Corollary 5.25. Let A be a short linear order and Γ̄ a guard for A. Every

guarded replete set has size 2ℵ0
.

Proof. For a contradiction, suppose that P ⊆ A is guarded and replete, but
∣P∣ < 2ℵ0 . Note that, by Lemma 5.3 (c) and (d), a set X ⊆ P is coherent or
replete in ⟨P, ≤⟩ if, and only if, it is coherent or replete in A. As each set Γi
is dense in P, it further follows by Lemma 5.3 (a) that P ∩ (Γ0 ∪ ⋅ ⋅ ⋅ ∪ Γp−1)
is coherent. Hence, we can apply Proposition 5.24 to the linear order ⟨P, ≤⟩
and the family G = {Γ0 ∩ P, . . . , Γp−1 ∩ P}. Let D ⊆ P ∩ (Γ0 ∪ ⋅ ⋅ ⋅ ∪ Γp−1)
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be the resulting countable coherent set and S ⊆ ℘(D) the resulting family
of coherent sets. Then we have

cl(S) ∩ cl(T) ⊆ D , for all S ≠ T in S ,

(we compute the closure cl(S) in the order ⟨P, ≤⟩), which implies that the
family

{ cl(S) ∖ D ∣ S ∈ S }

is disjoint. Since ∣P∣ < 2ℵ0 = ∣S∣, we can find some S ∈ S with cl(S)∖D = ∅.
Consequently,

cl(S) ⊆ D ⊆ P ∩ (Γ0 ∪ ⋅ ⋅ ⋅ ∪ Γp−1) .

Note that, by choice of S , each set Γi is dense in S. If we can show that the
set S is replete, we obtain a contradiction to the fact that Γ̄ is a guard. For the
proof, note that coherency implies that S ⊆ cl2(S), while the above inclusion
and the fact that S is closed in D imply that

cl2(S) ⊆ cl(S) ⊆ cl(S) ∩ D ⊆ S .

Corollary 5.26. Every short linear order A of size ∣A∣ < 2ℵ0
is modest.

Proof. For a contradiction, suppose that there exists a setD ⊆ Awith a guard
Γ0 , . . . , Γp−1 such that D is densely ordered without end-points. Applying
Proposition 5.24 to the order D ∶= ⟨D, ≤⟩, we obtain a countable coherent
set C ⊆ Γ0 ∪ ⋅ ⋅ ⋅ ∪ Γp−1 and a family S ⊆ ℘(C) of coherent sets of size
∣S∣ = 2ℵ0 such that

◆ Γi is dense in S, for all S ∈ S and i < p, and

◆ cl(S) ∩ cl(T) ⊆ C, for all S ≠ T in S .

(We compute the closure cl(S) in D.) This implies that the family

{ cl(S) ∖ C ∣ S ∈ S }
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is disjoint. As C is countable, we can therefore find some S ∈ S with cl(S) ⊆
C. Consequently,

cl(S) ⊆ C ⊆ Γ0 ∪ ⋅ ⋅ ⋅ ∪ Γp−1 .

By Lemma 5.3, it follows that the set P ∶= cl2(S) is replete inD. Furthermore,
since Γi is dense in S, Γi is dense in P. Hence, P is guarded and replete, which
contradicts the definition of a guard.

En$oding Number+

For the undecidability proof, we have to encode natural numbers in the levels
of a frame.This will be done inTheorem 5.32 below. Before doing so, let us
observe that we can restrict our attention to orders that are zero-dimensional
and separable.

Lemma 5.27. Let 0 < p < ω. Every short linear order A that is not p-modest

contains a set D ⊆ A such that the order ⟨D, ≤⟩ is zero-dimensional, separable,
and not p-modest.

Proof. As A is not p-modest, there exists a set X0 ⊆ A with a guard
Γ0
0 , . . . , Γ0

p−1 such that X0 is densely ordered without end-points. Repla-
cing A by the order ⟨X0 , ≤⟩ we may assume without loss of generality that
X

0 = A. By Proposition 5.24, we can find a (in fact uncountably many)
countable coherent set C ⊆ Γ0

∗ ∶= Γ0
0 ∪ ⋅ ⋅ ⋅ ∪ Γ0

p−1 such that every set Γ0
i is

dense in C. Set

D∗ ∶= cl2(C) , Γi ∶= Γ0
i ∩ C , and Γ∗ ∶= Γ0 ∪ ⋅ ⋅ ⋅ ∪ Γp−1 .

For each i < p, we choose a subset Z i ⊆ Γi such that Z i and Γi ∖ Z i are
dense in Γi . Setting Z∗ ∶= Z0 ∪ ⋅ ⋅ ⋅ ∪ Zp−1 it follows that

◆ Z∗ and Γ∗ ∖ Z∗ are dense in Γ∗, and
◆ each Γi ∩ Z∗ = Z i is dense in Z∗ and Γi ∖ Z∗ = Γi ∖ Z i is dense in

Γ∗ ∖ Z∗.
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We claim that the set D ∶= D∗ ∖ Z∗ has the desired properties.
To check that ⟨D, ≤⟩ is separable, note that the set C ∖ Z∗ is dense in

D∗∖Z∗ since Γ∗∖Z∗ is dense in Γ∗, Γ∗ is dense in C, and C is dense inD∗.
To see that ⟨D, ≤⟩ is zero-dimensional, note that

{ (a, b) ∩ (D∗ ∖ Z∗) ∣ a, b ∈ Z∗ , a < b }

is an open basis for the topology of D because Z∗ is dense in Γ∗ and, hence,
dense in D∗. Furthermore, the complement

(D∗ ∖ Z∗) ∖ (a, b) = [(−∞, a) ∪ (b,∞)] ∩ (D∗ ∖ Z∗)

of each base set is also open.
It remains to prove that ⟨D, ≤⟩ is not p-modest. By Lemma 5.3 (b), the set

D∗ ∶= cl2(C) is replete. In particular, it is densely ordered and it has no end-
points.Thus, it is sufficient to show that the sequence Γ0∖Z∗ , . . . , Γp−1∖Z∗
forms a guard for D.
Since Γi ∖ Z∗ is dense in Γi , it follows by Lemma 5.3 (a) that Γi ∖ Z∗ is

coherent. Furthermore, the facts that Γi ∖ Z∗ is dense in Γi , that Γi is dense
in C, and that C is dense in D∗ imply that Γi ∖Z∗ is dense in D = D∗ ∖Z∗.
For a contradiction suppose that there exists a guarded set P ⊆ Γ∗ ∖ Z∗

that is replete in ⟨D∗ ∖ Z∗ , ≤⟩. By Lemma 5.3, the set

P
′ ∶= cl2(P) ∩ D∗

is replete in ⟨D∗ , ≤⟩ and, therefore, also inA. Furthermore, Γ0
i is dense in P′

since Γi ∖Z∗ is dense in P and P is dense in cl2(P)∩D∗ = P
′. Finally, since

P is replete in ⟨D∗ ∖ Z∗ , ≤⟩, we have

cl2(P) ∩ (D∗ ∖ Z∗) = P ⊆ Γ∗ .

Hence, Z∗ ⊆ Γ∗ implies that

P
′ = cl2(P) ∩ D∗ = [cl2(P) ∩ (D∗ ∖ Z∗)] ∪ [cl2(P) ∩ Z∗] ⊆ Γ∗ .

As mentioned above we will colour the levels of a frame.These colours
can then be used to construct subframes with additional properties.
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Definition 5.28. Let X ⊆ Z∗
(a)We say that X varies at level l < ω if there are u, v ∈ X with ∣u∣, ∣v∣ > l

and u(l) ≠ v(l).
(b) Given a set S ⊆ ω, we say that X has colour S if it only varies at levels

l ∈ S.
(c) Given a family S ⊆ ℘(ω), we call X entirely S-colourless if the only

subsets C ⊆ X with a colour in S are chains.
(d) Given a tuple Γ̄ of disjoint infinite subsets Γi ⊆ ω, we say that X is

Γ̄-embedded if
◆ X is non-empty,
◆ for every x ∈ X there are infinitely many d < 0 with ⇑xd ∩ X ≠ ∅ and

there are infinitely many d ≥ 0 with ⇑xd ∩ X ≠ ∅,
◆ for every x ∈ X and every index i, there is some u ∈ X with u >pf x and
∣u∣ ∈ Γi . ⌟

Remark. Note that every chain C ⊆ Z∗ varies at no levels and has therefore
every colour. ⌟

In the following two technical lemmaswe construct subframeswith certain
colourings. They will be used in the proof ofTheorem 5.32 below.

Lemma 5.29. Let φ be a frame for D, and let S , Γ0 , . . . , Γp−1 ⊆ ω and X,V ⊆
Z∗ be sets such that
◆ V is upwards closed,

◆ Γ0 , . . . , Γp−1 are infinite and disjoint,
◆ len(V ∩ X) ⊆ S ⊆ Γ0 ∪ ⋅ ⋅ ⋅ ∪ Γp−1,
◆ for all u ∈ V and q < p, there is some v ∈ X with v >pf u and ∣v∣ ∈ Γq .
There exists a frame embedding µ ∶ Z∗ → V such that

◆ rng µ has colour S and

◆ φ[X ∩ len−1(Γq) ∩ rng µ] is dense in φ[rng µ], for all q < p.

Proof. Choose an enumeration (wn)n<ω of Z∗ such that ∣wn ∣ ≤ n and, for
every u ∈ Z∗ and q < p, there is some index

n ≡ q (mod p) with wn = u .
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To see that such an enumeration exists, fix a bijection g ∶ ω → Z∗ satisfying
∣g(n)∣ ≤ n, for all n. Then we can set

wnp+q ∶= g(n) , for q < p and n < ω .

Using (wn)n we now define a frame embedding µ ∶ Z∗ → V and a
function f ∶ ω → ω such that

◆ ∣µ(v)∣ = f (∣v∣) , for all v ∈ Z∗ ,
◆ rng µ varies at l iff l ∈ rng f ,

◆ for all n < ω and q < p, there is some v ∈ X ∩ rng µ with v >pf µ(wn)
and ∣v∣ ∈ Γq .

We start with choosing an element µ(⟨⟩) ∈ V ∩ X such that ⇑µ(⟨⟩) ⊆ V
and we set f (0) ∶= ∣µ(⟨⟩)∣. For the inductive step, suppose that we have
already defined µ ↾ Z≤n and f (n). Let q ∶= n mod p and choose a vertex
u ∈ Zn with u >pf wn . By assumption on X and V , there exists an element

v ∈ X with v >pf µ(v) and ∣v∣ ∈ Γq .

We set

f (n + 1) ∶= ∣v∣

and, for s ∈ Zn and d ∈ Z,

µ(sd) ∶= t where t(i) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

µ(s)(i) if i < f (n) ,
d if i = f (n) ,
v(i) if f (n) < i < f (n + 1) .

Then ⇑µ(s) ⊆ V implies that µ(sd) ∈ V . Furthermore,

◆ ∣µ(sd)∣ = f (n + 1),

◆ rng µ ↾ Z≤(n+1) varies only at f (0), . . . , f (n + 1),

◆ v >pf µ(wn), v ∈ X ∩ rng (µ ↾ Zn+1), and ∣v∣ ∈ Γq .
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We claim that the frame embedding µ defined in this may has the desired
properties. First, note that rng µ has colour S because it varies only at levels
in

rng f ⊆ len(V ∩ X) ⊆ S .

It therefore remains to prove that every set φ[X ∩ len−1(Γq) ∩ rng µ] is
dense in φ[Y]. It is sufficient to show that, for every u ∈ Z∗, there is some
v ∈ X ∩ len−1(Γq) ∩ rng µ with v ≥pf µ(u). Hence, fix u ∈ Z∗. By choice
of (wn)n , there exists an index n < ω such that

wn = u and n ≡ q (mod p) .

By definition of µ, we can further find an element v >pf µ(wn) with

v ∈ X ∩ rng (µ ↾ Zn+1) and ∣v∣ ∈ Γq .

Consequently, v ∈ X ∩ len−1(Γq) ∩ rng µ, as desired.

Lemma 5.30. Let Γ0 , . . . , Γp−1 ⊆ ω a finite sequence of infinite, disjoint sets,

and let S ⊆ ℘(ω) be a family of colours such that

S ∩ S
′ ∩ Γq = ∅ , for all S ≠ S′ in S and all q < p .

Given a Γ̄-embedded set X ⊆ Z∗ such that no set of the form X ∩ ⇑u with
u ∈ Z∗ has a colour S ∈ S , there exists a subset Y ⊆ X that is Γ̄-embedded and
entirely S-colourless.

Proof. Below we will construct a frame embedding µ ∶ Z∗ → X with the
following properties.

◆ ∣µ(v)∣ ∈ Γ∣v∣ mod p

◆ If ∣µ(v)∣ ∈ S ∈ S , then each set of the form {µ(vd), µ(vd′)} with
d ≠ d′ varies at some l ∉ S.

Before doing so, let us show that the resulting set Y ∶= rng µ is Γ̄-embedded
and entirely S-colourless.
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We start with the former. Clearly, Y ≠ ∅. For the second condition, fix
y ∈ Y. Let u ∶= µ−1(y) and, for d ∈ Z, let kd ∈ Z be the direction such that
µ(ud) ≥ µ(u)kd . It follows that

{ d ≥ 0 ∣ ⇑yd ∩ Y ≠ ∅} = { kd ∣ d ≥ 0}

is infinite. In the same way, we can show that there are infinitely many k < 0
with ⇑yk ∩ Y ≠ ∅.

For the third condition, fix y ∈ Y and q < p. Choose some u >pf µ−1(y)
with ∣u∣ ≡ q mod p. Then µ(u) ∈ Y ∩ ⇑y ∖ {y} and ∣µ(u)∣ ∈ Γq .

We also have to show that Y is entirely S-colourless. For a contradiction,
suppose that some subset {µ(u), µ(v)} has a colour S ∈ S . Setw ∶= u⊓pf v.
Then {µ(u), µ(v)} varies at ∣w∣. As {µ(u), µ(v)} has colour S, this implies
that µ(w) ∈ S. By definition of µ, it therefore follows that {µ(u), µ(v)}
also varies at some level l ∉ S. Consequently, S cannot be the colour of the
set {µ(u), µ(v)}. A contradiction.

It remains to construct the embedding µ. We start by picking an arbitrary
element µ(⟨⟩) ∈ X∩ len−1[Γ0]. For the inductive step, suppose that we have
already defined µ(v). Set

M0 ∶= {m ∈ Z ∣ ⇑µ(v)m ∩ X ≠ ∅} .

SinceX is Γ̄-embedded,M0 contains infinitely many non-negative numbers
and infinitely many negative ones.

If ∣µ(v)∣ ∉ ⋃S , we choose elements

µ(vi) ∈ ⇑µ(v)m i ∩ X ∩ len−1[Γq] , where q ≡ ∣v∣ + 1 (mod p)

andm i is the i-th non-negative element ofM0, if i ≥ 0, and the i-th negative
element ofM0, if i < 0.Then ∣µ(vi)∣ ∈ Γq and the second condition holds
vacuously.
It remains to consider the case where µ(v) ∈ S ∈ S . Since ∣µ(v)∣ ∈ Γq

and S ∩ S
′ ∩ Γq = ∅, for all distinct S , S′ ∈ S , it follows that this set S

is unique. Fix an enumeration (d i)i<ω of Z. By induction on i, we choose
elements µ(vd i), disjoint finite sets L i ⊆ ω ∖ S, and a decreasing sequence
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M0 ⊃ M1 ⊃ ⋯ of infinite sets M i+1 ⊆ Z with the following properties.
(Intuitively,M i is the set of directions we can still choose from and L i is the
set of levels where the successors vary.)

◆ µ(v) ≤pf µ(vd i)
◆ M i contains infinitely many non-negative elements and infinitely many

negative ones.

◆ m ∈M i implies that µ(v)m /≤pf µ(vd j), for all j < i.

◆ For every m ∈M i , there is some z ∈ ⇑µ(v)m∩ ∈ X such that z ↾ L j is
defined and different from µ(vd j) ↾ L j , for all j < i.

(Note that the last condition implies that L j ⊆ ⇑∣µ(v)∣.) Hence, suppose
that we have already defined µ(vd j), L j , andM j+1, for all j < i. Set

n ∶=

⎧⎪⎪
⎨
⎪⎪⎩

min{m ∈M i ∣ m ≥ 0} if d i ≥ 0 ,
max{m ∈M i ∣ m < 0} if d i < 0 .

By inductive hypothesis, we can fix some u ∈ ⇑µ(v)n ∩ X such that u ↾ L j
is defined and different from µ(vd j) ↾ L j , for all j < i. By assumption on X,
we can find elements u0 , u1 ≥pf u and a set L i ⊆ ω ∖ S such that u0 , u1 ∈ X
and the subsequences u0 ↾ L i and u1 ↾ L i are defined and different. For
s < 2, set

Ns ∶={m ∈M i ∣ there is some z ≥pf vm such that

z ↾ L j is defined and different from µ(vd j) for j < i

and z ↾ L i is defined and different from us ↾ L i } .

Since ∣µ(v)∣ ∉ L i and there is at most one index j < i with ∣µ(v)∣ ∈ L i , it
follows that ∣M i ∖Ns ∣ ≤ 1. Consequently, there is some s < 2 such that

Ns ∩ [0,∞) is infinite and Ns ∩ (−∞, 0) is infinite.

We setM i+1 ∶= Ns ∖ {n}. Then

◆ M i+1 contains infinitelymany non-negative numbers and infinitelymany
negative ones,
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◆ m ∈M i+1 implies that µ(v)m /≤pf µ(vd j), for all j < i + 1, and
◆ for every m ∈ M i+1, there is some z ∈ ⇑µ(v)m∩ ∈ X such that z ↾ L j

is defined and different from µ(vd j) ↾ L j , for j < i, and also different
from zs ↾ L i .
Finally, since X is Γ̄-embedded, we can choose an element

µ(vd i) ∈ ⇑us ∩ X ∩ len−1[Γq] where q ∶= ∣v∣ + 1 mod p .

Then ∣µ(vd i)∣ ∈ Γq and each set of the form {µ(vd i), µ(vd j)} with j < i
varies at some level l ∈ L j ⊆ ω ∖ S.

While frames are usually not definable, it is possible to find a set W
encoding a sufficient amount of local information about a given frame.

Definition 5.31. LetA be a linear order with a guard Γ0 , . . . , Γp−1, letD ⊆ A
and S ⊆ ℘(D).

(a) We say that a set X ⊆ D is an S-stratum if, for every non-empty open
setU, there are S ∈ S and a non-empty open setV ⊆ U withV∩X = V∩S.

(b) S is a skeleton for D if there exists a set P ⊆ ℘(D) with the following
properties.
◆ P is a countably infinite partition of D such that every P ∈ P is dense

in D.
◆ Γ0 ∪ ⋅ ⋅ ⋅ ∪ Γp−1 can be written as a union of guarded sets in P .
◆ Every S ∈ S is a union of classes in P , each S ∈ S meets some Γi , and

the family { S ∩ Γ∗ ∣ S ∈ S } is disjoint.
◆ ⟦S = T⟧ = ∅, for all S ≠ T in S .
◆ For every S-stratum X ⊆ A, the set⋃S∈S⟦S = X⟧ is dense in A. ⌟

Theorem 5.32. There exists an MSO-formula Code(X;D,W , Γ̄) with the
following properties. Suppose we are given

◆ a short zero-dimensional linear order A,

◆ a guard Γ̄ for A such that each Γi is countable,
◆ a countable set D ⊆ A containing Γ∗ ∶= Γ0 ∪ ⋅ ⋅ ⋅ ∪ Γp−1 such that D ∖ Γ∗ is

dense in A,
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◆ a skeleton S ⊆ ℘(D) for D.

Then there exists a set W ⊆ A∖ D such that, for every X ⊆ D,

A ⊧ Code(X;D,W , Γ̄) iff X ⊆ D is dense in D, guarded, and

an S-stratum.

Proof. By Lemma 5.21, D has a frame φ such that

◆ the sets (φ−1[P])P∈P form a stratification of Z∗ and
◆ len(φ−1[Γi]) = { n(p + 1) + i ∣ n < ω } .
Let

⟦w⟧ ∶= { a ∈ A ∣ φ(u) ≤ a ≤ φ(v), u, v ≥pf w }

be the set from Lemma 5.15.
We say that a setX ⊆ D has the colour S ∈ S if φ−1[X] has colour len(S).

Similarly, we call X entirely colourless if φ−1[X] is entirely S ′-colourless
where S ′ ∶= { len(φ−1[S]) ∣ S ∈ S }.

Below we will prove the following claims.

(i) A set X ⊆ D is coherent and guarded if, and only if, φ−1[X] is L̄-
embedded where Lq ∶= len(φ−1[Γq]).

(ii) There exists a setW ⊆ A∖ D such that, for every coherent, guarded
set X ⊆ D,

◆ ∣cl2(X) ∩W∣ ≤ 1, if X has some colour in S , and

◆ cl2(X) ∩W ≠ ∅, if X is entirely colourless.

(iii) Let X ⊆ D be a guarded set and U0 ⊆ A a non-empty open set such
that X is dense inU0, and suppose that every non-empty open subset
U
′ ⊆ U0 meets every set of the form X ∖ S, for S ∈ S . Then there exist

a non-empty open subset V ⊆ U0 and sets X i ⊆ Γi ∩X, for i < p, and
Xp ⊆ X such that X i is dense in V , for all i < p + 1, and every S ∈ S is
disjoint from one of the sets V ∩ X i , i < p + 1.

(iv) There exists anMSO-formula Code0(X,U;D,W , Γ̄) (that does not
dependent on A) with the following properties. Given A, D, Γ̄, P ,
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and S as above, there exists a setW ⊆ A∖D such that, for non-empty
openU ⊆ A and every guarded X ⊆ D such that X is dense inU,

A ⊧ Code0(X,U;D,W , Γ̄)

if, and only if, for every non-empty open subset U0 ⊆ U, there are
S ∈ S and a non-empty open set V ⊆ U0 with V ∩ X ⊆ S.

Before giving the proofs, let us show how the statement of the theorem
follows. Let Code(X;D,W , Γ̄) be theMSO-formula stating that

“X ⊆ D is dense in D and guarded, the formula Code0(X,A;D,W , Γ̄)
holds, and there is no non-empty open setU0 and no Y ⊆ U0 ∖X such
that Y is dense inU0 and Code0(X ∪ Y ,U0;D,W , Γ̄) holds.“

where Code0(X,U;D,W , Γ̄) is the formula from (iv). We claim that
Code(X;D,W , Γ̄) has the desired properties. LetW be the set from (iv).
(⇐) Let X ⊆ D be guarded, dense in D, and an S-stratum. Then

Code0(X,A;D,W , Γ̄) holds. Let U0 be open and Y ≠ ∅ dense in U0
and disjoint from X. Since X is an S-stratum, we can find an open set
V ⊆ U0 and some S ∈ S such that X ∩V = S ∩V . As Y is dense inU0, it
follows that

(X ∪ Y) ∩V0 ⊃ X ∩V0 = S ∩V0 , for all V0 ⊆ V .

Consequently, Code0(X ∪ Y ,U0;D,W , Γ̄) does not hold.
(⇒) Suppose that Code(X;D,W , Γ̄) holds. Then X ⊆ D is dense in D

and guarded. To show that it is also an S-stratum, fix an open set U ⊆ A.
Since Code0(X,A;D,W , Γ̄) holds, we can find a set S ∈ S and an open
subset V ⊆ U such that V ∩ X ⊆ S. If there exists an open subset V0 ⊆ V
such that V0 ∩ X = V0 ∩ S, we are done. For a contradiction, suppose
otherwise.Then the set Y ∶= (S ∖ X) ∩V is dense in V , and the formula
Code0(X ∪ Y ,V ;D,W , Γ̄) holds. A contradiction.
To conclude the proof it remains to establish the four claims above.
(i) (⇐) Let φ−1[X] be L̄-embedded. For coherence, fix x ∈ X. Since

there are infinitely many d ≥ 0 with ⇑xd ∩ φ−1[X] ≠ ∅, we have

x = inf { z ∈ X ∣ z ≥ x } .
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The other bound follows analogously.
To show that X is guarded, fix an index i < p and elements u, v ∈ φ−1[X]

with φ(u) < φ(v). Then u ⊲ v. As φ−1[X] is L̄-embedded, we can find
some w ∈ φ−1[X] and some d < 0 with w ≥pf ud and ∣w∣ ∈ L i . This implies
that u ⊲ w ⊲ v. Hence, φ(u) < φ(w) < φ(v) and φ(w) ∈ Γi .
(⇒) Let X be coherent and guarded. Then φ−1[X] is non-empty. For

the second condition, fix x ∈ φ−1[X] and d ≥ 0. Since

φ(x) = inf {φ(xk) ∣ k ≥ 0} ,

it follows by coherence that there is some k ≥ d with ⇑xk ∩ φ−1[X] ≠ ∅. By
symmetry, there are also infinitely many k < 0 with ⇑xk ∩ φ−1[X] ≠ ∅.
For the third condition, fix w ∈ φ−1[X] and i < p. Since X is guarded

and we have seen in Lemma 5.15 that the set ⟦w⟧ is open, we can find some
element a ∈ ⟦w⟧ ∩ Γi ∩ X with a ≠ φ(w). Set u ∶= φ−1(a). Then u >pf w
and ∣u∣ ∈ L i .
(ii) Let (X i)i<2ℵ0 be an enumeration of all coherent, guarded, entirely

colourless subsets ofD. By induction on i, we construct a sequence (w i)i<2ℵ0
of points w i ∈ cl2(X i) ∖ D such that the set

W ∶= {w i ∣ i < 2ℵ0 }

has the desired properties.
Thus, let i < 2ℵ0 and suppose that we have already chosenw j , for all j < i.

Given a ∈ cl2(D) ∖ D and n < ω, we denote by a ↾ n the unique vertex
v ∈ Z∗ such that a ∈ ⟦v⟧ and ∣v∣ = n. To see that this is well-defined, let us
show by induction on n, that the set

{ ⟦v⟧ ∣ ∣v∣ = n }

forms a partition of cl2(D) ∖ φ[Z<n]. For n = 0, we have cl2(D) = ⟦⟨⟩⟧
since D is dense in cl2(D). For the inductive step, it is sufficient to note that,
since each set ⟦vd⟧ is closed by choice of φ, there are no elements a with
⟦vd⟧ < a < ⟦v(d + 1)⟧ (for d ≠ −1). Consequently, we have

⟦v⟧ = {φ(v)} ∪ ⋃
d∈Z
⟦vd⟧ , for all v ∈ Zn ,
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and the claim follows by inductive hypothesis.
To choose the next element w i , we first construct a frame embedding

µ ∶ Z∗ → Z∗ with such that

φ(µ(w)) ∈ X i ∩ Γ∣w∣ mod p , for all w ∈ Z∗ .

We start with µ(⟨⟩) ∶= v, for an arbitrary v ∈ φ−1[X i∩Γ0]. For the inductive
step, suppose that we have already defined µ(w). As X i is coherent and
Γ(∣w∣+1) mod p is dense in X i , we can find directions

⋯ < k−2 < k−1 < 0 ≤ k0 < k1 < ⋯

and vertices vd ≥pf µ(w)kd such that

φ(vd) ∈ X i ∩ Γ(∣w∣+1) mod p .

We set µ(wd) ∶= vd .
Having defined µ, let ψ ∶= φ ○ µ. Below we will prove that

∣rngψ ∩ Y j(S)∣ ≤ 1 , for all j < i and S ∈ S ,

where

Y j(S) ∶= { y ∈ cl2(D) ∖ D ∣ for every n < ω, {w j ↾ n, y ↾ n} has

colour S } .

Setting Y j ∶= ⋃S∈S Y j(S) we can then choose

w i ∈ cl2(X i) ∖ (D ∪⋃
j<i

Y j)

⊇ cl2(rngψ) ∖ (D ∪⋃
j<i

Y j)

= cl2(rngψ) ∖ (D ∪⋃
j<i
(Y j ∩ rngψ))
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since D ∪ ⋃ j<i(Y j ∩ rngψ) has size at most ℵ0 + ∣i∣ ⋅ ∣S∣ < 2ℵ0 , while we
have ∣cl2(rngψ)∣ = 2ℵ0 by Corollary 5.25. (Note that S is countable since,
by definition of a skeleton, there exists a surjective map Γ∗ → S .)
To prove that the resulting set W ∶= {w i ∣ i < 2ℵ0 } has the desired

properties note that, by choice of w i , we have cl2(X i)∩W ≠ ∅, for all i. To
show that ∣cl2(X)∩W∣ ≤ 1, for every setX with a colour S ∈ S , suppose for
a contradiction that that there are indices j < i with w i ,w j ∈ cl2(X). Then
w i ∉ Y j implies that there is some n < ω such that the set {w i ↾ n, w j ↾ n}
has no colour. In particular,

{ k < n ∣ (w i ↾ n)(k) ≠ (w j ↾ n)(k) } ⊈ S .

Furthermore, w i ,w j ∈ cl2(X) implies that w i ↾ k,w j ↾ l ∈ X, for some
k, l ≥ n. Hence, X does not have colour S. A contradiction.
It remains to prove the above claim. For a contradiction, suppose that

there are two distinct elements y, y′ ∈ cl2(rngψ) ∩Y j(S). Let n < ω be the
minimal length such that y ↾ n ≠ y′ ↾ n. Since y ∈ cl2(rngψ), there is some
v ∈ Z∗ withψ(v) ∈ ⟦y ↾ n⟧, which implies that µ(v) ≥pf y ↾ n. In the same
way we find some v′ ∈ Z∗ with µ(v′) ≥pf y′ ↾ n. Since ψ(v),ψ(v′) ∈ X i ,
the vertices µ(v) and µ(v′) are incomparable, and X i is entirely colourless,
it follows that {ψ(v),ψ(v′)} has no colour. In particular, n − 1 ∉ len(S).
But y, y′ ∈ Y j(S) implies that the sets

{w j ↾ n, y ↾ n} and {w j ↾ n, y′ ↾ n}

have colour S. Since at least one of these two sets varies at n − 1, it follows
that n − 1 ∈ len(S). A contradiction.
(iii) First, suppose that there exist sets S ∈ S , V ⊆ U0, and and index

q < p such thatU0 is open and S ∩ Γq ∩ X is dense in V . We set

Xp ∶= X ∖ S , Xq ∶= S ∩ Γq ∩ X , X i ∶= Γi ∩ X , for i ≠ q, p .

Note that, for i ≠ q, p, the set X i is dense in V since X is guarded and X is
dense in V . Furthermore, Xp ∩V is dense in V because every non-empty
open V ⊆ V contains some element of X ∖ S. Finally, S is disjoint from
V ∩ Xp , while all other elements of S are disjoint from Xq .
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It remains to consider the case where every set of the form S∩U0∩Γi ∩X
with S ∈ S and i < p is nowhere dense in U0. We start by constructing a
sequence (xn)n<ω of elements ofU0 ∩ X with the following properties.

◆ For every i < p + 1, the set { xn ∣ n ≡ i (mod p + 1) } is dense inU0.

◆ n ≡ i (mod p + 1) implies xn ∈ Γi , for i < p .

◆ x i ∈ S implies x j ∉ S , for S ∈ S and i < j < ω .

Fix a countable basis (B l)l<ω of the topology of A and let I ⊆ ω be the set
of all indices l with B l ⊆ U0. Suppose we have already chosen x0 , . . . , xn−1
and let S0 , . . . , Sm−1 ∈ S be the sets containing some x i . (Since the restric-
tions of the sets in S to each Γi are disjoint, there are at most n such sets.)
To define xn , set i ∶= n mod (p + 1). If i < p, we choose some element
xn ∈ Bn ∩ Γi ∩ X ∖ (S0 ∪ ⋅ ⋅ ⋅ ∪ Sm−1) (which is possible since the sets
S j ∩ U0 ∩ Γi ∩ X are nowhere dense in U0). If i = p, we choose some
xn ∈ Bn ∩ X ∖ (S0 ∪ ⋅ ⋅ ⋅ ∪ Sm−1).
Having defined (xn)n , we claim that the sets

V ∶= U0 and X i ∶= { xn ∣ n ≡ i (mod p + 1) } , for i ≤ p ,

have the desired properties. By construction, X i is dense in U0 = V . Fur-
thermore, given S ∈ S , there is at most one index n < ω with xn ∈ S. Hence,
S is disjoint from X i , for all i ≢ n (mod p + 1).
(iv) Let Code0(X,U;D,W , Γ̄) be anMSO-formula stating that

“For every non-empty open set V ⊆ U and all sets X i ⊆ Γi ∩ X, i < p,
and Xp ⊆ X such that Xp is dense in V , there exists a coherent set
Y ⊆ D ∩ V such that X0 , . . . ,Xp are dense in Y and W contains at
most one element of cl2(Y).”

We start by proving that, ifW is the set from (ii),U ⊆ A is non-empty and
open, and X ⊆ D is a guarded set such that X is dense inU, then

A ⊧ Code0(X,U;D,W , Γ̄)

if, and only if, for every non-empty open subset U0 ⊆ U, there are S ∈ S
and a non-empty open set V ⊆ U0 with V ∩ X ⊆ S.
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(⇐)LetV ,X0 , . . . ,Xp be sets as in the formulaCode0(X,U;D,W , Γ̄).
We start by showing that there exists some w ∈ Z∗ such that ⟦w⟧ ⊆ V and
⟦w⟧ ∩ X ⊆ S, for some S ∈ S . By assumption, we can find a non-empty
open set V0 ⊆ V with V0 ∩ X ⊆ S, for some S ∈ S . Since D is dense, there
is some w ∈ Z∗ with φ(w) ∈ V0. As

φ(w) = sup
d≥0

φ(wd) ,

we can find some d0 ∈ Z, d ≥ 0, with φ(wd) ∈ U, for all d ≥ d0. In
particular, ⟦w(d0 + 1)⟧ ⊆ V0.

Thus, replacingV by ⟦w⟧wemay assume thatV = ⟦w⟧, for somew ∈ Z∗,
and that V ∩ X ⊆ S, for some S ∈ S . Let µ ∶ Z∗ → φ−1[V ∩ D] be the
frame embedding from Lemma 5.29. To see that we can apply this lemma
note that
◆ φ−1[V] = ⇑w is upwards closed,
◆ the sets Lq ∶= { n(p+ 1)+ q ∣ n < ω }, q < p+ 1, are infinite and disjoint,
◆ len(φ−1[V ∩ X]) ⊆ len(S) ⊆ ω = L0 ∪ ⋅ ⋅ ⋅ ∪ Lp ,
◆ for all u ∈ φ−1[V] and q < p, there is some v ∈ φ−1[X] with v >pf u

and ∣v∣ ≡ q (mod p + 1).
(For the last property, note that X is guarded and X is dense in V . Hence,
each Xq is dense in X and Xq is dense in V .)

We claim that the image Y ∶= φ[rng µ] is the desired set. Coherence of Y
follows by Lemmas 5.23 and 5.16. Furthermore, for q < p,Xq∩Y = X∩Γq∩Y
is dense in Y. Similarly, Xp ∩Y ⊇ X ∩ Γp ∩Y is dense in Y. Finally, we have
∣cl2(X) ∩W∣ ≤ 1 by (ii) and the fact that Y has colour S.
(⇒) Suppose that there is some open U0 ⊆ U such that every non-

empty open subset V ⊆ U0 meets every set of the form X ∖ S, for S ∈ S .
Let V and X0 , . . . ,Xp be sets from (iii) and let Y ⊆ D ∩V be a coherent
set such that each X i is dense in Y. To prove that Code0(X,U;D,W , Γ̄)
does not hold, it is sufficient to show that ∣cl2(Y) ∩W∣ ≥ 2.

We call a set Y nowhere coloured if there is no open setU such that Y ∩U
is non-empty and has a colour S ∈ S . We start by proving that Y is nowhere
coloured. Let S ∈ S and letG be an open set withG ∩ Y ≠ ∅. By choice of
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V and X i , there is some i < p + 1 such that V ∩ X i ∩ S = ∅. Since Y ⊆ V
is coherent, G is open, and X i is dense in V , we have G ∩ X i ∩ Y ≠ ∅. Fix
some w ∈ φ−1[G ∩ X i ∩ Y]. As Y is coherent, we have

φ(w) = sup{φ(wd) ∣ d ≥ 0} .

Consequently, there are arbitrarily large d ≥ 0 with ⇑xd ∩ φ−1[G ∩Y] ≠ ∅.
By symmetry, there are also infinitelymany d < 0with⇑xd∩φ−1[G∩Y] ≠ ∅.
In particular, the set φ−1[G ∩ Y] varies at level ∣w∣. But φ(w) ∈ V ∩ X i
and V ∩X i ∩ S = ∅ implies that ∣w∣ ∉ len(S). Hence,G ∩Y does not have
colour S.
Note that Y is guarded since X i ⊆ Γi is dense in Y, for every i < p. It

therefore follows by (i) that the preimage φ−1[Y] is L̄-embedded. Further-
more, asY is nowhere coloured, no set of the form φ−1[Y]∩⇑u with u ∈ Z∗
has a colour S ∈ S ′ where

S ′ ∶= { len(φ−1[S]) ∣ S ∈ S } .

It follows that we can use Lemma 5.30 to find a subset Z ⊆ φ−1[Y] that
is L̄-embedded and entirely S ′-colourless. Fix two ≤pf -incomparable ele-
ments z0 , z1 ∈ Z and set Z i ∶= ⇑z i ∩ Z. Then Z0 and Z1 are disjoint,
L̄-embedded, and entirely S ′-colourless and cl2(φ[Z0]) and cl2(φ[Z1])
are disjoint. Consequently, (i) and (ii) imply that

cl2(φ[Z i]) ∩W ≠ ∅ .

It follows that

∣cl2(Y) ∩W∣ ≥ ∣cl2(φ[Z]) ∩W∣

≥ ∣cl2(φ[Z0]) ∩W∣ + ∣cl2(φ[Z1]) ∩W∣ ≥ 2 .

Arithmeti$

In order to use the formula Code from the preceding section to encode
arithmetic in a non-modest order, we have to deal with the fact that we can
check for equality with a set in S only locally in some open interval.
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Definition 5.33. Let A be a linear order.
(a) Given a formula φ(X̄) and values P̄ for the variables X̄, we say that

φ(P̄) holds locally at an element a ∈ A if there exists an open neighbour-
hoodU of a such that

A ⊧ φ(U)(P̄) ,

where φ(U) denotes the relativisation of φ toU.
(b) We write

⟦φ(P̄)⟧ ∶= { a ∈ A ∣ φ holds locally at a } ,

A ⊧loc φ(P̄) iff ⟦φ(P̄)⟧ is dense in A . ⌟

Definition 5.34. Let A be a linear order andW ,D, Γ0 , . . . , Γp−1 ⊆ A para-
meters, and S ⊆ ℘(D). We set Γ∗ ∶= Γ0 ∪ ⋅ ⋅ ⋅ ∪ Γp−1.

A tuple ⟨D,C≤ ,C+ ,C×⟩ of sets is a code if it satisfies the following condi-
tions.
◆ Γ∗ ⊆ D, the complement D ∖ Γ∗ is dense in A, andW ∩ D = ∅.
◆ C

≤ ,C+ ,C× ⊆ D ∖ Γ∗ are dense in A.
◆ For every pair of S-strata S and T,

A ⊧loc (S = T) ∨ (S ∩ T ∩ Γ∗ = ∅) ,
A ⊧loc (S = T) ∨ (S ∩ C

≤ ⊂ Y) ∨ (T ∩ C
≤ ⊂ S) . ⌟

Themain idea of our encoding is contained in the following lemma.

Lemma 5.35. Let A be a short zero-dimensional separable linear order and

let Γ0 , . . . , Γp−1 be a guard for A. There exists a code ⟨D,C≤ ,C+ ,C×⟩ and
a set W ⊆ A ∖ D encoding a skeleton S = { Sn ∣ n < ω } such that, for all
i < j < k < ω,

i + j = k iff S i ∩ S j ∩ Sk ∩ C
+
is dense in A

iff S i ∩ S j ∩ Sk ∩ C
+ ≠ ∅ ,

i ⋅ j = k iff S i ∩ S j ∩ Sk ∩ C
×
is dense in A

iff S i ∩ S j ∩ Sk ∩ C
× ≠ ∅ .
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Furthermore, for i , j < ω, we have

i ≤ j iff ⟦S i ∩ C
≤ ⊆ S j⟧ is dense in A

iff ⟦S i ∩ C
≤ ⊆ S j⟧ ≠ ∅ .

Proof. Set Γ∗ ∶= Γ0 ∪ ⋅ ⋅ ⋅ ∪ Γp−1. As A is separable, there exists a countable
set D′ ⊆ A∖ Γ∗ that is dense in A. Let D ∶= Γ∗ ∪ D

′.
For every i < p, we can use Lemma 1.8 to choose a partition (P i

n)n<ω of Γi
into countably infinitely many classes. Set

P0 ∶= { P0
n ∪⋯ ∪ P

p−1
n ∣ n < ω } .

We claim that each P ∈ P0 is guarded and dense in A. For denseness,
note that P is dense in Γ0 and Γ0 is dense in A. For guardedness, note that
Γi ∩ P = P i

n , for some n. Furthermore, P i
n is dense in Γi , which is dense inA.

Hence, P i
n is also dense in P.

Similarly, letP ′ be a partition of D′ into countably infinitely many classes
that each are dense in D′. We choose a partition P≤ ∪ P+ ∪ P× of P ′ into
three infinite parts. Let

(C0
n)n<ω , (C≤n)n<ω , (C+i j)i , j<ω , (C×i j)i , j<ω

be enumerations (without repetitions) of, respectively,P0,P≤,P+, andP×,
set

C
≤ ∶= ⋃

n<ω
C
≤
n , C

+ ∶= ⋃
i , j<ω

C
+
i , j , C

× ∶= ⋃
i , j<ω

C
×
i , j ,

and let S ∶= { Sn ∣ n < ω } where

Sn ∶= C
0
n ∪ ⋃

i<n
C
≤
i ∪⋃{C

+
i j ∣ i = n or j = n or i + j = n }

∪⋃{C
×
i j ∣ i = n or j = n or i ⋅ j = n } .

For i < j < k, it follows that

S i ∩ S j ∩ Sk ∩ C
+ = C+i j ∩ C

+
i k ∩ C

+
jk ,
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which is either dense or empty, depending on whether or not k = i + j. An
analogous statement holds for S i ∩ S j ∩ Sk ∩ C

× and for S i ∩ C
≤ ⊂ S j .

Set P ∶= {C0
n ,C

≤
n ,C

+
i j ,C

×
i j ∣ i , j, n < ω } and letW ⊆ A∖ D be the set

fromTheorem 5.32.
To prove that S is a skeleton, we have to check several conditions. The

following properties follow immediately from the construction.

◆ Every S ∈ S is trivially an S-stratum.

◆ P is a countably infinite partition of D.

◆ Every P ∈ P is dense in D.

◆ Γ∗ can be written as a union of guarded sets in P .
◆ Every S ∈ S is a union of classes in P .

◆ Each S ∈ S meets some Γi .
◆ The family { S ∩ Γ∗ ∣ S ∈ S } is disjoint.
Let us give more detailed proofs of the two remaining conditions.
Suppose that a ∈ ⟦S = T⟧. Then there exists a non-empty open set

U ⊆ Awith S ∩U = T ∩U. Since each P ∈ P is dense in A, it follows that
S ∩ P = T ∩ P, which implies that S = T.
Fix an S-stratum X. For a contradiction, suppose that there exists a non-

empty open set U disjoint from ⋃S∈S⟦S = X⟧. Since X is an S-stratum,
there exists a non-empty open set V ⊆ U and some S ∈ S such that

X ∩V = S ∩V .

This implies that V ⊆ ⋃S∈S⟦S = X⟧. A contradiction.
We also have to show that ⟨D,C≤ ,C+ ,C×⟩ is a code. By choice of the sets

D,C≤ ,C+ ,C×, we have Γ∗ ⊆ D, D ∖ Γ∗ is dense in A, and C
≤ ,C+ ,C× ⊆

D ∖ Γ∗ are dense in A. Furthermore,W ∩ D = ∅ holds byTheorem 5.32.
It therefore remains to show that

A ⊧loc (S = T) ∨ (S ∩ T ∩ Γ∗ = ∅) ,
A ⊧loc (S = T) ∨ (S ∩ C

≤ ⊂ T) ∨ (T ∩ C
≤ ⊂ S) ,
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for every pair of S-strata S and T. Fix two S-strata S ,T and let a ∈ A. We
claim that

a ∈ ⟦(S = T) ∨ (S ∩ T ∩ Γ∗ = ∅)⟧ ,
a ∈ ⟦(S = T) ∨ (S ∩ C

≤ ⊂ T) ∨ (T ∩ C
≤ ⊂ S)⟧ .

Since S and T are S-strata, there exists an open neighbourhoodU of a such
that S ∩U = Sm ∩U and T ∩U = Sn ∩U, for some m, n < ω. If m = n,
we have

U ⊆ ⟦(S = T) ∨ (S ∩ T ∩ Γ∗ = ∅)⟧ ,
U ⊆ ⟦(S = T) ∨ (S ∩ C

≤ ⊂ T) ∨ (T ∩ C
≤ ⊂ S)⟧ .

If m ≠ n, say, m < n, then

U ∩ (S ∩ T ∩ Γ∗) = C0
m ∩ C

0
n = ∅ ,

U ∩ (S ∩ C
≤) = C≤0 ∪ ⋅ ⋅ ⋅ ∪ C

≤
m−1 ⊆ T ,

which also implies that

U ⊆ ⟦(S = T) ∨ (S ∩ T ∩ Γ∗ = ∅)⟧ ,
U ⊆ ⟦(S = T) ∨ (S ∩ C

≤ ⊂ T) ∨ (T ∩ C
≤ ⊂ S)⟧ .

Corollary 5.36. Let A be a short zero-dimensional separable linear order and

let Γ̄ be a guard for A. For every FO-formula φ(x̄) over the signature {+, ⋅ , <},
there exists anMSO-formula φ∗(X̄) (with parameters D, C̄ ,W , Γ̄) such that

⟨N,+, ⋅ , <⟩ ⊧ φ(k0 , . . . , kn−1) iff A ⊧loc φ∗(Sk0 , . . . , Skn−1) ,

where (Sn)n are the sets from Lemma 5.35.

Proof. Given an FO-formula φ(x̄), we will inductively construct anMSO-
definable set φ∗(X̄) ⊆ Awith the stronger property that

⟨N,+, ⋅ ⟩ ⊧ φ(k̄) implies φ∗(S̄) is dense in A ,

⟨N,+, ⋅ ⟩ ⊭ φ(k̄) implies φ∗(S̄) = ∅ .
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W.l.o.g. we may assume that all occurrences of addition and multiplication
in φ are in a subformula of the form

x < y < z ∧ x + y = z or x < y < z ∧ x ⋅ y = z .

Furthermore, we can replace every equality x = y between variables, by
x ≤ y ∧ y ≤ x. Then we can set

(x ≤ y)∗ ∶= ⟦X ∩ C
≤ ⊆ Y⟧ ,

(x < y < z ∧ x + y = z)∗ ∶= (x < y)∗ ∩ (y < z)∗

∩ ⟦X ∩ Y ∩ Z ∩ C
+⟧ ,

(x < y < z ∧ x ⋅ y = z)∗ ∶= (x < y)∗ ∩ (y < z)∗

∩ ⟦X ∩ Y ∩ Z ∩ C
×⟧ ,

(φ ∨ ψ)∗ ∶= φ∗ ∪ ψ∗ ,
(¬φ)∗ ∶= A∖ cl(φ∗) ,

(∃xφ)∗ ∶= ⋃{φ∗(X) ∣ Code(X;D,W , Γ̄) } .

We prove the correctness of our translation by induction on the formula.
For formulae of the form x ≤ y, the claim follows immediately by Lemma 5.35.
Suppose that φ is of the form x < y < z ∧ x + y = z. By Lemma 5.35, it is
sufficient to shwo that φ∗(Sk , S l , Sm) is dense in A if, and only if, the three
sets

X ∶= ⟦Sk ∩ C
≤ ⊂ S l⟧ ,

Y ∶= ⟦S l ∩ C
≤ ⊂ Sm⟧ ,

Z ∶= ⟦X ∩ Y ∩ Z ∩ C
+⟧

are all dense in A. For the non-trivial direction, suppose that X, Y, and Z

are dense in A. LetU ⊆ A be non-empty and open. To show that

φ∗(Sk , S l , Sm) ∩U ≠ ∅ ,

we fix an element x ∈ X ∩ U. By definition of X, there exists an open
neighbourhood Vx of x with Vx ⊆ X. Replacing Vx by Vx ∩ U, we may
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assume that Vx ⊆ U. Fix an element y ∈ Y ∩Vx . Then there exists an open
neighbourhood Vy of y with Vy ⊆ Y. Again we may assume that Vy ⊆ Vx .
Finally, let z ∈ Z ∩ Vy . Repeating the same argument one more time we
obtain an open neighbourhood Vz of z with Vz ⊆ Z ∩ Vy . It follows that
z ∈ X ∩ Y ∩ Z ∩U.
The proof for formulae of the form x < y < z ∧ x ⋅ y = z is analogous.
The inductive step for boolean connectives is straightforward. It therefore

remains to consider the existential quantifier. First, suppose that

⟨N,+, ⋅ ⟩ ⊧ ∃xφ(x) .

By inductive hypothesis, it follows that there is some n < ω such that φ∗(Sn)
is dense in A. Hence, so is the larger set

(∃xφ)∗ = ⋃{φ∗(X) ∣ Code(X;D,W , Γ̄) } .

Conversely, suppose that (∃xφ)∗ is dense inA.This means that, for every
a ∈ (∃xφ)∗, there is some S-stratum T with a ∈ φ∗(T). By definition of a
stratum,we can find an open neighbourhoodU of a such thatT∩U = Sn∩U,
for some n < ω. Hence, a ∈ φ∗(Sn), which implies that φ∗(Sn) ≠ ∅. By
inductive hypothesis, it follows that ⟨N,+, ⋅ ⟩ ⊧ φ(n).

Our undecidability proof rests on the following standard result about the
undecidability of arithmetic.

Theorem 5.37. There exists an FO-formula φ over the signature {+, ⋅ } such
that ⟨N,+, ⋅ ⟩ ⊧ φ and every consistent set Φ of FO-formulae containing φ and

closed under entailment is undecidable.

After these preparations we can finally state and prove our undecidability
result.

Theorem 5.38. Let 0 < p < ω and let C be a class of short linear orders that
are not p-modest. TheMSO-theory of C is undecidable.

Proof. Given an FO-formula ψ, we denote by ψ∗ theMSO-formula associ-
ated to ψ via Corollary 5.36. Let φ be the formula fromTheorem 5.37 and
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consider the theory

T ∶= {ψ ∈ FO ∣ for all A ∈ C , B ⊆ A, and all choices of D, C̄ ,W , Γ̄
such that B is zero-dimensional and separable, and

B ⊧loc φ∗ , we have B ⊧loc ψ∗ } .

By Lemma 5.27 and Corollary 5.36, we have

T ⊆ThFO(⟨N,+, ⋅ , <⟩) and φ ∈ T .

In particular, T is consistent. Furthermore, T is closed under entailment.
By choice of φ it follows that T is undecidable. Since we can compute T
from theMSO-theory of C, the latter is also undecidable.

Mode# Order+

Having shown that non-modest orders have undecidable theories, it remains
to prove the decidability statement for modest ones. Recall the notion of a
quantifier structure from Definition I.4.22.

Definition 5.39. (a) In this section we will use a variant of the logicMSOn̄ ,
for some quantifier structure n̄, where the quantifier-free formulae can use
atomic formulae of the form

t = ∅ ,

where t is a finite boolean combination of variables X i and unary predic-
ates Pi .
(b) Given a linear order A, we define the sets

First ∶=
⎧⎪⎪
⎨
⎪⎪⎩

{a} if A has a minimal element a ,
∅ otherwise ,

Last ∶=
⎧⎪⎪
⎨
⎪⎪⎩

{a} if A has a maximal element a ,
∅ otherwise . ⌟
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We will prove decidability using a composition argument where the key
pieces are uniform linear orders of the following form.

Definition 5.40. Let n̄ be a quantifier structure. A coloured linear order
A = ⟨A, ≤, P̄⟩ is n̄-uniform if A is densely ordered without end-points and

A ≡n̄MSO A∣I , for all non-empty convex sets I ⊆ Awithout

end-points . ⌟

Exercise 5.6. Prove that a linear order A with l parameters P̄ is ⟨⟩-uniform
if, and only if, A is densely ordered without end-points and each of the sets

Qs ∶= { a ∈ A ∣ a ∈ Pi ⇔ i ∈ s } , for s ⊆ [l] ,

is dense in A. ⌟

Using a Ramsey argument we can show that every dense linear order has
a uniform suborder.

Lemma 5.41. Let n̄ be a quantifier structure and A = ⟨A, ≤, P̄⟩ a short dense
linear order. Then there exists a non-empty open interval I ⊆ A such that A∣I is
n̄-uniform.

Proof. Let λ be the additive labelling of A defined by

λ(C) ∶=Thn̄
MSO(A∣C) , for every convex set C .

By Lemma 4.3, there exists an open interval I ⊆ A that is λ-homogeneous.
As A is short, every convex set without end-points has bicofinality ⟨ω,ω⟩.
This implies that the interval I is n̄-uniform.

The central argument of the decidability proof of the MSO-theory of
⟨ω, ≤⟩ in Section III.2 was as follows.When we quantify over a subset P ⊆ ω,
we can use theTheorem of Ramsey to cut the resulting order ⟨ω, ≤, P⟩ into
pieces that all have the sameMSOn̄-theory. Using the composition theory
for generalised sums we can then reduce the theory of ⟨ω, ≤, P⟩ to that of
⟨ω, ≤,Q⟩ where Q = ∅ or Q = ω. Since the set Q does not provide any
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information, we can drop it, thereby obtaining a reduction to ⟨ω, ≤⟩ (with
1 less quantifier). In this way, every quantifier can be eliminated.

For modest orders A, a similar argument works. Each set P ⊆ A induces
an equivalence relation ∼ on A as in Lemma 3.1. We can therefore use a
composition theorem to reduce the theory of ⟨A, P⟩ to that of ⟨A/∼,Q⟩. If
we can show that this structure is ⟨⟩-uniform, we can eliminate Q and use
induction to compute the theory.

Definition 5.42. Let A = ⟨A, ≤, P̄⟩ be a coloured linear order with l para-
meters P0 , . . . , Pl−1 and let n̄ be a quantifier structure.
(a) A congruence is an equivalence relation ∼ such that each ∼-class is

convex.
(b) A condensation of A is a structure of the form

Cn̄(I, ∼) ∶= ⟨I/≈, ≤, (Tθ)θ∈Θ⟩ ,

where I is a non-empty convex subset of A, ∼ a congruence, Θ is the set of
allMSOn̄-theories, and

Tθ ∶= { [a] ∈ I/∼ ∣Th
n̄
MSO(A∣[a] , First, Last) = θ } . ⌟

The following observation follows immediately fromTheorem I.4.24.

Lemma 5.43. There exists a function q ∶ ω × ω∗ → ω∗ with the following

properties. Given linear orders A and B with l monadic parameters, convex

subsets I ⊆ A and J ⊆ B, and congruences ∼ and ≈ of, respectively, I and J,

Cn̄(I, ∼) ≡q(l , n̄)MSO Cn̄( J, ≈) implies A∣I ≡
n̄
MSO B∣ J .

Definition 5.44. Let A = ⟨A, ≤, P̄⟩ be a coloured linear order with l para-
meters P0 , . . . , Pl−1, let n̄ be a quantifier structure, and let q ∶ ω ×ω∗ → ω∗
be the function from Lemma 5.43.

(a)The set UCn̄(A) of uniform condensations of A consists of all q(l , n̄)-
uniform linear orders of the form Cn̄(I, ∼) where I is a non-empty convex
subset I ⊆ A and ∼ is a congruence on I.
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(b)The uniform theory of A is the set defined by

U⟨⟩(A) ∶=Th⟨⟩

MSO(A, First, Last) ,

Um̄k(A) ∶= {Uq(l+k ,m̄)(C) ∣ C ∈ UCm̄(A, P̄′), P̄′ ∈ ℘(A)k } .

We write

A ≡n̄U B : iff Un̄(A) = Un̄(B) .

(c) We define the (quantifier-free) type of an element a ∈ A by

tp(a) ∶= { i < l ∣ a ∈ Pi } .

For a non-empty convex subset C ⊆ A, we set

tp(C) ∶= ⟨s, t, b⟩ ∈ (℘([l]) + {�}) × (℘([l]) + {�}) × {1,∞} ,

where

s ∶=

⎧⎪⎪
⎨
⎪⎪⎩

tp(minC) if minC exists,
� otherwise,

t ∶=

⎧⎪⎪
⎨
⎪⎪⎩

tp(maxC) if maxC exists,
� otherwise,

b ∶=

⎧⎪⎪
⎨
⎪⎪⎩

∞ if ∣C∣ > 1 ,
1 if ∣C∣ = 1 . ⌟

Lemma 5.45. Let A and B be ⟨⟩-uniform linear orders. Then

A ≡⟨⟩MSO B and tp(C) = tp(D) implies A∣C ≡
⟨⟩

MSO B∣D ,

for all non-empty convex C ⊆ A and D ⊆ B.
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Proof. Since A is ⟨⟩-uniform, we have

Th⟨⟩

MSO(A∣C) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ if tp(C) = ⟨�, �,∞⟩ ,
σs + θ if tp(C) = ⟨s, �,∞⟩ ,
θ + σt if tp(C) = ⟨�, t,∞⟩ ,
σs + θ + σt if tp(C) = ⟨s, t,∞⟩ ,
σs if tp(C) = ⟨s, s, 1⟩ ,

where θ ∶=Th⟨⟩

MSO(A) and σs denotes theMSO⟨⟩-theory of the 1-element
structure whose unique element a has type tp(a) = s.

We start with some remarks about cuts in modest linear orders.

Definition 5.46. Let A be a linear order.
(a) A cut ⟨C ,D⟩ of A is a partition A = C +D such that C is downwards

closed and D is upwards closed.
(b) A cut ⟨C ,D⟩ is principal if C has a maximal element or D has a

minimal one.
(c) A isDedekind-complete if every cut ⟨C ,D⟩ with C ≠ ∅ and D ≠ ∅ is

principal.
(d) Let X ⊆ A and let ⟨C ,D⟩ be a cut of X. An element a ∈ A realises

the cut ⟨C ,D⟩ if C < a < D. If such an element exists we say that ⟨C ,D⟩ is
realised in A. ⌟

Exercise 5.7. Let A be a linear order and X ⊆ A coherent. Prove that no
principal cut of X is realised in A. ⌟

Lemma 5.47. No p-modest linear order contains a convex set that is densely
ordered and Dedekind-complete.

Proof. Suppose thatA contains a convex set I ⊆ A that is densely ordered and
Dedekind-complete. Since I is densely ordered, there exists an embedding
Q → I. As it is Dedekind complete, we can extend this embedding to
one R → I. We have shown in Lemma 5.19 that ⟨R, <⟩ is not p-modest.
Consequently, it follows by Lemma 5.5 that neither is A.
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Lemma 5.48. Let A be a separable dense linear order, D ⊆ A, and let φ be a

frame for D. Then cl2(D) has only countably many non-principal cuts that are
realised in A.

Proof. Since A is separable and dense, there exists a countable subset B ⊆ A
that is dense inA. It is sufficient to prove that every non-principal cut ⟨C ,C′⟩
of cl2(D) that is realised in A is realised by some element of B. Hence, fix
such a cut and let I be the set of all elements of A realising it. It follows
by Lemma 5.3 that the set cl2(D) is replete. Consequently, I is infinite. In
particular, it contains an open interval. This implies that I ∩ B ≠ ∅.

Our key argument is based on the following technical property of modest
orders.

Lemma 5.49. Let A be a linear order with l ≤ log2 p parameters that is p-
modest, separable, and ⟨⟩-uniform, and set

Ps ∶= { a ∈ A ∣ tp(a) = s } , for s ⊆ [l] ,

H ∶= {�} ∪ { s ⊆ [l] ∣ Ps ≠ ∅} .

For every set S ⊆ H ×H × {1,∞} such that either
◆ S = { ⟨s, s, 1⟩ ∣ Ps ≠ ∅} or
◆ S contains at least one element of the form ⟨s, t,∞⟩ with s, t ∈ H,

there exists a congruence ∼ on A such that

C⟨⟩(A, ∼) ∈ UC⟨⟩(A) and S = { tp([a]) ∣ [a] ∈ A/∼ } .

Proof. If S does not contain an element of the form ⟨s, t,∞⟩, we can use the
identity for ∼. Hence, suppose otherwise. Let

K ∶= { s ⊆ [l] ∣ ⟨s, t, b⟩ ∈ w for some w ∈ S }

∪ { t ⊆ [l] ∣ ⟨s, t, b⟩ ∈ w for some w ∈ S } .

Since A is short and densely ordered, there exists a family (Ik)k∈Z of convex
subsets of A such that

⋯ < I−2 < I−1 < I0 < I1 < I2 < ⋯
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and⋃k∈Z Ik is cofinal in both directions. SinceA is pmodest and ∣K∣ ≤ 2l ≤
p, we know that the sets (Ps ∩ Ik)s∈K do not form a guard for Ik . As each
Ps ∩ Ik is dense in Ik (and therefore coherent), this implies that we can find
some replete set Ck ⊆ Ik ∩⋃s∈K Ps that is guarded by (Ps ∩ Ik)s∈K . We can
use Lemma 5.17 to construct a frame φk with rng φ ⊆ Ck . Set

X ∶= cl2(⋃k∈Z rng φk) .

By Lemma 5.3 (b), X is replete. Furthermore, since each Ck is replete, so is
⋃k Ck , and it follows that

X = cl2(⋃k∈Z rng φk) ⊆ cl2(⋃k∈Z Ck) = ⋃
k∈Z

cl2(Ck) = ⋃
k∈Z

Ck .

Hence,

X ⊆ ⋃
k∈Z

Ck ⊆ ⋃
s∈K

Ps ,

X is cofinal in A in both directions, and each set Ps with s ∈ K is dense
in X. (Ps is dense in ⋃k Ck , and the latter is dense in X.) Let (x i)i<ω be
an enumeration of X. We have shown in Lemma 5.48 that there are only
countably many non-principal cuts of X thar are realised inA. For each such
cut, we fix one element of A realising it. Let (a i)i<ω be an enumeration of
these elements. Below we will construct an increasing sequence ∅ = F0 ⊆
F1 ⊆ ⋯ of finite families of convex subsets ofAwith the following properties.

(iii.a) The sets in Fi are disjoint and each D ∈ Fi is convex.

(iii.b) x i , a i ∈ ⋃ Fi+1

(iii.c) If D0 < ⋅ ⋅ ⋅ < Dm−1 is an enumeration of Fi , then there are sets
D
′
0 , . . . ,D

′
m ∈ Fi+1 such that

D
′
0 < D0 < D

′
1 < D1 < ⋯ < Dm−2 < D

′
m−1 < Dm−1 < D

′
m ,

and tp(D′
j) = w i mod n for all j.

(iii.d) For all D < D
′ in Fi there are infinitely many elements x , y, z ∈ X

with x < D < y < D′ < z.
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(iii.e) If D ∈ Fi has a minimal or maximal element, it belongs to X.

(iii.f) Let D ∈ Fi and let E− , E+ be the sets such that A = E− + D + E+. If
D has no minimal element, the set E−∩X is not bounded from above
in E−. If D has no maximal element, the set E+ ∩ X is not bounded
from below in E+.

Let F ∶= ⋃i<ω Fi be the limit. By (iii.b), we haveX ⊆ ⋃ F. Furthermore, it
follows by (iii.b), (iii.e), and (iii.f) thatA∖X ⊆ ⋃ F aswell.Hence,⋃ F = A
and F forms a partition of A. Let ∼ be the corresponding congruence. Then,
(iii.c) implies that

S = { tp([a]) ∣ [a] ∈ A/∼ } ,

where ∼ is the equivalence relation corresponding to F. It therefore remains
to show that C⟨⟩(A, ∼) is ⟨⟩-uniform. By (iii.c), the classes [a] ∈ A/∼ with
tp([a]) = w i , are dense in A/∼. Since the value tp([a]) determines which
predicate Tθ the element [a] belongs to, it follows that every convex subset
J ⊆ A/∼ without end-points has the sameMSO⟨⟩-theory.
To conclude the proof, it remains to construct the sequence (Fi)i . We do

so by induction on i starting with F0 ∶= ∅. For the inductive step, suppose
that we have already defined Fi . Let D0 < ⋯ < Dm−1 be an enumeration
of Fi and set w ∶= w i mod n .

We start by finding a set F′ satisfying all conditions except for (iii.b). To
do so, we distinguish two cases. First, suppose that w = ⟨s, s, 1⟩. Since Ps is
dense in X, we can pick elements y0 , . . . , ym ∈ X ∩ Ps with

y0 < D0 < y1 < D1 < ⋯ < ym−1 < Dm−1 < ym .

The set

F
′ ∶= Fi ∪ {{y0}, . . . , {ym}} .

satisfies (iii.a), (iii.c)–(iii.f).
It remains to consider the case where w = ⟨s, t,∞⟩. First, assume that

s, t ≠ �. By (iii.d), and since Ps and Pt are dense in X, there are elements
D j−1 < y < z < D j with y ∈ X ∩ Ps and z ∈ X ∩ Pt . We set D′

j−1 ∶= [y, z].
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Next suppose that s = � and t = �. Since X is dense, it has uncountably
many non-principal cuts. By Lemma 5.48, only countably many of these are
realised in A. Consequently, we can find two non-principal cuts ⟨Y0 ,Y1⟩
and ⟨Z0 ,Z1⟩ of X that are not realised in A and such that

D j−1 ⊂ Y0 ⊂ Z0 and Y1 ⊃ Z1 ⊃ D j .

We choose for D′
j−1 the set

D
′
j−1 ∶= { a ∈ A ∣ Y0 < a < Z1 } .

In the other two cases, we proceed analogously (chosing one element of X
of the correct type and one non-principal cut of X). The resulting set

F
′ ∶= Fi ∪ {D

′
j ∣ j ≤ m }

satisfies (iii.a), (iii.c)–(iii.f).
To satisfy the remaining condition (iii.b), we now set

Fi+1 ∶= F
′ ∪ {D′ ,D′′} ,

where D′ and D
′′ are sets with x i ∈ D

′ and a i ∈ D
′′ that are chosen as

follows. If x i ∈ ⋃ F
′, we can find a suitable class D′ ∈ F′. Hence, suppose

otherwise. By assumption, there is at least one w ∈ S of the form w =
⟨s, t,∞⟩. If s, t ≠ �, we pick y ∈ Ps ∩ X and z ∈ Pt ∩ X with y ≤ x i ≤ z

such that D′ ∶= [y, z] is disjoint from all classes in F′. If s = � or t = �, we
use an interval [y, z), (y, z], or (y, z) instead. The construction of D′′ is
analogous.

Our inductive decidability proof is split into the following three lemmas.

Lemma 5.50. Let A and B be two linear orders with l ≤ log2 p parameters
that are p-modest, separable, and ⟨⟩-uniform. Then

A ≡⟨⟩MSO B implies A ≡⟨0⟩U B .
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Proof. To simplify notation, we will write

Ps ∶= { a ∈ A ∣ tp(a) = s } , for s ⊆ [l] .

We will prove the following claims.

(i) For each C ∈ UC⟨⟩(A), we can computeTh⟨⟩

MSO(C) from

tp(∼) ∶= { tp([a]) ∣ [a] ∈ I/∼} and Th⟨⟩

MSO(A) .

(ii) U⟨0⟩(A) is uniquely determined byTh⟨⟩

MSO(A) and

T ∶= { tp(∼) ∣ C⟨⟩(I, ∼) ∈ UC⟨⟩(A) } .

(iii) We can compute T fromTh⟨⟩

MSO(A).
Then the lemma follows from (ii) and (iii).
(i) Let C⟨⟩(I, ∼) ∈ UC⟨⟩(A). Since C⟨⟩(I, ∼) is ⟨⟩-uniform, each predic-

ate Tθ is dense in I/∼. This implies that Th⟨⟩

MSO(C
⟨⟩(I, ∼)) only depends

on the set

H ∶= { θ ∣ Tθ ≠ ∅} .

By Lemma 5.45, we can use tp(∼) to determine, for each theory θ, whether
or not there is some [a] ∈ I/∼ withTh⟨⟩

MSO(A∣[a]) = θ. Consequently, we
can computeH from tp(∼).
(ii) Since

U⟨0⟩(A) = {Uq(l+0,⟨⟩)(C) ∣ C ∈ UC⟨⟩(A) }

= {Th⟨⟩

MSO(C) ∣ C ∈ UC⟨⟩(A) } ,

the claim follows by (i).
(iii) Set

H∗ ∶= {�} ∪ { s ⊆ [l] ∣ Ps ≠ ∅} ,

T∗ ∶= { S ⊆ H∗ ×H∗ × {1,∞} ∣ ⟨s, t,∞⟩ ∈ S for some s, t }

∪ {{ ⟨s, s, 1⟩ ∣ s ∈ H∗ }} .
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As H∗ and, therefore, T∗ are computable fromTh⟨⟩

MSO(A), it is sufficient
to prove that T = T∗.
(⊇) Given S ∈ T∗, let ∼ be the congruence from Lemma 5.49. Then

S = tp(∼) ∈ T.
(⊆) Let S = tp(∼) ∈ T. If ∼ is the identity, we have S = { ⟨s, s, 1⟩ ∣

s ∈ H∗ } ∈ T∗. Hence, suppose otherwise. Then there is at least one non-
trivial ∼-class and S has an element of the form ⟨s, t,∞⟩. Consequently,
S ∈ T∗.

Lemma 5.51. Let A and B be n̄-uniform linear orders. Then

A ≡n̄U B implies A ≡n̄MSO B .

Proof. LetA = ⟨A, ≤, P̄⟩ be a linear orders with l parameters.We proceed by
induction on ∣n̄∣. SinceTh⟨⟩

MSO(A) = U
⟨⟩(A), the claim is trivial for n̄ = ⟨⟩.

For the inductive step, suppose that n̄ = m̄k and let

U ∶= {Thq(l+k ,m̄)
MSO (C) ∣ C ∈ UCm̄(A, P̄′), P̄′ ∈ ℘(A)k } ,

S ∶= {Thm̄
MSO(A∣I , P̄

′) ∣ I convex, P̄′ ∈ ℘(I)k } .

It is sufficient to prove the following claims.

(i) U is uniquely determined by Un̄(A).

(ii) S is uniquely determined byU.

(iii) Thn̄
MSO(A) is uniquely determined by S.

(i)We prove the claim by induction on ∣m̄∣. For m̄ = ⟨⟩, the claim is trivial.
For ∣m̄∣ > 0, it follows by inductive hypothesis that

Um̄k(A) = {Uq(l+k ,m̄)(C) ∣ C ∈ UCm̄(A, P̄′), P̄′ ∈ ℘(A)k }

determinesU.
(iii) Since A is m̄k-uniform, we have

A ≡m̄k
MSO A∣I , for every convex set I.
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Consequently,

S = {Thm̄
MSO(A∣I , P̄

′) ∣ I convex, P̄′ ∈ ℘(I)k }

= {Thm̄
MSO(A, P̄

′) ∣ P̄′ ∈ ℘(A)k } ,

which determinesThm̄k
MSO(A).

(ii) Set

K ∶= { ⟨A∣I , P̄′⟩ ∣ I convex, P̄′ ∈ ℘(I)k } ,

S0 ∶= {Th
m̄
MSO(C) ∣ C ∈ K, ∣C∣ = 1} ⊆ S ,

and let S∗ be the least set of theories with the following properties.

◆ Thm̄
MSO(C) ∈ S∗, for all C ∈ K with ∣C∣ = 1.

◆ Thm̄
MSO(C),Th

m̄
MSO(D) ∈ S∗, C +D ∈ K impliesThm̄

MSO(C +D) ∈ S∗.

◆ If (Ci)i<ω is a sequence such that

∑
i∈ω

Ci ∈ K and Thm̄
MSO(Ci) =Th

m̄
MSO(C j) ∈ S∗ , for all i , j ,

thenThm̄
MSO(∑i∈ω Ci) ∈ S∗.

◆ If (Ci)i<ω is a sequence such that

∑
i∈ωop

Ci ∈ K and Thm̄
MSO(Ci) =Th

m̄
MSO(C j) ∈ S∗ , for all i , j ,

thenThm̄
MSO(∑i∈ωop Ci) ∈ S∗.

◆ IfC ∈ K and≈ is a congruence ofC such that the order ⟨C/≈, ≤, (Pc)c∈S⟩
with

Pc ∶= { [a] ∈ C/≈ ∣Th
m̄
MSO([a]) = c } , for c ∈ S ,

is q(l , m̄)-uniform and densely ordered without end-points, and if Pc ≠
∅ implies c ∈ S∗, thenTh

m̄
MSO(C) ∈ S∗.
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Note that by definition, we have

S∗ ⊆ {Th
m̄
MSO(A) ∣ A ∈ K} = S .

We obtain the converse inclusion by applying Corollary 4.5 to the class
L ∶= K, the setU ∶= S∗, and the labellings λ ∶=Thm̄

MSO and µ ∶=Thq(l ,m̄).
Consequently, S∗ = S. Hence, it remains to prove that we can compute S∗
fromU. To do so, we will make use of the following claims.
(ii.a) S0 is computable fromU.

(ii.b) ⟨A∣C , First, Last⟩ ≡
⟨⟩

MSO ⟨A∣D , First, Last⟩ implies A∣C ≡m̄k
MSO A∣D ,

for all convex C ,D ⊆ A .
(ii.c) Given θ , θ′ ∈ S∗, there exist C,D ∈ K with

Thm̄(C) = θ , Thm̄(D) = θ′ , and C +D ∈ K

if, and only if, at least one of the following four cases holds.
◆ θ ⊧ Last = ∅ and A is incomplete.
◆ θ′ ⊧ First = ∅ and A is incomplete.
◆ θ ⊧ Last = ∅ and θ′ ⊧ First ≠ ∅.
◆ θ ⊧ Last ≠ ∅ and θ′ ⊧ First = ∅.

(ii.d) For θ ∈ S,

ω × θ ∈ S iff ωop × θ ∈ S iff θ + θ ∈ S .

(ii.e) Given a theory σ ∈ U such that

σ ⊧ Tθ ≠ ∅ implies θ ∈ S∗ ,

there exists C ∈ K and a congruence ≈ of C such that the order
⟨C/≈, ≤, (Qc)c∈S⟩ with

Qc ∶= { [a] ∈ C/≈ ∣Th
m̄
MSO([a]) = c } , for c ∈ S ,

is q(l , m̄)-uniform and densely ordered without end-points, and we
have

Qc ≠ ∅ iff σ ⊧ Tθ ≠ ∅ .
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Before giving the proofs, let us show how (ii) follows. We have to check
that all operations that generate S∗ are determined by U. We can then
compute S∗ by iterating all operations until no new theories are generated
anymore. By (ii.d), we can compute S0. Furthermore, given theories θ , θ′,
there exist unique theories θ+θ′, ω×θ, and ωop×θ by the composition the-
orem. Finally, we can compute the set of theories added by the last operation
since it follows by Lemma 5.43 that

Thm̄
MSO(A∣I) is determined by Thq(l+k ,m̄)

MSO (Cm̄(I, ∼)) ,

and the latter theories can be obtained fromU.
It therefore remains to show, given θ , θ′ ∈ S∗, how to determine whether

or not θ + θ′, ω × θ, and ωop × θ also belong to S∗. For binary sums, we
can decide whether θ + θ′ ∈ S∗ by (ii.c). The cases ω × θ and ωop × θ now
follow by (ii.d).

To conclude the proof, it remains to prove the above claims.

(ii.a) By Lemma 5.41, we haveU ≠ ∅. Choose an arbitrary theory θ ∈ U.
For σ ⊆ [l], let

Pσ ∶= ⋂
i∈σ

Pi ∖⋃
i∉σ

Pi .

Since A is n̄-uniform, we can use θ to compute the set

H ∶= { σ ⊆ [l] ∣ Pσ ≠ ∅} .

Let 1 be some 1-element set. Setting

Q
σ
i ∶=

⎧⎪⎪
⎨
⎪⎪⎩

1 if i ∈ σ ,
∅ if i ∉ σ ,

for σ ⊆ [l] ,

it follows that

S0 = {Th
m̄
MSO(⟨1, Q̄

σ , Q̄ ′⟩) ∣ σ ∈ H, Q̄ ′ ∈ ℘(1)k } ,

which can be computed fromH.
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(ii.b) Let C ,D ⊆ A be ⟨⟩-equivalent convex subsets. If C and D do not
have end-points, the claim follows immediately by n̄-uniformity. If C and D
have a minimal element but no maximal one, we can write C = {c} + C0
and D = {d} + D0. As above, it follows by n̄-uniformity that

A∣C0 ≡
n̄
MSO A∣D0 .

Furthermore, we have A∣{c} ≅ A∣{d} because of the predicate First. Con-
sequently, the composition theorem implies that

A∣C ≡
n̄
MSO A∣D .

The other cases follow analogously.

(ii.c) (⇐) Fix C,D ∈ K with theories θ and θ′, respectively, and suppose
that the conditions on the right-hand side are not satisfied. To show that
C +D ∉ K, we distinguish two cases.
If θ ⊧ Last ≠ ∅ and θ′ ⊧ First ≠ ∅, then C +D is not densely ordered.

Hence, it is not isomorphic to a convex suborder of ⟨A, P̄′⟩.
Similarly, if A is complete, θ ⊧ Last = ∅, and θ′ ⊧ First = ∅, then

C +D is not complete and, therefore, not isomorphic to a convex suborder
of ⟨A, P̄′⟩.
(⇒) Fix C,D ∈ K with theories θ and θ′, respectively, There are four

cases to consider.

◆ C has no maximal element and A is incomplete.

◆ D has no minimal element and A is incomplete.

◆ C has no maximal element and D has a minimal element.

◆ C has a maximal element and D has no minimal element.

In each of these cases, we can choose two disjoint convex subsets C′ ,D′ ⊆ A
such that C′ + D

′ is convex,

A∣C′ , First, Last ≡
⟨⟩

MSO A∣C , First, Last ,

A∣D′ , First, Last ≡
⟨⟩

MSO A∣D , First, Last .
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By (ii.b), it follows that

A∣C′ ≡
n̄
MSO A∣C and A∣D′ ≡

n̄
MSO A∣D .

Consequently, there are sets P̄′ ∈ ℘(C)k , Q̄ ′ ∈ ℘(D)k with

C′ ∶= ⟨A∣C′ , P̄′⟩ ≡m̄MSO C and D′ ∶= ⟨A∣D′ , Q̄ ′⟩ ≡m̄MSO D .

It follows thatThm̄
MSO(C

′) = θ, Thm̄
MSO(D

′) = θ′, and C′ +D′ ∈ K.

(ii.d) We only show that ω × θ ∈ S if, and only if, θ + θ ∈ S. The other
proof is analogous.
(⇐) If there is some convex subset of the form∑i<ω C i with

Thm̄
MSO(A∣C i , P̄

′
i ) = θ , for all i < ω ,

thenThm̄
MSO(A∣C0+C1 , P̄

′
0 + P̄

′
1) = θ + θ, which implies that θ + θ ∈ S∗.

(⇒) Suppose that there are disjoint subsets C0 ,D0 ⊆ A such that
C0 + D0 is convex and

Thm̄
MSO(A∣C0 , P̄

′
0) = θ and Thm̄

MSO(A∣D0 , Q̄
′
0) = θ .

We claim that there exists a partition D0 = C1 + D1 such that

A∣C1 ≡
n̄
MSO A∣C0 and A∣D1 ≡

n̄
MSO A∣D0 .

For the proof, we distinguish several cases. If C0 and D0 have no end-points,
the claim follows immediately by n̄-uniformity of A.

If C0 and D0 have a minimal element, but no maximal one, we can write
C0 = {c} + C

′
0 and D0 = {d} + D

′
0. By n̄-uniformity of A, it follows that

there exists a partition D
′
0 = C

′
1 + D1 such that

A∣C′1 ≡
n̄
MSO A∣C′0 and A∣D1 ≡

n̄
MSO A∣D0 .

Furthermore,

A∣C0 ≡
n̄
MSO A∣D0 implies A∣{c} ≡

n̄
MSO A∣{d} .
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Consequently,

A∣{c}+C′0 ≡
n̄
MSO A∣{d}+C′1 .

Hence, we can set C1 ∶= {d} + C
′
1.

If C0 and D0 have no minimal element, but a maximal one, we can write
C0 = C

′
0 + {c} and D0 = D

′
0 + {d}. By n̄-uniformity of A, it follows that

there exists a partition D
′
0 = C1 + D

′
1 such that

A∣C1 ≡
n̄
MSO A∣C0 and A∣D′1 ≡

n̄
MSO A∣D′0 .

Consequently,

A∣D′0+{d} ≡
n̄
MSO A∣D′1+{d} ,

and we can set D1 ∶= D
′
1 + {d}.

Finally, it is impossible that C0 and D0 have both a minimal element and
a maximal one, since C0 + D0 is densely ordered.
Having proved the claim, we can use it to find parameters P̄′1 , Q̄

′
1 such

that

A∣C1 , P̄
′
1 ≡

m̄
MSO A∣C0 , P̄

′
0 and A∣D1 , Q̄

′
1 ≡

m̄
MSO A∣D0 , Q̄

′
0 .

Repeating this step for D1 and Q̄
′
1 , we obtain a convex subset of the form

∑i<ω C i and parameters P̄′i ∈ ℘(C i)
k such that

Thm̄
MSO(A∣C i , P̄

′
i ) = θ , for all i < ω .

Consequently, ω × θ ∈ S∗. The proof for ωop × θ is analogous.

(ii.e) Fix σ ∈ U such that

σ ⊧ Tθ ≠ ∅ implies θ ∈ S∗ .

Then there exists an order C ∈ UCm̄(A, P̄′) with σ = Thq(l+k ,m̄)
MSO (C).

Suppose that C = Cm̄(I, ≈). Note that [a]≈ ∈ Tθ implies

θ ∈ S∗ and Thm̄(A∣[a]≈ , Q̄a) = θ , for some Q̄a .
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Let Q̄ be the tuple consisting of the concatenations of the respective com-
ponents of Q̄a , for [a]≈ ∈ I/≈.Then ⟨A∣I , Q̄⟩ ∈ K, C is q(l + k, m̄)-uniform,
and

Qc ≠ ∅ iff σ ⊧ Tθ ≠ ∅ .

Lemma 5.52. There exists a function L ∶ ω∗ → ω with the following properties.

(a) Let A and B be two linear orders with l ≤ log2 L(n̄) parameters that are
p-modest, separable, and ⟨⟩-uniform. Then

A ≡⟨⟩MSO B implies A ≡n̄U B .

(b) Every linear order with at most log2 L(n̄0) parameters that is L(n̄0)-
modest, separable, and ⟨⟩-uniform, is n̄-uniform.

Proof. Let L ∶ ω × ω∗ → ω be the function from Lemma 5.50. In the
following, we will work with the linear order A and with ⟨A, P̄′⟩ at the same
time. To avoid confusion, we will use the notation

tp(a) , tp(C) , Cn̄(I, ∼)

when refering to A and the notation

tp(a; P̄′) , tp(C; P̄′) , Cn̄(I, ∼; P̄′)

when refering to ⟨A, P̄′⟩.
(a) We proceed by induction on ∣n̄∣. For n̄ = ⟨⟩, the claim follows by

Lemma 5.50. Hence, suppose that n̄ = m̄k. By inductive hypothesis, there
exists a function g such that

g(Th⟨⟩

MSO(B)) = U
q(l+k ,m̄)(B) ,

for all ⟨⟩-uniformL(q(l+k, m̄))-modestBwith atmost log2 L(q(l+k, m̄))
parameters.
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Let r be the function mapping Cm̄(I, ∼; P̄′) to C⟨⟩(I, ∼; P̄′). Given u ∈
U⟨0⟩(A), set

Su ∶= {Th
⟨⟩

MSO(C) ∣ C a linear order such that r(C) ∈ UC⟨⟩(A, P̄′)

andTh⟨⟩

MSO(r(C)) ⊧ u } .

We will establish the following two claims.

(i) Su is uniquely determined by u andTh⟨⟩

MSO(A).

(ii) { g(Th⟨⟩

MSO(C)) ∣ C ∈ UCm̄(A, P̄′), P̄′ ∈ ℘(A)k }

= { g(θ) ∣ θ ∈ Su , u ∈ U⟨0⟩(A) } .
Then it follows that

Um̄k(A) = {Uq(l+k ,m̄)(C) ∣ C ∈ UCm̄(A, P̄′), P̄′ ∈ ℘(A)k }

= { g(Th⟨⟩

MSO(C)) ∣ C ∈ UCm̄(A, P̄′), P̄′ ∈ ℘(A)k }

= { g(θ) ∣ θ ∈ Su , u ∈ U⟨0⟩(A) } .

To see that the latter expression is uniquely determined byTh⟨⟩

MSO(A), note
that we have shown in Lemma 5.50 that

A ≡⟨⟩MSO B implies U⟨0⟩(A) = U⟨0⟩(B) ,

for all ⟨⟩-uniform L(n̄)-modest orders A and B. Hence, it remains to prove
the two claims above.

(i) Suppose thatA ≡⟨⟩MSO B are ⟨⟩-uniform, fix u, and let P̄′ be parameters
and C a linear order such that

r(C) ∈ UC⟨⟩(A, P̄′) and Th⟨⟩

MSO(r(C)) ⊧ u .

It follows that r(C) = C⟨⟩(I, ∼; P̄′), for some convex set I ⊆ A and some
congruence ∼. By Lemma 5.50, we haveA ≡⟨0⟩U B. Consequently, there exists
some order D0 = C⟨⟩( J, ≈) ∈ UC⟨⟩(B) with

Th⟨⟩

MSO(D0) = u .
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5 Modest linear orders

For each ≈-class [b] ∈ J/≈, we choose predicates Q̄b ∈ ℘([b])
k as follows.

Given a type σ ∶= tp([a]) with [a] ∈ I/∼, set

Hσ ∶= { tp([a′]; P̄′) ∣ [a′] ∈ I/∼, tp([a′]) = σ } .

We choose a partition (Kw)w∈Hσ of the set

K ∶= { [b] ∈ B/≈ ∣ tp([b]) = σ }

such that each set Kw is dense in K. Let Q̄b ∈ ℘([b])
k be sets such that

tp([b]; Q̄b) = w , for [b] ∈ Kw .

Then we set Q ′
j ∶= ⋃[b]∈B/≈(Qb) j , for j < k.

It follows that the resulting order D1 ∶= Cm̄( J, ≈; Q̄ ′) is ⟨⟩-uniform.
Furthermore, we have r(C) ≡⟨⟩MSO r(D1) since, for every [a] ∈ I/∼, there is
some [b] ∈ B/≈ with

⟨A∣[a] , First, Last⟩ ≡
⟨⟩

MSO ⟨B∣[b] , First, Last⟩ .

This implies that Th⟨⟩

MSO(r(D1)) ⊧ u. Consequently, it remains to find
some D ∈ r−1(D1) with C ≡⟨⟩MSO D.

By construction, every predicate Tσ of D1 is either empty or infinite. For
anMSO⟨⟩-theory σ , we denote byHσ the set of allMSOm̄-theories τ such
that τ ⊧ σ and Tτ ≠ ∅ in C. For each σ , we choose a partition (T′

τ)τ∈Hσ

of Tσ such that every T′
τ is infinite. For theories τ ∉ ⋃σ Hσ , we set T′

τ ∶= ∅.
The resulting order D ∶= ⟨B/≈, T̄′⟩ satisfies r(D) = D1 and C ≡⟨⟩MSO D.
(ii) (⊆) Fix P̄

′ ∈ ℘(A)k and let Cm̄(I, ∼; P̄′) ∈ UCm̄(A, P̄′). Since
Cm̄(I, ∼; P̄′) is q(l + k, m̄)-uniform, its reduct C⟨⟩(I, ∼; P̄′) is ⟨⟩-uniform.
Consequently, we have

C⟨⟩(I, ∼; P̄′) ∈ UC⟨⟩(A, P̄′) .

Set

θ ∶=Th⟨⟩

MSO(C
m̄(I, ∼; P̄′)) and u ∶=Th⟨⟩

MSO(C
m̄(I, ∼))
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Then θ ∈ Su and u ∈ U⟨0⟩(A).
(⊇) Let u ∈ U⟨0⟩(A) and θ ∈ Su . By definition of Su , there exists some

order C with

Th⟨⟩

MSO(r(C)) ⊧ u and Th⟨⟩

MSO(C) = θ .

We can use Lemma 5.41 to find a ⟨⟩-uniform convex subset I of C. Let
T̄ = (Tτ)τ be the predicates from C. For everyMSO⟨⟩-theory σ over the
signature without the predicates P̄′, we set

Hσ ∶= { τ ∣ τ0 = σ , Tτ ∩ I ≠ ∅} ,

where τ0 ⊆ τ denotes the theory without the predicates P̄′ that corresponds
to τ. Let C′ be the order obtained from C as follows. For each theory σ , we
choose a partition (T′

τ)τ∈Hσ of

⋃
τ∈Hσ

Tτ

such that each T
′
τ is dense in ⋃τ∈Hσ Tτ . For τ ∉ Hτ0 , we choose T

′
τ ∶= ∅.

Setting C′ ∶= ⟨C , ≤, (T′
τ)τ⟩ it follows that C′ is ∅-uniform and

C′ ≡⟨⟩MSO C .

We can use Lemma 5.41 to find a q(k+l , m̄)-unifrom convex subset J ofC′.
ThenC′∣ J ∈ UCm̄(A, P̄′′), for some P̄′′, and it follows by ⟨⟩-uniformity ofC′

that

Uq(l+k ,m̄)(C′∣ J) = g(Th
⟨⟩

MSO(C
′∣ J)) = g(Th

⟨⟩

MSO(C
′)) = g(θ) .

Furthermore, Th⟨⟩

MSO(r(C
′)) ⊧ u.

(b) Let L be the set of all convex suborders of A and set S ∶= S0 ∪ S1
where

S0 ∶= {Th
n̄
MSO(A∣C) ∣ C ⊆ A, ∣C∣ = 1} ,

S1 ∶= {Th
n̄
MSO(A∣C) ∣ C ⊆ A convex with n̄-uniform interior} .

We claim that S satisfies the following conditions.
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5 Modest linear orders

◆ Thn̄
MSO(C) ∈ S, for all C ∈ L with ∣C∣ = 1.

◆ Thn̄
MSO(C),Th

n̄
MSO(D) ∈ S, C +D ∈ L impliesThn̄

MSO(C +D) ∈ S.

◆ If (Ci)i<ω is a sequence such that

∑
i∈ω

Ci ∈ L and Thn̄
MSO(Ci) =Th

n̄
MSO(C j) ∈ S , for all i , j ,

thenThn̄
MSO(∑i∈ω Ci) ∈ S.

◆ If (Ci)i<ω is a sequence such that

∑
i∈ωop

Ci ∈ L and Thn̄
MSO(Ci) =Th

n̄
MSO(C j) ∈ S , for all i , j ,

thenThn̄
MSO(∑i∈ωop Ci) ∈ S.

◆ IfC ∈ L and≈ is a congruence ofC such that the order ⟨C/≈, ≤, (Pc)c∈S⟩
with

Pc ∶= { [a] ∈ C/≈ ∣Th
n̄
MSO([a]) = c } , for c ∈ S ,

is q(l , n̄)-uniform and densely ordered without end-points, and if Pc ≠
∅ implies c ∈ S, thenThn̄

MSO(C) ∈ S.

Then it follows by Corollary 4.5 that

S = {Thn̄
MSO(A∣C) ∣ C ⊆ A convex} .

To show that A is n̄-uniform, consider a convex set C ⊆ A. Since

Thn̄
MSO(A),Th

n̄
MSO(A∣C) ∈ S ,

we can find n̄-uniform subsets I, J ⊆ A such that

A ≡n̄MSO A∣I and A∣C ≡
n̄
MSO A∣ J .

As A is ⟨⟩-uniform, we have A∣I ≡
⟨⟩

MSO A∣ J , which, by (a), implies that
A∣I ≡n̄U A∣ J . Consequently, it follows by Lemma 5.51 that

A ≡n̄MSO A∣I ≡
n̄
MSO A∣ J ≡

n̄
MSO A∣C .
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Hence, it remains to check the above closure properties of S. The first one
is trivial since S0 ⊆ S. For the second one, let C ,D ⊆ A be disjoint sets such
that C + D is convex andThn̄

MSO(A∣C),Th
n̄
MSO(A∣D) ∈ S. Then there are

convex sets C′ and D′ with n̄-uniform interior such that

A∣C ≡
n̄
MSO A∣C′ and A∣D ≡

n̄
MSO A∣D′ .

Let C0 be the interior of C′ and D0 the one of D′.
Let us prove that the setX obtained fromC

′+D′ by removing theminimal
and and maximal elements (if they exist) is also n̄-uniform. Hence, consider
a convex set I ⊆ X without end-points. Set J ∶= I ∩ C

′ and K ∶= I ∩ D
′.

Since the interiors of C′ and D′ are n̄-uniform, it follows that

A∣ J0 ≡
n̄
MSO A∣C0 and A∣K0 ≡n̄MSO A∣D0 ,

where J
0 and K0 are the interiors of J and K, respectively. Let Z be the set

such that X = C
0 + Z + D

0. (Hence, Z = ∅ or ∣Z∣ = 1.) If J0 ≠ ∅ and
K

0 ≠ ∅, we have

A∣I = A∣ J0 + A∣Z + A∣K0 ≡n̄MSO A∣C0 + A∣Z + A∣D0 = A∣X ,

as desired.
Hence suppose otherwise. By symmetry, we may assume that K0 = ∅.

Then I ⊆ C0, which implies by n̄-uniformity that

A∣I ≡
n̄
MSO A∣C0 .

As A is∅-uniform, there exists a partition I = Y0 +Y1 +Y2 of I into convex
sets such that Y0 ≠ ∅, Y2 ≠ ∅, and A∣Y1 ≡

∅
MSO A∣Z . It follows that

A∣Y0 ≡
∅
MSO A∣C0 , A∣Y1 ≡

∅
MSO A∣Z , A∣Y2 ≡

∅
MSO A∣D0 .

Since C0 is n̄-uniform, we therefore have

A∣Y0 ≡
n̄
MSO A∣C0 .
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5 Modest linear orders

Furthermore, sinceY2 andD0 are n̄-uniform, we can use (a) and Lemma 5.51
to show that

A∣Y2 ≡
n̄
MSO A∣D0 .

Hence,

A∣I = A∣Y0+Y1+Y2 ≡
n̄
MSO A∣C0+Z+D0 = A∣X ,

as desired.
Since A is ⟨⟩-uniform, there exists a convex subset I ⊆ C′ such that

A∣I , First, Last ≡
⟨⟩

MSO A∣C′+D′ , First, Last .

By (a), we have

A∣I ≡
n̄
U A∣C′+D′ .

Since I ⊆ C′, the interior of I is n̄-uniform. Furthermore, we have shown
above that so is the interior of C′ + D

′. Consequently, Lemma 5.51 implies
that

A∣I ≡
n̄
MSO A∣C′+D′ .

Hence,

Thn̄
MSO(A∣C) +Thn̄

MSO(A∣D) =Th
n̄
MSO(A∣C′+D′)

=Thn̄
MSO(A∣I) ∈ S .

For the third condition, let C0 ,C1 , . . . be a sequence of disjoint sets such
that∑i<ω C i is convex andTh

n̄
MSO(A∣C i ) ∈ S, for all i.Then there are convex

sets C′i with n̄-uniform interior such that

A∣C i ≡
n̄
MSO A∣C′i .

Analogously to above we obtain

∑
i<ω

Thn̄
MSO(A∣C i ) =Th

n̄
MSO(A∣∑i<ω C′i ) ∈ S .
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The proof of the fourth property is analogous.
Finally, let C ⊆ A be convex and let ∼ be a congruence on C such that

Cn̄(C , ∼) = ⟨C/∼, ≤, (Tθ)θ⟩ is q(l , n̄)-uniform and Tθ ≠ ∅ implies θ ∈ S.
We have to show thatThn̄

MSO(A∣C) ∈ S. By definition,

u ∶= Uq(l , n̄)(Cn̄(C , ∼)) ∈ Un̄0(A) .

Fix a q(l , n̄)-uniform convex set I ⊆ A without end-points. Since l ≤
log2 L(n̄0) andA is L(n̄0)-modest, it follows by (a) thatA∣I ≡n̄0U A. Hence,

u = Uq(l , n̄)(D) , for some D ∈ UCn̄(A∣I) .

Fix J and ≈ with D = Cn̄( J, ≈). Then

Cn̄(C , ∼) ≡q(l , n̄)U Cn̄( J, ≈)

implies by Lemma 5.51 that

Cn̄(C , ∼) ≡q(l , n̄)MSO Cn̄( J, ≈) .

Consequently, we can use Lemma 5.43 to show that

A∣C ≡
n̄
MSO A∣ J .

Hence, Thn̄(A∣C) =Th
n̄(A∣ J) ∈ S.

Proposition 5.53. For every m < ω, there exists a constant p < ω such that

A ≡mMSO B , for all p-modest separable dense linear orders A,B

without end-points.

Proof. Let L be the function from Lemma 5.52, fix a quantifier structure n̄,
and let A and B be L(n̄)-modest and densely ordered without end-points.
Since A and B have no parameters, we have A ≡⟨⟩MSO B. Hence, we can
use Lemma 5.52 (a) to show that A ≡n̄U B. Furthermore, it follows by
Lemma 5.52 (b) that A and B are n̄-uniform. Consequently, Lemma 5.51
implies that A ≡n̄MSO B.
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6 Choice functions

We are finally able to give the missing proofs.

Proof of Theorem 5.7. (⇐)We have seen in Corollary 5.26 that ⟨Q, ≤⟩ is
modest. Hence, the claim follows by Proposition 5.53.
(⇒) For each p < ω, there exists anMSO-formula φp expressing that a

given linear order is p-modest and densely ordered without end-points. By
assumption,

⟨Q, ≤⟩ ⊧ φp implies A ⊧ φp .

Proof of Corollary 5.8. (⇐) follows from Theorem 5.7 and Corollary 3.3,
while (⇒) follows fromTheorem 5.38.

Proof of Corollary 5.9. Wehave shown in Lemma 5.19 that ⟨R, ≤⟩ is notmod-
est. Hence, the claim follows byTheorem 5.38.

6 Choi$e Fun$tion+

In this section we study the existence ofMSO-definable choice functions for
linear orders and trees.

Definition 6.1. An MSO-formula ψ(x ,X) defines a choice function for a
structure A if

◆ A ⊧ ψ(a,U) implies a ∈ U, and

◆ for every non-empty set U, there is exactly one element a ∈ A with
A ⊧ ψ(a,U).

We say that A has strongMSO-choice if someMSO-formula defines a choice
function for A. It has (weak)MSO-choice if some expansion ⟨A, P̄⟩ by mon-
adic predicates P̄ has strongMSO-choice. ⌟

It turns out that not very many trees haveMSO-choice. We can charac-
terise them as follows. We will be working with generalised trees so we can
treat trees and linear orders at the same time.
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Definition 6.2. Let T be a generalised tree.
(a)The branching degree of T at a vertex v ∈ T is the number of classes of

the following equivalence relation on T∣v .

u ∼ u′ : iff u ⊓ u
′ > v .

If this number is at most n, we say that the branching degree of T is bounded

by n. If the number is finite, we say that T is finitely branching.
(b) We call T tame if there are constants k, n < ω such that

◆ T is thin,

◆ its branching degree is bounded by n, and

◆ HR(β) ≤ k, for every branch β of T. ⌟

Theorem 6.3. Let T be a generalised tree. The following statements are equival-

ent.

(1) T has weakMSO-choice.

(2) There exists anMSO-formula φ(x , y) (with monadic parameters) defining
a well-ordering on T.

(3) T is tame.

The proof constitutes most of the rest of this section. But first let us
mentions that, for ordinary trees and linear orders, this characterisation
simplifies as follows.

Corollary 6.4. Let T be an order-tree. The following statements are equivalent.

(1) T has weakMSO-choice.

(2) There exists anMSO-formula φ(x , y) (with monadic parameters) defining
a well-ordering on T.

(3) T is thin and there is some number n < ω, such that every vertex has at
most n successors.

Corollary 6.5. Let A be a linear order. The following statements are equivalent.

(1) A has weakMSO-choice.
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6 Choice functions

(2) There exists anMSO-formula φ(x , y) (with monadic parameters) defining
a well-ordering on A.

(3) HR(A) < ω .

Concerning strong choice, let us just mention the following result, which
immediately follows from Corollary V.5.17.

Proposition 6.6. Every finitely branching successor-ordered tree T with finite

Cantor-Bendixson rank has strong MSO-choice.

In general, the formula obtained from Corollary V.5.17 depends on the
Cantor-Bendixson rank of the tree. It is still open whether we can find a
single formula that works for all thin trees.

Open Question. Does there exists anMSO-formula φ(x ,X) that defines a
choice function over every thin, finitely branching, successor-ordered tree T ?

Non-Tame Tree+

We start the proof of Theorem 6.3 with the negative results. Our main
counterexample is the infinite binary tree.

Theorem 6.7. The infinite binary tree Tbin = ⟨{0, 1}∗ , ≤pf , suc0 , suc1⟩ does
not haveMSO-choice.

Proof. For a contradiction, suppose that there exists an MSOr-formula
φ(x ,X; P̄) that defines a choice function for Tbin. First note that the state-
ment

“Using the parameters P̄, φ(x ,X; P̄) defines a choice function.”
can be expressed in MSO. Consequently, if there exists a choice function
definable using parameters P̄, we can use Theorem V.2.17 to replace P̄ by
a tuple of regular parameters P̄′. As regular sets P′ ⊆ {0, 1}∗ are MSO-
definable, it is therefore possible to eliminate the parameters P̄′ from the
formula φ. Consequently, we can assume without loss of generality that
φ(x ,X) is a formula without parameters.
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Let m be the number of all MSOr-theories of structures of the form
⟨Tbin ,QQ

′⟩ with 2 parameters Q ,Q ′ ⊆ {0, 1}∗. Set

Wi ∶= (0m0∗1)i , Vi ∶= (0 + 1)∗Wi , and U ∶= Vm(0 + 1)∗ .

and t ∶= ⟨Tbin ,U⟩. Let ti ∶= t∣x i be the subtree rooted at the vertex

x i ∶= (0m1)i ∈ Vi .

Note that t0 = t and that every subtree of t attached at some vertex in Vi is
isomorphic to ti . (Since w ,w′ ∈Wi implies vwu ∈ U⇔ v

′
w
′
u ∈ U, for all

u, v , v′.)
By choice of m, there exist indices 0 ≤ i < j ≤ m such that

ti , {x i} ≡rMSO t j , {x j} .

Note that we can obtain t j−i from t0 by replacing all subtrees attached to a
vertex in Vi (which are isomorphic to ti) by t j . Consequently, it follows by
Proposition V.1.7 that

tl , {x l} ≡
r
MSO t0 , {x0} , where l ∶= j − i .

To conclude the proof, it is now sufficient to show that, for every u ∈ U,
there is some u′ ≠ u with

⟨Tbin ,U , {u}⟩ ≡rMSO ⟨Tbin ,U , {u′}⟩ .

Then it follows that

Tbin ⊧ φ(u,U) iff Tbin ⊧ φ(u′ ,U) ,

which is the desired contradiction.
Hence, consider an element u ∈ U. Let um be the shortest prefix of u with

um ∈ U and, for i < m, let u i be the longest prefix of um with u i ∈ Vi ∖Vi+1.
Set

v i ∶= u l+10
i , where l is the index from above.
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By choice of m, there are indices i < j < m such that

t∣v i , {u} ≡
r
MSO t∣v j , {u} .

Hence, it follows by Proposition V.1.7 that

t∣vm , {u} ≡
r
MSO t∣vm+i− j , {u} ≅ t∣vm , {u

′} , for some u′ ,

which implies that ⟨Tbin ,U , {u}⟩ ≡rMSO ⟨Tbin ,U , {u′}⟩.

As an application of the theorem (and the construction used in its proof ),
we present a game where the winning strategies are not definable.

Theorem 6.8. There exists a game G = ⟨V◇ ,V◻ , E ,Ω,W⟩ with a regular
winning condition W ⊆ C

∗
(where Ω ∶ V → C) such that Player ◻ has a

winning strategy but not anMSO-definable one.

Proof. The game graph ⟨V◇ ,V◻ , E⟩ is the infinite binary tree with partition

V◇ ∶= 1∗ and V◻ ∶= 1∗01∗ .

To define the winning condition, let

Un ∶= (0 + 1)∗(0n0∗1)n(0 + 1)∗

be the language from the proof of Theorem 6.7. We define the priority
function Ω ∶ V → {1, 2, 3} by

Ω(1n) ∶= 3 and Ω(1n0u) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

1 if u ∈ Un ,
2 otherwise ,

and we say that a play (un)n<ω is winning for Player◇ if

inf
n<ω

Ω(un) is even.

(Note that this differs from a parity condition in that we are not taking the
lim inf , that is, we do not look at the priorities that occur infinitely often,
but at those that occur at least once.)
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First, note that Player ◻ has a winning strategy in this game. Player◇
cannot chose to stay on the right-most branch forever since this branch has
priority 3. Hence, she must choose to move away from this branch at some
point. In the rest of the game, Player ◻ can choose to move to a position of
the form 1n0u with u ∈ Un . The minimal priority of the resulting play is 1.
Hence, Player ◻ wins.
We claim that he does not have a definable winning strategy. For a con-

tradiction, suppose otherwise. Then there exists a formula that, given some
position of the form 1n0, produces an infinite branch βn that starts with 1n0
and that contains some position 1n0u with u ∈ Un . Using this formula we
can construct anMSO-formula φ(x , y,X) such that

Tbin ⊧ φ(1n0, 1n0u, 1n0Un) iff u is the minimal word such

that 1n0u <pf βn and u ∈ Un .

Let Tn be the graph obtained from Tbin by removing the subtree rooted
at 1n0. For everyMSOr-theory θ, there exists a formula ψθ(x ,X) such that

Tbin ⊧ φ(1n0, 1n0u, 1n0Un) ⇔ Tbin ⊧ ψθ(u,Un) ,

where θ ∶= Thr
MSO(Tn). Fix a linear ordering on all MSOr-theories and

let ϑ(x ,X) be the formula stating that ψθ(x ,X) holds where θ is the least
theory such that ψθ(x ,X) holds for exactly one vertex x. Then ϑ(x ,X)
chooses a unique element from every setUn . By (the proof of )Theorem 6.7
this is not possible.

Remark. Note that, while the winning strategy of this game is not definable,
the winning regions (the sets ∅ and V) clearly are. ⌟

It follows that all trees with choice are thin. The proof that they are even
tame is split into the following two lemmas.

Lemma 6.9. Let T = ⟨T , ≤,⊓, P̄⟩ be a coloured generalised tree, β ⊆ T a

branch, and Z ⊆ β a chain of order type Z such that

Tβ[u, v), u ≡
m
MSO Tβ[u

′ , v′), u′ , for all u < v and u′ < v′ in Z ,
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where

Tβ[u, v) ∶= Tβ[I] with I ∶= { x ∈ ⇓Z ∣ u ≤ z < v }

are the structures from Proposition V.1.9. Then no MSOm -formula ψ(x ,X)
(without parameters) defines a choice function for T.

Proof. For a contradiction, suppose that there exists an MSOm-formula
ψ(x ,X) defining a choice function. Let w ∈ Z be the element such that
T ⊧ ψ(w ,Z). Setting

[u, v) ∶= ⇑u ∖ ⇑v , I ∶= T ∖ ⋃
u∈Z
⇑u and J ∶= ⋂

u∈Z
⇑u ,

we can decompose T as in Proposition V.1.9 into the pieces

I , . . . , [w − 1,w) , [w ,w + 1) , [w + 1,w + 2) , . . . , J ,

where w + 1 denotes the successor of w in Z. The corresponding theories are

σ ∶=Thm
MSO(Tβ[I],Z ,w) ,

τ ∶=Thm
MSO(Tβ[ J],Z ,w) ,

θ∗ ∶=Thm
MSO(Tβ[w + 1,w + 2),Z ,w) ,

θu ∶=Th
m
MSO(Tβ[u, u + 1),Z , u) , for u ∈ Z .

Since T[u, u + 1), u ≡mMSO T[w ,w + 1),w implies

T[u, u + 1), {u} ≡mMSO T[w ,w + 1), {w} = θ∗

and θu = T[u, u + 1), {u}, u ≡mMSO T[w ,w + 1), {w},w = θw ,

it follows that

Thm
MSO(T, β,Z , u) = σ + ∑

v<u
θ∗ + θu + ∑

v>u
θ∗ + τ

(if we define the sum of these types as in Proposition V.1.9), and that this
expression does not depend on u. Consequently, we have

T,Z , u ≡mMSO T,Z , v , for all u, v ∈ Z .

A contradiction to the fact that T ⊧ ψ(w ,Z) ∧ ¬ψ(w + 1,Z).
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Lemma 6.10. Every generalised tree T with weakMSO-choice is tame.

Proof. Suppose that T is not tame. We distinguish three cases depending
on which of the three conditions fails.
(i) For a contradiction, suppose that T has unbouded branching degree

but there exists an MSOm-formula φ(x ,X; P̄) with k parameters P̄ de-
fining a choice function for T. To simplify notation, we again set T+ ∶=
⟨T, P̄⟩. Let n be the number of MSOm-theories of structures of the from
⟨S , ≤pf ,⊓, Q̄ , v⟩with k unary predicates Q̄ and a constant v. By assumption,
there is some vertexw ∈ T whose branching degree is larger than n. Let ∼ be
the equivalence relation used to define the branching degree of v. Then there
are two ∼-classes S and S′ and vertices s ∈ S and s′ ∈ S′ such that

⟨T+∣S , s⟩ ≡mMSO ⟨T
+∣S′ , s′⟩ .

Set C ∶= {s, s′}. By Proposition V.1.7, it follows that

T ⊧ φ(s,C; P̄) iff T ⊧ φ(s′ ,C; P̄) .

Hence, φ does not define a choice function.
(ii) Suppose that, for every k < ω, there is some branch β withHR(β) >

k. Let φ(x ,X; P̄) be anMSOm-formula with n monadic parameters P̄. We
have to show that φ does not define a choice function for T. To simplify
notation, set T+ ∶= ⟨T, p̄⟩.
We choose k < ω larger than the number ofMSOm-theories of generalised

trees of the form ⟨T , ≤,⊓, P̄, β, p, a⟩ with a distinguished branch β, a unary
function p, k unary predicates P̄, and a constant a. By assumption, there is
some branch β withHR(β) > k. We define an additive labelling λ on β by
setting

λ(u, v) ∶=Thm
MSO(T

+[u, v), u⟩) , for u < v in β .

Since λ uses less than k colours, we can use Theorem 2.5 to find a subset
Z ⊆ β of order type Z such that

λ(u, v) = λ(u′ , v′) , for all u < v and u′ < v′ in Z .
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By Lemma 6.9, it follows that φ does not define a choice function for T+.
(iii) Finally, suppose for a contradiction that T is not thin but that there

exists a formula φ(x ,X; P̄) with parameters P̄ defining a choice function
for T. Without loss of generality, we may assume that φ only uses the tree
order ≤, but not the infimum operation ⊓. We will derive a contradiction to
Theorem 6.7 by defining a choice function for the binary tree Tbin.
As T is not thin, there exists a subset S ⊆ T such that T∣S is isomorphic

toTbin.We denote the root of S by s0 and the two successors of a vertex v ∈ S
by suc0(v) and suc1(v). Let T+ be the structure obtained from T by adding
the predicates P̄ and removing the infimum operation ⊓. We decompose T+

into the sets

U∗ ∶= T ∖ ⇑s0 and Uv ∶= ⇑v ∖ ⇑{suc0(v), suc1(v)} , for v ∈ S .

Then we can express T+ as a generalised sum followed by a quantifier-free
interpretation τ as

T+ ≅ τ(∑
i∈I

Ui) ,

where I ∶= ⟨{∗} + {0, 1}∗ , ≤pf , suc0 , suc1⟩ and

Uv ∶= ⟨T
+∣Uv , I0 , I1 , v⟩ with I i ∶= Uv ∩ ⇓suci(v) ,

for v ∈ {∗} + {0, 1}∗. The interpretation τ is given by

δ(x) ∶= true ,
φ≤(x , y) ∶= [x ∼ y ∧ x ≤U y]

∨ [x ≁ y ∧ ⋁
i<2
(suci(x) ≤I y ∧ I ix)] ,

where ∼ is the equivalence relation induced by the partition, ≤U is the or-
dering of the components Uv , ≤I the ordering of the index structure I, and
I i are the additional predicates added to Uv . By the composition theorem
for generalised sums, we obtain formulae ψ0 and χ0 , . . . , χn−1 such that

T ⊧ φ(a, B; P̄) iff I ⊧ ψ0(⟦χ0(a, B)⟧, . . . , ⟦χn−1(a, B)⟧) .
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For a vertex v of I, set

θv(a, B) ∶= { i < n ∣ v ∈ ⟦χ i(a, B)⟧ } .

Note that, if a ∈ S and B ⊆ S, then, for every fixed v, there are only 4 possible
values of θv(a, B), depending on

whether or not v = a and whether or not v ∈ B .

We denote these values by θ0
v , θ1

v , θ2
v , θ3

v . Furthermore, for v = ∗, the value
θ∗(a, B) does not depend on a and B. We denote it by θ∗. Let K be the
structure obtained from I by labelling the vertex ∗ by θ∗ and every other
vertex v by the four values θ0

v , θ1
v , θ2

v , θ3
v . Note that, given a and B, a formula

can use this labelling to decide to which sets of the form

⟦χ i(a, B)⟧

a given vertex belongs. Consequently, there exists a formula ψ1(x ,X) such
that

K ⊧ ψ1(a, B) iff I ⊧ ψ0(⟦χ0(a, B)⟧, . . . , ⟦χn−1(a, B)⟧) .

Finally, note that we can write

K ≅ σ(1⊕ ⟨Tbin , Q̄⟩) ,

for some interpretation σ and some unary predicates Q̄ . Hence, there is
some formula ψ(x ,X; Q̄) with parameters Q̄ such that

Tbin ⊧ ψ(a, B; Q̄) iff K ⊧ ψ1(a, B) .

For all a and B in S, it therefore follows that

Tbin ⊧ ψ(a, B; Q̄) iff T ⊧ φ(a, B; P̄) .

Hence, the fact that φ defines a choice function implies that so does ψ.
Consequently, Tbin has weakMSO-choice. A contradiction toTheorem 6.7.
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Tame Tree+

It remains to prove the converse, that tame trees have choice. We start by
defining a well-ordering for linear orders of bounded Hausdorff rank.

Lemma 6.11. Let n < ω.
(a) There exists an MSO-formula φ(x , y; Z̄) with the following property.

For every linear order A withHR(A) ≤ n, there are monadic parameters P̄ such

that φ(x , y; P̄) defines a well-ordering ⊑ on A.
(b) There exists an MSO-formula ψ(x , y; Z̄) with the following property.

For every linear orderA withHR(A) ≤ n, there are monadic parameters Q̄ such

that, in the well-order ⟨A, ⊑⟩ defined by φ(x , y; P̄), the formula ψ(x , y; Q̄)
defines the original ordering ≤.

Proof. We construct both formulae by induction on n. First, note that the
formula

wo ∶= ∃x∀y(x ≤ y) ∧ ∀x∃y[x < y ∧ ¬∃z(x < z < y)]

holds in every well-orders, but it fails for the opposite of every infinite well-
order.
If n ≤ 1, then one of A and Aop is a well-order. Hence, we can take the

formula

φ(x , y) ∶= [wo ∧ x ≤ y] ∨ [¬wo ∧ x ≥ y]

to well-orderA. Conversely, using one monadic parameter Q = A or Q = ∅,
we can set

ψ(x , y;Q) ∶= [Qx ∧ x ≤ y] ∨ [¬Qx ∧ x ≥ y] .

For the inductive step, suppose thatHR(A) = n + 1. By definition, this
means we can decompose A as

A = ∑
i∈I

Bi
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where I is a well-order or the opposite of a well-order and each factor Bi
has Hausdorff rank at most n. By inductive hypothesis, there exist formulae
φ0(x , y; Z̄) and ψ0(x , y; Z̄′) and parameters P̄ i and Q̄

i in Bi such that
φ0(x , y; P̄ i)well-ordersBi andψ0(x , y; Q̄ i) defines the original order. Let
∼ be the equivalence relation whose classes are the sets B i . By Lemma 3.1, we
can define ∼ using a single monadic parameter R∗. We define a well-order ⊑
on A by

φ(x , y; R̄R∗) ∶= [wo∼ ∧ x ≁ y ∧ x ≤ y]

∨ [¬wo∼ ∧ x ≁ y ∧ x ≥ y]

∨ [x ∼ y ∧ φ[x]∼0 (x , y; R̄)] ,

where

R j ∶= ⋃
i∈I

P
i
j , for j < n − 1 ,

φ[x]∼0 denotes the relativisation of φ0 to the class [x]∼, andwo∼ is the variant
of the formula wo talking about A/∼ ≅ I (that is, the formula obtained
from wo by replacing every atom of the form x < y by x ≤ y ∧ x ≁ y).
To define ψ, we use one additional monadic parameter S′ = A or S′ = ∅

and we set

ψ(x , y;R∗S̄S′) ∶= [x ∼ y ∧ ψ[x]∼0 (x , y)] ∨ [x ≁ y ∧ S
′
x ∧ x < y]

∨ [x ≁ y ∧ ¬S′x ∧ x > y] ,

where

S j ∶= ⋃
i∈I

Q
i
j , for j < 2n − 1 .

Given a tame tree, we can use this lemma to define a well-ordering on
every branch.Then we can combine these well-orderings to one of the whole
tree by fixing a skeleton and well-ordering its classes. To do so, we have to
show that the classes of a skeleton are definable.
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Lemma 6.12. Let T be a generalised tree whose branching degree is bounded by

n < ω. There exists anMSO-formula ψ(x , y; Z̄) such that, for every skeleton S,
there are monadic parameters P̄ such that

T ⊧ ψ(u, v; P̄) iff u, v ∈ β , for some β ∈ S .

Proof. Note that every skeleton S induces a well-founded tree ⟨S , t⟩ with
order

β t γ : iff β ∩ ⇓γ ≠ ∅ .

Since the branching degree of T is bounded by n, we can choose a colouring
λ0 ∶ S → [n + 1] such that

◆ λ0(γ) ≠ λ0(β), for all γ ∈ Suc(β), and
◆ λ0(γ) ≠ λ0(γ′), for all γ, γ′ ∈ Suc(β) that are attached to the same

vertex v ∈ β, that is, that satisfy β ∩ ⇓γ = ⇓v = β ∩ ⇓γ.
This colouring induces a corresponding colouring λ ∶ T → [n+ 1]. It follows
that u, v ∈ T belong to the same β ∈ S if, and only if,
◆ u and v are comparable,

◆ λ(u) = λ(v), and
◆ λ(u) = λ(w), for every w between u and v.

These conditions can be expressed in MSO with the help of the relations
Pi ∶= λ−1(i).

As explained above, it remains to well-order the classes of a skeleton.This
can be done as follows.

Lemma 6.13. Let T = ⟨T , ≤pf , ≤so⟩ be a well-founded successor-ordered tree
where the successor-ordering ≤so well-orders every set Suc(v), v ∈ T. Then the

lexicographic ordering

u ≤lex v : iff u ≤pf v or u0 ⊑so v0 , where u0 and v0 are the

successors of u ⊓ v with u0 ≤pf u and v0 ≤pf v ,

forms a well-ordering on T.
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Proof. For a contradiction, suppose that there exists a strictly decreasing
sequence u0 >lex u1 >lex ⋯. Set w i j ∶= u i ⊓ u j . Since the tree-order ≤pf has
no strictly decreasing chains, we can use theTheorem of Ramsey to find an
infinite subsequence (u i)i∈I such that

v i j ⊑so v
′
i j , where v i j and v′i j are the successors of w i j with

v i j ≤pf u i and v
′
i j ≤pf u j ,

for all i < j in I. Applying theTheorem of Ramsey one more time, we obtain
an infinite subsequence (u i)i∈ J such that one of the following conditions is
satisfied

w i j <pf w i k , for all i < j < k in J ,

w i j = w i k , for all i < j < k in J ,

w i j >pf w i k , for all i < j < k in J .

The first case is impossible since ≤pf has no infinite descending chains, and
the third case is impossible since T has no infinite branches. Note that, for
i < j < k in J,

w i j = w i k implies w i j ≤pf w jk .

Fix an increasing enumeration j0 < j1 < . . . of J. We obtain an increasing
sequence

w j0 j1 ≤pf w j1 j2 ≤pf w j2 j3 ≤pf ⋯ .

Since T has no infinite branches, this sequence must stabilise at some point.
Thus, there exists a constant k < ω such that

w jk jk+1 = w jk+2 , jk+3 = ⋯ .

Let v i be the successor of w ∶= w jk jk+1 with v i ≤pf u jk+i . These successors
form an infinite descending sequence v0 >so v1 >so ⋯. A contradiction to
the fact that ≤so well-orders the successor set Suc(w).
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Lemma 6.14. For every tame generalised tree T, there exists anMSO-formula
φ(x , y) with monadic parameters that defines a well-ordering on T.

Proof. Let T be tame and let k, n < ω be the corresponding bounds.Then
we can use Proposition V.5.9 to find a skeleton S of T. Let ψ(x , y; P̄) be
the formula form Lemma 6.12 defining S. Note that, by the definition of a
skeleton, the set S forms a well-founded tree S = ⟨S , t⟩ with ordering

β t γ : iff β ∩ ⇓γ ≠ ∅ ,

and that the ordering t isMSO-definable using the formula ψ(x , y; P̄).
Furthermore, since theHausdorff rank of every β ∈ S is bounded by k, we

can use Lemma 6.11 (a) to find anMSO-formula χ(x , y; Q̄) with monadic
parameters Q̄ defining a well-ordering ⊴β on each β ∈ S.
Below we will construct a formula ϑ(X,Y ,Z; R̄) with monadic para-

meters R̄ such that, for every β ∈ S, the formula ϑ(X,Y , β; R̄) defines a
well-ordering ⊑βso on Suc(β). Let ≤lex be the lexicographic ordering on the
corresponding successor-ordered tree ⟨S , t, ⊑so⟩. Since S is well-founded, it
follows by Lemma 6.13 that ≤lex is a well-ordering.
We obtain the desired well-ordering ⊑ on T by setting

x ⊑ y : iff (∃β ∈ S)[x , y ∈ β ∧ x ⊴β y]

∨ (∃β, γ ∈ S)[x ∈ β ∧ y ∈ γ ∧ β <lex γ] .

This condition can be expressed inMSO using the parameters P̄Q̄ R̄. Further-
more, ⊑ is a well-ordering since the orderings ⊴β and ≤lex are well-orderings.

It remains to find the formulae ϑ. Note that, if γ is a successor of β in S,
there is some vertex v ∈ β with

β ∩ ⇓γ = ⇓v .

We say that γ is attached at v. Since the branching degree of T is bounded
by n, there are at most n successors γ ∈ Suc(β) attached at each vertex v.
Hence, we can choose a colouring λ0 ∶ S → [n] such that

λ0(γ) ≠ λ0(γ′) ,
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for all γ, γ′ ∈ Suc(β) that are attached to the same vertex v ∈ β. This
colouring induces a corresponding colouring λ ∶ T → [n]. We can now
define the desired successor-ordering by

γ ⊑βso γ
′ : iff γ is attached at v , γ′ is attached at v′ , and

v ⊲β v
′ or [v = v′ and λ0(γ) ≤ λ0(γ′)] .

This can clearly be expressed inMSO using the parameters Q̄ and

R i ∶= λ−1(i) .

Proof of Theorem 6.3. (2)⇒ (1) is trivial since we can define a choice function
by returning the minimal element of the given set X, while (1)⇒ (3)⇒ (2)
have been proved in Lemmas 6.10 and 6.14, respectively.

We\-Ordered Tree+

In light ofTheorem 6.3 it is interesting to study trees that can be well-ordered.
The canonical well-ordering on a tree is the so-called length-lexicographic

one.

Definition 6.15. Let D be a set. The length-lexicographic order ≤llex on D∗ is
defined by

u ≤llex v : iff ∣u∣ < ∣v∣ , or

∣u∣ = ∣v∣ and u = wcx , v = wdy , for some

c, d ∈ D and w , x , y ∈ D∗ with c ≤ d . ⌟

Proposition 6.16. There exists anMSO-formula χ such that

A ⊧ χ iff A ≅ ⟨{0, 1}∗ , suc0 , suc1 , ≤llex⟩ ,

for all structures A = ⟨A, S0 , S1 , ≤⟩.

Proof. Let ≤pf be the transitive closure of S0 ∪ S1 and let E be the relation
consisting of all pairs ⟨u, v⟩ such that u ≤ v and the function

f (u′) = min{ v′ ≤pf v ∣ u
′ ≤ v′ } (minimum with respect to ≤pf )
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is a bijection between ⇓u and ⇓v (again with respect to ≤pf ). Since ≤pf and E
are MSO-definable, we can write down an MSO-formula expressing the
following conditions.

◆ Every vertex has exactly one S0-successor and exactly one S1-successor,
and these are different.

◆ For every vertex v, the set ⇓v is linearly ordered by ≤pf .

◆ There exists a least element with respect to ≤pf .

◆ E is a partial order that is a union of infinitely many finite chains.

◆ If u0 is the S0-successor of v and u1 is its S1-successor, then ⟨u0 , u1⟩ ∈ E.

◆ If u′ is a successor of u and v′ is one of v, then ⟨u, v⟩ ∈ E⇔ ⟨u′ , v′⟩ ∈ E.

◆ We have u ≤ v if, and only if,

– ⟨u, v⟩ ∈ E, or

– there is some v′ ≺ v with ⟨u, v′⟩ ∈ E, or

– there is some v′ ≺ v with ⟨v′ , u⟩ ∈ E.

Note that the first three points ensure that the relations S0 and S1 are the
edge relations of the infinite binary tree and that ≤pf is the corresponding
prefix relation. The next three points imply that E the left-to-right ordering
on each level of the tree and the last point guarantees that ≤ is the length-
lexicographic order.
Concerning our claim about E, note that, by definition of f , we know

that ⟨u, v⟩ ∈ E implies ∣u∣ = ∣v∣. Conversely, one can use the above axioms to
show by induction on ∣u∣ that ∣u∣ = ∣v∣ implies ⟨u, v⟩ ∈ E or ⟨v , u⟩ ∈ E.

Our next goal is to show that every binary tree equipped with a well-
ordering is as least as complicated as ⟨Tbin , ≤llex⟩.

Definition 6.17. (a) A well-ordered tree is a structure of the form

T = ⟨T , suc0 , suc1 , ≤⟩ ,

where ⟨T , suc0 , suc1⟩ is isomorphic to the infinite binary tree and ≤ is a
well-order on T.
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(b) Let S and T be well-ordered trees. An embedding φ ∶ S → T is an
injective function satisfying

◆ sucd(φ(v)) ≤pf φ(sucd(v)) , for all vertices v .

◆ u ≤ v implies φ(u) ≤ φ(v) . ⌟

We will show that ⟨Tbin , ≤llex⟩ can be embedded into every well-ordered
tree.

Lemma 6.18. For everyMSO-formula φ, there exists anMSO-formula φ∗(Z)
such that, for every well-ordered tree T and every set U ⊆ T,

T ⊧ φ∗(U) iff U is the range of some embedding φ ∶ S→ T

such that S satisfying φ .

Proof. There exists a formula ϑ(Z) expressing thatZ induces a well-ordered
tree. Consequently, we can set φ∗(Z) ∶= ϑ(Z)∧φ(Z), where φ(Z) denotes
the relativisation of φ to Z.

Definition 6.19. Let T be a well-ordered tree. We say that a vertex w ∈ T
has enough successors if, for every pair of vertices u, v ≥pf w, there is some
v
′ ≥pf v with u < v′. ⌟

Lemma 6.20. Every well-ordered tree has a vertex with enough successors.

Proof. For a contradiction, suppose that there exists a well-ordered tree T
where no vertex has enough successors. By induction on i, we construct
vertices u i and v i such that

u i > u i+1 and u i ≥ w , for all w ≥pf v i .

Since u0 > u1 > . . . is an infinite descending chain this will contradict the
fact that ≤ is a well-order.

For i = 0, note that the root of T does not have enough successors. Hence,
there exists a pair of vertices u and v such that u ≥ v′, for all v′ ≥pf v. We set
u0 ∶= u and we choose for v0 some vertex v0 ≥pf v with v0 ≰pf u. By choice
of u and v it follows that u0 > v′, for all v′ ≥pf v0.
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For the inductive step, suppose that we have already defined u i and v i .
Since v i does not have enough successors, there exist vertices u, v ≥pf v i
such that u ≥ v′, for all v′ ≥pf v. As above we set u i+1 ∶= u and we choose
for v i+1 some vertex v i+1 ≥pf v with v i+1 ≰pf u. Then u i+1 ≥pf v i implies
that u i > u i+1.

Lemma 6.21. Let α be an ordinal.

(a) ⟨2α , ≤lex⟩ forms a complete linear order.
(b) u = inf H implies that, for every prefix u0 of u, there is some w ∈ H with

u0 <pf w.

Proof. Clearly, ≤lex is linear. Hence, it remains to prove completeness. Fix
a set H ⊆ 2α . We have to show that H has an infimum. We construct an
increasing sequence u0 <pf u1 <pf ⋯ of length α such that u i ∈ 2i , for i ≤ α,
and

u i0γ i ≤lex w , for all w ∈ H and i < α

(where γ i is the ordinal such that i + γ i = α). We start with u0 ∶= ⟨⟩. For
the successor step, suppose that we have already defined u i . If there is some
w ∈ H with u i0 <pf w, we set u i+1 ∶= u i0. Otherwise, u i+1 ∶= u i 1. For the
limit step, let δ be a limit ordinal and suppose that we have already defined u i ,
for all i < δ. We take for uδ the limit of all u i .
Let u ∶= uα be the limit of the sequence constructed in this way. Then

u satisfies (b) and it remains to prove that u = inf H. By construction, we
have u ≤lex w, for all w ∈ H. Conversely, let v be a lower bound of H. To
prove that v ≤lex u it is sufficient to show that

v ≤lex u i 1γ i , for all i ≤ α .

We do so by induction on i. Clearly, v ≤lex 1α = u01γ0 . For the inductive step,
suppose that v ≤lex u i 1γ i . If u i+1 = u i 1, we obtain v ≤lex u i+11γ i+1 . Hence,
suppose otherwise. Then there is some w ∈ H with u i+1 = u i0 <pf w.
If u i is not a prefix of v, it follows that v <lex u i0γ i+1 and we are done.
Otherwise, v ≤lex w implies that u i+1 = u i0 is also a prefix of v. Hence,
v ≤lex u i+11γ i+1 .
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Lemma 6.22. Let Tllex ∶= ⟨{0, 1}∗ , suc0 , suc1 , ≤llex⟩. For every well-ordered
tree T, there exists an embedding φ ∶ Tllex → T such that rng φ forms an

MSO-definable subset of T.

Proof. We define φ(u) by induction on u with respect to ≤llex. We start by
using Lemma 6.20 to find a vertex z with enough successors and setting

φ(⟨⟩) ∶= z .

For the inductive step, suppose that we have already defined φ(w). Let
w
′ be the ≤llex-successor of w and suppose that w′ = ud for d ∈ {0, 1} and

u ∈ {0, 1}∗. Clearly, u ≤llex w. Since z has enough successors, there exists a
vertex v ≥pf φ(u)d with φ(w) < v. We set

φ(w′) ∶= v .

We have found an embedding φ ∶ Tllex → T. It remains to show that
we can choose φ such thatU ∶= rng φ isMSO-definable. We choose forU
the lexicographically minimal such set, where the lexicographic ordering on
subsets is defined by

U ≤lex V : iff U = Vor the ≤llex-minimal element belonging to

one ofU and V , but not to both, belongs to V .

By Lemma 6.18 and Proposition 6.16, there exists a formula ϑ(Z) stating
that Z is the range of some embedding of Tllex. Since the lexicographic
order ≤lex on sets is alsoMSO-definable, it follows that there exists anMSO-
formulaψ(Z) saying that Z is the ≤lex-minimal set satisfying ϑ(Z). Clearly,
this set Z is unique.
Hence, it remains to prove that such a set Z exists. Since

⟨℘({0, 1}∗), ≤lex⟩ ≅ ⟨2ω , ≤lex⟩

it follows by Lemma 6.21 (a) that every family H ⊆ ℘({0, 1}∗) has a ≤lex-
infimum. Hence, we only need to prove that, for the familyH ∶= ϑT of all
sets Z satisfying ϑ, the infimum U ∶= ⋂ ϑT also satisfies ϑ. Let u0 <llex
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u1 <llex ⋯ be an increasing enumeration of U and let w0 <llex w1 <llex ⋯
be one of {0, 1}∗. We have to show that the function mapping w i to u i is
an embedding. Clearly, it is monotone with respect to ≤llex. Hence, we only
need to prove that it respects the two successor relations. For a contradiction,
suppose that wk = sucd(w i), for d ∈ {0, 1}, but uk ≱pf sucd(u i). Note
that wk = sucd(w i) implies i < k. By Lemma 6.21 (b), there exists a set
V ∈ ϑT such that the first k + 1 elements of V are u0 , . . . , uk . But this is not
possible since uk ≱pf sucd(u i) implies that no embedding Tllex → T can
have range V .

Theorem 6.23. There exists an MSO-interpretation τ that maps every well-

ordered infinite binary tree T to ⟨{0, 1}∗ , suc0 , suc1 , ≤llex⟩.

Proof. By Lemma 6.18 and Proposition 6.16, there exists an embedding
Tllex → T with anMSO-definable rangeU. As we can define the relations
of Tllex fromU, the claim follows.

Corollary 6.24. Let Tbin be the infinite binary tree and ≤ a well-ordering on T.

Then ⟨Tbin , ≤⟩ has an undecidableMSO-theory.

Proof. By the preceding theorem it is sufficient to show that the theory of
Tllex ∶= ⟨T, ≤llex⟩ is undecidable.We do so by defining arbitrarily large finite
grids inside of Tllex. Given a size n < ω, choose a length k such that 2k ≥ n
and fix a set P ⊆ {0, 1}k of size n. Let p ∈ P be the ≤llex-minimal element
of P and set

Q ∶= { suci0(p) ∣ i < n } ,

V ∶= { suci0(q) ∣ i < n, q ∈ P } ,

E0 ∶= { ⟨u, v⟩ ∈ V2 ∣ v = suc0(u) } ,

E1 ∶= { ⟨u, v⟩ ∈ V2 ∣ u <llex v , v ∉ Q , and there is no w with

u <llex w <llex v } .

Then ⟨V , E0 , E1⟩ forms a directed grid of size n × n which can be defined
using the monadic parameters P, Q , and V . Hence, there exists anMSO-
interpretation τ mapping ⟨Tllex , P,Q ,V⟩ to ⟨V , E0 , E1⟩.
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VI. Linear Orders

Furthermore, there exists anMSO-formula ψ stating that the given graph
forms a finite grid. It follows that anMSO-formula φ is satisfied by all finite
grids if, and only if,

Tllex ⊧ ∃P∃Q∃V[ψτ ∧ φτ] .

As the theory of all finite grids is undecidable, so is therefore the theory
of Tllex.

7 Uniformisation

A choice functions picks a unique element out of a given set. In this section
we consider the more general problem of picking a set out of a definable
family of sets. More precisely, we look for definable Skolem functions, that
is, given a definable relation R ⊆ A × B, we want to construct a definable
function f ∶ A→ B with f ⊆ R.

Definition 7.1. AnMSO-formula φ0(X̄, Ȳ) is a uniformisation of another
MSO-formula φ(X̄, Ȳ) over a structure A if, for all parameters P̄, Q̄ , Q̄ ′,

A ⊧ φ0(P̄, Q̄) implies A ⊧ φ(P̄, Q̄) ,
A ⊧ ∃Ȳφ(P̄, Ȳ) implies A ⊧ ∃Ȳφ0(P̄, Ȳ) ,

A ⊧ φ0(P̄, Q̄) ∧ φ0(P̄, Q̄ ′) implies Q̄ = Q̄ ′ .

We say that A has strongMSO-uniformisation if everyMSO-formula φ has
an uniformisation (without parameters). It has (weak)MSO-uniformisation
if, for everyMSO-formula φ, there exists anMSO-formula φ0 with monadic
parameters that is an uniformisation of φ. Finally, we say that A has effective
strong/weakMSO-uniformisation if the formula φ0 can be computed from φ.

⌟

Clearly, uniformisation implies choice.

Lemma 7.2. WeakMSO-uniformisation implies weakMSO-choice, and strong
MSO-uniformisation implies strongMSO-choice.
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Proof. Let φ0(X,Y) be a uniformisation of the formula

φ(X,Y) ∶= Y ⊆ X ∧ [X ≠ ∅ → ∣Y∣ = 1] .

Then the formula ψ(x ,X) ∶= φ0(X, {x}) defines a choice function.

Exercise 7.1. Prove that a structure A has [weak]MSO-uniformisation if,
and only if, every formula φ(X̄,Y) with a single variable Y has a uniform-
isation [with monadic parameters]. ⌟

De[nable We\-Ordering+

We start by investigating which well-orderings can be defined within a given
linear order. To do so, we consider the following kind of reduction between
ordinals.

Definition 7.3. (a) Given two ordinals α, β, we define the relation

α t β : iff there exists anMSO-formula φ(x , y; P̄) with
monadic parameters P̄ that defines a well-order of

order type α in ⟨β, ≤⟩ .

(b) For a labelling λ ∶ β → [k], we write α tλ β if the order on β defined
by

a ⊑ b iff λ(a) < λ(b) or [λ(a) = λ(b) and a ≤ b]

has order type α. ⌟

Note that in the above reductions we do not allow removing elements
from β. We will prove that α t β if, and only if, α tλ β, for some λ. In the
proof, we make use of the following basic properties of the relation t.

Lemma 7.4. Let α and β be ordinals.

(a) t is reflexive and transitive.

(b) α t α′ and β t β′ implies α + β t α′ + β′ and αβ t α′β′ .
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VI. Linear Orders

(c) α + β t β + α .
(d) αn + k t α , for all n, k < ω and α ≥ ω .
(e) β t α and αω ≤ β implies αω t α .

Proof. (a) Reflexivity is trivial. For transitivity, suppose that φ is a formula
defining β inside α, and ψ a formula defining γ inside β. Then we obtain a
formula defining γ inside α by replacing in ψ every atomic subformula of
the form x ≤ y by φ(x , y).
(b) Let φ be a formula defining α in α′ and ψ a formula defining β in β′.

To prove the first claim, let λ be the labelling of α′+β′ mapping the elements
of α′ to 0 and those of β′ to 1. We can define α + β in α′ + β′ by applying
φ to λ−1(0) and ψ to λ−1(1).
For the second claim, let P ⊆ α′β′ be the set containing the first element

of every copy of α′. Then P has order type β′. Let ⊑1 be the well-order
defined on P by ψ. Since each copy of α′ is definable using P, we can use
the formula φ to define an ordering ⊑2 on each copy. Finally, let µ be the
function mapping each element i to the maximal element µ(i) ∈ P with
µ(i) ≤ i. Using these two orderings we obtain the desired well-order of α′β′
by

i ⊑ j : iff µ(i) ⊏1 µ( j) or [µ(i) = µ( j) and i ⊑2 j] .

(c) Let λ be the labelling of β + α mapping the first β elements to 1 and
the remaining ones to 0.Then α + β tλ β + α.
(d) It is sufficient to prove that αn t α and α + 1 t α. Then it follows

by (a) that

αn + k t αn t α .

For the second statement, note that (c) implies

α + 1 t 1 + α = α .

For the first statement, we start with the case where α is a limit ordinal.
Let λ ∶ α → [n] be the labelling defined by

λ(ωβ + m) ∶= m mod n , for m < ω .
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Then every preimage λ−1(i) has order type α. Hence, αn tλ α.
For the general case, suppose that α = δ + m, for some limit ordinal δ

and m < ω. Then (b) implies that

αn = (δ + m)(n − 1) + δ + m = δ(n − 1) + δ + m t δ + m = α .

(e) For a contradiction, suppose that β t α, for some β ≥ αω. Let φ be
a formula defining a well-ordering ⊑ of order type β. By assumption, there
is some set P ⊆ α such the restriction of ⊑ to P has order type αω. Let
λ ∶ α → [2] be the labelling with λ−1(1) = P. Since α ∖ P ⊆ α has order
type γ ≤ α, we have αω = γ + αω tλ α.

Next let us prove an upper bound, which is tight by Lemma 7.4 (d).

Lemma 7.5. β t α implies β < αω.

Proof. For a contradiction, suppose that β t α, for some β ≥ αω. Then
Lemma 7.4 (e) implies that αω t α. In particular, there exists a smallest
ordinal α0 with α0ω t α0. Let φ(x , y; P̄) be the formula defining within α0
an order ⊑ of order type α0ω, let σ ∶ α0 → α0ω be the corresponding
isomorphism, and letm be the quantifier-rank of φ. We start by establishing
the following claims.

(i) β < α0 implies βω ≤ α0.

(ii) β < α0 ≤ γ implies γ ̸ β.
(i) Let β < α0. For a contradiction, suppose that βω > α0. Then there

exists some n < ω such that βn ≤ α0 < β(n + 1). Let γ be the ordinal such
that α0+γ = β(n+ 1).Then γ ≤ β and βω = α0ω. By Lemma 7.4, it follows
that

βω = γ + βω t βω + γ = α0ω + γ t α0 + γ = β(n + 1) t β .

A contradiction to the minimality of α0.
(ii) Let β < α0 ≤ γ. If γ t β, it follows by Lemma 7.4 (e) and (i) that

ωβ ≤ α0 ≤ γ implies ωβ t β .
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A contradiction to the minimality of α0.

Having proved the above claims, we conclude the proof as follows. Let
µ ∶ α0 → ω be the function defined by

µ(i) ∶= k : iff α0k ≤ σ(i) < α0(k + 1) .

The equivalence relation

i ≈ j : iff µ(i) = µ( j)

is convex on ⟨α0 , ⊑⟩. By Lemma 3.1, ≈ is MSO-definable with the help of
one monadic parameter Q . Since ≈ has infinitely many classes, we can use
Lemma 2.3 to find a bounded (with respect to ≤) ≈-class C = µ−1(k). Sup-
pose that C ⊆ β with β < α. Let γ be the order type of β ∖ C. Since the
order type of ⟨C , ⊑⟩ is α0, it follows what we can use the restriction of the
formula φ to β to define in β a well-order of type α0 + γ. Hence, α0 + γ t β,
which contradicts (ii).

Finally, let us provide a corresponding lower bound. We start with a
technical lemma.

Lemma 7.6. Let α be a limit ordinal such that γ < α implies γ ̸ α, and let
k < ω. Assume that k = 1 or that α = ωn

, for some n. Then

αk ̸ β , for all β ≥ α(k + 1) .

Proof. For a contradiction suppose that αk t β and β ≥ α(k + 1). Let
φ(x , y; P̄) be an MSOm-formula defining in β a well-order ⊑ of order
type αk and let h ∶ ⟨β, ⊑⟩ → ⟨αk, ≤⟩ be the corresponding isomorphism.
Set B ∶= ⟨β, ≤, P̄⟩. For s ≤ k and αs ≤ i , j < α(s + 1), we have

Thm
MSO(B, i , j) =Thm

MSO(B∣[0,αs)) +Thm
MSO(B∣[αs ,α(s+1)) , i , j)

+Thm
MSO(B∣[α(s+1),β)) .

Consequently, the restriction of ⊑ to [αs, α(s + 1)) isMSOm-definable in
[αs, α(s+1)) ≅ α. LetCs ∶= h[[αs, α(s+1))] be its image in αk and let γ be
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its order type.Then γ t α, which implies by assumption that γ = α. Since
Cs and [αs, α(s + 1)) both have the same cofinality δ ∶= cf α, there exists a
sequence (csi )i<δ in [αs, α(s + 1)) that is cofinal both in ⟨[αs, α(s + 1)), ≤⟩
and in ⟨C , ⊑⟩.
By the Pigeon Hole Principle, there exists a cofinal subset Is ⊆ δ and a

theory σs such that

Thm
MSO(B∣[αs ,α(s+1)) , c

s
i ) = σs , for all i ∈ I .

Replacing (csi )i<δ by the subsequence (c
s
i )i∈I , we may assume that

Thm
MSO(B∣[αs ,α(s+1)) , c

s
i ) = σs , for all i < δ.

Consequently,

Thm
MSO(B, csi , c

t
j) ∶=

Thm
MSO(B∣[0,αs)) +Thm(B∣[αs ,α(s+1)) , c

s
i )

+Thm
MSO(B∣[α(s+1),α t)) +Thm(B∣[α t ,α(t+1)) , c

t
j)

+Thm
MSO(B∣[α(t+1),β)) ,

which, by choice of Is and It , depends only on s and t, but not on i and j.
Since ⊑ is a linear order, there exists an enumeration s0 , . . . , sk of [k + 1]

such that cs01 ⊏ ⋯ ⊏ c
sk
1 . AsTh

m(B, csi , c
t
j) does not depend on i and j, it

follows that

c
s l
i ⊏ c

s l+1
j , for all 0 < i , j < δ and all l < k .

The sequence (csi )i being cofinal in Cs , this implies that

c ⊏ cs lj , for all 0 < j < δ and c ∈ Cs i with i < l .

If k = 1, it follows that Cs0 ∪ {c
s1
1 } has order type α + 1. Hence, the order

type of ⊑ is strictly greater than α. A contradiction.
It remains to consider the case where k > 1. By assumption, this implies

that α = ωn , for some n. Each set Cs l with l > 0 can be partitioned into two
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parts Cs l = J l +K l where

J l ∶= { a ∈ Cs l ∣ ⇑a ∩ (Cs0 ∪ ⋅ ⋅ ⋅ ∪ Cs l−1) ≠ ∅} ,

K l ∶= { a ∈ Cs l ∣ Cs0 ∪ ⋅ ⋅ ⋅ ∪ Cs l−1 ⊆ ⇓a } .

Let γ l and γ′l be the order types of J l and K l . Since Cs l has order type
α = ωn , it follows that

ωn = γ l + γ′l .

The only sums with value ωn are ωn + 0 and γ + ωn with γ < ωn . The first
case is not possible since cs l1 ∈ K l implies γ′l > 0. Consequently,K l has order
type ωn = α and it follows that Cs0 +K1 + ⋅ ⋅ ⋅ +Kk−1 +{c

sk
1 } has order type

α + α(k − 1) + 1 = αk + 1. Again a contradiction to the fact that the order
type of ⊑ is αk.

Lemma 7.7. For ordinals α < β, we have

α t β iff α = γ + δ and β = δ + γ , for some γ, δ ≤ β .

Proof. (⇐) follows by Lemma 7.4. For (⇒), let us call a pair α < β of
ordinals bad if

α t β , but there are no γ, δ ≤ β with α = γ + δ and β = δ + γ .

We choose a bad pair ⟨α, β⟩ such that α minimal and β minimal for this α.
We start by establishing the following claims.

(i) α is a limit ordinal.

(ii) γ ̸ α , for all γ < α .
(iii) If γ < α implies γω < α, then η ≥ α where η is the ordinal such that

β = α + η.
(i) For a contradiction suppose that α = α0 + 1 is a successor. Then

α0 t α0 + 1 t β implies, by minimality of α, that

α0 = γ + δ and β = δ + γ , for some γ, δ ≤ β .
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If 0 < γ < ω, we obtain

α = γ + δ + 1 = (γ − 1) + δ + 1 and β = δ + γ = (δ + 1) + (γ − 1) .

A contradiction. Hence, γ ≥ ω and

α = α0 + 1 = γ + δ + 1 and β = δ + γ = δ + 1 + γ .

Again, a contradiction.
(ii) For a contradiction, suppose that there is some γ < α with γ t α.

Then γ t α t β implies, by minimality of α, that

γ = δ + ε and β = ε + δ , for some δ, ε ≤ β .

Suppose that α = γ + ξ, β = α + η, and that

δ = ωk
d + δ0 and ε = ω l

e + ε0 with δ0 < ωk and ε0 < ω l .

We distinguish three cases.
If k > l , we have β = ε + δ = δ ≤ γ. A contradiction.
If k < l , we have γ = δ+ ε = ε, which implies that β = γ+δ and δ = ξ+η.

Hence, ξ + η + γ = δ + ε = γ and it follows that

β = (γ + ξ) + η and α = γ + ξ = η + (γ + ξ) .

A contradiction to our choice of α and β.
Finally, suppose that k = l . Then

γ = ωk(d + e) + ε0 and β = ωk(d + e) + δ0 .

Hence,

α = γ + ξ = ωk(d + e) + ε0 + ξ < β ,

which implies that ε0 + ξ < δ0. It follows that ξ + δ = δ and

α = γ + ξ = δ + ε + ξ and β = ε + δ = ε + ξ + δ .
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Again a contradiction to our choice of α and β.
(iii) For a contradiction, suppose that η < α. We write

η = ωk
m + η0 and α = ω l

n + α0 ,

where η0 < ωk , α0 < ω l , and 0 < m, n < ω. Then

ηω = ωk+1 + η0 ≤ α implies l ≥ k + 1 .

Hence, we have

α = η + α and β = α + η ,

which contradicts our choice of α and β.
Having established the above claims, we conclude the proof as follows.

Suppose that

α = ωn
k + γ , for γ < ωn and 0 < k < ω .

If γ > 0, we would have

ωn
k = ωn(k − 1) + γ + ωn t ωn(k − 1) + ωn + γ = α

and ωn
k < α. A contradiction to (ii).

Consequently, γ = 0. If k = 1, that is, if α = ωn , we have

γω ≤ α , for all γ < α .

Consequently, it follows by (iii) that η ≥ α. But β = α + η ≥ α + α together
with (ii) contradicts Lemma 7.6 for k = 1.

It follows that α = ωn
k with k > 1. Suppose that β = α + η. If η < ωn ,

we obtain

α = η + α and β = α + η ,

which contradicts our choice of α and β. Consequently, η ≥ ωn and β ≥
ωn(k + 1). By Lemma 7.6 it follows that there is some γ < ωn with γ t ωn .
Furthermore, γ t ωn t β implies, by minimality of α, that

γ = δ + ε and β = ε + δ , for some δ, ε ≤ β .

But δ, ε ≤ γ < ωn implies that β = ε + δ < ωn2 ≤ β. A contradiction.
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Combining our two bounds we obtain the following characterisation of
the relation t.

Proposition 7.8. α t β if, and only if, α tλ β, for some λ ∶ β → [k] with
k < ω.

Proof. (⇐) is trivial. For (⇒), let α t β. If α = β, the claim is trivial and,
if α < β, it follows by Lemma 7.7. Hence, suppose that α > β. Then α and β
are infinite. Furthermore, we have α < βω by Lemma 7.5. Hence, the claim
follows by Lemma 7.4 (d).

Remark. (a) For this description it follows that α t β implies that we can
define α in β using a quantifier-free formula (with monadic parameters).
(b) An alternative proof of the above proposition is based on Propos-

ition IX.5.1. By that proposition, if we can define a linear order ⊑ inside
another linear order ⟨A, ≤⟩, then every ≤-interval can be partitioned into a
bounded number of ⊑-intervals. ⌟

For ordinals that are not too large, we obtain the following explicit de-
scription.

Theorem 7.9. Let α and β be ordinals.

(a) If α < ω, then

β t α iff β = α .

(b) If ωk
n ≤ α < ωk(n + 1), for 0 < n, k < ω, then

β t α iff ωk
n ≤ β ≤ ωk+1 .

(c) If α ≥ ωω
, then

β t α implies β ≥ ωω .

Proof. (a) Note that β t α implies ∣β∣ = ∣α∣.
(b) (⇒) By Lemma 7.5,

β t α implies β < αω ≤ ωk(n + 1)ω = ωk+1 .
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Furthermore, if β < α and β t α, then Lemma 7.7 implies that β = γ + δ
and α = δ+γ, for some γ, δ ≤ α. It follows that γ ≥ ωk

i and δ ≥ ωk
j where

i + j = n. Consequently,

β = γ + δ ≥ ωk
i + ωk

j = ωk
n .

(⇐) Suppose that α = ωk
n + γ and β = ωk(n + i) + δ with γ, δ < ωk

and i < ω. Then

β = ωk(n + i) + δ

t δ + ωk(n + i)

= ωk(n + i)

= ωk(n − 1) + ωk(i + 1)

t ωk(n − 1) + ωk

= ωk
n

= γ + ωk
n

t ωk
n + γ = α .

(c) For a contradiction suppose that β t α with β < ωω . By Lemma 7.7,
there are γ, δ ≤ α with β = γ + δ and α = δ + γ. Since δ + γ = α ≥ ωω , we
have γ ≥ ωω or δ ≥ ωω . In both cases it follows that β = γ + δ ≥ ωω .

Proposition 7.10. Let A be a linear order. Exactly one of the following two

conditions holds.

(i) EveryMSO-definable well-ordering on A has order type at least ωω
.

(ii) There is some k < ω, such that everyMSO-definable well-ordering on A
has an order type in the interval [ωk ,ωk+1).

Proof. Let ⊑ and ⊑′ be two MSO-definable well-orderings of order types
α and α′ respectively.Then we can use Lemma 6.11 (b) to construct anMSO-
formula φ defining an order ⊴ on α that is isomorphic to α′. Consequently,
α′ t α and the claim follows byTheorem 7.9.
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According to the preceding proposition, we can associate the following
invariant with every linear ordering.

Definition 7.11. The well-ordering indexWO(A) of a structure A is the least
number k < ω such that everyMSO-definable (with monadic parameters)
well-ordering on A has an order type less than ωk+1 (and at least one such
well-ordering exists). If such a number k does not exist, we setWO(A) ∶=
∞. ⌟

Uniformisation For We\-Ordering+

We can use the above results to give a description of which well-orders (and,
more generally, which linear orders) have weakMSO-uniformisation. We
start by showing that ωω does not have uniformisation.The proof rests on
the following technical lemma.

Lemma 7.12. Let λ be an additive labelling of ωn
with at most n − 2 colours

such that λ(α, β) depends only on the order type of [α, β). For every cofinal
increasing sequence (α i)i<ω , there exists a cofinal increasing sequence (α′i)i<ω
different from (α i)i such that

α′0 = α0 and λ(α′i , α
′
i+1) = λ(α i , α i+1) , for all i < ω .

Proof. By assumption on λ, there exists a function µ such that

λ(α, α + γ) = µ(γ) , for all α, γ < ωn .

Furthermore, we can use Proposition 2.6 to find an idempotent colour θ
such that

µ(ωk) = θ , for all k ≥ n − 2 .

Let β i be the ordinal such that α i+1 = α i + β i . Since∑i<ω β i = ωn , there
are infinitely many indices i such that β i ≥ ωn−1. In particular, there are
indices i < j < ω such that β i , β j ≥ ωn−1 and βk < ωn−1, for i < k < j. We
write

β i = ωn−1γ + δ and β j = ωn−1γ′ + δ′ with δ, δ′ < ωn−1 .
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Set l ∶= j − i and

ξ0 ∶= α i ,

ξ1 ∶= α i + ωn−1γ + ωn−2 + δ ,
ξk+1 ∶= ξk + β i+k , for 0 < k < l ,

ξ l+1 ∶= α i+l+1 .

Then ωn−2 + δ + β i+1 +⋯ + β i+l−1 < ωn−1 implies that

ξ l + β j = α i + (ωn−1γ + ωn−2 + δ) + β i+1 +⋯ + β i+l−1 + β j

= α i + ωn−1γ + ωn−2 + δ + β i+1 +⋯ + β i+l−1 + ωn−1γ′ + δ′

= α i + ωn−1γ + ωn−1γ′ + δ′

= α i + ωn−1γ + δ + β i+1 +⋯ + β i+l−1 + ωn−1γ′ + δ′

= α i + β i + ⋅ ⋅ ⋅ + β i+l

= ξ l+1 .

By assumption on λ, we have

λ(ξk , ξk+1) = µ(β i+k+1) = λ(α i+k , α i+k+1) , for 0 < k ≤ l .

Let m be the largest number such that γ = ωmγ0, for some γ0. Then γ0 =
γ1 + 1 is a successor ordinal. Hence, µ(ωn−1) = θ = µ(ωn−2) and the fact
that θ is idempotent implies that

µ(ωn−1γ) + µ(ωn−2) = µ(ωn−1+kγ0) + µ(ωn−2)

= θ ⋅ γ0 + θ
= θ ⋅ γ1 + θ + θ
= θ ⋅ γ1 + θ

= µ(ωn−1+kγ0) = µ(ωn−1γ) .

Hence,

λ(ξ0 , ξ1) = µ(ωn−1γ) + µ(ωn−2) + µ(δ)
= µ(ωn−1γ) + µ(δ)
= λ(α i , α i+1) .
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Consequently, the sequence (α′k)k<ω obtained from (αk)k<ω by replacing
the subsequence α i+1 , . . . , α j by ξ1 , . . . , ξ l has the desired properties.

Our counterexample to uniformisation is the formula stating the existence
of a cofinal sequence of length ω.

Lemma 7.13. Let φ(X,Y) be the formula stating that

“The set X has no maximal element, Y ⊆ X is unbounded in X, and its

order type is ω.”
and, for n < ω, let ψn(X,Y; P̄n) be a uniformisation of φ over the structure

⟨ωn , ≤⟩. Suppose that ψn has quantifier-rank mn and ln ∶= ∣P̄n ∣ parameters.
Then at least one of the sequences (mn)n and (ln)n is unbounded.

Proof. For a contradiction, suppose that the two sequences are bounded
by some number m. Since there are only finitely many different formu-
lae of quantifier-rank m with m parameters, we can then find a formula
ψ(X,Y; Z̄), an unbounded set I ⊆ ω, and parameters P̄n , for n ∈ I, such
that, for every n ∈ I, ψ(X,Y; P̄n) is a uniformisation of φ over ⟨ωn , ≤⟩. Let
M be the number ofMSOm+1-theories with m + 1 monadic parameters, and
choose n ∈ I with n ≥M + 2. Set O ∶= ⟨ωn , ≤, P̄n⟩. We obtain the desired
contradiction by proving that ψ is not a uniformisation of φ over O.
Let λ be the additive labelling on ωn defined by

λ(α, β) ∶=Thm+1
MSO(O∣[α ,β) , α) .

We induce a tree structure on ωn using the bijection µ ∶ ω<n → ωn given by

µ(⟨k0 , . . . , k i−1⟩) ∶= ωn−1
k0 + ⋅ ⋅ ⋅ + ωn−i+1

k i−2 + ωn−i(k i−1 + 1) .

Note that the successors of every vertex form an order of order type ω and
that the lexicographic ordering on ω<n is mapped via µ to the linear ordering
of ωn . Applying Proposition 2.4 to the tree T ∶= ω<n and the labelling

λ′(u, v) ∶= λ(µ(u), µ(v))
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we obtain a prefix P ⊆ T and theories θ i jk such that

λ(µ(u), µ(v)) = θ∣u∣,∣v∣,∣u⊓v∣ , for all u < v in P .

Note that, for leaves u, v ∈ P, the order type of the interval [µ(u), µ(v))
determines the value of ∣u ⊓ v∣ since

β = α + ωs0
k0 + ⋅ ⋅ ⋅ + ωs l

k l implies ∣u ⊓ v∣ = n − s0 − 1 .

Let H ⊆ ωn be the image of the leaves of P under µ. Then H has order
type ωn and, for α < β inH, the colour

λ(α, β) only depends on the order type of [α, β) ∩H .

Let θ0 be the theory such that

Thm+1
MSO(⟨O,H⟩∣[α ,β)) = θ0 , for α ∈ H with successor β inH .

(Note that θ0 can be computed from λ(α, β).) Since we have

Thm+1
MSO(⟨O,H⟩∣[α ,β)) = ∑

i<γ
θ0 ,

for α < β in H such that [α, β) ∩ H has order type γ, it follows that the
theory

Thm+1
MSO(⟨O,H⟩∣[α ,β))

also only depends on the order type of [α, β) ∩H.
Since ψ(X,Y; P̄n) is an uniformisation of φ(X,Y), there exists some

set A such that

⟨ωn , ≤⟩ ⊧ ψ(H,A; P̄n) .

To obtain the desired contradiction, we will show that there exists a second
such set. Let (α i)i<ω be an enumeration of A. By Lemma 7.12, we obtain a
second cofinal sequence (α′i)i<ω such that α′0 = α0 and

Thm+1
MSO(⟨O,H⟩∣[α′i ,α′i+1)) =Th

m+1
MSO(⟨O,H⟩∣[α i ,α i+1)) ,
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for all i < ω. We claim that

⟨ωn , ≤⟩ ⊧ ψ(H,A′; P̄n) , where A
′ ∶= { α′i ∣ i < ω } .

A contradiction to the uniqueness of A.
Note that the theory

Thm+1
MSO(⟨O,H⟩∣[α i ,α i+1))

uniquely determines

Thm
MSO(⟨O,H⟩∣[α i ,α i+1) , {α i}) ,

since a formula ϑ belongs to the latter if, and only if, the formula

∃z[∀u(z ≤ u) ∧ ϑ[x ∈ {α i} ↦ x = z]]

belongs to the former, where ϑ[x ∈ {α i} ↦ x = z] denotes the formula
obtained from ϑ by replacing every atomic subformula of the form x ∈ {α i}
by the formula x = z. (Wemay assume without loss of generality thatm ≥ 1.)
Consequently,

Thm+1
MSO(⟨O,H⟩∣[α′i ,α′i+1)) =Th

m+1
MSO(⟨O,H⟩∣[α i ,α i+1))

implies that

Thm
MSO(⟨O,H⟩∣[α′i ,α′i+1) , {α

′
i}) =Th

m
MSO(⟨O,H⟩∣[α i ,α i+1) , {α i}) .

It follows that

Thm
MSO(O,H,A′)

=Thm
MSO(⟨O,H⟩∣[0,α′0) ,∅) + ∑

i<ω
Thm

MSO(⟨O,H⟩∣[α′i ,α′i+1) , {α
′
i})

=Thm
MSO(⟨O,H⟩∣[0,α0) ,∅) + ∑

i<ω
Thm

MSO(⟨O,H⟩∣[α i ,α i+1) , {α i})

=Thm
MSO(O,H,A) ,

which proves our claim.
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Proposition 7.14. ⟨α, ≤⟩ does not haveMSO-uniformisation, for α ≥ ωω
.

Proof. We claim that the formula φ(X,Y) from the preceding lemma ex-
pressing that

“The set X has no maximal element, Y ⊆ X is unbounded in X, and its
order type is ω.”

has noMSO-uniformisation. For a contradiction, suppose that there is an
MSO-formula ψ(X,Y; P̄) uniformising φ and let m be its quantifier-rank.
For n < ω and A ⊆ B ⊆ ωn , we have

Thm(⟨α, ≤,A, B, P̄⟩)

=Thm(⟨α, ≤,A, B, P̄⟩∣[0,ωn)) +Thm(⟨α, ≤,A, B, P̄⟩∣[ωn ,α))

=Thm(⟨α, ≤,A, B, P̄⟩∣[0,ωn)) +Thm(⟨α, ≤,∅,∅, P̄⟩∣[ωn ,α)) .

As the second theory does not depend on A and B it follows that, for sets
B ⊆ A ⊆ ωn , the truth value of ψ(A, B; P̄) only depends on

Thm(⟨α, ≤,A, B, P̄⟩∣[0,ωn)) .

Therefore we can find, for every n < ω, anMSOm-formula ψn(X,Y; P̄n)
with ∣P̄n ∣ = ∣P̄∣ parameters that uniformises φ over ⟨ωn , ≤⟩. A contradiction
to Lemma 7.13.

It remains to show that all smaller ordinals do have uniformisation. Since
each such ordinal can be constructed from 1 and ω using addition and multi-
plication, it is sufficient to prove the following lemmas.

Lemma 7.15. If α and β are ordinals with effective weakMSO-uniformisation,
then so are α + β and αβ.

Proof. Let φ(X̄, Ȳ) ∈ MSOm . We start with the sum α + β. Let A be the
prefix of order type α and B the suffix of order type β. By the composition
theorem for ordered sums, we know that there exists a set Θ of pairs of
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MSOm-theories such that

⟨α + β, ≤⟩ ⊧ φ(P̄, Q̄) iff there is some ⟨σ , τ⟩ ∈ Θ such that

Thm
MSO(⟨α + β, ≤, P̄, Q̄⟩∣A) = σ

andThm
MSO(⟨α + β, ≤, P̄, Q̄⟩∣B) = τ .

By assumption we can choose, for each pair ⟨σ , τ⟩, a uniformisation ψσ
of⋀ σ over α and one ϑτ of⋀ τ over β. Then φ has a uniformisation stating
that

“There is some ⟨σ , τ⟩ ∈ Θ such that the restriction to A satisfies ψσ and
the restriction to B satisfies ϑτ .”

This statement can be expressed in MSO using the parameters A, B and
those used by the formulae ψσ and ϑτ .

For αβ we proceed analogously. Note that we can write αβ as an ordered
sum of β many copies of α. By Lemma 3.1 we can define the relation ∼ of
being in the same copy using some MSO-formula with a single monadic
predicate. Furthermore, by the composition theorem for generalised sums,
there exists someMSO-formula χ such that

⟨αβ, ≤⟩ ⊧ φ(P̄, Q̄)

if, and only if, there exists a labelling λ of β byMSOm-theories satisfying

⟨β, ≤, λ⟩ ⊧ χ .

Again we fix, for every theory θ, a uniformisation ψθ of⋀ θ over α. Since
the relation ∼ is definable, we can express inMSO the statement

“There exists a labelling λ of the ∼-classes satisfying χ such that every
restriction of αβ to a single ∼-class C satisfies ψλ(C).”

We can generalise the proof of the preceding lemma as follows.

Exercise 7.2. Let I be a structure with weak MSO-uniformisation, let
m, n < ω, and let (Ai)i∈I be a family of structures such that, for every
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i ∈ I and for everyMSOn-formula φ(X̄, Ȳ; P̄) with at most n parameters,
there exists anMSOm-formula ψ(X̄, Ȳ; Q̄) with at most m parameters that
is an uniformisation of φ over Ai . Prove that the generalised sum∑i∈I Ai
has weakMSO-uniformisation. ⌟

Proposition 7.16. ⟨ω, ≤⟩ has effective weakMSO-uniformisation.

Proof. Let φ(X̄, Ȳ) be anMSO-formula (possibly with parameters). Repla-
cing φ by the formula

φ′(X̄, Ȳ) ∶= φ(X̄, Ȳ) ∨ [¬∃Ȳ′φ(X̄, Ȳ′) ∧⋀
i
Yi = ∅]

we may assume without loss of generality that, for every X̄, there is some Ȳ
satisfying φ(X̄, Ȳ). Note that we can encode every tuple of sets X̄ by an
ω-word over the alphabet Σ ∶= ℘(X̄). Similarly, we can encode a tuple X̄Ȳ

by an ω-word over the alphabet Σ × Γ, where Γ ∶= ℘(Ȳ). According to
Theorem III.4.7, we can use this encoding to translate φ into a deterministic
ω-automatonA = ⟨Q , Σ × Γ , ∆, q0 ,Ω⟩.
To construct the desired uniformisation, we define a parity game G simu-

latingA on an unspecified input word.The positions are

V◇ ∶= ω × Q × Σ and V◻ ∶= ω × Q .

The initial position is ⟨0, q0⟩ ∈ V◻. In the position ⟨k, p⟩ ∈ V◻, Player ◻
chooses some letter a ∈ Σ and the game proceeds to position ⟨k, p, a⟩. Then
Player◇ chooses a transition ⟨p, c, q⟩ ∈ ∆ such that c = ⟨a, b⟩, for some
b ∈ Γ, and the game continues in position ⟨k + 1, q⟩. Player◇ wins a play

⟨0, q0⟩, ⟨0, q0 , a0⟩, ⟨1, q1⟩, ⟨1, q1 , a1⟩, . . .

of this game if the corresponding sequence q0 , q1 , . . . of states satisfies the
parity condition.
By construction it follows that Player◇ wins this game from every pos-

ition and that every play corresponds to a pair of tuples X̄, Ȳ satisfying φ.
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As parity games are positionally determined, we can fix a memory-less win-
ning strategy σ for Player◇. Furthermore, being memory-less, we can en-
code σ by a tuple S̄ of monadic predicates. Let ψ(X̄, Ȳ; S̄) be an MSO-
formula stating that Ȳ are the sets determined by the strategy σ in the
game G when Player ◻ uses (an ω-word encoding) the sets X̄ to make his
choices. This formula is a uniformisation of φ.

In summary, we have obtained the following characterisation.

Theorem 7.17. Let A be a well-order of order type α. The following statements

are equivalent.

(1) A has weakMSO-uniformisation.

(2) A has effective weakMSO-uniformisation.

(3) α < ωω
.

(4) WO(A) < ∞.

Proof. (3)⇔ (4) follows byTheorem 7.9; (2)⇒ (1) is trivial; and (1)⇒ (3)
follows by Proposition 7.14. For the remaining direction (3)⇒ (2), note
that the 1-element order 1 trivially has effective weakMSO-uniformisation.
Furthermore, we have shown in Proposition 7.16 that the same holds for ω.
As every ordinal α < ωω can be obtained from ω and 1 using addition and
multiplication, it follows by Lemma 7.15 that every ordinal less than ωω has
effective weakMSO-uniformisation.

For arbitrary linear orders, we obtain the following result.

Corollary 7.18. Let A be a linear order. The following statements are equivalent.

(1) A has weakMSO-uniformisation.

(2) A has effective weakMSO-uniformisation.

(3) WO(A) < ∞.

Proof. We start by proving that, if ⊑ is a well-order definable in A, then
⟨A, ≤⟩ has [effective] weakMSO-uniformisation if, and only if, ⟨A, ⊑⟩ has.
By symmetry, it is sufficient to prove one direction. Hence, assume that
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⟨A, ⊑⟩ has weak MSO-uniformisation. To show that so does ⟨A, ≤⟩, con-
sider a formula φ(X̄, Ȳ) ∈ MSO. Let ϑ(x , y; P̄) be the formula defining ⊑.
By Lemma 6.11 (b), there exists a formula defining the original ordering ≤
in terms of ⊑. Let φ′ be the formula obtained from φ by replacing every
occurrence of the relation ≤ by χ. By assumption, there exists a uniformisa-
tion ψ′(X̄, Ȳ; S̄) of φ′ over ⟨A, ⊑⟩. Let ψ be the formula obtained from ψ′
by replacing every occurrence of the relation ⊑ by ϑ. Then ψ is a uniformisa-
tion of φ. Furthermore, if ψ′ is computable from φ′, we can also compute ψ
from φ.
It remains to prove the above equivalences. (2)⇒ (1) is trivial.
(1)⇒ (3) Suppose that A has weakMSO-uniformisation. By the above

claim every ordinal definable inside of A also hasMSO-uniformisation. By
Theorem 7.17, it follows that every such ordinal is less than ωω . Furthermore,
since A has weakMSO-choice, it follows byTheorem 6.3 that at least one
such ordinal exist. Hence,WO(A) < ∞.
(3) ⇒ (2) If WO(A) < ∞, we can define a well-ordering ⊑ on A of

order type α < ωω . By Theorem 7.17, ⟨A, ⊑⟩ has effective weak MSO-
uniformisation. By the above claim, so does ⟨A, ≤⟩.

Uniformisation For Tree+

The above results can now be generalised to trees. Recall the notion of a tame
tree from Definition 6.2 which we introduced above to characterise when a
generalised tree has weakMSO-choice.We use the following stronger notion
to characterise weakMSO-uniformisation.

Definition 7.19. A generalised tree T is very tame if it is tame and there
exists a constant l < ω such thatWO(β) ≤ l , for all branches β. ⌟

Theorem 7.20. Let T be a generalised tree. The following statements are equi-

valent.

(1) T has weakMSO-uniformisation.

(2) T has effective weakMSO-uniformisation.

(3) T is very tame.
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Before giving the proof, let us note the following composition lemma.

Lemma 7.21. Given an MSO-formula φ(X̄; Ȳ), we can compute an MSO-
formula ψ(X̄; Z̄) with the following property. For every generalised tree T, every
branch β, and all sets A i ⊆ β and Pi ⊆ T,

T ⊧ φ(Ā, P̄) iff ⟨β, ≤⟩ ⊧ ψ(Ā; Q̄) ,

where the predicates Q̄ = (Qθ)θ are defined by

Qθ ∶= { v ∈ β ∣Thm
MSO(⟨T, P̄⟩∣Bv ) = θ } ,

Bv ∶= {w ∈ T ∣ w > v and w ≱ z for all z ∈ β with z > v } .

Proof. Fix a formula φ(X̄, Ȳ). Given a branch β, we can write T as a gener-
alised sum followed by a quantifier-free interpretation τ :

⟨T, P̄⟩ = τ(∑
v∈β
⟨T, P̄, {v}⟩∣Bv∪{v}) .

Consequently, there exist formulae ψ0 , χ0 , . . . , χn−1 such that

T ⊧ φ(Ā; P̄) iff ⟨β, ≤⟩ ⊧ ψ0(⟦χ0(Ā, P̄)⟧, . . .) , for all Ā, P̄ .

Furthermore, there exists a quantifier-free interpretation σ such that

⟨T, Ā, P̄⟩∣Bv∪{v} = σ(⟨T, Ā, P̄⟩∣{v} ⊕ ⟨T,∅, P̄⟩∣Bv) ,

for v ∈ β, A i ⊆ β, and Pi ⊆ T. We can therefore construct formulae
ϑ i(x; Z̄) such that

⟨T, Ā, P̄⟩∣β ⊧ ϑ i(v; Q̄) iff ⟨T, Ā, P̄⟩∣Bv∪{v} ⊧ χ i ,

for v , Ā, P̄ as above. Substituting these formulae intoψ0, we obtain anMSO-
formula ψ such that

⟨β, ≤⟩ ⊧ ψ(Ā, P̄, Q̄) iff ⟨β, ≤⟩ ⊧ ψ0(⟦χ0(Ā, P̄)⟧, . . .)

iff T ⊧ φ(Ā; P̄) .

435



VI. Linear Orders

Proof of Theorem 7.20. (2)⇒ (1) is trivial.
(1) ⇒ (3) Suppose that T has weak MSO-uniformisation. Then it in

particular has weakMSO-choice, which implies byTheorem 6.3 that T is
tame. Let φ(X,Y) be the formula stating that

“X is a chain with no maximal element, Y ⊆ X is cofinal, and the order
type of Y is ω.”

By assumption, φ(X,Y) has a uniformisation ψ(X,Y; P̄). We can use
Lemma 7.21 to construct formulae ϑ, χ0 , . . . , χn−1 such that

T ⊧ ψ(X,Y; P̄) iff ⟨β, ≤⟩ ⊧ ϑ(X,Y; Q̄) ,

for every branch β and all setsX,Y ⊆ β. It follows that ϑ is a uniformisation
of φ over ⟨β, ≤⟩. Since the formula ϑ does not depend on β, it follows by
Lemma 7.13 thatWO(β) is bounded.

(3)⇒ (2) Suppose that T is very tame. By definition, this means that T is
thin and there exist numbers k, n, l < ω such that the branching degree of T
is bounded by n and

HR(β) ≤ k and WO(β) ≤ l , for every branch β .

Furthermore, it follows by Proposition V.5.9 that T has a skeleton S, and we
have seen in Lemma 6.12 that S is definable.Note that S forms awell-founded
tree S = ⟨S , ≤⟩ with tree-order

β ≤ γ : iff u ≤pf v , for some u ∈ β and v ∈ γ .

LetU be a set containing one vertex from each subbranch β ∈ S. Note that
U with the order induced by that of S forms a tree U = ⟨U , ≤⟩ isomorphic
to S. For u ∈ U, we denote by βu the subbranch βu ∈ S with u ∈ βu . Then
the map u ↦ βu is an isomorphism U → S. Finally, for u ∈ U and v ∈ T,
we set

Au ∶= { v ∈ T ∣ v ≥pf w , for some w ∈ βu } ,
Ev ∶= {w ∈ Suc(u) ∣ v ∈ βu , ⇓w ∩ ⇓βu = ⇓v } .

We start by proving the following claims.
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(i) The tree-order onU which is induced by that of S is definable.
(ii) Given u ∈ U, we can define the following sets: the subbranch βu ∈ S ;

the successor set Suc(u) ; and the subtree Au . Similarly, given v ∈ T,
we can define Ev .

(iii) Suc(u) is a set of representatives for the partition (Av)v∈Suc(u).
(iv) ∣Ev ∣ ≤ n and Suc(u) = ∑v∈βu Ev

(v) The tree-order on βu induces a (definable) ordering on Suc(u) with

WO(Suc(u)) =WO(βu) ≤ l .

(vi) For every m < ω, there exists a constant m+ < ω such that, for all
vertices u ∈ U and all predicates P̄, the theory

Thm+
MSO(⟨T, P̄⟩∣βu , Q̄u) determines Thm

MSO(⟨T, P̄⟩∣Au) ,

where the predicates Q̄u = (Qu ,θ)θ are defined by

Qu ,θ ∶= { v ∈ βu ∣Thm
MSO(⟨T, P̄⟩∣Bv) = θ } ,

Bv ∶= ⋃
w∈Ev

Aw .

(i) and (ii) follow by definability of S (cf. Lemma 6.12).
(iii) By definition, we have v ∈ Av . Conversely, if v and v′ are distinct

successors of u, then Av ∩Av′ = ∅.
(iv) We have ∣Ev ∣ ≤ n since the branching degree of T is bounded n.

Clearly, Ev ∩ Ew = ∅, for v ≠ w, and every w ∈ Suc(u) belongs to some
set Ev with v ∈ βu .
(v) By (iv), Suc(u) = Suc(βu) is obtained from βu by replacing each

vertex by a finite chain of length at most n. Let γu be the branch of T con-
taining βu . Then

WO(Suc(u)) =WO(βu) ≤WO(γu) ≤ l .

Furthermore, choosing nmonadic predicates W̄ such that ∣Wi ∩Ev ∣ ≤ 1, for
all i , v, we can define the ordering onSuc(u)with the help of the ordering≤pf
on βu and the parameters W̄ .
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(vi) By Lemma 7.21, exist sets Q̄ such that, for every MSOm-theory θ,
there is some formula ψθ with

⟨T, P̄⟩∣Au ⊧ ⋀ θ iff ⟨T, P̄⟩∣βu ⊧ ψθ(Q̄) .

We can take for m+ the maximum of the quantifier-ranks of these formu-
lae ψθ .

Having established the above claims, we now construct the desired uni-
formisation for a formula φ(X̄, Ȳ) similarly as in Lemma 7.15. Given sets X̄,
we consider its restriction to each subbranch β ∈ S. SinceWO(β) ≤ l , β has
uniformisation, we can define unique subsets Ȳβ in β for X̄∣β . The union
of all these will be the desired sets Ȳ. To make this work, our choices Ȳβ
have to be consistent with each other. With each u ∈ U we associate an
instruction of how to choose Ȳu in βu . This instruction must be consistent
with the already chosen subset of Au . As U is well-founded, we can then
ensure consistency by induction on u.

The details are as follows. Let P̄ be all the parameters used in φ and in the
definitions ofU and S, and set T∗ ∶= ⟨T , ≤pf , P̄⟩. Fix sets X̄ in T such that

T∗ ⊧ ∃Ȳφ(X̄, Ȳ) .

Let m be the quantifier rank of φ and m+ the constant from (vi), set s ∶=
∣P∣ + ∣X∣ and t ∶= ∣Y∣, let r be the number of predicates Q̄u from (vi), and
let Θ i

j be the set of allMSOi -theories with jmonadic parameters.
By induction on the distance of u ∈ U from the root, we will construct

◆ twoMSO-formulae ψ′u(X̄, Ȳ; C̄u) and ψ′′u (X̄, Ȳ; M̄1
u , D̄u) with mon-

adic parameters C̄u , M̄1
u in Suc(u) and D̄u in βu , respectively,

◆ two labellings µ1u ∶ Suc(u) → Θm
s+t and µ2u ∶ Suc(u) → Θm+

s+t+r ,

◆ sets Ȳu in βu , and
◆ a theory θ
such that the union of the sets Ȳu will be the desired set Ȳ and the formulae
ψ′u and ψ′′u can be used to determine µ1u , µ2u , and Ȳu .

First, suppose that u ∈ U is the root of U. We say that a pair of labellings
µ1u ∶ Suc(u) → Θm

s+t and µ2u ∶ Suc(u) → Θm+
s+t+r is θ-consistent, for some
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theory θ, if there exist sets Ȳ in Au such that

µ1u(v) =Th
m
MSO(⟨T

∗ , X̄, Ȳ⟩∣Av) , for all v ∈ Suc(u) ,

µ2u(v) =Th
m+
MSO(⟨T

∗ , X̄, Ȳ⟩∣βv , Q̄
′
v) , for all v ∈ Suc(u) ,

where

Q
′
v ,σ ∶= {w ∈ βv ∣Th

m
MSO(⟨T

∗ , X̄, Ȳ⟩∣Bw) = σ } ,

and, for all Ȳ,

Thm+
MSO(⟨T

∗ , X̄, Ȳ⟩∣βu , Q̄u) = θ implies T∗ ⊧ φ(X̄, Ȳ) ,

where

Qu ,σ ∶= { v ∈ βu ∣ ⊕w∈Ev µ
1
u(w0) = σ }

are the sets from (vi) (where ⊕ is the operation on theories corresponding
to taking the disjoint union of the underlying structures). Note that T∗ ⊧
∃Ȳφ(X̄, Ȳ) implies that there exist a theory θ and labellings µ1u , µ2u that
are θ-consistent. We choose θ minimal (in some fixed enumeration of all
theories) with this property. Let M̄ i

u be unary predicates encoding µ i
u . By the

composition theorem for finite disjoint unions, the sets Q̄u can be defined
in terms of the labelling µ1u . Consequently, there exists anMSO-formula φ′
such that

⟨T∗ , X̄⟩∣Au∖βu ⊧ φ′(M̄1
u , M̄

2
u) iff µ1u , µ

2
u are θ-consistent.

By (vi), we obtain a formula φ′′ andmonadic predicates R̄ in Suc(u) (which
are definable in ⟨T∗ , X̄⟩) such that

T∗∣Suc(u) ⊧ φ′′(R̄, M̄1
u , M̄

2
u) iff µ1u , µ

2
u are θ-consistent.

By (v) and Corollary 7.18, it follows that φ′′ has a uniformisation ψ′u (with
monadic parameters C̄u) over T∗∣Suc(u) (where we consider R̄ as the given
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variables X̄, and M̄1
M̄

2 as the unique ones Ȳ wewant to compute). Similarly,
the statement

Thm+
MSO(⟨T

∗ , X̄, Ȳ⟩∣βu , Q̄u) = θ

has a uniformisation ψ′′u (X̄, Ȳ; M̄1
u , D̄u) with additional parameters D̄u .

We choose for M̄1
u , M̄

2
u , and Ȳu the sets determined by ψ′u and ψ′′u .

For the inductive step, suppose that we have already defined ψ′w , ψ′′w , C̄w ,
D̄w , µ1w , µ2w , and Ȳw , and let u ∈ Suc(w) be a successor ofw. By consistency
of µ1w , µ2w we can find sets Ȳ′

u in Aw such that

µ1w(u) =Th
m
MSO(⟨T

∗ , X̄, Ȳ′
u⟩∣Au) ,

µ2w(u) =Th
m+
MSO(⟨T

∗ , X̄, Ȳ ,′u Q̄
′
v⟩∣βu) .

Similarly to above, we say that a pair of labellings µ1u ∶ Suc(u) → Θm
s+t and

µ2u ∶ Suc(u) → Θm+
s+t+r is consistent if

µ1u(v) =Th
m
MSO(⟨T

∗ , X̄, Ȳ⟩∣Av) , for all v ∈ Suc(u) ,

µ2u(v) =Th
m+
MSO(⟨T

∗ , X̄, Ȳ⟩∣βv , Q̄
′
v) , for all v ∈ Suc(u) ,

and Thm+
MSO(⟨T

∗ , X̄, Ȳ⟩∣βu , Q̄u) = µ2w(u)

implies Thm
MSO(⟨T

∗ , X̄, Ȳ⟩∣Au) = µ
1
w(u) , for all Ȳ ,

where Q̄u and Q̄
′
v are the predicates from (vi) as above. Let M̄ i

u be unary
predicates encoding µ i

u . As above, we obtain a formula φ′′ and monadic
predicates R̄ in Suc(u) such that

T∗∣Suc(u) ⊧ φ′′(R̄, M̄1
u , M̄

2
u) iff µ1u , µ

2
u are consistent.

Then φ′′ has a uniformisation ψ′u (with monadic parameters C̄u) over
T∗∣Suc(u). Similarly, the statement

Thm+
MSO(⟨T

∗ , X̄, Ȳ⟩∣βu , Q̄u) = µ2w(u)

has a uniformisation ψ′′u (X̄, Ȳ; M̄1
u , D̄u) with additional parameters D̄u .

We choose for M̄1
u , M̄

2
u , and Ȳu the sets determined by ψ′u and ψ′′u .
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8 First-order logic

This concludes the inductive definition of ψ′u , ψ′′u , µ1u , µ2u , C̄u , D̄U , Ȳu ,
and θ. Note that both the quantifier-ranks and the number of monadic
parameters of the formulae ψ′u and ψ′′u are bounded. Hence, there are only
finitely many possible choices for these formulae. Let C̄ and D̄ be the unions
of the sets (C̄u)u and (D̄u)u , respectively. The desired uniformisation of φ
is the formula stating that there exists predicates M̄1 , M̄2 such that

⟨T∗ , R̄, M̄1
M̄

2⟩∣Suc(u) ⊧ ψ′u , for all u ∈ U ,

⟨T∗ , X̄, Ȳ⟩∣βu ⊧ ψ′′u (X̄, Ȳ; M̄1∣Suc(u) , D̄u) , for all u ∈ U .

To see that we can express this inMSO, note that the formulae ψ′u and ψ′′u
can both be determined from the labellings M̄1 , M̄2. Furthermore, all steps
of the above construction are effective. Hence, we can compute the resulting
formula from φ.

8 Fir#-Order Logi$

We have already shown in Theorem II.5.1 that the logics FO and LTL are
equivalent of over finite words.The aim of this section is to generalise this
statement to all Dedekind-complete linear orders. To do so, we need to
introduce a dual version of the modal operator U that looks backwards. But
first, let us define the notion of completeness we use.

Definition 8.1. A linear order A isDedekind-complete if, for every decom-
position A = I + K with I,K ≠ ∅, the supremum sup I and the infimum
inf K exist. ⌟

Thus, Dedekind-completeness is weaker than completeness since unboun-
ded sets are not required to have a supremum or an infimum, that is, we do
not require the order to have a least element or a greatest one.

Definition 8.2. Let Σ be an alphabet.
(a) The formulae of bidirectional linear temporal logic BLTL are built up

from atomic formulae of the form Pa with a ∈ Σ using boolean operations
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VI. Linear Orders

and two modal operators of the form

φ U ψ and φ S ψ , for φ,ψ ∈ BLTL .

We read these formulae as, respectively, ‘φ until ψ’, and ‘φ since ψ’. The
semantics is defined as follows. Given a Σ-labelled linear order A and an
element s ∈ A, we set

A, s ⊧ Pa : iff s ∈ PA
a ,

A, s ⊧ φ U ψ : iff there is some t > s such that A, t ⊧ ψ
and A, u ⊧ φ for all s < u < t ,

A, s ⊧ φ S ψ : iff there is some t < s such that A, t ⊧ ψ
and A, u ⊧ φ for all t < u < s .

Boolean operations are interpreted in the usual way.
(b) (Forward) linear temporal logic LTL is the fragment of BLTL without

the operator S.
(c) It is common to use the following abbreviations:

Xφ ∶= false U φ (‘next φ’),
Yφ ∶= false S φ (‘yesterday φ’),
Fφ ∶= true U φ (‘eventually φ’),
Pφ ∶= true S φ (‘past φ’),
Gφ ∶= ¬F¬φ (‘always φ’),
Hφ ∶= ¬P¬φ (‘hitherto φ’).

Sometimes it is also convenient to introduce starred versions of these oper-
ators that include the current position:

φ U∗ ψ ∶= ψ ∨ φ U ψ and φ S∗ ψ ∶= ψ ∨ φ S ψ ,

and analogously for F∗, G∗, P∗, and H∗. ⌟
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8 First-order logic

Examples. (a)The formula

GFtrue

states that there is no maximal element.
(b)The formula

¬Xtrue ≡ ¬(false U true)

states that the given element does not have an immediate successor.
(c) Similarly,

¬(¬P U true)

states that, above the given element, the elements in P are not bounded from
below. ⌟

Theorem8.3 (Kamp). FO and BLTL are equivalent over the class of all coloured
Dedekind-complete linear orders.

’Equivalent’ here means that there are translations (in both directions)
between FO-formulae φ(x) with one free variable and BLTL-formulae φ′
such that

A ⊧ φ(a) iff A, a ⊧ φ′ ,

for all coloured Dedekind-complete linear orders A and all a ∈ A.
The remainder of this section is devoted to a proof of this theorem.We

start with the trivial direction: the translation of BLTL into FO.

Lemma 8.4. For every BLTL-formula φ, there exists an FO-formula φ∗(x)
such that

A ⊧ φ(s) iff A, s ⊧ φ∗ ,

for every linear order A and all s ∈ A.
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VI. Linear Orders

Proof. We construct φ∗ by induction on φ.

P
∗
a (x) ∶= Pax ,

(φ ∧ ψ)∗(x) ∶= φ∗(x) ∧ ψ∗(x) ,
(¬φ)∗(x) ∶= ¬φ∗(x) ,

(φ U ψ)∗(x) ∶= ∃y[y > x ∧ φ∗(y) ∧ ∀z[x < z < y → ψ∗(z)]] ,
(φ S ψ)∗(x) ∶= ∃y[y < x ∧ φ∗(y) ∧ ∀z[y < z < x → ψ∗(z)]] .

The other direction is more involved. We introduce the following normal
form for FO-formulae which can then easily be translated into BLTL.

Definition 8.5. (a) A basic temporal formula is a first-order formula of the
form

φ(x̄) = ∃z̄[ ⋀
i<m

x i = zσ(i) ∧ ⋀
i<n

z i < z i+1 ∧ ⋀
i<n

α i(z i)

∧ ⋀
i<n

∀y[z i < y < z i+1 → β i+1(y)]

∧ ∀y[y > zn−1 → βn(y)] ∧ ∀y[y < z0 → β0(y)]]

where x̄ = ⟨x0 , . . . , xm−1⟩, z̄ = ⟨z0 , . . . , zn⟩, σ ∶ [m] → [n] is an arbitrary
function, and α i and β i are (translations of ) BLTL-formulae. To simplify
notation, we will write such a formula more suggestively as

⟪β0[α0]β1[α1] . . . βn−1[αn−1]βn⟫σ(x̄) .

(b) A standard temporal formula is a disjunction of basic temporal formulae.
⌟

We will prove below that every first-order formula can be translated into
a standard temporal formula. Before doing so, let us note how to translate
standard temporal formulae into BLTL.

Lemma 8.6. Over coloured linear orders, every standard temporal formula with

at most one free variable is equivalent to a BLTL-formula.
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8 First-order logic

Proof. First, suppose that

φ(x0) = ⟪β0[α0]β1[α1] . . . βn−1[αn−1]βn⟫σ(x0)

has exactly one free variable x0. Let k ∶= σ(0). Then φ is equivalent to the
BLTL-formula

ψ ∶= αk ∧ [βk+1 U [αk+1 ∧ [βk+2 U⋯U [αn−1 ∧Gβn]⋯]]]
∧ αk ∧ [βk S [αk−1 ∧ [βk−1 S⋯ S [α0 ∧Hβ0]⋯]]] .

It remains to consider the case where

φ = ⟪β0[α0]β1[α1] . . . βn−1[αn−1]βn⟫

has no free variables. Then

φ ≡ ∃x0⟪β0[α0]β1 . . . βn−1[αn−1]βn⟫σ(x0)

with σ(0) = 0. Let ψ ∈ BLTL be the translation of

⟪β0[α0]β1 . . . βn−1[αn−1]βn⟫σ(x0) .

Then φ is equivalent to the BLTL-formula PFψ.

It remains to show that every FO-formula is equivalent to a standard
temporal formula. To do so we prove that standard temporal formulae are
closed under all operations of first-order logic. But first note that we only
need to consider formulae with at most two free variables.

Lemma 8.7. Every basic temporal formula is equivalent to a conjunction of such

formulae each of which have at most two free variables.

Proof. Consider a basic temporal formula

φ(x̄) = ⟪β0[α0]β1 . . . βn−1[αn−1]βn⟫σ(x̄) ,

with m ∶= ∣x̄∣ > 2 free variables. We prove the claim by induction on m.
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First, consider the case where σ(i) = σ( j) for some i ≠ j. Let x̄′ be all
variables except for x j and let σ ′ ∶ [m − 1] → [n] be the restriction of σ to
[m] ∖ { j}. Then

φ(x̄) ≡ ⟪β0[α0]β1 . . . βn−1[αn−1]βn⟫σ ′(x̄
′)

∧ ⟪true[true]true⟫τ(x i , x j) ,

where τ is the unique function [2] → [1]. Hence, the claim follow by induct-
ive hypothesis.
It remains to consider the case where σ is injective. Pick an index k < m

such that

σ(i) < σ(k) < σ( j) , for some i , j .

Let x̄′ be the set of all variables x i with σ(i) < σ(k) and x̄
′′ those with

σ(i) > σ(k). Let µ′ ∶ [∣x̄′∣] → [∣x̄∣] and µ′′ ∶ [∣x̄′′∣] → [∣x̄∣] be the
functions such that

x
′
i = xµ′(i) and x

′′
i = xµ′′(i) .

Then

φ(x̄) ≡ ⟪β0[α0]β1 . . . βk[αk]true⟫σ ′(x̄
′
xk)

∧ ⟪true[αk]βk+1 . . . βn−1[αn−1]βn⟫σ ′′(x̄
′′
xk) ,

where σ ′ ∶ [∣x̄′∣+ 1] → [k+ 1] and σ ′′ ∶ [∣x̄′′∣+ 1] → [n−k] are the functions
with

σ ′(i) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

σ(µ′(i)) if i < ∣x̄′∣ ,
k if i = ∣x̄′∣ ,

σ ′′(i) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

σ(µ′′(i)) − k if i < ∣x̄′′∣ ,
0 if i = ∣x̄′′∣ .

Hence, the claim follows by inductive hypothesis.
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8 First-order logic

Theclosure properties of standard temporal formulae are relatively straight-
forward to establish, except for negation, which wewill treat separately below.

Lemma 8.8. The set of standard temporal formulae is closed under disjunctions,

conjunctions, and existential quantifiers.

Proof. Closure under disjunctions and existential quantifiers is trivial Before
taking a look at conjunction let us show that, if φ(x̄) is a basic temporal
formula with m ∶= ∣x̄∣ free variables, then φ(x̄ y) (considered as a formula
with one additional unused variable y) is equivalent to a standard temporal
formula. If

φ(x̄) = ⟪β0[α0]β1 . . . βn−1[αn−1]βn⟫σ(x̄) ,

there are 2n + 1 possible intervals where the element y can be located.This
results in the definition

φ(x̄) ≡ ⋁
0≤i<n

φ′i(x̄ y) ∨ ⋁
−1≤i<n

φ′′i (x̄ y) ,

where

φ′i(x̄ y) ∶= ⟪β0[α0]β1 . . . βn−1[αn−1]βn⟫σ ′i
(x̄ y) ,

φ′′i (x̄ y) ∶= ⟪β0[α0]β1 . . . β i[β i]β i . . . βn−1[αn−1]βn⟫σ ′′i
(x̄ y) ,

and

σ ′i (k) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

σ(k) if k < m ,
i if k = m ,

σ ′′i (k) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

σ(k) if k < m and σ(k) ≤ i ,
σ(k) + 1 if k < m and σ(k) > i ,
i + 1 if k = m .

For closure under conjunctions, let

φ(x̄) = ⟪β0[α0]β0 . . . βm−1[αm−1]βm⟫σ(x̄)

ψ(x̄) = ⟪δ0[γ0]δ0 . . . δn−1[γn−1]δn⟫τ(x̄)
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be two basic temporal formulae. (By the above remark, we can assume that
the free variables x̄ are the same in both formulae.)The formula φ guesses
some increasing m-tuple ā and ψ guesses some n-tuple b̄. The union ā ∪ b̄ is
then an increasing l-tuple where l ≤ m+n depends on howmany elements a i
coincide with some b j . In particular, if a i and b j correspond to the same free
variable xk , i.e., if i = σ(k) and j = τ(k), then a i = b j . Consequently, we
can describe the embeddings of ā and b̄ in ā ∪ b̄ by two injective monotone
functions ξ ∶ [m] → [l] and ζ ∶ [n] → [l] such that

rng ξ ∪ rng ζ = [l] and ξ ○ σ = ζ ○ τ .

Then

φ ∧ ψ ≡ ⋁
ξ,ζ

ϑξζ ,

where, for each pair ξ, ζ as above, the basic temporal formula ϑξ,ζ describes
those tuples ā ∪ b̄ where ā arises from a guess made by φ and b̄ from a guess
made byψ.Thus, ϑξζ guesses an l-tuple and checks that each interval satisfies
the correct formulae. The general definition turns out to be rather technical
and not very enlightening.Therefore, we omit it and just illustrate the general
idea using an example. Suppose that ξ ∶ [5] → [8] and ζ ∶ [4] → [8] are
the functions with ranges rng ξ = {0, 2, 3, 4, 6} and rng ζ = {1, 4, 5, 7}, and
that σ ∶ [1] → [5] and τ ∶ [1] → [4] are given by σ(0) = 3 and τ(0) = 1.

β0

δ0

α0 β1

γ0

α1 β2 α2

δ1

β3 α3

γ1 δ2 γ2

β4 α4

δ3 γ3

β5

δ4
x0
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8 First-order logic

Then we obtain

ϑξζ(x̄) ∶= ⟪β0 ∧ δ0[α0 ∧ δ0]

β1 ∧ δ0[β1 ∧ γ0]
β1 ∧ δ1[α1 ∧ δ0]

β2 ∧ δ1[α2 ∧ δ0]
β3 ∧ δ1[α3 ∧ γ1]

β4 ∧ δ2[β3 ∧ γ2]
β4 ∧ δ3[α4 ∧ δ2]

β5 ∧ δ4[β5 ∧ γ3]

β5 ∧ δ4⟫υ(x̄)

with υ(0) = 4.

It remains to prove closure under negations.We will do so in several steps,
starting with simple formulae and working our way up to the general case.
To simplicity, we will omit the subscript σ from all basic temporal formulae
with exactly two free variables

⟪β0[α0]β1 . . . βn−1[αn−1]βn⟫(x0 , x1)

with the convention that σ maps x0 to the first position and x1 to the last
one.

Lemma 8.9. Let φ(x0 , x1) be a basic temporal formula of the form

φ(x0 , x1) = ⟪β0[true]β1[α1] . . . [αn−2]βn−1[true]βn⟫σ(x0 , x1)

where n ≥ 3, σ(0) = 0, σ(1) = n − 1, and β i = true, for all i. Over the class
of Dedekind-complete linear orders, the negation ¬φ is equivalent to a standard

temporal formulae.

Proof. We prove the claim by induction on n. If n = 3, we have

¬⟪true[true]true[α1]true[true]true⟫(x0 , x1)

≡ ⟪true[true]¬α1[true]true⟫(x0 , x1) .
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For the inductive step, suppose that n > 3 and that we have already some
standard temporal formula ψ(x0 , x1) that is equivalent to

¬⟪true[true]true[α2] . . . [αn−2]true[true]true⟫(x0 , x1) .

Further, let

ϑ(x) ∶= (∀y > x)∃z[x < z < y ∧ α1(z)]

be the formula stating that, above x, the elements satisfying α1 are not
bounded from below. We claim that

¬⟪true[true]true[α1] . . . [αn−2]true[true]true⟫(x0 , x1)

≡ ⟪true[true]¬α1[true]true⟫(x0 , x1)

∨ [ϑ(x0) ∧ ψ(x0 , x1)]

∨ ∃y[x0 < y < x1 ∧ ⟪true[true]¬α1[α1 ∨ ϑ]true⟫(x0 , y)

∧ ψ(y, x1)] .

Before proving this equivalence, let us check that the above formula can
be written as a standard temporal formula. The first term of the above
disjunction is already a basic temporal formula. For the second term, note
that ϑ is equivalent to the BLTL-formula ¬(¬α1 U true) and that

ϑ(x0) ≡ ⟪true[ϑ]true⟫(x0) .

Furthermore, it follows by inductive hypothesis that ψ is equivalent to a
standard temporal formula, and we have shown in Lemma 8.8 that standard
temporal formulae are closed under conjunctions.
Finally, concerning the third term note that

x0 < y < x1 ≡ ⟪true[true]true[true]true[true]true⟫(x0 , y, x1) ,

and that we have shown in Lemma 8.8 that standard temporal formulae are
closed under conjunctions and existential quantifications.
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8 First-order logic

It remains to verify that the above formula is correct. We distinguish
several cases. If there is no element y ∈ (x0 , x1) satisfying α1, the formula φ
is false and the first term of the above disjunction is true. Hence, suppose
otherwise. Then the infimum

y ∶= inf (αA
1 ∩ (x0 , x1))

exists. It follows that the formula φ holds if, and only if,

⟪true[true]true[α2] . . . [αn−2]true[true]true⟫(y, x1)

is true. If y = x0, this is equivalent to the second termof the above disjunction,
otherwise to the third one.

Lemma 8.10. Let φ(x0 , x1) be a basic temporal formula of the form

φ(x0 , x1) = ⟪true[α0]β1 . . . βn−1[αn−1]true⟫σ(x0 , x1)

where n ≥ 2, σ(0) = 0 and σ(1) = n − 1. Over the class of Dedekind-complete
linear orders, the negations of the following two formulae are equivalent to a

standard temporal formula.

(a) ψ(x0 , x1) ∶= ∃x′[x0 < x′ < x1 ∧ φ(x0 , x′)]
(b) ψ′(x0 , x1) ∶= ∃x′[x0 < x′ < x1 ∧ φ(x′ , x1)]

Proof. (a) We consider the formulae

ϑn−1 ∶= αn−1 and ϑ i ∶= α i ∧ (β i+1 U ϑ i+1) , for i < n − 1 .

We claim that ψ(x0 , x1) holds if, and only if, there exist elements x0 = z0 <
⋯ < zn−1 < x1 such that each z i satisfies the formula ϑ i . Then

¬ψ(x0 , x1) ≡ ¬ϑ(x0) ∨ ⟪true[ϑ1]true . . . true[ϑn−1]true⟫(x0 , x1) .

By Lemma 8.9, the latter formula is equivalent to a standard temporal for-
mula. Hence, it remains to prove the claim.
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(⇒) Fix an element x′ ∈ (x0 , x1) satisfying

⟪true[α0]β1 . . . βn−1[αn−1]true⟫σ(x0 , x
′) .

Then there are elements x0 = z0 < ⋅ ⋅ ⋅ < zn−1 = x′ such that z i satisfies α i
and every element in (z i , z i+1) satisfies β i+1. By induction on i (starting
with i = n − 1), it therefore follows that z i satisfies ϑ i .
(⇐) We proceed by induction on n. For n = 2, suppose that there

are elements x0 = z0 < z1 < x1 such that z0 satisfies α1 and z1 satisfies
α0 ∧ (β1 U α1). Then the formula

⟪true[α0]β1[α2]true⟫(x0 , z1)

holds. Hence, we can set x′ ∶= z1.
For the inductive step, suppose that there are elements x0 = z0 < ⋯ <

zn−1 < x1 as above. By inductive hypothesis, we can find an element y ∈
(x0 , zn−1) satisfying the formula

⟪true[α0]β1 . . . βn−3[αn−3]βn−2[ϑn−2]true⟫σ(x0 , y) .

It follows that y satisfies the formula ϑn−2 = αn−2 ∧ (βn−1 U αn−1). Hence,
there is some y′ > y satisfying αn−1 such that every element in the interval
(y, y′) satisfies βn−1. If y′ < x1, we can take x′ ∶= y′. Hence, suppose other-
wise. Then zn−1 ∈ (y, y′) implies that βn−1 holds in the interval (y, zn−1).
Furthermore, we know by assumption that zn−1 satisfies ϑn−1 = αn−1. Con-
sequently, we can set x′ ∶= zn−1.
(b) follows as in (a) after reversing the order.

Lemma 8.11. Let φ(x0 , x1) be a basic temporal formula of the form

φ(x0 , x1) = ⟪true[α0]β1 . . . βn−1[αn−1]true⟫σ(x0 , x1)

where n ≥ 2, σ(0) = 0, and σ(1) = n − 1. Over the class of Dedekind-complete
linear orders, the negation ¬φ is equivalent to a standard temporal formula.

Proof. We distinguish four different cases, in each of which we will produce
a standard temporal formula that is equivalent to ¬φ if we are in that case,
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and that is false is we are not. The disjunction of these four formulae will
then be the desired formula equivalent to ¬φ.
(i) Suppose that the interval (x0 , x1) is empty, that is, x1 ≤ x0. Then

¬φ is trivially true. Hence, we can use the formula

⟪true[true]true⟫(x0 , x1) ∨ ⟪true[true]true[true]true⟫(x1 , x0) .

(ii) x0 does not satisfy α0 or the elements satisfying ¬β1 are unbounded
above x0. Then ¬φ is again trivially true and we can use the formula

⟪true[¬α0 ∨ ¬(β1 U true)]true⟫(x0) .

(iii) x0 satisfies α0 and every element in (x0 , x1) satisfies β1. Then ¬φ is
equivalent to the formula

⟪true[α0]β1[true]true⟫(x0 , x1)

∧ ¬∃x′[x0 < x
′ < x1 ∧ ⟪true[α1]β2 . . . βn−1[αn−1]true⟫(x0 , x1)] .

By Lemma 8.10 the second part of this formula is equivalent to a disjunction
of basic temporal formulae. Furthermore, we have shown in Lemma 8.8 that
such disjunctions are closed under conjunction.
(iv)We are not in case (i) and there is some y ∈ (x0 , x1) that does not

satisfy β1.The fact that we are not in case (i) can be expressed by the formula

χ(x0) ∶= ⟪true[¬α0 ∨ ¬(β1 U true)]true⟫(x0) .

from (ii). Furthermore, the infimum

z
′ ∶= inf (¬βA

1 ∩ (x0 , x1))

can be defined by the formula

ϑ(x0 , z′ , x1) ∶=

⟪true[true]β1[¬β1 ∨ ¬(β1 U true)]true[true]true⟫(x0 , z′ , x1) .
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VI. Linear Orders

Consequently, the fact that we are in case (iv) can be expressed by

ψ(x0 , x1) ∶= χ(x0) ∧ ∃z′[x0 < z′ < x1 ∧ ϑ(x0 , z′ , x1)] ,

which is equivalent to the basic temporal formula

⟪true[χ]β1[¬β1 ∨ ¬(β1 U true)]true[true]true⟫(x0 , x1) .

Consequently, we have to prove that the formula

ψ(x0 , x1) ∧ ¬φ(x0 , x1)

is equivalent to a standard temporal formula. We do so by induction on n.
If n = 2, then φ(x0 , x1) does not hold if at least one of the following

conditions is satisfied.

◆ x0 does not satisfy α0.

◆ x1 does not satisfy α1.

◆ There is some z ∈ (x0 , x1) that does not satisfy β1.
Consequently,

¬φ(x0 , x1) ≡ ⟪true[¬α0]true⟫(x0)

∨ ⟪true[¬α1]true⟫(x1)

∨ ∃x′⟪true[α0]true[¬β1]true[α1]true⟫(x0 , x′ , x1) .

For the inductive step, suppose that n > 2. Note that, if

φ(x0 , x1) = ⟪true[α0]β1 . . . βn−1[αn−1]true⟫σ(x0 , x1)

holds, then every element x′ ∈ (x0 , x1) must satisfy one of the formulae
α i or β j with 1 ≤ i ≤ n − 2 and 1 ≤ j ≤ n − 1. Consequently, we have

φ(x0 , x1) ≡ (∀x′ .x0 < x′ < x1)[ ⋁
1≤i<n−1

ξ i ∨ ⋁
1≤i<n

ζ i] ,
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8 First-order logic

where

ξ i(x0 , x′ , x1) ∶= ξ−i (x0 , x
′) ∧ ξ+i (x

′ , x1) ,

ζ i(x0 , x′ , x1) ∶= ζ−i (x0 , x
′) ∧ ζ+i (x

′ , x1) ,

ξ−i (x0 , x
′) ∶= ⟪true[α0]β1 . . . β i[α i]true⟫σ(x0 , x

′) ,

ξ+i (x
′ , x1) ∶= ⟪true[α i]β i+1 . . . βn−1[αn−1]true⟫σ(x

′ , x1) ,

ζ−i (x0 , x
′) ∶= ⟪true[α0]β1 . . . β i−1[α i−1]β i[β i]true⟫σ(x0 , x

′) ,

ζ+i (x
′ , x1) ∶= ⟪true[β i]β i[α i]β i+1 . . . βn−1[αn−1]true⟫σ(x

′ , x1) .

If (x0 , x1) ≠ ∅, we also obtain the dual equivalence

φ(x0 , x1) ≡ (∃x′ .x0 < x′ < x1)[ ⋁
1≤i<n−1

ξ i ∨ ⋁
1≤i<n

ζ i] .

It follows that the formula ψ ∧ ¬φ is equivalent to

(∃x′ .x0 < x′ < x1)[ϑ(x0 , x′ , x1) ∧ ⋀
1≤i<n−1

¬ξ i ∧ ⋀
1≤i<n

¬ζ i] .

It therefore remains to prove that all formulae appearing above can be written
as standard temporal formulae. Then the claim follows by closure under
conjunction and existential quantification.
First, note that we can use the inductive hypothesis to translate the for-

mulae ¬ξ i and ¬ζ j , for 1 ≤ i < n − 1 and 1 < j < n − 1, to standard temporal
formulae.The same is true for the formulae ¬ζ−1 and ¬ζ+n−1. Finally, we have

ϑ ∧ ¬ζ+1 ≡ ϑ ,

ϑ ∧ ¬ζ−n−1 ≡ ϑ ∧ ¬ζ−n−1 ∧ ∀u[x0 < u < x
′ → β1(u)] ,

by definition of ϑ and choice of x′. We have already seen above that ϑ is
(equivalent to) a standard temporal formula. Furthermore, the formula
¬ζ−n−1 ∧ ∀u[x0 < u < x′ → β1(u)] can be translated into a standard tem-
poral formula using the construction from case (iii). Consequently, the claim
follows by the closure properties of standard temporal formulae established
in Lemma 8.8.
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Finally, we can prove the general case.

Lemma 8.12. Over the class of coloured Dedekind-complete linear orders, stand-

ard temporal formulae are closed under negation.

Proof. Let φ = φ0∨⋅ ⋅ ⋅∨φm−1 be a disjunction of basic temporal formulae φ i .
By Lemmas 8.7 and 8.8, we may assume that each φ i has at most two free
variables. Since

¬φ = ¬φ0 ∧ ⋅ ⋅ ⋅ ∧ ¬φm−1

and we have shown in Lemma 8.8 that standard temporal formulae are closed
under conjunctions, it is therefore sufficient to prove that the negation of a
basic temporal formula

φ(x̄) = ⟪β0[α0]β1 . . . βn−1[αn−1]βn⟫σ(x̄)

with at most two free variables is equivalent to a standard temporal formula.
We distinguish several cases.

(i) First suppose that φ has extactly only one free variable x0. Then it
follows by Lemma 8.6 that φ(x0) is equivalent to some BLTL-formula ψ.
Hence,

¬φ(x0) ≡ ⟪true[¬ψ]true⟫(x0) .

(ii) Next, suppose that φ has no free variables. Then we can again use
Lemma 8.6 to translate φ to some BLTL-formulaψ. Sinceψ does not depend
on the position it is evaluated at, it follows that φ ≡ ∀xψ(x) and, therefore,

¬φ ≡ ∃x⟪true[¬ψ]true⟫(x) ,

(iii) Suppose that φ has two free variables x0 , x1 and that σ(0) = σ(1).
Then

φ(x0 , x1) ≡ x0 = x1 ∧ ⟪β0[α0]β1 . . . βn−1[αn−1]βn⟫σ ′(x0) ,
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where σ ′(0) ∶= σ(0). Hence,

¬φ(x0 , x1) ≡ ⟪true[true]true[true]true⟫(x0 , x1)

∨ ⟪true[true]true[true]true⟫(x1 , x0)

∨ ¬⟪β0[α0]β1 . . . βn−1[αn−1]βn⟫σ ′(x0) ,

and the last formula above is equivalent to a standard temporal formula as
in case (i).

(iv) Finally, suppose that φ has two free variables x0 , x1 and that σ(0) ≠
σ(1). Renaming the variables if necessary, we may assume that σ(0) < σ(1).
Setting k ∶= σ(0) and l ∶= σ(1), it follows that

φ(x0 , x1) ≡ ⟨β0[α0]β1 . . . βk[αk]true⟫(x0)

∧ ⟨true[αk]βk+1 . . . β l [α l ]true⟫(x0 , x1)

∧ ⟨true[α l ]β1 . . . βn−1[αn−1]βn⟫(x0) .

The negations of the first and the last term of the above disjunction can be
computed as in case (i) above, while the negation of the second term can be
obtained from Lemma 8.11.

After these preparations, we can finally conclude the proof of Kamp’s
Theorem.

Proof of Theorem 8.3. First let us note that, over the class of all coloured
Dedekind-complete linear orders, every FO-formula φ(x) can be translated
to a standard temporal formula: this is obvious for atomic formulae, while
the inductive step follows by Lemmas 8.8 and 8.12. Futhermore, since φ(x)
has one free variable, we can use Lemma 8.6 to translate every basic temporal
formula in the resulting disjuntion to a BLTL-formula.

Exercise 8.1. The above proof is very similar in structure to the original
proof of theTheorem of Büchi. We consider languages K ⊆ Σω over some
alphabet Σ. Let us call such a language basic ω-regular if it is of the form

K = ⋃
i<m

U iV
ω
i , for regular languagesU i ,Vi ⊆ Σ+
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(compare with Exercise III.3.2). As usual we say that anMSO-formula φ(X̄)
with free variables X̄ defines the language

{w ∈ (Σ × ℘(X̄))ω ∣ w0 ⊧ φ(P̄) } ,

where w0 is the projection of w to the alphabet Σ and Pi is the set of all
positions n such that w(n) = ⟨c, s⟩ with X i ∈ s.
Show that every MSO-definable language K ⊆ (Σ × ℘(X̄))ω is basic

ω-regular by proving the following statements.

(a) Every language defined by an atomic formula is basic ω-regular.
(b) The class of basic ω-regular languages is closed under finite unions.
(c) The class of basic ω-regular languages is closed under complement (see

Exercise III.3.3).

(d) The class of basic ω-regular languages is closed under projections. ⌟

Note+

A comprehensive account on the theory of linear orders from a logician’s
perspective is given by [184].
Theorem 2.2 is from [193] and Theorem 2.5 is implicit in [133]. The-

orem 4.4 is based on a result in [93].
Regular linear orders were introduced in [130]. Our exposition is based

on [129, 193, 15, 43, 26].
The sections on choice and uniformisation are based on [97, 133, 134, 39,

40]. Proposition 7.16 is from [36]. Strong MSO-choice for thin trees has
been investigated in [13, 196].
Our proof of Kamp’s Theorem follows the exposition in [158]. Kamp’s

Theorem can be generalised to the class of all linear orders by adding two
new modal operators, see [159] for details.

The undecidability ofThMSO(⟨R, ≤⟩) is due to [193]. The original proof
assumed a weak form of the continuum hypothesis. A proof in ZFC was
provided by [96].Thematerial onmodest linear orders is from [93, 95]. Note
that there are several problems with these papers: the proof of Claim 3.3
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in [96] (Claim (ii) in the proof ofTheorem 5.32 above) is wrong and that of
Lemma 3.1 in [95] (Lemma 5.49 above) has a gap that I was not able to close.
The corrected version in Section 5 above is based on ideas of Sven Manthe
(personal communication).

One can show that, for each ordinal α < ω2, theMSO-theory of ⟨α, ≤⟩ is
decidable [193], while the decidability ofThMSO(⟨ω2 , ≤⟩) is independent of
ZFC [94].
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VII Sparse Stru$ture+

1 Spanning Fore#+

The larger expressive power of GSO over MSO stems from the
fact that GSO can quantify over sets of hyperedges (guarded tuples).

Thus, the more hyperedges a structure has, the higher the expressive power.
Below we will make this intuition precise by showing that, if the number
of hyperedges is linear in the size of the structure, we can replace every
quantification over hyperedges by a set quantifier and the expressive power
of GSO collapses to that ofMSO.
As an example, let us consider the case of undirected trees. Every tree T

can be oriented by fixing some vertex v ∈ T as the root and orienting every
edge such that it points away from v. Having chosen such an orientation, we
can represent an edge by the vertex it points to. In this way, we can encode
every set of edges by a corresponding set of vertices and everyGSO-quantifier
can be replaced by anMSO-quantifier.The same idea works in a much more
general setting. For simplicity, we will work with hypergraphs in this section
instead of relational structures.

Definition 1.1. (a) A hypergraph is a triple H = ⟨V , E , in⟩ consisting of a
set V of vertices, a set E of hyperedges (or simply edges), and an incidence

relation in ⊆ V × E. Usually we will identify a hyperedge e ∈ E with the set

{ v ∈ V ∣ ⟨v , e⟩ ∈ in}

of its vertices and we will write v ∈ e instead of ⟨v , e⟩ ∈ in. (But note that
there might be several edges with the same underlying set.) To simplify
notation further, we will also usually denote H by the pair ⟨V , E⟩ omitting
the relation in.
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VII. Sparse Structures

(b) A hypergraph H = ⟨V , E⟩ has rank at most m if

∣e∣ ≤ m , for all e ∈ E .

(c) We can encode a hypergraph H = ⟨V , E⟩ as a structure in two ways.
For the incidence representation Hin = ⟨V , E , in⟩ we consider H as a two-
sorted structure with domains V and E and a binary relation in ⊆ V × E.
If every hyperedge has only finitely many vertices, we can also use the

adjacency representation Hadj = ⟨V , (Em)m<ω⟩ whose elements are only the
vertices and we add adjacency relations

Em ∶= { ⟨v0 , . . . , vm−1⟩ ∣ there is some e ∈ E with ∣e∣ = m

and e = {v0 , . . . , vm−1}} ,

for every m < ω. ⌟

Most notions from graph theory can straightforwardly be generalised to
hypergraphs. Below we will need the following ones.

Definition 1.2. Let H = ⟨V , E⟩ be a hypergraph.
(a) G = ⟨U , F⟩ is a subhypergraph of H ifU ⊆ V and F ⊆ E. We denote

this fact by G ⊆ H.
(b) A path is a finite sequence (e i)i of edges such that

e i ∩ e j ≠ ∅ iff ∣i − j∣ ≤ 1 , for all i , j .

(c) A subset C ⊆ E is connected if, for all e , f ∈ C, there exists a path p

between e and f with p ⊆ C. Similarly, a set C ⊆ V is connected if, for all
u, v ∈ C, there exists a path p between u and v with ⋃ p ⊆ C. A connected

component of H is a maximal connected set of vertices. ⌟

We also need a slightly different notion of a subhypergraph where we are
allowed to remove vertices from edges.

Definition 1.3. Let H = ⟨V , E⟩ be a hypergraph
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(a) For U ⊆ V , we denote by H∣U the hypergraph with vertices U and
edges

E∣U ∶= { e ∩U ∣ e ∈ E , e ∩U ≠ ∅} .

(b)Aweak subhypergraph ofH is a hypergraphG of the formG = H0∣U , for
someU and some H0 ⊆ H. We will usually represent such a subhypergraph
by the pair ⟨U , F⟩ where F ⊆ E is the set of edges of H0.
(c) Let G = ⟨U , F⟩ be a weak subhypergraph of H. A border hyperedge

ofG is an edge e ∈ F such that e∖U ≠ ∅.The other edges are called internal.
(d) Two weak subhypergraphs F = ⟨U , F⟩ and G = ⟨W ,G⟩ of H are

disjoint ifU ∩W = ∅ and F ∩G = ∅. ⌟

The translation of GSO intoMSO depends on a result of independent
interest which we will prove in this section: every hypergraph where the size
of the hyperedges is bounded can be ‘oriented’ by a GSO-formula, i.e., there
exists anGSO-formula (with parameters) that defines a linear order on each
hyperedge.
The construction starts by choosing a suitable spanning forest of the

given hypergraph. One technicality we have to deal with is the fact that, for
uncountable hypergraphs, such forests only exist if we allow them to have
arbitrary ordinal height.

Definition 1.4. A forest of ordinal height is a partial order F = ⟨F , ⪯⟩ such
that, for every vertex v ∈ F, the set of all vertices u ⪯ v forms a well-order.
The height of F is the least ordinal α such that, for every v ∈ F, the order
type of this well-order is less than α. ⌟

Example. Consider the complete graphKκ , for some uncountable cardinal κ.
We can enumerate the vertices of Kκ as (vα)α<κ where the index α ranges
over all ordinals less than κ. Then we obtain a spanning forest F = ⟨V , ≤⟩
with ordering

v i ≤ v j : iff i ≤ j .

Thus, F consists of a single path of length κ. ⌟
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Unfortunately, we cannot in general hope to have a spanning forest that
is a subgraph of the given hypergraph, since the partial order ≤ requires too
many edges. Therefore, we will replace the full order ≤ by a smaller relation
R ⊆ ≤ that contains sufficiently many edges to reconstruct ≤ from it. The
idea is as follows. For a vertex v with an immediate predecessor u, we only
keep the edge u → v. For a vertex v without such a predecessor, we need to
know the infinite path it is the limit of. We choose an increasing sequence
(u i)i<α of vertices with limit v and, for every i < α, a path connecting u i
to v. These paths can be combined into a tree with root v whose leaves are
given by the vertices u i .

u0
u1

u2
u3

v

Hence, every vertex v of F is attached to its predecessors via some auxiliary
graphUv that is either a single edge or a tree with root v whose leaves form
an increasing sequence of predecessors of v with limit v.

Example. Considering again a complete graph Kκ , for an uncountable car-
dinal κ, and an enumeration of (vα)α<κ the vertices. We can encode the
spanning forest F = ⟨V , ≤⟩ defined above by the relation

R ∶= { ⟨v i , v i+1⟩ ∣ i < κ } ∪ { ⟨v i , vδ⟩ ∣ δ a limit ordinal and i < δ } .

The first part of R consists of the successor edges, whereas the second part
contains the auxiliary graphs Uvδ attaching a limit vertex vδ to its prede-
cessors. ⌟

Pseudo-Tree+

Unfortunately, for hypergraphs this construction is complicated by the fact
that, in general, a set of paths cannot be combined into a tree, since there
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might be ‘accidental’ intersections between the hyperedges. A typical example
is the hypergraph

●

● ●

●

●

●

What we will use instead are hypergraphs that are sufficiently tree-like for
our purposes. These come in 4 different kinds.

Definition 1.5. Let T = ⟨T , F , v⟩ be a hypergraph where L ⊆ F and v ∈ T.
(a) T is a sunflower if L = F and v ∈ ⋂ F = e ∩ f , for all distinct e , f ∈ F.
(b) T is a hypertree if there is some edge e ∈ F with v ∈ e such that, for

every hyperedge f ∈ F, there exists a unique path from e to f . With each
hypertree T we associate an order on F by

f ≤ g : iff the unique path from e to g contains f .

We require that L is the set of maximal edges with respect to this ordering
and that, for every f ∈ F, there is some g ∈ L with g ≥ f .
(c) T is a star if the set F can be partitioned into a sunflower S ⊆ F with

root v and a family (ps)s∈S of finite paths such that

◆ the first edge of ps intersects s ∈ S,

◆ no edge of ps intersects any edge of pt , for s ≠ t,

◆ if s ≠ t, then s does not intersect any edge of pt or t does not intersect
any edge of ps ,

◆ L is the set of last edges of the paths ps .

The paths ps are the rays of T and S is its core.
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(d) T is a pseudo-tree if it is (i) a sunflower, (ii) a star, (iii) a hypertree,
or (iv) an infinite path where L = ∅ and v belongs to the first edge. The
vertex v is called the root of T and L is its set of leaf-edges. ⌟

Proposition 1.6. Let H = ⟨V , E⟩ be a connected hypergraph of rank at most m
and let B ⊆ E be an infinite set of hyperedges that is equipped with some well-

order ⊑. Then there exists a pseudo-tree T = ⟨T , F , L, v⟩ such that ⟨T , F⟩ is a
subhypergraph of H and L a cofinal subset of B.

Proof. Replacing B by a suitable subset, we may assume that κ ∶= ∣B∣ is
a regular cardinal. It follows that a subset L ⊆ B is cofinal if, and only if,
∣L∣ = κ.
We start by constructing an order-tree S = ⟨S , ≤⟩ with vertices S ⊆ E as

follows. Pick some edge e0 ∈ E and, for every e ∈ B, fix a path pe connect-
ing e0 with e. We construct S by induction on e ∈ B such that every f ∈ S
belongs to some pe . Suppose that we have already constructed a priority
tree Se containing all edges e′ ⊏ e. Let qe = h0 . . . hn be the shortest suffix
of the path pe that meets S. Let e′ ⊏ e be the ⊏-minimal edge such that the
path qe′ contains some edge f ′ with f

′∩ h0 ≠ ∅, and let f be the ≤-minimal
such edge belonging to qe′ . We add the path qe to the tree by making h0
a successor of f . Let S be the tree constructed in this way. To define the
desired priority tree T, we distinguish two cases.

(i) First, suppose that there is some g ∈ S with κ different successors. Let
U be the set of these successors. By construction of S, every f ∈ U belongs
to some path qe( f ). Let r f be the suffix of qe( f ) starting at f . By the Pigeon
Hole Principle, we can find a subsetW ⊆ U such that

◆ either all paths r f with f ∈W consist of a single edge, or all such paths
consist of at least two edges,

◆ either the first edge of every path r f belongs to B, or none of these edges
does, and

◆ f ∩ g = f
′ ∩ g, for all f , f ′ ∈W .

Let T be the union of all the paths r f with f ∈W. For the root vertex we
pick an arbitrary vertex v ∈ f ∩ g. If the paths r f have length 1, T forms a
sunflower. Otherwise, it is a star.
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(ii) It remains to consider the case where every g ∈ S has less than κ
successors. We start by showing that this implies that κ = ℵ0. For n < ω,
let Sn be the set of all g ∈ S whose distance from the root e0 is exactly n. By
induction on n, it follows that ∣Sn ∣ < κ since

∣Sn+1∣ = ∑
g∈Sn

λg , where λg < κ is the number of successors of g ,

which is a sum of ∣Sn ∣ < κ cardinals of size λg < κ. As κ is regular, it follows
that ∣Sn+1∣ < κ. If κ > ℵ0, this would imply that

∣S∣ = ∑
n<ω
∣Sn ∣ < κ .

A contradiction to the fact that B ⊆ S.
It follows that S is a finitely branching infinite tree. By the Lemma of

Kőnig, it has an infinite branch β. If we can choose β such that it contains
infinitely many edges from B, this branch is the desired pseudo-tree. Hence,
suppose otherwise. By construction of S, each edge f of β belongs to some
path qe( f ). Let f0 < f1 < . . . be an enumeration of β and set e i ∶= e( f i).
By construction of S, we have e i ⊑ e i+1, for all i. Furthermore, the only
intersections between edges of qe i and qe j , for i < jwith e i ≠ e j , are between
the first edge of qe j and some edge of qe i with j = i + 1. Let e′0 , e

′
1 , . . . be an

enumeration of e0 , e1 , . . . without repetitions and let r i be the prefix of qe′i
whose last edge is the first hyperedge of qe′i belonging to B. We construct
the hypergraph T by taking all edges of β together with the edges of r′2i , for
i < ω. By the above remarks it follows that two hyperedges of T intersect if,
and only if, one is the immediate successor of the other one. Hence, T forms
a hypertree and every leaf of T belongs to B.

For our applications below, we will consider a family of pseudo-trees
embedded as weak subhypergraphs as in the preceding proposition, and we
will have to be able to reconstruct each of them by a GSO-formula. This can
be done using the following two lemmas.
The first one states that the vertices of a pseudo-trees can be linearly

ordered in GSO.
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Lemma 1.7. Let m < ω and let ϑ(x , y; Z̄) be anMSO-formula. There exists

anMSO-formula φ(x , y; Z̄ , Z̄′) with the following property. Given

◆ a hypergraph H = ⟨V , E⟩ of rank at most m,
◆ a weak subhypergraph T = ⟨T , F , L, v⟩ of H that forms a pseudo-tree,

◆ monadic parameters P̄ such that ϑ(x , y; P̄) defines in Hin a well-order on

the leaf-edges L of T, and

there are monadic parameters P̄
′
with P

′
i ⊆ T ∪ F such that φ(x , y; P̄, P̄′)

defines in Hin a linear order on T.

Proof. Below we will construct anMSO-definable partial order ⊑ on F such
that, for every vertex u ∈ T, the set { e ∈ F ∣ u ∈ e } is well-ordered by ⊑.
Then the relation

u ≤0 w : iff the ⊑-least e ∈ L containing u is ⊑-smaller than the

⊑-least f ∈ L containing w

defines a linear preorder on T where each class has at most m elements.
Hence, there is some colouring λ ∶ T → [m] assigning distinct colours to
elements of the same ≤0-class.The desired linear ordering of T is now given
by

u ≤ w : iff λ(u) < λ(w) , or λ(u) = λ(w) and u ≤0 w .

This relation isMSO-definable using the parameters for the definition of ⊑
and m additional predicates Qk ∶= λ−1(k).
To find this order ⊑, we distinguish four cases depending on the type of T.
(i) If T is a sunflower, we can take the well-ordering ⊑ on L defined by ϑ.
(ii) If T is an infinite path, we choose for ⊑ the well-order on F given by

e ⊑ f : iff e belongs to every prefix of T containing f .

(iii) Suppose that T is a hypertree. Let ≤pf be the tree-order on F associ-
ated with T, and let ≤lr be the left-to-right ordering on F given by

e ≤lr f : iff the ≤pf -least leaf-edge e
′ with e ≤pf e

′ is ϑ-less
or equal to the ≤pf -least leaf-edge f

′ with

e ≤pf f
′ .
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We can define the lexicographic ordering on F by

e ≤lex f : iff e ≤pf f , or e and f have the same

≤pf -predecessor and e ≤lr f .

Then ⊑ ∶= ≤lex has the desired properties.
(iv) Finally, suppose thatT is a star. Let S be its core and (ps)s∈S the family

of rays. We can linearly order the edges of each path ps such that the smaller
edges are those closer to s. Let ≤path be the union of the corresponding
orders. Furthermore, we define the partial order

e ≤0 f : iff e ∈ p i and f ∈ p j and the leaf-edge of p i is

ϑ-smaller than the leaf-edge of p j

on the edges of the paths p i . Similarly, we define a well-order order on S by

s ≤1 t : iff the ≤0-least edge e intersecting s is ≤0-smaller

than the ≤0-least edge f intersecting t .

Then we obtain the desired order ⊑ by setting

e ⊑ f : iff e ≤1 f , or e ≤0 f , or e ∈ S and f ∉ S .

For the second lemma, which states that we can encode a family of pseudo-
trees by finitely many monadic predicates, we need the following construc-
tion.

Definition 1.8. A weak subhypergraph G = ⟨U , F⟩ has the k-colouring
property if, every function λ0 ∶ ⋃ F ∖U → [k] can be extended to a function
λ ∶ ⋃ F → [k] such that, for every e ∈ F,

λ(u) ≠ λ(v) , for all u ∈ e ∩U and v ∈ e ∖U , ⌟

Lemma 1.9. Let H be a hypergraph of rank at most m, T = ⟨T , F⟩ a weak
subhypergraph ofH, and B ⊆ F the set of its border hyperedges. If T is a hypertree

or a union of disjoint paths, then the weak subhypergraph ⟨T , B⟩ has the 3m-
colouring property.
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Proof. Fix a map λ0 ∶ ⋃B ∖ T → [2m]. Given v ∈ T, let

U ∶= { e ∈ B ∣ v ∈ e } .

If T is a hypertree, we have ∣U∣ ≤ 3. If T is a union of paths, ∣U∣ ≤ 2.Thus,
∣⋃U∣ ≤ 3m. Since v ∈ T, it follows that the set

C ∶= λ0[⋃U ∖ T]

has less than 3m elements.We pick some c ∈ [3m]∖C and set λ(v) ∶= c.

Lemma 1.10. Let m < ω and let γ(x , y, z; Z̄) be an MSO-formula. There

exists anMSO-formula φ(x ,X,Y; Z̄′) with the following property. Suppose we
are given a hypergraphH = ⟨V , E⟩ of rank atmost m and a familyTi = ⟨Ti , Fi⟩,
i ∈ I, of weak subhypergraphs of H such that

◆ each Ti is a pseudo-tree with root v i ,

◆ Ti and T j are disjoint, for i ≠ j, and

◆ there exist parameters P̄
′
such that

Hin ⊧ γ(u,w , e; P̄′) iff there is some i ∈ I such that

u = v i , e ∈ Fi , u,w ∈ e ∩ Ti ,

and Ti is a star or a sunflower.

Then there exist monadic parameters P̄ such that

Hin ⊧ φ(u,A,U; P̄) iff u = v i , A = Ti , and U = Fi ,

for some i ∈ I .

Proof. We can partition the index set I into four sets I0 , I1 , I2 , I3 such that
all pseudo-trees in It have the same type (sunflower, star, hypertree, or path).
It is sufficient to construct a separate formula φt for each subfamily (Ti)i∈I t .
Hence, suppose that all hypergraphs Ti have the same type. Set

T ∶= ⋃
i∈I

Ti , F ∶= ⋃
i∈I

Fi , R ∶= { v i ∣ i ∈ I } .
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We distinguish three cases.
(i) If every Ti is a sunflower, we can use the formula

φ(x ,X,Y) ∶= Rx ∧ ∀e[e ∈ Y ↔ γ(x , x , e; P̄′)]

∧ ∀z[z ∈ X↔ (∃e ∈ Y)γ(x , z, e; P̄′)] .

(ii) Suppose that each Ti is a path or a hypertree. Fix a well-ordering ≤
on I and let

B i ∶= { e ∈ Fi ∣ e is a border edge of Ti } and B ∶= ⋃
i∈I

B i .

We introduce two colourings λ ∶ ⋃ F → [3m] and µ ∶ F → ℘([3m]) such
that the edge of Ti represented by e ∈ Fi is

e ∩ λ−1[µ(e)] .

We define these colourings by induction on i ∈ I. LetW ∶= ⋃ F ∖ T. We
start with an arbitrary colouring λ ∶ W → [3m]. For the inductive step,
suppose that we have already defined λ(v) and µ(e) for all v ∈W∪⋃ j<i T j
and e ∈ ⋃ j<i F j . By Lemma 1.9, the subhypergraph ⟨Ti , B i⟩ has the 3m-
colouring property.Weuse this fact to extend λ to the setW∪⋃ j<i T j∪⋃B i .
Then we can extend λ to all ofW∪⋃ j<i T j∪Ti by using an arbitrary colour
for the vertices in Ti ∖⋃B i . Having defined λ, we can set

µ(e) ∶= λ[e ∩ Ti] , for e ∈ Fi .

We can use these two colourings to construct the desired formula as
follows. Using the parameters T, F, R, and

Pk ∶= λ−1(k) , Qs ∶= µ−1(s) , for k < m and s ⊆ m ,

we can define the relation F∣T by

ψ(X) ∶= (∃e ∈ F)[X = e ∩ λ−1[µ(e)]] .
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Using this formula there exists a formula ϑ(Y; Z̄) such that

Hin ⊧ ϑ(C; P̄Q̄) iff C ⊆ F corresponds to a connected

component of ⟨T , F∣T⟩ .

Note that the sets Fi are the connected components of the hypergraph
⟨T , F∣T⟩. Hence, we can set

φ(x ,X,Y) ∶= x ∈ X ∩ R ∧ ϑ(Y)

∧ ∀z[z ∈ X↔ (∃e ∈ Y)[z ∈ e ∧ λ(z) ∈ µ(e)]] .

(iii) It remains to consider the case where every Ti is a star. We can use
the formula from (i) to define the core of Ti and the formula from (ii) to
define its rays.

Spanning Fore#+

With these preparations out of the way, we are finally able to define what
we mean by a spanning forest. We use a forest of ordinal height where limit
vertices are attached using a pseudo-tree. In addition, we require two further
properties of such a forest: (i) every edge of the given hypergraph should
contain some vertex of the forest and (ii) if an edge contains several such
vertices, these must be comparable in the forest order. (The latter roughly
corresponds to a forest that can be obtained by a depth-first traversal of the
hypergraph.)

Definition 1.11. Let H = ⟨V , E⟩ be a hypergraph of rank at most m, and let

F = ⟨F , ≤, (Uv)v∈F⟩

be a structure where F ⊆ V is a subset of the vertices, ⟨F , ≤⟩ forms a forest
of ordinal height, and eachUv ⊆ E is a set of edges, for v ∈ F.

(a)The set of auxiliary nodes associated to a vertex v ∈ F is

Av ∶= {v} ∪⋃Uv ∖ ⋃
u<v

Au .
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The attachment set of a set X ⊆ V and its principle point of attachment are

B(X/F) ∶= { v ∈ F ∣ X ∩Av ≠ ∅} ,

β(X/F) ∶= maxB(X/F) .

(If B(X/F) does not have a unique maximal element, we let β(X/F) be
undefined.)

(b) We call F an H-forest if it satisfies the following conditions.
(i) For all u ≠ v,

Uu ∩Uv = ∅ , Au ∩Av = ∅ , and Au ∩ F = {u} .

(ii) ⋃Uu ∩⋃Uv ≠ ∅ implies u ≤ v or v ≤ u .
(iii) Each vertex v ∈ F is assigned one of the following types: (r) the roots;

(sl )l<m the successors; and (tl )l<m the limits; where the successor and
limit vertices are further subdivided intom subclasses.This assignment
is subject to the following conditions:
(r) If v has type r, it is a root of F andUv = ∅.
(sl ) If v has type sl , it is the (immediate) successor of some vertex u ∈ F

and there exists an edge e ∈ E such that

v ∈ e , Uv = {e} , β(e ∖ {v}/F) = u ,

B(e/F) is linearly ordered by ≤, and v is the only vertex in B(e/F)
of type sl .

(tl ) If v has type tl , it has no immediate predecessor and the weak sub-
hypergraph Tv ∶= ⟨Av ,Uv , v⟩ of H forms a pseudo-tree satisfying
the following conditions:
– { β(e ∖ {v}/F) ∣ e a border edge ofUv } is a cofinal subset of
{ u ∈ T ∣ u ≺ v },

– if Tv is a sunflower, then v is the only vertex in B(⋃Uv/F) of
type tl ,

– if Tv is a star, then v is the only vertex in B(⋃C/F) of type tl ,
where C ∶= { e ∈ Uv ∣ v ∈ e } is the core of Tv . ⌟
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We are interested in H-forests that span the whole hypergraph and that
allow us to orient every of its hyperedges.

Definition 1.12. Let H = ⟨V , E⟩ be a hypergraph of rank at most m and
F = ⟨F , ≤, (Uv)v∈F⟩ an H-forest.

(a) F is spanning if B(e/F) ≠ ∅, for every non-empty e ∈ E.
(b) F is depth-first if, B(e/F) is linearly ordered by ≤, for every e ∈ E. ⌟

Let us start by showing that such H-forests always exist.

Theorem 1.13. Every hypergraph H has a depth-first spanning H-forest.

Proof. We construct an increasing sequence

Fα = ⟨Fα , ≤, (Uv)v∈Fα ⟩ , α < κ ,

of depth-first H-forests with the property that, for every connected compon-
ent C ofWα ∶= V ∖⋃v∈Fα Av , the set

Nα(C) ∶= ⋃{B(e/Fα) ∣ e ∈ E with e ∩ C ≠ ∅}

is linearly ordered by ≤. The limit of this sequence will then be the desired
depth-first spanning H-forest.
We start with the empty tree F0 ∶= ∅. For limit ordinals δ, we take the

limit Fδ ∶= ⋃α<δ Fα . Clearly, Fδ is a depth-first H-forest and Nδ(C) is
linearly ordered for every C. For the successor step, suppose that we have
already definedFα . Fix some connected componentC ofWα .We distinguish
three cases.

(a) If Nα(C) = ∅, we pick some vertex v ∈ C and we add it to Fα as a
new root withUv ∶= ∅ and type (r). Clearly, the resulting structure Fα+1 is
an H-forest.

(b) If Nα(C) has a maximal element u, we choose some edge e with
e ∩ Au ≠ ∅ and e ∩ C ≠ ∅, and we pick some vertex v ∈ e ∩ C. We add v
to Fα as an immediate successor of u and we setUv ∶= {e}. It follows that
Av = e ∩Wα . Since B(e/Fα) contains at most ∣e ∖ {v}∣ < m vertices, there
is some number l < m such that B(e/Fα) contains no vertex of type sl .
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In the new forest Fα+1, we assign the type sl to v. To show that Fα+1 is an
H-forest, we have to check three conditions.
(i) As e ∩Wα ≠ ∅ while Wα ∩ ⋃Uu = ∅, for every u ∈ Fα , we have

e ∉ Uu . Hence,Uv ∩Uu = ∅. Furthermore, the fact that B(e/Fα) is linearly
ordered implies that e only intersects sets Au with u ≤ v. By definition
of Av it therefore follows that Av ∩Au = ∅, for u ≠ v. Finally, Av ∩ Fα+1 =
(e ∖ Fα) ∩ Fα+1 = {v}.
(ii) Suppose that e ∩ ⋃Uu ≠ ∅, for u ≠ v. Since B(e/Fα) is linearly

ordered and bounded by v, it follows that u ≤ v.
(iii) holds by construction of Fα+1 and by choice of the type sl .
(c) Suppose that Nα(C) has no maximal element. Set C ∶= H∣C and let

B be the set of border hyperedges of C. Note that B is preordered by the
relation

e ≤ f : iff β(e/Fα) ≤ β( f /Fα) .

Let B0 ⊆ B be a set of representatives of the corresponding equivalence
classes. Then B0 is well-ordered and we can use Proposition 1.6 to find
a pseudo-tree S = ⟨S ,H, L, v⟩ such that L is a cofinal subset of B0. We
simplify S as follows.
If S is a sunflower, we can find a subset H0 ⊆ H and a number l < m

such that
◆ Nα(H0) is unbounded and,
◆ for every e ∈ H0, the set B(e/Fα) contains no vertex of type tl .
We replace S by the sunflower S0 ∶= ⟨S ∩⋃H0 ,H0 ,H0 , v⟩ ⊆ S.

Similarly, ifS is a star, we can find a subhypergraphS0 ⊆ S and a number
l < m such that S0 forms a star and, for no edge e in the core of S0, there
is a vertex of type tl in the set B(e/Fα). Again, we replace S by S0.
Finally, if S is a path or a hypertree, we fix an arbitrary number l < m

and we leave S unchanged.
We define Fα+1 ∶= Fα ∪ {v} where v is the limit of Nα(C), we assign the

type tl to v, and we setUv ∶= H. It follows that Av = S.
It remains to show that Fα+1 is an H-forest. We have to check three

conditions.
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(i) Since every edge e ∈ Uv intersects Wα while Wα ∩ ⋃Uα = ∅, for
u ∈ Fα , we have Uv ∩Uu = ∅. Furthermore, the fact that B(⋃Uv/Fα) ⊆
Nα(C) is linearly ordered, implies that⋃Uv only intersects sets Au with
u ≤ v. By definition of Av it therefore follows that Av ∩Au = ∅, for u ≠ v.
Finally, Av ∩ Fα+1 = (⋃Uv ∖ Fα) ∩ Fα+1 = {v}.
(ii) Suppose that ⋃Uv ∩ ⋃Uu ≠ ∅, for u ≠ v. Since B(⋃Uv/Fα) ⊆

Nα(C) is linearly ordered and bounded by v, it follows that u ≤ v.
(iii) We have

{ β(e/Fα+1) ∣ e a border edge ofUv } ⊆ Nα(C) ∪ {v}

which is linearly ordered. Furthermore, by choice of the type tl , v is the only
vertex of this type in B(⋃Uv/Fα+1). Finally, every internal edge e ∈ Uv is
contained in C ⊆Wα . This implies that e ∩Au = ∅, for all such edges e and
all u ≠ v.

This concludes the construction of Fα+1. It remains to show that Fα+1 is
of the correct form.We start by showing that Fα+1 is depth-first. Let v be
the new vertex added to Fα . If e ∩Av = ∅, then B(e/Fα+1) = B(e/Fα) and
we are done. Otherwise, we have B(e/Fα+1) = B(e/Fα+1) ∪ {v}. Note that
Av ⊆ C implies e ∩ C ≠ ∅. Therefore, we have B(e/Fα) ⊆ Nα(C). As v is
larger than every element in Nα(C) the claim follows.

Finally, let D be a connected component ofWα+1 = V ∖⋃x∈Fα+1 Ax . We
have to show that Nα+1(D) is linearly ordered. Since Wα+1 ⊆ Wα there
is some connected component D′ of Wα containing D. If D′ ≠ C, then
Wα ∖Wα+1 ⊆ C implies that D = D′ and the set

Nα+1(D) = Nα(D
′)

is linearly ordered. If, on the other hand, D ⊆ C then we have

Nα+1(D) ⊆ Nα(C) ∪ {v}

and the latter set is linearly ordered since v is greater than every element of
Nα(C).
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We will use depth-first spanning forests to encode orientations of a hy-
pergraph. First, let us show how to encode such forest by finitely many
parameters.

Lemma 1.14. Let m < ω. There existMSO-formulae φ(X; Z̄), ψ(x ,Y; Z̄),
ϑ(x ,Y; Z̄), and χ(x , y; Z̄) such that, for every hypergraphH of rank at most m

and each depth-first spanning H-forests F = ⟨F , ≤, (Uv)v⟩, there are paramet-
ers S̄ such that

Hin ⊧ ψ(v , P; S̄) iff v ∈ F and P = Uv ,

Hin ⊧ ϑ(v , P; S̄) iff v ∈ F and P = Av ,

Hin ⊧ φ(P; S̄) iff P ⊆ F is downwards closed w.r.t. ≤ ,

Hin ⊧ χ(u, v; S̄) iff u, v ∈ F and u ≤ v .

Proof. For every type τ, we use the following parameters:

◆ a unary predicate Fτ containing all vertices v ∈ F of type τ and

◆ the sets Aτ ∶= ⋃{Av ∣ v ∈ Fτ } andUτ ∶= ⋃{Uv ∣ v ∈ Fτ }.

First, we construct the formulae ψ and ϑ. To simplify our task we define
separate versions ψτ(x ,Y) and ϑτ(x ,Y) for each type τ such that

H ⊧ ψτ(v , P) iff v ∈ Fτ and P = Uv ,

H ⊧ ϑτ(v , P) iff v ∈ Fτ and P = Av .

Then the disjunctions of these formulae yield the desired formula ψ and ϑ.
If v has type r, then Av = {v},Uv = ∅, and we can set

ψr(x ,Y) ∶= Frx ∧ Y = ∅ ,

ϑr(x ,Y) ∶= Frx ∧ Y = {v} .

If the type of v is sl , then Av = e ∩ A
s l and Uv = {e}, where e is the

unique edge inUs l containing v. Hence, we can define

ψs l (x ,Y) ∶= Fs l x ∧ (∃e ∈ U
s l )[x ∈ e ∧ Y = {e}] ,

ϑs l (x ,Y) ∶= Fs l x ∧ (∃e ∈ U
s l )[x ∈ e ∧ Y = e ∩A

s l ] .
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Finally, suppose that v has type tl . We construct the desired formu-
lae ψt l and ϑt l with the help of Lemma 1.10. To do so, we need a for-
mula γ(x , y, z) (with parameters) such that

Hin ⊧ γ(u,w , e) iff u = v i , e ∈ Fi , and u,w ∈ e ∩A i ,

for some i ∈ I such that Ti is a star or

a sunflower.

This formula is given by

γ(x , y, z) ∶= x ∈ Ft l ∧ z ∈ S ∧ x ,w ∈ z ∩A
t l ,

where

S ∶= { e ∣ Ti is a sunflower or a star, v i ∈ e ∈ Fi , and v i has type tl } .

(Note that, by definition of an H-forest, each edge e ∈ S has a unique vertex
of type tl .) Let φ′(x ,X,Y) be the formula obtained fromLemma 1.10.Then
we can set

ψt l (x ,Y) ∶= ∃Xφ′(x ,X,Y) and ϑt l (x ,Y) ∶= ∃Xφ′(x ,Y ,X) .

For the final two formulae note that, using ψ and ϑ, we can construct a
formula α(x ,Y) such that

H ⊧ α(v ,Q) iff v ∈ F and Q = B(⋃Uv/F) .

With the help of α we can then set

φ(X) ∶= X ⊆ F ∧ ∀x∀Y[Xx ∧ α(x ,Y) → Y ⊆ X] ,

χ(x , y) ∶= Fx ∧ Fy ∧ ∀X[φ(X) → (Xy → Xx)] .

Orientation+

We can use depth-first spanning forests to define an orientation (i.e., a linear
ordering) of every hyperedge in a given hypergraph.
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Definition 1.15. Let H = ⟨V , E⟩ be a hypergraph. A formula φ(x , y; z)
defines an edge ordering of H if, for every edge e ∈ E, the formula φ(x , y; e)
defines (in Hin) a linear ordering on the vertices of e. ⌟

Theorem 1.16. Let m < ω. There exists anMSO-formula φ(x , y; z, Ū) such
that, for every hypergraph H of rank at most m, there are parameters P̄ such that

φ(x , y; z, P̄) defines (in the structure Hin) an edge ordering of H.

Proof. Fix a depth-first spanning H-forest F. For each type τ, we will con-
struct a formula ητ(x , y) such that, for every vertex v of type τ, ητ defines a
linear preorder on the set Av whose equivalence classes have size at most m.
Using the formulae χ(x , y) and ϑ(x ,Y) from Lemma 1.14 (we omit the
parameters S̄ from the notation), we can set

ψ0(x , y) ∶=(∃u ∈ F)(∃v ∈ F)[x ∈ Au ∧ y ∈ Av ∧ u < v]

∨ (∃v ∈ F)[x , y ∈ Av ∧ “v has type τ” ∧ ητ(x , y)] .

This formula defines a preorder ⊑0 such that
◆ the restriction of ⊑0 to F coincides with ≤,
◆ ⊑0 linearly preorders every set X ⊆ V such that B(X/F) is linearly

ordered by ≤, and
◆ each ⊑0-class has at most m elements.
In particular, ⊑0 linearly preorders every hyperedge ofH. Usingm additional
unary predicates P0 , . . . , Pm−1 we can assign a unique colour to each element
of a ⊑0-class, and these colours can then be used to linear order each class.
The resulting partial order ⊑ is MSO-definable and linearly orders every
hyperedge of H.
Hence, it remains to construct the formulae ητ(x , y). Let Fτ be the set

of all vertices v ∈ F of type τ. If v is of type r or sl , the set Av has at most m
elements and we can set

ητ(x , y) ∶= Fτx ∧ Fτ y .

For vertices of type tl ,Uv is the set of edges of a priority tree

T = ⟨⋃Uv ,Uv , Lv , λv , µv , v⟩ .
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Since the leafs of T are well-ordered by the (definable) order ≤ of F, we can
use the formula φ from Lemma 1.7 to order the set Av ⊆ ⋃Uv . To make
this work, we have to deal with one technicality. Let S̄v be the parameters
used by φ(x , y; S̄v) to order Av . We have to encode the parameters for the
various vertices v into a single tuple S̄. Since (Sv)i ⊆ Av ∪Uv , these sets are
disjoint for different v. Hence, we can use the union

S i ∶= ⋃
v
(Sv)i

and the formula

ητ(x , y; S̄) ∶= (∃v ∈ Fτ)[x , y ∈ Av ∧ φ(x , y; S̄ ↾ Av ∪Uv)] ,

which is definable by Lemma 1.14.

As an application, let us show how to order the predecessors of each vertex
in a directed graphs.

Definition 1.17. A formula φ(x , y; z) defines an predecessor ordering of a
directed graph G = ⟨V , E⟩ if, for every vertex v ∈ V , the formula φ(x , y; v)
defines a linear ordering on the set p(v) ∶= { u ∈ V ∣ ⟨u, v⟩ ∈ E }. ⌟

Corollary 1.18. Let m < ω. There exists anMSO-formula φ(x , y; z, Ū) with
the following property: for every directed graph G of indegree at most m, there

areMSO-parameters P̄ such that the formula φ(x , y; z, P̄) defines (in G) a pre-

decessor ordering of G.

Proof. Let H ∶= ⟨V , F⟩ be the hypergraph where the hyperedges are of the
form

F ∶= { p(v) ∣ v ∈ V } with p(v) ∶= { u ∈ V ∣ ⟨u, v⟩ ∈ E } .

Note that we can interpret the incidence representationHin inG by encoding
each edge p(v) by the corresponding vertex v. More precisely, we choose
for every hyperedge e some vertex v with p(v) = e. Let Q be the set of
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these vertices. Then we obtain an interpretation τ = ⟨δV , δE , φin⟩ of Hin in
⟨G,Q⟩ by setting

δV(v) ∶= true , δE(e) ∶= Qe , φin(v , e) ∶= Eve .

Let ψ(x , y; z, Ū) be theMSO-formula fromTheorem 1.16 defining an edge
ordering ofH and let P̄ be the corresponding parameters. Using the interpret-
ation τ we can evaluate ψ(x , y; z, P̄) on ⟨G,Q⟩. Let ψ′(x , y; z, P̄′ ,Q) be
the resulting formula. Since τ encodes each hyperedge e = p(v) by the set
of predecessors of v, this edge ordering induces a predecessor ordering on G.
Consequently, we can use the formula

φ(x , y; z, P̄′ ,Q) ∶= ∃z′[Qz
′ ∧ ∀u[Euz↔ Euz

′]

∧ ψ′(x , y; z′ , P̄′ ,Q)] .

to define a predecessor ordering on Q. (We have to replace the given vertex z
by the representative of the hyperedge p(z), i.e., by the unique vertex z′ ∈ Q
with p(z) = p(z′).)

2 Sparse Hypergraph+

It is finally time to define the class of structures where the translation of
GSO intoMSO is possible. As already mentioned above, this only works if
there are not too many hyperedges since, otherwise, we have not enough
vertices to encode them by.

Definition 2.1. Let k < ω.
(a) A hypergraph H = ⟨V , E⟩ is k-sparse if

∣E ↾ X∣ ≤ k ⋅ ∣X∣ , for all finite X ⊆ V ,

where E ↾ X ∶= { e ∈ E ∣ e ⊆ X }.
(b) A relational Σ-structure A is k-sparse if

∣R ↾ X∣ ≤ k ⋅ ∣X∣ , for all finite X ⊆ A and all R ∈ Σ . ⌟
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VII. Sparse Structures

Remark. These two definitions do not quite agree for adjacency representa-
tions of hypergraphs. A k-sparse hypergraph H of rank m has an adjacency
representation Hadj that is only km!-sparse. ⌟

Examples. (a) Trees are 1-sparse.
(b) Planar graphs are 3-sparse since every planar graph with n vertices has

at most 3n − 6 edges.
(c) If an undirected graphG = ⟨V , E⟩ has degree at most 2k, it is k-sparse

since, for every finite subset X ⊆ V , we have

2 ⋅ ∣E ↾ X∣ = ∑
v∈X

deg(v) ≤ 2k ⋅ ∣X∣ .

(d) Cliques with n vertices are k-sparse for k ≥ n(n−1)/2
n = 1

2 n, but not
for smaller k.

(e) Complete bipartite graphs Kn ,n are k-sparse for k ≥ n2

2n =
1
2 n, but not

for smaller k.
(f )The class of k-sparse graphs is closed under subdivisions. Furthermore,

for every graph G, we can construct a 2-sparse subdivision by replacing each
edge by a path of length 2.
(g) There are k-sparse Σ-structures A whose Gaifman graph is not k-

sparse. For instance, let A = ⟨A,R⟩ by the structure with universe

A ∶= C + (C × C) , for some set C of size ∣C∣ = n ,

and a ternary relation

R ∶= { ⟨a, b, ⟨a, b⟩⟩ ∣ a, b ∈ C } .

Then A is 1-sparse but its Gaifman graph contains a clique of size n. ⌟

Clearly, a structure must be sparse if we want to encode every guarded
tuple by a single element. Surprisingly, this necessary condition turns out
to be also sufficient. Before giving the proof in the next section, we collect a
few results aboutMSO-definable choice functions, i.e., functions selecting a
unique vertex from every hyperedge.
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2 Sparse hypergraphs

Definition 2.2. A choice function for a hypergraph H = ⟨V , E⟩ is a function
ε ∶ E → V such that ε(e) ∈ e, for all e ∈ E.The indegree of a choice function ε
is the cardinal

sup
v∈V
∣ε−1(v)∣ .

⌟

Theoretically, we could obtain such a function using the linear order
of Theorem 1.16 and map each e ∈ E to the minimal vertex v ∈ e. But
below we need anMSO-definable choice function whileTheorem 1.16 only
produces GSO-definable ones. Furthermore, we want our choice function
to be of bounded indegree and there is no guarantee that the orientation
fromTheorem 1.16 produces such a function. For sparse hypergraphs, there
fortunately exists a direct argument (not based on orientations) proving the
existence of a choice function of bounded indegree. It follows that there is an
MSO-definable way of representing hyperedges by vertices such that every
vertex encodes at most k hyperedges, for some constant k. This means we
can encode these hyperedges by using at most k copies of v. We start with
proving existence (ignoring the issue of definability).

Proposition 2.3. A hypergraph H is k-sparse if, and only if, it has a choice

function ε if indegree at most k.

Proof. For (⇐), let X ⊆ V be finite. Then

∣E ↾ X∣ ≤ ∑
v∈X
∣ε−1(v)∣ ≤ k ⋅ ∣X∣ .

(⇒) First, let us consider the case where H is finite. If ε is an arbitrary
choice function of H then

∑
v∈V
∣ε−1(v)∣ = ∣E∣ ≤ k ⋅ ∣V ∣ .

Hence, if there is some element v ∈ V with ∣ε−1(v)∣ > k then there must be
some other element u ∈ V with ∣ε−1(u)∣ < k. Let us define the weight of ε by

w(ε) ∶= ∑{ ∣ε−1(v)∣ − k ∣ v ∈ V , ∣ε−1(v)∣ > k } .
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VII. Sparse Structures

We have to construct a choice function of weight 0. To do so we transform a
given choice function ε withw(ε) > 0 into one with smaller weight. Given ε,
fix an element v ∈ V with ∣ε−1(v)∣ > k. Let F ⊆ E be the smallest subset
of E such that v belongs to the set U ∶= ⋃ F and we have ε−1(u) ⊆ F, for
every u ∈ U.The subhypergraphH∣U induced byU is k-sparse. Hence, there
exists some element u ∈ U with ∣ε−1(u)∣ < k. By choice of F we can find a
sequence of edges e0 , . . . , en ∈ F with

u ∈ e0 , ε(e i) ∈ e i+1 , and ε(en) = v .

We define a new choice function ι by setting

ι(e) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

u if e = e0 ,
ε(e i−1) if e = e i , i > 0 ,
ε(e) otherwise .

It follows that

∣ι−1(x)∣ =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∣ε−1(v)∣ − 1 if x = v ,
∣ε−1(u)∣ + 1 if x = u ,
∣ε−1(x)∣ otherwise .

Hence, w(ι) < w(ε). Repeating this construction we obtain the desired
choice function ε with w(ε) = 0.
The general case where H may be infinite can be proved using the Com-

pactness Theorem for first-order logic. Let ∆ be the elementary diagram
of Hin. We can write down a formula φ stating that ε ∶ E → V is a function
such that

ε(e) ∈ e and ∣ε−1(v)∣ ≤ k , for all e ∈ E and v ∈ V .

By assumption and the first part of the proof, every finite subset of ∆ ∪ {φ}
is satisfiable. Therefore we can use the Compactness Theorem to find a
model H+ of ∆ ∪ {φ}. As H+ satisfies ∆, there exists an elementary embed-
ding h ∶ Hin → H+. Furthermore, since every edge of H has only finitely
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2 Sparse hypergraphs

many vertices, it follows that

v ∈ h(e) implies v = h(u) , for some u ∈ e .

Hence, we can obtain the desired choice function of H by restricting that
of H+.

Exercise 2.1. Find a hypergraph H that has a choice function φ of indegree
at most k such that the hypergraph obtained fromH by removing from every
hyperedge e the vertex ε(e) has no choice function of indegree k. ⌟

It remains to show that the choice function obtained via the preceding
proposition is MSO-definable. The following sequence of lemmas shows
how we can encode such a function by a finite set of unary predicates. We
start simply, with the case of graphs.

Theorem 2.4. Let Sk be the class of all directed graphs whose edge relation is
irreflexive, antisymmetric, and has indegree at most k.

(a) Every G ∈ Sk is (2k + 1)-colourable.
(b) There exists a finite graph Tk ∈ Sk such that every G ∈ Sk admits a

homomorphism G→ Tk .

Proof. (a) If G ∈ Sk is finite, we can prove the claim by induction on the
number of vertices. Note that G is k-sparse. Since the sum of all outdegrees
is equal to the number of edges, which is bounded by k ⋅ ∣V ∣, there must be
some vertex v of outdegree at most k. By inductive hypothesis, the subgraph
G− v has a (2k + 1)-colouring χ. Since v has at most 2k neighbours, we can
pick some colour c that is different from the colours of these neighbours.
Consequently, we can extend χ to a colouring of G by setting χ(v) ∶= c.
It remains to consider the case where G = ⟨V , E⟩ is infinite. The set

Φ ∶= ⋃
i<2k+1

{Euv ∧ ¬(Piu ∧ Piv) ∣ ⟨u, v⟩ ∈ E }

∪ {∀x⋁i Pix ∧ ∀x⋀i≠ j ¬(Pix ∧ P jx)}

states that the family (Pi)i<2k+1 encodes a (2k + 1)-colouring of G. As
every finite subgraph of G is (2k + 1)-colourable, all finite subsets of Φ are
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VII. Sparse Structures

satisfiable. By the CompactnessTheorem, so is therefore the whole set Φ.
Let G+ = ⟨V+ , E+ , P̄⟩ be a model. Then G is a subgraph of ⟨V+ , E+⟩ and
the restriction of the predicates P̄ to V induce a (2k + 1)-colouring of G.
(b)The graph Tk has the vertex set

T ∶= [2]<p−1 where p ∶= 2k(k + 1) + 1 .

Given ā, b̄ ∈ T with ∣b̄∣ = i < ∣ā∣, we add an edge ā → b̄ if a i = 1, and an
edge b̄ → ā if a i = 0. If ∣ā∣ = ∣b̄∣ there is no edge between ā and b̄.
We claim that the graph Tk defined in this way has the desired property.

Fix G ∈ Sk . Let G′ be the graph obtained from G by adding all edges u → v

such that, in G, there is a path of length 2 from u to v. Then G′ has indegree
at most k(k + 1) and we can use (a) to construct a p-colouring χ of G′. We
use χ to define the desired homomorphism h ∶ G→ Tk as follows. Given a
vertex v ∈ V with colour c ∶= χ(v), we set

h(v) ∶= ⟨a0 , . . . , ac−1⟩ ,

where

a i = 0 : iff there is some edge u → v with u ∈ χ−1(i) .

To show that this defines a homomorphism, consider two vertices u, v con-
nected by an edge (in either direction). By symmetry, we may assume that
i ∶= χ(u) < χ(v) =∶ c. Let ā ∶= h(v) and b̄ ∶= h(u). If the edge is directed
from u to v, we have a i = 0, which implies that ā → b̄ is an edge of Tk . If the
edge has the other direction, then the fact that χ is a colouring of G′ implies
that there is no edge w → v with χ(w) = i = χ(u). Consequently, a i = 1
and it follows that b̄ → ā is an edge of Tk .

The graphs Tk from the preceding theorem can be used to encode choice
functions of hypergraphs. We start with a bit of terminology.

Definition 2.5. Let T = ⟨V , E⟩ be a directed graph and H = ⟨V , E⟩ a
hypergraph.
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2 Sparse hypergraphs

(a) Given a choice function ε of H, we define a directed graphOε(H) ∶=
⟨V , F⟩ with edge relation

F ∶= { ⟨u, v⟩ ∣ u ≠ v and there is some edge e ∈ E with

u ∈ e and ε(e) = v } .

(b) A T-colouring of H consists of a pair ⟨ε, h⟩ where ε is a choice function
of H and h is a homomorphism Oε(H) → T. The indegree of such a T-
colouring ⟨ε, h⟩ is the indegree of ε.
(c) A family (Pv)v∈V of unary predicates encodes an T-colouring ⟨ε, h⟩

of H if Pv = h−1(v), for all v ∈ V .
(d) We say that a formula φ(x ,Y) defines a choice function ε for H if

Hadj ⊧ φ(v , e) iff e ∈ E and v = ε(e) . ⌟

Proposition 2.6. Let H = ⟨V , E⟩ be a k-sparse hypergraph of rank m where

0 < k < ω and 1 < m < ω. Then H has a choice function ε of indegree at
most mk

2
such that the edge relation ofOε(H) is antisymmetric.

Proof. First, we consider the case where H is finite. We call a vertex u ∈ V
bad for a choice function ε of H if there is some vertex v ∈ V such that
Oε(H) contains both edges ⟨u, v⟩ and ⟨v , u⟩. Note that this implies that the
vertex v is also bad.
We construct a sequence of choice functions (εn)n such that

∣ε−1n (v)∣ ≤
⎧⎪⎪
⎨
⎪⎪⎩

k if v is bad for εn ,
mk

2 otherwise ,

and the number of bad elements decreases at every step. We start with an
arbitrary choice function ε0 bounded by k.

Given a choice function εn with the above properties we construct a new
choice function εn+1 with fewer bad elements as follows. Let v be a bad
element, set X ∶= ε−1n (v), and let

Y ∶= { e ∣ v ∈ e and εn(e) ∈ ⋃X ∖ {v}} .
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VII. Sparse Structures

Since v is bad we have

∣X∣ ≤ k and ∣⋃X∣ ≤ k(m − 1) .

Note that every element of the form u ∶= εn(e) with e ∈ Y is also bad since,
by definition of X, there is an edge e′ ∈ X with

u ∈ e′ and εn(e′) = v .

Consequently, Oεn(H) contains the edges ⟨u, v⟩ (since εn(e′) = v) and
⟨v , u⟩ (since εn(e) = u). It follows that

∣Y∣ ≤ k ⋅ ∣⋃X ∖ {v}∣ ≤ k2(m − 1) .

We define the new choice function εn+1 by

εn+1(e) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

v if e ∈ Y ,
εn(e) otherwise .

Then we have

∣εn+1(x)−1∣ ≤
⎧⎪⎪
⎨
⎪⎪⎩

k + k
2(m − 1) if x = v ,

∣εn(x)−1∣ otherwise .

In particular, εn+1 is bounded by mk
2. By construction, the element v is not

bad for εn+1. Furthermore, if ⟨u,w⟩ is an edge in Oεn+1(H) with u,w ≠ v
then this edge is induced by an edge e in H with e ∉ X ∪Y. Hence, ⟨u,w⟩ is
also an edge ofOεn(H). Therefore, every element that is bad for εn+1 is also
bad for εn .
It remains to prove the claim for infinite hypergraphs H. Let Φ be the

union of the elementary diagram of H and formulae stating that ε is a choice
function ofH that is bounded bymk

2 and thatOε(H) has an antisymmetric
edge relation. IfM is amodel ofΦ then there exists an embedding h ∶ H→M
and the desired choice function of H can be obtained via h from that of M.
Hence, it is sufficient to show that Φ is satisfiable. Note that every finite
subset Φ0 ⊆ Φ is satisfiable since every finite substructure of H has a choice
function of the desired form. By the Compactness Theorem, it therefore
follows that whole set Φ is also satisfiable.
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2 Sparse hypergraphs

Corollary 2.7. Let m, k < ω.
(a) Every k-sparse hypergraph H of rank at most m has a Tmk2 -colouring of

indegree at most mk
2
.

(b) There exists an FO-formula ηk(X̄) such that, for every undirected hyper-
graph H of rank at most m,

Hadj ⊧ ηk(P̄) iff P̄ encodes a Tk -colouring of H of indegree

at most k .

(c) There exists an FO-formula φ(x ,Y; Z̄) such that, for every k-sparse hy-
pergraph H of rank at most m, there are monadic parameters P̄ such that

φ(x ,Y; P̄) defines a choice function ε for H of indegree at most mk
2
.

Proof. (a) In Proposition 2.6, we have shown that such a graph H = ⟨V , E⟩
has a choice function ε ∶ E → V of indegree at most mk

2 such that the
edge relation of Oε(H) is antisymmetric. Then Oε(H) has indegree at
most mk

2 as well, and we can useTheorem 2.4 (b) to find a homomorphism
h ∶ Oε(H) → Tmk2 . Thus, ⟨ε, h⟩ is the desired Tmk2 -colouring.
(b) Suppose that Tk = ⟨T , F⟩. The formula ηk(Z̄) has to express the

following three conditions.
(i)The sets Zt form a partition of the vertices (some Zt may be empty).

⋀
s≠t

Zs ∩ Zt = ∅ ∧ ∀x ⋁
t∈T

Ztx

(ii)The functionOε(H) → Tk encoded in Z̄ is a homomorphism.

∀x̄[Em x̄ → ⋁
j<m
{⋀i<m Zt i x i ∣ ⟨t i , t j⟩ ∈ F for all i ≠ j }]

(iii)The indegree is at most mk
2.

∀x∃y0 . . . ∃yk−1∀z[ψ(z, x) → ⋁
i<k

z = y i]
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where

ψ(x , y) ∶= ∃z̄[Em z̄ ∧⋁
i≠ j
[x = z i ∧ y = z j] ∧ ⋁

⟨s ,t⟩∈F
[Zsx ∧ Zt y]] .

states that ⟨x , y⟩ is an edge of Oε(H) that is directed from x to y by the
colouring.
(c) We set

φ(x ,Y; Z̄) ∶= Yx ∧ ∃z̄[Em z̄ ∧ ∀y[Yy↔ ⋁
i<m

y = z i]]

∧ ∀y[Yx ∧ y ≠ x → ψ(x , y)] ,

where ψ(x , y) is the formula from (b) (iii). Given parameters P̄ encoding
a Tmk2 -colouring of H of indegree at most mk

2, it follows that φ(x ,Y; P̄)
defines a choice function of at most that indegree.

Exercise 2.2. Prove that the class of all k-sparse undirected graphs is finitely
MSO-axiomatisable. ⌟

3 Tranªating GSO Into MSO

We are finally able to prove that one can translate everyGSO-formula φ into
anMSO-formula ψ that is equivalent to φ on all k-sparse hypergraphs. The
general idea of the proof is as follows. When we want to represent sets of
hyperedges by sets of vertices, we can fix a choice function ε of bounded
indegree k. Then we can encode each hyperedge e by a pair ⟨i , v⟩ where
v ∶= ε(e) and i < k is some number. To know which number i to use, we
can use the results of Section 1 to define a linear ordering on each hyperedge.

Exercise 3.1. Prove that, for every GSO-formula φ, one can construct an
MSO-formula φ′ such that

G ⊧ φ iff G ⊧ φ′ , for every finite grid G . ⌟
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It will be convenient to phrase the proof below in terms of the following
operation, which is a combination of an interpretation and the copying
operation. Given a structure A it first creates a structure of the form A⊕B,
where B is definable in copyk(A), for some k, and then it adds definable
relations between A and B. To simplify the definition, we will work with
many-sorted structures in this section.

Definition 3.1. Let Ξ ⊆ Ξ+ be sets of sorts and Σ and Γ two signatures
where Σ is Ξ-sorted and Γ is Ξ+-sorted. AnMSO-definable expansion, or an
MSO-expansion for short, is an operation of the form

τ = τ0 ○ copyk , for some k < ω ,

where τ0 = ⟨(δξ(x))ξ∈Ξ+ , (φR(x̄))R∈Γ⟩ is anMSO-interpretation from Σ
to Γ such that

δξ(x) = H0x , for ξ ∈ Ξ ,

δξ(x) implies ¬H0x , for ξ ∈ Ξ+ ∖ Ξ ,

φR(x̄) = Rx̄ ∧⋀
i
H0x i , for R ∈ Σ ∩ Γ ,

whereH0 , . . . ,Hk−1 are the colour predicates introduced by copyk . ⌟

Remarks. (a) Note that there is a canonical inclusion A→ τ(A) for every
MSO-expansion τ and every input structure A.

(b) AnMSO-expansion is a special form of an operation called anMSO-
transduction. We will study these in Chapter X. ⌟

Weobtain a composition theorem forMSO-expansions immediately from
the corresponding theorems for interpretations and the copy operation.

Lemma 3.2. Let τ be anMSO-expansion and φ(x̄ , Ȳ; Z̄) anMSO-formula.
There exists anMSO-formula φτ(x̄ , Ȳ; Z̄′) such that, for every structure A and

allMSO-parameters Q̄ in τ(A), there areMSO-parameters Q̄ ′
in A satisfying

τ(A) ⊧ φ(ā, P̄; Q̄) iff A ⊧ φτ(ā, P̄; Q̄ ′) ,

for all parameters ā, P̄ in A.
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Slightly less trivial is the fact that MSO-expansions are closed under
composition.

Lemma 3.3. If σ and τ areMSO-expansions, so is τ ○ σ .

Proof. Suppose that σ = σ0 ○ copyk and τ = τ0 ○ copym . By Lemmas
I.4.20 and I.4.7, there existMSO-interpretations σ ′0 and ρ such that

τ ○ σ = τ0 ○ copym ○ σ0 ○ copyk
= τ0 ○ σ ′0 ○ copym ○ copyk = ρ ○ copymk .

It remains to check that ρ is of the correct form. LetH i andH′
j be the colour

predicates introduced by, respectively, copyk and copym . Then the colour
predicates of copymk are of the form H i , j = H i × H

′
j (up to a renaming

of the indices). By assumption on σ0 and τ0, there there exists a bijection
A → H0,0 that preserves all relations. Consequently, we can choose the
formulae of ρ such that they also have the required form.

Definition 3.4. Let B and C be Γ-structures and A a Σ-structure with
A∣Σ∩Γ ⊆ B∣Σ∩Γ and A∣Σ∩Γ ⊆ C∣Σ∩Γ . We denote by B ∪A C the Γ-structure
obtained from the disjoint unionB⊕C by identifying the two copies ofA. ⌟

Lemma 3.5. Let σ and τ be two MSO-expansions. There exists an MSO-
expansion σ ∪ τ such that

(σ ∪ τ)(A) = σ(A) ∪A τ(A) , for all A .

Proof. Suppose that σ = σ0 ○ copyk and τ = τ0 ○ copym with

σ0 = ⟨(δξ(x))ξ∈Ξ+ , (φR(x̄))R∈Γ⟩ ,

τ0 = ⟨(γξ(x))ξ∈Ξ+ , (ψR(x̄))R∈Γ⟩ .

We set

σ ∪ τ ∶= ρ ○ copyk+m−1 ,
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where the interpretation ρ is defined as follows. Intuitively, ifH0 , . . . ,Hk−1
and H

′
0 , . . . ,H

′
m−1 are the partitions of σ(A) and τ(A) induced by the

copy-operations, the structure σ(A) ∪A τ(A) has a partition

H0 +H1 + ⋅ ⋅ ⋅ +Hk−1 +H
′
1 + ⋅ ⋅ ⋅ +H

′
m−1 ,

which the interpretation ρ recreates. To do so, it has to re-index the setsH′
i

from τ(A). For a formula φ, we denote by φ′ the formula obtained from φ by
replacing every atom of the formH iz with i > 0 byHk+i−1z. Furthermore,
let

α(x) ∶= ⋁
0<i<k

H ix and β(x) ∶= ⋁
0<i<m

Hk+i−1x .

We set ρ ∶= ⟨(ηξ(x))ξ∈Ξ+ , (ϑR(x̄))R∈Γ⟩ where

ηξ(x) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

H0x for ξ ∈ Ξ ,
[α(x) ∧ δξ(x)] ∨ [β(x) ∧ γ′ξ(x)] for ξ ∈ Ξ+ ∖ Ξ ,

ϑR(x̄) ∶= [⋀
i
[H0x i ∨ α(x i)] ∧ φR(x̄)]

∨ [⋀
i
[H0x i ∨ β(x i)] ∧ ψR(x̄)] .

With these preparations out of the way we can finally state and proof the
theorem we have worked towards the preceding sections.

Theorem 3.6 (Courcelle). Let k,m < ω. There exists anMSO-expansion τ
such that, for every non-empty k-sparse hypergraph H of rank at most m, there

are monadic parameters P̄ such that

τ(⟨Hadj , P̄⟩) = Hin .

Proof. Note that Hin ≅ H0
in ∪Hadj ⋅ ⋅ ⋅ ∪Hadj Hm

in, where

Hi ∶= ⟨V , E i⟩ with E i ∶= { e ∈ E ∣ ∣e∣ = i } .
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It is therefore sufficient to construct MSO-expansions τ i mapping Hi
adj

to Hi
in.Then τ ∶= τ0 ∪ ⋅ ⋅ ⋅ ∪ τm is the desiredMSO-expansion mapping Hadj

to Hin. Replacing H by some Hi , we may therefore assume that all edges
of H have exactly m vertices. We construct the desiredMSO-expansion τ by
induction on m.
(m = 0) Since H is k-sparse, it has at most k hyperedges of size 0. Con-

sequently, we can interpret Hin in copyk+1(Hadj).
(m = 1) As H is k-sparse there are, for every vertex v ∈ V , at most k

hyperedges e with vertex v. Again, we can interpret Hin in copyk+1(Hadj).
(m = 2) If all hyperedges have two vertices, the hypergraph is an undir-

ected graph. By Corollary 2.7 (c), there exists an FO-formula φ(x ,Y; P̄)
defining a choice function ε for H of indegree at most 2k2. We use this
function to turn H into a directed graph by orienting each edge e towards
ε(e). By Corollary 1.18, there exists anMSO-formula ψ(x , y; z, Q̄) defining
a predecessor ordering on the resulting graphG. For a vertex v, we denote by
p i(v) the i-th predecessor with respect to this ordering. We encode Hin in
copyk+1(H, P̄Q̄) as follows. Vertices v ofH are represented by the (k+ 1)-th
copy ⟨k, v⟩, while an edge p i(v) → v is represented by the i-th copy ⟨i , v⟩.
Clearly, the incidence relation in is definable using this encoding. Hence,
there exists anMSO-interpretation τ0 mapping copyk+1(H, P̄Q̄) toHin.The
composition τ0 ○ copyk+1 is the desiredMSO-expansion mapping ⟨H, P̄⟩
to Hin.
(m > 2)Thebasic idea is simple: given a hypergraph of rankm, we choose

a choice function ε and we remove from every hyperedge e the vertex ε(e).
This results in a hypergraph of rankm−1, to which we apply the inductive hy-
pothesis. Unfortunately, this plan does not work: the new hypergraph might
not be sparse. Hence, we need the following more complicated construction.
Given a k-sparse hypergraph H = ⟨V , E⟩ of rank at most m, we use

Corollary 2.7 (c) to construct an FO-formula φ(x ,Y; P̄) defining a choice
function ε of indegree at most mk

2. Let D ∶= ⟨D,R⟩ be the hypergraph
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with

D ∶= { ⟨v , ε(e)⟩ ∣ e ∈ E , v ∈ e ∖ {ε(e)} } ,

R ∶= { {⟨v0 , u⟩, . . . , ⟨vm−2 , u⟩} ∣

e = {u, v0 , . . . , vm−2} ∈ E , u = ε(e) } .

Note that D has rank m − 1 and that its vertices are the edges ofOε(H). Let
s, t ∶ D → V be the functions

s(⟨u, v⟩) ∶= u and t(⟨u, v⟩) ∶= v .

We start by proving that D is 2k-sparse. Fix a finite set X ⊆ D. Note that

{⟨v0 , u⟩, . . . , ⟨vm−2 , u⟩} ∈ R ↾ X

implies that

{u, v0 , . . . , vm−2} ∈ E ↾ Y , where Y ∶= s[X] ∪ t[X] .

Since H is k-sparse, it therefore follows that

∣R ↾ X∣ ≤ ∣E ↾ Y∣ ≤ k ⋅ ∣Y∣ ≤ k ⋅ (∣s[X]∣ + ∣t[X]∣) ≤ 2k ⋅ ∣X∣ ,

as desired.
Using the formula φ(x ,Y; P̄) from above, we can interpret the graph

⟨V ,D, s, t⟩ (where we consider D as a binary relation) in ⟨H, P̄⟩. As every
vertex of ⟨V ,D⟩ has indegree at mostmk

2(m− 1), this graph ismk
2(m− 1)-

sparse. By inductive hypothesis, there therefore exists anMSO-expansion
mapping ⟨V ,D, s, t⟩ to its incidence structure ⟨V ,D, in⟩ (where D is now
considered as one of the domains). A trivial modification of this MSO-
expansion yields the structure ⟨V ,D, E , s, t⟩ instead (where we consider E
as a relation of arity m). Since R (as a relation of arity m − 1) is defin-
able using φ, there therefore exists anMSO-expansion mapping ⟨H, P̄⟩ to
⟨V ,D, E ,R, s, t⟩. As ⟨D,R⟩ is 2k-sparse of rank m − 1, we can use the in-
ductive hypothesis to find an MSO-expansion mapping ⟨V ,D, E ,R, s, t⟩
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to the structure ⟨V ,D,R, E , s, t, inD⟩ where R is now considered as one of
the domains and inD ⊆ D × R is the incidence relation of D. Finally, we can
define Hin = ⟨V , E , inH⟩ in this latter structure since

⟨v , e⟩ ∈ inH iff v = s(d) or v = t(d) ,

where d ∈ R is the hyperedge corresponding to e .

Hence,

Hin ≅ ⟨V ,R, F⟩ where F ∶= { ⟨s(d), d⟩, ⟨t(d), d⟩ ∣ d ∈ R } .

Theorem 3.7. Let Σ be a finite relational signature and k < ω. There exists an

MSO-expansion τ such that, for every non-empty k-sparse Σ-structure A, there
are monadic parameters P̄ such that

τ(⟨A, P̄⟩) = Ain .

Proof. Recall that Ain = ⟨A, E , (PR ,σ)R ,σ , (ini)i⟩. For each R ∈ Σ and
every map σ , we will construct anMSO-expansion τR ,σ mapping A to the
structure AR ,σ ∶= ⟨A, PR ,σ , (ini)i⟩, where PR ,σ is considered as one of the
domains. Then we can obtain Ain from the union

⋃A {AR ,σ ∣ R, σ }

by (i) merging elements of PR ,σ and PR′ ,σ ‘ that represent the same tuple and
(ii) redefining some of the relations. Consequently, we can obtain the desired
MSO-expansion τ from⋃R ,σ τR ,σ by a straightforward modification.

It therefore remains to construct theMSO-expansions τR ,σ . Fix a relation
R ∈ Σ of arity n and an injective map σ ∶ [k] → [n]. By Theorem 3.6,
there exists anMSO-expansion σ mapping the hypergraph ⟨A, PR ,σ⟩ to its
incidence representation ⟨A, PR ,σ , in⟩. We have to define the relations ini
in this structure. We can use Theorem 1.16 to define an edge ordering of
⟨A, PR ,σ , in⟩. For every bijection ρ ∶ [k] → [k], letQρ be the set of all tuples
c̄ ∈ PR ,σ such that the edge ordering defined on c̄ is cρ(0) < ⋅ ⋅ ⋅ < cρ(k−1).

496



4 Sparse distributions

Then

⟨v , e⟩ ∈ ini iff ⟨v , e⟩ ∈ in and there is some ρ such that

e ∈ Qρ and v is the ρ(i)-th element of e in its

edge ordering.

Clearly, this can be expressed inMSO.

Corollary 3.8. Let Σ be a finite relational signature and k < ω. Every GSO-
definable property isMSO-definable over the class of all k-sparse Σ-structures.

4 Sparse Di#ribution+

The results so far concern ways to encode edges by vertices. In this section
we consider a more general problem. Let G = ⟨V , E⟩ be a graph. We denote
by ℘fin(V) the set of all finite subsets of V . We would like to encode a
given subset F ⊆ ℘fin(V) by a set of vertices, that is, we would like to find
a definable function h ∶ F → V that is injective. For F = E this reduces to
the problem considered in the preceding sections. For an arbitrary F, such a
function h does not always exist. But we will show that sometimes we can
transform a given function h0 ∶ F → V into an injective one.
Suppose we are given a function h0 ∶ F → V that we want to transform

into an injective function h ∶ F → V . Let δ(v) ∶= ∣h−10 (v)∣. The first step
in the construction of h consists in finding a definable function g ∶ V → V

such that ∣g−1(v)∣ = δ(v), for all v. Of course, this is not always possible.
For instance, if the graph is finite and we have δ(v) > 1, for all vertices v.
Therefore, we consider only functions δ that are sparse in the sense of the
following definition.

Definition 4.1. Let G = ⟨V , E⟩ be an undirected graph.
(a)The border of a subset Z ⊆ V is the set

BG(Z) ∶= E ∩ Z × (V ∖ Z)

of all edges connecting a vertex in Z with a vertex outside of Z.
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VII. Sparse Structures

(b) A distribution of G is a map δ ∶ V → ω. For a set Z ⊆ V , we set

δ(Z) ∶= ∑
v∈Z

δ(v) .

(c) A distribution δ is k-sparse if

δ(Z) ≤ ∣Z∣ + k ⋅ ∣BG(Z)∣ , for every finite Z ⊆ V . ⌟

Given a k-sparse distribution δ we will construct the desired function
g ∶ V → V by solving a network flow problem.

Definition 4.2. Let G = ⟨V , E⟩ be an undirected graph.
(a) A flow of G is a function f ∶ V ×V → Z such that, for all u, v ∈ V ,

◆ f (u, v) = − f (v , u) and

◆ f (u, v) ≠ 0 implies ⟨u, v⟩ ∈ E.

(b) A flow f is acyclic if there is no cycle u0 , . . . , um of G with

f (u i , u i+1) > 0 , for all i ≤ m (index arithmetic modulo m).

(c)The defect of a flow f is the function

d f (v) ∶= ∑
u∈V

f (v , u) .

(d) Let δ ∶ V → ω be a distribution. A flow f is a δ-flow if, for every
v ∈ V , either

d f (v) = δ(v) − 1 , or δ(v) = 0 and d f (v) = 0 .

(e) A flow f is edge-bounded by k if ∣ f (u, v)∣ ≤ k, for all u, v ∈ V . We
call f vertex-bounded by k if

∑
u∈V
∣ f (u, v)∣ ≤ k , for all v ∈ V .

⌟

Our aim is to show that, for every k-sparse distribution δ there is a
bounded δ-flow f and a function g ∶ V → V inducing δ. Furthermore, if
δ is definable then g should also be definable.
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4 Sparse distributions

Definition 4.3. Let L be a logic.
(a) A distribution δ is L-definable if there exist formulae φ i(x) ∈ L, i < k,

such that

G ⊧ φ i(v) iff δ(v) = i .

(b) Similarly, a flow f is L-definable if there exist formulae φ i(x , y) ∈ L
such that

G ⊧ φ i(u, v) iff f (u, v) = i . ⌟

Remark. Note that every edge-bounded flow f can be encoded with the
help of the GSO-parameters

S i ∶= { ⟨u, v⟩ ∈ E ∣ f (u, v) = i } . ⌟

We start with a few lemmas about bounded flows.The first one follows
immediately from the definitions.

Lemma 4.4. Let G be an undirected graph.

(a) Every flow that is vertex-bounded by k is also edge-bounded by k.

(b) If G has maximal degree d, every flow that is edge-bounded by k is vertex-

bounded by dk.

Lemma 4.5. Let G be an undirected graph, δ a distribution, and f a flow such

that

d f (v) ≥ δ(v) − 1 , for all vertices v .

Then there exists a distribution δ′ ≥ δ such that f is a δ′-flow.

Proof. We set

δ′(v) ∶= d f (v) + 1 .

Then δ′(v) ≥ d f (v)+ 1 ≥ δ(v) ≥ 0 implies that δ′ is a distribution and that
δ′ ≥ δ. Furthermore, f is a δ′-flow since d f (v) = δ′(v) − 1, for all v.
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VII. Sparse Structures

Lemma 4.6. For every δ-flow f there exists an acyclic δ-flow f
′
such that, if

f is edge-bounded by k or vertex-bounded by k, then so is f
′
.

Proof. We repeat the following construction until the flow is acyclic. Select
a cycle u0 , . . . , um such that

c ∶= min{ f (u i , u i+1) ∣ i ≤ m } > 0

(with index arithmetic modulo m). We define f
′ by

f
′(x , y) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

f (x , y) − c if x = u i and y = u i+1 , for some i ,
f (x , y) + c if x = u i+1 and y = u i , for some i ,
f (x , y) otherwise .

Our first main theorem is the fact that every distribution induces a flow.

Proposition 4.7. Let G = ⟨V , E⟩ be an undirected graph and δ a k-sparse
distribution. Then G has a δ-flow f that is edge-bounded by k.

Proof. First, we assume that G is finite. In this case we can reduce the task
to a network flow problem. Let H be the graph obtained from G by adding
two new vertices s and t that are connected to every vertex of G. We define
the capacity c(e) of an edge e of H as follows. If e is an edge of G, we set
c(e) ∶= k. If e = ⟨s, v⟩ with v ∈ V we set c(e) ∶= max{0, δ(v) − 1}. Finally,
if e = ⟨v , t⟩ with v ∈ V we define

c(e) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

0 if δ(v) > 0 ,
1 otherwise .

Let f be a maximal flow from s to t with respect to c. We claim that its
restriction to the edges of G is the desired flow.
According to theMax-FlowMin-CutTheorem, there is a setX of vertices

containing s but not t such that the maximal flow m from s to t equals

m = ∑
e∈BH(X)

c(e) .
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Let X0 ∶= X ∖ {s} ⊆ V and Y ∶= δ−1(0). Since

BH(X) = BG(X0) ∪ { ⟨v , t⟩ ∣ v ∈ X0 } ∪ { ⟨s, v⟩ ∣ v ∈ V ∖ X0 } ,

we have

m = ∑
e∈BH(X)

c(e)

= k ⋅ ∣BG(X0)∣ + ∣X0 ∩ Y∣ + (δ(V ∖ X0) − ∣(V ∖ X0) ∖ Y∣)

= k ⋅ ∣BG(X0)∣ + ∣X0∣ + δ(V ∖ X0)

− ∣(V ∖ X0) ∖ Y∣ − ∣X0 ∖ Y∣

≥ δ(X0) + δ(V ∖ X0) − ∣V ∖ Y∣

= δ(V) − ∣V ∖ Y∣ .

On the other hand, for the set X = {s}, we have

m ≤ ∑
e∈BH(X)

c(e) = ∑
v∈V

max{0, δ(v) − 1} = δ(V) − ∣V ∖ Y∣ .

Consequently, the maximal flow m from s to t equals

m = δ(V) − ∣V ∖ Y∣ .

This implies that

f (s, v) = max{0, δ(v) − 1} , for every v ∈ V .

For each v ∈ V , we therefore have

0 = ∑
u∈V∪{s ,t}

f (u, v) = max{0, δ(v) − 1} + f (t, v) + ∑
u∈V

f (u, v) .

If δ(v) > 0 this implies

δ(v) − 1 − ∑
u∈V

f (v , u) = 0 , that is d f (v) = δ(v) − 1 ,
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while, for δ(v) = 0, we have

− f (v , t) − ∑
u∈V

f (v , u) = 0 .

Hence, either d f (v) = −1 = δ(v) − 1 or d f (v) = 0.
It remains to prove the lemma for infinite graphs. Let Φ(G) consist of

the elementary diagram of G together with first-order formulae stating that
f is a δ-flow on G that is edge-bounded by k. We will use the compactness
theorem to show that Φ(G) is satisfiable.
Let Φ0 ⊆ Φ(G) be finite. There exists a finite induced subgraph G0 =

⟨V0 , E0⟩ of G such that Φ0 ⊆ Φ(G0). Let ⟨u0 , v0⟩, . . . , ⟨um−1 , vm−1⟩ be
an enumeration (without repetitions) of all edges ⟨u, v⟩ with u ∈ V0 and
v ∈ V ∖ V0. We construct a new graph G′

0 = ⟨V
′
0 , E

′
0⟩ by attaching to

each vertex u i a path Pi of length k. Let δ′ be the distribution on G′
0 with

δ′(v) = δ(v), for v ∈ V0, and δ′(v) = 0, for v ∈ V ′
0 ∖V0. In order to show

that Φ0 is satisfiable, it is sufficient to prove thatG′
0 has a flow of the desired

form. Consider an arbitrary set X ⊆ V ′
0 of vertices. Let

I ∶= { i ∣ u i ∈ X } and J ∶= { i ∣ u i ∈ X and Pi ⊆ X } .

It follows that

δ′(X) = δ(X ∩V0) ≤ ∣X ∩V0∣ + k ⋅ ∣BG(X ∩V0)∣

≤ ∣X∣ − k ⋅ ∣ J∣ + k ⋅ ∣BG′0(X ∩V0)∣

≤ ∣X∣ − k ⋅ ∣ J∣ + k ⋅ (∣BG′0(X)∣ + ∣ J∣)

= ∣X∣ + k ⋅ ∣BG′0(X)∣ .

By the first part of the proof it follows that G′
0 has a flow of the desired

form.

For the application below, we need flows that areWMSO-definable. But
to prove their existence we have to make a few concessions: the proof only
works for trees and the flow we obtain is only a δ′-flow, for some δ′ ≥ δ. We
start with the case of finite trees.
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4 Sparse distributions

Lemma 4.8. Let T = ⟨T , (suci)i<d⟩ be a finite successor tree where every
vertex has at most d successors and let δ be a k-sparse distribution on T. Then

T has a δ′-flow f , for some δ′ ≥ δ, such that f is WMSO-definable (without
parameters) and edge-bounded by dk + 1. Furthermore, for every edge ⟨u, v⟩
of T, there is some connected set Z ⊆ T with minimal element v such that

f (u, v) = ∣Z∣ + k ⋅ ∣BT(Z)∣ − δ(Z) − k .

Proof. Theflow f we define below has the property that, for every v ∈ T with
predecessor u, there is some connected set Zv ⊆ T with minimal element v
such that

f (u, v) = ∣Zv ∣ + k ⋅ ∣BT(Zv)∣ − δ(Zv) − k ,

f (x , y) ≥ k , for all ⟨x , y⟩ ∈ BT(Zv) ∖ {⟨v , u⟩} .

We proceed by induction on the size of the subtree attached at v. Hence, let
⟨u, v⟩ be an edge such that f is already defined for all edges of the subtree
attached at v, let w0 , . . . ,wn−1 be the successors of v, and set I ∶= { i < n ∣
f (v ,w i) < k }. We set

Zv ∶= {v} ∪⋃
i∈I

Zw i .

Then f (u, v) is given by the formula above.
This concludes the definition of f . To see that f has the desired properties,

we start by computing its defect. Let v be a vertex a predecessor u and
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successors w0 , . . . ,wn−1, and set I ∶= { i < n ∣ f (v ,w i) < k }. Then

d f (v) = ∑
i<n

f (v ,w i) − f (u, v)

= ∑
i<n

f (v ,w i) − [∣Zv ∣ + k ⋅ ∣BT(Zv)∣ − δ(Zv) − k]

= ∑
i<n

f (v ,w i) − [1 +∑
i∈I
∣Zw i ∣] + [δ(v) +∑

i∈I
δ(Zw i )] + k

− k ⋅ [1 +∑
i∈I
[∣BT(Zw i )∣ − 1] + (n − ∣I∣)]

= ∑
i<n

f (v ,w i) − 1 + δ(v) + k − k − k(n − ∣I∣)

−∑
i∈I
[∣Zw i ∣ − δ(Zw i ) + k ⋅ ∣BT(Zw i )∣ − k]

= ∑
i<n

f (v ,w i) − 1 + δ(v) + k − k − k(n − ∣I∣) −∑
i∈I

f (v ,w i)

= δ(v) − 1 − k(n − ∣I∣) +∑
i∉I

f (v ,w i) .

To see that f is edge-bounded by dk + 1 note that, by sparseness of δ, we
have

f (u, v) = ∣Zv ∣ + k ⋅ ∣BT(Zv)∣ − δ(Zv) − k ≥ −k .

Conversely, we have

f (u, v) = ∑
i<n

f (v ,w i) − d f (v)

= ∑
i<n

f (v ,w i) − δ(v) + 1 + k(n − ∣I∣) −∑
i∉I

f (v ,w i)

= ∑
i∈I

f (v ,w i) − δ(v) + 1 + k(n − ∣I∣)

≤ (k − 1) ⋅ ∣I∣ − δ(v) + 1 + k(n − ∣I∣)

= kn + 1 + (k − 1) ⋅ ∣I∣ − δ(v) − k ⋅ ∣I∣

≤ kd + 1 .
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To find the desired distribution δ′, we can use Lemma 4.5. To do so we
have to show that d f (v) ≥ δ(v) − 1. If v is different from the root, we have

d f (v) + 1 = δ(v) − 1 − k(n − ∣I∣) +∑
i∉I

f (v ,w i) + 1

= δ(v) +∑
i∉I
[ f (v ,w i) − k]

≥ δ(v) + 0 .

For the root v, let

Z
′ ∶= {v} ∪ ⋃

i<n
Zw i ,

where w0 , . . . ,wn−1 are the successors of v. Then sparsity of δ implies that

d f (v) + 1 = ∑
i<n

f (v ,w i) + 1

= ∑
i<n
[∣Zw i ∣ + k ⋅ ∣BT(Zw i )∣ − δ(Zw i ) − k] + 1

= ∣Z′∣ − 1 + k ⋅ [∣BT(Z
′)∣ + n] − δ(Z′) + δ(v) − nk + 1

= ∣Z′∣ + k ⋅ ∣BT(Z
′)∣ − δ(Z′) − 1 + nk + δ(v) − nk + 1

= ∣Z′∣ + k ⋅ ∣BT(Z
′)∣ − δ(Z′) + δ(v)

≥ δ(v) .

It remains to show that f isWMSO-definable. Since f is edge-bounded,
anWMSO-formula can guess the values f (u, v), for every edge ⟨u, v⟩, and
then check that the guessed values are correct using the relation

f (u, v) = ∑
i∈I

f (v ,w i) − δ(v) + 1 + k(n − ∣I∣)

from above.

We can extend this result to countable trees with a slightly worse bound.
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Proposition 4.9. LetT = ⟨T , (suci)i<d⟩ be a successor tree where every vertex
has at most d successors and let δ be a k-sparse distribution on T. Then T has a

δ′-flow f , for some δ′ ≥ δ, such that f isWMSO-definable (without parameters)
and edge-bounded by (dk + 1)(d + 2).

Proof. We start to define the desired flow f on all finite subtrees of T. We
would like to Lemma 4.8 for this. Unfortunately, the restriction of δ to a
subtree of T does not need to be k-sparse. Given a finite subtree S of T, we
therefore first add a path of length k to the root of S and we set δ(v) ∶= 0,
for every of the new vertices v. The resulting distribution is k-sparse. Let
f
′ be the flow obtained by applying Lemma 4.8 to it. For every edge ⟨u, v⟩

of S (including the edge connecting the root S to the rest of T), we set
f (u, v) ∶= f

′(u, v). Note that this part of f is edge-bounded by dk + 1.
Hence, it remains to define f (u, v) for edges ⟨u, v⟩ belonging to some

infinite branch of T. Let B be the union of all infinite branches of T. Hence, it
remains to define f (u, v) for u, v ∈ B.We do so by induction on the distance
of u from the root. Hence, let v ∈ B a vertex with successors w0 , . . . ,wn−1
and set

I ∶= { i < n ∣ w i ∈ B } .

If v has a predecessors u, wemay assume by inductive hypothesis that f (u, v)
is already defined. Let

s ∶= δ(v) − 1 −∑
i∉I

f (v ,w i) +

⎧⎪⎪
⎨
⎪⎪⎩

f (u, v) if u exists,
0 otherwise,

set

c ∶= ⌊
max{s, 0}
∣I∣

⌋ and c
′ ∶= ⌈

max{s, 0}
∣I∣

⌉ ,

and let 0 ≤ m < ∣I∣ be the constant such that max{s, 0} = c ⋅ ∣I∣ + m. For
i ∈ I, we set

f (v ,w i) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

c if there are less than m indices j < i in I ,
c
′ otherwise .
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Then

d f (v) = (δ(v) + 1) − s +∑
i∈I

f (v ,w i)

= δ(v) + 1 − s + c ⋅ ∣I∣ + m

≥ δ(v) + 1 .

In particular, it follows by Lemma 4.5 that f is a δ′-flow for some δ′ ≥ δ.
Furthermore, f isWMSO-definable since we can express inWMSO that the
subtree attached to a given vertex is finite, the definition for finite subtrees
ifWMSO-definable, and the values of f for vertices in B can be computed
inductively starting at the root.

Since f (v ,w i) ≥ 0 it therefore remains to show that

f (v ,w i) ≤ (dk + 1)(d + 2) .

Hence, consider an edge ⟨u, v⟩ in B. If u has m ≥ 2 successors in B, we have
(with the notation from above)

f (u, v) ≤ c′ ≤
1
m

⋅max{s, 0} + 1

≤
1
2
⋅max{s, 0} + 1

≤
1
2
[δ(v) − 1 + (dk + 1)(n − m) + (dk + 1)(d + 2)]

≤
1
2
[(d + 1)k + 1 − 1 + (dk + 1)(n − m)

+ (dk + 1)(d + 2)]

≤
1
2
[(d + 1)k + (dk + 1)(n − m) + (dk + 1)(d + 2)]

≤
1
2
[(d + 1)k + (dk + 1)(d − 2) + (dk + 1)(d + 2)]

=
1
2
[(d + 1)k + (dk + 1)2d]
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= (dk + 1)d +
1
2
(d + 1)k

= (dk + 1)(d + 2) − 2(dk + 1) +
1
2
(d + 1)k

= (dk + 1)(d + 2) − [2dk + 2 −
1
2
dk −

1
2
k]

= (dk + 1)(d + 2) − [
3d − 1
2

k + 2]

≤ (dk + 1)(d + 2) − [
5
2
k + 2]

≤ (dk + 1)(d + 2) − 2k .

Hence, it remains to consider the case where v is the only successor of u
that belongs to B. Let u0 , . . . , um be the longest suffix of the path from
the root to u such that f (u j , u j+1) > (dk + 1)(d + 2) − 2k, for all i. Let
w

j
0 , . . . ,w

j
n j−1 be the successors of u j different from u j+1. By the case above,

it follows that u j+1 is the unique successor of u j that belongs to B. For i < n j ,
let Z j

i be the set such that

f (u j ,w
j
i ) = ∣Z

j
i ∣ + k ⋅ ∣BT(Z

j
i )∣ − δ(Z j

i ) − k ,

f (x , y) ≥ k , for all ⟨x , y⟩ ∈ BT(Z
j
i ) ∖ {⟨w

j
i , u j⟩} .

Let

Z ∶= {u0 , . . . , um} ∪ ⋃
j≤m
i∈I j

Z
j
i .

Let u−1 be the predecessor of u0, if it exists, and set f (u−1 , u0) ∶= 0, in case
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4 Sparse distributions

it does not. By definition of f , we have

f (um , v) = max{s, 0}

= δ(um) − 1 − ∑
i<nm

f (um ,wm
i ) + f (um−1 , um)

= . . .

=
m
∑
j=0
[δ(u j) − 1 − ∑

i<n j

f (um ,wm
i )] + f (u−1 , u0)

=
m
∑
j=0
[δ(u j) − 1 − ∑

i<n j

[∣Z
j
i ∣ + k ⋅ ∣BT(Z

j
i )∣ − δ(Z j

i ) − k]]

+ f (u−1 , u0)

= δ(Z) − ∣Z∣ −
m
∑
j=0
∑
i<n j

k ⋅ ∣BT(Z
j
i )∣ + k(n0 + ⋅ ⋅ ⋅ + nm)

+ f (u−1 , u0)

= δ(Z) − ∣Z∣ − k ⋅ [∣BT(Z)∣ − 2] + f (u−1 , u0)

≤ ∣Z∣ + k ⋅ ∣BT(Z)∣ − ∣Z∣ − k ⋅ [∣BT(Z)∣ − 2] + f (u−1 , u0)

= f (u−1 , u0) + 2k

≤ (dk + 1)(d + 2) − 2k + 2k = (dk + 1)(d + 2) .

It remains to show how we can use the δ-flow f we have just constructed
to define the desired function g ∶ V → V . We start by selecting a certain
family of definable paths. Note that we allow paths of length 0. Such paths
are uniquely determined by the vertex they start (and end) at.

Lemma 4.10. Let G be a countable undirected graph and f an acyclic δ-flow
of G.There exists a setP of finite directed paths throughG satisfying the following

conditions:

(i) For every v ∈ V, there are exactly δ(v) paths in P starting at v.

(ii) For every v ∈ V there is at most one path in P ending at v.
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VII. Sparse Structures

(iii) For every pair u, v ∈ V of vertices there are at most max{0, f (u, v)}
paths in P containing the edge ⟨u, v⟩ (in this direction).

Proof. Fix an enumeration ⟨vn , kn⟩n<ω of the set

{ ⟨v , k⟩ ∣ v ∈ V , 0 ≤ k < δ(v) } .

For n < ω, we construct paths πn with the following properties:

◆ πn starts at vn .

◆ The endpoints of πm and πn are different for m ≠ n.

◆ For every edge ⟨u, v⟩ there are at most f (u, v) paths πn containing the
edge ⟨u, v⟩.

By induction, suppose that we have already defined π i , for i < n. Let

α(v) ∶= ∣{ i < n ∣ π i starts at v }∣ ,

β(v) ∶= ∣{ i < n ∣ π i ends at v }∣ ,

µ(u, v) ∶= ∣{ i < n ∣ π i contains the edge ⟨u, v⟩ }∣ .

We construct a path u0 . . . um inductively starting with u0 ∶= vn . For the
inductive step, suppose that we have already defined u0 , . . . , u i . If β(u i) = 0,
we stop and set πn ∶= u0 . . . u i . Otherwise, we claim that there is some
neighbour w of u i with f (u i ,w) > µ(u i ,w). Hence, we can set u i+1 ∶= w.

To prove the claim, we distinguish two cases. If i = 0, then α(u0) < δ(u0)
implies that

∑
x∈V

µ(u0 , x) = α(u0) − β(u0) + ∑
x∈V

µ(x , u0)

≤ α(u0) − 1 +∑{ f (x , u0) ∣ f (x , u0) ≥ 0}

= α(u0) − 1 − d f (u0) +∑{ f (u0 , x) ∣ f (u0 , x) ≥ 0}

= α(u0) − 1 − (δ(u0) − 1)

+∑{ f (u0 , x) ∣ f (u0 , x) ≥ 0}

< ∑{ f (u0 , x) ∣ f (u0 , x) ≥ 0} ,
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4 Sparse distributions

as desired. Similarly, if i > 0 then µ(u i−1 , u i) < f (u i−1 , u i) implies that

∑
x∈V

µ(u i , x) = α(u i) − β(u i) + ∑
x∈V

µ(x , u i)

< α(u i) − 1 +∑{ f (x , u i) ∣ f (x , u i) ≥ 0}

= α(u i) − 1 − d f (u i) +∑{ f (u i , x) ∣ f (u i , x) ≥ 0}

= α(u i) − 1 − (δ(u i) − 1)

+∑{ f (u i , x) ∣ f (u i , x) ≥ 0}

≤ ∑{ f (u i , x) ∣ f (u i , x) ≥ 0} .

Note that the construction of πn must terminate after at most n + 1 steps
since the flow f is acyclic and there are only n vertices u with β(u) = 1.

Lemma 4.11. Let m < ω. There exists an MSO-formula φ(X; Z̄) with the
following property. For every graph G and each set P of finite paths such that

every vertex and every edge of G is contained in at most m paths of P , there
exists a tuple S̄ of monadic parameters such that

Gin ⊧ φ(P; S̄) iff P is (the set of edges of) a non-empty path in P .

Proof. For every edge e = ⟨u, v⟩ of G, we fix a bijection µ(u, v) ∶ [n] → Pe
where Pe ⊆ P is the set of all paths containing the edge ⟨u, v⟩ (in either
direction) and n ∶= ∣Pe ∣. We assume that µ(u, v) = µ(v , u).
Let S be the set of all edges of G contained in some path of P . By Co-

rollary 1.18, there exists anMSO-formula χ(x , y, z; S̄′) with parameters S̄′

such that, for every v ∈ V , the formula χ(x , y, v; S̄′) linearly orders the set
of all vertices that are connected to v via an edge in S.

Finally, we define unary predicates Q i k
j l containing all vertices v such that

there exists a path π ∈ P containing edges ⟨u, v⟩ and ⟨v ,w⟩ where

◆ µ(u, v)(k) = π = µ(v ,w)(l),
◆ u is the i-th neighbour of v (in the order defined by χ),
◆ w is the j-th neighbour of v.
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VII. Sparse Structures

It follows that a non-empty set P ⊆ E of edges is a path in P if, and only if,
P is a minimal non-empty subset of E satisfying the following condition:

P can be written as a union P = P0 ∪ ⋅ ⋅ ⋅ ∪Pm−1 such that, for all vertices
u, v ,w such that v ∈ Q i k

j l and u and w are, respectively, the i-th and j-th
neighbour of v, we have ⟨u, v⟩ ∈ Pk ⇔ ⟨v ,w⟩ ∈ Pl .

This condition can be expressed in GSO.

Remark. Note that the set of empty paths in P is trivially definable with
the help of the parameter

Q ∶= { v ∈ V ∣ P contains an empty path from v to v } . ⌟

Using the family P we can construct a formula φ defining the function g.

Theorem 4.12. Let m < ω. There exists an MSO-formula φ(x , y; Z̄) with
the following property. For every graph G = ⟨V , E⟩ and each acyclic δ-flow f

of G that is vertex-bounded by m, there exist monadic parameters S̄ such that

φ(x , y; S̄) defines in Gin a partial function g ∶ V → V with

∣g−1(v)∣ = δ(v) , for all v ∈ V .

Proof. Let G′ be the graph obtained from G by removing every edge ⟨u, v⟩
with f (u, v) = 0. Note that f is also a δ-flow of G′. Since f is vertex-
bounded by m it follows that every vertex of G′ has degree at most m <
ω. Consequently, each connected component G0 of G is countable. For
each such component G0, let P0 be the set of paths obtained by applying
Lemma 4.10 to the restriction of f to G0. By Lemma 4.11, there exists a
formula ψ(X; Z̄) and a set S̄ of guarded relations such that

G ⊧ ψ(P; S̄) iff P is a non-empty path in P ,

where P is the union of all sets P0 corresponding to the connected compon-
ents of G′. With the help of ψ we can define a partial function g ∶ V → V

such that

g(v) = u : iff P contains a path from u to v .

By construction of P , we have ∣g−1(v)∣ = δ(v), for every v ∈ V .
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4 Sparse distributions

Again, for the applicaton below, we need a version of these results where
the set of paths is definable without parameters.

Theorem 4.13. Let d , k < ω and let (ψ i)i<m be a family ofWMSO-formulae.
There exists anWMSO-formula φ(x , y) with the following property. Given a
successor tree T = ⟨T , (suci)i<d⟩ such that

◆ every vertex has at most d successors and,

◆ the formulae (ψ i)i define a k-sparse distribution δ on T,

the formula φ(x , y) defines in T a partial function g ∶ T → T with

∣g−1(v)∣ = δ(v) , for all v ∈ V .

Proof. Let f be the WMSO-definable δ′-flow from Proposition 4.9. We
proceed as in the above proofs: we use f to construct a set of paths P ,
we show that P is definable, and we take for g the function mapping the
end-point of each path to its starting point.
To simplify the construction of P we modify the tree T as follows. We

delete every edge ⟨u, v⟩ with f (u, v) = 0 and we direct the remaining edges
by

u → v iff f (u, v) > 0 .

Finally, we duplicate each of the resulting edges f (u, v) times. Let S be the
resulting directed graph.Note that the structureSin isWMSO-interpretable
in copym(T) using the formulae defining f , wherem ∶= (dk+1)(d+2) is the
edge-bound of f . Consequently, it is sufficient to find anWMSO-definable
set of finite paths P in S such that

◆ every edge of S belongs to exactly one path in P ,

◆ for every vertex v, there are exactly δ′(v) paths in P starting at v, and

◆ for every vertex v, there is at most 1 path in P ending at v.

We order the set of neighbours of each vertex v of T by starting with its
predecessor followed by its successors suc0(v), suc1(v), . . . . This ordering
induces, for each vertex of S, an ordering of the incoming edges and an
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VII. Sparse Structures

ordering of the outgoing ones. To define P it is now sufficient to specify, for
each incoming edge e, whether the path containing e stops at the current
vertices, or which of the outgoing edges it continues with. We have to do the
same with the δ′(v) paths starting at v.
We proceed as follows.

◆ The first incoming path stops at the given vertex.

◆ The (i + 1)-th incoming path continues with the i-th outgoing edge.

◆ The i-th path starting at v leaves with the i-th not-yet-used outgoing
edge.

These conditions can obviously be expressed inWMSO. It thus remains to
check that this definition results in a set of finite paths. First note that S is
acyclic since it originates from a tree.Thus,P is indeed a set of paths. To see
that each of them is finite, note that every path P in S starts with a (possibly
empty) prefix of edges directed towards the root followed by a (empty, finite,
or infinite) suffix directed away from the root. Let u0 , u1 , . . . be this suffix
and suppose that P uses the in-th edge from un to un+1. Then in+1 = in − 1,
which implies that P stops at u i0+1.

Let us show howwe can use these results to encode sets by single elements.

Definition 4.14. LetG = ⟨V , E⟩ be a graph and h ∶ X → V a function.The
distribution δ ∶ V → ω induced by h is given by

δ(v) ∶= ∣h−1(v)∣ , for v ∈ V . ⌟

Again we present a general version for arbitrary graphs and definabil-
ity with parameters, and a special version for trees where we do not need
parameters.

Theorem 4.15. Let d , k < ω and let φ(X, y; Z̄) be anMSO-formula. There

existMSO-formulae ψ(x , y; Z̄′) and ϑ(X, y; Z̄′) with the following property.
Given a connected graph G = ⟨V , E⟩ of degree at most d and monadic paramet-

ers S̄ such that

◆ φ(X, y; S̄) defines (in Gin) a partial function h ∶ ℘fin(V) → V, and
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4 Sparse distributions

◆ the distribution δ induced by h is k-sparse,
there exist monadic parameters S̄

′
such that the formulae ψ(x , y; S̄′) and

ϑ(X, y; S̄′) define (in G) partial functions g ∶ V → V and h0 ∶ ℘fin(V) → V

such that

h = g ○ h0 and h0 is injective.

Proof. We start by constructing an MSO-formua χ(X,Y; z) (with para-
meters) such that χ(X,Y; v) linearly orders the set h−1(v), for v ∈ V . Let
T0 ⊆ E be a spanning tree of G (in the usual graph-theoretic sense) and let
r ∈ V be some vertex acting as the root. Using the parameters T0 and r we
can define the forest ordering on V by

u ≤ v : iff the unique path in T0 between r and v contains u .

LetT ⊆ V ×V be the set obtained fromT0 by orienting the edges according
to this ordering. Then T is a directed successor tree. Furthermore, since the
degree ofG is bounded by d, we can use Corollary 1.18 (applied to the inverse
of T) to linearly order the successors of every vertex in T. We use these two
orderings to define the lexicographic ordering ≤lex on T. Finally, we obtain
the desired ordering on ℘fin(V) by setting

X < Y : iff the ≤lex-minimal element of (X ∖ Y) ∪ (Y ∖ X)

belongs to Y .

Each of these definitions can be expressed inMSO.
Having defined χ, we now use Proposition 4.7 to obtain a δ-flow f that is

edge-bounded by k. Since G has degree at most d, it follows that f is vertex-
bounded by dk. Hence, Theorem 4.12 produces a definable function g ∶
V → V with ∣g−1(v)∣ = δ(v) = ∣h−1(v)∣. Fix unary predicates P0 , . . . , Pk−1
such that we have i ≠ j whenever u ∈ Pi and v ∈ P j are distinct vertices
with g(u) = g(v). Using these predicate we can define partial functions
g0 , . . . , gk−1 ∶ V → V such that g i(v) is the unique element of g−1(v) ∩ Pi .
We define h0 ∶ ℘(V) → V by h0(X) ∶= (g i ○ h)(X), where the index i is
chosen such that X is the i-th element of h−1(h(X)) (in the order defined
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VII. Sparse Structures

by χ). It follows that h(X) = g(h0(X)) and h0 is injective. Furthermore, the
function h0 is clearlyMSO-definable in Gin. As the graph G has degree at
most d, it is d-sparse.Therefore, we can translate the corresponding formulae
from Gin to G.

The version without parameters looks as follows.

Theorem 4.16. Let d , k < ω and let φ(X, y) be a WMSO-formula. There

existWMSO-formulaeψ(x , y) and ϑ(X, y)with the following property. Given
a successor tree T = ⟨T , (suci)i<d⟩ such that

◆ every vertex has at most d successors,

◆ φ(X, y) defines a partial function h ∶ ℘fin(V) → V, and

◆ the distribution δ induced by h is k-sparse,
the formulae ψ(x , y) and ϑ(X, y) define partial functions g ∶ V → V and

h0 ∶ ℘fin(V) → V such that

h = g ○ h0 and h0 is injective.

Proof. We can useTheorem 4.13 to construct aWMSO-definable function
g ∶ V → V with ∣g−1(v)∣ = δ(v) = ∣h−1(v)∣. Let ≤lex be the lexicographic
ordering on T. Since this ordering is FO-definable, we can define partial
functions g′0 , . . . , g

′
k−1 ∶ V → V such that g′i(v) is the i-th element of

g
−1(v) with respect to ≤lex.
Furthermore, we can use ≤lex to define a linear order on ℘fin(T) by

setting

X <set Y : iff the ≤lex-minimal element of (X ∖ Y) ∪ (Y ∖ X)

belongs to Y .

We define h0 ∶ ℘(V) → V by h0(X) ∶= (g′i ○ h)(X), where the index i is
chosen such that X is the i-th element of h−1(h(X)) (in the order defined
by ≤set). It follows that h(X) = g(h0(X)) and h0 is injective. Furthermore,
the function h0 isWMSO-definable.
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4 Sparse distributions

The Finite Power-Set Operation

As an application let us prove that the finite power-set operation ℘fin on
structures commutes with interpretations in the following sense.

Theorem 4.17. For every FO-interpretation τ, there exists anWMSO-inter-
pretation σ such that

τ(℘fin(T)) ≅ ℘fin(A) implies σ(T) ≅ A ,

for every tree T and every structure A.

T

℘fin(T)

A

℘fin(A)

σ

℘fin ℘fin

τ

We split the proof into several steps. Let us start with a bit of terminology
and some conventions. First of all, note that the FO-formulae the interpreta-
tion τ evaluates in ℘fin(T) can be translated intoWMSO-formulae that can
be evaluated directly in T. Consequently, we will be interested in structures
of the form ℘fin(A) that can be defined inside T using WMSO-formulae
(encoding each element of ℘fin(A) by a finite subset of T). In the following,
whenever we write T ⊧ φ(P) or P ∈ φT, for someWMSO-formula φ(X),
we always tacitly assume that the set P is finite.

Definition 4.18. Let T be a structure and sing(X), in(X,Y) twoWMSO-
formulae. We say that the pair ⟨sing, in⟩ encodes a finite power-set on T if

◆ T ⊧ in(P,Q) implies T ⊧ sing(P)

◆ for every finiteH ⊆ singT, there exists exactly one finite set Q ⊆ T with

T ⊧ in(P,Q) iff P ∈ H . ⌟

Given a tree T and a vertex v, recall that T[v) denotes the tree obtained
from T by removing the subtree rooted at v and T∣v denotes this subtree.
Finally, ⇑v is the set of vertices of T∣v .
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Given a tree T and a vertex v ∈ T, we are interested in which subsets
of the part of T ‘above’ v can be completed to some set satisfying a given
formula sing(X), andwhich subsets in the part ‘below’ v. In addition, we will
have to distinguish these subsets by their theory. This leads to the following
definition.

Definition4.19. LetT be a tree, v ∈ T a vertexwith predecessor v′, sing(X) ∈
WMSOm a formula, and σ , τ twoWMSOm-theories.

(a) We set

A(v , σ) ∶= { P ∖ ⇑v ∣ T ⊧ sing(P) and

Thm
WMSO(T[v), P ∖ ⇑v , v

′) = σ } ,

B(v , τ) ∶= { P ∩ ⇑v ∣ T ⊧ sing(P) and

Thm
WMSO(T∣v , P ∩ ⇑v , v) = τ } .

(b) We say that the pair ⟨σ , τ⟩ implies sing(X) if

T ⊧ sing(P ∪ Q) , for P ∈ A(v , σ) and Q ∈ B(v , τ) .

We denote this fact by ⟨σ , τ⟩ ⊧ sing. ⌟

Remark. Note that the theories

Thm
WMSO(T[v), P ∖ ⇑v , v

′) and Thm
WMSO(T∣v , P ∩ ⇑v , v)

uniquely determineThm
WMSO(T, P) since there exists a quantifier-free inter-

pretation τ such that

⟨T, P⟩ = τ(⟨T[v), P ∖ ⇑v , v⟩ ⊕ ⟨T∣v , P ∩ ⇑v⟩) .

In particular, the definition of the relation ⟨σ , τ⟩ ⊧ sing(X) does not depend
on T or v. ⌟

Our main combinatorial lemma consists in the observation that, for every
decomposition of the tree, the above set or the below set has to be small.
This is a direct consequence of the properties of the formula in(X,Y).
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Lemma 4.20. Let sing, in ∈ WMSOm . There exists a constant k0 with the

following property. Given a tree T such that ⟨sing, in⟩ encodes a finite power-set
on T, we have

⟨σ , τ⟩ ⊧ sing implies ∣A(v , σ)∣ < k0 or ∣B(v , τ)∣ < k0 ,

for all v ∈ T and allWMSOm -theories σ and τ.

Proof. Let Θ be the set of allWMSOm-theories with two set variables and
one first-order variable, s ∶= ∣Θ∣, and set k0 ∶= 2s + 1. For a contradiction
suppose that ∣A(v , σ)∣ ≥ k0 and ∣B(v , τ)∣ ≥ k0. Fix two subsets A0 ⊆
A(v , σ) and B0 ⊆ B(v , τ) of size ∣A0∣ = 2s + 1 and ∣B0∣ = 2s + 1, and let
S be the set of all sets W ⊆ T encoding some union of these singletons
A∪ B ∈ singT. That is,W ∈ S if, and only if,

T ⊧ in(U ,W) implies U = A∪ B , for some A ∈ A0 , B ∈ B0 .

With each W ∈ S we associate the two functions fW ∶ A0 → Θ and
gW ∶ B0 → Θ defined by

fW(A) ∶=Th
m
WMSO(T[v),A,W ∖ ⇑v , u) ,

gW(B) ∶=Th
m
WMSO(T∣v , B,W ∩ ⇑v , v) .

For two sets V ,W ∈ S it follows that

⟨ fV , gV⟩ = ⟨ fW , gW⟩

⇒ Thm
WMSO(T,A∪ B,V) =Thm

WMSO(T,A∪ B,W) ,

for all A ∈ A0 and B ∈ B0 ,

⇒ T ⊧ in(A∪ B,V) ↔ in(A∪ B,W) ,

for all A ∈ A0 and B ∈ B0 ,

⇒ V =W .

Since there are only ∣Θ∣∣A0 ∣ ⋅ ∣Θ∣∣B0 ∣ = s2(2s+1) pairs ⟨ f , g⟩ of such functions,
this implies that

2(2s+1)
2
= ∣S∣ ≤ s2(2s+1) = 2(2s+1)⋅2 log s < 2(2s+1)

2
.

A contradiction.
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When we want to encode the sets P ∈ singT by single vertices, we can
mostly ignore subtrees T∣v of T such that there are few choices for the values
of P ∩ T∣v since most information about P is already contained in the value
P ∖ T∣v . In the following we will therefore concentrate on the prefix of T
obtained be removing all these subtrees.

Definition 4.21. Suppose that ⟨sing, in⟩ encodes a finite power-set on a
tree T and let k < ω. We say that, for a set P ∈ singT, there is little choice
below a vertex v ∈ T if

∣{Q ∩ ⇑v ∣ T ⊧ sing(Q), Q ∖ ⇑v = P ∖ ⇑v }∣ ≤ k .

Otherwise, we say that there is a lot of choice below v. We denote by Chk(P)
the set of all vertices below which there is a lot of choice for P. ⌟

Remark. (a) Each set of the form Chk(P) is prefix-closed.
(b) k ≤ l implies Chk(P) ⊇ Chl(P). ⌟

Lemma 4.22. Let sing, in ∈ WMSOm . There exists a constant k such that,

given a tree T such that ⟨sing, in⟩ encodes a finite power-set on T, the set

Pk(v) ∶= { P ∖ ⇑v ∣ T ⊧ sing(P) and v ∈ Chk(P) }

has size less than k, for every v ∈ T.

Proof. We set k ∶= s2k0 where k0 the constant from Lemma 4.20 and s is
the number of WMSOm-theories with one free set variable and one free
first-order variable. For a contradiction, suppose that there is some v ∈ T
and k sets P0 , . . . , Pk−1 ∈ singT such that

v ∈ Chk(Pi) and Pi ∖ ⇑v ≠ P j ∖ ⇑v , for i ≠ j .

By definition, v ∈ Chk(Pi) implies that there are more than k setsQ ⊆ ⇑v
such that

Q ∪ (Pi ∖ ⇑v) ∈ singT .
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Hence, we can find a theory τ i(X) such that more than k/s = sk0 of these
sets Q satisfy

Thm
WMSO(T∣v ,Q , v) = τ i .

This implies that ∣B(v , τ i)∣ > k/s ≥ k0. There is a subset H ⊆ [k] of size
∣H∣ ≥ k/s = sk0 such that τ i = τ j , for all i , j ∈ H. Let τ be this common
theory.
Finally, there exists a theory σ and subset J ⊆ H of size ∣ J∣ ≥ ∣H∣/s ≥ k0

such that

Thm
WMSO(T[v), Pi ∖ ⇑v , v

′) = σ , for all i ∈ J ,

where v′ is the predecessor of v. Then Pi ∖ ⇑v ∈ A(v , σ), for i ∈ J, which
implies that ∣A(v , σ)∣ ≥ ∣ J∣ ≥ k0. Since ⟨σ , τ⟩ ⊧ sing, this contradicts
Lemma 4.20.

Let us also remark that the above property is monotone in k.

Lemma 4.23. k ≤ l implies Pl(v) ⊆ Pk(v).

Proof. Let k ≤ l . To show that Pl(v) ⊆ Pk(v) it is sufficient to note that
v ∈ Chl(P) implies v ∈ Chk(P).

After these combinatorial results we can now start to explain how to
encode each set P ∈ singT by a single vertex v of T. ByTheorem 4.16, it is
sufficient to find aWMSO-definable function h ∶ singT → T such that the
induced distribution is sparse. We choose h(P) based on Chk(P), but we
have to distinguish two cases. The complicated one is where Chk(P) forms
an infinite branch of T. We will deal with it separately below. For all other
cases, we can use the following simple definition.

Definition 4.24. Let T be a tree and C ⊆ T a prefix-closed set that does
not form an infinite branch.The prime branching point pbr(C) of C is the
maximal vertex v ∈ C that is comparable to all other vertices in C. ⌟

Thus pbr(C) is either the minimal vertex with more than one successor,
or C is a finite path and pbr(C) is its end-point.
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VII. Sparse Structures

Lemma 4.25. Let sing, in ∈WMSOm . There exist a constant c < ω with the

following property. If k < ω is sufficently large and T a tree such that ⟨sing, in⟩
encodes a finite power-set on T, then the distribution induced by pbr ○ Chk is
ck-sparse.

Proof. Let Z ⊆ T be finite and connected.Then

Z = ⇑v ∖ (⇑u0 ∪ . . . ⇑un−1) , for some v , u0 , . . . , un−1 ∈ T .

Let k0 be the constant from Lemma 4.20, k1 the constant from Lemma 4.22,
let s1 be the number ofWMSOm-theories with one free set variable and one
first-order variable, and s2 the number with two free set variables and one
first-order variable. We will prove the claim for all k ≥ max{k1 , s1k0}. We
start by showing that the sets

C ∶= { P ∖ ⇑v ∣ T ⊧ sing(P), pbr(Chk(P)) ∈ Z } ,

Di ∶= { P ∩ ⇑u i ∣ T ⊧ sing(P), pbr(Chk(P)) ∈ Z } , for i < n ,

all have size at most s1k.
For the first bound, note that pbr(Chk(P)) ∈ Z implies v ∈ Chk(P).

Hence,

C = { P ∖ ⇑v ∣ T ⊧ sing(P), pbr(Chk(P)) ∈ Z }

⊆ { P ∖ ⇑v ∣ T ⊧ sing(P), v ∈ Chk(P) } = Pk(v) .

By Lemmas 4.22 and 4.23, it follows that

∣C∣ ≤ ∣Pk(v)∣ ≤ ∣Pk1(v)∣ < k1 ≤ k ≤ s1k .

For the second bound, it is sufficient to show that

∣B(u i , τ i(P))∣ ≤ k , for all P ∈ pbr−1(Z) and i < n ,

where

τ i(P) ∶=Th
m
WMSO(T∣u i , P ∩ ⇑u i , u i) .
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4 Sparse distributions

SinceDi ⊆ ⋃τ B(u i , τ), we then obtain ∣Di ∣ ≤ s1k, as desired.
If u i ∉ Chk(P), the composition theorem forWMSOm-theories implies

that

B(u i , τ i(P)) = {Q ∩ ⇑u i ∣ Q ∈ singT ,

Thm
WMSO(T∣u i ,Q ∩ ⇑u i , u i) = τ i(P) }

= {Q ∩ ⇑u i ∣ Q ∈ singT , Q ∖ ⇑u i = P ∖ u i } .

Hence, u i ∉ Chk(P) implies that ∣B(u i , τ i(P))∣ ≤ k.
Suppose now that u i ∈ Chk(P). Then pbr(Chk(P)) ∈ Z implies that

pbr(Chk(P)) < u i . Hence, there exists some w ∈ Chk(P) such that

pbr(P) = u i ⊓ w .

By definition of Chk(P), there is some theory τ such that ⇑w contains more
than k/s1 subsets Q with

Q ∪ (P ∖ ⇑w) ∈ singT and Thm
WMSO(T∣w ,Q ,w) = τ .

Hence, ∣B(w , τ)∣ ≥ k/s1 ≥ k0. By Lemma 4.20, it follows that

∣A(w , σ(P))∣ < k0 where σ(P) ∶=Thm
WMSO(T[w), P ∖ ⇑w ,w

′) ,

andw′ is the predecessor ofw. Since⇑u i ⊆ T∖⇑w and the types σ(P) and τ i(P)
are both obtained from the same set P, we obtain

∣B(u i , τ i(P))∣ ≤ ∣A(w , σ(P))∣ < k0 ≤ k .

Having established the above bounds, we can now conclude the proof
by a similar argument as in the proof of Lemma 4.22: let Θ be the set of
allWMSOm-theories with two free variables and let S be the set of all sets
W ⊆ T encoding some union of singletonsU ∈ singT with pbr(Chk(U)) ∈
Z. That is,W ∈ S if, and only if,

T ⊧ in(U ,W) implies pbr(Chk(U)) ∈ Z .

Note that everyW ∈ S is uniquely determined by the following data:
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VII. Sparse Structures

◆ the pieceW ∩ Z,

◆ the function fW ∶ C → Θ given by

fW(P) ∶=Th
m
WMSO(T[v), P,W ∖ ⇑v , v′) ,

◆ the functions g iW ∶ Di → Θ, i < n, given by

g
i
W(P) ∶=Th

m
WMSO(T[v), P,W ∩ ⇑v , v′) ,

where v′ is the predecessor of v. It follows that

∣S∣ ≤ 2∣Z∣ ⋅ ∣Θ∣∣C∣ ⋅∏
i<n
∣Θ∣∣Di ∣ ≤ 2∣Z∣ ⋅ ∣Θ∣s1k(n+1) .

We therefore have

2∣(pbr○Chk)−1[Z]∣ ≤ ∣S∣ ≤ 2∣Z∣+s1k log s2 ⋅∣BT(Z)∣ ,

which implies that

∣(pbr ○Chk)
−1[Z]∣ ≤ ∣Z∣ + s1k log s2 ⋅ ∣BT(Z)∣ .

Consequently, the distribution induced by pbr ○ Chk is ck-sparse where
c ∶= s1 log s2.

It remains to consider the chase where C ∶= Chk(P) forms a single
infinite branch. Note that, since P is finite, there always exists some vertex
v ∈ C such that ⇑v does not contain any element from P. We would like to
encode P by the smallest such vertex, which we call the minimal prefix of C.
Unfortunately, the resulting function is not necessarily sparse. Therefore, we
have to modify it in a second step which results in the notion of the prime
prefix of C.

Definition 4.26. Let T be a tree and C ⊆ T an infinite branch.
(a)The minimal prefix of C is

mprk(C) ∶= min{ v ∈ C ∣ C = Chk(P) for some P ∈ singT

with ⇑v ∩ P = ∅} .
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4 Sparse distributions

(b)The prime prefix of C is

pprk(C) ∶= min{ v ∈ C ∣ mprk(C) ≤ v and

v ∉ D for every infinite branch D with

mprk(D) < mprk(C) } . ⌟

Before proving that pprk is sparse, we collect a few basic properties of this
function.

Lemma 4.27. Let T be a tree and C the set of all infinite branches C of T such

that C = Chk(P), for some P ∈ singT
, and let k < ω be sufficiently large.

(a) ∣Ch−1k (C)∣ < k , for all C ∈ C .
(b) ∣mpr−1k (v)∣ < k , for all v ∈ T .
(c) For every C ∈ C, there are only finitely many D ∈ C with

mprk(D) ≤ mprk(C) .

(d) pprk(C) ≤ pprk(D) implies mprk(C) ≤ mprk(D) .
(e) ∣ppr−1k (v)∣ < k , for all v ∈ T .
(f ) pprk(C) < pprk(D) implies pprk(D) ∉ C , for C ,D ∈ C .

Proof. Let k be the constant from Lemma 4.22.
(a) For a contradiction, suppose that there are a branch C ∈ C and k sets

P0 , . . . , Pk−1 ∈ singT with Chk(Pi) = C, for all i. Fix a vertex v ∈ C such
that

Pi ∖ ⇑v ≠ P j ∖ ⇑v , for all i ≠ j .

It follows that

∣{ P ∖ ⇑v ∣ T ⊧ sing(P) and v ∈ Chk(P) }∣ = ∣Pk(v)∣ ≥ k .

A contradiction to our choice of k.
(b) Suppose that mprk(C) = v. Then there exists some set P such that

P ∈ singT , Chk(P) = C , v ∈ Chk(P) , and P ⊆ T ∖ ⇑v .
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In particular, P ∈ Pk(v). Thus

mpr−1k (v) ⊆ Chk[Pk(v)] .

By choice of k, the latter set has less than k elements.
(c) Fix C ∈ C. The condition mprk(D) ≤ mprk(C) is equivalent to

D ∈ mpr−1k (v) , for some v ≤ mprk(C) .

Hence, it follows by (b) that there are only finitely many such D.
(d) Suppose that pprk(C) ≤ pprk(D). Then

mprk(C) ≤ pprk(C) ≤ pprk(D) ∈ D implies mprk(C) ∈ D .

Sincemprk(D) ∈ D andD is a chain, it follows thatmprk(C) andmprk(D)
are comparable. To see that mprk(C) ≤ mprk(D) note that, by definition
of pprk(C), mprk(D) < mprk(C) would imply that pprk(C) ∉ D, which
we have already seen is not the case.
(e) Suppose that pprk(C) = v and set u ∶= mprk(C). By (d), it follows

that

pprk(D) = v implies mprk(D) = u , for D ∈ C .

Hence, ppr−1k (v) ⊆ mpr
−1
k (u). By (b), the latter set has size less than k.

(f ) Suppose that pprk(C) < pprk(D), for C ,D ∈ D. Then (d) implies
that mprk(C) ≤ mprk(D). If mprk(C) < mprk(D), the claim follows
immeditely by definition of pprk(D). We claim that the remaining case
where mprk(C) = mprk(D) is not possible. For a contradiction, suppose
otherwise. Since pprk(C) < pprk(D) both lie on the branch D, it then
would follow that pprk(C) = pprk(D). A contradiction.

Lemma 4.28. Let sing, in ∈WMSOm and let T be a tree such that ⟨sing, in⟩
encodes a finite power-set on T. The distribution induced by pprk ○ Chk is

k
2
-sparse, for every sufficiently large k < ω.
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Proof. Let k be the constant fromLemma4.22 and letZ be a finite connected
set. Then

Z = ⇑v ∖ (⇑u0 ∪ . . . ⇑un−1) , for some v , u0 , . . . , un−1 ∈ T .

Suppose that pprk(C), pprk(D) ∈ Z, for some C ,D ∈ C. If there is some i
with u i ∈ C ∩ D, we have C ∩ Z = D ∩ Z. Hence,

pprk(C) ∈ C ∩ Z and pprk(D) ∈ D ∩ Z

implies that pprk(C) ∈ D and pprk(D) ∈ C. By Lemma 4.27 (f ), this
implies that pprk(C) = pprk(D). Consequently, there is some w i ∈ Z such
that

{C ∈ ppr−1k (Z) ∣ u i ∈ C } ⊆ ppr
−1
k (w i) .

This implies that

ppr−1k (Z) ⊆ ⋃
i<n

ppr−1k (w i) ,

and it follows by Lemma 4.27 (e) and (a) that

∣(pprk ○Chk)
−1(Z)∣ ≤ ∑

i<n
∣(pprk ○Chk)

−1(w i)∣

≤ ∑
i<n

k ⋅ ∣ppr−1k (w i)∣

≤ ∑
i<n

k
2

≤ k2 ⋅ ∣BT(Z)∣ ≤ ∣Z∣ + k
2 ⋅ ∣BT(Z)∣ .

Definition 4.29. Let T be a tree and P ∈ singT and let k be the constant
from Lemma 4.22. The preliminary encoding of P is the vertex

⌟

Combining the two functions pbr and ppr we obtain our desired encoding
of sets.
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VII. Sparse Structures

Proof of Theorem 4.17. Suppose that

τ = ⟨δ(x), φ⊆(x , y), (φR(x̄))R⟩ .

Then there existsWMSO-formulae δ′(X) and φ′R(X̄) such that

T ⊧ δ′(P) iff ℘fin(T) ⊧ δ(P) ,
T ⊧ φ′R(P̄) iff ℘fin(T) ⊧ φR(P̄) .

Wewill construct anWMSO-formula encode(X, y) that defines an injective
function mapping every set X representing an atom {a} ∈ ℘fin(A) to some
element y ∈ T. Then we can define σ ∶= ⟨γ(x), (ψR(x̄))R⟩ by

γ(x) ∶= ∃X[δ′(X) ∧ encode(X, x)] ,

ψR(x̄) ∶= ∃X̄[φ′R(X̄) ∧⋀
i
encode(X i , x i)] .

First, note that the set of singletons and the membership relation are
WMSO-definable by

sing(X) ∶= ∀Y[φ′⊆(Y ,X) ∧ X ≠ Y → ∀Zφ′⊆(Y ,Z)] ,
in(X,Y) ∶= atom(X) ∧ φ′⊆(X,Y) .

By Lemmas 4.25 and 4.28, we can choose a suifficently large constant k < ω
such that the function

enck(P) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

pprk(Chk(P)) if Chk(P) forms an infinite branch,
pbr(Chk(P)) otherwise,

is l-sparse, for some l < ω. In addition, the definitions of pprk , pbr, and
Chk(P), can be expressed inWMSO. Hence, we can useTheorem 4.16 to
turn the function enck ∶ singT → T into an injective one.

Note+

Thecollapse of guarded second-order logic tomonadic second-order logic on
sparse structures was proved by Courcelle [58]. A corrected and generalised
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4 Sparse distributions

version was provided in [19]. Our exposition mostly follows Section 9.4
of [60]. Theorem 2.4 originally appeared in [146].
The power-set construction was first systematically investigated by Col-

combet and Löding in [52]. Theorem 4.17 is from that article.
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VIII Tree-Width and Graph
Minor+

1 Tree-De$ompo@tion+

The central notion of this chapter is that of a tree-decomposition and
the associated notion of tree-width.The latter is a complexity measure

for graphs (and more generally relational structures) that tells us how far a
given graph is from being a tree. The idea is to cover a given graph by small
pieces (i.e., induced subgraphs) such that the gluing operations we have to
perform to obtain the whole graph can be arranged in the form of a tree. An
example of a tree-decomposition is given in Figure 1 where the dashed lines
are the gluing instructions indicating which vertices have to be identified.

Definition 1.1. Let A be a Σ-structure.
(a)A tree-decomposition ofA is a family (Ut)t∈T of subsetsUt ⊆ A indexed

by an undirected tree T such that
◆ every element a ∈ A is contained in someUt ;
◆ every tuple c̄ ∈ R in some relation R of A is contained in someUt ; and
◆ for every element a ∈ A, the set { t ∈ T ∣ a ∈ Ut } of components

containing v forms a connected subset of T.
We call T the index tree of the decomposition and the setsUt its components.
The width of a tree-decomposition (Ut)t∈T is the cardinal

max
t∈T
∣Ut ∣ .

(b)The tree-width twdA ofA is theminimalwidth of a tree-decomposition
of A.
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VIII. Tree-Width and Graph Minors

Figure 1: A graph (upper left) with a tree-decomposition (bottom) and its index tree
(upper right).

(c) A path-decomposition is a tree-decomposition where the index tree is a
path. The path-width pwdA of A is the minimal width of a path-decomposi-
tion of A.
(d) The height-n tree-width twdn A of A is the minimal width of a tree-

decomposition of A whose index tree has height at most n (as a directed
tree). ⌟

Remark. For historical reasons most authors subtract 1 in the definition of
the tree-width. This means most bounds on tree-width derived below differ
by 1 from results found in the literature. ⌟

Examples. (a) Every tree with at least one edge has tree-width 2 (see Fig-
ure 2 for an example). The path-width of a tree depends on its height (see
Proposition 1.7 below).
(b) Every cycle has path-width 3.
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1 Tree-decompositions

Figure 2: Tree-decompositions and their index trees of (a) a tree (upper left);
(b) a cycle (upper right); and (c) a grid (bottom).

(c) An m × n grid with m ≤ n has tree-width (and path-width) m + 1 (see
Proposition 3.6 below).

(d) A complete bipartite graph Km ,n with m ≤ n has tree-width m + 1.
(e) A complete graph Kn has tree-width n. ⌟

We can simplify our lives by going from arbitrary relational structures to
undirected graphs.

Definition 1.2. Let A be a relational structure.TheGaifman graph of A is
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the graph with vertices A and edge relation

{ ⟨a, b⟩ ∣ a ≠ b and some relation R of A contains a tuple c̄ with

a, b ∈ c̄ } . ⌟

Let us show that the operation of forming the Gaifman graph does not
change the tree-width of a structure. The main argument is contained in the
following lemma.

Lemma 1.3. Let (Ut)t∈T be a tree-decomposition of a graph G and let C be a

clique of G. Then C ⊆ Ut , for some t ∈ T.

Proof. Let v0 , . . . , vn be an enumeration of C. Fixing some vertex of T
as the root, we may turn T into an order-tree ⟨T , ≤⟩. As (Ut)t is a tree-
decomposition, it follows that, for every i ≤ n, there exists a unique minimal
vertex t i ∈ T with v i ∈ Ut i . Furthermore, for all i ≠ j, we can find some
s i j ∈ T such that Us i j contains the edge ⟨v i , v j⟩. By choice of t i and t j it
follows that t i , t j ≤ s i j . This implies that t i ≤ t j or t j ≤ t i . Renumbering
the v0 , . . . , vn , we may assume without loss of generality that t0 ≤ ⋅ ⋅ ⋅ ≤ tn .
Then t i ≤ tn ≤ s in implies that v i ∈ Utn . Hence, C ⊆ Utn .

Corollary 1.4. Let A be a structure and G its Gaifman graph. Every tree-

decomposition of G is also one of A and vice versa.

Exercise 1.1. Prove that every graph of tree-width k is k-colourable. ⌟

The following observation is also frequently useful.

Lemma 1.5. Let G = ⟨V , E⟩ be an undirected graph and (Ut)t∈T a tree-

decomposition of G. For every connected set C ⊆ V, the set

⟨C⟩ ∶= { t ∈ T ∣ Ut ∩ C ≠ ∅}

forms a connected subset of T.

Proof. We prove the claim by induction on ∣C∣. If C = {v}, then ⟨v⟩ is
connected by definition of a tree-decomposition.Hence, suppose that ∣C∣ > 1.
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Fix a vertex v ∈ C and set C0 ∶= C ∖ {v}. Since C is connected, there exists
an edge e = ⟨v , u⟩ with u ∈ C0. By the definition of a tree-decomposition,
we can find some component Ut with e ⊆ Ut . Then u, v ∈ Ut implies
t ∈ ⟨C0⟩ ∩ ⟨v⟩. Thus, ⟨C⟩ = ⟨C0⟩ ∪ ⟨v⟩ is the union of two overlapping
connected sets. Hence, it is itself also connected.

As an example let us use this lemma to compute the path-width of trees.
Similar computations of the tree-width have to be postponed to Section 3
where we have the necessary tools available to prove the required lower
bounds.

Definition 1.6. A full k-ary tree is a successor-tree T where each internal
vertex has exactly k successors and all the leaves are on the same level. ⌟

Proposition 1.7. Let k ≥ 3. The full k-ary tree of height n has path-width n + 1.

Proof. Let T be the full k-ary tree of height n. For the upper bound, fix a
left-to-right enumeration v0 , . . . , vm−1 of all leaves of T and let U i be the
set of vertices of the branch connecting the root to v i . Then (U i)i<m is a
path-decomposition of T of width n + 1.

For the lower bound, let S be the undirected version of T. It is sufficient
to prove that pwdS ≥ n + 1. Consider a path-decomposition (U i)i<m of S.
We prove the claim by induction on n. If n = 0, then S consists of a single
vertex v and there is some componentU i with v ∈ U i . Hence, ∣U i ∣ = 1.

For the inductive step, suppose that n > 0. Removing all empty compon-
ents from (U i)i we may assume that U0 ≠ ∅ and Um−1 ≠ ∅. Fix vertices
u ∈ U0 and v ∈ Um−1 and a path P connecting u and v. By Lemma 1.5, every
component U i contains some vertex from P. The graph S − P obtained
from S by removing all vertices in P (and all incident edges) has the path-
decomposition (U i ∖ P)i≤m . Let r ∈ S be the vertex of S corresponding
to the root of T. Then r has k ≥ 3 neighbours. At most 2 of them lie on
the path P. Let S0 be the subtree of S attached to one of the other neigh-
bours of r. Then S0 is the undirected version of a full k-ary tree of height
n − 1. By inductive hypothesis, it follows that pwdS0 ≥ n. This implies that
∣U i ∖P∣ ≥ n, for some i. AsU i contains at least one vertex from P, it follows
that ∣U i ∣ ≥ n + 1.
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For binary trees one can use a trick that reduces the path-width by 1.

Exercise 1.2. Find a path-decomposition of the full binary tree of height n
whose width is n. ⌟

Exercise 1.3. Prove that the path-width of full binary trees of height n is
unbounded as n grows. Hint. Use the fact that every full binary tree of
height 2n has the full 4-ary tree of height n as a minor. ⌟

Note that structures of bounded tree-width are sparse. Hence, we can
apply the results from Chapter VII.

Lemma 1.8. Let Σ be a signature of size m ∶= ∣Σ∣ and let n be the maximal

arity of a relation in Σ. Every Σ-structure A of tree-width k is mk
n
-sparse.

Proof. Given a finite subset X ⊆ A, let (Ut)t∈T be a tree-decomposition
of the restriction A∣X of width at most k such that T is minimal. This
implies that Us ⊈ Ut , for every edge ⟨s, t⟩ of T, as, otherwise, we would
obtain a smaller decomposition by removing the component Us from T.
Consequently, ∣T∣ ≤ ∣X∣. Fix a relation R ∈ Σ of arity r. As every tuple
c̄ ∈ R ↾ X is contained in some componentUt , it follows that

∣R ↾ X∣ ≤ ∑
t∈T
∣Ut ∣

r ≤ ∣T∣ ⋅ kr ≤ kr ∣X∣ .

Consequently,

∑
R∈Σ
∣R ↾ X∣ ≤ mk

n ∣X∣ .

Corollary 1.9. Over the class of all Σ-structures of tree-width at most k, every
GSO-formula is equivalent to someMSO-formula.

Lemma 1.10. For every finite signature Σ, there exist constants c, d < ω such

that

twdA ≤ twdAin ≤ c(twdA)d , for every Σ-structure A .
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Proof. For the lower bound, fix a tree-decomposition (Ut)t∈T of Ain. Set-
ting U′

t ∶= Ut ∩ A, we obtain a tree-decomposition (U′
t)t∈T of A whose

width is at most that of (Ut)t .
For the upper bound, fix a tree-decomposition (Ut)t∈T of A of width k.

Set

U
′
t ∶= Ut ∪ { c̄ ∣ c̄ ∈ R ∩ (Ut)

n for some n-ary relation R of A} .

It follows that (U′
t)t∈T is a tree-decomposition of Ain whose width is at

most k + sk
r ≤ (s + 1)kr , where s is the number of relations in Σ and r their

maximal arity.

Fir#-Order Propertie+

Finally, let us relate the tree-width of a structure with its first-order theory.
The technical problem we have to deal with is that some constructions will
yield tree-decompositions that are not indexed by trees but by non-standard
models of the theory of all trees. To preserves sufficiently much of the tree
structure when going to a non-standard extension we will work with order-
trees and we add an explicit infimum-operation.

Definition 1.11. (a) A non-standard tree is a lower semilattice ⟨T , ≤,⊓⟩where
every set of the form ⇓t ∶= { s ∈ T ∣ s ≤ t } is linearly ordered.
(b) A generalised path-decomposition of a graph G = ⟨V , E⟩ is a sequence

(U i)i∈I of sets indexed by a linear order I such that

◆ ⋃i∈I U i = V

◆ For every edge e ∈ E, there is some index i ∈ I with e ⊆ U i .

◆ v ∈ U i ∩Uk implies v ∈ U j , for all i ≤ j ≤ k.

(c) A generalised tree-decomposition of a graph G = ⟨V , E⟩ is a family
(Ut)t∈T of sets indexed by a non-standard tree T such that

◆ ⋃t∈T Ut = V

◆ For every edge e ∈ E, there is some index t ∈ T with e ⊆ Ut .

◆ Us ∩Ut ⊆ Uu , for all u with s ⊓ t ≤ u ≤ s or s ⊓ t ≤ u ≤ t. ⌟
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Remark. Note that the property of being a non-standard tree is expressible
in first-order logic. ⌟

Before constructing generalised tree-decompositions let us show how to
transform them into ordinary ones. We start with path-decompositions.

Lemma 1.12. For every generalised path-decomposition (U i)i∈I of finite width,
there exists a tree-decomposition (Wt)t∈T of the same width such that

◆ for every i ∈ I, there is some t ∈ T with Wt = U i , and

◆ there is some t∗ ∈ T with Wt∗ = ⋂i∈I U i .

Proof. If there are several indices i with the same setU i we can remove all
duplicates without destroying the property of being a path-decomposition.
Therefore, we may assume without loss of generality thatU i ≠ U j , for i ≠ j.

Let n be the width of (U i)i∈I .We prove the claim by induction on n−∣C∣,
where

C ∶= ⋂
i∈I

U i .

For each i ∈ I, we define the set of shared elements

A i ∶= { a ∈ U i ∣ a ∈ Uk for some k ≠ i }

and the relation

i ∼ j : iff Ak = A i for all i ≤ k ≤ j .

Note that ∼ is an equivalence relation with convex classes. For a ∼-class w,
we write

Aw ∶= A i , for any index i ∈ w .

Let J ∶= {w ∈ I/∼ ∣ Aw ⊃ C } and K ∶= { i ∈ I ∣ A i = C }. For every w ∈ J
we can use the inductive hypothesis to find a tree-decomposition (Yw

r )r∈Rw

corresponding to the generalised path-decomposition (U i)i∈w .
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Furthermore, we have ∣A i ∣ < n as the sequence (U i)i does not contain
duplicates. Consequently, (Aw)w∈ J forms a generalised path-decomposition
of width at most n − 1. Since C ⊆ A i , for all i, the value of n − ∣C∣ for
(Aw)w is strictly smaller that the one for (U i)i . Hence, we can use the
inductive hypothesis to find a tree-decomposition (Zs)s∈S correspondning
to (Aw)w∈ J .
We construct the desired tree-decomposition (Wt)t∈T as follows. We

take the disjont union of all decompositions (Zs)s∈S and (Yw
r )r∈Rw , for

w ∈ J. In addition, we introduce a new vertex t∗ with componentWt∗ ∶= C
and, for every k ∈ K, a vertex tk with componentWtk ∶= Uk . To turn this
into a tree-decomposition, we add edges between

◆ t∗ and every tk , for k ∈ K,

◆ t∗ and some vertex in S, and

◆ for every w ∈ J, we choose some vertex sw ∈ S with Zs = Aw , and add
an edge between sw and an arbitrary vertex in Rw .

Lemma 1.13. For every generalised tree-decomposition (Us)s∈S of finite width,
there exists a tree-decomposition (Wt)t∈T of the same width such that

◆ for every s ∈ S, there is some t ∈ T with Wt = Us , and

◆ there is some t∗ ∈ T with Wt∗ = ⋂s∈S Us .

Proof. We say that a tree-decomposition (Wt)t∈T covers an index s ∈ S
if Us = Wt , for some t ∈ T. Fix an enumeration (s i)i<κ of S where
κ ∶= ∣S∣. By induction on the ordinal i, we will construct an increasing
chain of tree-decompositions (W(i)

t )t∈T(i) , i ≤ κ, such that (W
(i)
t )t∈T(i)

covers every u ∈ ⋃ j<i ⇓s j . Then (W(κ)
t )t∈T(κ) will then be the desired tree-

decomposition.
We start with a tree T(0) consisting of a single vertex t∗ with component

W
(0)
t∗ = ⋂s∈S Us . For a limit ordinal δ, we take for (W(δ)

t )t∈T(δ) the limit

of (W(i)
t )t∈T(i) , for i < δ.

For the successor step, suppose that we have already defined (W(i)
t )t∈T(i) .

Let I ⊆ S be the set of all u ≤ s i that are not covered by (W
(i)
t )t∈T(i) . By
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inductive hypothesis, I forms a final segment of the chain ⇓s i . If I is empty,
there is nothing to do and we cat set (W(i+1)

t )t∈T(i+1) ∶= (W
(i)
t )t∈T(i) .

Otherwise, (Su)u∈I forms a generalised path-decomposition and we can use
Lemma 1.12 to transform it into a tree-decomposition (Zr)r∈R . Set

C ∶= ⋃
u∈I
⋂

v∈I∩⇓u
Sv and D ∶= ⋃

u∈⇓s i∖I
⋂

v∈(⇓s i∖I)∩⇑u
Sv .

As all sets Sv are finite, there exist indices u ∈ I and v ∈ ⇓s i ∖ I such that

C ⊆ Su and D ⊆ Sv .

By assumption, there is some r0 ∈ R such that Zr0 = Su and some t0 ∈
T
(i) withW(i)

t = Sv . To construct (W
(i+1)
t )t∈T(i+1) we attach (Zr)r∈R to

(W
(i)
t )t∈T(i) by adding an edge between r0 and t0. Note that the result is

indeed a tree-decomposition since every element that is contained both in
some componentW(i)

t and in some component Zr must belong to C ∩ D.

After these preparations we can start looking at the first-order theory of a
structure with finite tree-width.Themain result is the following compactness
property which implies that in many cases it is sufficient to consider finite
graphs only.

Theorem 1.14. Let Σ be a finite relational signature. For every Σ-structure A,
we have

twdA = sup{ twdB ∣ B ⊆ A finite} .

Proof. Let A be a graph and suppose that

sup{ twdB ∣ B ⊆ A finite} = k .

Clearly, each tree-decomposition of A induces one for every substructure
B ⊆ A.This implies that k ≤ twdA. Hence, it remains to show that twdA ≤
k.
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We encode every generalised tree-decomposition (Ut)t∈T of A by the
relation

U ∶= { ⟨t, v⟩ ∣ v ∈ Ut }

on the disjoint unionA⊕T.Thus, weworkwith structures over the signature
Σ ∪ {≤,⊓,U} where ≤ and ⊓ are the relations of T. Let us call the resulting
(Σ ∪ {≤,⊓,U})-structure AT .
To prove the bound on the tree-width of A, we will construct suitable

relations ≤, ⊓, andU. Let ∆ be the so-called atomic diagram of A, that is, the
following set of first-order formulae:

∆ ∶= { α(c̄ ā) ∣ A ⊧ α(ā) } ∪ {¬α(c̄ ā) ∣ A ⊭ α(ā) } ,

where α(x̄) ranges over all atomic formula (over Σ) and the ca , cb , . . . are
constant symbols, one for each element a ∈ A. Furthermore, we need a set Φ
of formulae stating that ≤,⊓, andU encode a generalised tree-decomposition
of width at most k. We use the following formulae to state the properties of
a tree-decomposition.

◆ “There exists a partition P ∪ Q of the universe such that U ⊆ Q × P,
the elements in Q are related by ≤ and ⊓, while all other relations are
over P.”

◆ ⟨Q , ≤,⊓⟩ is a non-standard tree.

◆ “Every element is contained in some component.”

∀x[Px → ∃tUtx] .

◆ “Every edge is covered by some component.”

∀x̄[Rx̄ → ∃t[Utx0 ∧ ⋅ ⋅ ⋅ ∧Utxn−1]] ,

for every relation R.

◆ “The set of components containing a given element v is connected.“

∀x∀s∀t∀u[s ⊓ t ≤ u ≤ s ∧Usx ∧Utx → Uux] .
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◆ “Every component has size at most k.”

∀t∃y0 . . . ∃yk−1∀x[Utx → ⋁
i<k

x = y i] .

We start by showing that the set Φ∪∆ is satisfyable. Given a finite subset
Ψ ⊆ Φ ∪ ∆, let B ⊆ A be a finite substructure containing all elements of A
mentioned in Ψ . By assumption, B has a tree-decomposition (Ut)t∈T of
width k. Then the encoding BT satisfies Ψ .

By the CompactnessTheorem for first-order logic, it follows that there
is some model of Φ ∪ ∆. By choice of Φ, it follows that this model is of the
form A+

T , Where A+ ⊇ A is an extension of A and (Ut)t∈T is a generalised
tree-decomposition of A+ of width at most k. Set

Wt ∶= Ut ∩A , for t ∈ T .

Then (Wt)t∈T is a generalised tree-decomposition of A of width at most k.
Consequently, it follows by Lemma 1.13 that twdA ≤ k.

One noteworthy consequence of this theorem is the fact that having finite
tree-width is a first-order property.

Theorem 1.15. Let Σ be a finite relational signature, A and B two Σ-structures,
and k < ω.

A ≡FO B implies twdA ≤ k⇔ twdB ≤ k .

Proof. Suppose that A ≡FO B and twdA ≤ k. For every n < ω, there exists
a first-order formula φn stating every substructure with n elements has
tree-width at most k. Then

A ⊧ φn implies B ⊧ φn .

Consequently, it follows byTheorem 1.14 that twdB ≤ k.
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2 Minor+

The notion of tree-width is closely related to graph minor theory. Let us
collect a few results relating these two areas.

Definition 2.1. Let G = ⟨V , E⟩ be an undirected graph.
(a)The operation of contracting an edge e = ⟨u, v⟩ of G replaces the two

end-points u and v by a single new vertex, which is a neighbour of every
former neighbour of u and of v.

u v
u, v

(b) Aminor ofG is a graphH obtained fromG by (i) removing an arbitrary
number of vertices and edges and (ii) contracting an arbitrary number of the
remaining edges.

(c) We denote the function mapping a graph G to the set of its minors by
Min. ⌟

We can describe a minor of a graph using the following data.

Definition 2.2. Let G = ⟨V , E⟩ and H = ⟨U , F⟩ be undirected graphs.
(a) Two sets A, B ⊆ V touch if they have some vertex in common or if

there exists an edge between a vertex of A and one of B.
(b) A minor-embedding of H in G consists of a family (Cu)u∈U of disjoint

subsets Cu ⊆ V such that
◆ each Cu is connected and non-empty and
◆ for every edge ⟨u, u′⟩ ∈ F ofH, the associated sets Cu and Cu′ touch. ⌟

Lemma 2.3. There exists a minor-embedding of H in G if, and only if, H is

(isomorphic to) a minor of G.

We begin our study of the relationship between minors and tree-decom-
positions with the following simple observation.
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Lemma 2.4. Let H be a minor of G. For every tree-decomposition of G of

width k there exists a tree-decomposition of H of width at most k that has the

same index tree.

Proof. Let (Ut)t∈T be a tree-decomposition of G of width twdG. We con-
struct the desired tree-decomposition (U′

t)t∈T of H as follows. Each com-
ponentU′

t is obtained fromUt by performing the following two operations.

◆ We remove fromUt all vertices v that were deleted from G when con-
structing H.

◆ For every contracted edge ⟨u, v⟩, we replace inUt the vertices u and v
with the vertex they were merged into.

Clearly, the new family (U′
t)t is a valid tree-decomposition and its width is

at most that of (Ut)t .

Corollary 2.5. H ∈Min(G) implies twdH ≤ twdG.

The preceding result gives a first indication that there might be a connec-
tion between minors and tree-width. We will present three theorems that
provide an even tighter relationship between these notions, one for each
of the three variants of tree-width we have introduced. The first two, for
height-n tree-width and for path-width, follow below; the third version, for
general tree-width, is a bit more involved and therefore deferred to Section 4.
For the proofs we need the following notion of a spanning tree.

Definition 2.6. Let G = ⟨V , E⟩ be an undirected graph.
(a) A spanning tree of G is an undirected tree T = ⟨T , F⟩ such that

T = V and F ⊆ E .

(b) A normal spanning tree of G is an order-tree T = ⟨T , ⪯⟩ such that the
underlying undirected tree is a spanning tree of G and we have

u ⪯ v or v ⪯ u , for every edge ⟨u, v⟩ ∈ E of G . ⌟

For a finite graph, we can construct a normal spanning tree by a depth-
first traversal. For countable graphs, we can do so as well but we need to
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be slightly more careful. Uncountable graphs do not need to have normal
spanning trees. For instance, no uncountable complete graph has one.

Lemma 2.7. Every countable graph G = ⟨V , E⟩ has a normal spanning tree.

Proof. Fix a well-order ≤ of V and let v0 , v1 , . . . be the corresponding in-
creasing enumeration of the vertices. We inductively define an increasing
sequence of trees T0 ⊆ T1 ⊆ ⋯ with the following properties.

◆ Tn is a normal spanning tree of the subgraph of G induced by Tn .

◆ Tn contains v0 , . . . , vn .

◆ If there exists a path P of G linking two vertices of Tn and such that the
internal vertices of P are disjoint from Tn , then

v i ⪯ vk or vk ⪯ v i , in Tn .

We start with the singleton tree T0 that consists just of v0. For the in-
ductive step, suppose that we have already defined Tn−1. If Tn−1 contains vn ,
we set Tn ∶= Tn−1. Otherwise, let P be the set of all paths of G of minimal
length connecting vn to some vertex u ∈ Tn−1, and let C ⊆ Tn−1 be the set of
these vertices u. By assumption on Tn−1, the set C forms a chain in Tn−1. Let
w be its maximal vertex and let P be the corresponding path from w to vn .
For Tn , we choose the tree obtained from Tn−1 by attaching this path to w.
It remains to check that Tn has the desired properties. It obviously contains
v0 , . . . , vn . By minimality of P, it also follows that Tn is a normal spanning
tree of the subgraph induced by Tn . Furthermore, if Q is any path linking a
vertex u ∈ P to some v ∈ Tn−1, then v ∈ C, which implies that v ⪯ u.

Our first theorem relates height-n tree-width and path minors.

Theorem 2.8 (Excluded Path Theorem). Every undirected graph G with

twdn(G) > n has a path of length n as a minor.

Proof. ByTheorem 1.14, it is sufficent to prove the claim for finite graphs G.
Hence, suppose that G is finite and that it does not have the path of length n
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as a minor. To show that twdn(G) ≤ n, we fix a normal spanning tree ⟨T , ⪯⟩
of G and we define a tree-decomposition (Uv)v∈T of G by setting

Uv ∶= { u ∈ T ∣ u ⪯ v } .

As T is depth-first, it follows that every edge ⟨u, v⟩ of G is contained in
some componentUw where for w we can choose the maximum of u and v
(with respect to ⪯). Consequently, (Uv)v is in fact a tree-decomposition.
To compute its width, note that the height of the tree T must be less

than n since G contains no path of length n. Hence, ∣Uv ∣ = ∣v∣ + 1 ≤ n and
the width of (Uv)v is at most n.

Let us also provide a converse.

Proposition 2.9. Let G be an undirected graph with twdn G ≤ k. Every path
contained in G has length at most (k − 1)(k + 1)n .

Proof. Suppose that twdn G ≤ k. We prove the claim by induction on n.
If n = 0, then G has at most k vertices and every path contained in G has
length at most k − 1.
For the inductive step, suppose that n > 0. Fix a tree-decomposition

(Ut)t∈T of G of width at most k such that T has height at most n. Let r be
the root of T and consider some path P in G. We can decompose P into
segments P = P0 . . . Ps such that no internal vertex of Pi belongs toUr . We
choose the number s of segments minimal. This implies that the common
end-point of Pi and Pi+1 belongs to Ur . Since each vertex can appear at
most once in P, it follows that s ≤ ∣Ur ∣ ≤ k. By inductive hypothesis, each
segment Pi has length at most (k − 1)(k + 1)n−1. Consequently, the length
of P is at most (s + 1)(k − 1)(k + 1)n−1 ≤ (k − 1)(k + 1)n .

For path-width, a similar result holds if we replace paths by trees. For the
proof, we need some preparations. First, let us recall a standard result from
graph theory about the existence of disjoint paths.

Definition 2.10. Let G = ⟨V , E⟩ be an undirected graph.
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(a) A separation ⟨A, B⟩ of G consists of two subsets A, B ⊆ V such that
A∪B = V and no edge of G connects a vertex inA∖B to one in B∖A. The
order of a separation ⟨A, B⟩ is the number ∣A∩ B∣.
(b) For a set F ⊆ E of edges, we denote by G − F the graph obtained

from G by deleting all edges in F (but keeping all the vertices). For F = {e},
we usually simply write G − e. ⌟

Theorem 2.11 (Menger). Let G = ⟨V , E⟩ be a finite undirected graph and
X,Y ⊆ V two sets of size at least k. There exists a family of k pairwise disjoint

paths connecting X and Y if, and only if, G has no separation ⟨A, B⟩ of order
less than k with X ⊆ A and Y ⊆ B.

Proof. (⇒) Suppose that ⟨A, B⟩ is a separation of order m < k with X ⊆ A
and Y ⊆ B. Since every path between X and Y must contain a vertex in
A∩ B, at most m < k such paths can be pairwise disjoint.
(⇐) Suppose that there is no separation ⟨A, B⟩ of order less than k with

X ⊆ A and Y ⊆ B. We construct the desired family of paths by induction
on ∣E∣.

First suppose that E = ∅. Then ⟨X, (V ∖X) ∪ (X ∩Y)⟩ is a separation
of G. By assumption, its order is ∣X ∩ Y∣ ≥ k. Hence, selecting k vertices in
X ∩ Y produces a family of k paths of length 0 between X and Y.
For the inductive step, suppose that there is some edge e = ⟨u, v⟩ ∈ E.

Let G/e be the graph obtained from G by contracting the edge e and let
w∗ denote the vertex into which u and v were merged by this. If G/e has
k disjoint paths between X and Y, then so does G. Hence, we may assume
that this is not the case. By inductive hypothesis, it follows that G/e has
a separation ⟨A0 , B0⟩ of order less than k with X ⊆ A0 and Y ⊆ B0. If
w∗ ∉ A0 ∩ B0, then ⟨A0 , B0⟩ would induce a separation of G of the same
order, in contradiction to our assumption. It follows that the sets

A ∶= (A0 ∖ {w∗}) ∪ {u, v} and B ∶= (B0 ∖ {w∗}) ∪ {u, v}

form a separation ⟨A, B⟩ of G of order ∣A∩ B∣ ≤ k.
Furthermore, any separation ⟨C ,D⟩ of G − e with X ⊆ C and S ⊆ D is

also a separation of G with Y ⊆ D. By assumption, this implies that every
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such ⟨C ,D⟩ has order at least k. Hence, we can use the inductive hypothesis
to construct a family R0 , . . . ,Rk−1 of disjoint paths between X and S in the
graph G∣A. In the same way, we can obtain a family R′0 , . . . ,R

′
k−1 of disjoint

paths between S andY inG∣B . As ∣S∣ ≤ k, it follows that each path R i shares
an end-point with a unique R′j . Renumbering these paths if necessary, we
may assume that j = i. Consequently, we obtain k disjoint paths between
X and Y by concatenating R i and R′i , for each i < k.

Suppose we want to construct a path-decomposition of a given graph
inductively. Say, we have already defined components U0 , . . . ,Un and we
would like to add the next oneUn+1. A necessary condition for such a naïve
strategy to succeed is that the last componentUn contains every vertex that
is connected to some vertex not yet covered by the components we have
defined so far. Let us give this property a name.

Definition 2.12. Let G = ⟨V , E⟩ be an undirected graph.
(a)The boundary of a set A ⊆ V is

∂A ∶= { v ∈ A ∣ ⟨v , u⟩ ∈ E for some u ∈ V ∖A} .

(b) A k-extendible sequence for a set C ⊆ V is a path-decompositions
(U i)i≤n of G∣C of width at most k such that ∂C ⊆ Un . ⌟

We will need the following lemma about restrictions of k-extendible
sequences.

Lemma 2.13. Let B ⊆ A be sets and let (Pu)u∈∂B be a family of disjoint paths

between ∂B and ∂Awhere Pu starts at the vertex u. If there exists a k-extendible

sequence for A, there also exists one for B.

Proof. Given a k-extendible sequence (Ut)t≤m for A, we set

U<t ∶= U0 ∪ ⋅ ⋅ ⋅ ∪Ut−1

and Wt ∶= ((Ut ∖U<t) ∩ B) ∪ ∂(U<t ∩ B) .

We claim that (Wt)t≤m is a k-extendible sequence for B.
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Let us start by checking the axioms of a path-decomposition. First, con-
sider a vertex v ∈ B ⊆ A. Let t be the minimal index with v ∈ Ut . Then
v ∈ (Ut ∖U<t) ∩ B ⊆Wt .
Next, consider an edge e = ⟨u, v⟩ ∈ E with u, v ∈ B. Let s and t be the

minimal indices with u ∈ Us and v ∈ Ut . By symmetry, we may assume
that s ≤ t. If s = t, then u, v ∈ (Ut ∖ Ut−1) ∩ B ⊆ Wt and we are done.
Hence, suppose that s < t. Then the existence of the edge e implies that
u ∈ ∂(U<t ∩ B) ⊆Wt . Since v ∈ (Ut ∖Ut−1) ∩ B ⊆Wt , the claim follows.
Finally, consider indices s < r < t and a vertex v ∈ Ws ∩ Wt . Then

Ws ⊆ U<r ⊆ U<t implies that v ∈ U<r and v ∈ U<t ∩Wt . By definition
ofWt , it follows that v ∈ ∂(U<t ∩ B). Hence,

v ∈ ∂(U<t ∩ B) ∩U<r ⊆ ∂(U<r ∩ B) ⊆Wr .

Furthermore, we have ∂B ⊆Wm since

∂B ∩U<(m−1) ⊆ ∂(U<(m−1) ∩ B) ⊆Wm ,

∂B ∩ (Um ∖U<(m−1)) ⊆ (Um ∖Um−1) ∩ B ⊆Wm .

To conclude the proof it therefore remains to compute the width of (Wt)t .
To do so, it is sufficient to show that

∣∂(U<t ∩ B)∣ ≤ ∣∂U<t ∣ ,

since this implies that

∣Wt ∣ = ∣((Ut ∖U<t) ∩ B) ∪ ∂(U<t ∩ B)∣

≤ ∣Ut ∖U<t ∣ + ∣∂U<t ∣

≤ ∣Ut ∖U<t ∣ + ∣Ut ∩U<t ∣ = ∣Ut ∣ ≤ k .

For the proof of the above inequality, let C ∶= U<t ∩ B and D ∶= U<t . We
construct an injective map α ∶ ∂C ∖ ∂D → ∂D ∖ ∂C. Consider a vertex
u ∈ ∂C ∖ ∂D. Then there exists an edge ⟨u, v⟩ with v ∉ C. Since u ∉ ∂D, it
follows that v ∈ D. Hence, v ∈ D ∖ C = U<t ∖ B. This implies that u ∈ ∂B.
Since Pu is a path from u ∈ U<t to a vertex w ∈ ∂A ⊆ Um it must visit some
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vertex α(u) ∈ ∂U<t = ∂D. As u is the only vertex of Pu belonging to B, it
follows that α(u) ∈ ∂D ∖ B ⊆ ∂D ∖ ∂C. Furthermore, the map α defined
in this way is injective, since that paths Pu are disjoint.

These preparations out of the way we can state and prove the desired
excluded minor theorem.

Theorem 2.14 (Excluded TreeTheorem). Let T be an undirected tree with n

vertices. Every graph G with path-width pwdG ≥ n has T as a minor.

Proof. Suppose that pwdG ≥ n and let T be a tree with n vertices. Chosing
a root for T, we may assume that T is directed. We fix an enumeration
t0 , . . . , tn−1 of T starting with the root t0 and such that the parent of every
other vertex t i appears before it in this list. Let Tm be the subtree of T
consisting of the vertices t0 , . . . , tm−1 and set

Hm ∶= {C ⊆ V ∣ ∣∂C∣ ≤ m and there exists an (n − 1)-extendible

sequence for C } .

Let m < n be the maximal number such that there exists a set A ⊆ V

such that
◆ A is a maximal element ofHm and
◆ A contains a minor-embedding (C i)i<m of Tm with ∣C i ∩ ∂A∣ = 1, for

all i.
Such a number exists since ∅ ∈ H0. Hence, we could take m = 0 and a
maximal element ofH0.
We can use the set A to construct a minor-embedding of T. We start

by fixing a vertex v ∈ V ∖ A as follows. If m = 0, we pick an arbitrary
element v ∈ V ∖ A. (This is possible since pwdG ≥ n implies V ∉ H0.
Hence, A ≠ V .) If m > 0, let t j be the parent of tm in T. By choice of
our enumeration of T, we have j < m. Let u be the unique vertex with
C j ∩ ∂A = {u}, and let v be some neighbour of u that belongs to V ∖A.
If m = n − 1, we set

D i ∶=

⎧⎪⎪
⎨
⎪⎪⎩

C i for i < n − 1 ,
{v} for i = n − 1 .
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Then (D i)i is a minor-embedding of T in G and we are done.
For a contradiction, suppose that m < n − 1. Set B0 ∶= A∪ {v} and let

(U i)i≤k be an (n − 1)-extendible sequence for A. We claim that the family
(U′

i)i≤(k+1) defined by

U
′
i ∶=

⎧⎪⎪
⎨
⎪⎪⎩

U i if i ≤ k ,
{v} ∪ ∂A if i = k + 1 .

forms an (n− 1)-extendible sequence for B0. Clearly, (U′
i)i is a path-decom-

position and we have ∂B0 ⊆ {v} ∪ ∂A = U′
k+1. Furthermore,

∣U′
k+1∣ = ∣{v} ∪ ∂A∣ ≤ 1 + m < n

implies that (U′
i)i has width less than n.

Hence, (U′
i)i is an (n − 1)-extendible sequence. By maximality of A, it

follows that B0 ∉ Hm , that is, ∣∂B0∣ > m. Since ∂B0 ⊆ ∂A∪ {v}, it follows
that ∣∂B0∣ = m + 1 and ∂B0 = ∂A∪ {v}. In particular, B0 ∈ Hm+1 and we
can find some maximal element B ∈ Hm+1 with B0 ⊆ B.

To obtain the desired contradiction, it remains to prove that B contains a
minor-embedding ofTm+1. In the subgraphG∣B we fix amaximal family L of
pairwise disjoint paths connecting B0 and ∂B. By Menger’s Theorem, there
exists a separation ⟨C ,D⟩ of G∣B with B0 ⊆ C, ∂B ⊆ D, and ∣C ∩ D∣ = ∣L∣.
Set S ∶= C ∩ D and letW be the union of S and all connected components
of G∣V∖S that contain a vertex of B0. Then

(∗) ∂W ⊆ S and A ⊂ B0 ⊆W .
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S

W

C ∖W

D ∂B V ∖ B

B0

Let us show thatW ⊆ B. For a contradiction, suppose that there is some
vertexw ∈W∖B.Thenw ∉ S since S ⊆ B. By choice ofW , we can therefore
find a path P from B0 to w that is disjoint from S. Since B0 ⊆ B and w ∉ B
this path must contain some vertex in ∂B. Let u be the first such vertex and
let P0 be the prefix of P connecting B0 to u.Then P0 is a path in B connecting
B0 and ∂B. Hence, P0 must contain some vertex of S. A contradiction to
the fact that we chose P disjoint from S.
Hence,W ⊆ B ∈ Hm+1 and we can use Lemma 2.13 to find an (n − 1)-

extendible sequence forW . By (∗), maximality of A, and the fact that every
path in L meets ∂B0, it follows that

m < ∣∂W∣ ≤ ∣S∣ = ∣L∣ ≤ ∣∂B0∣ = m + 1 .

Hence, the paths in L induce a bijection between ∂B0 and ∂B. For i < m, let
Pi ∈ L be the path containing the unique vertex in ∂A∩ C i , and let Pm ∈ L
be the path containing the vertex v from above. We define (D i)i<m+1 by

D i ∶=

⎧⎪⎪
⎨
⎪⎪⎩

C i ∪ Pi if i < m ,
Pm if i = m .

To obtain the desired contradiction, we show that the set B together with
the family (D i)i<m+1 satisfy the above conditions for m + 1. Thus, m is not
maximal. First, note that the sets D i are connected and pairwise disjoint.
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Furthermore, D i and D j touch if t i is the parent of t j . Hence, (D i)i forms
a minor-embedding of Tm+1. To see that every D i meets ∂B in a unique
point, note that

C i ⊆ A ⊆ B0 implies D i ∩ ∂B = Pi ∩ ∂B ,

and each path Pi contains a single vertex of ∂B.

Corollary 2.15. (a) A class of finite graphs has bounded path-width if and only

if it excludes some tree (equivalently, some forest) as a minor.
(b)A class of finite graphs has bounded height-n tree-width, for some n, if and

only if it excludes some path as a minor (equivalently, as a subgraph).

3 Bramble+

Upper bounds on the tree-width of a graph are easy to obtain: one just has
to find a tree-decomposition of that width. But for a lower bound one has to
prove that no such tree-decomposition exists. That is much more difficult.
To simplify this task we will introduce a combinatorial configuration called a
bramble whose existence implies the non-existence of a tree-decomposition.

Definition 3.1. Let G = ⟨V , E⟩ be a graph and k < ω.
(a)We say that a set S ⊆ V covers a family B ⊆ ℘(V) if S ∩ B ≠ ∅, for all

B ∈ B.
(b) A k-bramble is a family B of subsets B ⊆ V with the following proper-

ties.

(b1) Every B ∈ B is non-empty and connected.

(b2) Every pair of sets B, B′ ∈ B touch.

(b3) No set S ⊆ V of size ∣S∣ < k covers B. ⌟

Theorem 3.2. A graph G has a k-bramble if, and only if, twdG ≥ k.

Before presenting the proof we need to make a few technical preparations.
The following notions will only be used in this section.
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Definition 3.3. Let (Ut)t∈T be a tree-decomposition of a graph G, and fix
a number k.
(a) A vertex t ∈ T is called big if ∣Ut ∣ ≥ k.
(b) We call (Ut)t good if not every vertex of T is big and if all big vertices

are leaves of T.
(c) A petal of (Ut)t is a set of the formUt ∖Us , where t is a big leaf and

s is the neighbour of t.
(d) In a graph G, we denote the set of neighbours of a set P by

N(P) ∶= { v ∈ V ∖ P ∣ v is a neighbour of some u ∈ P } . ⌟

We regard a good tree-decomposition as a partial tree-decomposition
where the big components still need to be decomposed further. The follow-
ing, rather technical lemma states that, given two good tree-decompositions
satisfying certain compatibility conditions, we can find a common refine-
ment.

Lemma 3.4. Let (Ut)t∈T and (U′
t)t∈T′ be two good tree-decompositions of a

graph G, let P be a petal of (Ut)t and P
′
one of (U′

t)t . Suppose that

◆ there are vertices t0 ∈ T and t
′
0 ∈ T

′
such that Ut0 = P ∪ N(P) and

U
′
t′0
= P′ ∪N(P′) ;

◆ no petal of (Ut)t contains P
′
and no petal of (U′

t)t contains P ; and

◆ P and P
′
do not touch.

Then there exists a good tree-decomposition (Ws)s∈S such that every petal of
(Ws)s are contained in some petal of (Ut)t or of (U

′
t)t , while P and P

′
are

not petals of (Ws)s .

Proof. Since P and P
′ do not touch, the set N(P) is disjoint from P

′. By
definition, it is also disjoint from P. Since P is a petal andUt0 = P ∪N(P),
the set N(P) separates P from the rest of the graph. In particular, it sep-
arates P from P

′. Consequently, there exists a separation ⟨A, B⟩ of G with
P ⊆ A and P′ ⊆ B. We choose ⟨A, B⟩ such that the set C ∶= A∩ B has min-
imal size. Then ∣C∣ ≤ ∣N(P)∣ ≤ ∣Us0 ∣ ≤ k, where s0 is the neighbour of t0.
By minimality of C and theTheorem of Menger, it follows that A contains
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3 Brambles

a family (Qv)v∈C of disjoint paths connecting N(P) and C. In the same
way, we can find a family (Q ′

v)v∈C of disjoint paths in B that connectN(P′)
and C.
Let H be the minor of G obtained by (i) deleting every vertex in A that

does not belong to one of the paths Qv and (ii) contracting every path Qv .
Note that the resulting graph can also be obtained from G∣B by adding
some edges to C (those between Qv and Qu in the original graph G). By
Lemma 2.4, (Ut)t∈T induces a tree-decomposition of H and, therefore, also
one of G∣B . We denote the latter by (Ũt)t∈T . It follows that

Ũt = (Ut ∩ B) ∪ { v ∈ C ∣ Ut ∩ Qv ≠ ∅} .

SinceUt0 = P ∪N(P) ⊆ A and N(P) contains vertices of every path Qv , it
follows in particular that Ũt0 = C.
In the same way we obtain a tree-decomposition (Ũ′

t)t∈T′ of G∣A with
Ũ
′
t′0
= C. Let S be the tree obtained from the disjoint union of T and T′ by

identifying the vertices t0 and t′0, and denote the resulting vertex by s∗. For
s ∈ S, set

Ws ∶=

⎧⎪⎪
⎨
⎪⎪⎩

Ũs if s ∈ T ,
Ũ
′
s if s ∈ T′ .

(Note that this is well-defined since Ũt0 = C = Ũ
′
t′0
.)

We claim that (Ws)s∈S is the desired good tree-decomposition of G. It is
straightforward to check that it is a tree-decomposition. Furthermore, the
internal vertices s of S are those of T and T

′ plus the new vertex s∗. We
have ∣Ws∗ ∣ = ∣C∣ ≤ k and

∣Ws ∣ = ∣Ũs ∣ ≤ ∣Us ∣ ≤ k , for s ∈ T .

A similar calculation shows that ∣Ws ∣ ≤ k for s ∈ T′. Hence, none of these
is big and (Ws)s is good.
To conclude the proof, let R be a petal of (Ws)s located at, say, the vertex

s ∈ S. By symmetry, wemay assume that s ∈ T.ThenR =Ws∖Wt = Ũs∖Ũt ,
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where t is the neighbour of s. Hence, ∣Us ∣ ≥ ∣Ũs ∣ ≥ ∣Ws ∣ ≥ k implies that
s is also big as a vertex of (Us)s . Hence, R̂ ∶= Us ∖Ut is a petal of (Ut)t . It
remains to show that R ⊆ R̂ and that R̂ is different from P and P′.
As (Ws)s is a tree-decomposition and s ≠ s∗, we have Ws ∩ Ws∗ ⊆

Wt ∩Ws∗ . This implies that

R ∩Ws∗ = (Ws ∖Wt) ∩Ws∗ = (Ws ∩Ws∗) ∖Wt

⊆ (Wt ∩Ws∗) ∖Wt = ∅ .

Consequently, R ⊆ B ∖A. SinceWs ∖A = Ũs ∖A = Us ∖A and similarly
forWt , it follows that

R = R ∖A = (Ws ∖A) ∖ (Wt ∖A) ⊆ Us ∖Ut = R̂ .

Furthermore, R ∩A = ∅ implies that R ≠ P′. And we have R ≠ P since, by
assumption, no petal of (Ut)t contains P.

Proof of Theorem 3.2. (⇒) Let B be a k-bramble and let (Ut)t∈T be a tree-
decomposition of G. We claim that some componentUt covers B. By (b3),
this implies that ∣Ut ∣ ≥ k.
If there exists some edge e = ⟨t0 , t1⟩ of T such that Ut0 ∩ Ut1 cov-

ers B, we are done. Hence, suppose otherwise. Then we can orient each
edge e = ⟨t0 , t1⟩ of T as follows. Let C i be the connected component of
T − e containing t i and set A i ∶= ⋃t∈C i Ut . Then ⟨A0 ,A1⟩ is a separation
of G. AsUt0 ∩Ut1 does not cover B, the set

Ce ∶= {B ∈ B ∣ B ∩Ut0 ∩Ut1 = ∅}

is non-empty. Since all members of Ce are connected and touch each other,
it follows that they are either all contained inA0 ∖A1, or inA1 ∖A0. In the
first case, we direct e from t1 to t0, in the second case, from t0 to t1.
Having define an orientation of T, there exists some vertex t ∈ T such

that all edges with end-point t are directed towards t. ( Just start at an arbit-
rary vertex and follow outgoing edges until you arrive at t.) We claim that
Ut covers B.
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3 Brambles

For a contradiction, suppose otherwise.Then there is some B ∈ B with
B ∩Ut = ∅. If t has no neighbours in T, thenUt = V and B ∩Ut = B ≠ ∅.
A contradiction. Hence, t has neighbours s0 , . . . , sn−1 in T. For each edge
e i ∶= ⟨s i , t i⟩, B ∩Ut = ∅ implies that B ∈ Ce i . Furthermore, as the edge e i
is directed towards t, we have

B ⊆ ⋃
u∈C i

Uu ,

where C i is the connected component of T − e i containing t. It follows that

B ⊆ ⋂
i<n
⋃
u∈C i

Uu = Ut .

A contradiction.
(⇐) Suppose that twdG ≥ k. Let B+ be a set of minimal size satisfying

the following two conditions.

(1) B+ contains a petal of every good tree-decomposition.

(2) B+ is upwards closed in the sense that, if P ⊆ Q are both petals of good
tree-decompositions, then P ∈ B implies Q ∈ B.

Note that twdG ≥ k implies that every good tree-decomposition has at least
one petal. Consequently, the set of all petals of good tree-decompositions
satisfies (1) and (2), which means that a set like B+ exists. Set

B ∶= {B ∈ B+ ∣ B is connected} .

We claim that B is the desired k-bramble.
By definition, every set inB in non-empty and connected.This proves (b1).

For (b3), we fix a set S with ∣S∣ < k. Since G has tree-width at least k, we
have ∣V ∣ ≥ k. In particular, V ∖ S is non-empty. Let C0 , . . . ,Cm−1 be the
connected components of V ∖ S. We obtain a tree-decomposition of G
with components S and S ∪ C i , for i < m, where the underlying index tree
consists of one internal vertex andm leaves.This tree-decomposition is good.
Consequently, one of its petals C i belongs to B+. As C i is connected, we
have C i ∈ B. Then S ∩ C i = ∅ implies that the set S does not cover B.
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It remains to prove (b2). For a contradiction, suppose that there are two
sets P, P′ ∈ B that do not touch.We can choose themminimal (with respect
to inclusion). Then B+ ∖ {P} and B+ ∖ {P′} still satisfy (2), and it follows
by minimality of B that they must violate (1). Consequently, we can find two
good tree-decompositions (Ut)t∈T and (U′

t)t∈T′ such that P is the only
petal of (Ut)t belonging to B+, and P′ is only one of (U′

t)t . Let t0 ∈ T and
t
′
0 ∈ T

′ be the vertices corresponding to, respectively, P and P′. Removing
every vertex of Ut0 not belonging to P ∪ N(P) and every vertex of U′

t′0
not belonging to P

′ ∪ N(P′), we may assume that Ut0 = P ∪ N(P) and
U
′
t′0
= P′ ∪N(P′). (Note that ∣P ∪N(P)∣ ≥ k since otherwise the modified

tree-decomposition would have no petal in B+, which contradicts (1). Fur-
thermore, note that every removed vertex belongs to Ut0 ∩Us , where s is
the neighbour of t0. Hence, the new tree-decompositions still cover every
vertex of G.)

By (2), every petal of (Ut)t containing P′ would belong to B+ ∖ {P}.
Hence, there is no such petal. In the same way it follows that (U′

t)t has no
petal containing P. Consequently, we can use Lemma 3.4 to obtain a good
tree-decomposition (Ws)s that has no petal in B+. A contradiction.

As a prototypical example of graphs with large tree-width we consider
grids.

Definition 3.5. Let m, n > 1. The m × n grid is the graph with vertices

V ∶= [m] × [n]

and edges

E ∶= { ⟨⟨i , j⟩, ⟨k, l⟩⟩ ∣ ∣i − k∣ + ∣ j − l ∣ = 1} . ⌟

Proposition 3.6. Let m ≤ n. The m × n grid has tree-width and path-width

m + 1.

Proof. For the upper bound, we construct a tree-decomposition (Uu)u∈T
of the m × n grid of width m + 1 as follows. Consider the enumeration
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v0 , . . . , vmn−1 of V where

vm j+i ∶= ⟨i , j⟩ , for i < m and j < n .

We set

Uk ∶= {vk , . . . , vk+m} , for k < m(n − 1)

(see Figure 2 (c)).Then (Uk)k<m(n−1) forms a path-decomposition of width
∣Uk ∣ = m + 1.
It remains to prove the lower bound. By Theorem 3.2 it is sufficient to

find an (m + 1)-bramble B. We set

B ∶= {C i j ∣ i < m − 1, j < n − 1} ∪ {P,Q} ,

where

C i j ∶= ({i} × [n − 1]) ∪ ([m − 1] × { j}) ,

P ∶= {m − 1} × [n] ,

Q ∶= [m − 1] × {n − 1} .

P

Q
C12

To check the bramble properties, note that each set C i j , P, Q is non-empty
and connected. Furthermore, C i j ∩ C i′ j′ ≠ ∅ and there are edges between
C i j and P, between C i j and Q , and between P and Q . So all members of B
touch.
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Finally, consider a set S ⊆ V of size ∣S∣ ≤ m. If S ∩ P = ∅ or S ∩ Q = ∅,
we are done. Hence, suppose otherwise. Then S contains a vertex u ∈ P and
a vertex v ∈ Q . Let I ⊆ [m] and J ⊆ [n] be the projections of S∖(P∪Q) to,
respectively, the first and the second coordinate. Since ∣S∖(P∪Q)∣ ≤ m− 2,
we can find two indices i ∈ [m − 1] ∖ I ≠ ∅ and j ∈ [n − 1] ∖ J ≠ ∅.
Consequently, C i j ∩ Z = ∅.

Exercise 3.1. Prove that every cycle of length n ≥ 3 has tree-width 3. ⌟

Exercise 3.2. Prove that the complete bipartite graph Kn ,n has tree-width
n + 1. ⌟

4 The Ex$luded Grid Theorem

Similarly to the Excluded PathTheorem and the Excluded TreeTheorem,
there exists also a version for tree-width.The correspondingminors are grids.
The present section is devoted to the proof of this result.

Theorem 4.1 (Excluded GridTheorem). There exists a function g ∶ ω → ω
such that every graph of tree-width at least g(n) contains an n × n grid as a

minor.

Before presenting the proof let us make a few remarks concerning grids,
minors, and planar graphs.

Proposition 4.2. A finite graph G is planar if, and only if, it is a minor of the

n × n grid, for some n.

Proof. (⇐) Clearly, every grid is planar. Furthermore, every subgraph of a
planar graph is planar. Finaly, every graph obtained from a planar graph by
contracting a single edge is also planar.
(⇒) Fix an embedding of G in the plane where each line is represented

by a curve that is piecewise linear. Let S0 ⊆ R2 be the resulting set of points.
We choose three real numbers γ > δ > ε > 0 as follows.

(1) First, we fix γ > 0 such that the distance between any two vertices
of G is greater than 2γ and the distance from each vertex v of G to every
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edge e that is not incident with v is greater than γ. In the embedding S0 we
replace every point representing a vertex of G by a closed disc of radius γ.
Let S1 ⊆ R2 be the resulting shape.
(2) Next, we choose 0 < δ < γ such that the distance between all curves

representing edges is greater than 2δ and the distance between every edge e
and every disc representing some vertex is greater than δ. Let S2 ⊆ R2 be
the set of points containing S1 and every point whose distance from a curve
representing some edge is at most ε.
(3) Finally, choose 0 < ε < δ such that ε < 1

3 δ and every line segment that
is part of a curve representing some edge has length at least 5ε. Fix numbers
a, b ∈ R and an integer k > 0 such that S2 ⊆ [a, a + kε] × [b, b + kε], and
fix an embedding of the (k + 1) × (k + 1) grid in the plain such that the
vertex ⟨i , j⟩ is represented by the point ⟨a + iε, b + jε⟩ and every edge is
represented by a straight line parallel to one of the coordinate axes.

Then G can be obtained from this grid by (i) deleting every vertex and
every edge whose image is not contained in the set S2, and (ii) contracting
most of the remaining edges. Hence, G is a minor of the (k + 1) × (k + 1)
grid.

Corollary 4.3. A class of finite graphs has bounded tree-width if, and only if, it

excludes some planar graph as a minor.

Proof. We have shown in Proposition 3.6 that the n × n grid has tree-width
n + 1. Consequently it follows by Corollary 2.5 that no finite graph G of
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tree-width n can have the n × n grid cannot be a minor. Hence, every class
with tree-width n omits the n × n grid as a minor.

Conversely, suppose that a class C omits some planar graph H as a minor.
By Proposition 4.2, we can then find some number n such that every graph
in C omits the n × n grid as a minor. Hence, the Excluded GridTheorem
tells us that the tree-width of graphs in C is bounded by g(n).

Pseudo-Grid+

To prove the Excluded Grid Theorem, we simplify a given graph of large
tree-width in several steps until we obtain a gird. We present these steps
in reverse order from the more specific to the more general configurations,
starting with graphs that already closely resemble a grid.Throughout this
section all graphs will be implicitly assumed to be finite and undirected.

Definition 4.4. (a) We denote by Km ,n the complete bipartite graph with
m + n vertices, that is, the graph whose vertex set is divided into two classes
A ∶= [m] and B ∶= [n] such that each vertex in A is connected to every
vertex in B.

(b) An m × n pseudo-grid is an undirected graph G with vertices V ∶=
[m] × [n] such that

◆ for all i < m and k < n − 1, there is an edge between ⟨i , k⟩ and ⟨i , k + 1⟩,

◆ for all k < n, the subgraph induced by C(k) ∶= [m] × {k} is connected.

We call the setC(k) ∶= [m]×{k} the k-th column ofG andR(i) ∶= {i}×[n]
its i-th row.
(c) Let G be a graph and A, B ⊆ V sets of vertices. An A-B-linkage is a

set L of disjoint paths where each P ∈ L has one end-point in A and one
in B. A linkage is tight if ∣A∣ = ∣B∣ = ∣L∣.
(d) We will make use of the following constants. For g ≥ 1 and h ≥ 3,

define

M(g, h) ∶= 2(2g + 1)(h − 2) ,

N(g, h) ∶= h(2g + h − 2) ,
ε(g, h) ∶=

1
2M(g, h)

.
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Furthermore, we denote by G(g, h) the class of all finite undirected graphs
that contain neither the g × g grid, nor the complete bipartite graph Kh ,h as
a minor. ⌟

We start by showing that, in every pseudo-grid we can find either a grid
or a complete bipartite graph, depending on whether or not the column
graphs C(k) contain long paths. If sufficiently many C(k) contain a path of
sufficient length, we obtain a grid minor; otherwise, we obtain Kh ,h .

Proposition 4.5. Let g ≥ 1 and h ≥ 3, and set m ∶= (2g + 1)(2h − 5) + 2 and
n ∶= N(g, h). No m × n pseudo-grid G belongs to G(g, h).

The proof is split into several lemmas. We start with two lemmas that
allow us to extract from a pseudo-grid either a grid minor or a complete
bipartite graph.

Lemma 4.6. Let G be an m × n pseudo-grid, k < l two column indices, and
A ⊆ C(k) and B ⊆ C(l) two sets of the same size s ∶= ∣A∣ = ∣B∣. If l − k > s,
then there exists a tight A-B-linkage L of size s such that every vertex in ⋃L

belongs to A∪ B ∪⋃k<i<l C(i).

Proof. Let H be the subgraph of G induced by A ∪ B ∪ ⋃k<i<l C(i). We
have to show that there exist s disjoint paths between A and B in H. For a
contradiction, suppose otherwise. By Menger’s Theorem, there then exists
a set S of size ∣S∣ < s such that every connected subgraph of H intersecting
A and B also intersects S. As ∣A∣ > ∣S∣, we can find some i < m such that the
row R(i) intersects A and but not S. Similarly, we can find an index j < m
such that R( j) intersects B, but not S. Furthermore l − k − 1 > s − 1 ≥ ∣S∣
implies that there is some index k < h < l with C(h) ∩ S = ∅. It follows
that the set R(i) ∪ C(h) ∪ R( j) induces a connected graph that intersects
both A and B, but not S. A contradiction to our choice of S.

Lemma 4.7. Let h ≥ 1 and m ≥ h + 1, and let G be an m × h
2
pseudo-grid. If

each column C(i(h + 1)) with i < h, has a spanning tree with at least h leaves,
then G has a Kh ,h minor.
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Proof. For each i < h, we fix a spanning treeTi ofC(i(h+ 1))with at least h
leaves and we choose a set A i ⊆ Ti of exactly h such leaves. By choice of A i ,
each set B i ∶= C(i(h + 1)) ∖A i induces a connected subgraph of G. Since
h + 1 > ∣A i ∣ = ∣A i+1∣, we can use Lemma 4.6 to find, for every i < h − 1, a
tight A i -A i+1-linkage L i with

⋃L i ⊆ A i ∪A i+1 ∪ ⋃
i(h+1)< j<(i+1)(h+1)

C( j) .

The union⋃i L i therefore consists of h disjoint paths. Let H be the minor
of G obtained by (i) contracting each path in ⋃i L i to a single vertex and
(ii) doing the same with every set B i . As every v ∈ A i is connected to some
u ∈ B i , it follows that each path in⋃i L i touches every set B j . Consequently,
H ≅ Kh ,h .

It remains to prove that, in every pseudo-grid, we can apply one of the
two preceding lemmas.

Lemma 4.8. Let r ≥ 0 and h ≥ 3, and let G be a connected graph with at least

∣V ∣ ≥ (r + 3)(2h − 5) + 2

vertices. Then either

◆ G has a spanning tree with at least h leaves, or

◆ G contains an path of length r where every internal vertex has degree 2 in G.

Proof. For a contradiction, suppose that neither of these cases occurs. We
choose a spanning treeT ofG such that the number of leaves ofT is maximal.
Then T has at most h − 1 leaves and, therefore, at most h − 3 vertices with
more than 2 neighbours.Thus,T is a subdivision of a tree with 2h−4 vertices
and 2h − 5 edges. It follows that we can decompose T into 2h − 5 induced
paths (induced with respect to T). Let v0 , . . . , vk−1 be the longest such path.
This implies that T has at most (k − 2)(2h − 5) + 2h − 4 vertices.
We claim that, inG, the sequence v2 , v3 , . . . , vk−4 , vk−3 forms the desired

path. For a contradiction, suppose that some vertex v i with 3 ≤ i ≤ k − 4
has a third neighbour u in G. Let P be the path in T between u and v i . By
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4 The Excluded Grid Theorem

symmetry, wemay assume that v i−1 belongs to P. LetT′ be the tree obtained
from T by replacing the edge ⟨v i−2 , v i−1⟩ by the edge ⟨v i , u⟩.

v i−2

v i−1

v i
u

v i−2

v i−1

v i

To obtain the desired contradiction, we show thatT′ has at least onemore
leaf than T. The proof consists of two cases. If v i−2 ≠ u, then v i−1 and v i−2
are leaves of T′, while the only vertex that could be a leaf of T, but not of T′

is u. Similarly, if v i−2 = u, then v i−1 is a leaf of T′ and there is no vertex that
is a leaf of T but not of T′.

We have found an path v2 , v3 , . . . , vk−4 , vk−3 with k−4 vertices where the
internal vertices have exactly 2 neighbours in G. By assumption, this implies
that k−5 < r. As have seen above thatT has at most (k−2)(2h−5)+2h−4
vertices, it follows that

∣V ∣ = (k − 2)(2h − 5) + 2h − 4 = (k − 1)(2h − 5) + 1

≤ (r + 3)(2h − 5) + 1 .

A contradiction.

After these preparations, we can prove the proposition.

Proof of Proposition 4.5. Let G be a m × n pseudo-grid. We have to show
that G has a g × g grid or a Kh ,h as a minor. For i < n − 2g + 2, set

D i ∶= C(i) ∪ ⋅ ⋅ ⋅ ∪ C(i + 2g − 2)

and let Hi be the minor of G[D i] obtained by contracting every edge in
R( j) ∩ D i , for j < m. Below we will prove the following claim:

(∗) If, for some i < n − 2g + 2, the graph Hi has no spanning tree with at
least h leaves, then G has a g × g grid as a minor.
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Then the proof concludes as follows. If G has a g × g grid as a minor, we are
done. Otherwise, it follows by (∗) that every Hi has a spanning tree with at
least h leaves. Let G0 be graph obtained from G by contracting all edges in

R( j) ∩ Dd i , for j < m, i < h, and d ∶= 2g + h − 1 .

Note that this is well-defined since the last column in Dd(h−1) has index

d(h − 1) + 2g − 2 = (2g + h − 1)(h − 1) + 2g − 2

= (2g + h − 2)(h − 1) + (h − 1) + 2g − 2

= (2g + h − 2)h − 1

= n − 1 .

It follows that G0 is a m × n
′ pseudo-grid consisting of the columns

H0 , C(2g − 1), C(2g), . . . , C(2g + h − 2),

H1 , C(d + 2g − 1), C(d + 2g), . . . , C(d + 2g + h − 2),

H2 , . . . ,

Hh−2 , C(d(h − 2) + 2g − 1), C(d(h − 2) + 2g), . . . ,

C(d(h − 2) + 2g + h − 2),

Hh−1 .

Since n′ = (h − 1)(h + 1) + 1 = h
2 and every (h + 1)-th of these columns

has a spanning tree with at least h leaves, we can use Lemma 4.7 to show
that G0 has a Kh ,h minor. Hence, so does G.
It remains to prove (∗). Fix an index i < n − 2g + 2. Since ∣H i ∣ = m =

(2g + 1)(2h − 5) + 2, it follows by Lemma 4.8 that Hi contains a path where
every internal vertex has degree 2 inHi . Permuting the rows ofG if necessary,
we may assume that this path is of the form u0 , . . . , u2g−2, where u j ∈ H i is
the vertex created by contracting the edges in R( j) ∩D i . For 0 < j < 2g − 2
and i ≤ k ≤ i + 2g − 1, it follows that the vertex ⟨ j, k⟩ ∈ R( j) ∩C(k) has no
neighbours in C(k), except possibly for ⟨ j − 1, k⟩ and ⟨ j + 1, k⟩. As C(k) is
connected, there exists a path from the vertex ⟨g − 1, k⟩ to ⟨0, k⟩. This path
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4 The Excluded Grid Theorem

must start with either

⟨g − 1, k⟩, . . . , ⟨0, k⟩ or ⟨g − 1, k⟩, . . . , ⟨2g − 2, k⟩ .

By symmetry, we may assume that the former is the case for at least g of the
2g indices k between i and i + 2g − 1. These g paths together with the paths
R(0) ∩D i , . . . ,R(g − 1) ∩D i (with suitably contracted edges) thus form a
g × g grid.

Linkage+

In the next step, we collect several results about finding sufficiently large
sub-linkages of a given linkage that avoid certain parts of the ambient graph.
We start with a way of enumerating the vertices of a linkage.

Lemma 4.9. Let G be a graph of size s ∶= ∣V ∣. If G has a unique tight A-B-

linkage L of size m with ⋃L = V, then there exist an enumeration (u i)i<s−m
of V ∖A and an enumeration (v i)i<s−m of V ∖ B such that, for every i,

⟨u i , v i⟩ ∈ E and ⟨C i ,D i⟩ is a separation of order m ,

where C i ∶= A∪ { u j ∣ j < i } and D i ∶= B ∪ { v j ∣ j ≥ i }.

Proof. We proceed by induction on s. If there exists a separation ⟨C ,D⟩ of
order m with A ⊆ C and B ⊆ D, we can apply the inductive hypothesis to
(i) the subgraphG∣C and the setsA and C∩D ; and to (ii) the subgraphG∣D
and the sets C ∩ D and B. (Note that each path of L must intersect C ∩ D.
Consequently, the restriction ofL to the respective subset is a linkage between
C ∩ D and the other set. Furthermore, it is also unique since, if there were
another such linkage, we could combine it with the other part of L to obtain a
linkage inG different from L.)The concatenations of the resulting sequences
has the desired properties.
Consequently, we may assume that there is no such separation ⟨C ,D⟩.

If there are no edges in⋃L, then we have A = B. By uniqueness of L, this
implies that A = V = B and there is nothing to do. Hence, we may assume
that there is some edge e in⋃L. By uniqueness of L, the graph G − e does
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not have a tight A-B-linkage of size m. Consequently, we can use Menger’s
Theorem to find a separation ⟨C ,D⟩ of G− e of orderm− 1 withA ⊆ C and
B ⊆ D. As ⟨C ,D⟩ is not a separation of G, we must have e = ⟨u, v⟩ where
u ∈ C ∖ D and v ∈ D ∖ C. It follows that ⟨C ∪ {v},D⟩ and ⟨C ,D ∪ {u}⟩
are both separations of G of order m. We apply the inductive hypothesis to
(i) the subgraph G∣C∪{v} and the sets A and (C ∩D) ∪ {v} ; and to (ii) the
subgraphG∣D∪{u} and the sets (C∩D)∪{u} and B.The two concatenations
of the resulting sequences (inserting u in the middle of the first one, and v in
the middle of the second one) has the desired properties.

The next proposition is the main result of this section. It tells us that if
we have a linkage and a collection of connected graphs, we can find one of
these graphs that is avoided by a sufficiently many paths from the linkage.

Proposition 4.10. Let g ≥ 1, h ≥ 3, m ≥ M(g, h), and n ∶= 2mN(g, h).
Suppose that G = ⟨V , E⟩ ∈ G(g, h) contains

◆ an A-B-linkage L of size m and

◆ a set K of disjoint connected subgraphs of G of size ∣K∣ ≥ n.

Then there exist some graph R = ⟨U , F⟩ ∈ K and a subset L0 ⊆ L of size

∣L0∣ ≥ ε(g, h) ⋅ m that is an (A∖U)-(B ∖U)-linkage disjoint from U.

Proof. We prove the claim by induction on ∣V ∣ + ∣E∣. If there is some vertex
or edge that does not appear in L or in K, we can delete it from the graph.
Similarly, if some edge appears both in some P ∈ L and in some R ∈ K,
we can contract it. In both cases the claim follows by inductive hypothesis.
Therefore, we may assume that every edge e ∈ E appears either in L or in K,
but not in both. If there is a non-isolated vertex that does not appear in L,
we can contract one of the outgoing edges and again apply the inductive
hypothesis. If some isolated vertex does not appear in L, then K contains a
graph R = ⟨U , F⟩ consisting of just this vertex and L is disjoint fromU. So
in this case, we are done. Consequently, we may assume that⋃L contains
every vertex of G. Finally, if there exists a second A-B-linkage L′ of size m,
then L

′ must use some edge from K. Hence, we can contract this edge as
above and the claim follows again by inductive hypothesis.
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4 The Excluded Grid Theorem

Thus, we may assume that L is the only A-B-linkage of size m and that
it contains every vertex of G. This means we can apply Lemma 4.9. Let
⟨C i ,D i⟩i<∣V ∣−m+1 be the sequence of separations obtained in this way. For
each R ∈ K, we set

I(R) ∶= { i ∣ R contains a vertex in C i ∩ D i } .

Note that each such set is non-empty, since everyR ∈ K has at least one vertex
and every vertex belongs to C i ∩D i , for some i. Furthermore, the sets I(R)
are convex since every R ∈ K is connected and every path between C i ∩ D i
and C j ∩ D j must contain a vertex from every set Ck ∩ Dk with i ≤ k ≤ j.
Since ∣C i ∩ D i ∣ ≤ m there are at most m graphs R ∈ K with i ∈ I(R).
This implies that, for every set J ⊆ [∣V ∣ − m + 1] there are at most m ⋅ ∣ J∣
graphs R ∈ K with I(R) ∩ J ≠ ∅. Thus, every set J ⊆ [∣V ∣ − m + 1] of size
∣ J∣ < 1

m ∣K∣ ≤ n/m is disjoint from at least one set I(R),R ∈ K.We construct
a sequence of graphs R0 , . . .Rn/m−1 ∈ K and a corresponding sequence of
indices j0 , . . . , jn/m−1 ∈ [∣V ∣ − m + 1] as follows. We choose R0 ∈ K such
that max I(R0) is minimal and we set j0 ∶= max I(R0). For the inductive
step, suppose that R i and j i are already defined. By the above remark, there
is some R i+1 ∈ K with I(R i+1) ∩ { j0 , . . . , j i} = ∅. We choose R i+1 such
that max I(R i+1) is minimal and we set j i+1 ∶= max I(R i+1). We claim that

j0 < ⋅ ⋅ ⋅ < jn/m−1 and I(R i) ∩ I(Rk) = ∅ , for i < k .

For the first claim, note that j i ∉ I(R i+1) by choice of R i+1. This implies
that j i ≠ j i+1. Furthermore, if j i > j i+1 then, when choosing R i , we would
have chosen R i+1 instead.
For the second claim, suppose that I(R i) ∩ I(Rk) ≠ ∅, for some i < k.

By choice of Rk we have max I(R i) = j i ∉ I(Rk). This implies that j i+1 =
max I(Rk) < max I(R i), in contradiction to the first claim.
Let P0 , . . . , Pm−1 be an enumeration of L. If some Rk is disjoint from at

least ε(g, h)m of the Pi , thenG−Rk contains anA-B-linkage of the desired
size and we are done.

For a contradiction, suppose otherwise. By assumption, the set

J ∶= { ⟨i , k⟩ ∣ Pi ∩ Rk = ∅}
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has size at most

∣ J∣ ≤ ε(g, h) ⋅ m ⋅
n

m

=
M(g, h)
2M(g, h)

⋅
n

m

=
n

2m
.

Consequently, at least n
2m of the Rk intersect with all Pi . Furthermore,

if we traverse Pi from A to B, it follows by choice of the enumeration
R0 , . . . ,Rn/m−1 that every vertex in Pi ∩Rk is before every vertex in Pi ∩R l ,
for k < l .Therefore, these n

2m = N(g, h) graphsRk together with all Pi form
anm× n

2m pseudo-grid (after contracting some edges if necessary). ByPropos-
ition 4.5, the resulting minor of G does not belong to G(g, h). As G(g, h) is
closed under minors, this contradicts the fact that G ∈ G(g, h).

Definition 4.11. Let G be a graph and S ⊆ V .
(a) Path P is S-proper if it has either zero or more than one edge, its

end-points both belong to S, but none of its other vertices do.
(b) A linkage L is S-proper if every path in L is S-proper. ⌟

Corollary 4.12. Let g ≥ 1, h ≥ 3, m ≥ M(g, h), and set n ∶= 2mN(g, h).
Suppose that G ∈ G(g, h) has

◆ an S-proper A-B-linkage L of size m with A, B ⊆ S and

◆ an S-proper linkage K of size n.

Then, for some H = ⟨U , F⟩ ∈ K, there exists a (S ∖ U)-proper (A ∖ U)-
(B ∖U)-linkage L′ of size at least ε(g, h) ⋅ m such that ⋃L

′ ⊆ ⋃L ∖U.

Proof. Let F be the subgraph of G obtained from the union of the paths in
L andK. Applying Proposition 4.10 to F, we obtain a graphH = ⟨U , F⟩ ∈ K
and a subset L0 ⊆ L of size ∣L0∣ ≥ ε(g, h) ⋅ m that forms an (A ∖ U)-
(B ∖U)-linkage disjoint fromU.

It follows that there exists an (A∖U)-(B ∖U)-linkage L′ of size ∣L′∣ ≥
ε(g, h) ⋅ m that is disjoint fromU and such that⋃L

′ is minimal. We claim
that this linkage L′ is (S ∖U)-proper. As no edge of F has both of its end-
points in S, no path in L′ has exactly one edge. For a contradiction, suppose
that there exists a path P ∈ L′ that has an internal vertex v which belongs
to S. Since L is S-proper, at most one neighbour of v belongs to ⋃L

′. By
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4 The Excluded Grid Theorem

the same argument, at most one neighbour of v belongs to⋃K. Thus, v has
exactly two neighbours in F. As every neighbour of v in F belongs to⋃L

′ or
to⋃K it follows that v is an end-point of some path in L′ and of some path
in K. This implies that v ∈ A∪ B. Consequently, some proper subpath P0
of P forms a path in F connecting A∖U and B ∖U. A contradiction to the
minimality of⋃L

′.

Corollary 4.13. Let g ≥ 1, h ≥ 3, and n ≥ 0, and set d ∶= 2N(g, h) and

m0 ∶=
1

ε(g, h)n
and m i+1 ∶=

d(1 + d)i

ε(g, h)n
.

Suppose that G ∈ G(g, h) is a graph such that, for each i ≤ n, there exists a

S-proper A i -B i -linkage L i of size m i with A i , B i ⊆ S. Then G contains n + 1
pairwise disjoint S-proper paths P0 , . . . , Pn such that Pi connects A i and B i .

Proof. We prove the claim by induction on n. For n = 0, we can take any
P0 ∈ L0 since m0 > 0. Hence, suppose that n > 0. For i < n, we denote by
K i ⊆ Ln the set of all paths P ∈ Ln such that there is no (S ∖ P)-proper
(A i ∖P)-(B i ∖P)-linkage of size at least ε(g, h) ⋅m i that is disjoint from P.
Since

∣L i ∣ = m i ≥ m0 ≥ ε(g, h)−1 = 2M(g, h) ,

we can apply Corollary 4.12 to L i and K i and it follows that ∣K i ∣ < dm i .
Consequently,

∣K0 ∪ ⋅ ⋅ ⋅ ∪Kn−1∣ ≤ d(m0 + ⋅ ⋅ ⋅ + mn−1)

=
d

ε(g, h)n
[1 + d + d(1 + d) + ⋅ ⋅ ⋅ + d(1 + d)n−1]

=
d

ε(g, h)n
[1 + d

(1 + d)n − 1
1 + d − 1

]

=
d(1 + d)n

ε(g, h)n
= mn .
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Hence, there is some path Pn ∈ Ln ∖ (K0 ∪ ⋅ ⋅ ⋅ ∪Kn−1). We have found a
path Pn fromAn to Bn such that, for every i < n, there exists some (S∖Pn)-
proper (A i ∖ Pn)-(B i ∖ Pn)-linkage L′i of size at least ε(g, h) ⋅m i . We can
now apply the inductive hypothesis to G∖ Pn to obtain the remaining paths
P0 , . . . , Pn−1.

Externa\y Linked Set+

We are finally able to connect the above combinatorial results with the notion
of tree-width. In the proposition below we show that every graph of large
tree-width must contain a highly connected set.

Definition 4.14. Let G = ⟨V , E⟩ be a graph.
(a) A set S ⊆ V is externally linked in a set C ⊆ V if, for every choice

of subsets A, B ⊆ S with ∣A∣ = ∣B∣, not necessarily disjoint, there exists a
S-proper A-B-linkage L of size ∣A∣ with⋃L ⊆ C.
(b) A separation ⟨A, B⟩ left-contains a minor-embedding (Cu)u∈U if

∣A∩ B∣ = ∣U∣ and ∣Cu ∩ B∣ = 1 , for all u ∈ U . ⌟

The following result is a more complicated variant of the construction
from the proof ofTheorem 2.14.

Proposition 4.15. Let T be a tree with w ≥ 1 vertices and let G be a graph

with twdG ≥ 3
2w. Then there exists a separation ⟨A, B⟩ with the following

properties.

◆ ∣A∩ B∣ = w .

◆ The subgraph induced by B ∖A is connected.

◆ Every vertex v ∈ A∩ B has a neighbour in B ∖A.

◆ A∩ B is externally linked in B.

◆ ⟨A, B⟩ left-contains a minor-embedding of T.

Proof. We fix an enumeration t0 , . . . , tw−1 of T such that every vertex t i
(with i > 0) is adjacent to some t j with j < i. Let Ti be the subtree of T in-
duced by {t0 , . . . , t i−1}. According toTheorem 3.2, G has a 3

2w-bramble B.
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We choose B maximal. This implies that, if a connected set C ⊆ V contains
some B ∈ B, then C ∈ B. (Otherwise, we could add C to B without des-
troying the bramble properties.) By definition of a bramble, for every set
Z ⊆ V of size ∣Z∣ < 3

2w, there is some B ∈ B disjoint from Z. Since every
pair of sets B, B′ ∈ B touch, it follows by maximality of B that there is a
unique connected component C of G − Z with C ∈ B. We denote it by
β(Z) ∶= C. Let us call a separation ⟨A, B⟩ B-right-directed if β(A∩ B) ⊆ B.
We will prove the following sequence of claims.The last three of them will
then imply the existence of a separation with the desired properties.
(i) We start by showing that there exists a separation ⟨A, B⟩ with the

following four properties.
(1) ⟨A, B⟩ has order k, for some 1 ≤ k ≤ w.
(2) ⟨A, B⟩ left-contains a minor-embedding of Tk .
(3) ⟨A, B⟩ is B-right-directed.
(4) There is no B-right-directed separation ⟨C ,D⟩ of order less than k

with C ⊇ A and D ⊆ B.
To see this, fix a vertex v ∈ β(∅) and set

A ∶= (V ∖ β(∅)) ∪ {v} and B ∶= β(∅) .

Note that, since β(∅) and β({v}) must touch and β(∅) is a connected
component of G, we have β({v}) ⊆ β(∅) = B. Consequently, ⟨A, B⟩ is B-
right-directed. Furthermore, the set {v} is a minor-embedding ofT1 = {t0}
which is left-contained by the separation ⟨A, B⟩, as desired.

In the following, let ⟨A, B⟩ be a separation satisfying (1)–(4) such that
the difference ∣A∣ − ∣B∣ is maximal.
(ii) We claim that there is no B-right-directed separation ⟨C ,D⟩ of or-

der k that is different from ⟨A, B⟩ and satisfies C ⊇ A and D ⊆ B. For a
contradiction, suppose such a separation ⟨C ,D⟩ exists. By maximality of
∣A∣−∣B∣ it follows that ⟨C ,D⟩ cannot left-contain a minor-embedding ofTk .
Note that the subgraph induced by B ∩ C does not contain k disjoint paths
betweenA∩B and C ∩D since, otherwise, we could add them to the minor-
embedding of Tk in A to obtain one in C. Thus, ⟨C ,D⟩ would left-contain
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a minor-embedding of Tk , which we have seen is not possible. By Menger’s
Theorem it follows that there exists a separation ⟨C′ ,D′⟩ of order less than k
with A ⊆ C′ and D ⊆ D′. As β(C′ ∩ D

′) touches β(C ∩ D) (both belong
to B), and β(C ∩ D) ⊆ D ⊆ D′, it follows that β(C′ ∩ D

′) ⊆ D′. Thus the
separation ⟨C′ ,D′⟩ contradicts (4).

(iii) Next we show that B ∖A is connected and every vertex in A∩ B has
a neighbour in B ∖A. By definition,U ∶= β(A∩ B) is connected, contained
in B, and disjoint fromA∩B. Hence,U is a connected component ofG∣B∖A.
Set

C ∶= V ∖ β(A∩ B) and D ∶= (A∩ B) ∪ β(A∩ B) .

Then ⟨C ,D⟩ is a separation satisfying (1)–(4). By choice of ⟨A, B⟩ it follows
that ⟨C ,D⟩ = ⟨A, B⟩. Consequently, B ∖A = D ∖C = β(A∩ B) which, by
definition of β, is connected.
For the second statement, suppose that there is some vertex v ∈ A ∩ B

without a neighbour in B ∖A. Then ⟨A, B ∖ {v}⟩ is a separation of order
k − 1. Furthermore, β(A∩ B ∖ {v}) touches β(A∩ B). This implies that
β(A∩ B ∖ {v}) ⊆ B ∖ {v}, a contradiction to (4).

(iv) We claim that k = w. For a contradiction, suppose that k < w. Fix a
minor-embedding (C i)i<k of Tk in A such that every C i contains a unique
vertex v i in A∩ B. By choice of the enumeration t0 , . . . , tw−1 there is some
vertex t i with i < k that is a neighbour of tk . By (iii), v i has some neighbour
vk ∈ B ∖A. Setting A′ ∶= A∪ {vk} we obtain a separation ⟨A′ , B⟩ of order
k+ 1 ≤ w that left-contains a minor-embedding C0 , . . . ,Ck−1 , {vk} of Tk+1.
Furthermore, since β(A′ ∩ B) touches β(A∩ B), we have β(A′ ∩ B) ⊆ B.
By (i), it follows that ⟨A′ , B⟩ satisfies (4). This contradicts the maximality
of ∣A∣ − ∣B∣.

(v) It remains to prove thatA∩B is externally linked in B. For a contradic-
tion, suppose otherwise.Then we can find two setsX,Y ⊆ A∩B of the same
size ∣X∣ = ∣Y∣ such that B does not contain a (A∩ B)-proper X-Y-linkage
of size ∣X∣. ReplacingX andY by, respectively,X∖Y andY∖X if necessary,
we may assume that X ∩ Y = ∅. Set S ∶= (A∩ B) ∖ (X ∪ Y) and let F be
the set of edges between X and Y. By Menger’s Theorem, there exists a
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separation ⟨C′ ,D′⟩ of the graph G∣B∖S − F of order ∣C′ ∩ D
′∣ < ∣X∣ with

X ⊆ C
′ and Y ⊆ D

′. Setting C ∶= C
′ ∪ S and D ∶= D

′ ∪ S we obtain a
separation ⟨C ,D⟩ of G∣B − F of order less than

∣C ∩ D∣ < ∣X∣ + ∣S∣ = ∣X ∪ S∣ ≤ ∣C ∩A∩ B∣ ≤ ∣C ∩A∣ .

Consequently, ⟨A∪ C ,D⟩ is a separation of G of order

∣C ∩ D∣ + ∣(A∖ C) ∩ D∣ ≤ ∣C ∩ D∣ + ∣(A∩ B) ∖ C∣

= ∣C ∩ D∣ + ∣A∩ B∣ − ∣A∩ C∣

< ∣A∩ B∣ = w .

Hence, β((A∪C)∩D) exists and it follows by (4) that β((A∪C)∩D) ⊈ D.
As β((A ∪ C) ∩ D) is connected and ⟨A ∪ C ,D⟩ is a separation, this
implies that β((A∪ C) ∩ D) ⊆ A∪ C. In the same way one can show that
β((A∪ D) ∩ C) ⊆ A∪ D.
Set X ∶= (A∩ B) ∪ (C ∩D). As A∩ B, (A∪C) ∩D, and (A∪D) ∩C

are all subsets of X and every vertex of X belongs to at least two of these
three sets, it follows that

2∣X∣ ≤ ∣A∩ B∣ + ∣(A∪ C) ∩ D∣ + ∣(A∪ D) ∩ C∣

≤ w + w − 1 + w − 1 = 3w − 2 .

That is ∣X∣ ≤ 3
2w − 1 and β(X) exists. As β(X) touches β(A ∩ B) ⊆ B,

we have β(X) ⊆ B. Since ⟨C ,D⟩ is a separation of G∣B − F and β(X) is
connected, it follows that β(X) ⊆ C or β(X) ⊆ D. But β(X) touches
(A ∪ D) ∩ C, which implies that β(X) ⊈ C. Similarly, it follows that
β(X) ⊈ D. A contradiction.

The preceding proposition can be used to find certain minors in graphs
with large tree-width.

Proposition 4.16. Let H be a connected graph with h vertices and f edges that

is not a tree, and let g ≥ 1. Every graph G that does not contain the g × g grid or

H as a minor has tree-width at most

twdG ≤ 3[8h(h − 2)(2g + h)(2g + 1)] f−h +
3
2
h .
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Proof. Fix a graphGwithout the g× g gird and withoutH as a minor. Fix an
enumeration t0 , . . . , th−1 of the vertices of H, let T0 be a spanning tree of H,
and let f0 , . . . , fm be an enumeration of all edges of H that do not belong
to T0. Suppose that f i = ⟨tp(i) , tq(i)⟩. As H is not a tree, we have h ≥ 3 and
m ≥ 0. Define

k0 ∶=
1

ε(g, h)m
and k i+1 ∶=

d(d + 1)i

ε(g, h)m
, for i < m ,

where d ∶= 2N(g, h). Let T be the tree obtained from T0 by attaching
to tp(i) and to tq(i) k i − 1 new leaves each, for i ≤ m. (If p(i) = p( j) or
p(i) = q( j), we attach new leaves several times to the same vertex.) It follows
that T has

w ∶= h + 2(k0 − 1 + ⋅ ⋅ ⋅ + km − 1)

= h + 2[
1 + d + d(d + 1) + ⋅ ⋅ ⋅ + d(d + 1)m−1

ε(g, h)m
] − 2(m + 1)

= h + 2[
1 + d ⋅ (d+1)

m−1
d+1−1

ε(g, h)m
] − 2(m + 1)

= h + 2[
d + 1
ε(g, h)

]
m
− 2(m + 1)

≤ h + 2[
d + 1
ε(g, h)

]
m

vertices. We will show that twdG < 3
2w. Since

3
2
w ≤

3
2
h + 3[

d + 1
ε(g, h)

]
m
≤
3
2
h + 3[8h(h − 2)(2g + h)(2g + 1)]

f−h

the proposition then follows. For a contradiction, suppose that

twdG ≥
3
2
w .

Then we can use Proposition 4.15 to find a separation ⟨A, B⟩ such that
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4 The Excluded Grid Theorem

◆ ∣A∩ B∣ = w ,

◆ S ∶= A∩ B is externally linked in B, and

◆ ⟨A, B⟩ left-contains some minor-embedding (C i)i<w of T.

Let (C′i)i<h be the minor-embedding of T0 obtained from (C i)i<w by
merging all components C i belonging to one of the new leaves with the
component of their respective parents. Then ∣S ∩ C i ∣ = 1 implies that

∣S ∩ C
′
p(i)∣ , ∣S ∩ C

′
q(i)∣ ≥ k i , for all i ≤ m .

As S is externally linked in B, we can find, for every i ≤ m, some S-proper
(S ∩ Cp(i))-(S ∩ Cq(i))-linkage L i of size k i . Since H is a minor of Kh ,h ,
we have G ∈ G(g, h) and we can use Corollary 4.13 to find m + 1 pairwise
disjoint S-proper paths P0 , . . . , Pm in B such that Pi connects S ∩ Cp(i)
with S ∩ Cq(i). Contracting every C i to a single vertex and every Pi to a
single edge, we obtain an H-minor in G. A contradiction.

The following corollary concludes the proof ofTheorem 4.1.

Corollary 4.17. Every graph G without a g × g grid as a minor has tree-width

at most

twdG ≤ g8g
2
.

Proof. Let H be the g × g grid. If g ≤ 1, the claim is trivial. Hence, suppose
that g ≥ 2. Then H is not a tree and it has h = g2 vertices and f = 2g(g − 1)
edges. By Proposition 4.16 it follows that every graph with no H-minor has
tree-width at most

twdG ≤ 3[8h(h − 2)(2g + h)(2g + 1)] f−h +
3
2
h

= 3[8g2(g2 − 2)(2g + g
2)(2g + 1)]2g(g−1)−g

2
+
3
2
g
2

≤ 4[8g2 ⋅ g2 ⋅ 2g2 ⋅ 3g]g
2−g

≤ 4[48g7]g
2−g

≤ g8g
2
.
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5 Branc-De$ompo@tion+ and Tangle+

There is a dual to the notions of tree-width and brambles that is based on
decompositions of the edges instead of the vertices of a graph.While perhaps
less intuitive it turns out that these dual versions are slightly better behaved
than the vertex-based ones.

Definition 5.1. Let G = ⟨V , E⟩ be a graph.
(a) A branch-decomposition of G is a pair ⟨T , σ⟩ where T is an undirected

ternary tree and σ is a bijection between the leaves of T and the edges of G.
Frequently we will denote a branch-decomposition simply by the function σ .
(b) Let ⟨T , σ⟩ be a branch-decomposition. Every edge ⟨u, v⟩ of T par-

titions the set E into two classes: the edges labelling leaves on one side of
⟨u, v⟩ and the edges labelling leaves on the other side. Formally, we define a
function σ̂ mapping each edge ⟨u, v⟩ of T to the set

σ̂(u, v) ∶= { σ(w) ∣ w is a leaf of the component of T − ⟨u, v⟩

that contains v } .

We call σ̂ the edge-flow associated with σ .
(c)The support of a set X ⊆ E is the set

supp(X) ∶= { v ∈ V ∣ v is an end-point of some edge in X } ,

and its rank rk(X) is the cardinality

rk(X) ∶= ∣supp(X) ∩ supp(E ∖ X)∣ .

(d)The width of a branch-decomposition ⟨T , σ⟩ is

sup{ rk(σ̂(u, v)) ∣ ⟨u, v⟩ an edge of T } .

The branch-width of G is the minimal width of a branch-decomposition
of G. ⌟

Examples. (a) If ∣E∣ ≤ 1, then G has branch-width 0.
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5 Branch-decompositions and tangles

(b) If G has an edge e between two non-leaves, its branch-width is at
least 2. To see this, consider a branch-decomposition ⟨T , σ⟩. Then there is
some leaf u of T with σ(u) = e. Let v be the neighbour of u and let x , y be
the two end-points of e. As x and y have each at least one other outgoing
edge, it follows that supp({e}) = {x , y} ⊆ supp(E ∖ {e}). Hence,

rk(σ̂(v , u)) = rk({e}) = ∣{x , y}∣ = 2 .

In particular, the width of σ is at least 2.
(c) Every tree has branch-width 2. For instance, the tree on the left has

the branch-decomposition on the right, where we have labelled every edge
with the corresponding rank.

a
d

g

b
ce

f

h i

e

f

d

g

h i

a b

c

1

1
1

2
1

1

2 1
1 1

1
2

1

1

1

⌟

Before proving the relationship between branch-width and tree-width,
let us collect a few properties of the rank function. The second one is called
submodularity and it is the main reason why branch-width is better behaved
than tree-width.

Lemma 5.2. Let X,Y ⊆ E.

(a) rk(X) = rk(E ∖ X)

(b) rk(X ∩ Y) + rk(X ∪ Y) ≤ rk(X) + rk(Y)

Proof. (a)The definition of rk(X) is symmetric with respect to X and its
complement.
(b) Let

A ∶= supp(X ∩ Y) , C ∶= supp(Y ∖ X) ,

B ∶= supp(X ∖ Y) , D ∶= supp(E ∖ (X ∪ Y)) .
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Then 2 ⋅ ∣B ∩ C∣ − ∣A∩ B ∩ C∣ − ∣B ∩ C ∩ D∣ ≥ 0 implies, by the inclusion-
exclusion principle that

rk(X ∩ Y) + rk(X ∪ Y)

= ∣A∩ (B ∪ C ∪ D)∣ + ∣(A∪ B ∪ C) ∩ D∣

= [∣A∩ B∣ + ∣A∩ C∣ + ∣A∩ D∣ − ∣A∩ B ∩ C∣ − ∣A∩ B ∩ D∣

− ∣A∩ C ∩ D∣ + ∣A∩ B ∩ C ∩ D∣]

+ [∣A∩ D∣ + ∣B ∩ D∣ + ∣C ∩ D∣ − ∣A∩ B ∩ D∣ − ∣A∩ C ∩ D∣

− ∣B ∩ C ∩ D∣ + ∣A∩ B ∩ C ∩ D∣]

= ∣A∩ B∣ + ∣A∩ C∣ + 2 ⋅ ∣A∩ D∣ + ∣B ∩ D∣ + ∣C ∩ D∣

− ∣A∩ B ∩ C∣ − 2 ⋅ ∣A∩ B ∩ D∣ − 2 ⋅ ∣A∩ C ∩ D∣ − ∣B ∩ C ∩ D∣

+ 2 ⋅ ∣A∩ B ∩ C ∩ D∣

≤ [∣A∩ B∣ + ∣A∩ C∣ + 2 ⋅ ∣A∩ D∣ + ∣B ∩ D∣ + ∣C ∩ D∣

− ∣A∩ B ∩ C∣ − 2 ⋅ ∣A∩ B ∩ D∣ − 2 ⋅ ∣A∩ C ∩ D∣ − ∣B ∩ C ∩ D∣

+ 2 ⋅ ∣A∩ B ∩ C ∩ D∣]

+ [2 ⋅ ∣B ∩ C∣ − ∣A∩ B ∩ C∣ − ∣B ∩ C ∩ D∣]

= [∣A∩ C∣ + ∣B ∩ C∣ − ∣A∩ B ∩ C∣]

+ [∣A∩ D∣ + ∣B ∩ D∣ − ∣A∩ B ∩ D∣]

− [∣A∩ C ∩ D∣ + ∣B ∩ C ∩ D∣ − ∣A∩ B ∩ C ∩ D∣]

+ [∣A∩ B∣ + ∣C ∩ B∣ − ∣A∩ B ∩ C∣]

+ [∣A∩ D∣ + ∣C ∩ D∣ − ∣A∩ C ∩ D∣]

− [∣A∩ B ∩ D∣ + ∣C ∩ B ∩ D∣ − ∣A∩ C ∩ B ∩ D∣]

= [∣(A∪ B) ∩ C∣ + ∣(A∪ B) ∩ D∣ − ∣(A∪ B) ∩ C ∩ D∣]

+ [∣(A∪ C) ∩ B∣ + ∣(A∪ C) ∩ D∣ − ∣(A∪ C) ∩ B ∩ D∣]

= ∣(A∪ B) ∩ (C ∪ D)∣ + ∣(A∪ C) ∩ (B ∪ D)∣

= rk(X) + rk(Y) .

580



5 Branch-decompositions and tangles

Let us show that branch-width and tree-width differ by at most a constant
factor.

Proposition 5.3. Let G be a graph with branch-width β. Then

β ≤ twdG ≤ max{ 32 β, 2} .

Proof. If G has at most one edge, then β = 0 and twdG ≤ 2. Hence, we may
assume that G has at least two edges. As the addition or removal of isolated
vertices does not change the branch-width or the tree-width, we may also
assume that G has no isolated vertices.

For the upper bound, fix a branch-decomposition ⟨T , σ⟩ of G of width β.
We define a tree-decomposition (Uv)v∈T with the same underlying tree as
follows.

◆ If v is a leaf of T, we setUv ∶= supp({σ(v)}).
◆ If v is an internal vertex, Uv contains all vertices u such that there are

two leaves w ,w′ of T such that v lies on the path between w and w′ and
both edges σ(w) and σ(w′) are incident with u.

We claim that (Uv)v∈T is the desired tree-decomposition ofG. Clearly, every
edge e ∈ E is contained in some componentUv , namely the one at the leaf
v ∶= σ−1(e). Furthermore, for every vertexw ∈ V , the set { v ∈ T ∣ w ∈ Uv }
of components containingw consists of the union of all paths connecting two
leaves u and u′ of T such that σ(u) and σ(u′) are edges with end-point w.
This is a connected set.
Hence, (Uv)v∈T is a tree-decomposition and it remains to bound its

width. We have ∣Uv ∣ = 2, for leaves v ∈ T. Suppose that v is an internal
vertex of T with neighbours u0 , u1 , u2. Set

A i ∶= supp(σ̂(v , u i)) and B i ∶= supp(σ̂(u i , v)) .

Then rk(σ̂(v , u i)) = ∣A i ∩ B i ∣ ≤ β. Note that Uv ∩Uu i = A i ∩ B i . Since
every vertex w ∈ Uv lies in all components on some path between two
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leaves of T, it follows that every w ∈ Uv belongs to at least two of the sets
Uu0 ,Uu1 ,Uu2 . Consequently,

2 ⋅ ∣Uv ∣ ≤ ∣Uv ∩Uu0 ∣ + ∣Uv ∩Uu1 ∣ + ∣Uv ∩Uu2 ∣

= ∣A0 ∩ B0∣ + ∣A1 ∩ B1∣ + ∣A2 ∩ B2∣

= rk(σ̂(v , u0)) + rk(σ̂(v , u1)) + rk(σ̂(v , u2)) ≤ 3β ,

that is, ∣Uv ∣ ≤
3
2 β.

It remains to establish the lower bound. Let (Uv)v∈T be a tree-decom-
position of G of minimal width. We will transform (Uv)v in several steps
until it has the following four properties.
(i) For every e ∈ E there is some leaf u ∈ T withUu = supp(e).
(ii) For every leaf u ∈ T, we haveUu = supp(e), for some e ∈ E.
(iii) Uu ≠ Uv , for all leaves u ≠ v.
(iv) Every vertex of T has at most 3 neighbours.
Once (Uv)v∈T has the above form, we obtain the desired branch-decompos-
ition as follows. Let S be the tree obtained fromT by removing every vertex v
of degree 2 (and adding a new edge between the former neighbours of v);
and let σ be the function mapping each leaf u of S to the unique edge e ∈ E
withUu = supp(e). By (i), (ii), and (iii) σ is a bijection. Hence, ⟨S , σ⟩ is a
branch-decomposition of G and it remains to compute its width. Consider
an edge ⟨u, v⟩ of S and set A ∶= supp(σ̂(v , u)) and B ∶= supp(σ̂(u, v)).
Then

A∩ B ⊆ Uu ∩Uv implies rk(σ̂(u, v)) = ∣A∩ B∣ ≤ ∣Uu ∩Uv ∣ .

Consequently, the width of σ is at most the width of (Uv)v . To conclude
the proof it therefore remains to describe the above simplification steps.
(i) For every edge e = ⟨w ,w′⟩ ∈ E, we pick some component Uv with

w ,w′ ∈ Uv (which must exist by definition of a tree-decomposition), and
we attach a new leaf u to v and setUu ∶= {w ,w′}.

(ii) If there is some leaf u of T such that Uu contains no edges, we
can delete u from T without destroying the property of it being a tree-
decomposition. If there is some leaf u such thatUu contains several edges,
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5 Branch-decompositions and tangles

then (i) implies thatUu ⊆ Uv , where v is the unique neighbour of u. Hence,
we can again delete u from T.

(iii) Suppose that there are two leaves u and v with the same component
Uu = Uv . By deleting v from T and we obtain a smaller tree-decomposition
of the same width.
(iv) Suppose that v ∈ T has n > 3 neighbours u0 , . . . , un−1. We add a

new vertex v′ to T with edges ⟨v , v′⟩ and ⟨v′ , u i⟩, for i > 1. Deleting the
edges ⟨v , u i⟩, for i > 1, we obtain a new tree T′, where v has now exactly 3
neighbours (u0 , u1 , v′) and v′ has n − 1 neighbours (v , u2 , u3 , . . . , un−1).

v u0

u1

u2

u3 u4

v

v′
u0

u1

u2

u3 u4

Setting Uv′ ∶= Uv , we obtain a new tree-decomposition (Uv)v∈T′ of the
same width. Repeating this process, we can reduce the degree of every vertex
to 3.

The aim of the reminder of this section is to derive a condition for the
non-existence of branch-decompositions, in the same ways brambles can be
used to find lower bounds for tree-width. As an intermediate step, we start
by generalising the notion of a branch-decomposition.The resulting object is
called k-flow and it is based on the edge-flowmap σ̂ .Working with σ̂ instead
of σ has the advantage that we can replace the global requirement (that the
edges be distributed over the leaves of the tree) by a local one: that, at each
internal vertex, each edge appears in the label of some outgoing edge. Our
generalisation concerns two aspects of such a map: (i) we allow leaves to be
labelled by several edges and (ii) edges are allowed to be assigned to several
leaves.The former is useful when we are dealing with ‘partial branch-decom-
positions’ where some parts of the graph are not yet fully decomposed, while
the latter makes constructing decompositions easier, since we have weaker
requirements to satisfy.
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Definition 5.4. Let G = ⟨V , E⟩ be an undirected graph.
(a) A k-flow is a pair ⟨T , τ⟩ where T is a ternary tree and τ a function

mapping each (directed) edge ⟨u, v⟩ of T to some set τ(u, v) ⊆ E such that
the following conditions are statisfied.

(f1) rk(τ(u, v)) < k , for every edge ⟨u, v⟩ .

(f2) τ(u, v) = E ∖ τ(v , u) , for every edge ⟨u, v⟩ .

(f3) τ(v , u0) ∪ τ(v , u1) ∪ τ(v , u2) = E ,

for every internal vertex v ∈ T with

neighbours u0 , u1 , u2 .

(b) A k-flow ⟨T , τ⟩ is exact if, for every internal vertex v ∈ T with neigh-
bours u0 , u1 , u2, the sets

τ(v , u0), τ(v , u1), τ(v , u2)

are pairwise disjoint.
(c) Let ⟨T , τ⟩ is be a k-flow. For a leaf u ∈ T, we write

τ○(u) ∶= τ(v , u) , where v is the neighbour of u .

A block of τ is a set of the form τ○(u) where u is a leaf. The set of all blocks
is denoted

B(τ) ∶= { τ○(u) ∣ u leaf of T } . ⌟

Let us first show how to get rid of the possible overlap in a k-flow.

Lemma 5.5. Let G be a finite undirected graph. For every k-flow ⟨T , τ⟩ there
exists an exact k-flow ⟨S , σ⟩ with B(σ) ⊆ ⇓B(τ).

Proof. Let us introduce some notation. We turn T into a rooted tree by
fixing an arbitrary vertex r.The distance of a given vertex v from r is denoted
by d(v). Given a k-flow σ , we call a path u, v , u′ of length 2 an inexactness if

σ(v , u) ∩ σ(v , u′) ≠ ∅ .
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Let I(σ) be the set of all inexactnesses of σ . The defect is

D(σ) ∶= ∑
⟨u ,v ,u′⟩∈I(σ)

3−d(v) .

Thus, the defect measures how far a k-flow is from being exact with preced-
ence given to inexactnesses close to the root.
We choose a k-flow σ on T satisfying the following conditions.
(i) σ(u, v) ⊆ τ(u, v) for all edges ⟨u, v⟩.
(ii) The total rank∑u ,v rk(σ(u, v)) is minimal.
(iii) Subject to (ii), the defect D(σ) is minimal.
We claim that σ is exact. For a contradiction, suppose otherwise and fix some
inexactness ⟨u, v , u′⟩ ∈ I(σ). By symmetry, we may assume that d(u) ≥
d(u′). Set A ∶= σ(v , u) and A′ ∶= σ(v , u′), and define

ρ(x , y) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

A∖A
′ if ⟨x , y⟩ = ⟨v , u⟩,

E ∖ (A∖A
′) if ⟨x , y⟩ = ⟨u, v⟩,

σ(x , y) otherwise.

We start by showing that rk(A ∖ A
′) ≥ rk(A). If rk(A ∖ A

′) ≥ k, this
follows immediately from the fact that rk(A) < k. Hence, we may assume
that rk(A∖A

′) < k. Then ρ is a k-flow and it follows by (ii) that

2 ⋅ rk(A) = rk(A) + rk(E ∖A)

= rk(σ(v , u)) + rk(σ(u, v))
≤ rk(ρ(v , u)) + rk(ρ(u, v))
= rk(A∖A

′) + rk(E ∖ (A∖A
′)) = 2 ⋅ rk(A∖A

′) .

Using the same argument, it follows that rk(A′) ≤ rk(A′∖A). Furthermore,
submodularity implies that

rk(A∖A
′) + rk(A′ ∖A) = rk(A∩ (E ∖A

′)) + rk(A′ ∩ (E ∖A))

= rk(A∩ (E ∖A
′)) + rk(A∪ (E ∖A

′))

≤ rk(A) + rk(E ∖A
′)

= rk(A) + rk(A′) .
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Together with rk(A) ≤ rk(A∖A
′) and rk(A′) ≤ rk(A′ ∖A) it therefore

follows that

rk(A) = rk(A∖A
′) and rk(A′) = rk(A′ ∖A) .

Consequently, the k-flow ρ defined above satisfies

∑
x ,y

rk(ρ(x , y)) = ∑
x ,y

rk(σ(x , y)) .

Let us compute D(ρ). Note that d(u) ≥ d(u′) implies d(u) > d(v), i.e.,
d(u) = d(v) + 1. By construction, we have

⟨u, v , u′⟩, ⟨u′ , v , u⟩ ∈ I(σ) ∖ I(ρ)

while the only paths that might appear in I(ρ)∖ I(σ) are ⟨v , u,w⟩, ⟨w , u, v⟩,
⟨v , u,w′⟩, and ⟨w′ , u, v⟩, where w and w′ are the other two neighbours of u.
Consequently,

D(ρ) ≤ D(σ) − 2 ⋅ 3−d(v) + 4 ⋅ 3−d(u)

= D(σ) − 2 ⋅ 3−d(v) + 4 ⋅ 3−d(v)−1

= D(σ) − 2
3 ⋅ 3

−d(v)

< D(σ) ,

in contradiction to (iii).

Corollary 5.6. Let G be a non-empty, finite, undirected graph. The following

statements are equivalent.

(1) G has a branch-decomposition σ of width less than k.

(2) G has a k-flow τ with ∣X∣ ≤ 1, for all X ∈ B(τ).

Proof. (1)⇒ (2) Let ⟨T , σ⟩ be a branch-decomposition of width less than k.
Then σ̂ is a k-flow where each block is a singleton.
(2)⇒ (1) Let ⟨T , τ⟩ be a k-flow as above. By Lemma 5.5, we can assume

that it is exact.
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Let us start by showing that the blocks of τ are pairwise disjoint. For a
contradiction, suppose that there are two leaves u ≠ u′ of T and an edge
e ∈ τ○(u) ∩ τ○(u′). Let v0 , . . . , vn be the path from u to u

′. (Note that
τ○(u) ∩ τ○(u′) ≠ ∅ implies that n > 1.) By induction on i and the fact
that τ is exact, it follows that e ∈ τ(v i+1 , v i) and e ∈ τ(vn−i−1 , vn−i). Con-
sequently,

τ(v i , v i−1) ∩ τ(v i , v i+1) ≠ ∅ .

A contradiction.
Furthermore, every edge is contained in some block. To see this, fix an

arbitrary vertex v0 ∈ T. For every edge e ∈ E, exactness of τ implies that
v0 has a unique neighbour v1 with e ∈ τ(v0 , v1). Repeating this argument,
we can construct a path v0 , v1 , . . . , vn such that e ∈ τ(v i , v i+1) for all i. As
some point this path must reach a leaf vn . Consequently, e is contained in
the block τ(vn−1 , vn).

If T has leaves u with τ○(u) = ∅, we can remove them from T. This can
create vertices with exactly two neighbours. To obtain a valid k-flow we can
remove each such vertex v and contract one of the incoming edges. In this
way, we obtain a new k-flow with ∅ ∉ B(τ).

Hence, we may assume that, for every leaf u of T, there exists some e ∈ E
with τ○(u) = {e}. We define σ(u) ∶= e. As the blocks of τ are pairwise
disjoint, the resulting function is injective. Since the union of all block is equal
to E, σ is also surjective. Consequently, ⟨T , σ⟩ is a branch-decomposition.
As σ̂ = τ, it further follows that the width of σ is less than k.

In order to derive lower bounds on the branch-width it would be nice to
have some analogue to a bramble, that is, some kind of witness showing that
the branch-width is at least k. In the following definition we present one
such witness called a tangle. Intuitively, tangles are something like a finite
analogue of a non-principal ultrafilter, i.e., they can be seen as a family of
‘complicated’ or ‘big’ subsets of the given graph.

Definition 5.7. Let G = ⟨V , E⟩ be an undirected graph. A k-tangle is a
collection S ⊆ ℘(E) such that
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(t1) rk(X) < k , for all X ∈ S .

(t2) rk(X) < k implies X ∈ S or E ∖ X ∈ S .

(t3) X,Y ,Z ∈ S implies X ∩ Y ∩ Z ≠ ∅ .

(t4) X ∈ S implies ∣X∣ > 1. ⌟

Examples. (a) Let Kn be the complete graph with n vertices and let X ⊆ E.
The following conditions are equivalent.

(1) rk(X) < n .

(2) ∣supp(X)∣ < n or ∣supp(E ∖ X)∣ < n .

(3) There is some vertex v such that X or E ∖X contains all edges incident
with v.

It follows that Kn has a unique n-tangle

S ∶= {X ⊆ E ∣ for some v , X contains all edges incident with v } .

(b) The n × n grid has an n-tangle consisting of all sets X ⊆ E of rank
rk(X) < n such that X contains all the edges of some column or some
row. ⌟

The analogy between tangles and ultrafilters is explored in the following
lemma.

Lemma 5.8. Let S be a k-tangle and X,Y ⊆ E sets of rank less than k.

(a) X ∈ S iff E ∖ X ∉ S .

(b) X,Y ∈ S and rk(X ∩ Y) < k implies X ∩ Y ∈ S .

(c) X ⊆ Y and X ∈ S implies Y ∈ S .

Proof. (a) follows by (t2) and (t3) since X ∩ (E ∖ X) = ∅.
(b) For a contradiction, suppose that there are sets X,Y ∈ S such that

rk(X ∩ Y) < k, but X ∩ Y ∉ S. Then E ∖ (X ∩ Y) ∈ S, by (t2). But

X ∩ Y ∩ E ∖ (X ∩ Y) = ∅

contradicts (t3).
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(c) For a contradiction, suppose that Y ∉ S. Then E ∖ Y ∈ S by (t2). But

X ∩ (E ∖ Y) ⊆ X ∩ (E ∖ X) = ∅

contradicts (t3).

In particular, 1-tangles correspond to non-principal ultrafilters on the set
of connected components of the given graph. Let us use this fact to prove
the existence of 1-tangles.

Lemma 5.9. A finite graph G has a 1-tangle if, and only if, it has a connected
component with at least 2 edges.

Proof. (⇐) Fix a connected component C such that F ∶= E∣C has at least
two elements. Then

S ∶= {X ⊆ E ∣ rk(X) = 0 , F ⊆ X }

satisfies (t1)–(t4).
(⇒) Let S be a 1-tangle of G and fix some set X ∈ S of minimal size.

By (t1), X is the set of edges of a union C0 ∪ ⋅ ⋅ ⋅ ∪ Cn−1 of connected
components ofG and (t4) implies thatX contains at least two edges. Hence,
it remains to prove that the above union consists of a single connected
component. For a contradiction, suppose otherwise. Let Fi ∶= E∣C i be the
sets of edges in the componentC i . Byminimality ofX, we have Fi ∉ S which,
by (t2), implies that E ∖ Fi ∈ S. Consequently, it follows by Lemma 5.8 (b)
that Z ∶= (E∖F0)∩ ⋅ ⋅ ⋅ ∩(E∖Fn−1) ∈ S. But Z = E∖X. Hence, X,Z ∈ S
contradicts (t3).

Let us finally show that all the various combinatorial notions we have
introduced in this section are equivalent.

Theorem 5.10. A finite undirected graph G = ⟨V , E⟩ has a k-tangle if, and
only if, its branch-width is greater than or equal to k.

Proof. Let us first take a look at a few trivial cases. Every graph G has the
0-tangle S = ∅ (as there are no sets of rank less than 0) and the branch-width
is obviously always at least 0.
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It follows by (t4) (see Lemma 5.9) that a graph G has a 1-tangle if, and
only if, it contains a path of length 2, i.e., if not every edge is isolated. This is
exactly the case if its branch-width is at least 1.
For the reminder of the proof we may therefore assume that k > 1 and

that G has at least two edges.
(⇒) For a contradiction, suppose that G has both a k-tangle S and a

branch-decomposition ⟨T , σ⟩ of width less than k. Note that ∣E∣ ≥ 2 implies
that T has at least one edge. We call a (directed) edge ⟨u, v⟩ of T big if
σ̂(u, v) ∈ S. It follows by Lemma 5.8 (a) that, for every edge ⟨u, v⟩ of T,
exactly one of σ̂(u, v) and σ̂(v , u) is big. Hence, there are exactly as many
big pairs ⟨u, v⟩ as T has edges. Since a finite tree has one more vertex than
edges, it follows that there is some vertex w such that σ̂(w , v) is not big,
for any neighbour v of w. Thus, σ̂(w , v) ∉ S, for all neighbours v. Since
rk(σ̂(w , v)) < k, it therefore follows by (t2) that σ̂(v ,w) ∈ S for all such v.
We distringuish two cases.

If w is a leaf with neighbour v, then {σ(w)} = σ̂(v ,w) ∈ S contra-
dicts (t4). And if w is an internal vertex with neighbours v0 , v1 , v2, then

σ̂(w , v0) ∩ σ̂(w , v1) ∩ σ̂(w , v2) = ∅

contradicts (t3).
(⇐) Suppose that there is no k-tangle for G. By Corollary 5.6, it is

sufficient to construct a k-flow τ such that B(τ) contains only singletons.
We will prove the following more general claim: for every downwards-

closed set A ⊆ ℘(E) containing all singletons, we will show that, if there is
no k-tangle S with S ∩ A = ∅, then G has a k-flow τ such that B(τ) ⊆ A.
Then the result follows with A = {∅} ∪ {{e} ∣ e ∈ E }.

Let A ⊆ ℘(E) be a downwards-closed set that contains all singletons and
such that no k-tangle is disjoint from A. We construct the desired k-flow τ
by induction on the number N of sets X ⊆ E such that rk(X) < k and
X, E ∖ X ∉ A.
First, suppose that N = 0. For X ⊆ E, we then have

rk(X) < k implies X ∈ A or E ∖ X ∈ A .
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Hence, the set

S ∶= {X ∣ E ∖ X ∈ A , rk(X) < k , ∣X∣ > 1}

satisfies (t1), (t2), and (t4). As S is disjoint from A, it cannot be a k-tangle.
Consequently, S does not satisfy (t3) and we can find sets X0 ,X1 ,X2 ∈ S
with X0 ∩ X1 ∩ X2 = ∅. Let T be the tree consisting of a central vertex v
with three leaves u0 , u1 , u2 as neighbours, and let τ be the function with

τ(u i) ∶= E ∖ X i .

Then ⟨T , τ⟩ is a k-flow for G with B(τ) = {E ∖X0 , E ∖X1 , E ∖X2} ⊆ A.
For the inductive step, suppose thatN > 0. LetX ⊆ E be a set of minimal

size such that rk(X) < k and X, E ∖ X ∉ A. Set A0 ∶= A ∪ ⇓{X} and
A1 ∶= A ∪ ⇓{E ∖ X}. Since no k-tangle is disjoint from A, the same is
true for A0 and for A1. Furthermore, the number N corresponding to these
two sets is smaller than that for A. Consequently, we can use the inductive
hypothesis to construct k-flows ⟨T0 , τ0⟩ and ⟨T1 , τ1⟩ such that B(τ i) ⊆ A i .
By Lemma 5.5, we may assume that τ0 and τ1 are exact.We call a leaf u ∈ Ti
special if τ○i (u) ∉ A. It follows that

τ○0(u) ⊆ X , for every special leaf u of T0 .

If there were some special leaf u with τ○0(u) ⊂ X, it would follow by minim-
ality of X that

rk(τ○0(u)) < k implies τ○0(u) ∈ A or E ∖ τ○0(u) ∈ A .

The former is not possible, since u is special; and the latter is impossible
since

E ∖ X ⊂ E ∖ τ○0(u) ∈ A implies E ∖ X ∈ ⇓A = A .

Consequently, we have τ○0(u) = X, for every special leaf u ∈ T0. As τ0 is
exact, it follows that T0 has at most one special leaf. If there are none, then
⟨T0 , τ0⟩ is the desired k-flow and we are done. Hence, we may assume that
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there is precisely one special leaf w ∈ T0. Let w′ be its neighbour. Then
τ0(w ,w′) = E ∖ X and τ0(w′ ,w) = X. Note that w′ cannot be also a leaf
since τ0(w ,w′) = E ∖ X ∉ A0.
Let u0 , . . . , un−1 be the special leaves of T1 and let v i be the neighbour

of u i . Then

τ○1 (u i) ⊆ E ∖ X , which implies that τ1(u i , v i) ⊇ X .

Let S0 , . . . , Sn−1 be n copies of the tree obtained from T0 by removing the
leaf w and the edge ⟨w ,w′⟩ ; and let T be the tree obtained from the disjoint
union of T1 , S0 , . . . , Sn−1 by identifying u i ∈ T1 with the copy of w′ in S i .
Finally, let τ be the labelling on T that coincides with τ0 on each edge of S i ,
and with τ1 on the edges of T1. To see that τ is a k-flow, we only have to
check (f3) for each copy of the vertex w′. (The labellings of the incoming
edges at every other internal vertex have not changed.) Let x i , y i , v i be the
neighbours of the i-th copy of w′. Then

τ(w′ , x i) ∪ τ(w′ , y i) ∪ τ(w′ , v i)
= τ0(w′ , x i) ∪ τ0(w′ , y i) ∪ τ1(u i , v i)
⊇ τ0(w′ , x i) ∪ τ0(w′ , y i) ∪ X

= τ0(w′ , x i) ∪ τ0(w′ , y i) ∪ τ0(w′ ,w) = E .

For tree-width we obtain the following bounds.

Corollary 5.11. Let G be a finite undirected graph.

(a) If G has a k-tangle, then twdG ≥ k.

(b) If G has no k-tangle, then twdG ≤ max{ 32 (k − 1), 2}.

Proof. Let k be the maximal number such that G has a k-tangle. Then it fol-
lows byTheorem 5.10 that k is equal to the branch-width ofG. Consequently,
Proposition 5.3 implies that k ≤ twdG ≤ max{ 32 k, 2}.

6 We\-Qua@-Ordering+

Path-width and tree-width were introduced (or rather: rediscovered) in a
long series of articles by Robertson and Seymour whose main result was a
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solution to a conjecture of Wagner about a certain combinatorial property
of the graph minor relation: that it forms what is called a well-quasi-ordering,
i.e., a non-linear version of a well-ordering.

Definition 6.1. Apreorder ≤ on a classA is awell-quasi-ordering if it contains
neither an infinite descending chain, nor an infinite antichain. ⌟

Lemma 6.2. Let ≤ be a preorder on a set A. The following conditions are

equivalent.

(1) ≤ is a well-quasi-ordering.
(2) Every infinite sequence a0 , a1 , a2 , . . . in A contains two indices i < k with

a i ≤ ak .

(3) Every infinite sequence a0 , a1 , a2 , . . . in A contains an infinite increasing

subsequence.

(4) Every upwards-closed set U ⊆ A is of the form ⇑C for some finite set C.

(5) Every increasing sequence U0 ⊆ U1 ⊆ of upwards-closed sets is eventually
stationary, i.e., Un = Un+1 = Un+2 = . . . .

(6) For every set X ⊆ A, there is some finite set C with C ⊆ X ⊆ ⇑C.

Proof. (3)⇒ (1) is trivial.
(1)⇒ (4) Let C be the set of all minimal elements of U. Then C is an

antichain withU = ⇑C. Furthermore, it follows by (1) that C is finite.
(4)⇒ (5)The unionW ∶= ⋃i<ω U i is also upwards closed. By assump-

tion, we can find a finite subset C ⊆W withW = ⇑C. As C is finite, there
exists an index k < ω, with C ⊆ Uk . Consequently,

W = ⇑C ⊆ Uk ⊆ U i ⊆W , for all i ≥ k .

This implies thatUk = U i =W, for i ≥ k.
(5)⇒ (2) Given a sequence a0 , a1 , . . . , we setU i ∶= ⇑{a0 , . . . , a i}. Then

U0 ⊆ U1 ⊆ . . . . By assumption, there is some index n with Un = Un+1.
Consequently, an+1 ∈ Un , which implies that a i ≤ an+1, for some i ≤ n.
(2)⇒ (3) Let a0 , a1 , . . . be an infinite sequence. By theTheorem of Ram-

sey, there exists an infinite setH ⊆ ω of indices such that one of the following
three conditions is satisfied:
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(i) a i < ak , for all i < k inH .

(ii) a i = ak , for all i < k inH .

(iii) a i > ak , for all i < k inH .

By (2), there are two indices i < k inH with a i ≤ ak . This contradicts (iii).
Consequently, (i) or (ii) must be true and a0 , a1 , . . . contains the infinite
increasing subsequence (a i)i∈H .

(2)⇒ (6) Let C be the set of all minimal elements of X. Then X ⊆ ⇑C. If
C is finite, we are done. For a contradiction, suppose otherwise. Then there
exists an infinite sequence (c i)i<ω of distinct element c i ∈ C. By (2), we can
find two indices i < k with c i ≤ ck . As the c i are distinct, it follows that
c i < ck . Hence, ck is not a minimal element of X. A contradiction.

(6)⇒ (4) IfU is upwards closed, thenC ⊆ U ⊆ ⇑C impliesU = ⇑C.

Exercise 6.1. Let A and B be well-quasi-ordered sets.

(a) Prove that the disjoint union A⊕ B is also well-quasi-ordered.

(b) Prove that the ordered sum A+ B is also well-quasi-ordered.

(c) Prove that the direct product A× B is also well-quasi-ordered. ⌟

We wont present the proof ofWagner’s conjecture as it would take us too
far afield and would take too much space. Instead, we will prove two simpler
statements about words and trees (which are quite useful on their own) and
then just state the full result without proof.

Proposition 6.3 (Higman). If A is a well-quasi-ordered set, the set A
∗
equipped

with the subword ordering

⟨a0 , . . . , am−1⟩ ≤ ⟨b0 , . . . , bn−1⟩

: iff there exists an injective function φ ∶ [m] → [n] such that

a i ≤ bφ(i) , for all i < m ,

is also well-quasi-orderded.

Proof. For a contradiction, suppose that A∗ contains an infinite sequence
(w i)i<ω that does not contain a pair w i ≤ w j with i < j. Let us call such a
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sequence a bad sequence.We inductively construct a sequence u0 , u1 , . . . ∈ A∗

as follows.We choose for un theminimal element ofA∗ such that there exists
a bad sequence starting with u0 , . . . , un . The resulting sequence u0 , u1 , . . .
is clearly bad. In particular, we have u i ≠ ⟨⟩ for all i. Hence, suppose that
u i = a iv i , for a i ∈ A and v i ∈ A∗. As A is well-quasi-ordered, there exists
an infinite subsequence uk0 , uk1 , . . . such that the sequence ak0 , ak−1 , . . . of
first elements is increasing. Since

u ≰ bv implies u ≰ v ,

a ≤ b and au ≰ bv implies u ≰ v ,

for a, b ∈ A and u, v ∈ A∗, it follows that the sequence

u0 , . . . , uk0−1 , vk0 , vk1 , . . .

is also bad. A contradiction to the minimality of uk0 .

We can extend this result from words to trees as follows. Let us call a
function φ ∶ s → t between two order-trees an meet-embedding if (i) it is
injective; (ii) it preserves the tree order and binary meets (with respect to
the tree order); and it is monotone on the labels, i.e., s(v) ≤ t(φ(v)), for all
vertices v.

Theorem 6.4 (Kruskal). Let A be a well-quasi-ordered set. The set of all A-

labelled finite order-trees equipped with the ordering

s ≤ t : iff there exists a meet-embedding s → t ,

is also well-quasi-ordered.

Proof. Weproceed as in the proof ofHigman’sTheorem. For a contradiction,
suppose that there exists a bad sequence of trees. Inductively, let tn be a tree
with the minimal number of vertices such that some bad sequence starts
with t0 , . . . , tn . The resulting sequence t0 , t1 , . . . is bad. Let S i be the set of
all subtrees of t i attached to the root.
We start by showing that the union S ∶= ⋃i S i is well-quasi-ordered. Let

s0 , s1 , . . . be an infinite sequence in S. For every i < ω, there is some index
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n(i) with s i ∈ Sn(i). Let i be an index such that n(i) is minimal. As s i is a
proper subtree of tn(i), it follows by choice of tn(i) that the sequence

t0 , . . . , tn(i)−1 , s i , s i+1 , . . .

cannot be bad. Hence, there is an increasing pair r ≤ r
′ somewhere in

this sequence. If r = s j and r
′ = s l , for some i ≤ j < l , the sequence

s0 , s1 , . . . , s i , . . . is also not bad and the claim follows.
Hence, suppose otherwise.Then r = t j , for some j and there is some index

l > j with r
′ = t l or r′ = s l ≤ t l . In both cases it follows that t j ≤ r′ ≤ t l .

A contradiction to the fact that the sequence (t i)i is bad.
To conclude the proof, let w i ∈ S

∗ be an enumeration of S i and let a i be
the label of the root of t i . As A is well-quasi-ordered, there exists an infinite
set H ⊆ ω such that the sequence (a i)i∈H is increasing. Furthermore, we
can use the Theorem of Higman to find indices i < j in H with w i ≤ w j .
Consequently, there exist a function f ∶ S i → S j with s ≤ f (s). Let φ be the
union of the corresponding meet-embeddings together with the function
mapping the root of t i to the one of t j . Then φ is a meet-embedding t i → t j .
Consequently, t i ≤ t j . A contradiction.

Theorem 6.5 (Robertson, Seymour). The minor relation is a well-quasi-

ordering on the class of all finite graphs.

Note+

Most of the material in this chapter originated in a long series of articles by
Robertson and Seymour [160, 162, 161, 166, 163, 164, 165, 168, 167, 169, 170,
171, 172, 173, 174, 176, 175, 177, 178, 179, 180, 182, 181] which together constitute
a proof of the Graph MinorTheorem 6.5.

Tree-width and tree-decompositions were originally introduced (under a
different name) by Halin [100]. It was later rediscovered by Robertson and
Seymour in [161]. Path-width was introduced in [160], and the material in
Section 5 is taken mostly from [169]. The section on brambles follows [71].

The Excluded TreeTheorem and the Excluded GridTheorem (Theorems
2.14 and 4.1) were proved in [160, 163]. Our proofs follow [69, 70] and [132],
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respectively. The original bound in the Excluded Grid Theorem was as-
tronomical, but it has been reduced to a polynomial in the meantime. For
instance, [47] derive a bound of cn9 logd n.
Embeddings of graphs is surfaces is a well-studied area of graph theory.

An introduction can be found in [143]. To keep the proof of Proposition 4.2
simple we have been very wasteful. A more precise computation shows that
every planar graph with n vertices is a minor of the 2n × 2n grid (see [183]
for a proof ).
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For graphs, there exists a generalisation of tree-width called clique-
width.While tree-width is asymmetric in the sense that it treats edges

and non-edges differently, clique-width treats them the same.Themain differ-
ences are that clique-width is based on decompositions into non-overlapping
parts and that it measures not the size of these parts, but the complexity
of the connections between them. In this chapter we will not define clique-
width itself, which only works for graphs, but a generalisation that can be
used for arbitrary relational structures. Since, while equivalent, this more
general measure does not coincide with clique-width over graphs, we will
call it by a different name.

1 Partition+ and Rank+

We start by taking a look at partitions of a given structure. Given a partition
P∪Q of some Σ-structureA, we are interested in what information is needed
to recover A from the two induced substructures A∣P and A∣Q . Clearly, what
we need to know is which tuples of P are connected to which tuples of Q via
which relations. In other words, we need to know the classes of the following
equivalence relation.
For technical reasons, we will always assume in the following that the

signature Σ is finite, or at least that the arity of all relations in Σ are bounded.
We denote this bound by r.

Definition 1.1. Let A be a relational structure and r the maximal arity of a
relation of A.

(a) A formula φ(x̄; ȳ)where the free variables are divided into two groups
x̄ and ȳ is called crossing if at least one of the variables x i and at least one y j

monadic second-order model theory 2025-02-23 — ©achim blumensath 599



IX. Crossing-Width

actually occur in φ.
(b) LetU ⊆ A. The crossing equivalence on An overU is the relation

ā ≃U b̄ : iff A ⊧ φ(ā; c̄) ⇔ A ⊧ φ(b̄; c̄) ,
for all atomic crossing formulae φ(x̄; ȳ) and
all parameters c̄ inU .

(c)The crossing rank of a partition P ∪ Q of A is the cardinal

crk(P/A) ∶= ∣Pr−1/≃Q ∣ .

When the structure A is clear from the context, we will write crk(P) instead
of crk(P/A). ⌟

Examples. (a) Let A = ⟨A, ≤⟩ be a linear order and I ⊆ A an interval. Let
P be the set of elements below I and Q the set of those above. For a, b ∈ A,
it follows that

a ≃P∪Q b iff a = b ∉ I or a, b ∈ I,

a ≃I b iff a = b ∈ I, a, b ∈ P, or a, b ∈ Q .

Consequently,

crk(I/A) = 1 and crk(P ∪ Q/A) = 2 .

(b) Let T = ⟨T , ⪯⟩ be a tree and S ⊆ T a subtree. Then all elements of S
are ≃T∖S-equivalent, while elements of T ∖ S are ≃S-equivalent if either
both belong to the path from the root of T to the root of S, or both do not
belong to this path. Hence,

crk(S/T) = 1 and crk(T ∖ S/T) = 2 . ⌟

Exercise 1.1. Let ā and b̄ be α-tuples, for some index set α. Prove that ā ≃U b̄

if, and only if, ā∣H ≃U b̄∣H , for every setH ⊆ α of less than r indices. ⌟

Let us collect a few basic relations that come in handy when computing
crossing ranks.
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Lemma 1.2. Let Σ be a finite relational signature and A a Σ-structure.
(a) crk(U/⟨A, P⟩) = crk(U/A) , for all unary predicates P ⊆ A.

(b) crk(U ∩ C/A∣C) ≤ crk(U/A) , for all U ,C ⊆ A.

(c) crk(P ∪ Q/A) ≤ 2r−1 ⋅ crk(P/A) ⋅ crk(Q/A) , for all P,Q ⊆ A.

(d) There exists a constant m < ω (only depending on Σ) such that

crk(P) ≤ mcrk(Q) , for every partition P ∪ Q of A .

(e) There exists a constant d < ω (only depending on Σ) such that

crk(P ∖ Q) ≤ crk(P)d ⋅crk(Q) , for all sets Q ⊆ P ⊆ A .

Proof. (a) As no atomic crossing formula can contain unary predicates, it
follows that the relations ≃U coincide when computed in, respectively, A and
⟨A, P⟩.
(b) For ā, b̄ ∈ Cn ,

ā ≃U b̄ in the structure A implies ā ≃U∩C b̄ in A∣C .

Hence, every ≃U-class of A is included in some ≃U∩C-class of A∣C . This
means there are at least as many of the former as there are of the latter.
(c) Set U ∶= A ∖ (P ∪ Q). The ≃U-class of a tuple c̄ ∈ (P ∪ Q)r−1 is

uniquely determined by

◆ the set of indices I ∶= { i < r − 1 ∣ c i ∈ P },

◆ the ≃A∖P-class of the subtuple c̄ ∩ P
r−1,

◆ the ≃A∖Q -class of the subtuple c̄ ∩ Q
r−1.

The number of possibilities for such sets and subtuples is bounded by 2r−1,
crk(P), and crk(Q), respectively.
(d) Let φ(x̄; ȳ) be an atomic crossing formula with ∣x̄∣ = m and ∣ ȳ∣ = n.

For ā ∈ Pm , we define the set

Cφ(ā) ∶= { c̄ ∈ Q
n ∣ A ⊧ φ(ā; c̄) } .
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Then

ā ≃Q b̄ iff Cφ(ā) = Cφ(b̄) , for all φ .

Furthermore, by definition of Cφ(ā) we have

c̄ ≃P d̄ implies c̄ ∈ Cφ(ā) ⇔ d̄ ∈ Cφ(ā) , for c̄, d̄ ∈ Q n .

Consequently, there are at most 2crk(Q) possible sets of the form Cφ(ā).
If k is the number of atomic crossing formulae φ(x̄; ȳ) with 0 < ∣x̄∣ < r

and 0 < ∣y∣ < r, it follows that the relation ≃Q has at most (2crk(Q))k =
(2k)crk(Q) classes.

(e) SetU ∶= A∖ P and let q̄0 , . . . , q̄n−1 be an enumeration (of represent-
atives) of Q k/≃A∖Q . For two tuples p̄, p̄′ ∈ (P ∖ Q)r−1, it follows that

p̄ ≃U∪Q p̄
′ iff p̄ ≃Q p̄

′ and p̄q̄ i ≃U p̄
′
q̄ i , for all i < n .

Consequently,

∣(P ∖ Q)r−1/≃U∪Q ∣ ≤ ∣P
r−1/≃Q ∣ ⋅ ∣P

2(r−1)/≃U ∣
n .

Furthermore, for p̄, p̄′ ∈ P2(r−1), we have

p̄ ≃U p̄
′ iff p̄∣I ≃U p̄

′∣I , for every subset I ⊆ [2(r − 1)]

of size ∣I∣ = r − 1 ,

which implies that

∣P2(r−1)/≃U ∣ ≤ ∣P
r−1/≃U ∣

(2(r−1)r−1 ) .

As n ≤ crk(Q), it follows that

crk(P ∖ Q) ≤ crk(P) ⋅ (crk(P)(
2(r−1)
r−1 ))

crk(Q)

= crk(P)1+(
2(r−1)
r−1 )⋅crk(Q) .
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1 Partitions and ranks

Frequently, it is useful to name ≃U-classes, i.e., to assign colours to them.
Formally, we do so by using additional relations for these colours. Hence,
we consider structures over a signature Σ ∪ Ξ that is divided into two parts:
the set Σ of actual symbols and the set Ξ of auxiliary symbols.

Definition 1.3. Let A be a Σ-structure, P ∪ Q = A a partition, and let P be
an Ξ-expansion of the substructure A∣P induced by P.
(a) We say that P respects the crossing equivalence over Q if, for every

tuple ā in P there exists a quantifier-free formula ψ(x̄) over the signature Ξ
such that

P ⊧ ψ(b̄) iff b̄ ≃Q ā .

(b) By A[P] we denote any Ξ-expansion of A∣P that respects the crossing
equivalence over Q . ⌟

We start by describing the relationship between colourings and the cross-
ing rank.

Lemma 1.4. Let Σ be a finite relational signature.

(a) For every constant k < ω, there exists a finite relational signature Ξ with

the following property: if A is a Σ-structure with a partition P ∪ Q = A such

that crk(P/A) ≤ k, then A∣Q has a Ξ-expansion respecting ≃A∖P .
(b) For every finite relational signature Ξ, there exists a constant k < ω with

the following property: if A is a Σ-structure with a partition P ∪ Q = A such

that A∣P has a Ξ-expansion respecting ≃Q , then crk(P/A) ≤ k.

Proof. (a) For each arity 0 < n < r, we introduce k relations Rn
0 , . . . ,R

n
k−1

of arity n. By assumption, we can fix injective functions gn ∶ Pn → [k] such
that

ā ≃Q b̄ iff gn(ā) = gn(b̄) , for all ā, b̄ ∈ Pn .

Then the expansion of A∣P by the relations

R
n
i ∶= { ā ∈ P

n ∣ gn(ā) = i } , 0 < n < r , i < k ,
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IX. Crossing-Width

respects ≃Q .
(b) Let k be the number of quantifier-free formulae ψ(x̄) over the signa-

ture Ξ with 0 < ∣x̄∣ < r. The fact that A∣P has a Ξ-expansion respecting ≃Q
implies that crk(P/A) ≤ k.

The main reason why we are interested in crossing equivalences is the fact
that these contain exactly the information needed to reassemble a structureA
from its parts.The simplest case of this situation is contained in the following
lemma. We will prove more general statements below.

Lemma 1.5. Let A be a Σ-structure, P ∪ Q = A a partition, and let Ξ be a

signature such that the Ξ-expansions A[P] and A[Q] do exist. Then there exists

a quantifier-free interpretation τ such that

A ≅ τ(A[P] ⊕ A[Q]) .

Proof. For a tuple c̄ ∈ An , we denote by c̄P and c̄Q the two subtuples of all
components contained in, respectively, P and Q . Let R ∈ Σ be a symbol of
arity n. Then we have

R
A = RA∣P ∪ R

A∣Q ∪ (RA ∖ (Pn ∪ Q
n)) ,

where the relation R
′ ∶= R

A ∖ (Pn ∪ Q
n) is closed under the crossing

equivalence in the sense that

c̄
P ≃Q d̄

P and c̄Q ≃P d̄
Q implies c̄ ∈ R′⇔ d̄ ∈ R′ .

By assumption, all ≃P-classes and ≃Q -classes are definable by quantifier-free
formulae. Consequently, so is the relation R′.

We have defined the crossing equivalence in terms of a very simple class
of formulae. One consequence of the preceding lemma is that essentially
nothing changes if we use more powerful ones.

Proposition 1.6. Let Σ be a finite relational signature and k,m, n,M < ω
constants. There exists a number N such that

crk(U) ≤M implies ∣Un/≈mk ∣ ≤ N
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1 Partitions and ranks

for every Σ-structure A and every subset U ⊆ A, where ≈mk is the equivalence

relation on U
n
defined by

ā ≈mk b̄ iff āc̄ ≡mCMSO b̄c̄ , for all c̄ ∈ (A∖U)k .

Proof. SetW ∶= A∖U and fix a signature Ξ such thatA[U] andA[W] exist.
Since disjoint unions and quantifier-free interpretations preserveMSOm-
equivalence it follows that, for ā, b̄ ∈ Un and c̄ ∈ (A∖U)k ,

A, āc̄ ≡mMSO A, b̄c̄

iff A[U], ā ≡mMSO A[U], b̄ and A[W], c̄ ≡mMSO A[W], c̄

iff A[U], ā ≡mMSO A[U], b̄ .

Hence, the index of ≈mk is bounded by the number of MSOm-theories of
n-tuples.

Corollary 1.7. For every CMSO-interpretation τ, there exists a function f such

that

crk(U/τ(A)) ≤ f (crk(U/A)) , for all structures A and all U ⊆ A .

Proof. Let m be the quantifier rank of τ. For every atomic crossing for-
mula φ(x̄; ȳ) it follows that

ā ≈mk b̄ implies A ⊧ φτ(ā; c̄) ⇔ A ⊧ φτ(b̄; c̄) ,

for all c̄ ∈ (A∖U)k ,

where ≈mk is the relation from the preceding proposition. Consequently,
≈mr−1 ⊆ ≃A∖U (where the first relation is defined in the structure A and the
second one in τ(A)). We have shown in Proposition 1.6 that the index of
≈mr−1 is bounded by a function of crk(U/A). Hence, so is crk(U/τ(A)).

We have seen in Lemma 1.5 that we can reconstruct a structure from
a partition into two substructures by adding suitable colourings. Let us
generalise this to partitions into more than two components. We start by
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IX. Crossing-Width

introducing a suitable operation on (Σ+Ξ)-structures consisting of disjoint
unions and quantifier-free interpretations.Wedenote by⊗τ

i Ai the structure
obtained by

(i) taking the disjoint union of the structures Ai ;

(ii) adding tuples to the relations in Σ if they cross several components and
their parts have the right colours; and

(iii) updating all the colours.

The formal definition is as follows.

Definition 1.8. Let Σ and Ξ be finite relational signatures.
(a) An update specification is a quantifier-free interpretation τ of the form

⟨δ(x), (φR)R∈Σ+Ξ⟩ where δ(x) = true and the formulae φR are over the
signature Ξ ∪ {⪯} for some binary relation symbol ⪯.
(b) An update specification is symmetric if all formulae φR use the rela-

tion ⪯ only in statements of the form x ⪯ y ∧ y ⪯ x.
(c) For an update specification τ and a family (Ai)i∈I of (Σ+Ξ)-structures

indexed by some linear order I, we denote by

τ
⊗
i∈I

Ai

the following (Σ + Ξ)-structure. Let B be the disjoint union of the struc-
tures Ai , expanded by the preorder

a ⪯ b : iff a ∈ A i and b ∈ Ak , for some i ≤ k .

We set⊗τ
i∈I Ai ∶= τ′(B) where τ′ = ⟨δ(x), (φ′R)R∈Σ+Ξ⟩ is the interpreta-

tion with

δ(x) ∶= true ,

φ′R(x̄) ∶=
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Rx̄ ∨⋁
i , j
[x i ⪯̸ x j ∧ φR(x̄)] if R ∈ Σ ,

φR(x̄) if R ∈ Ξ .
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1 Partitions and ranks

(d) Let A be a Σ-structure and (H i)i∈I a partition of A. For a set P ⊆ I
of indices and an arity n < ω, we set

H
n[P] ∶= ⋃

i∈P
H

n
i . ⌟

Lemma 1.9. For every finite signature Σ and every number k < ω, there exists
a finite signature Ξ with the following property: if A is a Σ-structure, U ⊆ A,
and (H i)i∈I a partition of A∖U such that

crk(H[P]/U ∪H[Q]) ≤ k , for every partition P ∪ Q of I ,

then there exist a symmetric update specification τ and Ξ-expansions A[H i],
for i ∈ I, such that

A[A∖U] ≅
τ
⊗
i∈I

A[H i] .

Proof. Let r be the maximal arity of a relation in Σ. Given a set J ⊆ I, we
say that a subset P ⊆ J provides J-representatives if, for every i ∈ J ∖ P, every
arity 0 < n < r, and every tuple c̄ ∈ Hn

i , there is some ā ∈ Hn[P] such that

c̄ ≃U∪H[ J∖(P∪{i})] ā .

We start by proving that, for every set J ⊆ I, there exists a subset P ⊆ J

of size ∣P∣ ≤ 2k providing J-representatives. Fix a partition K ∪ L = J such
that the number

∣Hr−1[K]/≃A∖H[K]∣ + ∣H
r−1[L]/≃A∖H[L]∣

ismaximal. Let P ⊆ K andQ ⊆ L beminimal sets such thatH[P] andH[Q]
contain representatives of all ≃A∖H[K]-classes and all ≃A∖H[L]-classes, re-
spectively. Since the number of such classes is bounded by k, it follows that
∣P∣, ∣Q ∣ ≤ k. We claim that the union P ∪ Q has the desired properties.
Hence, fix i ∈ J ∖ (P ∪ Q) and c̄ ∈ Hn

i . Without loss of generality, we may
assume that n = r − 1. By symmetry, we may also assume that i ∈ K. For a
contradiction, suppose that there is no ā ∈ Hr−1[P] with

ā ≃U∪H[ J∖(P∪Q∪{i})] c̄ .
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IX. Crossing-Width

Fix representatives p̄0 , . . . , p̄s−1 and q̄0 , . . . , q̄t−1 of every ≃A∖H[K]-class
inHr−1[P] and of every ≃A∖H[L]-class inHr−1[Q], respectively. By choice
of P and Q , we have

∣Hr−1[K]/≃A∖H[K]∣ = s and ∣Hr−1[L]/≃A∖H[L]∣ = t .

But by assumption, c̄, p̄0 , . . . , p̄s−1 belong to different ≃A∖H[K]-classes,
while q̄0 , . . . , q̄t−1 belong to different ≃A∖H[L]-classes. Consequently,

(s + 1) + t ≤ ∣Hr−1[K]/≃A∖H[K]∣ + ∣H
r−1[L]/≃A∖H[L]∣ = s + t .

A contradiction.
Having established the claim, we can now find τ and the expansions

A[H i] as follows. First, we construct a sequence P0 , . . . , Pr−1 ⊆ I of r dis-
joint sets by the following inductive procedure: if we have already chosen
P0 , . . . , P j−1, we use the above claim to find a set P j ⊆ I ∖ (P0 ∪ ⋅ ⋅ ⋅ ∪ P j−1)
of size ∣P j ∣ ≤ 2k of (I ∖ (P0 ∪ ⋅ ⋅ ⋅ ∪ P j−1))-representatives.

Let J ∶= I ∖ (P0 ∪ ⋅ ⋅ ⋅ ∪ Pr−1) be the complement of these sets. For every
arity n < r, every index j < r, and every ≃A∖H[P j]-class σ of n-tuples, we fix
a representative āσ

j ∈ P
n
j and we set

R
σ
j, i ∶=

⎧⎪⎪
⎨
⎪⎪⎩

{ c̄ ∈ Hn
i ∣ c̄ ≃A∖H[P0∪⋅⋅⋅∪P j∪{i}]] ā

σ
j } , for i ∈ J ,

{ c̄ ∈ Hn
i ∣ c̄ ≃A∖H[P j] ā

σ
j } , for i ∈ P j ,

Q j ∶= H[P j] .

Let

Ξ ∶= {Q0 , . . . ,Qr−1} ∪ {R
σ
j ∣ j < r, σ a ≃A∖H[P j]-class} .

We claim that the Ξ-expansion of A∣H i , i ∈ I, given by these relations has
the desired properties.

For the proof it is sufficient to show that we can recover the ≃U-class of a
tuple c̄ ∈ (A∖U)n from the information contained in this expansion. We
distinguish two cases. If c̄ ∈ Hn

i , for some i ∈ I, we already know its ≃U-class.
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1 Partitions and ranks

Otherwise, let i0 , . . . , is−1 ∈ I be the indices i such that c̄ ∩H i ≠ ∅ and set
c̄ j ∶= c̄ ∩H i j . We choose the enumeration i0 , . . . , is−1 such that

i j ∈ Pm implies i j+1 ∈ Pm ∪ ⋅ ⋅ ⋅ ∪ Pr−1 , for j < s − 1 and m < r ,

and we construct a monotone function µ ∶ [s] → [r] and tuples ā j ⊆
H[Pµ( j)] satisfying

ā j ≃A∖H[P0∪⋅⋅⋅∪Pµ( j)∪{i j}] c̄ j , for all j < s ,

as follows. We proceed by induction on j starting with j = s − 1. If c̄ j ⊆
H[Pm], we set µ( j) ∶= m and ā j ∶= c̄ j . (By choice of i j , this implies that
µ( j) ≤ µ( j + 1).) Otherwise, we set µ( j) ∶= µ( j + 1) − 1 and we use the
fact that Pµ( j) is a set of (I ∖ (P0 ∪ ⋅ ⋅ ⋅ ∪ Pµ( j)−1))-representatives to find a
tuple ā j ⊆ H[Pµ( j)] with

ā j ≃A∖H[P0∪⋅⋅⋅∪Pµ( j)∪{i j}] c̄ j .

It then follows that

c̄ j ≃U∪c̄0 . . . c̄ j−1 ā j+1 . . . ār−1 ā j , for all j < s .

This implies that

c̄0 . . . c̄s−2 c̄s−1 ≃U c̄0 . . . c̄s−2 ās−1
≃U ⋯

≃U c̄0 ā1 . . . ās−1 ≃U ā0 ā1 . . . ās−1 .

Similarly, it follows that

A ⊧ φ(c̄0; . . . ; c̄s−1) iff A ⊧ φ(ā0; . . . ; ās−1) ,

for every atomic formula φ(x̄0; . . . ; x̄s−1) that contains variables from at
least two different tuples x̄ i and x̄ j .

Hence, the ≃U-class of c̄ can be determined from the the tuples ā j (which
can be computed using the relations Rσ

j, i j ), while its atomic type can be
determined from ā0 , . . . , ās−1 and from the atomic types of the component
tuples c̄0 , . . . , c̄s−1.
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IX. Crossing-Width

2 De$ompo@tion+

We can use the crossing rank to define decompositions for relational struc-
tures. It turns out that these are better behaved if we allow as index sets
order-trees of arbitrary ordinal height. Let us quickly define what we mean
by that.

Definition 2.1. Let T = ⟨T , ≤⟩ be a partial order.
(a) T is an order-tree of ordinal height if there exists a setD and an ordinal α

such thatT is isomorphic to a partial order of the form ⟨S , ⪯⟩where S ⊆ D<α

is prefix-closed and ⪯ is the prefix ordering on D
<α .

(b)The height of T is the least such ordinal α.
(c)The maximal elements of T are called the leaves of T. ⌟

The corresponding decompositions now take the following form.

Definition 2.2. Let A be a Σ-structure.
(a)A partition decomposition ofA is a family (Ut)t∈T of non-empty subsets

Ut ⊆ A indexed by an order-tree T of ordinal height satisfying the following
conditions.

◆ s ≤ t impliesUs ⊇ Ut ,

◆ Us ∩Ut = ∅, if s and t are incomparable,

◆ for every a ∈ A, there is some t ∈ T withUt = {a}.

(b)The crossing-width of a partition decomposition (Ut)t∈T is the number

sup{ crk(⋃i∈P Us i ) ∣ t ∈ T , P a subset of the successors of t } .

The crossing-width cwdA of A is the minimal crossing width of a partition
decomposition of A. ⌟

Remark. For a graph, the crossing-width is not quite the same as the clique-
width, but it is ‘equivalent’ to it in the sense that these two widths differ by a
factor of at most 2. ⌟

Exercise 2.1. Let (Ut)t∈T be a partition decomposition of some structureA.
Prove the following properties.
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2 Decompositions

(a) U⟨⟩ = A, for the root ⟨⟩ of T.
(b) If S is the set of successors of t ∈ T, then (Us)s∈S forms a partition

ofUt . ⌟

Examples. (a) LetG = ⟨V , E⟩ be a complete graph.We define a partition de-
composition (Ut)t∈T as follows. ForT we take the tree consisting of a root ∗
to which we attach one leave tv for every vertex v of G. The components are
U∗ ∶= V andUtv = {v}. Since

crk(P) = 1 , for every P ⊆ V ,

it follows that crk(G) = 1.
(b) LetA = ⟨A, B⟩where B is a linear betweenness relation, i.e., a relation

of the form

B = { ⟨a, b, c⟩ ∣ a ≤ b ≤ c } , for some linear order ≤ on A .

We define a partition decomposition (Ut)t∈T as follows. We start with the
root componentU⟨⟩ = A. Inductively, suppose we have already definedUt
and thatUt forms an interval of A (with respect to the underlying order ≤).
If ∣Ut ∣ = 1, we stop. Otherwise, we partitionUt into two intervalsUu +Uv
and we make u and v successors of t.
It follows that crk(A) ≤ 3 since, for an interval I ⊆ A, there are exactly

3 ≃U-classes of pairs ⟨a, b⟩ in I
2 : those with a < b, those with a = b, and

those with a > b.
(c) Let T = ⟨T , ⪯⟩ be an order-tree. We consider the following partition

decomposition (Us)s∈S . Let S be the tree obtained from T by adding a new
leaf to every vertex. For s ∈ S, we set If s ∈ S is an original vertex of T, we set

Us ∶=

⎧⎪⎪
⎨
⎪⎪⎩

{ v ∈ T ∣ v ⪰ s } if s is an original vertex of T ,
{v} if s is the leaf added to v ∈ T .

Let s0 , . . . , sn−1 be successors of the same vertex t ∈ S. If the new leaf added
to t is not among the s0 , . . . , sn−1, or if s0 , . . . , sn−1 consists of all successors
of t, we have

crk(U0 ∪ ⋅ ⋅ ⋅ ∪Usn−1) = 1 .
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IX. Crossing-Width

Otherwise,

crk(U0 ∪ ⋅ ⋅ ⋅ ∪Usn−1) = 2 .

Hence, this decomposition has width 2.
We can improve this decomposition to reduce the width to 1 as follows.

Let S be the tree obtained from T by (i) inserting an intermediate vertex in
every edge; (ii) adding a new root; and (iii) adding a new leaf to every of
the vertices introduced in (i) and (ii). The components are as follows.

Ws ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{ v ∈ T ∣ v ≻ s } if s is an original vertex of T ,
{ v ∈ T ∣ v ⪰ s } if s is the predecessor of v ∈ T introduced

in (i) or (ii) ,
{v} if s is the leaf added to the predecessor

of v ∈ T .

(d) Let G = ⟨[m] × [n], E⟩ be the m × n grid with edge relation

E = { ⟨⟨i , k⟩, ⟨ j, l⟩⟩ ∣ ∣i − j∣ + ∣k − l ∣ = 1} .

We construct a partition decomposition of G by induction on m. If m = 1,
G is a path of length n and we can use a decomposition splitting G into a
single vertex and a path of length n − 1. If m > 1, we split G into a path of
length n and an (m − 1) × n grid.
Let (Ut)t∈T be the resulting decomposition.Then

crk(Ut) ≤ n + 1

(there are up to n vertices with neighbours outside of Ut and one ≃V∖U t -
class for the other vertices in Ut). As the tree T is binary, this implies
that crk(G) ≤ n + 1. (A (rather bad) lower bound can be obtained via
Corollary 4.4 or via Proposition 7.2 below; see also the rest of Section 7.) ⌟

An important example of structures with small crossing-widths are linear
orders and trees. Since we will use decompositions of linear orders in some
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2 Decompositions

of the constructions below, let us state their properties formally. The second
part of this lemma is one of the reasons why we work with trees of height
larger than ω.

Lemma 2.3. Let A = ⟨A, ≤⟩ be a linear order.
(a) A has a partition decomposition (Ut)t∈T of width 1 where the index tree T

is binary and has height at most ∣A∣.

(b) If A is infinite, it does not have a partition decomposition (Ut)t∈T of finite

width where the index tree T has height strictly less than ∣A∣.

Proof. (a) Set κ ∶= ∣A∣ and fix an enumeration (a i)i<κ of A. Let us call
a family (Ut)t∈T be a partial decomposition if it can be obtained from a
partition decomposition by removing some subtrees from T. By induction
on α < κ, we will define a sequence (Uα

t )t∈Tα of partial decompositions ofA
such that
◆ the sequence is increasing in the sense that

Tα ⊆ Tβ and U
α
t = U

β
t , for all α < β and t ∈ Tα ,

◆ Tα is a binary tree of height strictly less than 3(α + 1),
◆ every componentUα

t is an interval of A,
◆ for every i < α, there is some leaf t ∈ Tα withUα

t = {a i}.
Then the limit (Ut)t of this sequence will be a partition decomposition ofA.
Furthermore, component Ut being an interval, we have crk(Ut) = 1, for
all t.
We start with a tree T0 consisting only of the root ⟨⟩ and with the com-

ponentU⟨⟩ ∶= A. For the limit step, let δ be a limit ordinal and suppose that
we have defined (Uα

t )t∈Tα for all α < δ. We choose for Tδ ∶= ⋃α<δ Tα the
limit of the trees and for the components the sets

U
δ
t ∶= U

α
t , for some α with t ∈ Tα .

The height of Tδ is at most

sup
α<δ

3(α + 1) ≤ 3δ < δ + 1 ≤ 3(δ + 1) .
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IX. Crossing-Width

For the successor step, suppose that we have already defined (Uα
t )t∈Tα .

We distinguish several cases. If there is some leaf t with U
α
t = {aα}, we

simply set

Tα+1 ∶= Tα and U
α+1
t ∶= Uα

t .

Suppose otherwise. If there is no leaf t with aα ∈ Ut , the set of vertices
t ∈ Tα with aα ∈ Ut forms an infinite branch of Tα . We add a new vertex s
to Tα as the limit of this branch, and we set

Us ∶= ⋂
t<s

Ut .

Hence, wemay assume thatTα has a leaf t (necessarily unique) with aα ∈ Ut .
Let I be the subinterval ofUt consisting of all elements smaller than aα , and
let J be the subinterval of the larger elements. Thus,Ut = I + {aα} + J. Let
Tα+1 be the tree obtained from Tα by adding two successors s0 and s1 to t
and two successors v0 and v1 to s1. The new components are

U
α+1
s0 ∶= I , U

α+1
s1 ∶= {a i} ∪ J , U

α+1
v0 ∶= {a i} , U

α+1
v1 ∶= J .

The height of Tα+1 is strictly less than

3(α + 1) + 1 + 2 = 3(α + 2) .

(The 1 is in case we had to add the limit of an infinite branch.)
(b) Let (Ut)t∈T be a partition decomposition of A where the height of T

is strictly less than κ ∶= ∣A∣. Then there must be some vertex t ∈ T with
κ many successors. Let S be the set of successors of t. For each s ∈ S, we fix
some element as ∈ Us . Choose an infinite set I ⊆ S such that, for all u, v ∈ I
with au < av , there is some w ∈ S ∖ I with au < aw < av . Then it follows
that

crk(⋃s∈I Us) ≥ ∣I∣ ≥ ℵ0 .

Let us collect a few straightforward observations about the way some
simple operations affect (or do not affect) the crossing-width.
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Lemma 2.4. Let A and B be Σ-structures.
(a) A ⊆ B implies cwdA ≤ cwdB .

(b) cwd ⟨A, P⟩ = cwdA , for all unary predicates P ⊆ A .

(c) cwd(A⊕B) = max{cwdA, cwdB} .

Exercise 2.2. Prove this lemma. ⌟

Exercise 2.3. Prove that every structure A has a partition decomposition
(Ut)t∈T of width cwdA where the index tree T is binary. ⌟

3 Term+

The original definition of clique-width was given in terms of certain graph
operations. A similar characterisation exists for the crossing-width using
the operations⊕τ from above.

Definition 3.1. Let Σ and Ξ be finite relational signatures. A ⊕-term over
the signatures Σ and Ξ is a tree t (possibly of ordinal height) whose internal
vertices are labelled by operations of the form⊕τ with a symmetric update
specification τ and whose leaves are labelled by (Σ + Ξ)-structures with a
single element. ⌟

The problem we face when trying to define the value of such a ⊕-term
is that they are not well-founded: they might have branches of arbitrary
ordinal length. For finite ⊕-terms t, we could simply say

val(t) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

A if t is a constant with value A ,
τ
⊕
i∈I

val(s i) if t = ⊕τ
i∈I s i .

If we want to evaluate the⊕τ operation at some vertex v inside a tree with
infinite branches, we need to know for every tuple c̄ of elements to which
relations from Ξ they currently belong. We will compute this information
along the paths from the leaves corresponding to c̄ to the vertex v.
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IX. Crossing-Width

Definition 3.2. Let t be a ⊕-term over the signatures Σ and Ξ, w a vertex
of t, and n < ω a number.

(a) An n-ary colour trace to w is a sequence (θv)v≤w of atomic types over
the signature Ξ with n variables x0 , . . . , xn−1.

(b) Such a colour trace (θv)v≤w is locally consistent if, for each vertex v < w
with predecessor u labelled t(u) = ⊕τ , the type θu is obtained from θv as
described by the update specification τ. ⌟

Wewould like to define the relations from Ξ in val(t) by choosing a locally
consistent colour trace for every tuple c̄ and then reading off the relations
from the first type θ⟨⟩ in each trace. Unfortunately, there might be several
different consistent colour traces to a vertexw since some branches of tmight
contain limit steps, i.e., vertices v without an immediate predecessor. To
have unique colour traces, we have to specify what happens at such steps.
Note that the precise type θv we choose for such a limit vertex v does not
really matter, since we are mostly only concerned by the partition induced by
the types, not by which type is assigned to which class of the partition. This
allows us to use a very simple definition: we just label such a vertex with the
infimum of all the types assigned to smaller vertices.

Definition 3.3. Let n < ω and fix some linear order on the set of all atomic
types of arity n.

(a) We lift the order on types to an order on the set of all colour traces of
arity n by setting

(σv)v≤w ≤ (θv)v≤w : iff σv ≤ θv , for all v ≤ w .

(b) A colour trace (θv)v≤w of artiy n is globally consistent if, for every
vertex v ≤ w without immediate precedessor, the set { u < v ∣ θu = θv } is
unbounded below v.
(c) A colour trace is consistent if it is locally and globally consistent.
(d) A ⊕-term t is order-preserving if, for every vertex w and every arity

n < ω, the set of consistent n-ary colour traces to w is linearly ordered by
the above order. ⌟
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Remark. Note that local consistency propagates information from larger
vertices to smaller ones, while global consistency propagates it in the opposite
direction. ⌟

We start by proving that, for order-preserving terms, colour traces are
unique.

Lemma 3.4. Let t be an order-preserving⊕-term. For every vertex w and every

atomic type σ of arity n < ω, there exists at most one consistent colour trace
(θv)v≤w to w ending in θw = σ .

Proof. Let (θv)v≤w and (θ′v)v≤w be two consistent colour traces to w with
θw = θ′w . By induction on w starting at the root, we prove that θv = θ′v for
all v. If w = ⟨⟩ is the root, there is only one vertex v ≤ w and the claim holds
by assumption. Next, suppose that w has a predecessor v for which we have
already established the claim. By local consistency, θw = θ′w implies θv = θ′v ,
and the claim follows by inductive hypothesis.

Finally suppose that w is a vertex without predecessors and that we have
already prove the claim for all v < w. By symmetry and the fact that t is well-
formed, wemay then assume that (θv)v≤w ≤ (θ′v)v≤w . By global consistency
of (θ′v)v≤w , the set

S ∶= { v < w ∣ θ′v = θ′w }

is unbounded below w. Since there are only finitely many atomic types σ ,
there exists a minimal one such that the subset

S0 ∶= { v ∈ S ∣ θv = σ }

is also unbounded below w. By global consistency of (θv)v≤w , it therefore
follows that

θw ≤ σ = θv ≤ θ′v = θ′w = θw , for all v ∈ S0 .

Consequently, θv = θ′v , for all v ∈ S0. As S0 is unbouned it therefore follows
by inductive hypothesis that θv = θ′v , for all v < w.
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IX. Crossing-Width

Unfortunately, even for order-preserving terms, consistent colour traces
do not always exist. To make sure we have all the colour traces we need
to evaluate a given term, we require our terms to be well-behaved in the
following sense.

Definition 3.5. Let t be a ⊕-term.
(a) Let c̄ be an n-tuple of leaves of t. We say that c̄ splits at the vertices

w , s0 , . . . , sm−1 ifw ∶= c0⊓⋅ ⋅ ⋅⊓ cn−1 is their common prefix and s0 , . . . , sm−1
is an enumeration of all successors s of w with s ≤ c i , for some i. In this case
the split of c̄ is the sequence c̄0 , . . . , c̄m−1 of subtuples c̄ i ∶= c̄ ∩ ⇑s i .
(b) Let c̄ be an n-tuple of leaves of t. Under certain circumstances, we

can associate with c̄ a consistent colour trace χ(c̄) by induction on the
number of distinct components of c̄. If c0 = ⋅ ⋅ ⋅ = cn−1, let χ(c̄) be the
unique colour trace to c0 starting in the atomic type of ⟨c0 , . . . , cn−1⟩ (if it
exists). For the inductive step, suppose that c̄ splits at w , s0 , . . . , sm−1, let
c̄
0 , . . . , c̄m−1 be its split, and suppose that t(w) = ⊕τ . If the colour traces
χ(c̄0), . . . , χ(c̄m−1) exist, say, χ(c̄ i) = (θ i

v)v , we denote by χ(c̄) be the
unique colour trace (σv)v≤w to w (if it exists) where the type θw is obtained
from the types θ0

s0 , . . . , θ
m−1
sm−1 as described by the update specification τ.

(c) We call t well-formed if it is order-preserving and every finite tuple c̄ of
leaves has an associated trace χ(c̄).
(d) If t is well-formed, we define the value val(t) of t as the following

(Σ + Ξ)-structure A. The universe A is the set of leaves of t. To define the
relations of A, let ā ∈ An be a tuple and χ(ā) = (θv)v≤w the associated
colour trace. We add ā to a relation R ∈ Ξ if Rx̄ ∈ θ⟨⟩, and we add it to a
relation R ∈ Σ if it satisfies the following condition. Suppose that ā splits at
w , s0 , . . . , sm−1, let ā0 , . . . , ām−1 be its split, and let χ(ā i) = (σ i

u)u . Then
we add ā to R if the operation t(w) = ⊕τ at w adds all tuples with types
σ0
s0 , . . . , σ

m−1
sm−1 to R. ⌟

We are finally able to prove that partition decompositions and ⊕-terms
are basically the same thing, only the associated notions of width are slightly
different.

Proposition 3.6. Let Σ be a finite relational signature.
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(a) For every finite relational signature Ξ, there exists a number k < ω such

that, given a ⊕-term s over the signatures Σ and Ξ, the structure val(s) has a
partition decomposition (Ut)t∈T of width k whose index tree T coincides with

the underlying tree of s.

(b) For every k < ω, there exists a finite relational signature Ξ such that, given

a Σ-structure A with a partition decomposition (Ut)t∈T of width k, there exists

a well-formed ⊕-term s over the signatures Σ and Ξ such that val(s) = A and

the underlying tree of s coincides with T.

Proof. (a) Let T be the underlying tree of s. For t ∈ T, letUt be the set of
all (elements of A corresponding to) leaves v of s with t ≤ v. Then (Ut)t∈T
is a partition decomposition and it follows by Lemma 1.4 (b) that its width
is bounded by some constant depending only on Ξ.
(b) Let Ξ0 be the signature from Lemma 1.9.We define the desired term s

in two phases. First we choose, for every vertex t ∈ T, a Ξ0-expansionA[Ut]
such that, if (s i)i∈I are the successors of t, there is some update specification τ
with

A[Ut] =
τ
⊕
i∈I

A[Us i ] .

Then we use these update specifications to construct the desired term s, but
not directly: to ensure global consistency, we have to use a larger set Ξ ⊇ Ξ0
of colours.

For the first phase, we start at the root ofT wherewe use theΞ0-expansion
of A where all auxiliary relations in Ξ0 are empty. Inductively suppose that
we have already chosen a Ξ0-expansion A[Ut] for t ∈ T. By Lemma 1.9,
there exists a symmetric update specification τ and Ξ0-expansions A[Us i ]
of the successors s i of t such that

T[Ut] =
τ
⊕
i

A[Us i ] .

Finally for the limit step, let t ∈ T be a vertex without predecessor and
suppose that we have defined A[Us] already for all s < t. We choose for
A[Ut] an arbitrary Ξ0-expansion of A∣U t respecting ≃A∖U t .
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IX. Crossing-Width

This completes the first phase. For every tuple c̄ in A and every vertex
t ∈ T with c̄ ⊆ Ut , let θ t be the atomic type of c̄ in (the Ξ0-reduct of )A[Ut].
We would like to define the term s such that χ(c̄) ∶= (θ t)t is the colour
trace associated with c̄. The problem is that, as defined above, these traces
are locally consistent but not necessarily globally consistent. Also they do
not need to be linearly ordered. To fix this we use the larger signature Ξ ∶=
Ξ0 + Ξ1, where Ξ1 is a disjoint copy of Ξ0. Note that every atomic Ξ-type θ
is of the form θ = θ0 + θ1 where θ i is an atomic Ξ i-type. (By Ξ-type we
mean a type over the signature Ξ.) We define the order on such types by

θ0 + θ1 ≤ θ′0 + θ′1 : iff θ0 ≤ θ′0 , or θ0 = θ′0 and θ1 ≤ θ′1 .

For each vertex t ∈ T, we will choose some bijection µt between atomic
Ξ0-types and Ξ1-types and then add the new relations from Ξ1 to A[Ut]
according to µt . To avoid confusion in the following, we will denote the
Ξ0-expansion of A∣U t by A0[Ut] and its Ξ-expansion by A1[Ut]. Using
the expansions A1[Ut] we can then read off a term s. We will choose the
functions µt such that

◆ the colour traces from s are globally consistent and

◆ all consistent colour traces to the same vertex and with the same arity a
linearly ordered.

By the definition of val(s), it then follows that s is well-formed and that its
value is val(s) = A (or, rather the Ξ-expansion A1[A]).

We proceed again by induction starting at the root ⟨⟩ of T, where we
define A1[U⟨⟩] such that all relations in Ξ1 are empty. For the successor
step, suppose that we have already chosen the Ξ-expansion A1[Uv] and
let w be a successor of v. Note that specifying a bijection µw is the same
thing as specifying a second linear ordering ⊑ on the atomic Ξ0-types. (Then
we can map the n-th Ξ0-type with respect to ⊑ to the n-th Ξ1-type with
respect to the given ordering ≤). For each pair θ , θ′ of atomic Ξ0-types, set
(θu)u≤w ∶= χ(c̄) and (θ′u)u≤w ∶= χ(c̄′) where c̄ and c̄

′ are any tuples in

620



3 Terms

A0[Uw] of types θ and θ′, respectively. We set

θ ⊑ θ′ : iff either there is some u < w with µu(θu) < µu(θ′u) ,
or θw ≤ θ′w and θu = θ′u , for all u < w .

By inductive hypothesis, this ordering is linear. We choose for µw the bijec-
tion induced by this ordering.

Having done this construction for all successors of w of v, we also have to
find an update specification τ such that

A1[Uv] =
τ
⊕
w

A1[Uw] .

Then we can set s(v) ∶= ⊕τ . From the first phase we already have a specific-
ation τ0 satisfying

A0[Uv] =
τ0
⊕
w

A0[Uw] .

Since the atomic Ξ0-type of every tuple in A1[Uv] determines its atomic
Ξ-type, we can simply extend τ0 by formulae defining the new relations
in Ξ1.

It remains to consider vertices v without predecessor. By inductive hypo-
thesis, we may assume that we have already choosen Ξ-expansions for every
u < v. Given an atomic Ξ0-type θ, set (θu)u≤v ∶= χ(c̄) with c̄ realising θ,
and let σ be the minimal atomic Ξ-type such that the set

{ u < v ∣ θu + µu(θu) = σ }

is unbounded below v. We define A1[Uv] by assigning the type σ to every
tuple that has type θ in A0[Uv]. (Note that this can change the Ξ0-type of
the tuple. But for vertices without predecessors the types are arbitrary, so
we can permute them as we like.) This ensures that all colour traces to v are
linearly ordered and that they satisfy the global consistency condition.
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IX. Crossing-Width

4 Tree-Width and Cro^ing-Width

Let us compare crossing-width and tree-width. In Section X.2 below we
will not only need to know the relationship between the values of these
parameters, but also how the respective index trees of the corresponding
decompositions are related. Therefore, we have to include this information
in the following statements making them a bit unwieldy. First, note that the
crossing-width generalises tree-width in the sense that structures with small
tree-width also have a small crossing-width.

Proposition 4.1. For every finite relational signature Σ and every constant

k < ω, there exists a number N < ω with the following property. For every

tree-decomposition (Ut)t∈T of a Σ-structure A with width at most k, there exists

a partition decomposition (Ws)s∈S of A of width at most N whose index tree S

is obtained from T by adding at most k new leaves to every vertex.

Proof. Let (Ut)t∈T be a tree-decomposition of A of width k ∶= twdA. By
choosing a root of T, we may assume thatT is an order-tree.We construct a
partition decomposition (Ws)s∈S of A as follows. Let S be the tree obtained
form T by adding to every vertex t as many new leaves as there are elements
in the set

Ct ∶= Ut ∖⋃{Uv ∣ v ≺ t } .

Then S has height at most ω. For original vertices t ∈ T, we define the
components by

Wt ∶= ⋃{Cv ∣ v ⪰ t } ,

while, for the new leaves s0 , . . . , sn−1 attached to a vertex t ∈ T with associ-
ated set Ct = {v0 , . . . , vn−1}, we set

Ws i ∶= {v i} , for i < n .

Then (Ws)s∈S is a partition decomposition of A and it remains to compute
its width.
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Let t be a vertex of S and s0 , . . . , sn−1 some of its successors. Note that, if
c̄ ∈ R is a tuple in some relation containing elements of both P ∶= ⋃i Ws i
and its complement, then the latter elements must belong toUt by the con-
nectedness requirement of a tree-decomposition. Together with the tuples
that are not in any relation, it follows that

crk(A∖ (P ∖ Ct)) ≤ (∣Ut ∣ + 1)r−1 ≤ (k + 1)r−1 .

Hence, Lemma 1.2 (c) implies that

crk(A∖ P) ≤ 2r−1 ⋅ crk(Ct) ⋅ crk(A∖ (P ∖ Ct))

≤ 2r−1 ⋅ ∣Ct ∣
r−1 ⋅ (k + 1)r−1

≤ 2r−1 ⋅ kr−1 ⋅ (k + 1)r−1

= (2k2 + 2k)r−1 .

By Lemma 1.2 (d), it follows that there exists a constant m (only depending
on the signature) such that

crk(Ws0 ∪ ⋅ ⋅ ⋅ ∪Wsn−1) ≤ m
crk(A∖P) ≤ m(2k

2+2k)r−1 .

Corollary 4.2. For every finite relational signature Σ and every constant k < ω,
there exists a number N < ω such that every Σ-structure A with twdA ≤ k has
a partition decomposition of width at most N where the index tree has height at

most ω.

The converse is not true in general.We have seen above that cliques have a
small crossing-width while their tree-width is unbounded.The obstruction
turns out to be large bipartite graphs embedded in the structure. As above,
we start with a technical statement containing additional information about
the index trees.

Lemma 4.3. Let Σ be a finite relational signature and k, β < ω. There exists a

number N < ω and anMSO-interpretation τ with the following property.

If s is a ⊕-term of height at most ω such that the Gaifman graph of val(s)
does not contain the complete bipartite graph Kβ ,β (as a non-induced subgraph),

then τ(s) is a tree-decomposition of val(s) of width as most N whose index tree

is equal to the underlying tree of s.
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IX. Crossing-Width

(To produce a tree-decomposition by an interpretation, we encode the
decompositions as a tree where each vertex is labelled by the isomorphism
type of its component and each edge is labelled by information about which
elements of the two components should be identified.)

Proof. Let r be the maximal arity of a relation in Σ. As the claim is trivial
for r = 1, we may assume w.l.o.g. that r ≥ 2. Let Ξ be the auxiliary signature
used by s and let T be the underlying tree. For t ∈ T, letUt be the set of all
leaves v ofT with v ≥ t. Note that (Ut)t∈T forms a partition decomposition
of A.
Given a tuple c̄ ⊆ Ut , we denote by χt(c̄) the colour (atomic Ξ-type)

assigned to c̄ by the subterm s∣t . Note that this colour uniquely determines
the ≃A∖U t -class of c̄. We set [α]t ∶= χ−1t (α) and, by abuse of notation,
[c̄]t ∶= [χt(c̄)]t . We denote by S(t) the set of successors of a vertex t ∈ T.
The support of a colour α at t is the set

S(t; α) ∶= { s ∈ S(t) ∣ [α]s ≠ ∅} .

For a vertex t ∈ T, we set

Wt ∶= B(t) ∪ C(t) ∪ D(t) ,

where

B(t) ∶= ⋃{[α]s ∣ s ∈ S(t; α), ∣[α]s ∣ < β, ∣S(t; α)∣ < rβ } ,

C(t) ∶= ⋃{ c̄ ∖Us ∣ there are R ∈ Σ, c̄ ∈ R, s ≤ t such that

c̄ ∩Us = c̄ ∩Ut and ∣[c̄ ∩Us]s ∣ ≥ β } ,

D(t) ∶= ⋃{ c̄ ∖Us ∣ there are R ∈ Σ, c̄ ∈ R, s ≤ t, p parent of s,

c̄ ∩Us = c̄ ∩Ut , ∣S(p; χs(c̄ ∩Us))∣ ≥ rβ } .

Note that each of these sets isMSO-definable from t. Consequently, there ex-
ists anMSO-transduction mapping the treeT to (a tree encoding) (Wt)t∈T .
It therefore remains to prove that (Wt)t∈T is a tree-decomposition of A of
width at most

N ∶= r(β + 1)(β − 1)M < rβ2M ,
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4 Tree-width and crossing-width

whereM is the number of colours (atomic Ξ-types).
We start by showing that (Wt)t∈T is indeed a tree-decomposition. For

every a ∈ A, there is some leaf t ∈ T with Ut = {a}. This implies that
a ∈ B(Ut). Hence,⋃t Wt = A.
To check that all tuples from the relations of A are covered by some

component Wt , consider an n-tuple c̄ ∈ R. Since the set An has a single
≃∅-class, we have ∣[c̄]⟨⟩∣ ≥ β or ∣An ∣ < β. In the latter case, B(⟨⟩) = A and
we are done. Hence, suppose the former. It is sufficient to show that, for
every t ∈ T,

∣[c̄ ∩Ut]t ∣ ≥ β implies c̄ ⊆Ws , for some s ≥ t .

Then the claim follows for t = ⟨⟩. The proof proceeds by induction on
the number of vertices s ≥ t with c̄ ∩ Us ≠ ∅. Hence, fix t as above. If
∣[c̄ ∩Us]s ∣ ≥ β for some s > t, we can use the inductive hypothesis to obtain
some u ≥ s with c̄ ⊆Wu . Consequently, we may assume that ∣[c̄ ∩Us]s ∣ < β,
for all successors s of t. Let s0 , . . . , sm−1 be an enumeration of all s ∈ S(t)
with c̄ ∩ Us ≠ ∅, and set c̄ i ∶= c̄ ∩ Us i and α i ∶= χs i (c̄ i). If there is no
index i such that ∣S(t; α i)∣ ≥ rβ, then c̄ ∩ Ut ⊆ B(t) and c̄ ∖ Ut ⊆ C(t).
Hence, c̄ ⊆Wt and we are done. Otherwise, let i be such an index. Then
c̄ ∖Us i ⊆ D(s i). We prove by induction on the number of vertices v ≥ s i
with c̄ ∩Uv ≠ ∅ that there is some u ≥ s i with c̄ ⊆Wu . If c̄ ∩Us i ⊆ B(s i),
we are done. Otherwise, there is some successor u of s i with

∣S(s i ; χu(c̄ ∩Uu)∣ ≥ rβ .

Consequently, c̄∖Uu ⊆ D(u) and the claim follows by inductive hypothesis.
It remains to check the connectivity condition. Suppose that a ∈Ws ∩Wt .

We have to show that a ∈Wv , for every vertex v on the path between s and t.
For the proof, we distinguish the following cases.
(i) If a ∈ B(s) and a ∈ B(t), then s and t are comparable. By symmetry,

we may assume that s ≤ t. Then ∣[a]v ∣ < β, for all s < v ≤ t, implies that
a ∈ B(v) ⊆Wv , for every such v.
(ii) If a ∈ C(s) and a ∈ B(t), then s ≰ t. Let w ∶= s ⊓ t. By definition,

there is some u ≤ s and a guarded tuple c̄ with a ∈ c̄, ∣[c̄ ∩ Uu]u ∣ ≥ β,
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IX. Crossing-Width

and c̄ ∩ Uu = c̄ ∩ Us . Hence, a ∈ C(v), for all u ≤ v ≤ s. Furthermore,
∣[c̄∩Uu]u ∣ ≥ β implies that ∣[c̄∩Uv]v ∣ ≥ β, for allw < v < u, which implies
that a ∈ C(v), for w < v < u. Furthermore, for w < v ≤ t, we must have
∣[a]v ∣ < β since, otherwise, [a]v × [c̄ ∩Uu]u would contain a copy of Kβ ,β .
This implies that a ∈ B(v) for w < v < t. Finally, we also have a ∈ B(w)
since ∣S(w; χv(a))∣ ≥ rβ (where v is the successor of w with v ≤ t) would
lead to a large bipartite graph⋃v∈S(w)[a]v × [c̄ ∩Uu]u . Thus, a ∈Wv for
all v between s and t.

(iii) If a ∈ C(s) and a ∈ C(t), we consider the leafw ∈ T withUw = {a}.
By symmetry, we may assume that s ⊓ w ≤ t ⊓ w. Since a ∈ B(w), it follows
by case (ii) above that a ∈Wv , for all s⊓w < v ≤ w, all s⊓w < v ≤ s, and all
s ⊓ t < v ≤ t. In particular, a ∈Wv holds for all vertices v on the path from s

to t.
(iv) Finally, suppose that a ∈ D(t) and a ∈Wu . Choose s ≤ t, p, c̄ as in

the definition of D(t). Then a ∈ D(v) for all s ≤ v ≤ t. Furthermore,

∣S(p; χs(c̄ ∩Us))∣ ≥ rβ implies ∣[c̄ ∩Up]p ∣ ≥ rβ .

If a ∉ Up , we therefore have a ∈ C(p). Otherwise, we claim that a ∈ B(p).
In both cases it then follows by (i)–(iii) that a belongs to all vertices between
t and u. Hence, it remains to prove the claim. Let v be the successor of p
with a ∈ Uv . If ∣[a]v ∣ ≥ β, we would have a large bipartite graph

[a]v × (S(p; χs(c̄ ∩Us)) ∖ (P ∪ {v})) ,

where P ∶= { r ∈ S(p) ∣ c̄ ∩Ur ≠ ∅} has size at most r − 1. A contradiction.
Hence, ∣[a]v ∣ < β. For a contradiction, suppose that a ∉ B(p). Then it
follows that ∣S(p; χv(a))∣ ≥ rβ. Consequently, we can choose disjoint sets

P ⊆ S(p; χs(c̄ ∩Us)) and Q ⊆ S(p; χv(a))

of size ∣P∣, ∣Q ∣ ≥ β. These induce the bipartite graph P ×Q . A contradiction.
This conclude the proof that (Wt)t is a tree-decomposition. It remains

to show that ∣Wt ∣ ≤ N. Clearly,

∣B(t)∣ ≤ (β − 1)(rβ − 1)M .
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To compute ∣D(t)∣, we set

Dα(t) ∶= ⋃{ c̄ ∖Us ∣ there are R ∈ Σ, c̄ ∈ R, s ≤ t, p parent of s,

χt(c̄ ∩Ut) = α, c̄ ∩Us = c̄ ∩Ut and

∣S(p; χs(c̄ ∩Us))∣ ≥ rβ } .

We claim that that ∣Dα(t)∣ < β and, hence, ∣D(t)∣ ≤ (β − 1)M. For a con-
tradiction, suppose otherwise and choose β distince elements a0 , . . . , aβ−1 ∈
Dα(t). By definition, there exist vertices s i ≤ t and tuples c̄ i in some rela-
tion R i such that

a i ∈ c̄ i ∖Us i , χt(c̄ i ∩Ut) = α , c̄ i ∩Us i = c̄ ∩Ut ,

∣S(p i ; χs i (c̄ i ∩Us i ))∣ ≥ rβ ,

where p i is the parent of s i . Set s ∶= max{ s i ∣ i < β }, let p be the parent of s,
and set α′ ∶= χs(c̄ i ∩Us i ) = χs(c̄ i ∩Ut). Since every tuple c̄ i can intersect
at most r − 1 componentsUu with u ∈ S(p; α′), it follows that we can find a
set P ⊆ S(p; α′) of size ∣P∣ ≥ ∣S(p; α′)∣ − β(r − 1) ≥ β such that

c̄ i ∩ ⋃
u∈P

Uu = ∅ , for all i < β .

For each i < β and u ∈ P, the relation R i contains a tuple d̄ with

d̄ ∖Uu = c̄ i ∖Us and d̄ ∩Uu ∈ [α′]u .

Consequently, the Gaifman graph of A contains the subgraph

{a i} × ⋃
u∈P
[α′]u .

Taking the union, we obtain the graph

{ a i ∣ i < β } × ⋃
u∈P
[α′]u ,

which contains a copy of Kβ ,β . A contradiction.
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IX. Crossing-Width

It remains to show that ∣C(t)∣ ≤ (r − 1)(β − 1)M. For a colour α and a
vertex s ≤ t, let

Cα(t; s) ∶= ⋃{ c̄ ∖Us ∣ there are R ∈ Σ, c̄ ∈ R, c̄ ∩Us = c̄ ∩Ut ,

∣[c̄ ∩Us]s ∣ ≥ β, α = χs(c̄ ∩Us) } .

For each a ∈ Cα(t; s), we fix a tuple c̄a witnessing that a ∈ Cα(t; s). Then
the Gaifman graph of A contains the bipartite graph

[c̄a0]s × (c̄
a ∖Ut) = [α]s × (c̄a ∖Ut) .

Taking the union, we obtain the graph

[α]s ×Hα(s) where Hα(s) ∶= ⋃
a∈Cα(t;s)

(c̄a ∖Ut) .

Let I be the set of all possible choices for s. We claim that

∣⋃s∈I Hα(s)∣ < β .

Suppose otherwise. Then there is some finite subset I0 ⊆ I with

∣⋃s∈I0 Hα(s)∣ ≥ β .

Let s ∈ I0 be its maximal element. Then the Gaifman graph contains the
bipartite graph

Kβ ,β ⊆ [α]s × ⋃
s∈I0

Hα(s) .

A contradiction. Note that Cα(t; s) is just the union of all tuples inHα(s)
each of which has at most r − 1 components. Consequently, ∣Cα(t; s)∣ ≤
(r − 1) ⋅ ∣Hα(s)∣ and

∣C(t)∣ = ∣⋃
α
⋃
s∈I

Cα(t; s)∣ ≤M ⋅ (r − 1) ⋅ (β − 1) .
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Corollary 4.4. Let Σ be a finite relational signature and k, β < ω. There exists

a number N < ω with the following property.

Let A be a Σ-structure such that the Gaifman graph of A does not contain (as

a non-induced subgraph) the complete bipartite graph Kβ ,β . For every partition

decomposition (Ut)t∈T of A of width k whose index tree T has height at most ω,
there exists a tree-decomposition (Wt)t∈T of Awith the same index tree T whose

width is at most N.

Proof. Fix a partition decomposition (Ut)t∈T of A of width k. By Proposi-
tion 3.6, there exists a⊕-term s denotingA such thatT is the underlying tree
of s. Consequently, we can use Lemma 4.3 to construct a tree-decomposition
of A of width at most N with index tree T.

Theorem 4.5. Let C be a class of Σ-structures for a finite signature Σ. The

following statements are equivalent.

(1) twdC < ∞.

(2) cwdC < ∞ and there is some s < ω such that all structures in C are

s-sparse.

(3) cwdC < ∞ and there exists a number β < ω such that the complete

bipartite graph Kβ ,β is not a (non-induced) subgraph of any Gaifman

graph of a structure in C.

Proof. (3)⇒ (1) follows by Corollary 4.4; (1)⇒ (2) by Proposition 4.1 and
Lemma VIII.1.8; and (2)⇒ (3) holds since Kβ ,β is not (β − 2)-sparse (as a
structure over the signature {E} ; as a graph it is 1

2 (β − 1)-sparse but not
1
2 (β − 2)-sparse).

Our final remark allows us to transfer many results about crossing-width
(such as those in the next section) to tree-width. For the application we have
in mind, it is also necessary to keep track of the index trees while doing so.

Proposition 4.6. Let C be a class of Σ-structures for a finite signature Σ, Cin the
corresponding class of incidence structures, let T be a class of trees (of height at

most ω) and let T+ be the class of trees obtained from T by adding to every vertex

a bounded number of new leaves. The following statements are equivalent.
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IX. Crossing-Width

(1) There exists a constant k < ω such that every A ∈ C has a tree-decomposi-
tion of width at most k whose index tree belongs to T .

(2) There exists a constant k < ω such that every incidence structure A ∈ Cin
has a tree-decomposition of width at most k whose index tree belongs to T .

(3) There exists a constant k < ω such that every incidence structure A ∈ Cin
has a partition decomposition of width at most k whose index tree belongs

to T+.

Proof. (2)⇒ (3) follows by Proposition 4.1.
(3)⇒ (2) By Corollary 4.4, every structure A ∈ Cin has a tree-decompos-

ition (Ut)t∈T whose width N is bounded in terms of k and whose index
tree T belongs to T+. By definition, T is obtained from some tree T0 ∈ T
by adding at most m < ω leaves to every vertex. Let S(t) be the set of leaves
added to t ∈ T0. We construct a new tree-decomposition (Wt)t∈T0 with
components

Wt ∶= Ut ∪ ⋃
s∈S(t)

Us .

Then ∣Wt ∣ ≤ (m + 1)N is bounded.
(1)⇒ (2) Let (Ut)t∈T be a tree-decomposition of A of width k. For every

tuple c̄ in some relation of A, we pick some index t(c̄) ∈ T with c̄ ⊆ Ut(c̄)
and we set

Wt ∶= Ut ∪ { c̄ ∣ t(c̄) = t } .

It is straightforward to check that (Wt)t∈T is a tree-decomposition of Ain.
Furthermore, sinceUt contains at most (∣Ut ∣ + 1)r tuples of arity at most r,
we have

∣Wt ∣ ≤ k + (k + 1)r .

(2)⇒ (1) Let (Ut)t∈T be a tree-decomposition of Ain of width k. Let
Wt be the set obtained fromUt by replacing each tuple c̄ ∈ Ut by its com-
ponents, i.e.,

Wt ∶= (Ut ∩A) ∪⋃{ c̄ ∣ c̄ ∈ Ut ∖A} .
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5 Interpretations

Then ∣Wt ∣ ≤ kr and it is straightforward to check that (Wt)t∈T is a tree-
decomposition of A.

Corollary 4.7. Let C be a class of Σ-structures and Cin the corresponding class
of incidence structures. Then

twdC < ℵ0 iff cwdCin < ℵ0 .

5 Interpretation+

There is a close connection betweenMSO-interpretations and the decom-
positions for crossing-width.

Proposition 5.1. Let τ be a CMSO-interpretation. For every k < ω, there
exists a number n < ω such that, if a structure A has a partition decomposition

(Ut)t∈T of width at most k, then τ(A) has a partition decomposition (Ws)s∈S
of width at most n where the index tree S can be obtained from T by deleting

some subtrees.

Proof. Suppose that τ = ⟨δ(x), (φR(x̄))R⟩ and let (Ut)t∈T be a partition
decomposition of A of width at most k. We set

Wt ∶= Ut ∩ δA and S ∶= { t ∈ T ∣Wt ≠ ∅} .

Then (Ws)s∈S is a partition decomposition of τ(A). To compute its width,
let f be the function from Corollary 1.7. Setting n ∶= f (k) it follows that

crk(Ws/A) ≤ k implies crk(Ws/τ(A)) ≤ n , for all s ∈ S .

If we require more precise information about the index tree of the decom-
position, we have to use a special kind of interpretation.

Definition 5.2. An interpretation τ = ⟨δ(x), (φR(x̄))R⟩ is leaf-based if

T ⊧ δ(v) iff v is a leaf, for every tree T . ⌟
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IX. Crossing-Width

Lemma 5.3. Let τ be a leaf-based CMSO-interpretation. There exists a num-

ber k < ω such that, for every order tree T, the image τ(T) has a partition
decomposition (Ut)t∈T of width at most k with index tree T.

Proof. Note that every order-tree T has a partition decomposition (Us)s∈S
of width 1 whose index tree S can be obtained from T by adding a new leaf
to every vertex. We can therefore use Proposition 5.1 to find a partition
decomposition (Ws)s∈S0 of τ(A) whose index tree S0 is obtained from S

by removing some subtrees and whose width is bounded by some constant k
only depending on τ. A closer look at the proof of Proposition 5.1 shows that
the vertices s ∈ S ∖ S0 are exactly those such thatUs ∩ δT = ∅. As τ is leaf-
based, it follows that S ∖ S0 contains the new vertices added to an internal
vertex of T. Hence, S0 is obtained from T by adding a new successor to every
leaf. Thus, if s ∈ S0 ∖ T is the successor of t ∈ T, then Ws = Wt = Ut
is a singleton. It follows that we can remove the componentWs from the
decomposition again without violating any of the axioms of a partition
decomposition. Consequently, (Ws)s∈T is also a partition decomposition
of τ(T) of width k.

Lemma 5.4. The function val mapping a ⊕-term to the corresponding structure

is a leaf-basedMSO-interpretation.

Proof. Let t be an ⊕-term over the signatures Σ and Ξ. The elements of
val(t) are the leaves of t, which are MSO-definable. Hence, it remains to
find formulae φR for each relation R.

For a tuple v̄ of leaves of t and a vertex u ⪯ inf v̄, we say that the colour of v̄
at u is the set

C(u; v̄) ∶= {R ∈ Ξ ∣ v̄ ∈ R in the structure val(t∣u) } .

Let v̄ be a tuple of leaves in t. By induction on ∣v̄∣, we construct formu-
lae ψR(x , ȳ), for R ∈ Ξ, such that

t ⊧ ψR(u, v̄) iff u ⪯ inf v̄ and R ∈ C(u; v̄) .
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The formula ψR guesses the colours C(w; v̄), for every u ⪯ w ⪯ inf v̄, and
then checks whether R ∈ C(u; v̄). We can verify that the guesses are correct
by induction starting at w ∶= inf v̄.

Hence, suppose thatw ∶= inf v̄. If v0 = ⋅ ⋅ ⋅ = vn−1, we havew = v0 and we
can read off C(v0; v̄) from the label at 0. Otherwise, v̄ splits at some vertices
w , s0 , . . . , sn−1. Let v̄0 , . . . , v̄n−1 be its split. By inductive hypothesis, we can
compute the colours C(s i ; v̄ i). From this data and the operation labelling w,
we can now derive C(w; v̄).

For the inductive step, suppose that we already know C(w; v̄) and let
w
′ be the predecessor of w. Then we can compute C(w′; v̄) from C(w; v̄)

by looking at the operation labelling w.

We obtain the following characterisation of classes of finite crossing-
width.

Theorem 5.5. Let T be a class of order-trees, possibly of ordinal height, and

let C be a class of Σ-structures for a finite relational signature Σ. We denote by

T (k) the class of all coloured trees with k colours whose underlying tree belongs
to T . The following statements are equivalent.

(1) There exists a constant m < ω such that every structure in C has a partition
decomposition of width at most m whose index tree belongs to T .

(2) Every structure in C can be denoted by a ⊕-term whose underlying tree

belongs to T .

(3) There exists a leaf-basedMSO-interpretation of C in some sublcass of T (k),
for some finite k.

(4) There exists a leaf-based CMSO-interpretation of C some sublcass of T (k),
for some finite k.

If the class T is the class of all trees of height at most α, where α is either finite, a

limit ordinal, or α = ∞, the following statement is equivalent to the ones above.

(5) There exists a leaf-based FO-interpretation of C in T (k), for some finite k.

Proof. The implications (1)⇒ (2)⇒ (3)⇒ (1) follow by, respectively, Pro-
position 3.6, Lemma 5.4, and Lemma 5.3; and (4)⇒ (3) is trivial.
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IX. Crossing-Width

(3)⇒ (4) IfT is a class of trees whose height is bounded by some finite n <
ω, the claim follows by PropositionV.1.17. IfT is the class of trees of height at
most α, where α is a limit ordinal, the claim follows by CorollaryV.1.16.

If we do not care what the class of trees looks like, we obtain the following
statement.

Corollary 5.6. Let C be a class of Σ-structures for a finite relational signature Σ.
The following statements are equivalent.

(1) cwdC < ℵ0

(2) Every structure in C can be denoted by a ⊕-term.

(3) There exists a leaf-based CMSO-interpretation of C in some class of trees.

(4) There exists a CMSO-interpretation of C in some class of trees.

(5) There exists a leaf-basedMSO-interpretation of C in some class of trees.

(6) There exists anMSO-interpretation of C in some class of trees.

(7) There exists a leaf-based FO-interpretation of C in some class of trees.

(8) There exists an FO-interpretation of C in some class of trees.

Proof. Theequivalences follow from the preceding theoremand the following
two additional arguments.
First, note that we can encode every tree with colours {c0 , . . . , ck−1} as

an uncoloured tree by adding i + 1 new leaves to each vertex v with label c i .
Second, we can turn an arbitrary interpretation (CMSO,MSO, or FO)

into a leaf-based one by adding leaves to the input tree.

Remark. The same result holds in the important case where all structures
in C are countable and we only consider countable trees of height ω. ⌟

For a single structure we obtain.

Corollary 5.7. Let A be a Σ-structure with a finite relational signature Σ. The

following statements are equivalent.

(1) cwdA < ℵ0

(2) A can be denoted by a ⊕-term.

634



5 Interpretations

(3) There exists a leaf-based CMSO-interpretation of A in some tree.

(4) There exists a CMSO-interpretation of A in some tree.

(5) There exists a leaf-basedMSO-interpretation of A in some tree.

(6) There exists anMSO-interpretation of A in some tree.

(7) There exists a leaf-based FO-interpretation of A in some tree.

(8) There exists an FO-interpretation of A in some tree.

As an application, we obtain the following Löwenheim-Skolem theorem
for classes of bounded crossing width.

Proposition 5.8. Let Σ be a finite signature and C a non-empty class of Σ-
structures with cwdC < ℵ0. Then C contains a structure of size at most κ.

Proof. By Corollary 5.6, there exists anMSO-interpretation τ and a class T
of trees such that τ[T ] = C. Furthermore, we can use Corollary V.4.4 to
find a countable tree T ∈ T . Its image τ(T) ∈ C is the desired countable
structure in C.

The analogue of the Excluded Grid Theorem (Theorem VIII.4.1) for
crossing-width is still open.

Open Question (Seese’s Conjecture). Let C be a class of Σ-structures with
unbounded crossing-width. Does there exist anMSO-interpretation of the class
of all finite grids in C ?

Currently, only the following partial result is known.

Theorem 5.9 (Courcelle, Oum). Let C be a class of undirected graphs with
unbounded crossing-width. Then there exist a CMSO-interpretation mapping C
to the class of all finite grids.

We conclude this section by taking a look at two other operations that are
compatible with monadic second-order logic. The first one is the Muchnik
iteration.

Proposition 5.10. cwdA∗ ≤ 2r−1 ⋅ cwdA
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IX. Crossing-Width

Proof. Let (Ut)t∈T be a partition decomposition ofA of width cwdA and let
L be the set of leaves of T. Let S be the tree obtained from T by recursively
attaching copies of T to every leaf. Formally, we set

S ∶= L∗(T + 1) ,

with the following variant of the prefix ordering. We set

⟨s0 , . . . , sm−1⟩ ≤ ⟨t0 , . . . , tn−1⟩

if, and only if, m ≤ n, s i = t i , for i < m, and either

m = n and sm−1 ≤ tm−1 , or m < n and sm−1 = tm−1 .

The components are

W⟨t0 , . . . ,tn−1 ,tn⟩ ∶= { a0 . . . an−1anw ∣ a i ∈ Ut i , w ∈ A
∗ } ,

W⟨t0 , . . . ,tn−1 ,∗⟩ ∶= {a0 . . . an−1} whereUt i = {a i}

(where ∗ denotes the unique element of 1).
Then (Wv)v∈S is a partition decomposition and it remains to compute

its width. Hence, fix a vertex v = ⟨t0 , . . . , tn−1⟩ ∈ S and set P of successors
of v. If tn−1 is a leaf, then v has exactly two successors with components

W⟨t0 , . . . ,tn−1 ,⟨⟩⟩ ∶= { a0 . . . an−1w ∣ Ut i = {a i}, w ∈ A
∗ } ,

W⟨t0 , . . . ,tn−1 ,∗⟩ ∶= {a0 . . . an−1} whereUt i = {a i} .

The corresponding ranks are

crk(W⟨t0 , . . . ,tn−1 ,⟨⟩⟩) = 1 and crk(W⟨t0 , . . . ,tn−1 ,∗⟩) = 1 .

Otherwise, we have

⋃
s∈P

Ws = wVA
∗ where {w} = Ut0× ⋅ ⋅ ⋅ ×Utn−1 and V ∶= ⋃

s∈P
Us .
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Setting

X ∶= wV , Q ∶= w(A∖V) , Y ∶= wVA+ , Z ∶= A∗ ∖ wA
∗

we have ⋃s∈P Ws = X ∪ Y and A ∖ ⋃s∈P Ws = Q ∪ Z. Furthermore, for
ā, ā′ ⊆ X and b̄, b̄′ ⊆ Y we have

āb̄ ≃Q∪Z ā
′
b̄
′ iff ā ≃Q ā

′ .

Considering the variousways an (r−1)-tuple can be distributed overX andY
it therefore follows that

crk(⋃s∈P Ws/A
∗) = ∣(X ∪ Y)r−1/≃Q∪Z ∣

≤ ∑
k≤r−1

(
r − 1
k

)∣Xk/≃Q ∣

≤ 2r−1∣Xr−1/≃Q ∣

≤ 2r−1 ⋅ crk(⋃s∈P Us/A) ,

The other operation we are interested in are generalised sums.

Proposition 5.11. Let Σ and Γ be finite relational signatures, I a Γ-structure,
and (Ai)i∈I a family of Σ-structures. Suppose that there exists a constant k < ω
such that

cwdAi ≤ k , for all i ∈ I .

Then

cwd∑
i∈I

Ai ≤ max{k, cwdI} .

Proof. Fix partition decompositions (Ws)s∈S of I and (U i
t)t∈Ti of Ai of

widths at most cwdI and k, respectively. Let µ ∶ I → S be the function
mapping an element i ∈ I to the unique leaf µ(i) of S with Wµ(i) = {i}.
We construct a partition decomposition (Vr)r∈F of∑i Ai as follows.The
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IX. Crossing-Width

index tree F is the tree obtained from S by adding the tree Tµ−1(s) to each
leaf s. Formally,

F = S +∑
i∈I

Ti

with ordering, for s, s′ ∈ S, i , i′ ∈ I, t ∈ Ti , t′ ∈ Ti′ ,

s ≤ s′ : iff s ≤ s′ in S ,

s ≤ ⟨i , t⟩ : iff s ≤ µ(i) ,
⟨i , t⟩ ≤ ⟨i′ , t′⟩ : iff i = i′ and t ≤ t′ in Ti .

The components are

Vs ∶= { ⟨i , a⟩ ∣ µ(i) ≥ s and a ∈ A i } , for s ∈ S ,

V⟨i ,t⟩ ∶= { ⟨i , a⟩ ∣ a ∈ U
i
t } , for i ∈ I and t ∈ Ti .

Then (Vr)r∈F is a partition decomposition and it remains to compute its
width.

For a vertex of the form ⟨i , t⟩ and a set P of its successors, we have

crk(⋃s∈P Vs) = crk(⋃s∈P U
i
s/Ai) ≤ k .

(Where we have identified P with the corresponding set of successors of t
in Ti .)

For a vertex of the form s ∈ S and a set P of its successors, we proceed as
follows. Consider two tuples c̄, c̄′ ∈ V r−1

s with components c j = ⟨i j , a j⟩ and
c
′
j = ⟨i

′
j , a

′
j⟩. We claim that

c̄ ≃∑i A i∖Vs c̄
′ iff ı̄ ≃I∖Ws ı̄

′ .

Then it follows that

crk(Vs) ≤ crk(Ws/I) ≤ cwdI .

To prove the claim, note that we cannot distinguish c̄ and c̄
′ using the

relation ∼ since Vs is a union of ∼-classes. Similarly, we cannot distinguish
them using a relation from Σ. Hence, the only way to distinguish c̄ and c̄′ is
via a relation from Γ.
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6 Non-standard crossing-width

6 Non-Standard Cro^ing-Width

We have shown in Section VIII.1 that having a given finite tree-width is a
first-order property. Here we derive the analogous results for crossing-width.
Again the main technical issue is the fact that being a tree is not first-order
axiomatisable. Hence, we have to work with decompositions indexed by
non-standard trees (which we have introduced in Definition VIII.1.11).

Definition 6.1. (a) Let ⟨T , ≤,⊓⟩ be a non-standard tree.We call themaximal
elements of T its leaves. An element t ∈ T is meet-irreducible if it we cannot
write t as s0 ⊓ s1 with s0 , s1 > t. We call t meet-reducible if it it neither a leaf
nor meet-irreducible.
(b) A non-standard partition decomposition of a structure A if a family

(Ut)t∈T of non-empty subsets Ut ⊆ A indexed by a non-standard tree T
satisfying the following conditions.
◆ s ≤ t impliesUs ⊇ Ut ,
◆ Us ∩Ut = ∅, if s and t are incomparable,
◆ for every a ∈ A, there is some t ∈ T withUt = {a}.
(c)The width of a partition decomposition (Ut)t∈T ofA is the supremum

over all ranks

crk(⋃t∈I(C)Ut) ,

where C ranges over all finite non-empty antichains and

I(C) ∶= ⇓C ∖ ⇓ inf C .

The non-standard crossing-width cwdns A of a structure A is the minimal
width of a non-standard partition decomposition of A. ⌟

A new problem we are facing when trying to adapt the material in Sec-
tion VIII.1 is that a given structure might not contain enough elements to
enable us to encode the index tree of a (non-standard) partition decomposi-
tion. It only has element for the leaves of the tree. To encode the whole tree
we have therefore to use pairs of elements.This leads to the following ternary
relation.

639



IX. Crossing-Width

Definition 6.2. Let ⟨T , ≤,⊓⟩ be a non-standard tree and let L ⊆ T be the
set of its maximal elements. The holographic relation on L is

H ∶= { ⟨a, b, c⟩ ∈ L3 ∣ a ⊓ b ≤ c } . ⌟

Lemma 6.3. Let ⟨T , ≤,⊓⟩ be a non-standard tree with maximal elements L,
and let H be its holographic relation. The 4-ary relation

a ⊓ b ≤ c ⊓ d

is definable in ⟨L,H⟩.

Proof. We have

a ⊓ b ≤ c ⊓ d iff a ⊓ b ≤ c and a ⊓ b ≤ d .

Thus we can encode the elements of the original tree T by pairs of leaves,
provided that we can express every element as an infimum of leaves, i.e., if
every non-leaf of T is meet-reducible. Note that, when considering non-
standard partition decompositions, this is no loss of generality since we can
always remove all meet-irreducible non-leaves (which are the vertices with
exactly 1 successor) from its index tree.

Exercise 6.1. Let (Ut)t∈T be a non-standard partition decomposition of a
structure A of width k and let S ∶= { s ⊓ t ∣ s, t leaves of T } be the set of its
meet-reducible elements and its leaves.Then (Ut)t∈S is also a non-standard
partition decomposition of A of width k. ⌟

Using this encoding we can prove the following compactness result.

Proposition 6.4. Let A be a Σ-structure. Then

cwdns A = sup{ cwdC ∣ C ⊆ A finite} .

Proof. Let k be the value of the above supremum. Since C ⊆ A implies
cwdC = cwdns(C) ≤ cwdns(A), we have k ≤ cwdA. Hence, it is sufficient
to prove that cwdns(A) ≤ k. We construct a corresponding non-standard
partition decomposition as follows.
Let ∆ be the atomic diagram of A and let Φ be a set of formulae stating

the following properties.
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6 Non-standard crossing-width

◆ H is the holographic relation of some non-standard tree T whose set of
leaves is A. (We identify T with a quotient of A2 via the map ⟨a, b⟩ ↦
a ⊓ b.)

◆ U is a ternary relation such that the family (Us ,t)s ,t∈A defined byUs ,t ∶=
{ a ∈ A ∣ ⟨a, s, t⟩ ∈ U } forms a partition decomposition with Ua ,a =
{a}, for all a ∈ A.

◆ crk(⋃t∈I Ut) ≤ k, for all I as in the definition of the width of a non-
standard partition decomposition.

Since every finite subset of∆∪Φ is satisfiable there exists amodelA+ ⊧ ∆∪Φ.
Since A+ satisfies ∆, there exists an embedding A → A+. Hence, we may
assume that A ⊆ A+. Let (Us ,t)s ,t be the corresponding family of sets
and set Ws ,t ∶= Us ,t ∩ A. Clearly, (Ws ,t)s ,t is a non-standard partition
decomposition of A. It remains to show that its width is at most k.
Hence, fix a vertex ⟨s, t⟩ of the tree and a set I = I(C) of successors

associated with a finite antichain C as in the definition of the width.Then

crk(⋃t∈I Ut/A+) ≤ k implies crk(⋃t∈I Wt/A) ≤ k .

As for tree-width, it follows that the first-order theory of a structure
determines its non-standard crossing-width.

Theorem 6.5. Let A and B be Σ-structures.

A ≡FO B implies cwdns A = cwdns B .

Proof. Let k ∶= cwdns A. By symmetry and Proposition 6.4, it is sufficient
to show that

cwdB0 ≤ k , for every finite B0 ⊆ B .

For every n < ω, let φn be an FO-formula stating that every n-tuple of
elements induces a substructure whose crossing-width is at most k. Such a
formula exists, since there are only finitely many Σ-structures with at most n
elements. Then

A ⊧ φn implies B ⊧ φn , for all n < ω .
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IX. Crossing-Width

It remains to determine the consequences of these results for the standard
crossing-width. To do so we have to turn non-standard partition decompos-
itions into standard ones.

Theorem 6.6. For every signature Σ and every constant k, there exists a num-

ber n with the following property. Every Σ-structure A with cwdns A < k has
a (standard) partition decomposition of width n whose index tree has height at

most max{∣A∣,ω}.

Proof. Let (Ut)t∈T be a non-standard partition decomposition ofA of width
at most k and set κ ∶= max{∣A∣,ω}. If A is finite then so is T. Hence,
(Ut)t∈T is a normal partition decomposition and there is nothing to do.We
may therefore assume that A and T are infinite.

In fact, we may further assume that ∣T∣ = ∣A∣. To see this, we fix, for every
a ∈ A, some vertex t ∈ T withUt = {a}. Let S0 be the set of these vertices
and set S ∶= { u ⊓ v ∣ u, v ∈ S0 }. Then (Ut)t∈S is a non-standard partition
decomposition of the same width whose index tree has size ∣S∣ = ∣S0∣ = ∣A∣.
We will construct the desired standard partition decomposition as the

limit of a sequence of partial ones, which are decompositions where we drop
the requirement that leaf components are singletons. More precisely, we call
a family (Ws)s∈S a partial partition decomposition if
◆ eachWs is a non-empty subset of A,
◆ S is an order-tree,
◆ s ≤ t impliesWs ⊇Wt ,
◆ Ws ∩Wt = ∅, if s and t are incomparable,
◆ for every a ∈ A, there is a leaf s ∈ S with a ∈Ws .
We also need the notion of a subdecomposition of (Ut)t∈T .This is a family

of the form (Us)s∈S where the index set S ⊆ T is a prefix of some subtree
of T, that is, S is either equal to T or there is some vertex t ∈ T ∖ S such
that

s ∈ S implies u ∈ S , for all t < u < s and all u > s .

In the latter case we say that the subdecomposition is below the vertex t. We
also say that (Us)s∈S is a subdecomposition of some set C if C = ⋃s∈S Us .
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6 Non-standard crossing-width

Fix an enumeration (a i)i<κ of A. We will construct a sequence (Ws)s∈S i

of partial partial decompositions of width f (k)with the following properties.

◆ S i ⊆ S j for i ≤ j.

◆ Each S i has height at most κ.
◆ For every j < i, there is some leaf s ∈ S i withWs = {a j}.

◆ For every leaf s ∈ S i with ∣Ws ∣ > 1, there exists a subdecomposition of
(Ut)t ofWs .

Then the limit (Ws)s∈S with S = ⋃i S i is the desired partition decomposi-
tion of A.

We construct (Ws)s∈S i by induction on i starting with the family where
S0 consists of a single vertex ⟨⟩ andW⟨⟩ = A. For the successor step, suppose
that we have already defined (Ws)s∈S i . Let s i ∈ S i be the leaf with a i ∈Ws i .
By inductive hypothesis, there exists a set Ti ⊆ T such that (Ut)t∈Ti is a
subdecomposition of the setWs i . Let t i ∈ Ti be the leaf with Ut i = {a i},
set

I ∶= { t ∈ Ti ∣ t ≤ t i } ,

and let (Kr)r∈R be the partition decomposition of the linear order ⟨I, ≤⟩
obtained from Lemma 2.3 (a). Let S i+1 be the tree obtained from S i by
replacing the leaf s i with the tree R. Since the heights of S i and R are at
most κ, the same holds for the height of S i+1.We define the new components
as follows. Let r ∈ R and let Lr be the vertices in I that are larger than all
vertices in Kr . We set

Wr ∶= ⋃
t∈Kr

Ut ∖ ⋃
t∈Lr

Ut .

(If Kr and Lr have least elements u and v, respectively, this definition sim-
plifies toWr = Uu ∖Uv .) For a leaf r ∈ R with Kr = {t}, it follows that

Wr = Ut ∖ ⋃
s∈Lr

Us

= ⋃{Us ∣ s > t and there is no t < u < s with u ∈ I } .
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IX. Crossing-Width

This implies that crk(Wr) ≤ k and there is a subdecomposition of (Ut)t∈Ti

ofWr . For internal vertices r ∈ R, the fact that (Ut)t has width k implies
that

crk(⋃t∈Kr Ut) ≤ k and crk(⋃t∈Lr Ut) ≤ k .

Consequently, it follows by Lemma 1.2 (e) that

crk(Wr) ≤ k
ck ,

for some constant c only depending on Σ.
Finally, for the limit step let δ be a limit ordinal and suppose that we

have already defined (Ws)s∈S i for all i < δ. We set Sδ = ⋃i<δ S i . Note that,
being a union of trees of height at most κ, the tree Sδ also has height at
most κ.

Corollary 6.7. A ≡FO B and cwdA < ℵ0 implies cwdB < ℵ0 .

Corollary 6.8. Let C be a class of Σ-structures and Cfin the class of all finite
substructures of structures in C. Then

cwdCfin < ℵ0 implies cwdC < ℵ0 .

7 The Monadi$ Independen$e Property

The aim of this section is to study combinatorial properties of complicated
classes of Σ-structures. In particular, these properties can be used to prove
that a given class has unbounded crossing-width or unbounded tree-width.
We start with a criterion based on the definability of certain functions.

Definition 7.1. We call a function f ∶ A× B → C cancellative if

f (a, b) = f (a′ , b) implies a = a′ ,

f (a, b) = f (a, b′) implies b = b′ . ⌟

Note that, in particular, every bijective functionA×B → C is cancellative.
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7 The monadic independence property

Proposition 7.2. Let C be a set, κ a cardinal, and f ∶ A× B → C (the graph

of) a cancellative function where A, B ⊆ C are sets of size ∣A∣, ∣B∣ > 3κ. Then

cwd ⟨C , f ⟩ ≥ κ .

Proof. For a contradiction, suppose that there exists a partition refinement
(Ut)t∈T of ⟨C , f ⟩ such that

crk(⋃i∈P Us i ) < κ , for every t ∈ T and every subset P of

successors of t .

By Exercise 2.3, we may assume that the index tree T is binary. For t ∈ T,
set At ∶= A∩Ut and Bt ∶= B ∩Ut .
We claim that there exists a vertex s ∈ T such that

∣As ∣ > κ and ∣A∖As ∣ ≥ κ .

To find s, note that the set S ∶= { t ∈ T ∣ ∣At ∣ > 2κ } forms a chain. Let
(t i)i<α be an increasing enumeration of S.

If κ is finite, then S has amaximal element s. By symmetry, wemay assume
that ∣At0∣ ≥ ∣At1∣. Then

2∣At0∣ ≥ ∣At0∣ + ∣At1∣ = ∣At ∣ > 2κ implies ∣At0∣ > κ .

Hence, we can set s ∶= t0.
If κ is infinite, ∣At ∣ = ∣At0∣ + ∣At1∣ implies that α is a limit ordinal. Let

X i ∶= At i ∖At i+1 , Z ∶= ⋂
i<α

At i , and I ∶= { i < α ∣ X i ≠ ∅} .

Then A = Z ∪⋃i<α X i . As ∣A∣ > κ and ∣Z∣ ≤ κ, it follows that

∑
i∈I
∣X i ∣ = ∑

i<α
∣X i ∣ = ∣A∖ Z∣ > κ .

Since ∣X i ∣ ≤ κ and κ+ is regular we have ∣I∣ > κ. Consequently, there is some
β < α such that ∣I ∩ β∣ ≥ κ. Setting s ∶= tβ it follows that

∣As ∣ > κ and ∣A∖As ∣ = ∑
i<β
∣X i ∣ ≥ ∣I ∩ β∣ ≥ κ .
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IX. Crossing-Width

Having found a vertex s ∈ T as above we distinguish two cases. We have
∣Bs ∣ ≥ κ or ∣B ∖ Bs ∣ ≥ κ. We consider both case separately.
(i) First, suppose that ∣Bs ∣ ≥ κ. We start by showing that there are less

than κ elements b ∈ Bs such that f (a, b) = c, for some a ∈ A ∖ As and
c ∈ C∖Us . Otherwise, we could find elements a, a′ ∈ A∖As , c, c′ ∈ C∖Us ,
and b, b′ ∈ Bs with

b ≠ b′ , f (a, b) = c , f (a′ , b′) = c′ , and b ≃C∖Us b
′ .

But then f (a′ , b′) = c′ implies f (a′ , b) = c′. Hence, f (a′ , b) = f (a′ , b′).
Since f is cancellative it follows that b = b′. A contradiction.
Consequently, there is some b ∈ Bs such that f (a, b) ∈ Us , for all a ∈

A∖As . Since ∣A∖As ∣ ≥ κ, we can find a ≠ a′ inA∖As with b, f (a, b) ≃C∖Us

b, f (a′ , b). Hence, we have

f (a, b) = c⇔ f (a′ , b) = c , for all A ∈ A∖As .

Again a contradiction.
(ii) It remains to consider the case where ∣B ∖ Bs ∣ ≥ κ. First, we prove

that there are less than κ elements b ∈ B∖Bs such that f (a, b) = c, for some
a ∈ As and c ∈ Us . Otherwise, we could find elements a, a′ ∈ As , c, c′ ∈ Us ,
and b, b′ ∈ B ∖ Bs with

b ≠ b′ , f (a, b) = c , f (a′ , b′) = c′ , and ac ≃C∖Us a
′
c
′ .

But then f (a, b) = c implies f (a′ , b) = c
′. Hence, f (a′ , b) = f (a′ , b′).

Since f is cancellative it follows that b = b′. A contradiction.
Consequently, there is some b ∈ B ∖ Bs such that f (a, b) ∈ C ∖Us , for

all a ∈ As . Since ∣As ∣ ≥ κ we can find a ≠ a′ in As with a ≃C∖Us a
′. Hence,

we have

f (a, b) = c⇔ f (a′ , b) = c , for all c ∈ C ∖Us .

Again a contradiction.

Corollary 7.3. A group G = ⟨G , ⋅ ⟩ has finite crossing-width if, and only if, it
is finite.
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7 The monadic independence property

Remark. InTheorem XI.6.4 below, we will prove that the Cayley graph of a
group has finite crossing-width if, and only if, the group is virtually free. ⌟

Note that every n × n grid can be used to define (inMSO) a cancellative
function A × B → C with ∣A∣ = n = ∣B∣. But it turns out that we obtain a
more natural class if we use first-order logic instead. But in that case grids
are no longer sufficient since we cannot compute transitive closures in FO.
The following lemma summarises several equivalent configurations that can
be used instead of grids.

Lemma 7.4. Let C be a class of structure. The following statements are equival-

ent.

(1) There exist a monadic expansion C+ of C and an FO-formula χ(x , y, z)
such that, for every n < ω, there is some structure M ∈ C+ in which φ
defines a bijection A× B → C with A, B,C ⊆M and ∣A∣ = n = ∣B∣.

(2) There exist a monadic expansion C+ of C and an FO-formula ϑ(x , y)
such that, for every n < ω, there is some structure M ∈ C+ and a bijection

σ ∶ A×A→ B with A, B ⊆M and ∣A∣ = n such that

M ⊧ ϑ(a, b) iff σ(a, c) = b or σ(c, a) = b , for some c .

(3) There exist a monadic expansion C+ of C and two FO-formulae φ(x , y)
and ψ(x , y) such that, for every n < ω, there is some structure M ∈ C+ in

which φ and ψ define equivalence relations with n classes such that each

class of the first one intersects every class of the other one.

Proof. (2) ⇒ (1) Fix n < ω and choose a structure M ∈ C+ in which the
formula ϑ defines pairs for a set A of size 2n. Fixing a partition A = P + Q

with ∣P∣ = n = ∣Q ∣, it follows that the formula

χ(x , y, z) ∶= Px ∧ Qy ∧ ϑ(x , z) ∧ ϑ(y, z)

defines a bijection P ×A→ B.
(1) ⇒ (2) Fix n < ω and choose a structure M ∈ C+ in which the

formula χ defines a bijection f ∶ A× B → C with ∣A∣ = n = ∣B∣. Fixing some
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IX. Crossing-Width

bijection σ ∶ A→ B, we set

D ∶= { f (a, σ(a)) ∣ a ∈ A} .

Then the formula

ϑ(x , y) ∶= ∃u∃v[ f (u, v) = y ∧ (x = u ∨ f (x , v) ∈ D)]

has the desired properties.
(1) ⇒ (3) Fix n < ω and choose a structure M ∈ C+ in which the

formula χ defines a bijection f ∶ A × B → C with ∣A∣ = n = ∣B∣. We can
define two equivalence relations on C by setting

φ(x , y) ∶= ∃u∃v∃w[ f (u,w) = x ∧ f (v ,w) = y] ,

and ψ(x , y) ∶= ∃u∃v∃w[ f (w , u) = x ∧ f (w , v) = y] .

(3) ⇒ (1) Fix n < ω and choose a structure M ∈ C+ in which the
formulae φ and ψ define two equivalence relations ∼ and ≈ with n classes
each. We fix a ≈-class A, a ∼-class B, and a set C of representatives of each
class of the relation ∼ ∩ ≈. Then the formula

χ(x , y, z) ∶= Ax ∧ By ∧ Cz ∧ z ∼ x ∧ z ≈ y

defines a bijection A× B → C.

For our official definition, we will use the second of the above variants.

Definition 7.5. (a) Let k < ω. A formula φ(x̄ , ȳ) has pairing rank at least k
in a structure A if there exist families (ā i)i<k and (b̄ i j)0≤i< j<k such that

A ⊧ φ(ām , b̄ i j) iff m = i or m = j .

(b) A class C has bounded pairing rank if there exist a number k < ω such
that no FO-formula φ(x̄ , y) with a single variable y has pairing rank k in
any structure A ∈ C.

(c) Let C be a class of Σ-structures. A monadic expansion of C is a class of
the form

C+ = { ⟨A, P̄⟩ ∣ A ∈ C , P̄ ∈ ℘(A)m } , for some m < ω . ⌟
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7 The monadic independence property

Exercise 7.1. Let τ be an FO-interpretation and C a class of structures. Show
that, if τ(C) has unbounded pairing rank, then so does C. ⌟

As our notion of a ‘complicated class’ we will use classes that have a mon-
adic expansion with unbounded pairing rank. But before showing that these
are indeed quite complicated, we will prove that the following, seemingly
much stronger property, is in fact equivalent to having such a monadic ex-
pansion.

Definition 7.6. Let C be a class of Σ-structures. A formula φ(x̄ , ȳ) has the
independence property over C if, for every n < ω, there exist a structure A ∈ C
containing two families (ā i)i<n and (b̄w)w⊆[n] of tuples such that

A ⊧ φ(ā i , b̄w) iff i ∈ w .

We say that the class C has the independence property if there exists a first-
order formula φ(x̄ , ȳ) with the independence property over C. We say that
C has themonadic independence property if some monadic expansion of C has
the independence property. ⌟

In the definition of the independence property wemay assumew.l.o.g. that
the tuples x̄ and ȳ are singletons. We omit the proof, as it is combinatorially
quite involved. In can be found in [6].

Proposition 7.7. Let C be a class of Σ-structures. If C has the monadic inde-
pendence property, there exists an FO-formula φ(x , y) with the independence
property over some monadic expansion of C, where x and y are single variables.

It remains to give the proof that the monadic independence property is
in fact equivalent to the seemingly weaker condition of having unbounded
pairing rank.

Proposition 7.8. Let C be a class of finite Σ-structures. The following conditions

are equivalent.

(1) C has the monadic independence property.

(2) C has a monadic expansion of unbounded pairing rank.
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IX. Crossing-Width

(3) For every signature Γ, there exists an FO-interpretation mapping some

monadic expansion of C to the class of all finite Γ-structures.

Proof. (2)⇒ (1) is trivial.
(3)⇒ (2) Fix a monadic expansion C+ of C and an FO-interpretation

τ = ⟨δ, φE⟩ mapping C+ to the class of all {E}-structures, where E is a
binary relation. For every n < ω, then there exists some C ∈ C+ such that

τ(C) ≅ ⟨A+A
2 , E⟩ ,

with ∣A∣ = n and

E ∶= { ⟨a, ⟨a, b⟩⟩ ∣ a, b ∈ A} ∪ { ⟨a, ⟨b, a⟩⟩ ∣ a, b ∈ A} .

Then the formula φE has pairing rank at least n in the structure C.
(1)⇒ (3) Let C+ be a monadic expansion of C with the independence

property and let φ(x , y) be the corresponding formula. ByTheorem 7.7, we
may assume that x and y are single variables. Fix a finite Γ-structure M of
size n and set

k ∶= ∣M∣ + ∑
R∈Γ
∣RM∣ .

We choose a structureC ∈ C+ which contains families (a i)i<k and (bw)w⊆[k]
such that

C ⊧ φ(a i , bw) iff i ∈ w .

We construct the desired interpretation τ as follows. Fix a bijection

σ ∶ [k] →M + ∑
R∈Γ

R
M

and set

A ∶= { a i ∣ σ(i) ∈M } .
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7 The monadic independence property

For a relation symbol R ∈ Γ and a number l that is less than the arity of R,
we define

PR , l ∶= { b{i , j} ∣ σ(i) ∈M, σ( j) ∈ RM , and

σ(i) is the l-th component of the tuple σ( j) } .

We can define the i-th incidence relation by

ψR(x̄) ∶= ∃y∃z̄⋀
l
[x l ∈ A∧ z l ∈ PR , l ∧ φ(x l , z l) ∧ φ(y, z l)] .

Setting δ(x) ∶= Ax it follows that the interpretation τ ∶= ⟨δ, (ψR)R∈Γ⟩
maps ⟨C,A, P̄⟩ to M. As τ is independent of M, it follows that τ[D] is the
set of all Γ-structures, where

D ∶= { ⟨C,A, P̄⟩ ∣ C ∈ C+ }

is a monadic expansion of C.

As an immediate consequence of these equivalences, let us note that classes
with the monadic independence property are quite complicated.

Corollary 7.9. If a class C has the monadic independence property, its crossing-
width is unbounded and itsMSO-theory is undecidable.

Proof. Let τ be an FO-interpretation mapping some monadic expansion C+
of C to the class of all Γ-structures. Then τ[C+] has unbounded crossing-
width. By Proposition 5.1, it follows that so does C+. As cwdC+ = cwdC,
the first claim follows.

For undecidability, note that there exist signatures Γ such that validity for
FO-formulae over Γ is undecidable. Consequently, the FO-theory of τ[C+]
is undecidable. Since this theory reduces to theMSO-theory of C, it follows
that the latter theory is also undecidable.

Note+

Clique-width has been introduced in [61, 62]. Our definition of crossing-
width is a modified version of the so-called partition-width defined in [15, 17].
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IX. Crossing-Width

The version for uncountable structures can also be found there. Most of this
chapter is based on these two sources.
Seese’s Conjecture was originally stated in [191]. The partial solution in

Theorem 5.9 is from [63].
The relation between tree-width and clique-width is due to [57].
The independence property was introduced by Shelah [194]. Proposi-

tion 7.7 is from [6]. The relation of the monadic independence property to
crossing width was first observed in [20, 21]. It has recently gained renewed
attention in the study of first-order model-checking [33, 72].
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X Guarded Se$ond-Order
Transdu$tion+

1 Transdu$tion+

It is time to take a look at the connection between tree-decompositions
and logic. To do so, we introduce a variant of an interpretation that is

better-suited as a transformation between classes of structures, in particular,
classes of finite structures.

Definition 1.1. Let Σ and Γ be two signatures.
(a) A transduction (from Σ to Γ) is a binary relation τ between Σ-structures

and Γ-structures. Usually we use functional notation and write B ∈ τ(A)
instead of ⟨B,A⟩ ∈ τ. For a class C of Σ-structure, we set

τ(C) ∶= ⋃{ τ(A) ∣ A ∈ C } .

(b)The composition of two transductions τ and σ is the relation

τ ○ σ ∶= { ⟨C,A⟩ ∣ ⟨C,B⟩ ∈ τ and ⟨B,A⟩ ∈ σ } . ⌟

Frequently, transductions construct the output structure from the ele-
ments of the input structure. Sometimes the information of how the elements
are encoded in the input structure is useful when reasoning about transduc-
tions. In such cases we can add this data to the transduction. (Although we
will not make much use of the resulting notion in this book.)

Definition 1.2. LetO ∶ Set→ Set be a functor. An transduction with origin
information of typeO, or aO-transduction for short, is a set of triples ⟨A,B, o⟩
where o ∶ OA→ B is a partial function called the origin map. ⌟
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X. Guarded Second-Order Transductions

Examples. (a) An interpretation τ defines an Id-transduction ⟨A, τ(B), o⟩
where o ∶ δA → B maps each element of δA to the element of B it represents.

(b) A k-dimensional interpretation τ is a Pk-transduction where PkA =
A

k .
(c)The copying operation copyk defines aCk-transduction whereCkA =

[k] ×A.
(d)The power-set operations℘ and℘fin are, respectively,℘-transductions

and ℘fin-transductions. ⌟

Lemma 1.3. Let σ be aO-transduction and τ a P-transduction. Then τ ○ σ is

a (P ○O)-transduction.

Proof. If ⟨A,B, o⟩ ∈ σ and ⟨B,C, p⟩ ∈ τ, then ⟨A,C, p ○Po⟩ ∈ τ ○ σ where
p ○ Po ∶ POA→ C.

Of course, we are particularly interested in transductions that are definable
in some logic.

Definition 1.4. (a) AnMSO-transduction is a transduction that can be de-
composed into a sequence of the following kinds of basic transductions.
(i) EveryMSO-interpretation is anMSO-transduction.
(ii) Every copy operation copyk is anMSO-transduction.
(iii) An m-expansion is the transduction

expm(A) ∶= { ⟨A, P̄⟩ ∣ P0 , . . . , Pm−1 ⊆ A} .

(iv) AnMSO-filtering is a transduction of the form

{ ⟨A,A⟩ ∣ A ⊧ χ } , for someMSO-formula χ .

(b) A GSO-transduction is a transduction of the form

τ = { ⟨B,A⟩ ∣ ⟨Bin ,Ain⟩ ∈ σ } , for someMSO-transduction σ . ⌟

Exercise 1.1. FindMSO-transductions with the following properties.

(i) A transduction mapping the class of all finite paths to the class of all
circles.

654



1 Transductions

(ii) A transduction mapping the class of all circles to the class of all finite
paths.

(iii) A transduction mapping the class of all finite paths to the class of all
complete bipartite graphs.

(iv) For every n < ω, a transduction τn mapping the class of all finite paths
to the class of all finite trees of height n.

(v) A transduction mapping the class of all finite grids to the class of all
finite graphs.

Which of these maps are GSO-transductions? ⌟

Every element of a structure B obtained via a transduction from some
structure A is represented by some element of A, but note that, because of
copy-operations, every element of A can represent several elements of B.

Definition 1.5. (a) A transduction containing the copy operations

copyk0 , . . . , copykn−1

is called k-copying, where k ∶= k0 ⋅ ⋅ ⋅ ⋅ ⋅ kn−1. A 1-copying transduction is
usually called non-copying.
(b) For each pair ⟨B,A⟩ of structures related by a k-copying transduc-

tion τ, we can define an origin map o ∶ B → [k] ×A that maps each element
of B to the element of A representing it and to the number of the copy of A
it belongs to. We start by defining o for basic transductions.

(i) For anMSO-interpretation ⟨δ(x), (φR(x̄))R⟩ we set

o(b) ∶= ⟨0, b⟩ , for b ∈ B ⊆ A .

(ii) For an expansion expm , we similarly define

o(b) ∶= ⟨0, b⟩ , for b ∈ B = A .

(iii) For a copying transduction copyk , we set

o(⟨i , b⟩) ∶= ⟨i , b⟩ , for b ∈ B = A and i < k .
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(iv) For anMSO-filtering, we again have

o(b) ∶= ⟨0, b⟩ , for b ∈ B = A .

Finally, for a composition τ0 ○ ⋅ ⋅ ⋅ ○ τn−1 of basic transductions we compose
the respective origin maps o0 , . . . , on−1 as follows.The composition of

o ∶ C → [l] × B and o
′ ∶ B → [k] ×A

is the map oo′ ∶ C → [l k] ×A defined by

oo
′(c) ∶= ⟨ jk + i , a⟩ , for o′(c) = ⟨ j, b⟩ and o(b) = ⟨i , a⟩ . ⌟

Let us give a few examples of what we can do with transductions.We start
by showing that we can use transductions to take quotients by definable
equivalence relations.

Lemma 1.6. For every MSO-formula ε(x , y), there exists a transduction τ
mapping a structure A to the quotient A/∼, where ∼ is the equivalence relation
that is generated by the relation defined by ε.

Proof. Note that ∼ isMSO-definable as the transitive closure of

x = y ∨ ε(x , y) ∨ ε(y, x) .

We use one parameter P that contains representatives for each equivalence
class. Thus, we can set τ ∶= τ0 ○ ρ ○ exp1 where ρ is the filtering by the
formula stating that every ∼-class contains exactly one element in P and τ0 is
the interpretation defined by the formulae

δ(x) ∶= Px and φR(x̄) ∶= ∃ ȳ[Rȳ ∧⋀
i
y i ∼ x i] .

Lemma 1.7. There exists a GSO-transduction mapping a class of hypergraphs
to the class of their minors.
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Proof. Each minor of a graph can be described by three parameters: the
set R of removed vertices, the set D of deleted edges, and the set C of
contracted edges. We can therefore construct all minors by a transduction
of the form τ = τ0 ○ σ0 ○ exp3, where exp3 guesses R, D, and C, τ0 is the
transduction forming the quotient by the equivalence relation generated
by C (cf. Lemma 1.6), and σ0 is the interpretation removing the vertices and
edges in R and D, which can be defined by

δV(x) ∶= ¬Rx , δE(x) ∶= ¬Dx , and φin(x , y) ∶= in(x , y) .

The next two examples will be used in Section 4 below.

Lemma 1.8. For every n < ω, there exists anMSO-transduction mapping the
class of all finite paths to the class of all finite trees of height at most n.

Proof. We can encode a tree T of height n with m vertices as a finite word w
of lengthm over the alphabet [n] as follows (see Figure 1). Let v0 <lex ⋅ ⋅ ⋅ <lex
vm−1 be the enumeration of the vertices of T in lexicographic order, and let
l i be the level of v i . We encode T by the word w ∶= l0 . . . lm−1. A transduc-
tion can recover T from w as follows. Each position in w corresponds to a
vertex. The predecessor of the i-th vertex v is the maximal vertex to the left
of v whose label is less than l i . Clearly this predecessor relation is definable
in monadic second-order logic. Consequently, we obtain a transduction of
the form χ○τ○expn where expn guesses the labels l i , χ is a filtering checking
that the graph in question is indeed a tree, and τ is theMSO-interpretation
described above. (The reason we need χ is that not every colouring of a path
constitutes a valid encoding of a tree. For instance, we could have several
vertices with the colour of the root.)

Recall that them×n grid is the undirected graphG = ⟨V , E⟩with vertices
V = [m] × [n] and edge relation

E = { ⟨⟨i , k⟩, ⟨ j, l⟩⟩ ∣ ∣i − j∣ + ∣k − l ∣ = 1} .

Its directed variant is ⟨V , E0 , E1⟩ where

E0 ∶= { ⟨⟨i , k⟩, ⟨i + 1, k⟩⟩ ∣ i < m − 1, k < n } ,
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↝↝↝

Figure 1: Transforming a path into a tree of bounded height

and E1 ∶= { ⟨⟨i , k⟩, ⟨i , k + 1⟩⟩ ∣ i < m, k < n − 1} .

Lemma 1.9. There exists anMSO-transduction mapping the class of all finite,
undirected grids to the class of all finite, directed grids.

Proof. Given an undirected grid G = ⟨V , E⟩, we guess six parameters
P0 , P1 , P2 ,Q0 ,Q1 ,Q2 ⊆ V such that

Pm ∶= { ⟨i , k⟩ ∣ i ≡ m (mod 3) } ,

and Qm ∶= { ⟨i , k⟩ ∣ k ≡ m (mod 3) } .

Then we can define

E0 = { ⟨u, v⟩ ∈ E ∣ u ∈ Pi and v ∈ P j for some j ≡ i + 1 (mod 3) } ,

and E1 = { ⟨u, v⟩ ∈ E ∣ u ∈ Q i and v ∈ Q j for some j ≡ i + 1 (mod 3) } .

To do so, we need a formula checking that the parameters Pm and Qm are
correctly chosen. For such a formula it is sufficient to state that the labelling
of each vertex is consistent with those of its neighbours and that the labelling
of every cycle of length 4 is consistent (where ‘consistent’ means that the
labelling is one of those appearing in a correctly labelled grid).

Lemma 1.10. There exists a GSO-transduction mapping the class of all finite
grids to the class of all finite Σ-structures.

Proof. By Lemma 1.9, it is sufficient to find a transduction mapping directed
grids to all graphs. Let A be a Σ-structure with

Ain = ⟨A∪ E , (PR)R , in0 , . . . , inr−1⟩ .
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Figure 2: Transforming a grid into an arbitrary graph

Fix enumerations a0 , . . . , am−1 of A and e0 , . . . , en−1 of E. We encode Ain
in the directed m × n grid using the following parameters (see Figure 2).

A
′ ∶= [m] × {0} , P

′
R ∶= { ⟨0, k⟩ ∣ ek ∈ PR } ,

E
′ ∶= {0} × [n] , I

′
l ∶= { ⟨i , k⟩ ∣ (a i , ek) ∈ inl } .

Then Ain can be recovered fromG by anMSO-transduction using these sets
as parameters:

δA(x) ∶= A′x , δE(x) ∶= E′x , φPR(x) ∶= P
′
Rx ,

φin l (x , y) ∶= A
′
x ∧ E

′
y

∧ ∃z[I′l z ∧ ‘z is the intersection of the row of x

and the column of y.’] .

After these examples we turn to the further development of the theory of
transductions.We start with a normal form for transductions that frequently
comes in handy: we need only one operation of each kind and in a standard
order.

Proposition 1.11. EveryMSO-transduction τ can be written in the form

τ = τ0 ○ ρ ○ copyk ○ expm ,

where τ0 is anMSO-interpretation and ρ anMSO-filtering.
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X. Guarded Second-Order Transductions

Proof. The proof consists of the following (rather long) sequence of com-
mutation relations.
(a) We start by showing that two operations of the same kind can always

be combined into a single one. We can combine two MSO-filterings by
just taking the conjunction of the two formulae. Furthermore, for MSO-
interpretations note that τ○τ′ = τ′′ where τ′′ is obtained from τ by replacing
every formula ψ by ψτ′ . Finally, we have

expm ○ expn = expmn and copyk ○ copyl = σ ○ copyk l ,

where σ is a simple quantifier-free interpretation that defines the predic-
ates introduced by copyk and copyl in terms of those defined by copyk l .
More precisely, let H̄, I, H̄′ , I′, and H̄′′ , I′′ be the predicates introduced by,
respectively, copyk l , copyk , and copyl . Then

H
′
i = ⋃

j<l
H i l+ j , I

′ = I ∩⋃
j<l
(H′′

j ×H
′′
j )

H
′′
j = ⋃

i<k
H i l+ j , I

′′ = I ∩ ⋃
i<k
(H′

i ×H
′
i) ,

which are clearly all definable.
(b) If ρ is a filtering with the formula χ and τ is anMSO-interpretations,

then ρ ○ τ = τ ○ ρ′, where ρ′ is the filtering with the formula χτ .
(c)Concerning the copying operation,we have already shown inLemma I.4.20

that it commutes with interpretations. For a filtering ρ, note that

copyk ○ ρ = ρ′ ○ copyk ,

where ρ′ applies the formula from ρ to just one of the copies, i.e., if χ is the
formula used by ρ, we take for ρ′ the relativisation χ(H0) of χ to the setH0.
(d) Concerning expansions, we have

expm ○ τ = τ ○ expm , for everyMSO-interpretation τ ,
expm ○ ρ = ρ ○ expm , for everyMSO-filtering ρ ,

expm ○ copyk = τ′ ○ copyk ○ expkm ,
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where τ′ is the quantifier-free interpretation that replaces the parameters
P0 , . . . , Pkm−1 by P′0 , . . . , P

′
m−1 where

P
′
i ∶= ⋃

j<k
[Pi k+ j ∩H j] .

Remark. Let us note two consequences of this result that will frequently be
useful. Suppose that τ is a k-copying transduction in this normal form.
(a) We see that the elements of τ(A) are of the form ⟨i , a⟩ where a ∈ A

and i < k denotes the copy the element belongs to.
(b) Each formula φR(x̄) from τ defining some relation R can therefore

be split into several formulae φ ı̄(x̄) that define R between elements from
the copies indicated by ı̄. Formally, we can define φ ı̄ as the formula obtained
from φR by replacing every subformula of the formH i jx j by true, and all
subformulaeH l x j with l ≠ i j by false. Then we have

φR(x̄) ≡ ⋁
i0 , . . . , in−1<k

[H i0x0 ∧ ⋅ ⋅ ⋅ ∧H in−1xn−1 ∧ φ i0 , . . . , in−1(x̄)] ,

where n is the arity of R andH0 , . . . ,Hk−1 are the predicates for the various
copies. ⌟

Lemma 1.12. If τ0 and τ1 areMSO-transductions, then so is τ0 ∪ τ1.

Proof. The rough idea is to use an additional parameter to decide which of
the two transductions to apply. Suppose that τ i = τ′i ○ ρ i ○ copyk i

○ expm i
.

Then

τ0 ∪ τ1 = σ ○ υ ○ copyk ○ expm+1

where k ∶= max{k0 , k1}, m ∶= max{m0 ,m1}, the filtering υ is given by the
formula

[∃zQz ∧ χ0] ∨ [¬∃xQx ∧ χ1] ,
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X. Guarded Second-Order Transductions

where χ i is the formula for ρ i and Q is the additional parameter, and the
interpretation σ is ⟨δ(x), (φR(x̄))R⟩ with

δ(x) ∶= [∃zQz ∧ δ0(x) ∧ ⋀
i<k0

H ix]

∨ [¬∃zQz ∧ δ1(x) ∧ ⋀
i<k1

H ix] ,

φR(x̄) ∶= [∃zQz ∧ φ0
R(x̄)] ∨ [¬∃zQz ∧ φ1

R(x̄)] ,

where τ′i = ⟨δI(x), (φ
i
R(x̄))R⟩ andH i are the predicates added by copyk .

Exercise 1.2. Given twoMSO-transductions σ and τ, construct anMSO-
transduction ρ such that

ρ(A⊕B) = σ(A) ⊕ τ(B) , for all structures A and B . ⌟

The usefulness of transductions stems from the fact that, similarly to the
interpretations they generalise, they provide reductions between theories.
The corresponding results for transductions are made more complicated by
the fact that they are non-deterministic. Let us introduce a bit of notation
to make the rôle of parameters more explicit.

Definition 1.13. Let τ be a transduction of the form τ = τ0○expm where τ0 is
parameterless. For structures A and B and an parameters P0 , . . . , Pm−1 ⊆ A
We write

B = τ(A/P̄) : iff B = τ0(A, P̄) ,

that is, if B is the structure obtained via τ from A when using the paramet-
ers P̄. ⌟

When considering formulae with free variables, we need a version of this
notation that also takes the parameters of the formula into account. We
write

B, b̄Q̄ = τ l̄(A, b̄
′
Q̄
′/P̄)

662



1 Transductions

if b̄ is encoded by b̄′ and l̄ , and Q̄ is encoded by Q̄ ′. The precise definition is
as follows.

Definition 1.14. Let τ be a k-copyingMSO-transduction with origin map o,
and suppose that B = τ(A/P̄). For tuples b̄ ∈ Bs , b̄′ ∈ As , and l̄ ∈ [k]s and
sets Q0 , . . . ,Qn−1 ⊆ B, and Q ′

i j ⊆ A (for i < k, j < n), we write

B, b̄Q̄ = τ l̄(A, b̄
′
Q̄
′/P̄)

if, and only if,

o(b i) = ⟨l i , b′i⟩ and Q i j = { a ∈ A ∣ b ∈ Q j , o(b) = ⟨i , a⟩ } . ⌟

Using this notation we can state the desired backwards-translation result
for transductions as follows.

Proposition 1.15. Let τ be a k-copying MSO-transduction. For every MSO-
formula φ(x̄ , Ȳ) with ∣x̄∣ = s and every tuple l̄ ∈ [k]s , there exist an MSO-
formula φτ

l̄ (x̄
′ , Ȳ′; Z̄) such that

B, b̄Q̄ = τ l̄(A, b̄
′
Q̄
′/P̄)

implies

B ⊧ φ(b̄, Q̄) iff A ⊧ φτ
l̄ (b̄

′ , Q̄ ′; P̄) .

Proof. It is clearly sufficient to prove the claim for basic transductions.
(i) For interpretations, the claim follows immediately fromProposition I.4.5.
(ii) Let Q0 , . . . ,Qm−1 be the predicates for the parameters. We obtain

the formula φτ
0...0(x̄ , Ȳ; Z̄) by replacing in the given formula φ(x̄ , Ȳ) every

occurrence of Q i by the variable Z i .
(iv) A filtering does not modify the structure. Hence, we can simply set

φτ
0...0(x̄ , Ȳ) ∶= φ(x̄ , Ȳ).
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X. Guarded Second-Order Transductions

(iii) It remains to consider copyk-operations. We define the desired for-
mula φτ

l̄ (x̄ , Ȳ) by induction on φ.

(Rx̄)τ
l̄ ∶=

⎧⎪⎪
⎨
⎪⎪⎩

Rx̄ if l0 = ⋅ ⋅ ⋅ = ls−1 ,
false otherwise ,

(x = y)τ
i j ∶=

⎧⎪⎪
⎨
⎪⎪⎩

x = y if i = j ,
false otherwise ,

(H ix)
τ
j ∶=

⎧⎪⎪
⎨
⎪⎪⎩

true if i = j ,
false otherwise ,

(Ix y)τ
l̄ ∶= x = y ,

(Yx)τ
l ∶= Yl x ,

(¬φ)τ
l̄ ∶= ¬φτ

l̄ ,

(φ ∨ ψ)τ
l̄ ∶= φτ

l̄ ∨ ψτ
l̄ ,

(∃x′φ(x̄x′ , Ȳ))τ
l̄ ∶= ⋁

i<k
∃x′φτ

l̄ i(x̄x
′ , Ȳ) ,

(∃Y′φ(x̄ , ȲY′))τ
l̄ ∶= ∃Y

′
0 . . .Y

′
k−1φ

τ
l̄ i(x̄ , ȲY

′
0 . . .Y

′
k−1) .

The above statement is rather technical. The following simpler version is
usually sufficient.

Corollary 1.16. Let τ be an MSO-transduction. For every MSO-formula φ,
there exists anMSO-formula φτ(Z̄) such that

A ⊧ φτ(P̄) iff τ(A/P̄) is defined and τ(A/P̄) ⊧ φ ,

for every structure A and all parameters P̄.

Proof. Suppose that τ = τ0 ○ ρ ○ copyk ○ expm is in standard form and let
χ be the formula used by ρ. We use Proposition 1.15 below to construct the
formulae φτ

⟨⟩
(Z̄) and χcopyk○expm

⟨⟩
(Z̄) for, respectively, φ and χ. Then the

formula

φτ ∶= ∃Z̄[χcopyk○expm
⟨⟩

(Z̄) ∧ φτ
⟨⟩
(Z̄)]

has the desired properties.

664



2 Tree-decompositions

2 Tree-De$ompo@tion+

There is a close relationship between transductions and tree-decompositions
which we will investigate in this section.

Proposition 2.1. Let Σ be a signature and k < ω. There exists an GSO-
transduction τk that associates with each undirected tree T the class of all Σ-
structures that have a tree-decomposition of width at most k with index tree T.

Proof. Suppose that A is a Σ-structure which has a tree-decomposition
(Ut)t∈T of width k.We prove thatA can be defined from a suitable colouring
of T where the number of colours depends only on Σ and k.
Let C0 , . . . ,Cm−1 be an enumeration of all Σ-structures whose domain

is a subset of [k]. For each t ∈ T, let Ut be the substructure of A induced
by Ut . It follows that, for every t ∈ T, we can find some index λ(t) such
that Ut ≅ Cλ(t). Let πt ∶ Ut → Cλ(t) be the corresponding isomorphism.

Furthermore, we associate with each (directed) edge ⟨s, t⟩ of T the binary
relation

R(s, t) ∶= { ⟨πs(a), πt(a)⟩ ∣ a ∈ Us ∩Ut } ⊆ [k] × [k] .

Then we can recoverA fromT with the help of the vertex colouring λ and
the edge colouring R. We form the disjoint union of all structures (Cλ(t))in,
for t ∈ T, and, for every edge ⟨s, t⟩ of T, we identify two elements i ∈ Cλ(s)
and j ∈ Cλ(t) if ⟨i , j⟩ ∈ R(s, t). This can be performed by an n-copying
MSO-transduction where n is the maximal size of the structures (Ci)in,
i < m.

Corollary 2.2. Let k < ω. The following classes have a decidable CGSO-theory.

(a) The class of all successor trees.

(b) The class of all countable successor trees.

(c) The class of all finite successor trees.

(d) The class of all Σ-structures of tree-width at most k.
(e) The class of all countable Σ-structures of tree-width at most k.
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(f ) The class of all finite Σ-structures of tree-width at most k.
The following classes have a decidable CMSO-theory.

(g) The class of all Σ-structures of crossing-width at most k.
(h) The class of all countable Σ-structures of crossing-width at most k.
(i) The class of all finite Σ-structures of crossing-width at most k.

Proof. (a) follows byTheorem V.4.7.
(b)There is a GSO-transduction mapping the infinite binary tree Tbin to

the infinite tree Tω of arity ω. Furthermore, there exists aGSO-transduction
mapping Tω to the class of all countable trees. Hence, the claim follows by
Corollary V.3.9.
(c)There exists a GSO-transduction mapping the infinite binary Tbin to

the class of all finite trees. Hence, the claim follows by Corollary V.3.9.
(d), (e), (f ) follow by (a), (b), (c) and Proposition 2.1.
(g), (h), (i) follow by (a), (b), (c) and Corollary IX.5.6.

Thus, classes of bounded tree-width can be obtained via a transduction
from a suitable class of trees. Conversely, every class obtained from trees in
that way has bounded tree-width. The proof rests on the following theorem.

Theorem 2.3. Let τ be a GSO-transduction. If A is a Σ-structure with a tree-
decomposition (Ut)t∈T of width k, then τ(A) has a tree-decomposition (U′

t)t∈T
with the same index tree T and a width that depends only on k and τ.

Proof. Let (Ut)t∈T be a tree-decomposition of A of width k. By Proposi-
tion IX.4.6, the incidence structureAin has a partition decomposition whose
width bounded by some function of k and Σ and whose index tree T+ is
obtained fromT by adding a bounded number of leaves to every vertex. Con-
sequently, we can use Proposition IX.5.1 to obtain a partition decomposition
of τ(A)in whose index tree S+ is a prefix of T+ and whose width is bounded
by a constant depending only on k and τ. We can use Proposition IX.4.6
again to translate this decomposition into a tree-decomposition of τ(A)
whose index tree S is a prefix ofT and whose width depends only on k and τ.
Finally, duplicating some components we can turn this decomposition into
one with index tree T and with the same width.
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Corollary 2.4. Let τ be a GSO-transduction. There exists a constant k such

that, if T is a tree, then every structure A ∈ τ(T) has a tree-decomposition of
width k with index tree T.

Corollary 2.5. A class of structures has bounded tree-width if, and only if, it is

GSO-interpretable in a class of coloured trees.

Wehave shown that there exists a transductionmapping each tree-decom-
position to the structure it denotes. The converse statement also holds, but
it is much more involved.

Theorem 2.6 (Bojańczyk, Pilipczuk). For every finite relational signature Σ
and every constant k < ω, there exists anMSO-transduction τk mapping every
finite Σ-structure of tree-width at most k to the trees underlying some of its

tree-decompositions of width k.

We defer the proof to Section 5.

3 Tree+ of Bounded Height

Let us take a look at transductions between classes of trees of bounded
height. We start by presenting several equivalences between such classes and
related ones, such as certain classes of structures with nested equivalence
relations.

Definition 3.1. Let n < ω.
(a) An n-equivalence structure takes the formA = ⟨A, E0 , . . . , En−1⟩where

E0 ⊆ ⋅ ⋅ ⋅ ⊆ En−1 are equivalence relations on A. We denote the class of all n-
equivalence structures by En . Given an n-equivalence structureA, we denote
the E i -class of an element a ∈ A by [a]i .
(b) A tree T has uniform height n if it has no infinite branches and every

leaf is on level n (i.e., has distance exactly n from the root). We denote the
class of all order-trees of uniform height n by Tn .

(c)The n-equivalence structureA associated with an order-tree T = ⟨T , ≤⟩
of uniform height n + 1 is defined as follows. Let p ∶ T → T be the function
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mapping every vertex of T to its predecessor. (This leaves p undefined for
the root of T.) The domain of A is the set of leaves of T. Two such leaves
u and v are E i -equivalent if pi+1(u) = pi+1(v). ⌟

Lemma 3.2. Let n < ω.
(a) Every tree T of uniform height n + 1 has a unique associated n-equivalence

structure A.

(b) Every n-equivalence structure A is a associated with a unique tree T of

uniform height n + 1.

Proof. (a) follows immediately from the definition.
(b) Let A = ⟨A, E0 , . . . , En−1⟩ by an n-equivalence structure. We define

the corresponding tree T = ⟨T , ≤⟩ as follows.The set of vertices is

T ∶= A/E−1 ∪A/E0 ∪ ⋅ ⋅ ⋅ ∪A/En−1 ∪A/En ,

where E−1 ∶= { ⟨a, a⟩ ∣ a ∈ A} is the identity relation and En ∶= A×A the
trivial equivalence relation.The tree order is given by

[a]i ≤ [b]k : iff [b]k ⊆ [a]i .

Theorem 3.3. Let n < ω. The following transductions are FO-interpretations.

(a) The transduction τ mapping an order-tree to the corresponding undirected

tree.

(b) The transduction τ mapping a successor-tree of height at most n to the

corresponding order-tree.

(c) The transduction τ mapping a successor-tree of uniform height n + 1 to the
corresponding n-equivalence structure.

The following transductions are FO-transductions.

(d) The transduction τ mapping an undirected tree T with diameter at most n

to all successor trees whose underlying undirected tree is T.

(e) The transduction τ mapping an order-tree of height at most n to its incidence
structure.
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(f ) The transduction τ mapping an n-equivalence structure to the corresponding
successor-tree.

Furthermore, the corresponding origin maps in (a), (b), (d), and (e) are the
identity, while the origin maps in (c) and (f ) induce mutually inverse bijections
between the leaves of the tree and the elements of the equivalence structure.

Proof. (a) We can define the undirected edge relation by

φ(x , y) ∶= [x ≺ y ∧ ¬∃z(x ≺ z ≺ y)] ∨ [y ≺ x ∧ ¬∃z(y ≺ z ≺ x)] .

(b) We can define a formula ψk(x , y) expressing the existence of a path
of length k by

ψ0(x , y) ∶= x = y and ψk+1(x , y) ∶= ∃z[Sxz ∧ ψk(z, y)] ,

where S is the successor relation. Consequently, we can define the order
relation by

φ(x , y) ∶= ⋁
k≤n

ψk(x , y) .

(c) Clearly, both the fact that a vertex v is a leaf and the fact that pi+1(u) =
p
i+1(v) can be expressed in first-order logic.
(d)We can use a transduction of the form τ = τ0 ○ ρ ○ exp1, where (i) we

guess one parameter P ; (ii) we check with ρ that P contains exactly one
element r ; and then (iii) we define the new edge relation in τ0 by stating
that the two given vertices x and y are connected by an edge and that the
path from r to y contains the vertex x. (The latter can be done as in (b) since
the length of such paths is bounded.)
(e) We define an interpretation mapping copyn+2(T) to the incidence

structure ofT. LetH0 , . . . ,Hn+1 be the predicates for the various copies and
let p ∶ T → T be the (partial) function mapping a vertex to its predecessor.
We encode each vertex v by its copy in Hn+1 and each edge ⟨pk(v), v⟩ by
the copy of v inHk . Hence, we can use the formulae

δV(x) ∶= Hn+1x and δE(x) ∶= ⋁
k≤n
[Hkx ∧ “pk(x) is defined”]
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for the domains, and the formula

φin(x , y) ∶= Hn+1x ∧ ⋁
k≤n
[Hk y ∧ x = pk(y)]

for the incidence relation.
(f ) We use a transduction of the form τ = τ0 ○ ρ ○ copyn+2 ○ expn , where

(i) we guess sets P0 , . . . , Pn ; (ii) we check using ρ that Pn is a singleton and
that Pi , for i < n, contains exactly one element of each E i -class; and (iii) we
then define the tree as follows. LetH0 , . . . ,Hn+1 be the predicates from the
copying operation.The leaves are encoded by the elements inH0 and the
internal vertices at level i < n + 1 by the elements in Hn+1−i ∩ Pn−i . This
leads to the formulae

δ(x) ∶= H0x ∨ ⋁
i≤n
[H i+1x ∧ Pix] ,

φS(x , y) ∶= ⋁
i<n
[H i+1x ∧H i y ∧ E ixy] ∨ [Hn+1x ∧Hn y] .

We have shown inTheorem V.1.13 that, over trees, we can reduce every
MSO-formula to an FO-formula by adding a colouring. For trees of bounded
height, we can do without this colouring.

Theorem 3.4. Let n < ω.
(a) Over the class Un of all structures with n unary predicates, every GSO-

formula φ(X̄, x̄) is equivalent to an FO-formula.

(b) Over the class En , everyMSO-formula φ(X̄, x̄) is equivalent to an FO-
formula.

(c) Over the class Tn , every GSO-formula φ(X̄, x̄) is equivalent to an FO-
formula.

(d) Over the class Cn ,k of all Σ-structures A with twdn A < k, every GSO-
formula φ(X̄, x̄) is equivalent to an FO-formula.

Proof. Ultimately all five of the proofs below are based on the fact that,
over the empty signature, allMSO can do is to count up to some constant
depending on the quantifier-rank. We start with the simplest case and work
our way up to the most complicated one.
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3 Trees of bounded height

(a) has already been proved in Proposition I.4.8.
(b) Again we get rid of the parameters by including them in the structures.

Hence, we work with structures of the form A = ⟨A, E0 , . . . , En−1 , P̄, c̄⟩.
We prove by induction on n that there exists some function fn ∶ ω → ω
such that, for structures A and B with n equivalence relations,

A ≡ fn(m)FO B implies A ≡mMSO B , for every m < ω .

For n = 0, the claim follows by (a). Hence, suppose that n > 0. Note that
we can write each structure A as a disjoint union of all En−1-classes

A ≅ ⊕
[a]n−1∈A/En−1

A∣[a]n−1 .

We can replace this disjoint union by a generalised sum plus a quantifier-free
interpretation that deletes the unneeded relations added by the generalised
sum.

A ≅ σ( ∑
[a]n−1∈A/En−1

A∣[a]n−1) .

ByTheorem I.4.24, it follows that, for everyMSO-formula φ of quantifier-
rank m, there exists someMSO-formula ψ of some quantifier-rank g(m)
such that

A ⊧ φ iff ⟨A/En−1 , Q̄⟩ ⊧ ψ ,

where the predicates Q̄ encode the MSOm-theory of the corresponding
En−1-class.

Qθ ∶= { [a]n−1 ∈ A/En−1 ∣Th
m
MSO(A∣[a]n−1) = θ } .

By inductive hypothesis, there exists a first-order interpretation τ of quanti-
fier-rank fn−1(m)mapping A to ⟨A/En−1 , Q̄⟩. It follows that

A ≡ fn−1(m)+g(m)FO B

⇒ ⟨A, Q̄⟩ ≡g(m)FO ⟨B, Q̄ ′⟩

⇒ A ≡mMSO B .
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(c) As order-trees of height at most n are n2-sparse, it follows by The-
oremVII.3.6 that we can translate everyGSO-formula into anMSO-formula.
Hence, the claim follows by Proposition V.1.17.
(d) We work with tree-decompositions of a special form. Let us call a

tree-decomposition (Ut)t∈T connected if, for every edge ⟨s, t⟩, the set

⋃
u∈S

Uu ∖Us is connected in the Gaifman graph,

where S is the component of T − ⟨s, t⟩ containing the vertex t. Note that
we can transform every tree-decomposition into a connected one without
increasing the width of the decomposition or the height of its index tree: if
the subtree S rooted at some vertex t does not satisfy the above condition, i.e.,
the set⋃u∈S Uu ∖Us has several connected components C0 , . . . ,Ck−1, we
can map k copies of this subtree whose components are of the formUu ∩C i .
Wewill prove by induction on the height n that, for everyMSOm-theory θ

and every k < ω, there exists an FO-formula ψn
kθ(x̄) such that

A ⊧ ψn
kθ(ā) iff Thm

MSO(A) = θ and A has a connected

tree-decomposition of height at most n and

width at most k such that the root component

contains the tuple ā .

Then it follows that

A ≡rFO B implies A ≡mMSO B ,

where r is the quantifier-rank of the formulae ψn
kθ .

Hence, it remains to construct the formulae ψn
kθ . For n = 0, we have to

say that the structure has at most k elements and that it is isomorphic to
one of the finitely many structure of that size whoseMSOm-theory is equal
to θ. This can be done in first-order logic.
For the inductive step, suppose that n > 0. To express the existence of a

tree-decomposition, we have to say that there exist k elements c̄ such that
ā ⊆ c̄ and every connected component of A∖ c̄ has a tree-decomposition of
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3 Trees of bounded height

height at most n − 1. We have shown in Proposition VIII.2.9 that no graph
of n-height tree-width at most k can contain a path of length (k + 1)n . Thus
the length of paths in the Gaifman graph of A is bounded and there exists
an FO-formula expressing that there exists a path from x to y. Modifying
this formula we obtain a FO-formula χ(x , y, z̄) stating that x and y belong
the the same connected component of A∖ z̄. Consequently, the following
formula checks that A has a tree-decomposition of the desired form:

φ(z̄) ∶= ∀y[y ∉ z̄ →⋁
ρ
(ψn−1

kρ (z̄))
(χ(x ,y , z̄))] ,

where ψ(χ(x ,y , z̄)) denotes the relativisation of ψ to the set of all elements x
satisfying χ(x , y, z̄).
It remains to compute the MSOm-theory of A. Let (Ut)t∈T be a con-

nected tree-decomposition of A with root component Ur = c̄, where we
consider T as an order-tree. Let S ⊆ T be the set of successors of the root r.
For s ∈ S, let A′

s be the substructure of A induced by the set

⋃
t≥s

Ut ∖ c̄ ,

and let As ∶= ⟨A′
s , R̄⟩ be its expansion by the relations

Rσ ∶= { ā ∈ (Us ∖ c̄)k ∣ atp(āc̄) = σ } ,

where atp(ā) denotes the atomic type of the tuple ā and σ ranges over all
atomic types of 2k-tuples. Then

A = τ(⟪c̄⟫A ⊕⊕
s∈S

As) ,

where the quantifier-free interpretation τ adds the missing relations between
elements of c̄ and tuples in As based on the information stored in the rela-
tions Rσ . As usual we replace the disjoint union by a generalised sum and it
follows that there is someMSO-formula ϑ such that

Thm
MSO(A) = θ iff ⟨S , Q̄⟩ ⊧ ϑ ,
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where

Qρ ∶= { s ∈ S ∣Th
m
MSO(As) = ρ } .

By inductive hypothesis, the sets Qρ can be computed in first-order logic.
Furthermore, by (a), wemay assume that ϑ is a first-order formula. Replacing
each predicates Qρ in ϑ by a first-order fomula defining it, we obtain the
desired formula ϑ′ computing the theory of A.
Finally, we can define the formula ψn

kθ by

ψn
kθ(x̄) ∶= ∃z̄[x̄ ⊆ z̄ ∧ φ(z̄) ∧ ϑ′(z̄)] .

We can deduce the following CompactnessTheorem for GSO over trees
of bounded height.

Corollary 3.5. A set Φ of GSO-formulae is satisfiable over Tn if, and only if,
every finite subset Φ0 ⊆ Φ is satisfiable over Tn .

Proof. (⇒) is trivial.
(⇐)We have seen in Theorem 3.4 that, over the class Tn , every GSO-

formula is equivalent to an FO-formula. Hence, we may w.l.o.g. assume that
Φ is a set of FO-formulae. Let ϑ be an FO-formula stating that the given
model is a tree of height at most n. By assumption, every finite subset of
{ϑ} ∪ Φ has a model. By the CompactnessTheorem for first-order logic, it
follows that there is some structure T satisfying all of {ϑ} ∪Φ. Since T ⊧ ϑ,
we have T ∈ Tn . Hence, T is our desired model of Φ.

Remark. In the above theorem, the restriction to trees with bounded height
is essential. The statement fails for classes T containing trees of unbounded
height. For instance, the following set of FO-formulae is finitely satisfiable
over such a class, but not satisfiable over it:
◆ one FO-formula stating that the tree contains a vertex with label a ; and
◆ for every n < ω, an FO-formula stating that no vertex with a distance of

at most n from the root has label a.
Similarly, the theorem fails for MSO over every class G of graphs that

contains all finite paths. We can take:
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3 Trees of bounded height

◆ oneMSO-formula stating that the graph is a (connected) path with two
ends; and

◆ for every n < ω, an FO-formula stating that the graph has at least n
vertices. ⌟

We can prove a converse to the above theorem if we make a few additional
assumptions. If we only consider classes of graphs that are closed under
non-induced subgraphs, we obtain the following strong statement.

Corollary 3.6. Let C be a class of undirected graphs that is closed under taking
(non-induced) subgraphs. The following statements are equivalent.

(1) Over C, everyMSO-sentence is equivalent to an FO-sentence.

(2) Over C, every GSO-sentence is equivalent to an FO-sentence.

(3) C has bounded height n tree-width, for some n < ω.

Proof. (3)⇒ (2) follows byTheorem 3.4 (d) and (2)⇒ (1) is trivial.
(1)⇒ (3) Suppose that C has unbounded height n tree-width, for all n.

Then the Excluded PathTheorem (Theorem VIII.2.8) implies that Min(C)
contains the class of all finite paths. As C is closed under subgraphs, it follows
that C contains all finite paths. The claim follows since the expressive power
of FO andMSO is distinct over paths (e.g., one cannot express that a path
has even length in FO).

We can replace closure under arbitrary subgraphs by closure under in-
duced subgraphs, if we also replace MSO by GSO. To do so, we need the
following Ramsey lemma for graphs.

Lemma 3.7. For every k < ω, there exists a number N < ω such that every

undirected graph G containing a path (not necessarily induced) of length at

least N contains one of the following induced sugraphs:

(i) a complete graph of size k ;

(ii) a complete bipartite graph where both classes have size at least k ;

(iii) a path of length k.
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Proof. LetG = ⟨V , E⟩ be a graph containing a path v0 , . . . , vn−1 of length n.
W.l.o.g. we may assume that G has no vertices that do not lie on this path.
Let ≤ be the ordering induced on V by the sequence v0 , . . . , vn−1.
We call a path u0 , . . . , um−1 of G increasing if u0 < ⋅ ⋅ ⋅ < um−1. A path

u0 , . . . , um−1 is a shortest increasing path from v to w if it is increasing, it
leads from u0 = v to um−1 = w, and every other such path has length at
leastm. For every pair u < w of vertices, we fix some shortest increasing path
P[u,w] from u to w. (Such a path exists since, for u = v i and w = vk , the
path v i , v i+1 , . . . , vk connects u and w.)
Note that every shortest increasing path is an induced path of G. In

particular, if there exists a shortest increasing path of length k, we are done.
Consequently, we may assume that the length of every path P[u,w] is less
than k. With each increasing sequence u < u′ < w < w′ of four vertices, we
associate the substructure

Q[u, u′;w ,w′] ⊆ ⟨G, ≤, u, u′ ,w ,w′⟩

that is induced by the vertices of P[u, u′] ∪ P[w ,w′]. As every shortest
increasing path has at most k vertices, it follows that

∣Q[u, u′;w ,w′]∣ ≤ 2k .

Up to isomorphism, there are therefore only finitely many such structures
and we obtain a finite colouring of the increasing 4-tuples in V . By the
Theorem of Ramsey, there exists some number N such that, if n ≥ N, then
there exists a subsetH ⊆ V of size ∣H∣ = 4k such that every 4-tuple fromH

has the same colour. We claim that this constant N satisfies the conditions
of the lemma.
Hence, assume that n ≥ N. Then there exists a set H of size 4k and a

structure Q such that

Q ≅ Q[u, u′;w ,w′] , for all u < u′ < w < w′ inH .

By definition Q consists of two paths u0 , . . . , u l−1 and w0 , . . . ,w l ′−1 with
possibly some edges between them. Let l and l ′ be the lengths of these paths.

676



3 Trees of bounded height

Since

Q[x , x′; y, y′] ≅ Q[y, y′; z, z′] , for x < x′ < y < y′ < z < z′ inH ,

it follows that l = l ′.
Let z0 < ⋅ ⋅ ⋅ < z4k−1 be an enumeration of H and set Pi ∶= P[z i , z i+1].

We distinguish several cases, depending on what kind of edges exist between
the two paths of Q.
(i) First, suppose that there are no edges between the two paths. Let

F be the subgraph of G induced by P0 ∪ ⋅ ⋅ ⋅ ∪ P4k−2. By assumption, there
are no edges between Pi and P j , for j − i > 1. Consequently, the shortest
increasing path from z0 to z4k−1 must contain some vertex from P1. By the
same argument, this path must contain some vertex from P2, and so on.
Therefore, the shortest increasing path from z0 to z4k−1 must have length at
least 4k − 1. As this path is an induced subgraph of G the claim follows.

(ii) Next, suppose that there exists an edge between um andwm , for some
m < l . Let x i be the m-th vertex of the path Pi . By assumption, there are
edges between x i and x j for j − i > 1. Consequently, the set { x2i ∣ i < 2k }
induces a complete subgraph of G of size 2k.
(iii) Finally, suppose that there exist edges between the two paths, but

each such edge connects vertices um and wm′ with m ≠ m′. Let x i and y i
be the m-th and the m′-th vertex of Pi . For j − i > 1, it follows that exist an
edge between x i and y j , but not between x i and x j or between y i and y j .
Consequently, the set { x2i ∣ i < k }∪{ y2i ∣ k ≤ i < 2k } induces a complete
bipartite subgraph of G where each class has size k.

Theorem 3.8. Let C be a class of graphs that is closed under taking induced
subgraphs. The following statements are equivalent.

(1) FO and GSO have the same expressive power over C.

(2) C has bounded height n tree-width, for some n < ω.

Proof. (2)⇒ (1) follows byTheorem 3.4 (d).
(1)⇒ (2) Suppose that C has unbounded height n tree-width, for all n.

Then the Excluded PathTheorem (Theorem VIII.2.8) implies that Min(C)
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contains the class of all finite paths. By Lemma 3.7, thismeans thatC contains
at least one of

(i) the class of all finite complete graphs;

(ii) the class of all finite complete bipartite graphs; or

(iii) the class of all finite paths.

Over all three of these classes, FO andGSO have different expressive powers.
For instance, in all three cases there exists an GSO-formula expressing that
the cardinality of the graph is even.

Example. This statement does not hold if we replace GSO by MSO. For
instance, the classK of all finite complete graphs has unbounded tree-width,
but FO andMSO have the same expressive power overK. ⌟

Finallywe present a variantwherewe can get rid of the closure requirement
altogether. In exchange we have to allow formulae with free variables.

Corollary 3.9. Let C be a class of undirected graphs. The following statements

are equivalent.

(1) Over C, everyMSO-formula (possibly with free GSO-variables) is equival-
ent to an FO-formula.

(2) Over C, every GSO-formula (possibly with free GSO-variables) is equival-
ent to an FO-formula.

(3) C has bounded height n tree-width, for some n < ω.

Proof. (3)⇒ (2) follows byTheorem 3.4 (d); and (2)⇒ (1) is trivial.
(1)⇒ (3) Suppose that C has unbounded height n tree-width, for all n.

Then the Excluded PathTheorem (Theorem VIII.2.8) implies that Min(C)
contains the class of all finite paths. By Lemma 3.7, this means that the
graphs in C contain as induced subgraphs

(i) unboundedly large finite complete graphs;

(ii) unboundedly large finite complete bipartite graphs; or

(iii) unboundedly long finite paths.
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Let φ(X,Z) be anMSO-formula stating that the subgraph induced by the
set X is of the form (i), (ii), or (iii) and that Z is a Hamiltonian path of
this subgraph. Furthermore, let ψ(Z) be anMSO-formula staing that the
path Z has even length.The conjunction φ(X,Z) ∧ψ(Z) is not equivalent
to any FO-formula.

We conclude this section with a few technical results that can be used to
prove that a given class cannot be interpreted in a class of trees of bounded
height. We start by introducing a a way to control the origin map, i.e., to put
restrictions on which elements of an input structure are used to encode a
given element of the output structure. The idea is simple: we use a definable
bijection φ ∶ T → T on the input structure T and then modify τ such that
its origin map o is replaced by o ○ φ (see also Lemma VII.4.10).

Definition 3.10. Let d < ω be a constant, τ a k-copyingMSO-transduction,
and (ψ i(x , y))i<k a sequence of formulae.The d-rearrangement of τ defined
by the family (ψ i)i is the (k + d)-copyingMSO-transduction σ that, given
an input structure T,

◆ guesses nk new parameters P i
j , for i < k and j < d ;

◆ checks that

– T is an order-tree,

– each formula ψ i(x , y) defines a function f i ∶ T → T such that
∣ f −1i (w)∣ ≤ d, for all w ∈ T, and

– every u ∈ f −1i (w) belongs to exactly one of the sets P
i
0 , . . . , P

i
d−1 ;

◆ if the check fails, σ returns the same structure as τ ;
◆ otherwise, σ returns π(τ(T)) where π is the isomorphism mapping u

to

π(⟨i , u⟩) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

⟨i , u⟩ if f i(u) = u ,
⟨k + j, f i(u)⟩ if f i(u) ≠ u and u ∈ P i

j . ⌟

Below we will use the following normal form for transductions on trees.
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Proposition 3.11. For every MSO-transduction τ and every constant d < ω,
there exists anMSO-transduction σ with the following properties.

◆ σ defines the same relation on structures as τ.
◆ For every order-tree T such that σ(T) is a graph of indegree at most d, we

have

o(u) ⪯ o(v) or o(v) ⪯ o(u) , for every edge ⟨u, v⟩ of σ(T) ,

where o is the origin map of σ and ⪯ the tree-ordering of T.

Proof. Let T be an order-tree such that τ(T) is a graph of indegree at most d.
Suppose that τ is k-copying. W.l.o.g. we may assume that the formula defin-
ing the new edge-relation is of the form

φE(x , y) = ⋁
i , j<k
[H ix ∧H j y ∧ φ i j(x , y)] ,

whereH0 , . . . ,Hk−1 are the predicates for the various copies and the formu-
lae φ i j do not contain any of them. Let m be the maximal quantifier-rank of
the formulae φ i j . For j < k, we set

f j(u) ∶= inf ({u} ∪ { u ⊓ v ∣ u ⪯̸ v , v ⪯̸ u , and

T ⊧ φ j l(u, v) for some l < k }) .

We start by proving that, for every w ∈ T and everyMSOm-theory θ, there
are at most d(d + 1) vertices u ⪰ w such that

f j(u) = w and Thm
MSO(Tv , u) = θ ,

where z is the immediate successor of w with z ⪯ u. For a contradiction,
suppose that there are at least d(d + 1)+ 1 such vertices u0 , . . . , ud(d+1). We
distinguish two cases.
First, suppose that there exists an immediate successor z of w such that

Tz contains more than d of the u i , say, u0 , . . . , ud ∈ Tz . By definition of f j ,
there exists a vertex v ∈ T ∖Tz such that T ⊧ φ j l(u0 , v), for some l . Hence,

Tz , u i ≡mMSO Tz , u0 implies T ⊧ φ j l(u i , v) , for all 0 ≤ i ≤ d .
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Consequently, the vertex ⟨l , v⟩ has indegree at least d + 1 in τ(T). A contra-
diction.

It follows that each subtree Tz contains at most d of the u i . Then we can
find immediate successors z0 , . . . , zd+1 of w and vertices u l0 , . . . , u ld+1 with
z i ⪯ u l i , for all i. W.l.o.g. we may assume that l i = i, for all i. As above, there
exists a vertex v ∈ T ∖Tz0 such that T ⊧ φ j l(u0 , v), for some l . This vertex
is contained in at most one of the subtrees Tz0 , . . . ,Tzd+1 . W.l.o.g. we may
assume that v ∉ Tz0 , . . . ,Tzd . It therefore follows that

Tz i , u i ≡
m
MSO Tz0 , u0 implies T ⊧ φ j l(u i , v) , for all 0 ≤ i ≤ d .

Again a contradiction to the fact that v has indegree at most d.
This concludes the proof of the above claim. It now follows that

∣ f −1j (v)∣ ≤ d(d + 1)N , for all v ∈ f j(T) and all j ,

whereN is the number ofThm
MSO-theories. Let σ be the d(d+1)N-rearrange-

ment of τ defined by the functions ( f j) j . To show that σ has the desired
properties, consider an edge ⟨⟨i , u⟩, ⟨ j, v⟩⟩ of σ(T). We distinguish four
cases.
(i , j < k) In this case, both u and v were not moved from their original

positions in τ(T). Consequently, u and v are fixed-points of, respectively,
f i and f j , which implies that u ⪯ v or v ⪯ u.
(i < k and j ≥ k) In this case v was moved to a new position, whereas

u remained where it was. Hence, f i(u) = u, which implies that u ⪯ v or
v ⪯ u.
(i ≥ k and j < k) In this case u was moved to a new position, whereas

v remained where it was. Fix an element u′ ≠ u with f i−k(u
′) = u. By

definition of f i−k , we have u = f i−k(u
′) ⪯ v′, for all v′, with

T ⊧ φ(i−k) j(u′ , v′) .

Since v satisfies this condition, it follows that u ⪯ v.
(i , j ≥ k) Both vertices were moved to new positions. Hence, there are

vertices u′ ≠ u and v′ ≠ v with

f i−m(u
′) = u , fk−m(v

′) = v , and T ⊧ φ(i−m)(k−m)(u′ , v′) .
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As in the previous case, we have u = f i−k(u
′) ⪯ v′. Since v = f j−k(v

′) ⪯ v′

it follows that v ⪯ u or u ⪯ v.

Corollary 3.12. Let n < ω and let τ be anMSO-transduction. There exists an

MSO-transduction σ such that

σ(A) ≅ τ(A) , for all structures A ,

and such that, for every order-tree T such that τ(T) is an order-tree of height at
most n, we have

u ⪯ v in σ(T) implies o(u) ⪯ o(v) in T ,

where o is the origin map of σ and ⪯ the tree-ordering of T and σ(T).

Proof. Suppose that

τ = τ0 ○ ρ ○ copyk ○ expm ,

let φ⪯(x , y) be the formula of τ0 defining the new order relation. W.l.o.g.
we may assume that

φ⪯(x , y) = ⋁
i , j<k
[H ix ∧H j y ∧ φ i j(x , y)] ,

whereH0 , . . . ,Hk−1 are the predicates for the k copies and the formulae φ i j
do not contain any of them. Suppose that ⟨T,S⟩ ∈ τ are order trees of height
at most n and let P̄ be the parameters used by τ to define S out of T.
Note that in an order-tree of height at most n, every vertex has at most

n + 1 predecessors (with respect to the relation ⪯). Consequently, we can use
Proposition 3.11 with d ∶= n + 1 to make sure that

u ⪯ v in τ(T) implies u ⪯ v or v ⪯ u .

For i < k and u ∈ T, we set

f i(u) ∶= inf { v ⪯ u ∣ ⟨T, P̄⟩ ⊧ φ i j(u, v) for some j } .
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Note that we have

∣ f −1i (v)∣ ≤ k(n + 1) , for all v ∈ T ,

since, inS = τ(T), there are at most k(n+ 1) vertices that lie on a path from
the root to some vertex in o−1(v). It follows that the k(n+ 1)-rearrangement
of τ by ( f i)i has the desired properties.

Let us use this normal form for transductions to prove that certain classes
of trees cannot be obtained via a transduction from other ones.

Definition 3.13. Let S and T be order-trees. A k-embedding of S in T is a
function h ∶ S → T such that
◆ u ⪯ v implies h(u) ⪯ h(v) ,
◆ ∣h−1(u)∣ ≤ k ,
for all u, v ∈ S. ⌟

Proposition 3.14. Let C andD be classes of trees of bounded height. Then the

following statements are equivalent.

(1) There exists anMSO-transduction with C ⊆ τ[D].
(2) There exists a GSO-transduction with C ⊆ τ[D].
(3) There exists a constant k < ω such that every S ∈ C has a k-embedding

into some T ∈ D.

Proof. (1) ⇔ (2) follows by Lemma 4.6 since trees are 1-sparse.
(1) ⇒ (3) Fix anMSO-transduction τ with C ⊆ τ[D] and let n < ω be

a bound on the height of trees in C ∪ D. Let σ be theMSO-transduction
from Lemma 3.12 and suppose that σ is k-copying. Then C ⊆ τ[D] and, for
every pair ⟨C,D⟩ ∈ σ , the origin map o induces a k-embedding C → D.
(3) ⇒ (1)Given a tree T we can encode an k-embedding h ∶ S → T as

follows. Let p ∶ T → T be the function mapping each vertex v ∈ T to its
predecessor. (We set p(v) ∶= v if v is the root ofT.) For v ∈ T, let v0 , v1 , . . .
be an enumeration of h−1(v). We encode h by the following predicates.

Pn ∶= { v ∈ T ∣ ∣h
−1(v)∣ = n } ,

Q i jn ∶= { v ∈ T ∣ vk is a successor of p
n(v i) in S} .
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X. Guarded Second-Order Transductions

We can recover S from copyk(⟨T, P̄, Q̄⟩) using the interpretation defined
by

δ(x) ∶= ⋁
i≤n
[H ix ∧ Pnx] ,

φ(x , y) ∶= ⋁
i , j,n
[H ix ∧H j y ∧ Q i jn(y) ∧ x = pn(y)] ,

where the predicatesH0 , . . . ,Hk−1 denote the various copies of T.

As a simple application let us show that there are no transductions that
can encode trees of a certain height in trees of smaller height.

Lemma 3.15. Let k, d , n < ω and let Tn
d be the complete d-ary tree of height n.

(a) There is no k-embedding of Tn+1
k into Tn

d .

(b) If S is a tree of height at most n + 1 such that the tree Tn+1
d cannot be

k-embedded into S, then there exists a d-embedding of S into some tree

of height n.

Proof. (a) We prove the claim by induction on n. For a contradiction, sup-
pose that there exists a k-embedding h ∶ Tn+1

k → Tn
d . Let v be the root

ofTn+1
k and let u0 , . . . , uk−1 be its successors.Then h induces a k-embedding

of Tn+1
k ∣u i into Tk

d ∣h(u i). By inductive hypothesis, it follows that Tk
d ∣h(u i) has

height at least n. Consequently, h maps u i to the root w of Tk
d . This implies

that also h(v) = w. Consequently, h−1(w) contains at least k + 1 elements
v , u0 , . . . , uk−1. A contradiction.
(b) We define the desired embedding h as follows. Let P ⊆ T be the

minimal (w.r.t. ⊆) set of vertices that contains

◆ every leaf of S at level n + 1 and

◆ every vertex that has at least d successors in P.

This implies that, if v ∈ P is a vertex on level k of of S, we can embed Tn−k
d

into the subtree attached at v. AsTn+1
d cannot be embedded intoS, it follows

that P does not contain the root of S. Let F be the set of all edges of S
linking some vertex in S ∖ P to a vertex in P. By definition of P it follows
that
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4 The Transduction Hierarchy

(i) every vertex of S has less than d F-successors;

(ii) every path of T from the root to some leaf on level n + 1 contains at
least one edge from F ; and

(iii) no such path contains two consecutive edges from F.

LetR be the tree obtained fromS by contracting every edge in F and let h ∶
S→ R be the functionmapping each vertex ofS to the corresponding vertex
of R. By (ii), R has height at most n. Furthermore, by (i) and (iii), every
vertex v of R has at most d preimages under h. Hence, h is a d-embedding.

Corollary 3.16. There does not exists a GSO-transduction τ mapping the class

of all trees of height n to the class of all trees of height n + 1.

4 The Transdu$tion Hierarcy

For two classes C andD, we can regard a transduction τ with C ⊆ τ(D) as
a way to encode every structure C ∈ C in some D ∈ D. The transduction τ
then provides the corresponding decoding map. In this section we study
the encoding power of such classes with respect to GSO-transductions. It
turns out that there are not that many possibilities and we can work out the
complete list. Formally, we are interested in the equivalence classes associated
with the following preorder.

Definition 4.1. Let L be eitherMSO or GSO. For two classes C ,D of struc-
tures, we define

C ⊑L D : iff C ⊆ τ(D) , for some L-transduction τ . ⌟

The relation ⊑L is obviously reflexive and transitive, that is, it forms a
preorder.The classes figuring in our characterisation below are the following.

Definition 4.2. We denote by

◆ P the class of all finite paths;

◆ G the class of all finite grids;
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X. Guarded Second-Order Transductions

◆ T0 the class containing only the empty structure; and

◆ Tn the class of all finite trees of height strictly less than n, for 0 < n ≤
ω. ⌟

These classes are closely related to the various variants of tree-width we
have introduced above.

Proposition 4.3. Let C be a class of finite structures.

(a) C ⊑GSO Tω iff C has bounded tree-width.

(b) C ⊑GSO P iff C has bounded path-width.

(c) C ⊑GSO Tn+1 iff C has bounded height-n tree-width.

Proof. The implication (⇐) follows by Proposition 2.1, while (⇒) follows
by Corollary 2.4.

We obtain the following explicit description of the relation ⊑GSO.

Theorem 4.4 (GSO-Transduction Hierarchy). We have the following hier-

archy.

∅ ⊏GSO T0 ⊏GSO T1 ⊏GSO ⋅ ⋅ ⋅ ⊏GSO Tn ⊏GSO ⋯

⋯ ⊏GSO P ⊏GSO Tω ⊏GSO G .

Furthermore, every class of finite structures is ⊑GSO-equivalent to exactly one of

these classes.

Proof. We start with the two extremal classes, Clearly, ∅ ⊏GSO C, for every
non-empty class C. Furthermore, it follows by Lemma 1.10 that C ⊑GSO G,
for all classes C.
Next, we establish the basic ordering between the classes. We have seen

in Lemma 1.8 that Tn ⊑GSO P , for all n. Together with the obvious trans-
ductions mapping Tω to P and Tn+1 to Tn , it follows that

T0 ⊑GSO T1 ⊑GSO ⋅ ⋅ ⋅ ⊑GSO Tn ⊑GSO ⋅ ⋅ ⋅ ⊑GSO P ⊑GSO Tω ⊑GSO G .

For strictness, note that
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4 The Transduction Hierarchy

◆ we have Tn+1 ⋢GSO Tn by Corollary 3.16,

◆ Tω has unbounded path-width, by Proposition VIII.1.7, and

◆ G has unbounded tree width, by Proposition VIII.3.6.

By Proposition 4.3, this implies that P ⊏GSO Tω and Tω ⊏GSO G.
Hence, it remains to show that every class C is equivalent to one of the

classes in the above hierarchy. We consider several cases. If C ⋢GSO Tω , then
C has unbounded tree-width and the Excluded GridTheorem implies that
G ⊆Min(C). By Lemma 1.7, it follows that G ⊑GSO C.
If, on the other hand, C ⊑GSO Tω then C has bounded tree-width. Let

τ be the transduction from Theorem 2.6 mapping a structure to its tree-
decomposition and let σ be the inverse transduction from Proposition 2.1.
Setting S ∶= τ(C) it follows that

C = σ[S] ⊑GSO S = τ[C] ⊑GSO C .

Consequently, C is equivalent to a class S of trees. We have to show that
S is equivalent to one of P or Tn , n ≤ ω. This follows from the following
three statements.

(a) Tω ⋢GSO S implies S ⊑GSO P .

(b) P ⋢GSO S implies S ⊑GSO Tn , for some n < ω .

(c) Tn+1 ⋢GSO S implies S ⊑GSO Tn .

(a) Suppose that S ⋢GSO P . By Proposition 4.3, this implies that pwdS
is unbounded. Consequently, we can use the Excluded TreeTheorem (The-
orem VIII.2.14) to show that Tω ⊆Min(S). Hence, Tω ⊑GSO S .
(b) If S contains a tree of height h, we can define a path of length h in it.

Since P ⋢GSO S , the height of the trees in S must therefore be bounded by
some constant h < ω. Consequently, S ⊑GSO Th+1.

(c)Note thatTn+1 ⋢GSO S impliesP ⋢GSO S , sinceTn+1 ⊑GSO P . By (b),
it follows that S ⊑GSO Tm , for some m. According to Proposition 3.14, there
exists a constant l such that, every tree S ∈ S has an l-embedding into some
T ∈ Tm . Let S ′ ⊆ Tm be the image of this embedding. Then S ′ ≡GSO S and
it is sufficient to prove that S ′ ⊑GSO Tn .
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X. Guarded Second-Order Transductions

Weproceed by induction onm. Ifm ≤ n, there is nothing to do. Form > n,
note that Tn+1 ⋢GSO S

′ implies Tm ⋢GSO S
′. According to Proposition 3.14,

this means that, for every k < ω, we can find some tree Tk ∈ Tm such that
there is no k-embedding of Tk to any S ∈ S ′. W.l.o.g. we may assume that
Tk is the complete d-ary tree of height m. By Lemma 3.15 (b), this implies
that every S ∈ S ′ can be d-embedded into some tree from Tm−1. Hence,
S ′ ⊑GSO Tm−1 and the claim follows by inductive hypothesis.

Oneway to interpret this theorem is as follows.As each of the classes above
correspond to a variant of tree-width, the theorem provides a complete list
of all the complexity measures for graphs that are compatible with guarded
second-order logic. There are no such measures besides: (i) tree-width;
(ii) path-width; and (iii) height-n tree-width.

Corollary 4.5. Let C be a class of relational structures. Then exactly one of the

following two cases holds.

(1) C has bounded tree-width and, over C, GSO coincides withMSO.

(2) C has unbounded tree-width and the GSO-theory of C interprets the full
second-order theory of all finite sets.

Proof. By Lemma VIII.1.8, if C has bounded tree-width, there is some con-
stant k such that every structure in C is k-sparse. Hence it follows byThe-
orem VII.3.6 that GSO coincides withMSO.

If C has unbounded tree-width, it follows by the Excluded GridTheorem
that there exists a GSO-transduction mapping C to the class G of all finite
grids. Furthermore, theMSO-theory ofG interprets the second-order theory
of all finite sets since

◆ on an n × n-grid we can encode binary relations on a set of size n by
unary relations, and

◆ every quantifier over anm-ary relation on a set of size n can be simulated
by quantifiers overm binary relations on a set of size nm+n (by encoding
the corresponding incidence structure).
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4 The Transduction Hierarchy

Complete descriptions of the corresponding hierarchies for other logics,
like MSO or FO are still missing. At this point, let us just mention the
following result that allows us to transfer results for GSO to ones forMSO.

Lemma 4.6. If C andD are classes of k-sparse structures, then

C ⊑MSO D iff C ⊑GSO D .

Proof. It is straightforward to construct a transduction showing thatC ⊑MSO

Cin, for every class C. Conversely, if C contains only k-sparse structures, it
follows byTheorem VII.3.6 that Cin ⊑MSO C.
Consequently, if both classes consist of only k-sparse structures, then

C ⊑MSO D implies Cin ⊑MSO C ⊑MSO D ⊑MSO Din ,

Cin ⊑MSO implies C ⊑MSO Cin ⊑MSO Din ⊑MSO D .

Since C ⊑GSO D if, and only if, Cin ⊑MSO Din, the claim follows.

In particular, it follows that every level of theGSO-transduction hierarchy
also appears in the version for MSO (although individual classes might
belong to different levels of the two hierarchies). But it might still be possible
that the hierarchy forMSO has additional levels.
As an application of the transduction hierarchy, let us take a look at

transductions between infinite structures. We will show below that there
is no transduction mapping some linear order to the infinite binary tree.
The first step is to reduce the statement to one concerning classes of finite
structures. For a class C of Σ-structures, let Cfin denote the class of all finite
substructures of structures in C.

Theorem 4.7. Let T be anMSO-definable class of generalised trees. Then

C ⊑MSO T implies Cfin ⊑MSO Tfin , for every class C .

Proof. Let τ be anMSO-transduction of quantifier-rank m with C ⊆ τ[T ].
Note that, for each C ∈ Cfin, there are structures D ∈ C and T ∈ T such
that C ⊆ D ∈ τ(T). The origin map o maps C to some subset o[C] ⊆ T
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X. Guarded Second-Order Transductions

(when considering o as a map D → T and ignoring the other component).
Let S ∶= ⟪o[C]⟫T ⊆ T be the substructure generated by o[C]. We will
construct anMSO-transduction σ such that C ∈ σ(S).
Given S, this transduction has to recover T and then apply τ. To see

how we can make this work, consider a generalised tree T ∈ T and a finite
substructureS ⊆ T. Let (Ts)s∈S be the decomposition of T induced byS as
in Definition V.1.10 and (θs)s∈S the associated labelling byMSOm-theories.
By Proposition V.1.11, we can evaluate everyMSOm-formula φ(x̄) over T if
we have access to (θs)s∈S .
We can now define a transduction σ that, given S, (i) guesses unary

predicates Q̄ encoding the theories (θs)s ; (ii) checks that the parameters Q̄
corresponds to a structure T ⊇ S in T ; and (iii) applies τ to T. The formal
definition is as follows. With the help of the predicates Q̄ we can translate
everyMSOm-formula φ(x̄) into a formula φ∗(x̄) such that

T ⊧ φ(ā) iff ⟨S, Q̄⟩ ⊧ φ∗(ā) , for all ā ⊆ S .

Let τ∗ be the transduction obtained from τ by replacing every formula φ by
its translation φ∗. The desired transduction σ has the form

σ ∶= τ∗ ○ ρ ○ expn ,

where expn guesses the additional labelling Q̄ and ρ is a filtering verifying
that the labelling Q̄ corresponds to a structure in T . We have to check to
conditions.
(i) The structure T corresponding to the labelling Q̄ belongs to T . (If

T is defined by ψ, we can use the formula ψ∗ for this.)
(ii) The labelling Q̄ corresponds to some structure T. For this we have to

express that the sets Qθ are disjoint, their union is all of T, and that

t ∈ Qθ implies θ =MThm(C) ,

for some structure of the form C = ⟨C , ≤,⊓, P, c⟩ where

◆ ⟨C , ≤,⊓⟩ is a generalised tree;

◆ P = ⇓c ; and
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◆ if s ∈ S is non-maximal, then c is a maxmial element of C.

Note that we do not need to express these properties using formulae. It is
sufficient to fix two sets Θ0 ⊆ Θ1 of MSOm-theories where Θ0 contains
all theories θ satisfying all three of the above conditions, while Θ1 contains
those satisfying the first two of them.Then we can use the formula

∀x ⋁
θ∈Θ1

Qθx ∧ ∀x[‘x maximal’→ ⋁
θ∈Θ0

Qθx] .

Corollary 4.8. There does not exist anMSO-transduction τ that maps some

linear order to the infinite binary tree.

Proof. If there were such a transduction, then {T} ⊑MSO L, where T is the
infinite binary tree and L is the class of all linear orders. By the preceding
theorem, this would imply that Tω ⊑MSO P . A contradiction.

Finally, let us also briefly take a look at the hierarchy forGSO over classes
of infinite structures. In this case the hierarchy is no longer linear since we
have to distinguish between different cardinalities in the branching of the
trees.

Definition 4.9. Let Φ be the class of all finite trees of height 1 and Ω the
class containing the unique infinite tree of height 1. For classes C andD of
trees, we define the following operations.

◆ C ⊕D consists of all trees obtained from a tree S ∈ C and a tree T ∈ D
by identifying the roots of S and T.

◆ C ⋅ D consists of all trees obtained from some tree S ∈ C by replacing
every leaf of S by some tree fromD.

◆ C ∶ D consists of all trees obtained from some tree S ∈ C by replacing
every leaf of S by the same tree T ∈ D. ⌟

For classes of countable trees of height one and two, the GSO-hierarchy
looks as follows.We omit the proof, which consists of a straightforward, but
lengthy argument based on Proposition 3.14.
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Φ

Ω

Φ2

Φ2 ∪ Ω

Φ2 ⊕ Ω

Φ ∶ Ω

Ω ∶Φ

Ω ∶Φ ∪Φ ∶ Ω

Ω ⋅Φ

Ω ⋅Φ ∪Φ ∶ Ω

Ω ∶Φ⊕Φ ∶ Ω

Ω ⋅Φ
∪

(Ω ∶Φ⊕Φ ∶ Ω)

Ω ⋅Φ⊕Φ ∶ Ω

Ω2

5 De[ning Tree-De$ompo@tion+

Let us finally present the proof ofTheorem 2.6 promised above. To simplify
terminology, we will identify Σ-structures with their associated hypergraphs
and with their Gaifman graphs. In particular, we call guarded sets hyperedges.
A path in A is a path in its Gaifman graph, and we will call A connected if its
Gaifman is.

We start by figuring out how to encode a tree-decomposition of a structure
by a relation sowe can define it inMSO.This does not work for arbitrary tree-
decompositions, but only those in a certain normal form. In the following,
we will work with tree-decompositions (Ut)t∈T indexed by an order-tree

instead of an undirected one.This is no restriction since we can always define
an order by picking a root for T.

Definition 5.1. Let A be a Σ-structure and (Ut)t∈T a tree-decomposition.
(a)The adhesion set of a componentUt is

Ad(t) ∶= Ut ∩Us ,

where s is the parent of t. For the root t, we set Ad(t) ∶= ∅.
(b)The decomposition (Ut)t∈T is reduced if

◆ Us ≠ Ut , for all s ≠ t, and
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◆ for every a ∈ Ut , there is some hyperedge e such that a ∈ e and e ⊈
Ad(t).

(c) A tree-decomposition (Ut)t∈T is internally connected if, for every sub-
tree S ⊆ T with root t, the set⋃s∈S Us ∖Ad(t) is connected in A.
(d) We say that an element a ∈ A is introduced in a component Ut (or

simply at the vertex t) if

a ∈ Ut ∖Ad(t) .

We denote by µ ∶ A→ T the function mapping every element to the vertex
it is introduced at.

(e)The introduction order ⊑ of (Ut)t is defined by

a ⊑ b : iff µ(a) ≤ µ(b) .

We denote the corresponding equivalence relation by ≡.
(f ) We say that a formula φ(x , y; Z̄) defines (Ut)t if there are GSO-

parameters P̄ such that the relation defined by φ(x , y; P̄) on A is the intro-
duction order of (Ut)t . ⌟

Example. Not all tree-decompositions are definable, even if they are reduced
and internally connected.The cycle of length 6 has the following two tree-
decompositions. The bottom one isMSO-definable, but the top one is not.
(In order to determine whether two vertices belong to the same component,
we would need to count how far away they are for the left-most vertex.)

⌟
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For reduced tree-decompositions, the introduction order ⊑ contains suffi-
cient information to reconstruct the index tree and the components.

Lemma 5.2. Let A be a Σ-structure and ⊑ the introduction order of a reduced
tree-decomposition (Ut)t∈T .

(a) ⟨T , ≤⟩ ≅ ⟨A, ⊑⟩/⊑ .
(b) Uµ(a) = { b ⊑ a ∣ b ≡ a or b ⊑ a and there is some c ⊒ a and

a hyperedge e such that b, c ∈ e } .

(c) If ⊑ is definable, there exists aGSO-formulaψ(X; Q̄) (with parameters Q̄)

such that

A ⊧ ψ(C; Q̄) iff C = Ut , for some t ∈ T .

Proof. (a) follows from the definition of ⊑ and (b) from the fact that (Ut)t is
reduced. For (c), note that, given a formula φ(x , y; P̄) defining ⊑, we can
express the condition from (b) in GSO.

When constructing formulae to define tree-decompositions below, we will
frequently have to distinguish several cases, each of which yields a different
formula. The next remark explains how we can combine such formulae into
a single one.

Lemma 5.3. Let φ0(x , y; Z̄0) and φ1(x , y; Z̄0) be two GSO-formulae and
let Ci be the class of all structures A such that, for some choice of parameters P̄,

the formula φ i(x , y; P̄) defines a tree-decomposition of A of width at most k.

Then there exists a GSO-formula ψ(x , y; Z̄) that defines a tree-decomposition
of width at most k on every structure in C0 ∪ C1.

Proof. We can use the formula φ0 to construct a formula ϑ(Z̄0) such that

A ⊧ ϑ(P̄) iff φ0(x , y; P̄) defines a tree-decomposition of A

of width at most k .

Then the desired formula is

ψ(x , y; Z̄0Z̄1) ∶=[ϑ(Z̄0) ∧ φ0(x , y; Z̄0)]

∨ [¬ϑ(Z̄0) ∧ φ1(x , y; Z̄1)] .
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Also note that we can always assume that our tree-decomposition is
reduced, and usually also that it is internally connected.

Lemma 5.4. (a) For every tree-decomposition (Ut)t∈T , there exists a reduced
tree-decomposition (Ws)s∈S of the same width where the index tree S is a minor

of T. Furthermore, (Ws)s has the same introduction order as (Ut)t and, if
(Ut)t is internally connected, so is (Ws)s .

(b) Every connected structure A has a tree-decomposition of width twdA that

is internally connected and reduced.

Proof. (a) We obtain (Ws)s from (Ut)t in two steps. First we remove all
elements a ∈ Ut such that there is no hyperedge e as above.Thenwe contract
every edge ⟨s, t⟩ of the resulting tree-decomposition (U′

t)t such thatU
′
s =

U
′
t . This operation does not change the connectedness of the decomposition

nor its introduction order.
(b) Let S be a subtree such that⋃s∈S Us has several connected components

C0 , . . . ,Cn−1. By assumption, this implies that S ≠ T. Let S0 , . . . , Sn−1 be
disjoint copies of S and set

U
i
s ∶= Us ∩ S i , for s ∈ S i .

In the decomposition (Ut)t∈T , we replace the subtree (Us)s∈S by the forest
consisting of the trees (U0

s )s∈S0 , . . . , (U
n−1
s )s∈Sn−1 . We repeat this construc-

tion until the resulting tree-decomposition is internally connected. Finally,
we can use (a) to make the tree-decomposition we have obtained in this way
reduced.

The formal statement we will prove in the rest of this section is the fol-
lowing theorem.

Theorem 5.5. Let Σ be a finite relational signature and k < ω. There exists a

GSO-formula φk(x , y; Z̄) and a constant l < ω with the following property: for

every finite Σ-structureAwith twdA ≤ k, there areGSO-parameters P̄ such that

φk(x , y; P̄) defines the introduction order ⊑ of some reduced tree-decomposition
(Ut)t∈T of A of width at most l .
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Before given the proof, let us explain how to use this result to prove
Theorem 2.6.

Proof of Theorem 2.6. By the preceding theorem, there exists a formula defin-
ing the introduction ordering ⊑. According to Lemma 5.2, we can construct
the associated tree by
◆ picking one representative from every ⊑-equivalence class and
◆ adding a new element as the root if there are several minimal ⊑-classes.
All of this can be done using a GSO-transduction. Since structures of tree-
width at most k are r-sparse, for some r, this GSO-transduction can be
transformed into anMSO-transduction usingTheorem VII.3.6.

For the proof, we need a way to orient hyperedges e. (If e corresponds
to a guarded tuple c̄ ∈ R, we of course already have an ordering on the
elements c0 , . . . , cn−1. But below we will also use hyperedges not associated
with guarded tuples.) We can do so by choosing a suitable colouring of A
and order the elements of e in the order of their colours.

Definition 5.6. Let (Ut)t∈T be a tree-decomposition of a Σ-structure A of
width k. A local colouring of A is a function χ ∶ A→ [k] that is injective on
every setUt . ⌟

Lemma 5.7. Every tree-decomposition has a local colouring.

Proof. Let (Ut)t∈T be a tree-decomposition of width k. We define χ(a)
inductively as follows.We start at an arbitrary vertex t ∈ T by choosing some
injective function χ ∶ Ut → [k]. For the inductive step, suppose that χ is
already defined for all elements in the componentUt . Let s be a neighbour
of t and letD ⊆ Us be the set of elements a such that χ(a) is already defined.
Then ∣Us ∣ ≤ k implies that we can define χ on the remaining elements in
Us ∖ D such that χ ↾ Us is injective.

Merging De$ompo@tion+

We start by showing how to assemble partial tree-decompositions into one
of the whole structure.
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Definition 5.8. Let (Ut)t∈T be a tree-decomposition of a structure A and
let µ ∶ A→ T be the corresponding introduction map.

(a) A factor of T is a connected subset F ⊆ T. The minimal element of F
is called its root. The border of F consists of all vertices t ∈ T ∖ F whose
predecessor belongs to F.
(b) The fragment of A corresponding to a factor F with root t is the

hypergraph A[F] obtained from the restriction of A to the set ⋃s∈F Us
by adding new hyperedges containing the adhesion sets of t and of every
component in the border. We call such a new hyperedge e corresponding
to the componentUs an adhesion edge representing s. For s = t, we call e the
root adhesion edge and for s in the border of F a border adhesion edge.

We can encode these edges by adding a new relation R to A whose arity is
equal to the width of (Ut)t such thatR contains one tuple for every adhesion
edge (we can order each edge increasingly with respect to some fixed local
colouring of A).

Finally, we denote by A∗[F] the structure obtained from A[F] by remov-
ing the root adhesion edge.

(c) We say that a formula ψ(x , y; Z̄) defines a refinement of (Ut)t if, for
every t ∈ T, ψ(x , y; Z̄) defines (in the structure A[{t}]) a tree-decomposi-
tion of the fragment A[{t}]. We call the tree-decompositions defined by ψ
the local decompositions. ⌟

Proposition 5.9. Let φ(x , y; Z̄) and ψ(x , y; Z̄′) be two GSO-formulae and
k < ω a constant. There exists a GSO-formula ϑ(x , y; Z̄′′) with the follow-
ing property. If φ(x , y; Z̄) defines a tree-decomposition (Ut)t∈T of some Σ-
structure A and ψ(x , y; Z̄′) defines a refinement of (Ut)t where every local
decomposition has width atmost k, then ϑ(x , y; Z̄′′) defines a tree-decomposition
of A of width at most k.

Proof. Let (Ut)t∈T be the tree-decomposition defined by φ, ⊑ its introduc-
tion order, and µ the corresponding function. Let (W t

s )s∈S t be the local
tree-decomposition of the fragment at {t} defined by ψ. We can define a
second tree-order on S

t such that the minimal component (with respect
to this new ordering) contains the root adhesion edge representing t. Since
this new ordering is definable in GSO (using the old ordering and the in-
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Figure 3: Merging tree-decompositions by their adhesion edges

troduction ordering ⊑ of (Ut)t), we can modify the formula ψ such that
the decompositions (W t

s )s∈S t it defines are already ordered in this way. We
define the desired tree-decomposition (W∗

s )s∈S∗ of A as follows. Let S∗ be
the tree obtained from the disjoint union of the trees S t , t ∈ T, by adding,
for every edge ⟨t0 , t1⟩ of T, an edge from s ∈ S t0 to the root of S t1 , where
s is the vertex such thatW t0

s contains the adhesion edge representing t1. We
define the component at a vertex s ∈ S t ⊆ S∗ byW∗

s ∶=W t
s .

Clearly, the resulting family (W∗
s )s∈S∗ is a tree-decomposition of width

at most k. We claim that it is definable. First, note that we can define its
introduction ordering ⊑∗ by

a ⊑∗ b : iff ∃zI(a, b; z)

∨ ∃x∃y[x ⊑ y ∧ I(a, a; x) ∧ I(b, b; y)] ,

where ⊑ denotes the introduction order of (Ut)t∈T and the relation I is
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defined by

I(a, b; c) : iff a ⊑µ(c) b ,

where ⊑t is the introduction order of the local decomposition (W t
s )s∈S t .

By assumption we have a formula φ defining ⊑. Hence it remains to show
that I is definable.We can check whether a and b are introduced in the same
component as c using the order ⊑. What is left is to verify that a ⊑t b holds.
Let P̄ t be the parameters used by the formula ψ(x , y; Z̄′) to define the tree-
decomposition (W t

s )s∈S t . When trying to use ψ(x , y; Z̄′) to define ⊑t , we
face the problem that we have to reconstruct the correct values of P̄ t . Thus,
it remains to show that we can encode all the families P̄ t , t ∈ T, by finitely
many predicates R̄ in such a way, that P̄ t can be recovered from R̄ given
some element c ∈ µ−1(t) to specify the vertex t.

Note that each fragment and, thus, the sets P t
i , can contain three different

kinds of elements and hyperedges: (i) elements in µ−1(t) ; (ii) elements
inAd(t) ; and (iii) adhesion edges.As the adhesion edges are not present inA
we have to encode them by suitable elements of A. If e is the adhesion edge
representing a vertex s in the border, we pick some element ce ∈ µ−1(s) and
say that ce represents e. We will consider each of the three types of elements
above separately by proving that the following relations are definable (with
suitable GSO-parameters).

K i(a; c) : iff a ∈ P
µ(c)
i ∩ µ−1(µ(c)) ,

L i(a; c) : iff a ∈ P
µ(c)
i ∩Ad(µ(c)) ,

M i(a; c) : iff a represents an adhesion edge e ∈ Pµ(c)
i .

We start with the relationM i . Set

Q i ∶= { ce ∣ e a border adhesion edge in P t
i for some t ∈ T } ,

Q
′
i ∶= { ce ∣ e the root adhesion edge in P

t
i for some t ∈ T } .

Since every adhesion edge belongs to a exactly two fragments, once as a
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border edge and once as the root edge, it follows that

M i = { ⟨a, c⟩ ∣ a ∈ Q i , c ⊏ a, and there is no b with c ⊏ b ⊏ a }

∪ { ⟨a, c⟩ ∣ a ∈ Q ′
i , c ≡ a } .

For the relation K i we can similarly use the parameter

R i ∶= ⋃
t∈T
[P t

i ∖Ad(t)] .

Then

K i = { ⟨a, c⟩ ∣ a ∈ R i , a ≡ c } .

Hence, it remains to consider the relations L i . Fix a local colouring χ ∶
A→ [k] of the combined decomposition (W∗

s )s∈S∗ . By our assumption on
the order ⊑t , the root componentW t

⟨⟩
contains Ad(t). SinceW t

⟨⟩
is also a

component of (W∗
s )s it follows that χ is injective on Ad(t) ⊆W t

⟨⟩
. For a

colour j ∈ [k], let g j(c) be the unique vertex in χ−1( j) ∩ Ad(µ(c)) (if it
exists). Using the parameters

S i j ∶= { c ∣ g j(c) ∈ P
µ(c)
i } and S

′
j ∶= χ

−1( j) ,

we can define L i by

L i = { ⟨a, c⟩ ∣ a ∈ S′j , a ∈ Ad(µ(c)) , and c ∈ S i j , for some j } .

(Note that, since (Ut)t is reduced, we can define Ad(µ(c)) from c using
the introduction order ⊑ and the relations of A.)

Bounded Path-Width

To show that tree-decompositions are definable, we first consider the simple
case where the structure in question has bounded path-width. The reason is
that we can equip path-decompositions with the structure of a semigroup,
which allows us to use tools from semigroup theory.
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5 Defining tree-decompositions

Definition 5.10. (a) For a signature Σ and a constant k < ω, we denote
byPk the set of all path-decompositions (U i)i<m of some finite Σ-structure
where the index set m is linearly ordered and the decomposition is equipped
with a local colouring.

(b)The composition of two path-decompositions (U i)i<m and (Wj) j<n
is the path-decomposition obtained by merging the last componentUm−1
of (U i)i with the first componentW0 of (Wj) j where the elements in these
two components are identified with each other according to their colours. ⌟

The set Pk together with composition forms an infinite semigroup. For
what follows, we have to reduce it to a finite one by forming a suitable
quotient.

Definition 5.11. We say that two path-decompositions (U i)i<m , (Wj) j<n
in Pk have the same profile if they satisfy the following conditions.

◆ The same colours appear inU0 and inW0.

◆ The same colours appear inUm−1 and inWn−1.

◆ For every pair ⟨c, d⟩ of colours, there is a path between the c-coloured
element inU0 and the d-coloured one inUm−1 if, and only if, there is
such a path betweenW0 andWn−1.

◆ There is a c-coloured element inU0 ∩Um−1 if, and only if, there is such
an element inW0 ∩Wn−1. ⌟

Lemma 5.12. The relation of having the same profile is a congruence of the

semigroup Pk with finitely many classes.

We can use the resulting quotient semigroup of profiles to construct
definable tree-decompositions as follows. Before doing so, let us introduced
the following terminology used in the proof.

Definition 5.13. Let (U i)i∈I be a path-decomposition of A.
(a) An element a ∈ A is ubiquitous if it belongs to every componentU i .
(b) An inner path is a path in A that does not contain any ubiquitous

elements. An inner component of A is a maximal set of elements that is
connect with respect to inner paths. ⌟
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Proposition 5.14. For every k < ω, there exist a constant N and a GSO-
formula φ(x , y; Z̄) that defines (with suitable GSO-parameters) a tree-decom-
position of width at most N on every finite structure A with pwdA ≤ k.

Proof. Let (U i)i∈I be a path-decomposition ofA of width at most k.We can
regard every componentU i as a 1-component path-decomposition of some
substructure of A. Then (U i)i is just the composition of these 1-component
decompositions. Let a i be the profile ofU i . ByTheorem II.3.7, the sequence
a0 , . . . , am−1 has a Simon treeT of bounded height h. By induction on h, we
will construct a formula that defines a tree-decomposition for all structures
whose associated Simon tree has height at most h.
We claim that every inner component of A has a definable tree-decom-

position of width at mostN ∶= k(h+ 1) (by a single formula only depending
on k, h, and the signature). Furthermore, A itself has a tree-decomposition
consisting of a root component C containing the ubiquitous elements (of
which there are at most k) together with one leaf D ∪ C, for every inner
connected component D of A. This decomposition is clearly definable (with
parameters C). As each leaf D ∪ C has a definable tree-decomposition of
width at mostN+ k that can be obtained from that ofD by adding the set C
to every component, we can use Proposition 5.9 to construct a definable
tree-decomposition of A of width at most N + k.

Hence, it remains to prove the claim. Fix an inner component D of A and
let D be the substructure induced by it. If h = 0, the Simon tree consists of a
single vertex. Consequently, the structure has at most k elements and we can
use a tree-decomposition consisting of a single component covering all of
them. For the inductive step, suppose that the Simon tree has height h > 0.
Then there exists a factorisation F0 , . . . , Fn−1 of the index set I such that
each subdecomposition (Us)s∈Fi has an associated Simon tree of height at
most h − 1. Furthermore, if there are more than two factors, we may assume
that all of them have the same profile and that this profile is idempotent. Set
C i ∶= D ∩⋃s∈Fi Us , for i < n. (In the following the terms ‘ubiquitous‘ and
‘inner path’ will always refer to the original decomposition (U i)i∈I , never to
the factors (Us)s∈Fi or to (C i)i<n .) We say that a path p of A visits an index
i < n if p contains some element from C i . We will establish the following
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four claims. Then the desired tree-decomposition of D can be obtained
from (i) and (ii) via Proposition 5.9. (The other two claims are needed to
prove (ii).)

(i) Every fragment D[Fi] associated with one of the above factors Fi has
a definable tree-decomposition of width at most k(h + 1).

(ii) D has a definable path-decomposition of the form (C i)i<n .

(iii) If n > 2, then every element of D belongs to at most two sets C i .

(iv) Suppose that n > 2 and that a, b ∈ D are introduced in C i and C j ,
respectively, where i ≤ j. Let P be the set of all inner paths from a to b.

◆ Every p ∈ P visits each index between i and j.

◆ Some p ∈ P does not visit any index less than i − 1 or greater than
j + 1.

(i) The fragment D[Fi] consists of the substructure Ci of D induced by
the set C i plus one adhesion edge e. By inductive hypothesis, the substruc-
ture Ci has a definable tree-decomposition (W i

s )s∈S i of width at most kh.
We obtain a tree-decomposition (W i

s ∪ e)s∈S i of D[Fi] by adding all ver-
tices from the edge e to every component. The resulting decomposition is
definable and its width is at most kh + ∣e∣ ≤ kh + k = k(h + 1).

(iii) For a contradiction, suppose that a ∈ D belongs to at least 3 compon-
ents C i . By the connectedness condition of a tree-decomposition, it follows
that we can find an index i such that a ∈ C i−1 ∩ C i ∩ C i+1. Consequently,
we have a ∈ Us ∩Ut where s is the first vertex in Fi and t is the last one. Let
c be the colour of a in the local colouring. Then the profile of Fi contains
the information that the c-coloured vertices in the first and last components
are the same. Since n > 2, the profiles of all factors F j ∪ ⋅ ⋅ ⋅ ∪ Fm are equal
and idempotent. This implies that the c-coloured vertices of the first and
last components of every F j are equal to a. Hence, a ∈ Us , for every s ∈ I.
But D contains no ubiquitous elements. A contradiction.

(iv) We start with the first claim. For a contradiction, suppose that there
is some index i ≤ l ≤ j not visited by p. Let ⟨c, d⟩ be the last edge of the
path p with c ∈ C0 ∪ ⋅ ⋅ ⋅ ∪ C l−1, and let s be the smallest index with d ∈ Cs .
By choice of c we have s ≥ l + 1. As the hyperedge containing c and d is
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covered by some componentUw , it follows that c ∈ Ct , for some t ≥ s. By the
connectedness condition of a tree-decomposition, this implies that c ∈ Cr ,
for all l − 1 ≤ r ≤ t. But these are t−(l − 1)+ 1 ≥ l + 1−(l − 1)+ 1 = 3 indices.
A contradiction to (iii).

For the second claim, fix some path p ∈ P. We can factorise p into parts of
three types: (1) paths contained in C0 ∪ ⋅ ⋅ ⋅ ∪ C i−1 and starting and ending
in some vertex of C i−1, (2) paths contained in C i ∪ ⋅ ⋅ ⋅ ∪ C j , and (3) paths
contained inC j+1∪⋅ ⋅ ⋅∪Cn−1 and starting and ending in some vertex ofC j+1.
Since the profiles of Fi−1 and of F0 ∪⋯ ∪ Fi−1 are the same, we can replace
every segment of p of type (1) by a path entirely contained in C i−1 (without
changing the end-points). Similarly, we can replace every segment of type (3)
by a path entirely contained in C j+1. The resulting path has the desired
property.
(ii) If there are only two factors, we can define the path-decomposition

using two unary predicates, one for each component. Hence, we may as-
sume that n > 2. As explained above, this means that the profiles of the
decompositions (Us)s∈Fi are the same and idempotent. We use 5 unary
predicates P0 , . . . , P4 where P j contains all elements introduced in C i with
i ≡ j (mod 5).We call j the sequential colour of these vertices (to distinguish
these colours from those given by the local colouring). Below we will prove
the following two claims.

(ii.1) Two elements a, b are introduced in the same component C i if, and
only if, they have the same sequential colour and there exists a path from
a to b that does not contain all colours.

(ii.2) To elements a and b are introduced in consecutive components if, and
only if, a has sequential colour j, b sequential colour j + 1 (modulo 5),
and there exists a path from a to b that does not contain all colours.

Since the introduction ordering is the transitive closure of these two relations,
it can therefore be defined with the help of the parameters P0 , . . . , P4.
(ii.1) (⇐) follows from the first claim in (iv): if a and b have the same

sequential colour but are introduced in C i and C j with i < j, then j ≥ i + 5
which implies that every path between them visits every sequential colour.
(⇒) follows from the second claim in (iv): if a, b ∈ C i there is some path
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between then containing only the colours i − 1, i , i + 1 (modulo 5).
(ii.2) Is proved in the same way except that, for (⇒), the path can now

contain colours i − 1, i , i + 1, i + 2.

Unbounded Path-Width

For the general case, we will decompose every tree-decomposition into a
family of path-decompositions.Then we can use the result from the previous
section to define tree-decompositions for each part, and we can fuse them
into a single one with the help of Proposition 5.9. We start with a few
technical lemmas about paths.

Lemma 5.15. LetP be a set of paths in a structureA such that no element a ∈ A
belongs to more than k paths from P . There exists a GSO-formula φ(x , y; Q̄)
(with parameters Q̄) such that

A ⊧ φ(a, b; Q̄) iff a and b are the end-points of some path in P .

This formula only depends on the signature Σ and the constant k.

Proof. By assumption we can choose colourings µp ∶ dom(p) → [k], for
p ∈ P , such that

a ∈ dom(p) ∩ dom(q) implies µp(a) ≠ µq(a) .

( Just fix a well-ordered enumeration (p i)i<α of P and choose µp i by induc-
tion on i.) We consider the relations

E i j ∶= { ⟨a, b⟩ ∣ a and b are consecutive vertices on some p ∈ P

with µp(a) = i and µp(b) = j } ,

E ∶= { ⟨⟨a, i⟩, ⟨b, j⟩⟩ ∣ ⟨a, b⟩ ∈ E i j } .

Note that the relations E i j are already guarded, so we can use them as
parameters. Furthermore, the transitive reflexive closure E∗ of E can be
defined by

ψ i j(x , y) ∶= ∀Z̄[Z ix ∧ ∀uv ⋀
m ,n
[Zmu ∧ Emnuv → Znv] → Z j y] .
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It follows that we can construct the desired formula φ by expressing that

◆ there are i , j < k such that ⟨⟨x , i⟩, ⟨y, j⟩⟩ ∈ E∗,

◆ there are no z and l such that ⟨z, x⟩ ∈ E l i ,

◆ there are no z and l such that ⟨y, z⟩ ∈ E j l .

Lemma 5.16. Let (Ut)t∈T be a reduced internally connected tree-decomposition

of A of width k and let a, b ∈ Ut be two elements in the same component. There

exists a factor F with root t such that

◆ pwdA[F] ≤ 2k

◆ a and b are connect in A∗[F] by two paths p and q (not necessarily distinct)
such that each border adhesion edge is used by at most one them.

Proof. Given a factor F of T and two sets X,Y ⊆ ⋃s∈F Us , we call a hy-
peredge e X-Y-separating if every path between X and Y in A∗[F]in goes
through the vertex e. We say that a path-decomposition of A∗[F] is X-Y-
separating if

X ⊆ W0, Y ⊆ Wn−1, and, for every X-Y-separating adhesion edge e,
there is some index i withWi = e andWi−1 ∩Wi+1 = ∅.

We split the proof into the following four steps.

(i) For every factor F, the fragment A∗[F] is connected.

(ii) For every s ∈ T and all X,Y ⊆ Us , there exists an X-Y-separating
path-decomposition V0 , . . . ,Vn of A∗[s] of width at most k.

(iii) There exists a factor F with root t such thatA[F] has an a-b-separating
path-decomposition (Wi)i<n of width at most 2k.

(iv) There exists a factor F as in the statement of the lemma.

(i) Let r be the root of F and let S the subtree of T rooted at r. Since
(Ut)t∈T is reduced and internally connected, the substructure A∗[S] con-
tains some path p0 between X and Y that does not contain any elements
from Ad(r), expect possibly for the end-points. Replacing in p0 every sub-
path outside ofA∗[F] by the corresponding border adhesion edge, be obtain
a path p in A∗[F] between a and b.
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(ii) If A∗[t] does not contain any X-Y-separating adhesion edges, we
can take the decomposition consisting of a single component V0 ∶= Us .
Otherwise, we use (i) to choose a path p in A∗[t] between X and Y. Let
e0 , . . . , em−1 be an enumeration of all X-Y-separating adhesion edges, enu-
merated in the order they appear on p. (Note that this enumeration does not
depend on the choice of p.) For odd indices, we setV2 j+1 ∶= e j while, for the
even components V0 ,V2 , . . . ,V2m , we choose the connected components
of the graph obtained from Us by removing the edges e0 , . . . , em−1. (For
V0 and V2m , we take the union of all connected components containing
elements from, respectively, X and Y.)

X e0 e1 YV0 V2 V4

Then X ⊆ V0 and Y ⊆ V2m . Furthermore, ∣Vi ∣ ≤ ∣Us ∣ ≤ k. Hence,
V0 , . . . ,V2m is the desired path decomposition.

(iii) Let (Vi)i<n be the path-decomposition from (ii) for s ∶= t,X ∶= {a},
and Y ∶= {b}. Setting Wi ∶= Vi ∪ Ad(t), we obtain a path-decomposi-
tion (Wi)i<n of A[t] with the desired properties.
(iv) Since the set of factors with the property from (iii) is closed under

unions of chains, there exists a maximal such factor F. We claim that A∗[F]
contains two paths between a and b such that no adhesion edge is used by
both of them. (Note that, expect for the adhesion edges, both paths might
intersect or even be identical.) For a contradiction, suppose otherwise.Then,
for every pair of paths from a to b inA∗[F], there is some adhesion edge that
is used by both of them. By theTheorem of Menger (applied to the graph
A∗[F]in), it then follows that there exists an a-b-separating hyperedge e
that is an adhesion edge. Let s ∈ T be the vertex represented by e. It is
sufficient to prove that the factor F′ ∶= F ∪ {s} also satisfies the above
conditions (a contradiction to the maximality of F). By assumption, there is
some index i such thatWi = e andWi−1∩Wi+1 = ∅. LetV0 , . . . ,Vm be the
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path-decomposition ofA∗[s] from (ii) forX ∶= e∩Wi−1 andY ∶= e∩Wi+1.
Then

W0 , . . . ,Wi−1 ,V0 , . . . ,Vm ,Wi+1 , . . . ,Wn−1

is a path-decomposition ofA[F′]. To see that it is a-b-separating, let f be an
a-b-separating adhesion edge. If f is an adhesion edge in A[F], we can find
the desired componentWj withWj = f by choice of F. (Note that f ≠ e
implies j ≠ i.) If, on the other hand, f is a new adhesion edge in A∗[s], the
claim follows by construction of V0 , . . . ,Vm .

Lemma 5.17. Let (Ut)t∈T be a reduced internally connected tree-decomposition

of A of width k. There exists a partition F of T into factors with the following

properties.

(a) pwdA[F] ≤ 2k , for all F ∈ F .

(b) There exists a GSO-formula φ(x , y; P̄) (with GSO-parameters P̄) that
only depends on k and the signature Σ such that

A ⊧ φ(a, b; P̄) iff the factor F ∈ F introducing a is less

than or equal (in the tree order) to the

factor introducing b .

Proof. LetF be a maximal family of disjoint factors of T with the following
properties.

◆ The union⋃F is a prefix of T.

◆ For every F ∈ F , we have pwdA[F] ≤ 2k.

◆ The fragment A[⋃F] contains a family P of paths such that

(i) for every F ∈ F with root t there is some element a introduced
in F that is connected to every b ∈ Ut by some path in P ;

(ii) every element of A[⋃F] lies on at most 2k3 + k paths from P ;

(iii) every border adhesion edge ofA[⋃F] is used by at most 2k3 paths
from P .
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To see that such a family exists, take F = {F} where F = {s} consists of
just the root of T. Then pwdA[s] ≤ ∣Us ∣ ≤ k. Furthermore, since (Ut)t is
reduced and internally connected, A[s] is connected. Hence, we can pick
some element a ∈ Us and, for every b ∈ Us , some path pb from b to a. Then
P ∶= { pb ∣ b ∈ Us } is a family of paths satisfying (i)–(iii).
Thus, there exists a maximal such family F . We claim that it has the

desired properties. By choice of F , we know that every factor has path-
width at most 2k.

To see that the ordering between the factors is definable, we use the
family P from above. For every F ∈ F , fix an element aF introduced in F

that is connected to every element of the root component of F by some path
in P . We know by Lemma 5.15 that we can define the relation

{ ⟨a, b⟩ ∣ P contains a path between a and b } .

(We will show below that⋃F = T. Hence, the paths cannot contain any
adhesion edges.) Consequently, we can also define

R ∶= { ⟨a, b⟩ ∣ a = aF and b ∈ Ad(t) for some F ∈ F with root t } .

Let F ∈ F with root t. As (Us)s is internally connected, the fragment
associated with the subtree S attached to t is connected. Since aF does not
belong to Ad(t), it follows that an element b is introduced in S if, and only
if, there is some path between aF and b that contains no vertex in Ad(t).
This property can be expressed in GSO using the definable relation R above.
Consequently, we can also define the relation

S ∶= { ⟨a, b⟩ ∣ there is some F ∈ F with root t such that a = aF and

b is introduced in the subtree attached to t } .

It follows that we can order the factors by the formula

φ(x , y) ∶= (∃v .Svy)(∀u.Sux)∀z[Svz → Suz] .

To finish the proof it remains to show thatF is indeed a partition of T,
i.e., that⋃F = T. For a contradiction, suppose otherwise and fix a minimal
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vertex t ∈ T ∖ ⋃F . Let e be the adhesion edge of A[⋃F] representing t.
We define the e-trace of a path p ∈ P to be the set of all edges ⟨a, b⟩ of p
such that a, b ∈ e. Let us call a path p minimal if it cannot be shortened by
removing some of its vertices without changing its end-points or it becoming
disconnected. Note that, by removing some vertices if necessary, we may
assume that every path in P is minimal without violating (i)–(iii). This
implies that the e-trace of every path in P contains at most one edge.

Wepick two vertices a, b ∈ e such that the numberm of paths p ∈ P whose
trace contains ⟨a, b⟩ is maximal. By Lemma 5.16, there exists a factor F′ with
root t such that pwdA[F′] ≤ 2k and the fragment A∗[F′] contains two
paths between a and b such that every border adhesion edge of A[F′] lies on
at most one of them. We claim thatF ∪ {F′} satisfies the above conditions,
which contradicts the maximality of F . Clearly, ⋃F ∪ F

′ is a prefix of T
and pwdA[F′] ≤ 2k. Hence, we only have to check the third condition.

We fix an element c introduced inUt . For every d ∈ Ut , we choose a path
between c and d in A∗[{t}]. LetQ0 be the set of these paths. We cannot
simply use the union P ∪Q0, since the paths in P might use the adhesion
edge e, which does not exist in A[⋃F ∪ F

′]. Therefore, we have to modify
the paths in P .

LetQ1 be the set of paths p ∈ P that do not use the edge e.The other paths
are modified as follows. For paths p ∈ P whose e-trace ⟨c, d⟩ is different
from ⟨a, b⟩, we replace the edge ⟨c, d⟩ by some path inA∗[F′] that connects
c and d. (Such a path exists, since (Us)s is reduced and internally connected.)
LetQ2 be the set of paths obtained this way. For paths p ∈ P with e-trace
⟨a, b⟩ be proceed as follows.We use Lemma 5.16 to find two paths q0 and q1
between a and b in A∗[F′] such that every border adhesion edge is used by
at most one of them. In half of the paths, we replace the edge ⟨a, b⟩ by q0
and in the other half, we replace it by q1. LetQ3 be the set of paths obtained
this way. It follows that, by choice of a and b, every adhesion edge in A∗[F′]
is used by at most ⌈m/2⌉ of the paths inQ3.
We claim thatQ ∶= Q0 ∪Q1 ∪Q2 ∪Q3 is the desired set of paths for

F ∪ {F′}. Condition (i) is satisfied by choice ofQ0.
For (ii), let c ∈ A[⋃F ∪ {F′}]. If c ∈ A[⋃F], it belongs to at most

2k3 + k paths from P by (ii). Since every path q ∈ Q belongs to A[F′] or is
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5 Defining tree-decompositions

obtained form some p ∈ P by inserting subpaths that entirely lie in A[F′],
it follows that such an element also belongs to at most 2k3 + k paths formQ.
If c is introduced in F′ it belongs to at most ∣Q0∣ ≤ k paths inQ0, and to at
most 2k3 paths from P by (iii). This implies that it belongs to at most 2k3

paths fromQ1 ∪Q2 ∪Q3.
Finally, for (iii), let f be an adhesion edge in A[⋃F ∪ {F′}]. If f is an

adhesion edge in A[⋃F], it is contained in at most 2k3 paths from P and,
hence, also in at most that many paths fromQ. If f belongs to A[F′], it is
used by at most ∣Q0∣ ≤ k paths fromQ0, it is not used by any path inQ1,
and, as we have seen above, by at most ⌈m/2⌉ paths fromQ3. Let n be the
number of paths inQ2 using f . We distinguish two cases.
If m ≥ 2k, we have ⌈m/2⌉ + k ≥ 2k ≤ m. Hence, k + n + ⌈m/2⌉ ≤ n + m

which is at most the number of paths inP using the adhesion edge e. By (iii),
this number is bounded by 2k3.

If m < 2k, there are at most m ≤ 2k − 1 paths in P with any given e-trace
⟨c, d⟩, and there are at most ∣Ad(t)∣2 ≤ k

2 possible non-empty e-traces.
Since every path inQ2 ∪Q3 using f is obtained from some path in P with
non-empty e-trace, follows that there are at most k2(2k − 1) such paths.
Since k2(2k − 1) + k = 2k3 − k

2 + k ≤ 2k3, the claim follows.

Proof of Theorem 5.5. Let A be a structure of tree-width k. By Lemma 5.4
every connected component C of A has a reduced internally connected tree-
decomposition of width k. LetF be the factorisation of this decomposition
from Lemma 5.17.This factorisation induces a tree-decomposition of C that,
according to Lemma 5.17 (b), is definable. Furthermore, by (a), each fragment
of this decomposition has path-width at most 2k. Hence, we can use Proposi-
tion 5.14 to find definable tree-decompositions for every fragmentA[F], and
Proposition 5.9 then produces a definable tree-decomposition of C. Finally,
note that the decomposition of A into its connected components can be con-
sidered as the introduction ordering of a tree-decomposition (with an empty
root and one leaf for every connected component). Since this decomposition
is definable, we can use Proposition 5.9 once more to obtain the desired
definable tree-decomposition of A.
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X. Guarded Second-Order Transductions

Note+

Monadic second-order transductions here were introduced by Courcelle and
Engelfriet in [59]. The Transduction Hierarchy is from [23].

Theorem 2.6 was originally announced by Lapoir [128], but he was never
able to provide a satisfactory proof. The first complete proof is due to
Bojańczyk and Pilipczuk [29]. The original proof shows how to define tree-
decompositions whose width might be larger than the tree-width of the
given structure. In a subsequent article [30] the same authors show how to
transform such a decomposition into one of minimal width.

The fact that GSO collapses to FO over classes of bounded height-n tree-
width was first noted in [77].

Corollary 4.8 was proved by Rabinovitch [157] using different methods.
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Part C

Appli$ation+





XI The Cau$al Hierarcy

1 Finitely Presentable Stru$ture+

When developing algorithms that work with infinite structures,
the main problem to be solved is how to encode such a structure in

a finite way, so we can input it to the algorithm. As every kind of encoding
can represent only countably many objects, there is no single encoding that
works for all countable structures.Thatmeans that, for every application, one
has to find a representation that works well for the given task. In particular,
(i) every structure of interest must have an encoding and (ii) the problem
we want to solve for these structures needs to be decidable when using this
representation.The problem we are mostly interested in here is the model-
checking problem: given a structureA and a formulaφ, decidewhether or not
A ⊧ φ. Many algorithmic problems can be phrased in this way, depending
on which logic we use.
One quite general way to obtain such representations is to start with

a set of basic structures with certain desirable properties, like a decidable
model-checking problem, and to close it under operations preserving these
properties. Then every structure in the resulting class has the desired prop-
erties by design. Furthermore, each of them also has a finite representation:
a finite term over the chosen operations. Our main examples will consist of
operations compatible with some logic like FO orMSO that are applied to
some canonical base structure like the infinite binary tree.
When constructing representations using this recipe, the algorithmic

properties of the resulting structures usually follow by the choice of the
representation. But it can be quite hard to characterise which structures
have a representation of this kind. This question is not purely theoretical
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XI. The Caucal Hierarchy

since, when choosing a representation for a given application, one needs to
make sure that all the structures occurring as possible inputs can actually be
encoded.

Tree-Interpretable Stru$ture+

Our first example is a class of simple structures with a decidableMSO-theory.

Definition 1.1. We call a structureA tree-interpretable if there exists anMSO-
interpretation τ mapping the infinite binary tree Tbin to A. ⌟

We can represent each such structure by the corresponding interpreta-
tion τ. Furthermore, given τ and anMSO-formula φ, we can decide whether
A ⊧ φ by checking whether Tbin ⊧ φτ .

Examples. (a) For every 0 < k < ω, the k-ary infinite tree

T = ⟨[k]∗ , ≤pf , ≤lex , (suci)i<k⟩

is tree-interpretable.
(b) We have shown inTheorem VI.4.10 that a linear order is tree-inter-

pretable if, and only if, it is regular. Similarly, Theorem ?? tells us that a tree
is tree-interpretable if, and only if, it is regular. ⌟

We can useTheorem V.1.13 to replace theMSO-interpretation represent-
ing a tree-interpretable structure by an FO-interpretation.

Theorem 1.2. A structure A is tree-interpretable if, and only if, it is FO-inter-
pretable in Tbin = ⟨{0, 1}∗ , ≤pf , suc0 , suc1⟩.

Proof. By Corollary V.1.14, we can write

A ≅ σ(ρ(Tbin)) ,

for an FO-interpretation σ and an MSO-colouring ρ. Let C be the set of
colours used by ρ and let φc(x) be theMSO-formula defining the colour
c ∈ c. By Lemma 2.3, the setKc ∶= φTbin

c ⊆ {0, 1}∗ of all vertices with colour c
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1 Finitely Presentable Structures

forms a regular language. Fix a homomorphism η ∶ {0, 1}∗ →M to a finite
monoid recognising all languages Kc , for c ∈ C. Let Pc ⊆ M be the subset
such thatKc = η−1[Pc] and let S ⊆M∗ be the set of all sequences a0⋯an−1
such that

a0 = η(c0) and a i+1 ∶= a i ⋅ η(c i+1) , for some c i ∈ {0, 1} .

Since this condition is local, there exists an FO-formula defining the set S in
the tree

U ∶= ⟨M∗ , ≤pf , (suca)a∈M⟩ .

Let Lc be the set of all sequences a0⋯an−1 ∈ S such that an−1 ∈ Pc . It follows
that the subtree

S ∶= ⟨S , ≤pf , (suca)a∈M , (Lc)c⟩

of U is isomorphic to ⟨Tbin , (Kc)c⟩. Furthermore, each predicate Lc is
FO-definable in U. Consequently, there exists an FO-interpretation τ of S
in U. Combined with the interpretation σ from above, we obtain an FO-
interpretation of A in U.
Hence, it remains to see that U is FO-interpretable in Tbin. Fix an enu-

meration a0 , . . . , am−1 of M and let g ∶ M → {0, 1}m+2 be the function
with g(a i) = 0i+11m−i+1. We extend g to a homomorphismM

∗ → {0, 1}∗.
The existence of the desired interpretation now follows from the fact that
the image ofM∗ under this homomorphism is FO-definable in Tbin.

In the sections below we will prove several characterisations of tree-
interpretable structures. For convenience, let us summarise them here. All
undefined terminology will be introduced later on.

Theorem 1.3. Let A be a Σ-structure. The following statements are equivalent.

(1) A is tree-interpretable.

(2) A is FO-interpretable in Tbin (with tree-order).

(3) A is prefix-recognisable.
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XI. The Caucal Hierarchy

(4) A is VR-equational.

The proofs can be found inTheorems 1.2, 2.2 and 3.1 below. For graphs,
we have two additional characterisations.

Theorem 1.4. Let G = ⟨V , (Ea)a∈a⟩ be a directed edge-labelled graph. The

following statements are equivalent.

(1) G is tree-interpretable.

(2) G is FO-interpretable in Tbin (with tree-order).

(3) G is prefix-recognisable.

(4) G is VR-equational.

(5) G ≅ α(Tbin), for regular path-interpretation α.
(6) G is an ε-pushdown graph.

The respective proofs are given byTheorems 4.2 and 5.3.

The Cau$al Hierarcy

We can obtain a larger class with decidableMSO-model checking by adding
a secondMSO-compatible operation: the Muchnik iteration.

Definition 1.5. The Caucal hierarchy is the sequence

CH0 ⊆ CH1 ⊆ CH2 ⊆ ⋯ ,

where CH0 is the class of all finite structures and CHn+1 consists of all struc-
tures of the form τ(A∗), where A ∈ CHn and τ is anMSO-interpretation.
We denote the union of this hierarchy by CH. ⌟

Examples. (a) Let C be a structure with a single element and no relations.
Then

C∗ ≅ ⟨ω, suc, P⟩ , where P ∶= { n < ω ∣ n > 1} .

Applying an interpretation that forgets the predicate P, it follows that

⟨ω, suc⟩ ∈ CH1 .
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1 Finitely Presentable Structures

(b) We have ⟨ω, suc⟩∗ ≅ ⟨ω∗ , suc, suc′ , P⟩, where

suc ∶= { ⟨wk,w(k + 1)⟩ ∣ w ∈ ω∗ , k < ω } ,
suc′ ∶= { ⟨w ,wk⟩ ∣ w ∈ ω∗ , k < ω } ,
P ∶= {wkk ∣ w ∈ ω∗ , k < ω } .

In this structure we can define the order ≤ ∶= suc∗, the transitive reflexive
closure of suc, the set

T ∶= { ⟨k, n⟩ ∈ ω2 ∣ n ≤ k } ,

and the edge relation

E ∶= { ⟨⟨k, 0⟩, ⟨k + 1, 0⟩⟩ ∈ T × T ∣ k < ω }

∪ { ⟨⟨k, n + 1⟩, ⟨k, n⟩⟩ ∈ T × T ∣ n < k } .

Consequently, the tree T ∶= ⟨T , E⟩ can be interpreted in ⟨ω, suc⟩∗, which
implies that T ∈ CH2. Note that T ∉ CH1.

(c) For n < ω, we consider the trees

Tn ∶= ⟨Tn , suca , sucb⟩ and Sn ∶= ⟨Sn , suca , suc0 , suc1⟩
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XI. The Caucal Hierarchy

with domains

Tn ∶= { a
i
b
j ∣ i < ω, j < expn(i) } ,

Sn ∶= { a
i
w ∣ i < ω, w ∈ {0, 1}<i } ,

where expn denotes the n-fold iteration of the exponentiation function

exp0(k) ∶= k and expi+1(k) ∶= 2
exp i(k) .

We claim that

Tn ∈ CHn+2 and Sn ∈ CHn+3 .

The proof proceeds by induction on n. By (b), we have T0 ∈ CH2. For the
inductive step, note that we can obtain Sn from Tn by applying an inter-
pretation that replaces every b-edge by two parallel edges with labels 0 and 1,
respectively, and then unravelling the resulting graph. As the unravelling is
interpretable in the Muchnik iteration, it follows by inductive hypothesis
that

Sn ∈ CHn+3 .

Finally, we can obtain Tn+1 from Sn by anMSO-interpretation that orders
each subtree of the form { a iw ∣ w ∈ {0, 1}<i } lexicographically and then
replaces the ordering by the corresponding successor relation. It follows that
Tn+1 ∈ CHn+3. ⌟

As both operations used to generate the Caucal hierarchy are CMSO-
compatible, we immediately obtain the following decidability result.

Theorem 1.6. Every structure in the Caucal hierarchy has a decidable CMSO-
theory.

Remark. In the example on page 804 below, we will present a tree with a
decidable CMSO-theory that does not belong to the Caucal hierarchy. ⌟
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1 Finitely Presentable Structures

The following normal form is frequently helpful. We denote the n-fold
iteration of the Muchnik iteration by A∗n , that is A∗0 ∶= A and A∗(n+1) ∶=
(A∗n)∗.

Lemma 1.7. A structure belongs to CHn if, and only if, it is of the form τ(C∗n),
for someMSO-interpretation τ and a finite structure C.

Proof. We have shown in Lemma V.3.12 that MSO-interpretations and
Muchnik iterations commute (in one direction). Consequently, the claim
follows by induction on the level n.

We can use this normal form to compare the structures in CH with tree-
interpretable structures. As it turns out, the only difference is that we are
allowed to use a certain non-regular colouring of the binary tree.

Lemma 1.8. Let C be a finite structure and 0 < n < ω. There exists anMSO-
interpretation τ and (non-regular) sets P1 , . . . , Pn−1 ⊆ {0, 1}∗ such that

C∗n ≅ τ(Tbin , P̄) .

Proof. Note that

C∗n = ⟨C∗n , suc0 , . . . , sucn−1 , cl0 , . . . , cln−1⟩ .

We encode this structure in Tbin as follows. We define an injective function
µn ∶ C∗n → {0, 1}∗ by induction on n. For n = 0, let c0 , . . . , cm−1 be an
enumeration of C. We set

µ0(c i) ∶= 0i+1 .

For n > 0, we set

µn+1(⟨w0 , . . . ,wk−1⟩) ∶= µn(w0) 1n+1 µn(w1) 1n+1⋯ 1n+1 µn(wk−1) .

Let

A ∶= 0 + 00 +⋯ + 0m and Bn ∶= 1 + 11 +⋯ + 1n .
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XI. The Caucal Hierarchy

The range of the function µn is

rng µn = (ABn)
∗
A ,

which isMSO-definable. Furthermore, under this encoding the successor
functions are given by

suci = { ⟨w ,w1i+1v⟩ ∣ v ∈ (AB i+1)
∗
A} .

These relations are alsoMSO-definable. Finally, the first clone relation

cl0 = {wu1u ∣ u ∈ A, w is empty or it ends in 1}

is alsoMSO-definable since the set A is finite. Consequently, the structure

⟨C∗n , suc0 , . . . , sucn−1 , cl0⟩

is MSO-interpretable in Tbin. Adding the relations cl1 , . . . , cln−1 as addi-
tional monadic predicates P̄, we obtain an interpretation of C∗n in ⟨Tbin , P̄⟩.

Corollary 1.9. Every A ∈ CH is of the form A ≅ τ(Tbin , P̄) for some MSO-
interpretation τ and some monadic parameters P̄.

Corollary 1.10. CH1 is the class of all tree-interpretable structures.

Most algorithmic properties of structures in the Caucal hierarchy follow
directly from the definition. We have already seen that they have decidable
CMSO-theories. It is also straightforward to determine the closure properties
of CH.

Lemma 1.11. Each level CHn of the Caucal hierarchy is closed under

(1) CMSO-interpretations,

(2) isomorphisms,

(3) finite unions,

(4) the copy operation,
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1 Finitely Presentable Structures

(5) definable expansions,

(6) expansion by finitely many constants, and

(7) substructures with definable universe.

Let us also establish closure of tree-interpretable structures under quo-
tients by MSO-definable equivalence relations. The following lemma is a
weak version of Lemma ?? below.

Lemma 1.12. Let Tbin be the binary tree, K ⊆ {0, 1}∗ a regular language,

and ≈ ⊆ K ×K anMSO-definable equivalence relation. There exists a regular

language K0 ⊆ K such that K0 contains exactly one element of each ≈-class.

Proof. Let p be the function mapping x ∈ K to the infimum (with respect
to ≤pf ) of its ≈-class [x]≈. Note that the function p isMSO-definable. Let
m be the quantifier-rank of the formula defining ≈ and k be the number
ofMSOm-theories. We claim that each class [x]≈ contains an element of
length at most ∣p(x)∣+ k.This implies that the length-lexicographically least
element of an ≈-class [x]≈ is definable. Hence, we can set

K0 ∶= { x ∈ K ∣ x the ≤llex-least element of [x]≈ } .

To prove the above claim, consider elements x0 , x1 ∈ [x]≈ such that
x0 ⊓ x1 = p(x). We choose x0 such that ∣x0∣ is minimal. Let s be the suffix
of x0 such that x0 = p(x0)s. We claim that ∣s∣ ≤ k. For a contradiction,
suppose otherwise. Then there are two non-empty prefixes z <pf z′ ≤pf s
such that

⟨Tbin , s⟩∣⇑z ≡
m
MSO ⟨Tbin , s⟩∣⇑z′ .

Replacing the subtree Tbin∣z by Tbin∣z′ , we obtain an element x′0 such that
∣x′0∣ < ∣x0∣ and

⟨Tbin , x0x1⟩ ≡mMSO ⟨Tbin , x′0x1⟩ .

Consequently, x′0 ≈ x1. A contradiction to our choice of x0.
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XI. The Caucal Hierarchy

Corollary 1.13. Let A be a tree-interpretable structure and ≈ anMSO-definable
equivalence relation on A. Then A/≈ is tree-interpretable.

While the algorithmic properties of structures in the Caucal hierarchy
are relatively easy to determine, a harder problem is to decide whether a
given structure belongs to the hierarchy. As already mentioned above such
characterisations are also relevant for applications since, if we want to use
tree-interpretations to encode infinite structures, we need to know that all
the structures arising in practice possess such an encoding. For instance, it
turns out that the state spaces of most programs are not in CH, which means
that the results of this section are not that useful for software verification.

Not much is know about which structures belong to the Caucal hierarchy,
in particular for the higher levels. But we can make two observations. First,
all structures in CH have finite crossing-width, and second, the hierarchy
does not contain all structures with a decidableMSO-theory.

Lemma 1.14. Every structure in the Caucal hierarchy has finite crossing-width.

Proof. We prove the claim by induction on the level. Clearly, every finite
structure has finite crossing-width. Furthermore, it follows by Propositions
IX.5.1 and IX.5.10 that, if a structure A has finite crossing-width, then so
does every structureMSO-interpretable in the Muchnik iteration of A.

While structures in the Caucal hierarchy have a decidableMSO-theory,
their GSO-theory is usually undecidable. The remaining ones can be charac-
terised as follows.

Proposition 1.15. Let A ∈ CHn . The following statements are equivalent.

(1) A has a decidable CGSO-theory.

(2) A has a decidable GSO-theory.

(3) Ain ∈ CHn .

(4) A has finite tree-width.

(5) A is k-sparse, for some k < ω.
(6) The Gaifman graph of A does not contain the subgraph Kn ,n , for some

n < ω.
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2 Prefix-recognisable structures

Proof. (1)⇒ (2) is trivial.
(2)⇒ (4) Suppose that A has infinite tree-width.ThenTheorem VIII.4.1

implies that A contains arbitrarily large grids as minors. Consequently, the
GSO-theory of A is undecidable.
(4)⇒ (1) According to Lemma VIII.1.8 andTheorem VII.3.6, if A has

finite tree-width, it is sparse and its CGSO-theory collapses to the CMSO-
theory. Hence, the claim follows byTheorem 1.6.
(4)⇔ (5)⇔ (6) follow byTheorem IX.4.5 as we have seen in Lemma 1.14

that A has finite crossing-width.
(3)⇒ (4) follows by Proposition IX.4.6 since A has finite crossing-width

by Lemma 1.14.
(5)⇒ (3) By assumption, there exists anMSO-interpretation of A in C∗n ,

for some finite structure C. Furthermore, we can obtain anMSO-interpreta-
tion ofAin inA byTheoremVII.3.6. Composing these we obtain our desired
interpretation of Ain in C∗n .

2 Pre[x-Re$ognisable Stru$ture+

In this and the following sections we will derive several alternative character-
isations of when a structure is tree-interpretable or when it belongs to the
Caucal hierarchy.This will give us more precise tools to answer the question
of whether a given structure is tree-interpretable or whether it belongs toCH.
We start with a characterisation in terms of regular languages that is much
more concrete than the interpretation-based one.

Definition 2.1. (a) Let Σ be an alphabet. The class of prefix-recognisable
relations over Σ∗ is inductively defined by the following closure properties.
◆ Every regular language L ⊆ Σ∗ is prefix-recognisable.
◆ If L ⊆ Σ∗ is regular and R ⊆ Σ∗ × ⋅ ⋅ ⋅ × Σ∗ is prefix-recognisable, then

LR ∶= { ⟨wu0 , . . . ,wun−1⟩ ∣ w ∈ L, ū ∈ R }

is prefix-recognisable.

◆ If R and S are prefix-recognisable, then so are R × S and R ∪ S.
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XI. The Caucal Hierarchy

◆ If R is a prefix-recognisable relation of arity n and σ ∶ [n] → [n] is a
permutation, then σ

R ∶= { ⟨aσ(0) , . . . , aσ(n−1)⟩ ∣ ā ∈ R } is also prefix-
recognisable.

(b) A structure A is prefix-recognisable if it is isomorphic to a structure
of the form ⟨L, R̄⟩ where L is a regular language and each relation R i is
prefix-recognisable. ⌟

Example. For each 0 < k < ω, the infinite k-ary tree

T = ⟨[k]∗ , (suci)i<k , ≤pf , ≤lex⟩

is prefix-recognisable since

suci = K∗(⟨⟩ × i) ,

≤pf = K
∗(⟨⟩ ×K

∗) ,

≤lex = ≤pf ∪⋃
i< j

K
∗(iK∗ × jK

∗) ,

where we have set K ∶= [k] and we write ⟨⟩, i , j for the languages {⟨⟩}, {i},
and { j}. ⌟

Exercise 2.1. Prove that every binary prefix-recognisable relation R is of the
form

R = ⋃
i<n

Wi(U i ×Vi) ,

where n < ω, andU i ,Vi ,Wi ⊆ Σ∗ are regular languages. ⌟

Remark. Given a binary prefix-recognisable relation

R = ⋃
i<n

Wi(U i ×Vi)

and a pair ⟨u, v⟩ ∈ R, we see that the word v is obtained from u by replacing
some suffix. Hence, R can be interpreted as a certain kind of suffix-rewriting
system where each rewriting rule is given by regular languages. In the article
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where the term ‘prefix-recognisable’ was coined, the definition used the
opposite ordering

R = ⋃
i<n
(U i ×Vi)Wi .

Such a relation corresponds to a prefix-rewriting systems with recognisable
rules. (‘recognisable’ is an alternative name for ‘regular’.) The modern or-
dering⋃i Wi(U i ×Vi) has been chosen to better fit with our conventions
regarding trees. Some authors have therefore changed the terminology to
‘suffix-recognisable’. ⌟

The aim of this section is to prove the following characterisation of the
class of tree-interpretable structures.

Theorem 2.2. A structure A be a structure is tree-interpretable if, and only if, it

is prefix-recognisable.

The proof consists of the following technical lemma and the proposition
below.

Lemma 2.3. Let Tbin be the infinite binary tree and θ anMSOm -theory. The

language

Kθ ∶= { v ∈ {0, 1}
∗ ∣Thm

MSO(Tbin∣{0,1}∗∖⇑{v0,v1} , ⇓v) = θ }

is regular.

Proof. Suppose that v = d0⋯dn−1, set c i ∶= 1 − d i , let

S ∶= {0, 1}∗ ∖ ⇑{v0, v1} ,

and define

Un ∶= {v} and U i ∶= d0⋯d i−1(⟨⟩ + c i(0 + 1)∗), for i < n .

Let Uu be the substructure of Tbin induced byUu . Then we can write Tbin∣S
as a generalised sum followed by a quantifier-free interpretation:

Tbin∣S ≅ σ(∑
i≤n

Ui) .
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Consequently, there existMSO-formulae ψ, χ0 , . . . , χn−1 such that

Thm
MSO(Tbin∣S , ⇓v) = θ iff

⟨[n + 1], ≤⟩ ⊧ ψ(⟦χ0⟧, . . . , ⟦χn−1⟧) .

Note that d i = d j implies U j ≅ U j . Setting

P0 ∶= { i < n ∣ d i = 0} and P1 ∶= { i < n ∣ d i = 1}

it follows that each set ⟦χ j⟧ is of one of the following eight forms.

∅ , {n} , P0 , {n} ∪ P0 ,

[n] , [n + 1] , P1 , {n} ∪ P1 .

Since each of these sets if definable in I ∶= ⟨[n + 1], ≤, P0 , P1⟩, we obtain a
formula ψ′ such that

⟨[n + 1], ≤⟩ ⊧ ψ(⟦χ0⟧, . . . , ⟦χn−1⟧) , iff I ⊧ ψ′ .

Note that I is obtained from the word structure for v ∈ {0, 1}∗ by adding
one position at the end.Thus,

I = τ(v ⊕ 1) ,

for some interpretation τ, and we obtain a formula ψ′′ such that

I ⊧ ψ′ iff v ⊧ ψ′′ .

It follows that Kθ = { v ∣ v ⊧ ψ′′ }. This language isMSO-definable and,
therefore, regular.

The following proposition concludes the proof ofTheorem 2.2.

Proposition 2.4. Let Tbin ∶= ⟨{0, 1}∗ , ≤pf , suc0 , suc1⟩ be the infinite binary
tree and R a relation over {0, 1}∗. The following statements are equivalent.

(1) R is prefix-recognisable.
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(2) R isMSO-definable in Tbin.

(3) R isWMSO-definable in Tbin.

Proof. (3)⇒ (2) is trivial.
(1)⇒ (3) We prove the claim by induction on the term constructing R.

First, suppose that R ⊆ {0, 1}∗ is a regular language. As R is regular, there
exists anMSO-formula φ such that

w ⊧ φ iff w ∈ R .

Furthermore, there exists an MSO-interpretation τ that, given a vertex
w ∈ {0, 1}∗, maps ⟨Tbin ,w⟩ to the word structure associated with w. This
interpretationmaps the formula φ to someMSO-formulaψ(w) ∶= φτ which
states that φ holds on the path from the root tow. It follows thatψ defines R.
For the inductive step note that, if R and S are defined by the formulae

φ(x̄) and ψ( ȳ), respectively, then R ∪ S is defined by

ϑ(x̄) ∶= φ(x̄) ∨ ψ(x̄) ,

R × S is defined by

ϑ(x̄ , ȳ) ∶= φ(x̄) ∧ ψ( ȳ) ,

and σ
R by

ϑ(x̄) ∶= φ(x̄′) ,

where x̄′ = ⟨xσ−1(0) , . . . , xσ−1(n−1)⟩ is the tuple obtained from x̄ by applying
the permutation σ−1. Finally, if R is 1-ary, we can define RS by

ϑ(x̄) ∶= ∃z[⋀
i
z ≤pf x i ∧ φ(z) ∧ ψ′(x̄; z)] ,

where the formula ψ′(x̄; z) ∶= ψ(⇑z)(x̄) is the relativisation of ψ to the
subtree attached at z.
(2)⇒ (1) To show that R is prefix-recognisable, we have to express it

as a term over the operations ∪, ×, σ , and concatenation. The idea of the
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XI. The Caucal Hierarchy

construction is quite simple, but making it precise turns out to be a bit
technical. Hence, let us start with a bit of intuition. Given a tuple ā, we
consider the closure S of ā under meets. This set forms a tree, for each
edge of which we associate a regular language. We obtain the term for R by
assembling these languages according to the structure of the tree. In general,
R might contain tuples whose associated trees are different. In this case, we
have to take a union of the expressions obtained for each tree.

For instance, for the tuple ā = ⟨1111, 1011, 101011, 1⟩, we obtain the follow-
ing tree.

[1011][101011]

101 [1111]

[1]

⟨⟩

a2a1

● a0

a3

●

U V

W Y

X

The components of ā are indicated by the brackets. Note that, strictly speak-
ing, the root ⟨⟩ does not belong to S, but we still consider the edge leading
to it (dotted in the figure). If U ,V ,W ,X,Y are the languages associated
with those edges, we obtain for R the expression

R = X(Y ×W(U ×V) × {⟨⟩}) .

The formal construction is as follows. Let φ(x̄) be anMSO-formula defin-
ing R, letm be its quantifier-rank, and let n be the arity of R. Given a tuple ā,
let S be its closure under meets and let S ∶= ⟨S , ≤pf , ā⟩ be the tree induced
by it. We have seen in Proposition V.1.11 that the theory Thm

MSO(Tbin , ā)
can be computed from (the isomorphism type) of S and the theories

θs ∶=Th
m
MSO(⟨Ts , ≤pf , ⇓s⟩) , for s ∈ S .

For a tree S = ⟨S , ≤pf , s̄⟩ and a family of theories θ̄, we denote by RS, θ̄ ⊆ R

the set of all tuples ā ∈ R associated with S and θ̄. It follows that

R = ⋃
S, θ̄

RS, θ̄ ,
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2 Prefix-recognisable structures

where the union ranges over all finite binary trees S equipped with a tuple s̄
of n constants such that every element is a meet of some components of s̄,
and over all families of theories θ̄ = (θ t)t∈S such that the associated theory
Thm

MSO(Tbin , ā) contains the formula φ. Note that this union is finite. Since
prefix-recognisable relations are closed under finite unions, it is therefore
sufficient to prove that each relation RS, s̄ , θ̄ is prefix-recognisable.

Hence, fix S and θ̄. We prove the claim by induction on the size ∣S∣. Let
r be the root of S. For i ∈ {0, 1}, we set

Si ∶= ⟨S i , ≤pf , s̄ i⟩ and θ̄ i ∶= (θ t)t∈S i ,

where

S i ∶= { t ∈ S ∣ suci(r) ≤pf t } and s̄ i ∶= s̄ ∩ S i .

By inductive hypothesis (applied to the subtrees Tbin∣r0 and Tbin∣r1, re-
spectively), we know that the relations R0 ∶= RS0 , θ̄0

and R1 ∶= RS1 , θ̄ 1
are

prefix recognisable. (If S i = ∅, we take for R i the 0-ary relation containing
the empty tuple.) Given a theory θ, we denote by Kθ the regular language
obtained by Lemma 2.3. We distinguish several cases.
First, suppose that r ∉ s̄. Then r = s i ⊓ s j , for some i , j, which implies

that S0 ≠ ∅ and S1 ≠ ∅. It follows that

RS, θ̄ = Kθ r
σ(0R0 × 1R1) ,

where σ is the permutation induced by the bijection s̄0 s̄1 → s̄.
Next, suppose that r ∈ s̄ and let k be the number of indices i with s i = r.

If S0 ≠ ∅ and S1 ≠ ∅, we obtain

RS, θ̄ = Kθ r
σ(0R0 × 1R1 × ⟨⟩ × ⋅ ⋅ ⋅ × ⟨⟩) ,

with k factors of the language {⟨⟩} and the permutation σ that is induced
by the bijection s̄0 s̄1r . . . r → s̄.
If S0 ≠ ∅ and S1 = ∅, we face the problem that the theory θr from

Proposition V.1.11 does not refer to the set {0, 1}∗ ∖ ⇑{r0, r1}, but to the
set {0, 1}∗ ∖ ⇑r0. By a composition argument, we can compute

θr =Th
m
MSO(Tbin∣{0,1}∗∖⇑r0 , r) ,
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XI. The Caucal Hierarchy

from the theories

τ ∶=Thm
MSO(Tbin∣{0,1}∗∖⇑{r0,r1} , r) and υ ∶=Thm

MSO(Tbin∣⇑r1) .

We denote the corresponding operation on theories by τ ⋅1 υ. Since the theory
υ =Thm

MSO(Tbin) does not depend on r, we can therefore write

RS, θ̄ = ⋃
τ
Kτ

σ(0R0 × ⟨⟩ × ⋅ ⋅ ⋅ × ⟨⟩) ,

where σ is the same function as above and the union ranges over all theories τ
such that τ ⋅1 υ = θr .
If S0 = ∅ and S1 ≠ ∅, we obtain a similar expression. Finally, suppose

that S0 = ∅ and S1 = ∅. Again we have to compute the theory

θr =Th
m
MSO(Tbin∣{0,1}∗∖⇑r0 , r) ,

from the theories

τ ∶=Thm
MSO(Tbin∣{0,1}∗∖⇑{r0,r1} , r) ,

υ ∶=Thm
MSO(Tbin∣⇑r0) , ,

υ′ ∶=Thm
MSO(Tbin∣⇑r1) .

We denote the corresponding operation on theories by τ ⋅0,1 (υ, υ). Since
υ = υ′ does not depend on r, we obtain

RS, θ̄ = ⋃
τ
Kτ(⟨⟩ × ⋅ ⋅ ⋅ × ⟨⟩) ,

where the union ranges over all theories τ such that τ ⋅0,1 (υ, υ) = θr .

3 VR-Equational and HR-Equational
Stru$ture+

We can also characterise the structures in the Caucal hierarchy using the
⊕-terms that we introduced in Section IX.3 to build structures with a given
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3 VR-equational andHR-equational structures

crossing-width. If we require these terms to be regular (as coloured trees),
the resulting structures are tree-interpretable; if we use terms in CHn , we
get all structures in CHn .
A convenient way to specify terms is via a systems of equations of the

form

x i = t i , for i ∈ I ,

where the x i are variables and the t i are finite terms over these variables
(similarly to the way we have used systems of equations to define regular
linear orders inTheorem VI.4.10). If no term t i consists of just a variable,
there exists a unique n-tuple of infinite terms satisfying all equations. To find
this n-tuple, we can treat the system as a directed graph with the variables as
vertices. The unravelling of this graph produces the desired solution.

Theorem 3.1. A structure A belongs to CHn if, and only if, it is the value of a

⊕-term that belongs to CHn .

Proof. (⇐) Let T be a ⊕-term denoting A with T ∈ CHn . We have seen
in Lemma IX.5.4 that there exists anMSO-interpretation τ mapping T to
the structure it denotes. Since CHn is closed underMSO-interpretations, it
follows that A = τ(T) ∈ CHn .
(⇒)We consider the following three operations on trees. For a tree T

with domain C∗, vertices v , ā, and directions c, d ∈ C, c ≠ d, we set

⟨T, ā⟩∣⇑vc ⊕ ⟨T, ā⟩∣⇑vd ∶= ⟨T, ā⟩∣⇑{vc ,vd} ,

⟨T, ⇓v , ā⟩∣T∖⇑v≪∗⟨T, ā⟩∣⇑v ∶= ⟨T, ā⟩ ,

⟨T, ⇓v , ā⟩∣T∖⇑vC≪+⟨T, ā⟩∣⇑vC ∶= ⟨T, ā⟩ .

Since each of these operations can be expressed as a disjoint union followed
by a quantifier-free interpretation, we obtain corresponding operations on
MSOm-theories such that

Thm
MSO(S) ⊕Thm

MSO(T) =Th
m
MSO(S⊕ T) ,

Thm
MSO(S)≪∗ Th

m
MSO(T) =Th

m
MSO(S≪∗ T) ,

Thm
MSO(S)≪+ Th

m
MSO(T) =Th

m
MSO(S≪+ T) .
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We can use these operations to generate the infinite binary tree Tbin since

Tbin∣v = 1≪+ (Tbin∣v0 ⊕ Tbin∣v1) , for every v ∈ {0, 1}∗ .

It follows that Tbin is the unique solution of the equation

x = 1≪+ (x ⊕ x) .

Given an interpretation χ and a finite structure C with A = χ(C∗n),
we obtain a similar term with value A as follows. Let c0 , . . . , c l−1 be an
enumeration of C, letm be the maximal quantifier-rank of the formulae in χ,
and let r be the maximal arity of an relation of A. For v ∈ C∗, let Bv be the
substructure of A with universe A∩ ⇑v where we have added the auxiliary
relations

Uθ ∶= { ā ∈ A
n ∣Thm

MSO(Tbin∣v , ā) = θ } ,

for eachMSOm-theory θ of n-tuples with 0 < n < r.These structures satisfy
the equations

Bv = dv ⊕
σv

τv
⊕
c∈C

Bvc , if v ∈ A ,

Bv =
τv
⊕
c∈C

Bvc , if v ∉ A ,

where dv is a suitable constant and the (non-symmetric) update specifications
σv and τv are chosen as follows. τv adds a tuple ā
◆ to an auxiliary relationUθ if

θ0 ⊕⋯⊕ θ l−1 = θ ,

◆ and to the relation R defined by the formula φR from χ if

φR ∈ ξ+v ≪+ (θ0 ⊕⋯⊕ θ l−1) ,
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where θ0 , . . . , θ l−1 are the theories such that ā ∩ ⇑vc i ∈ Uθ i and

ξ+v ∶=Th
m
MSO(Tbin∣{0,1}∗∖⇑vC) .

Similarly, σv adds a tuple ā
◆ to an auxiliary relationUθ if

θ0≪+ θ1 = θ ,

◆ and to the relation R defined by the formula φR from χ if

φR ∈ ξ∗v ≪∗ (θ0≪+ θ1) ,

where θ0 , θ1 , ξ∗v are the theories such that

ā ∩ {v} ∈ Uθ0 , ā ∩ ⇑vC ∈ Uθ 1 ,

and ξ∗v ∶=Th
m
MSO(Tbin∣{0,1}∗∖⇑v) .

Let t be the ⊕-term defined by the equations

xv = dv ⊕
σv

τv
⊕
c∈C

xvc , if v ∈ A ,

xv =
τv
⊕
c∈C

xvc , if v ∉ A .

Then t can be obtained from the tree C∗ by an MSO-transduction that
replaces every vertex v ∈ C∗ by the term

dv ⊕
σv

τv
⊕
c∈C

xvc or
τv
⊕
c∈C

xvc .

Since CHn is closed under copying operations andMSO-interpretations, it
follows that t ∈ CHn .

The term t we have constructed above uses non-symmetric update specific-
ations, but ⊕-terms were defined using symmetric specifications only. Since
every ⊕τ-operation in t has exactly l < ω arguments, we can transform t

into a proper ⊕-term by using l copies of each colour, one copy for each
argument.
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XI. The Caucal Hierarchy

Of particular interest are structures that can be denoted by a term that is
regular. By the preceding theorem, these are exactly the tree-interpretable
ones.

Definition 3.2. A structure is VR-equational if it is denoted by a ⊕-term
whose underlying tree is regular. ⌟

Originally, VR-equational structures where introduced in the study of
certain graph grammars with vertex replacement.Hence, the name.

Wehave seen above that a structure in theCaucal hierarchy has a decidable
GSO-theory if, and only if, it has finite tree-width. We can also characterise
such structures via certain terms.

Definition 3.3. Let Σ be a finite relational signature and k < ω a constant.
(a) AnHRk -term is a term using

◆ binary operations ∥ξ,ζ , for all ξ, ζ ⊆ [k] with ξ ∪ ζ = [k],
◆ constant symbols Rᾱ , for each relation symbol R ∈ Σ and every tuple

ᾱ ∈ [k]n with α i ≠ α j , where n is the arity of R, and

◆ a constant symbol 1.

(b)The value of anHRk-term is a (Σ + [k])-structure defined as follows.
We consider the numbers i ∈ [k] as constant symbols which we call handles.

The constant term 1 denotes a structure with a single element where all
relations are empty and all handles are equal to the only element.
For every n-ary relation symbol R ∈ Σ and every n-tuple of distinct

handles ᾱ ∈ [k]n , the constant term Rᾱ denotes an n-element structure CR
whose elements are denoted by the handles α0 , . . . , αn−1. The handles β ∈
[k] ∖ ᾱ are set to β ∶= α0. Finally, all relations of CR are empty, except for
the relation R which contains the tuple ⟨α0 , . . . , αn−1⟩.

Given two (Σ+[k])-structuresA andB, the operationA∥ξ,ζB constructs
the structure obtained from the disjoint union of the (Σ + ξ)-reduct of A
and the (Σ + ζ)-reduct of B by identifying the elements αA and αB, for all
α ∈ ξ ∩ ζ .

Finally, given a possibly infiniteHR-term t, we define the value val(t) of t
as the (Σ + [k])-structure obtained by
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◆ forming the disjoint union of all structures associated with the constant
symbols in t

◆ and then identifying elements according to the operations ∥ξ,ζ in t.
(c) We say t is anHR-term for a Σ-structure A if A is isomorphic to the

Σ-reduct of val(t).
(d) A structure A isHR-equational if it is denoted by a regularHRk-term,

for some k < ω. ⌟

Similarly to VR-equational structures, the nameHR-equational refers to
certain graph grammars with hyperedge replacement.

Example. TheHR3-term

(E12 ∥1,3 E23) ∥∅,∅ (E12 ∥1,3 E23)

produces the square
1, 3

1, 3
2

1, 2

2
1, 2

3
3 ⌟

Theorem 3.4. Let A be a Σ-structure. Then Ain ∈ CHn if, and only if, there is

some k < ω such that A is the value of aHRk -term t that belongs to CHn .

Proof. (⇐)The function val mapping an HRk-term to its value is an k-
copying GSO-transduction. (We need the copy operation to turn every
leaf labelled by a constant symbol Rᾱ into n elements, where n ≤ k is the
arity of R. The construction is similar to the one in the proof of Proposi-
tion X.2.1.) Furthermore, for every successor-tree T ∈ CHn , there exists an
GSO-interpretation mapping some successor-tree S ∈ CHn to copyk(T). It
follows that Ain can beMSO-interpreted in S. Since CHn is closed under
MSO-interpretations, the claim follows.
(⇒) Let s be an ⊗-term denoting Ain with s ∈ CHn . According to

Lemma IX.4.3, there exists anMSO-interpretation τ mapping s to a tree-
decomposition (Wt)t∈T of bounded width whose index tree T is the same
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as the underlying tree of s. Note that s ∈ CHn implies that (the tree encod-
ing) (Wt)t∈T also belongs to CHn . Let k be the width of the decomposition
(Wt)t∈T . We turn (Wt)t∈T into the desiredHRk-term as follows.

Let χ ∶ A→ [k] be a k-colouring of A such that the restriction χ ↾Wt is
injective, for every t. Since (Wt)t∈T belongs to CHn , we can choose χ such
that that the coloured tree encoding ⟨(Wt)t∈T , χ⟩ belongs to CHn . Below
we will define HRk-terms ut , for t ∈ T, such that val(ut) = A∣Wt and
each element a ∈Wt is denoted by the handle χ(a). (We do not care which
elements the handles outside of χ[Wt] are assigned to.) Using these terms ut ,
we consider the equations

xt = ut ∥[k],M0 xv0 ∥[k],M1 xv1 ∥[k],M2 ⋯ ∥[k],Mn−1 xvn−1 ,

where v0 , . . . , vn−1 are the successors of t in T and M i ∶= χ[Wt ∩Wv i ].
Let Bt denote the value of xt in the unique solution of these equations. It
follows that Bt is isomorphic to the substructure of A induced by the set
⋃v∈⇑t Wv . In particular, we have Br ∣Σ ≅ A, for the root r of T.

Finally, note that we can obtain the solution of the equations by applying a
parameter-lessMSO-transduction to the tree encoding ⟨(Wt)t∈T , χ⟩. This
transduction replaces every vertex t ∈ T by the term

ut ∥[k],M0 xv0 ∥[k],M1 xv1 ∥[k],M2 ⋯ ∥[k],Mn−1 xvn−1 .

Since CHn is closed under copying operations and interpretations, it follows
that the solution also belongs to CHn .
It remains to define the terms ut . More generally we will prove that, for

every structure C and every injective function χ ∶ C → [k], there exists an
HRk-term u such that val(u) = C and every element c ∈ C is denoted by the
handle χ(c). Let ā0 , . . . , ān−1 be an enumeration of all tuples that belong to
a relation in C. We construct u by induction on n. First suppose that n = 0
and let α0 , . . . , αm−1 be an enumeration of χ[C]. We set

u ∶= 1 ∥[k]∖α1 ,α1 ⋯ ∥[k]∖αn−1 ,αn−1 1 ,

where we assume that ∥ξ,ζ associates to the left (i.e., a ∥ b ∥ c = (a ∥ b) ∥ c.)
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4 Regular path-interpretations

For the inductive step, suppose that there is some tuple ā in the relation R.
Let C′ be the structure obtained from C by removing ā from R. By inductive
hypothesis, we have aHRk-term u

′ denoting C′. Then we can set

u ∶= Rχ(ā) ∥χ(ā),[k] u
′ .

Exercise 3.1. Prove that a countable Σ-structure A has tree-width at most k
if, and only if, it is the value of anHRk-term. ⌟

4 Regular Path-Interpretation+

For particular types of structures, there are additional characterisations of
tree-interpretability. We have already seen inTheorem VI.4.10 that the tree-
interpretable linear orders are exactly the regular ones. In this section we
consider graphs, more specifically, edge-labelled directed graphs.

Remark. The results in this section also hold for graphs with vertex labels.
To simplify the exposition, we have refrained from stating them in this
generality. For the general versions, you can add monadic predicates to all
graphs with the requirement that each of them forms a regular language. ⌟

For graphs, we can replace MSO-interpretations by the following two
more concrete operations.

Definition 4.1. Let A and B be two sets of edge labels and let

A ∶= { a ∣ a ∈ A}

be a disjoint copy of A. A regular path-interpretation (from A to B) is a tuple
α = ⟨K, (Lb)b∈B⟩ of regular languages K ⊆ A

∗ and Lb ⊆ (A + A)∗, for
b ∈ B.
Given an A-labelled directed graph G = ⟨V , (Ea)a∈A⟩ and a vertex

v0 ∈ V , such an interpretation produces a new graph

α(G, v0) ∶= ⟨W , (Fb)b∈B⟩
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as follows. The universeW consists of all vertices u ∈ V that can be reached
(in G) from v0 by some path whose labelling belongs to K. The edge rela-
tion Fb consists of those pairs ⟨u, v⟩ ∈ V × V such that in the expansion
of G by the inverse edge relations

E ā ∶= (Ea)
−1 , for ā ∈ Ā ,

there is a path from u to v labelled by some word in Lb . ⌟

Example. (a) We have ⟨ω, ≤, suc⟩ ≅ α(Tbin , ⟨⟩), where α = ⟨K, Lsuc , L≤⟩
with

K ∶= 1∗ , Lsuc ∶= 1 , and L≤ ∶= 1∗ .

(b) Let G be the directed Z ×Z grid with edge relations

Eh ∶= { ⟨⟨x , y⟩, ⟨x + 1, y⟩⟩ ∣ x , y ∈ Z} ,

Ev ∶= { ⟨⟨x , y⟩, ⟨x , y + 1⟩⟩ ∣ x , y ∈ Z} ,

and let α ∶= ⟨K, Lh , Lv , Lv⟩ be the path-interpretation where

K ∶= (h + v)∗ , Lh ∶= (h + h̄)∗ ,

Ld ∶= (hv)
∗ + (h̄v̄)∗ , Lv ∶= (v + v̄)∗ .

Then α(G, ⟨0, 0⟩) is the graph with vertices Z ×Z and edge relations

Eh ∶= { ⟨⟨x , y⟩, ⟨x
′ , y⟩⟩ ∣ x , x′ , y ∈ Z} ,

Ev ∶= { ⟨⟨x , y⟩, ⟨x , y′⟩⟩ ∣ x , y, y′ ∈ Z} ,

Ed ∶= { ⟨⟨x , y⟩, ⟨x + k, y + k⟩⟩ ∣ x , y, k ∈ Z} . ⌟

Exercise 4.1. Let α and β be two regular path-interpretations (from A to B
and from B to C, respectively). Prove that β ○ α is also a regular path-
interpretation. ⌟

Theorem 4.2. A graph G = ⟨V , (Ea)a∈A⟩ is tree-interpretable if, and only if,

G ≅ α(Tbin , ⟨⟩) , for some regular path-interpretation α .
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Proof. (⇐) Let α = ⟨K, (Lb)b⟩. For every regular language L over the
alphabet {0, 1, 0̄, 1̄}, there exists a GSO-formula ψL(u, v) stating that there
exists a path from u to v labelled by some word in L. Since trees are sparse,
we can translate these formulae intoMSO. Thus, we obtain anMSO-inter-
pretation τ = ⟨δ, (φa)a∈A⟩ of G in Tbin by

δ(x) ∶= ψK(⟨⟩, x) and φa(x , y) ∶= ψLa(x , y) .

(⇒) Suppose that Ea = ⋃i<n W
a
i (U

a
i × V

a
i ) where all languages are

over the alphabet Σ. Note that, replacing V and allWa
i by 0V and 0Wa

i ,
respectively (which results in a graph isomorphic to G), we may assume
that ⟨⟩ ∉Wa

i . To create an edge ⟨x , y⟩ we have to check that x = wu and
y = wv, for some w ∈Wa

i , u ∈ U
a
i , and v ∈ V

a
i . To do so, we use the path

from x to y. Starting at x we go the path u backwards and then the path v
forwards to arrive at y. But we have to check that the vertex w where we
change directions belongs toWa

i . To do so, we label the incoming edge at w
with additional information indicating that the vertex w belongs to W

a
i .

Then we can traverse this edge twice: first backwards and then immediately
forwards again, to check that the vertex really is inW

a
i . (This is were we

need our assumption that ⟨⟩ ∉Wa
i .)

The formal definition is as follows. Let η ∶ Σ∗ →M be a homomorphism
to a finitemonoid that recognises the languagesV andWa

i , for all a, i, and let
P
a
i ⊆M be the set such thatWa

i = η
−1[Pa

i ]. Let S be the tree with domain
(Σ ×M)∗. We start by defining a path-interpretation α = ⟨K, (Lb)b⟩ with

G ≅ α(S, ⟨⟩) .

For K we take the language of all words

⟨d0 , s0⟩⋯⟨dm−1 , sm−1⟩ ∈ (Σ ×M)∗

such that

d0⋯dm−1 ∈ V , s0 = η(d0) , and s j+1 = s j ⋅ η(d j+1) ,
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XI. The Caucal Hierarchy

for j < m − 1. Note that these conditions can be expressed inMSO. Hence,
K is a regular language. The languages Lb are defined by

Lb ∶= ⋃
i<n

p
−1[Ua

i ] z
a
i z

a
i p

−1[V a
i ] ,

where

◆ p ∶ Σ ×M → Σ is the projection to the first component,

◆ U denotes the language obtained fromU by reversing the order of every
word and replacing every letter c by its inverse c̄, and

◆ z
a
i = ∑{ ⟨d , s⟩ ∈ Σ ×M ∣ s ∈ Pa

i } .

To conclude the proof, let g be arbitrary injective function Σ × M →
{0, 1}m with sufficiently large m < ω. Extending g to a homomorphism
(Σ ×M)∗ → {0, 1}∗, we obtain

S = β(Tbin , ⟨⟩) , where β = ⟨rng g, (g(c))c∈Σ×M⟩ .

Hence,

G = α(β(Tbin , ⟨⟩), ⟨⟩) = γ(Tbin , ⟨⟩) ,

where γ ∶= ⟨g[K], (g[Lb])b∈B⟩.

If we want a similar characterisation of the higher levels of the Caucal
hierarchy, we need an operation to replace the Muchnik iteration with. This
turns out to be the unravelling operation on graphs.

Definition 4.3. The unravelling U(G, v0) of a graph G = ⟨V , (Ea)a∈A⟩
from a vertex v0 ∈ V is the graph

U(G, v0) ∶= ⟨U , (Fa)a∈A⟩

whose universeU consists of all finite paths (including the empty one) in G
that start at the vertex v0, and where the edge relation Fa contains all pairs
⟨p, q⟩ of paths where q is obtained from p by appending a single Ea-edge. ⌟
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4 Regular path-interpretations

Theorem 4.4. A graph G belongs to CHn+1 if, and only if, it is of the form

G ≅ α(U(H, v0), v0) , for some regular path-interpretation α and

some H ∈ CHn .

We split the proof into several lemmas. In the same way as in Lemma 1.7,
we can generate each level of the hierarchy from graphs of a particularly
simple kind using regular path-interpretations. These graphs are trees with
the additional property that every vertex has at most one outgoing edge with
a given label.

Definition 4.5. A graph G = ⟨V , (Ea)a∈A⟩ is deterministic if every vertex
has at most one outgoing edge with label a, for all a ∈ A. ⌟

We have seen in the proof above that, for regular trees, we can replace an
MSO-interpretation by a regular path-interpretation. For non-regular trees,
this is only possible if we annotate the tree first with additional information.
We use anMSO-interpretation for this. It sounds like we have not made any
progress by this, replacing an interpretation by an interpretation followed
by a path-interpretation. But the interpretation we construct is of a simple
special form that commutes with the unravelling operation. This is all we
will need to make the inductive argument in the theorem below go through.

Lemma 4.6. Let T ∈ CHn be an A-labelled deterministic tree and τ anMSO-
interpretation mapping A-labelled graphs to B-labelled ones. There exist a set

of labels A
†
, an A

†
-labelled deterministic tree S ∈ CHn , and a regular path-

interpretation α such that

τ(U(T, ⟨⟩)) ≅ α(U(S, ⟨⟩), ⟨⟩) .

Proof. If T has a single vertex, the claim is trivial. (Each of the languages
in α is either empty or contains the empty word.) Hence, we may assume
that there are at least two vertices, which means that every vertex has at least
one incoming or outgoing edge. Let m be the maximal quantifier-rank of
the formulae from τ and let Θ be the set of all MSOm-theories with one
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additional first-order parameter. Let T ∈ CHn be a deterministic tree with
edge labels from A.

The treeS is obtained by annotating every edge ⟨u, v⟩ of T by the theories

θ ∶=Thm
MSO(T∣⇑u∖⇑v , u) ,

ρ ∶=Thm
MSO(T∣⇑v , v) ,

σ ∶=Thm
MSO(T∣T∖⇑v , u) ,

υa ∶=Thm
MSO(T∣⇑u∖⇑{v ,w} , u) , where w is the a-successor of u .

(If u has no a-successor, we choose an arbitrary theory for υa .) Hence, we
set

A
† ∶= A× Θ × Θ × Θ × ΘA .

Let S be the graph obtained from T by replacing every edge label a, by
⟨a, θ , ρ, σ , (υa)a∈A⟩. Clearly, S is a deterministic tree.
It therefore remains to prove that it belongs to CHn . To do so, we will

define anMSO-interpretation σ with S ≅ σ(T). As CHn is closed under
MSO-interpretations, it then follows that S ∈ CHn . To construct σ note
that, given an edge ⟨u, v⟩, the theories

θ =Thm
MSO(T∣⇑u∖⇑v , u) ,

ρ =Thm
MSO(T∣⇑v , v) ,

σ =Thm
MSO(T∣T∖⇑v , u) ,

υa =Thm
MSO(T∣⇑u∖⇑{v ,w} , u)

areMSO-definable in U(T, ⟨⟩). Using theTheorem of Muchnik, it follows
that they are also definable in T. Consequently, we can write down anMSO-
formula stating that there is an ⟨a, θ , ρ, σ⟩ labelled edge from u to v. These
formulae form the interpretation σ .
Having defined S, it remains to construct α = ⟨K, (Lb)b∈B⟩. Suppose

that τ = ⟨δ, (φb)b∈B⟩. We have to define the language K such that it selects
all vertices that satisfy δ, that is, all vertices v such that

δ ∈Thm
MSO(T, v) .
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4 Regular path-interpretations

This theory is determined by the labelling of the path from the root to the
vertex v in S. Hence, let K be the set of all words

⟨a0 , θ0 , ρ0 , σ0⟩⋯⟨an , θn , ρn , σn⟩

such that

δ ∈ ∑
i<n

θ i + ρn .

(We are quite liberal with our notation here. We use the symbol + for any
operation on theories corresponding to a disjoint union followed by some
quantifier-free interpretation. But this interpretation does not need to be the
same at each occurrence of +.) Furthermore, we include the empty word ⟨⟩
in K if T ⊧ δ(⟨⟩). Otherwise, we omit it.
To construct h we have to compute the theoryThm

MSO(T, uv) by following
a path between the given vertices u and v. This path takes a different form
depending on the relative position of u and v. Consequently, we have

h(b) ∶= L0
b ∪ L

1
b ∪ L

2
b ∪ L

3
b ∪ L

4
b , for b ∈ B ,

with one language L i
b for each of the following five cases.

If u = v and u has a predecessor w, we can compute the theory of uv from
the theories

Thm
MSO(T∣T∖⇑u ,w) ,

Thm
MSO(T∣⇑u , u) .

Hence, we can use for L0
b the set of all words

⟨a, θ , ρ, σ , ῡ⟩⟨a, θ , ρ, σ , ῡ⟩ with φb(x , y) ∈ σ + ρ .

Similarly, if u = v and u has a successor w, we can compute the theory of
uv from

Thm
MSO(T∣T∖⇑w , u) ,

Thm
MSO(T∣⇑w ,w) .
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Hence, we can use for L1
b the set of all words

⟨a, θ , ρ, σ , ῡ⟩⟨a, θ , ρ, σ , ῡ⟩ with φb(x , y) ∈ σ + ρ .

If u <pf v, we can compute the theory of uv from

Thm
MSO(T∣T∖⇑u , ⇓u) ,

Thm
MSO(T∣⇑u∖⇑v , ⇓v , u) ,

Thm
MSO(T∣⇑v , v) .

This can be done by the language L2
b of all words

⟨a0 , θ0 , ρ0 , σ0 , ῡ0⟩⋯⟨an , θn , ρn , σn , ῡn⟩

such that

φb(x , y) ∈ σ0 + ∑
0<i<n

θ i + ρn .

If v <pf u, we us the theories

Thm
MSO(T∣T∖⇑v , ⇓v) ,

Thm
MSO(T∣⇑v∖⇑u , ⇓u, v) ,

Thm
MSO(T∣⇑u , u) .

The language L3
b is therefore defined analogously to L

2
b but we use inverse

edges and reverse their ordering.
Finally, suppose that u and v are incomparable. Set w ∶= u ⊓ v and let

u
′ and v′ be the successors of, respectively, u and v with u′ ≤pf v and v′ ≤pf v.

Then we can compute the theory of uv from

Thm
MSO(T∣⇑w∖⇑{u′ ,v′}) ,

Thm
MSO(T∣⇑u′∖⇑u , ⇓u) ,

Thm
MSO(T∣⇑v′∖⇑v , ⇓v) ,

Thm
MSO(T∣⇑u , u) ,

Thm
MSO(T∣⇑v , v) .
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4 Regular path-interpretations

Let Nb be the set of all words

⟨am , θm , ρm , σm , ῡm⟩⋯⟨a0 , θ0 , ρ0 , σ0 , ῡ0⟩
⟨a′0 , θ

′
0 , ρ′0 , σ

′
0 , ῡ

′
0⟩⋯⟨a

′
n , θ

′
n , ρ′n , σ

′
n , ῡ

′
n⟩

such that (υ0)a′0 = (υ
′
0)a0 and φb(x , y) ∈ (υ0)a′0(ξ, ξ

′), where

ξ ∶= ∑
0<i<m

θ i + ρm and ξ′ ∶= ∑
0<i<n

θ′i + ρ′m .

We would like to express theMuchnik iteration by a combination of path-
interpretations and an unravelling operation. But there is oneminor technical
issue: the latter operations are only defined for edge-labelled graphs, while
the Muchnik iteration adds a unary relation cl. For this reason, we introduce
a variant of theMuchnik iteration that replaces cl by an edge relation instead.

Definition 4.7. Let G = ⟨V , (Ea)a∈A⟩ be a graph.We denote by G∗′ the
graph obtained from the Muchnik iteration G∗ by omitting the relations
suc and cl and adding the new relation

cl′ ∶= { ⟨u, v⟩ ∣ ⟨u, v⟩ ∈ suc and v ∈ cl} . ⌟

Remark. Note that, for connected graphs G, we can translate between G∗′

andG∗ using anMSO-interpretation. Consequently, the hierarchy generated
by interpretations and this variant of the Muchnik iteration coincides with
the Caucal hierarchy level by level. ⌟

Lemma 4.8. Let A be a set of edge-labels, let A
′
be a copy of A, # ∉ A a new

label, and set B ∶= A+A′+{#}.There exist regular path-interpretations α and β
such that

T∗′ = α(U(β(T, v0), v0), v0) ,

for every deterministic tree T = ⟨V , (Ea)a∈A⟩ and every vertex v0 ∈ V.

Proof. Let T′ be the graph obtained from T by adding an inverse to each
edge and a #-labelled loop to every vertex. We use the labels a′ ∈ A′ for
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XI. The Caucal Hierarchy

the inverse of an edge with label a ∈ A. Then T′ = β(T) where the regular
path-interpretation

β = ⟨A∗ , L# , (La)a∈A, (La′)a∈A⟩

is defined by the languages

L# ∶= ⟨⟩ , La ∶= a , and La′ ∶= a , for a ∈ A .

Set

S ∶= U(T′ , v0) .

By definition, each vertex of S corresponds to a path through T′ starting
at v0. Every such path is of the form

p0#p1#⋯#pn−2#pn−1 ,

where each p0 is a path without the label #. Let ρ ∶ S → T
∗ be the function

mapping each such path to the word

⟨u0 , u1 , . . . , un−1⟩ ,

where u i is the last vertex of p i . Hence, using the function ρ, we can encode
the elements of T∗ by the vertices ofS.The problem is that ρ is not injective.
We have to find a subsetU ⊆ S such that the restriction ρ ↾ U is bijective.
For an example of the definition ofU see Figure 1. (For simplicity we have
omitted the #-edges. The actual graph S consists of infinitely many copies
of the graph in the figure.),
For each vertex u of T, we need to find a set of paths starting at v such

that there is exactly one path ending at every given other vertex of T. Such a
set of paths consists of all paths that do not contain two consecutive edges
labelled by a and a

′, or by a′ and a. Hence, let K ⊆ (A + A)∗ be the set
of all words that do not contain a factor of the form aa or aa, for A ∈ A.
We claim that the restriction of ρ to the vertices reachable by a path in K is
bijective.
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○

○ ●

○ ○ ○ ○

○

○ ●

○ ○ ○ ○

0 1

0 1 0 1

0 1

0 1 0 1

0 1

0 1 0 1

Figure 1: A tree T on the left and (part of ) U(g−10 (T), v0) on the right, where g0 is
the restriction of g without the #-edges and v0 is the vertex denoted by the
filled circle. The broken arrows represent the edges deleted by K.

To see this first note that, given two vertices v and u of T, there is a path
from u to v whose labelling consists of a sequence of inverse edges followed
by a sequence of ordinary ones. Since T is deterministic, the corresponding
sequence of labels belongs to K. Conversely, if p is a path without #-edges
whose labelling belongs toK, the, since we are dealing with a tree, the path p

must consist of a sequence of inverse edges followed by one of ordinary ones.
It follows that we can use the path-interpretation α = ⟨K, Lcl , (La)a∈A⟩

where

Lcl ∶= # and La ∶= a + a
′ , for a ∈ A .

Proof of Theorem 4.4. (⇐) Suppose that there exists a regular path-inter-
pretation α = ⟨K, (La)a⟩ such that

G ≅ α(U(H, v0), v0)

where G = ⟨V , (Ea)a∈A⟩ and H = ⟨W , (Fb)b∈B⟩.
For every regular language L over the alphabet B ∪ B, there exists a GSO-

formulaψL(u, v) stating that there exists a path from u to v labelled by some
word in L. Since trees are sparse, we can translate these formulae intoMSO.
Thus, we obtain anMSO-interpretation σ = ⟨δ, (φa)a∈A⟩ of G in U(H∗)
by

δ(x) ∶= ψK(v0 , x) and φa(x , y) ∶= ψLa(x , y) .
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XI. The Caucal Hierarchy

Furthermore, we have seen in the exercise on page 228 that there exists an
MSO-interpretation τ such that U(H) = τ(H∗). Hence,

G = (σ ○ τ)(H∗) ∈ CHn+1 .

(⇒) Let G ∈ CHn+1. By Lemma 1.7, this means that

G = τ(C∗(n+1)) ,

for some finite structure C and an MSO-transduction τ. If P is a path of
sufficient length, we can interpret C in P. By Lemma V.3.12, it follows that

G = σ(P∗(n+1)) ,

for some MSO-interpretation σ . Replacing the iteration −∗ by the vari-
ant −∗′, we can construct anMSO-interpretation σ ′ such that

G = σ ′(P∗′(n+1)) .

Since −∗′ maps deterministic trees to deterministic trees, it follows that
T ∶= P∗′n is a deterministic tree. By Lemma 4.8, we can write

T∗′ = α(U(β(T, ⟨⟩), ⟨⟩), ⟨⟩) ,

for regular path-interpretations α and β. Since α is equal to anMSO-inter-
pretation ρ, we obtain

G ≅ (σ ′ ○ ρ)(U(β(T, ⟨⟩), ⟨⟩)) .

As CHn is closed under regular path-interpretations, we have β(T, ⟨⟩) ∈
CHn . Consequently, we can use Lemma 4.6 to find a deterministic tree
S ∈ CHn and a regular path-interpretation γ such that

G ≅ γ(U(S, ⟨⟩), ⟨⟩) .

750



5 Pushdown graphs

5 Pushdown Graph+

The second description specific to graphs is based on a suitable automaton
model. We start with tree-interpretable graphs.

Definition 5.1. (a) A pushdown automaton with ε-transitions is a tuple

A = ⟨Q ,A, Γ , ∆, q0 , γ0 , F⟩

consisting of a finite set Q of states, an input alphabet A, a stack alphabet Γ, an
initial state q0 ∈ Q , an initial stack symbol γ0 ∈ Γ, a set F ⊆ Q of final states,
and a finite transition relation

∆ ⊆ Q ×A
≤1 × Γ∗ × Γ∗ × Q .

A transition ⟨p, a, u, v , q⟩ ∈ ∆ is called an ε-transition if a = ⟨⟩. We assume
that, for every state p ∈ Q , if there are transitions

⟨p, a, u, v , q⟩, ⟨p, a′ , u′ , v′ , q′⟩ ∈ ∆ then a = ⟨⟩⇔ a
′ = ⟨⟩ .

(b)The configuration graph ofA is the graph with vertex set Q × Γ+. A
configuration of A is a pair ⟨q, z⟩ ∈ Q × Γ+. For each a ∈ A≤1, there is an
a-labelled edge from ⟨p, z⟩ to ⟨q, z′⟩ if there exists a transition

⟨p, a, u, v , q⟩ ∈ ∆ ,

such that z = wu and z′ = wv. The initial configuration is ⟨q0 , γ0⟩.
(c) An ε-pushdown graph is a graph G obtained from the configuration

graph of a pushdown automaton with ε-transitions by
◆ adding an a-labelled edge between two configurations if there exists

a path between them that consists of an a-transition followed by an
arbitrary number of ε-transitions,

◆ removing all vertices with outgoing ε-transitions, and
◆ restricting the resulting graph to the set of configurations reachable from

the initial one.
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(d) A restricted pushdown automaton is a pushdown automatonA such
that every transition ⟨p, a, u, v , q⟩ ∈ ∆ is of one of the following forms.

◆ a pop: ∣u∣ = 1 and v = ⟨⟩,
◆ a nop: ∣u∣ = 1 and u = v,

◆ a push: u = γ and v = γδ, for some γ, δ ∈ Γ.
A restricted ε-pushdown graph is an ε-pushdown graph associated with a
restricted pushdown automaton. ⌟

Example. A pushdown automaton for ⟨ω, ≤, suc⟩ has two states p, q, one
stack letter γ, and the following configuration graph.

p, ⟨⟩

q, ⟨⟩

p, γ

q, γ

p, γγ

q, γγ

p, γγγ

q, γγγ

suc suc suc suc

ε ε ε ε

≤ ≤ ≤ ≤ε ε ε ε

⋯

⋯

This automaton is restricted. ⌟

Restricted automata are the more commonly used automaton model. We
have introduced unrestricted ones as they are more convenient to work with.
We start by observing that both models have the same expressive power.

Lemma 5.2. Every configuration graph of a pushdown automaton is also the
configuration graph of a restricted pushdown automaton.

Proof. Fix a pushdown automatonA = ⟨Q ,A, Γ , ∆, q0 , γ0 , F⟩. Let n < ω
be some constant such that

⟨p, a, u, v , q⟩ ∈ ∆ implies ∣u∣, ∣v∣ ≤ n .

We construct the desired restricted pushdown automaton

B = ⟨Q ′ ,A, Γ′ , ∆′ , q′0 , γ
′
0 , F

′⟩
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as follows.The automaton B combines n stack symbols ofA into a single
symbol. Furthermore, B remembers the top-most stack symbols (up to
2n many) in its state. Consequently, we set

Γ′ ∶= Γn , Q
′ ∶= Q × Γ≤2n , and q

′
0 ∶= ⟨q

′
0 , ⟨⟩⟩ .

The transition relation ∆′ contains all transitions

⟨⟨p, x⟩, a, u′ , v′ , ⟨q, y⟩⟩

that can be obtained from a transition ⟨p, a, u, v , q⟩ ∈ ∆ in one of the follow-
ing ways.
◆ x = zu, zv = y, ∣zv∣ < n, v

′ = u′ ∈ Γ′.
◆ x = zu, zv = wy, ∣w∣ = n, u

′ ∈ Γ, v
′ = u′w.

◆ ∣x∣ < ∣u∣, u
′
x = zu, zv = y, v

′ = ε.
To conclude the proof, note that in all three cases above we have

∣x∣, ∣y∣ ≤ 2n , u
′
x = wu and v

′
y = wv , for some w .

Consequently, the canonical map (Γn)∗ → Γ∗ induces an isomorphism
between the configuration graph of B and that ofA.

Theorem 5.3. Let G = ⟨V , (Ea)a∈A⟩ be a graph. The following statements

are equivalent.

(1) G is tree-interpretable.

(2) G is is isomorphic to an ε-pushdown graph.
(3) G is is isomorphic to a restricted ε-pushdown graph.

Proof. (2)⇒ (3) follows immediately by Lemma 5.2.
(3) ⇒ (1) Let G be a graph associated with a restricted ε-pushdown

automatonA = ⟨Q ,A, Γ , ∆, q0 , γ0 , F⟩, let Q0 ⊆ Q be the set of all states
with outgoing non-ε-transitions, and let T be the tree with domain (Γ+Q)∗.
We encode a configuration ⟨q, z⟩ ∈ Q × Γ∗ by the word zq ∈ (Γ + Q)∗.
Then

G ≅ τ(α(T, ⟨⟩)) ,
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where τ = ⟨δ, (φa)a∈A⟩ is theMSO-interpretation with

δ(x) ∶= x ∈ Γ+Q0 ∧ ‘x is reachable from the configuration γq0.‘
φa(x , y) ∶= Eaxy ,

and α = ⟨K, (La)a∈A⟩ is the path interpretation where K ∶= Γ+Q and
La is the set of all paths between two configurations u and v such that,
when starting in u,A can go to v by making an a-transition followed by an
arbitrary number of ε-transitions. To see that the languages La are regular,
it is sufficient to prove that the language of all paths consisting entirely of
ε-transitions is regular. This language can be recognised by the following
(non-pushdown) automaton B with ε-transitions. The set of states is the
same as that ofA. For every ε-transition ⟨p, ⟨⟩, u, v , q⟩ ofA the automatonB
has a transition

⟨p, c, q⟩ , if v = uc ,

⟨p, ⟨⟩, q⟩ , if u = v ,

⟨p, c, q⟩ , if u = c and v = ⟨⟩ .

(1)⇒ (2) Suppose that G = α(Tbin , ⟨⟩), for a regular path-interpretation
α = ⟨K, (La)a∈A⟩. Let B = ⟨P, {0, 1}, ∆′ , p0 , F′⟩ be an automaton recog-
nising K and Ca = ⟨Qa , {0, 1, 0̄, 1̄}, ∆a , qa0 , Fa⟩ one recognising La . We
construct a pushdown automatonA with input alphabet A, stack alphabet
Γ ∶= {$, 0, 1}, and set of states

Q ∶= ∗ + P + ∑
a∈A

Qa , for some new state ∗ .

The initial configuration is ⟨p0 , $⟩. The transitions are as follows.

◆ ⟨p, z⟩
⟨⟩

Ð→ ⟨q, zc⟩ , for every transition ⟨p, c, q⟩ ∈ ∆′ ,

◆ ⟨p, z⟩
⟨⟩

Ð→ ⟨∗, z⟩ , if p ∈ F′ ,

◆ ⟨∗, z⟩
a
Ð→ ⟨qa0 , z⟩ , for a ∈ A ,
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◆ ⟨q, z⟩
⟨⟩

Ð→ ⟨q′ , z′⟩ , for every transition ⟨q, c, q′⟩ ∈ ∆a where ,

z
′ = zc , if c ∈ {0, 1} (we push the letter c) ,

z = z′c , if c ∈ {0̄, 1̄} (we pop the letter c) ,

◆ ⟨q, z⟩
⟨⟩

Ð→ ⟨∗, z⟩ , if q ∈ Fa ,

◆ ⟨q, z⟩
⟨⟩

Ð→ ⟨q, z⟩ , if q ≠ ∗ .
(The transitions of the last kind are just needed to ensure that every config-
uration with a state q ≠ ∗ has an outgoing ε-transition.) It follows that, in
the corresponding ε-pushdown graph, there is an edge ⟨∗, $u⟩ →a ⟨∗, $v⟩ if,
and only if, there is a path from u to v in Tbin labelled by some word in La .
Furthermore, the reachable configurations with outgoing non-ε-transitions
are precisely those of the form ⟨∗, $z⟩ with z ∈ K. It follows that G is equal
to the ε-pushdown graph associated withA.

The reason why we need ε-transitions is the fact that tree-interpretable
graphs can have vertices with infinite degree. For finite degree, we can use
pushdown automata without ε-transitions.

Definition 5.4. A graph G = ⟨V , (Ea)a∈A⟩ is a pushdown graph if it is
isomorphic to the reachable subset of the configuration graph of an (unres-
tricted) pushdown automatonA without ε-transitions. IfA is restricted,
we call G a restricted pushdown graph. ⌟

Proposition 5.5. Let G be a directed edge-labelled graph. The following state-

ments are equivalent.

(1) G is a pushdown graph.

(2) G is a restricted pushdown graph.

(3) G is tree-interpretable and every vertex has finite degree.

(4) G is isomorphic to a structure of the form ⟨V , (Ea)a∈A⟩ where V is a

regular language over some alphabet Σ and each edge relation is of the form

Ea = ⋃
i<n

Wi({u i} × {v i}) ,
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for a regular language Wi ⊆ Σ∗ and words u i , v i ∈ Σ∗.

Proof. (1)⇔ (2) follows by Lemma 5.2, and (4)⇒ (3) byTheorem 2.2.
(3)⇒ (4) Suppose that G is prefix-recognisable and let

Ea = ⋃
i<n

Wi(U i ×Vi) .

If every vertex has degree at most k < ω, it follows that ∣U i ∣, ∣Vi ∣ ≤ k. Hence,
let

U i = {u
i
0 , . . . , u

i
m−1} and Vi = {v

i
0 , . . . , v

i
n−1} .

Then

Wi(U i ×Vi) = ⋃
j, l
Wi({u

i
j} × {v

i
l}) .

(1)⇒ (3) Every pushdown graph is an ε-pushdown graph. Furthermore,
in every configuration c of a pushdown automaton, there are only finitely
many possible transitions. (There are only finitely many possible new states
and finitely many stack operations.) Similarly, there are only finitely many
configurations with a transition leading to c. (There are only finitely many
possible old states and finitely many stack operations producing the stack
of c.)
(3)⇒ (1) Suppose that G = α(Tbin), for some path interpretation α =
⟨K, (La)a⟩. If G has finite degree, every language La is finite.

LetA be the pushdown automaton with input alphabetA, stack alphabet
{0, 1}, a single state p and transitions ⟨p, z⟩ →a ⟨p, z′⟩, where z′ is the stack
obtained from z by applying some path w ∈ La . Note that this transition
is of the form ⟨p, xu⟩ → ⟨p, xv⟩ where u and v depend on w. Hence, it can
indeed be performed by an (unrestricted) pushdown automaton.

Exercise 5.1. Prove that a tree-interpretable graph G has only finitely many
nonisomorphic (i) connected components and (ii) strongly connected com-
ponents. ⌟
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5 Pushdown graphs

Higher-Order Pushdown Automata

The corresponding automaton model for the higher levels of the Caucal hier-
archy uses nested stacks. That is, stacks are words in Γ+n and we have push
and pop operations for each level. Since pushing a fixed element of Γ+(i−1)
onto the stack at level i does not make much sense, the push operation at
higher levels will duplicate the top element of the stack instead.

Definition 5.6. Let Γ be an alphabet and n < ω.
(a) For z ∈ (Γ+k)∗ and c ∈ Γ+k , we use the notation

z ∶ c ∶= zc .

We assume that the operation ∶ is right-associative, i.e., x ∶ y ∶ z = x ∶ (y ∶ z).
It follows that we can write every z ∈ Γ+n uniquely in the form

z = zn ∶ zn−1 ∶ ⋯ ∶ z1 ∶ z0 , with z0 ∈ Γ and zk+1 ∈ (Γ+k)∗ .

(b)The level-n stack operations over an alphabet Γ are the following opera-
tions on Γ+n .

nop(zn ∶ ⋯ ∶ z0) ∶= zn ∶ ⋯ ∶ z0 ,

popk(zn ∶ ⋯ ∶ z0) ∶= zn ∶ ⋯ ∶ zk ,

pushγ(zn ∶ ⋯ ∶ z0) ∶= zn ∶ ⋯ ∶ (z1z0) ∶ γ ,

clonel(zn ∶ ⋯ ∶ z0) ∶= zn ∶ ⋯ ∶ z l+1 ∶ (z l ∶ z l−1 ∶ ⋯ ∶ z0) ∶ z l−1 ∶ ⋯ ∶ z0 ,

for γ ∈ Γ, 1 ≤ k ≤ n, and 2 ≤ l ≤ n. We denote the set of these operations
by Opn . We also set

top(zn ∶ ⋯ ∶ z0) ∶= z0 .

(c) A pushdown automaton of level n is a tuple

A = ⟨Q ,A, Γ , ∆, q0 , γ0 , F⟩
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consisting of a finite set Q of states, an input alphabet A, a stack alphabet Γ, an
initial state q0 ∈ Q , an initial stack symbol γ0 ∈ Γ, a set F ⊆ Q of final states,
and a transition relation

∆ ⊆ Q ×A
≤1 × Γ ×Opn × Q .

A transition ⟨p, a, γ, o, q⟩ ∈ ∆ is called an ε-transition if a = ⟨⟩. We assume
that, for every state p ∈ Q , if there are transitions

⟨p, a, γ, o, q⟩, ⟨p, a′ , γ′ , o′ , q′⟩ ∈ ∆ then a = ⟨⟩⇔ a
′ = ⟨⟩ .

If we do not want to specify the level n, we speak of a higher-order pushdown
automaton.

(d) A configuration of a pushdown automaton A of level n is a pair
⟨q, z⟩ consisting of a state q ∈ Q and a stack z ∈ Γ+n . Given a transition
⟨p, a, γ, o, q⟩ ∈ ∆ there is an a-labelled edge from the configuration ⟨p, z⟩
to ⟨q, o(z)⟩ provided that top(z) = γ.

(e) A ε-pushdown graph of level n is a graph G obtained from the configur-
ation graph of a pushdown automaton of level n by

◆ adding an a-labelled edge between two configurations if there exists
a path between them that consists of an a-transition followed by an
arbitrary number of ε-transitions,

◆ removing all vertices with outgoing ε-transitions, and
◆ restricting the resulting graph to to the set of configurations reachable

from the initial one. ⌟

Example. For every n, there exists an automatonAn of level n+1 recognising
the language

Ln ∶= { a
expn(k) ∣ k < ω } ,

where expn(k) is the function defined by

exp0(k) ∶= k and expn+1(k) = 2
expn(k) .
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Informally, the automatonAn starts by guessing the number k andwriting
an encoding of expn(k) onto its stack.Then it enters a loop where in each
iteration it decrements the number stored in the stack and reads one input
letter.An stops when the number on the stack becomes 0.
To encode such huge numbers into a stack of level n + 1 we use the tack

alphabet Γ = {1, . . . , n, a}. The bottom of a stack of level k will be marked
by the level k − 1 word

[k] ∶= ⟨⟩ ∶ ⋯ ∶ ⟨⟩ ∶ 1 2⋯(k − 1) k ∈ Γ+(k−1) .

By induction on n, we define a coding function µn ∶ ω → Γ+n based on the
binary encoding of integers.

µ1(m) ∶= [1] am ,

µn+1(m) ∶= [n + 1] µn(k0)⋯ µn(k l) ,

where m = 2k0 + ⋅ ⋅ ⋅ + 2k l and k0 > ⋅ ⋅ ⋅ > k l .

Instead of writing down the actual transition table of the automaton, we
use pseudo-code to specify it. We need a predicate zerok(z) that is true if
the top-most level k stack in z is empty, and we need a function deck(z)
that decrements the top-most level k stack of z. The predicate zerok can be
defined with the help of the markers [k].

zerok(z) : iff top(z) = [k] .

For level 1 the numbers are stored on the stack in unary. Hence, the decre-
mentation procedure only needs to remove one symbol.

dec1(z) ∶= pop1(z) .

For k > 1, we use binary encoding and deck(z) has to distinguish two cases.
If the last digit is 1 then we change it to 0. Otherwise, the number ends with
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a sequence of digits 1 0⋯0 that we have to replace by 0 1⋯ 1.

deck+1(z) ∶= // last digit is 1if not zerok(z) then

return popk+1(z)

// last digit is 0else

// change 10 to 01z ∶= deck(z)

while not zerok(z) do

// change 10 to 11z ∶= (deck ○ clonek+1)(z)

end

return z

end

The automatonAn works as follows. First, it creates the stack content

[n + 1] ∶ ⋯ ∶ [1] .

Then nondeterministically it performs m pusha-operations. The stack con-
tents now is

[n + 1] ∶ ⋯ ∶ [1] am = µn+1(expn(m)) .

Finally, it enters a loop where in each iteration it reads one input letter and
then calls decn . ⌟

The analogue ofTheorem 5.3 for the Caucal hierarchy take the following
form.

Theorem 5.7. A graph G = ⟨V , (Ea)a∈A⟩ belongs to CHn if, and only if, it

is an ε-pushdown graph of level n.

Wesplit the proof of the theorem into several steps.As usual, one direction
is straightforward.

Lemma 5.8. Every ε-pushdown graph of level n belongs to CHn .
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5 Pushdown graphs

Proof. LetA = ⟨Q ,A, Γ , ∆, q0 , γ0 , F⟩ be a pushdown automaton of level n
and let G be the corresponding ε-pushdown graph. Set s ∶= ∣Q ∣ and let
C ∶= ⟨Γ , (Pγ)γ∈Γ⟩ be the finite structurewith universe Γ and unary predicates
Pγ ∶= {γ}. It is sufficient to show that the configuration graph ofA isMSO-
interpretable in A ∶= copys(C

∗n). Since G can beMSO-interpreted in the
configuration graph, the lemma then follows from the closure properties
of CHn .
First, note that the configurations of A correspond to a definable sub-

set of A. (The elements not corresponding to configuration are those in
C
∗n ∖ C

+n .) Hence, it remains to define the edge relations. It is sufficient
to show that, for every transition δ ∶= ⟨p, a, γ, o, q⟩ ∈ ∆, there exists an
MSO-formula ψδ(x , y) expressing that the configuraton y can be reached
from x using the transition δ. To do so, note that the structure A has the
form

A = ⟨Γ∗n , (suci)i<n , (cli)i<n , (Pγ)γ∈Γ , (Hq)q∈Q , I⟩ ,

where the relations suci and cli stem from the i-th application of theMuchnik
iteration, the predicates Hq encode the s copies, I relates all copies of the
same element, and Pγ checks that the top stack symobl is γ. The formula ψδ
for δ ∶= ⟨p, a, γ, o, q⟩ ∈ ∆ consequently takes the following form.

◆ If o = popk , we set

ψδ(x , y) ∶= Hpx ∧Hq y ∧ ∃y
′[Iyy′ ∧ suck−1(y

′ , x)] .

◆ If o = pushγ , we set

ψδ(x , y) ∶= Hpx ∧Hq y ∧ ∃y
′[Iyy′ ∧ suc0(x , y′) ∧ Pγ y

′] .

◆ If o = clonek , we set

ψδ(x , y) ∶= Hpx ∧Hq y ∧ ∃y
′[Iyy′ ∧ suck−1(x , y

′) ∧ clk−1(y
′)] .

The converse is based on the following lemma.
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Lemma 5.9. Let G be an ε-pushdown graph of level n and v0 a vertex. Then

the expansion of the unravelling U(G, v0) by inverse edges is an ε-pushdown
graph of level n + 1.

Before giving the proof, which is a bit involved, let us show how to use it
to proveTheorem 5.7.

Proof of Theorem 5.7. (⇒) has already been proved in Lemma 5.8.
(⇐) By the characterisation of CHn fromTheorem 4.4 and induction, it

is sufficient to prove that, if G is an ε-pushdown graph of level n and α is a
regular path-interpretation, then α(U(G, v0), v0) is an ε-pushdown graph
of level n + 1.
Hence, suppose that α = ⟨K, (Lb)b∈B⟩ and let

Bb = ⟨Pb ,A+A, ∆b , p0 , { f }⟩

be a nondeterministic automaton recognising Lb . We may assume that
◆ the initial state p0 has no incoming transitions, and
◆ the unique final state f has no outgoing transitions.
Furthermore, we may assume that all automata Bb share the same initial
state p0 and the same final state f but that, apart from these, their state
spaces are disjoint.
By Lemma 5.9, the extension of U(G, v0) by inverse edges is an ec-

pushdown graph of level n + 1. Let

A = ⟨Q ,A, Γ , ∆, q0 , c0 , F⟩

be the corresponding automaton.
We construct a pushdown automaton for α(U(G, v0), v0) in three steps.

First, we build a pushdown automatonA1 with states

Q1 ∶= Q + Q × ⋃
b∈B
(Pb ∖ { f }) .

The transitions are those ofA together with ε-transitions

⟨q, ⟨⟩, c, nop, ⟨q, p⟩⟩ , for all q ∈ Q , p ∈ ⋃
b∈B
(Pb ∖ { f }), c ∈ Γ≤1 .
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p0 p1 p2 fa a, b b

⟨q0 , z0⟩

⟨q1 , z1⟩

⟨q2 , z2⟩

⟨q3 , z3⟩

⟨⟨q0 , p0⟩, z0⟩

⟨⟨q0 , p1⟩, z0⟩

⟨⟨q0 , p2⟩, z0⟩

⟨⟨q1 , p0⟩, z1⟩

⟨⟨q1 , p1⟩, z1⟩

⟨⟨q1 , p2⟩, z1⟩

⟨⟨q2 , p0⟩, z2⟩

⟨⟨q2 , p1⟩, z2⟩

⟨⟨q2 , p2⟩, z2⟩

⟨⟨q3 , p0⟩, z3⟩

⟨⟨q3 , p1⟩, z3⟩

⟨⟨q3 , p2⟩, z3⟩

a

a

b

c

c

Figure 2: The construction ofA2 for Lc = a(a+b)b.The automatonBc is on the top
and (part of ) the configuration graph ofA2 is on the bottom. ε-transitions
are dashed.

Consequently, the configuration graph of A1 consists of several disjoint
copies of the graph of A together with ε-transitions ⟨q, z⟩ → ⟨⟨q, p⟩, z⟩
from every of the original configurations to each of its copies.

In the second step, we add transitions simulating the automataBb . For an
example of the construction, see Figure 2. LetA2 be the automaton obtained
fromA1 by adding all transitions

⟨⟨q, p⟩, ã, c, o, ⟨q′ , p̃⟩⟩ , with ⟨q, a, c, o, q′⟩ ∈ ∆ , ⟨p, a, p′⟩ ∈ ∆b ,

ã ∶=

⎧⎪⎪
⎨
⎪⎪⎩

a if p = p0 ,
ε otherwise ,

and p̃ ∶=

⎧⎪⎪
⎨
⎪⎪⎩

p0 if p = f ,
p otherwise .
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In case Lb contains the empty word, we also add the transition

⟨⟨q, p0⟩, b, c, nop, ⟨q′ , p0⟩⟩ ,

The construction ensures that there exists a path from configuration
⟨⟨q, p0⟩, z⟩ to ⟨⟨q′ , p0⟩, z′⟩ in the configuration graph ofA2 that is labelled
by b ∈ B if, and only if, there is and a path from ⟨q, z⟩ to ⟨q′ , z′⟩ in the
configuration graph ofA1 that is labelled by some word w ∈ Lb .
In the final step, we replace all transitions ⟨q, a, c, o, q′⟩ ofA2 that cor-

respond to a transition of A (that is, with q, q′ ∈ Q) by ε-transitions
⟨q, ⟨⟩, c, o, q′⟩. LetA3 be the resulting automaton. Note thatA3 is really a
valid pushdown automaton since all configurations whose state belongs to
Q × {p0} have only outgoing non-ε-transitions, while all other configura-
tions have only outgoing ε-transitions.
Contracting all ε-transitions of the configuration graph ofA3 does not

quite produce the graph α(U(G, v0), v0) since there are still some paths
starting in a configuration with state ⟨q, p0⟩ that end in a configuartion
⟨q′ , p′⟩ with p

′ ≠ p. To eliminate these paths during the contraction, we
add loops

⟨⟨q, p⟩, ⟨⟩, c, nop, ⟨q, p⟩⟩ , for all p ≠ p0 .

The pushdown graph corresonding to the resulting automaton is then iso-
morphic to α(U(G, v0), v0).

EC-Pushdown Graph+

It remains to provide themissing proof of Lemma 5.9. To do so, we introduce
the following variant of our automaton model.

Definition 5.10. (a) A pushdown automatonA of level n with equality checks

has the same form as a pushdown automaton of level n, but it can only make
a popk-transition with k > 1 if its stack is of the form clonek(z), for some z.
(There is no restriction on pop1-transitions.) To avoid confusion, we will
write such pop operations with a superscript popeck , and we write Opecn for
the version of Opn with equality checks.
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(b) An ec-pushdown graph is the graph obtained from the configuration
graph of a pushdown automaton with equality checks by contracting ε-
transitions as above. ⌟

We start by proving that there is no difference between ec-pushdown
graphs and ε-pushdown graphs. One direction is relatively straightforward.

Lemma 5.11. Every higher-level ε-pushdown graph is an ec-pushdown graph.

Proof. LetA = ⟨Q ,A, Γ , ∆, q0 , γ0 , F⟩ be an ordinary pushdown automaton
of level n. We construct a pushdown automatonB with equality checks with
the same associated graph as follows.The transitions of B are the same as
those ofA, expect whenA would perform a popk-transition with k > 1. In
this case, B first performs a sequence of ε-transitions that arbitrarily modify
the top k levels of the stack before it can do the desired popeck -transition. It
remains to prove that there exists a sequence of stack operations that leads
to a stack of the form clonek(z), so that we really can perform the popeck .
We will prove the stronger statement that, for all words x , y ∈ Γ+(k−1)

such that every level 1 word inside x and y starts with the initial stack sym-
bol γ0, there exists a sequence of stack operations transforming

zn ∶ ⋯ ∶ zk ∶ x into zn ∶ ⋯ ∶ zk ∶ y .

(Note that every configuration ofA reachable from the initial one is of this
form, since we can never remove the bottom-most stack symbol γ0.)
We proceed by induction on k. If k = 1, we can use a sequence of pop1

operations to reduce x to γ0, followed by a sequence of push-operations
that add the missing symbols to γ0 to get y.

For the inductive step, suppose that k > 1. Again we first reduce x to the
word ⟨⟩ ∶ ⋯ ∶ ⟨⟩ ∶ γ0 and then construct the new word y. We construct
the sequence of operations for the first part by induction on ∣x∣. If ∣x∣ = 1,
we have x = ⟨⟩ ∶ u and we can use the inductive hypothesis on k to find a
sequence of stack operations turning u into ⟨⟩ ∶ ⋯ ∶ ⟨⟩ ∶ γ0. If ∣x∣ > 1, we
have x = w ∶ u with w ≠ ⟨⟩. By inductive hypothesis on k, there exists a
sequence of operations producing clonek−1(w). After a popeck−1-operation
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we obtainw, which can be turned into ⟨⟩ ∶ ⋯ ∶ ⟨⟩ ∶ γ0 by inductive hypothesis
on ∣x∣.

It remains to do the second part: transforming ⟨⟩ ∶ ⋯ ∶ ⟨⟩ ∶ γ0 to y. Again
we proceed by ∣y∣. If ∣y∣ = 1, the claim follows immediately by inductive hy-
pothesis. Hence, suppose that ∣y∣ > 1, say, y = w ∶ u. By inductive hypothesis,
we can turn ⟨⟩ ∶ ⋯ ∶ ⟨⟩ ∶ γ0 into w. Performing a clonek−1-operation, we
get clonek−1(w). By inductive hypothesis on k, we can turn this word into
w ∶ u.

The other direction is more involved. We start by organising the stack
configurations in a tree as follows. Let U be the tree with domain Γ∗ and let
Un ∶= U∗′(n−1), where −∗

′
is the modified Muchnik iteration we introduced

in Definition 4.7 above. Note that the vertices of Un are the words in Γ∗n
and every edge corresponds to either a pushd or a clonek operation. Let
Sn be the tree obtained from Un by

◆ orienting every edge away from the respective root,

◆ removing all vertices that do not belong to Γ+n ,

◆ removing all vertices that are not reachable from $n ∶= ⟨⟩ ∶ ⋯ ∶ ⟨⟩ ∶ $,
where $ ∈ Γ is the initial stack symbol,

◆ labelling every of the remaining edges by the corresponding operation
in Opecn .

Note that the resulting tree Sn has no edges labelled by popecn or by nop.

Lemma 5.12. Let z ∈ Sn and let o ∈ Opecn be an operation different from nop.
If o(z) is defined, it is either the predecessor of z in Sn or one of its successors.

We will show that, for each stack z, there is a unique shortest sequence of
operations generating z. First, let us make the following observations.

◆ Every stack operation except for pop1 is injective.

◆ If o ≠ o′ are distinct operations such that o(z) and o(z′) are defined,
then o(z) ≠ o′(z) for every z.
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◆ For every stack operation o ∈ Opecn , there exists an inverse o
−1 ∈ Opecn .

(pushc)
−1(z) = pop1(z) , (popec1 )

−1(z) = pushtop(z)(z)

(clonek)
−1(z) = popeck (z) , (pop

ec
k )

−1(z) = clonek(z) .

Note that (popec1 )
−1 is not uniquely defined since it depends on the

top-most stack symbol. In the following we will use the short-hand
o = (popec1 )

−1 to mean that o = pushγ , for some γ.
Every sequence of operations mapping z to z′ forms a walk inSn between

these to vertices. The shortest such sequence is the unique path from z to z′.

Lemma 5.13. Let z, z′ ∈ Sn . There exists a unique shortest sequence of stack

operations mapping z to z
′
.

Proof. Let (z i)i≤m be the unique path from z to z′ in Sn (ignoring edge dir-
ections), and let o i be the operationmapping z i to z i+1. By Lemma 5.12, there
is no shorter sequence mapping z to z′ than (o i)i<m . To prove uniqueness,
consider a second sequence (o′i)i<m of m operations mapping z to z′. Let
k be the least index with o′k ≠ ok .Then o′k(zk) ≠ ok(zk) = zk+1 implies that
either o′k(zk) = zk−1 or o

′
k(zk) does not lie on the path between z and z

′.
In both cases, it follows that the path from o

′
k(zk) to z

′ inSn has the length
m−k+1. Consequently, we need at leastm−k+1 operationsmapping o′k(zk)
to z′. But (o′i)k<i<m is supposed to map o′k(zk) to z

′. A contradiction.

Example. Without equality checks there are pairs of stacks that are connec-
ted by several shortest sequences. For instance, we have

ab ∶ abc ∶ d
pop1
ÐÐÐÐ→ ab ∶ ab ∶ c

pop1
ÐÐÐÐ→ ab ∶ a ∶ b ,

ab ∶ abc ∶ d
pop2
ÐÐÐÐ→ ⟨⟩ ∶ a ∶ b clone2

ÐÐÐÐ→ ab ∶ a ∶ b . ⌟

Those sequences that are not the shortest can be characterised as follows.

Definition 5.14. The set ofDyck sequences is the subset of (Opecn )
∗ that is

inductively defined as follows.

◆ The empty sequence is a Dyck sequence.
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◆ If w and w′ are Dyck sequences and o ∈ Opecn , then owo
−1 and ww′ are

also Dyck sequences. ⌟

Lemma 5.15. Let (o i)i<m be a sequence of stack operations. The following

statements are equivalent.

(1) (o i)i is a Dyck sequence.
(2) ∅ ≠ om−1 ○ ⋅ ⋅ ⋅ ○ o0 ⊆ id.
(3) om−1 ○ ⋅ ⋅ ⋅ ○ o0 has a fixed point.

Proof. (1) ⇒ (2)The second inclusion follows by a straightforward induc-
tion on m. For the first one, note that it follows by Lemma 5.12 that every
Dyck sequence is the label of some closed walk p in the tree Sn . Let z be the
vertex of p where this walk starts and ends. Then (om−1 ○ ⋅ ⋅ ⋅ ○ o0)(z) = z.
(2) ⇒ (3) is trivial.
(3) ⇒ (1) Let z ∈ Γ+n be a fixed point of (o i)i . For i ≤ m, set

z i ∶= (o i−1 ○ ⋯ ○ o0)(z) .

We prove the claim by induction on m. If m = 0, then (o i)i<m is a Dyck
sequence. If there is some index 0 < k < mwith zk = z, it follows by inductive
hypothesis that (o i)i<k and (o i)k≤i<m areDyck sequences.Hence, so is their
concatenation (o i)i<m . Similarly, if there are indices 0 < k < l < m with
zk = z l , it follows by inductive hypothesis that o0 , . . . , ok−1 , o l , . . . , om−1
and (o i)k≤i<l are Dyck sequences. Hence, so is the sequence obtained by
inserting the latter into the former. Consequently, wemay assume thatm > 0
and that z i ≠ z j , for all 0 ≤ i < j < m. We claim that om−1 = o

−1
0 . Then

zm−1 = z1 and it follows by inductive hypothesis that (o i)0<i<m−1 is a Dyck
sequence. Hence, so is (o i)i<m .

It therefore remains to prove the claim.We denote by d(x , y) the distance
between x and y in the tree Sn . By Lemma 5.12, the sequence z0 , . . . , zm
forms a (closed) walk in Sn . This implies that

d($n , z i) − d($n , z i+1) = ±1 , for all i .

Let k < m be the index such that d($n , zk) is maximal. Then

d($n , zk−1) = d($n , zk) − 1 = d($n , zk+1) .
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This implies that there are two shortest paths from $n to zk : the shortest
paths from $n to zk−1 followed by ok , and the shortest paths from $n to zk+1
followed by o−1k+1. These paths are really different since zk−1 ≠ zk+1. A con-
tradiction to the uniqueness result from Lemma 5.13.

Lemma 5.16. Let z, z′ ∈ Sn . Every sequence of stack operations mapping z
to z

′
can be obtained from the shortest one by inserting a Dyck sequence after

every operation.

Proof. Let (o i)i<m be some sequence mapping z to z′ and set

z i ∶= (o i−1 ○ ⋯ ○ o0)(z) , for i ≤ m .

We prove the claim by induction on m. It follows by Lemma 5.12 that the
sequence (z i)i forms a walk in the tree S. In particular, every stack w ∈ Sn
that lies on the path from z to z

′ must occur in (z i)i . The subsequence
between the first occurrence of w and the last one forms a Dyck sequence
by Lemma 5.15. Removing all these subsequences, we obtain a path that
contains each of the stacks w exactly once. Hence, the remaining sequence
forms the shortest path from z to z′.

To simulate an automaton with equality checks by one without, we an-
notate each stack by additional information that can be used to determine
whether we are allowed to perform a popeck operation. Since every operation
of the original automaton is simulated by possibly several operations, we
introduce the following convenient notation for sequences of operations that
can be performed by a pushdown automaton.

Definition 5.17. Let Γ be an alphabet and let n < ω.
(a) A stack-aware stack operation of level n is an expression built up from

the operations inOpn using (i) composition ○, (ii) union+, and (iii) tests ?γ ,
for γ ∈ Γ.
(b) Let o be a stack-aware operation and z ∈ Γ+n . We define the value

o(z) by induction on o as follows.

o(z) ∶= o(z) , for o ∈ Opn ,

(p ○ q)(z) ∶= p(q(z)) ,
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?γ(z) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

z if top(z) = γ ,
undefined otherwise ,

(p + q)(z) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

p(z) if p(z) is defined but q(z) is not ,
q(z) if q(z) is defined but p(z) is not ,
undefined otherwise . ⌟

Remark. Clearly, every stack-aware stack operation can be performed by a
pushdown automaton. ⌟

We define an encoding ⟦z⟧n of stacks z ∈ Γ+n and an encoding ⟦o⟧n of
operations o ∈ Opecn such that

⟦o⟧n(⟦z⟧n) = ⟦o(z)⟧n .

To encode a stack z, we consider the shortest sequence of operations pro-
ducing z and annotate the sequence of intermediate stacks by the operation
producing them. Consequently, we will use the stack alphabet Γ + ∆, where
Γ is the original stack alphabet and ∆ is the set of all stack operations.
For technical reasons, we assume that the automaton never pushes a

second copy of the initial stack symbol $ onto the stack. (We can transform
every pushdown automaton into this form by adding a second copy $′ of $
to Γ.)

Definition 5.18. Let Γ be an alphabet, n < ω, and let $ ∈ Γ be the initial
stack symbol.
(a) We write $n ∶= ⟨⟩ ∶ ⋯ ∶ ⟨⟩ ∶ $.
(b) Set ∆ ∶= Opecn ∖ {popn , nop}.
(c) Let z ∈ Γ+n and let (o i)i<k be the shortest sequence of stack opera-

tions mapping $n to z. We denote by y i the top-most level n − 1 stack of
(o i−1 ○⋅ ⋅ ⋅○o0)($n).We define the encoding ⟦z⟧n ∈ (Γ+∆)+n by induction
on n.

⟦z⟧1 ∶= z ,

⟦z⟧n ∶= ⟨$n−1 , pusho0(⟦y0⟧n−1), . . . , pushok−1(⟦yk−1⟧n−1)⟩ .
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(d)We encode a stack operation o ∈ Opecn as a stack-aware operation ⟦o⟧n
by induction on n as follows.

⟦o⟧1 ∶= o .

⟦clonen⟧n ∶= ∑
p∈∆

pushclonen ○ pop1 ○ clonen ○ ?p

+ pushclonen ○ clonen ○ ?$n ,

⟦popecn ⟧n ∶= popn ○ ?clonen ,

⟦nop⟧n ∶= nop ,

and, for o ∈ Opecn−1 different from nop,

⟦o⟧n ∶= ∑
p∈∆∖{o−1}

pusho ○ ⟦o⟧n−1 ○ pop1 ○ clonen ○ ?p

+ popn ○ ?o−1

+ pusho ○ ⟦o⟧n−1 ○ clonen ○ ?$n . ⌟

Lemma 5.19. Let z ∈ Γ+n be a stack and o ∈ Opecn an operation.

⟦o⟧n(⟦z⟧n) =

⎧⎪⎪
⎨
⎪⎪⎩

⟦o(z)⟧n if o(z) is defined,

undefined otherwise.

Proof. We prove the claim by induction on n. If n = 1, we have

⟦o⟧n(⟦z⟧n) = o(z) = ⟦o(z)⟧n .

Hence, suppose that n > 1. We distinguish two cases.
(i) First, suppose that z = $n is the empty stack.Then

⟦clonen⟧n(⟦z⟧n) = (pushclonen ○ clonen)($n)

= ⟨$n−1 , pushclonen($n−1)⟩

= ⟦clonen(z)⟧n ,
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⟦popecn ⟧n(⟦z⟧n) = undefined

= ⟦popecn (z)⟧n ,

⟦nop⟧n(⟦z⟧n) = ⟦z⟧n

= ⟦nop(z)⟧n .

For o ∈ Opecn−1, we have

⟦o⟧n(⟦z⟧n) is defined

iff (pusho ○ ⟦o⟧n−1 ○ clonen ○ ?$n)($n) is defined

iff ⟦o⟧n−1(⟨$n−1 , $n−1⟩) is defined

iff ⟦o⟧n−1($n−1) is defined

iff ⟦o⟧n−1(⟦$n−1⟧n−1) is defined

iff o($n−1) is defined

iff o($n) is defined.

Furthermore, if z′ ∶= o($n) is defined, the shortest sequence of operations
mapping e to z′ consists just of the operation o and we have

⟦o⟧n(⟦z⟧n) = (pusho ○ ⟦o⟧n−1 ○ clonen ○ ?$n)($n)

= ⟨$n−1 , pusho(⟦o⟧n−1($n−1))⟩

= ⟨$n−1 , pusho(⟦o($n−1)⟧n−1)⟩

= ⟦z′⟧n

= o($n) .

(ii) Finally, suppose that z ≠ $n and let

⟦z⟧n ∶= ⟨$n−1 , pusho0(⟦y0⟧n−1), . . . , pushok−1(⟦yk−1⟧n−1)⟩ .

for some y0 , . . . , yk−1 ∈ Γ+(n−1) and o0 , . . . , ok−1 ∈ Opecn−1. We distinguish
several cases.
(ii.1) First, suppose that o = popecn . Note that, if

⟦o⟧n(⟦z⟧n) = (popn ○ ?clonen)(⟦z⟧n)
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is defined, we must have ok−1 = clonen and it follows that

popecn (z) = pop
ec
n (clonen(z

′)) , for some z′ ,

is also defined.
Conversely, suppose that popecn (z) is defined. We have to show that so

is ⟦o⟧n(⟦z⟧n) and that the corresponding values are the same. First, note
that ok−1 = clonen since, otherwise, the shortest sequence mapping $n
to popecn (z) would be o0 , . . . , ok−1 , o. But the tree Sn has no edges la-
belled by popecn . A contradiction.Hence, popecn (z) has the shortest sequence
o0 , . . . , ok−2 and we have

⟦o(z)⟧n = ⟨$n−1 , pusho0(⟦y0⟧n−1), . . . , pushok−2(⟦yk−2⟧n−1)⟩

= popn(⟦z⟧n)

= ⟦popecn ⟧n(⟦z⟧n) .

Hence, ⟦o(z)⟧n is defined and its value is equal to ⟦popecn ⟧n(⟦z⟧n).
(ii.2) Suppose that o = clonen . Note that

⟦o⟧n(⟦z⟧n) = (pushclonen ○ pop1 ○ clonen)(⟦z⟧n)

and clonen(z) are always defined. Furthermore, the shortest sequence map-
ping $n to clonen(z) is o0 , . . . , ok−1 , o since, otherwise, we would have
ok−1 = o

−1 = popecn . A contradiction to the fact that the tree Sn contains no
edges with label popecn . Hence,

⟦o(z)⟧n = ⟨$n−1 , pusho0(⟦y0⟧n−1), . . . , pushok−1(⟦yk−1⟧n−1),

pushclonen(⟦yk−1⟧n−1)⟩

= (pushclonen ○ pop1 ○ clonen)(⟦z⟧n)

= ⟦clonen⟧n(⟦z⟧n) .

(ii.3) If o = nop, the claim is trivial.
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(ii.4) Suppose that o = o
−1
k−1 ∈ Opecn−1. Then o(z) is defined and the

shortest sequence mapping $n to o(z) is o0 , . . . , ok−2. Hence,

⟦o(z)⟧n = ⟨$n−1 , pusho0(⟦y0⟧n−1), . . . , pushok−2(⟦yk−2⟧n−1)⟩

= popn(⟨$n−1 , pusho0(⟦y0⟧n−1), . . . ,

pushok−1(⟦yk−1⟧n−1)⟩)

= ⟦o⟧n(⟦z⟧n) .

It follows that ⟦o⟧n(⟦z⟧n) is also defined and equal to ⟦o(z)⟧n−1.
(ii.5) Finally, suppose that o ∈ Opecn−1 and o ≠ o

−1
k−1. and let z = z

′ ∶ x.
Then

⟦o⟧n(⟦z⟧n) is defined

iff (pusho ○ ⟦o⟧n−1 ○ pop1 ○ clonen ○ ?ok−1)(⟦z⟧n)

is defined

iff ⟦o⟧n−1(⟦yk−1⟧n−1) is defined

iff ⟦o⟧n−1(⟦x⟧n−1) is defined

iff o(x) is defined

iff o(z) is defined.

Furthermore, if z′′ ∶= o(z) is defined, then ok−1 ≠ o
−1 implies that the

shortest sequence of operations mapping $n to z′′ is o0 , . . . , ok−1 , o. Hence,

⟦o⟧n(⟦z⟧n) = (pusho ○ ⟦o⟧n−1 ○ pop1 ○ clonen ○ ?ok−1)(⟦z⟧n)

= ⟨$n−1 , pusho0(⟦y0⟧n−1), . . . , pushok−1(⟦yk−1⟧n−1),

pusho(⟦o⟧n−1(⟦yk−1⟧n−1))⟩

= ⟨$n−1 , pusho0(⟦y0⟧n−1), . . . , pushok−1(⟦yk−1⟧n−1),

pusho(⟦o(yk−1)⟧n−1)⟩

= ⟦o(z)⟧n .

Corollary 5.20. Every ec-pushdown graph is an ε-pushdown graph.
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Proof. LetA = ⟨Q ,A, Γ , ∆, q0 , $, F⟩ be a pushdown automaton with equal-
ity checks of level n. W.l.o.g. we may assume thatA never pushes a second
copy of the initial stack symbol $ onto the stack. We construct an ordinary
pushdown automaton B with the same associated graph as follows. The
automatonB simulatesA by replacing every a-transition using an operation
o ∈ Opec by a sequence of an a-transition followed by several ε-transitions
that together perform the operation ⟦o⟧n . It follows by Lemma 5.19 that the
configuration graph of B is obtained from that ofA by replacing every trans-
ition by a sequence of transitions (the first one with the original label and all
other ones ε-transitions). Consequently, the pushdown graph encoded by B
is isomorphic to that ofA.

We are finally able to give the missing proof of Lemma 5.9.

Proof of Lemma 5.9. By Lemma 5.11, we may assume that G is an ec-push-
down graph. Hence, let A = ⟨Q ,A, Γ , ∆, q0 , $, F⟩ be a pushdown auto-
maton with equality checks of level n that corresponds to G. We have to
construct a new automatonB representingU(G, v0). By Corollary 5.20, it is
sufficient to construct an automaton with equality checks.This automatonB
will encode a path

⟨p0 , z0⟩
a0
Ð→ ⋯

an−1
ÐÐ→ ⟨pn , zn⟩

in the configuration graph ofA by the single configuration

⟨pn , ẑ0⋯ẑn−1zn⟩ where ẑ i ∶= pushp i
(pusha i (z i)) .

To do so, we use the stack alphabet Σ ∶= Γ+Q +A+{e}. (The new symbol e
is used for the case where a i = ⟨⟩.) We have to define B such that, for every
a-transition ofA from ⟨p, z⟩ to ⟨p′ , z′⟩, there exists a sequence of transitions
in B from

⟨p,wz⟩ to ⟨p′ ,wẑz′⟩ , where ẑ ∶= pushp(pusha(z)) ,

whose labelling is a. In addition we need a sequence of transitions in the
other direction with label a. This can be done by replacing every transition
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⟨p, a, γ, o, q⟩ ofA by a sequence of 6 transitions

⟨p, a, γ, pusha , p1⟩ , (push a)

⟨p1 , ⟨⟩, a, pushp , p2⟩ , (push p)

⟨p2 , ⟨⟩, p, clonen , p3⟩ , (extend the path)

⟨p3 , ⟨⟩, p, pop1 , p4⟩ , (remove the p from the copy)

⟨p4 , ⟨⟩, a, pop1 , p5⟩ , (remove the a from the copy)

⟨p5 , ⟨⟩, γ, o, q⟩ , (perform the original stack operation)

where p1 , . . . , p5 are new states. An ε-transition is translated analogously
with the first transition now being

⟨p, ⟨⟩, γ, pushe , p1⟩ .

(We use a special symbol e since we cannot push ⟨⟩.) For the inverse direction,
we add the transitions

⟨q, a, d , o−1 , p′1⟩ ,

⟨p′1 , ⟨⟩, γ, pusha , p
′
2⟩ ,

⟨p′2 , ⟨⟩, a, pushp , p
′
3⟩ ,

⟨p′3 , ⟨⟩, p, pop
ec
n , p

′
4⟩ ,

⟨p′4 , ⟨⟩, p, pop1 , p
′
5⟩ ,

⟨p′5 , ⟨⟩, a, pop1 , q⟩ ,

where p′1 , . . . , p
′
5 are new states, d ∈ Γ≤ is arbitrary, and o

−1 denotes the
inverse to the stack operation o.
As defined above, the configuration graph of B represents the unravel-

ling of G from the vertex corresponding to the initial configuration of A.
To obtain the unravelling from the specified vertex v0, we modify B to
first construct the configuration corresponding to v0 using a sequence of
ε-transitions.
Finally, note that the construction of B does not introduce new popeck -

operations with k > 1, except for the inverse edges where we use a popecn to
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undo a clonen . Here, the equality check is needed to ensure that the current
stack is really of the form clonen(z).

6 Context-Free Group+

The first examples of algorithmic questions regarding infinite structures
come from group theory. Consequently various kinds of finite presentations
of groups are well-studied. Here we present several characterisations of the
groups that belong to the Caucal hierarchy.
There are two different ways to represent finitely generated groups as

structures. Either multiplication is given as binary function or one just in-
cludes several unary functions for multiplication by one of the generators.
If the first version is chosen, it turns out that only finite groups are in the
Caucal hierarchy.

Proposition 6.1. A group G = ⟨G , ⋅ ⟩ is in the Caucal hierarchy if, and only if,
it is finite.

Proof. We have shown in Corollary IX.7.3 that no infinite group has finite
crossing-width, and in Lemma 1.14 that every structure in the Caucal hier-
archy has finite crossing-width.

Example. ⟨Z,+⟩ ∉ CH. ⌟

The second type of presentation is called the Cayley-graph of a group.

Definition 6.2. Let G be a group and S ⊆ G a set generating G as a semi-
group.The Cayley-graph of G is the structure

Γ(G, S) ∶= ⟨G , ( fa)a∈S⟩ with fa(x) ∶= xa . ⌟

Example. Let G be the free group with two generators a and b and set
S ∶= {a, b, a−1 , b−1}. The Cayley-graph Γ(G, S) is tree-interpretable. The
universe consists of all words over S which are reduced, that is, they do not
contain one of the following factors:

aa
−1 , a

−1
a , bb

−1 , b
−1
b .
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Multiplication by a takes words w not ending in a−1 to wa and words of the
form w = ua−1 to u. Hence, we can write fa in the form

fa = (⟨⟩ × a) + S
∗(a × aa) + S

∗(a−1 × ⟨⟩)
+ S

∗(b × ba) + S
∗(b−1 × b

−1
a) ,

which is prefix-recognisable. The other generators can be defined similarly.
It follows that Γ(G, S) is tree-interpretable. ⌟

As Γ(G, S) isMSO-interpretable in G, the requirement that the Cayley-
graph is tree-interpretable is weaker than the one that G is. It turns out that
we indeed obtain a non-trivial class of groups using this representation. We
will show that the class of tree-interpretable groups coincides with the class
of so-called context-free groups.

Definition 6.3. Let G be a group.
(a)G is context-free if there exists a finite set S ⊆ G of semigroup generators

such that the set {w ∈ S∗ ∣ π(w) = 1} forms a context-free language, where
π ∶ S∗ → G is the function multiplying a sequence of generators.
(b) G is virtually free if it has a free group of finite index. ⌟

Theclass of context-free groups is well investigated and hasmany different
characterisations.

Theorem 6.4. LetG be a finitely generated group and S a finite set of semigroup

generators. The following statements are equivalent.

(1) G is context-free.

(2) G is virtually free.

(3) Γ(G, S) has only finitely many ends up to isomorphism.

(4) Γ(G, S) is a pushdown graph.

(5) Γ(G, S) is κ-triangulable, for some finite κ.
(6) Γ(G, S) is tree-interpretable.

(7) Γ(G, S) belongs to the Caucal hierarchy.

(8) Γ(G, S) has finite tree-width.
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(9) Γ(G, S) has finite crossing-width.

(10) Γ(G, S) has a decidableMSO-theory.

(11) Γ(G, S) has a decidable CGSO-theory.

Remark. There exist similar characterisations for finitely generated groups
G whose word problemW ∶= π−1(e) has a different complexity.
(a) W is regular if, and only if, G is finite. [5, 144]

(b) W is decidable if, and only if,G can be embedded in a simple subgroup
of some finitely presented group. [31]

(c) W is computably enumerable if, and only if, G can be embedded in
some finitely presented group. [101] ⌟

We split the proof of the theorem into several lemmas, which consitute
the remainder of this section.

Triangulation+

Our main tool in the proof ofTheorem 6.4 is the fact that every cycle in the
Cayley graph has a triangulation of the following form.

Definition 6.5. Let G be an undirected graph and κ < ω.
(a) For vertices u, v, we denote by d(u, v) the length of the shortest path

between u and v.
(b) A triangulation of a sequence v0 , . . . , vn−1 is a tree-decomposition

(Ut)t∈T of the graph with vertices v0 , . . . , vn−1 and edges ⟨v i , v i+1⟩, for
i < n (index arithmetic modulo n), such that ∣Ut ∣ = 3, for all t. For n < 3,
we drop the requirement that ∣Ut ∣ = 3 and allow the decomposition with a
single component {v0 , . . . , vn−1}. We call each componentUt a triangle of
the triangulation.
(c) Let v0 , . . . , vn−1 be vertices of G. A κ-triangulation is a triangula-

tion (Ut)t∈T of v0 , . . . , vn−1 such that

u, v ∈ Ut implies d(u, v) ≤ κ , for all t ∈ T .

(d)We say thatG is κ-triangulable if every cycle ofG has a κ-triangulation.
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(e) Let T be an undirected tree and ⟨s, t⟩ an edge of T. We denote by Tst
the subtree of T consisting of all vertices u ∈ T such that the path from u

to s does not contain the vertex t. ⌟

The following technical remark will be used in the proof below.

Lemma 6.6. Let (Ut)t∈T be a triangulation of v0 , . . . , vn−1 with n ≥ 3. For
all 0 < k < l < n, there exists a triangle Ut that intersects each of the sets

A ∶= {v0 , . . . , vk} , B ∶= {vk , . . . , v l} , C ∶= {v l , . . . , vn−1 , v0} .

Proof. Let s, t ∈ T be indices such that v0 ∈ Us and vk ∈ Ut . ThenUs inter-
sectsA and C. If it also intersects B, we are done. Hence, suppose otherwise.
Let u ∈ T be the first index on the path from s to t such thatUu ∩ B ≠ ∅,
and let u′ be the vertex before u on this path. Since B is connected, it follows
that all elements of B appear in the subtree Tuu′ . In particular, it follows
that there are w ,w′ ∈ Tuu′ with vk ∈ Uw and v l ∈ Uw′ . Hence, Uw inter-
sects A andUw′ intersects C. As A and C are connected andUs intersects
both A and C, it follows that every component in between also intersects,
respectively, A or C. In particular, Uu does. Hence, Uu intersects all sets
A, B, C.

Let us also prove that finite tree-width implies triangulability. We will
use the following special form of a tree-decomposition.

Definition 6.7. Let G = ⟨V , E⟩ be an undirected graph.
(a) A separator of G is a subset S such that the complement V ∖ S is

not connected. A separator S is minimal if there exists no separator S′ with
S
′ ⊂ S.
(b) A tree-decomposition (Ut)t∈T of an undirected graph G is tight if its

index tree T is directed and, for every directed edge ⟨s, t⟩ of T,

◆ Us ⊆ Ut orUs ⊇ Ut implies s = t,

◆ the set⋃u∈Tst Uu ∖Ut is connected, and

◆ the intersectionUs ∩Ut is a minimal separator of G. ⌟

780



6 Context-free groups

Lemma 6.8. Let G be a connected undirected graph of tree-width k and let

v0 be a vertex. Then G has a tight tree-decomposition of width k whose root

component contains v0.

Proof. Let (Ut)t∈T be a tree-decomposition of G of width k and fix an
index t0 ∈ T with v0 ∈ Ut . We consider T as a directed tree with root t0.
We construct a tight tree-decomposition (Ws)s∈S of G such that every
componentWs is contained in some componentUt . We proceed in three
steps.
(i) We start with the connectivity condition. We perfom the following

operation for every vertex t ∈ T, starting at the root t0 and then proceeding
by induction on the distance between t and t0. Given v ∈ T, we consider
each successor s of t in turn. Let (C i)i∈I be the family of all connected
components of⋃u∈Tst Uu ∖Ut . We replace the subtree of T rooted at s by
several copies, one for every i ∈ I, and we change the labels Uu in the i-th
copy byUu ∩ (C i ∪Ut).

(ii) In the second step we make every separator minimal. Let (Ws)s∈S be
the decomposition obtained as the limit of the construction in step (i). For
each edge ⟨s, t⟩ set

Ast ∶= ⋃
u∈Sst

Wu ∖Wt , Bst ∶= ⋃
u∈S ts

Wu ∖Ws , Cst ∶=Ws ∩Wt .

We modify (Ws)s∈S as follows. For every element v ∈ Cst that has no neigh-
bour in Ast , we remove v from all componentsWu with u ∈ Sst . Similarly,
for every element v ∈ Cst that has no neighbour in Bst , we remove v from
all components Wu with u ∈ Sts . The resulting family (W′

s )s∈S is a tree-
decomposition such that every separatorW′

s ∩W
′
t is minimal. Furthermore,

note that the above operation does not invalidate the connectivity condition
established in (i).

(iii) It remains to make distinct components incomparable. Let (Ws)s∈S
be the decomposition obtained in step (ii). We modify it in three steps.
First, let ≈ be the equivalence relation on S defined by

s ≈ t : iff Us = Ut .
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We replace the index tree S by the quotient S/≈. Since every ≈-class is
connected, this quotient forms a tree.Hence, we obtain a tree-decomposition
(Ws)s∈S/≈.
Next, for every maximal directed path s0 , . . . , sn withWs0 ⊃ ⋯ ⊃Wsn ,

we delete the vertices s1 , . . . , sn and attach their successors directly to s0.
Finally, for every maximal directed path s0 , . . . , sn withWs0 ⊂ ⋯ ⊂Wsn ,

we delete the vertices s0 , . . . , sn−1 and attach their successors directly to sn .
Note that the resulting tree-decomposition (W′

s )s∈S′ still has the proper-
ties from steps (i) and (ii) since, for every edge ⟨s′ , t′⟩ of S′,

◆ the set ⋃u∈S′
s′ t′

W
′
u ∖ W

′
t′ is of the form ⋃u∈Sst Wu ∖ Wt , for some

s, t ∈ S, and

◆ the separatorW′
s′ ∩W

′
t′ is equal toWs ∩Wt , for some s, t ∈ S.

Lemma 6.9. Let G be a connected undirected graph, v0 a vertex of finite degree,

and n < ω. There exist only finitely many minimal separators C of G with

v0 ∈ C and ∣C∣ = n.

Proof. We distinguish three cases. If n = 1, there is only one such set C.
Next, suppose that n = 2. For a contradiction, suppose that there are

infinitely many minimal separators C of size 2 containing v0. Then there
exists an infinite setW such that, for every w ∈ W, {v0 ,w} is a minimal
separator of G. We distinguish two cases.
(i) First, suppose that there exist an infinite subset W0 ⊆ W and, for

every w ∈ W0, some connected component Pw of V ∖ {w , v0} such that
Pw ∩ Pw′ = ∅, for all w ,w′ ∈W0. As v0 has finite degree, there exists some
w ∈W0 such that no vertex of Pw is a neighbour of v0.This implies that Pw is
a connected component of V ∖ {w}, which means that {w} is a separator
of G. A contradiction to the minimality of {v0 ,w}.
(ii) It remains to consider the case where there is no set W0 as in (i).

Then there exist an infinite subseteW0 ⊆W and a linear order ≤ onW0
such that, for every w ∈W0,

◆ V ∖ {w , v0} has exactly 2 connected components Pw and Qw and

◆ w < w′ implies Pw ⊂ Pw′ and Qw ⊃ Qw′ .
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6 Context-free groups

Furthermore, ⟨W0 , ≤⟩must either contain an infinite increasing sequence
w0 < w1 < ⋯ or an infinite decreasing one. By symmetry, we may assume
the former. To simplify notation, set Pi ∶= Pw i and Q i ∶= Qw i .

P0 P1 ∖ P0 P2 ∖ P1 P3 ∖ P2 ⋯ ⋂i Q i

w0 w1 w2 w3

v0

As v0 has finite degree, there exists a largest index k such that some vertex in
Pk+1 ∖ Pk is a neighbour of v0. Since V ∖ {wk+1} is connected, there exists
a path p from wk+2 to v0 that does not contain the vertex wk+1. The last
vertex of p before v0 has to belong to⋂i Q i . Consequently, pmust contain
all vertices w i with i ≥ k + 2. A contradiction, since p is finite.

Finally, let n > 2. For a contradiction, suppose that there exists an infinite
set S of minimal separators such that ∣C∣ = n and v0 ∈ C, for all C ∈ S .
Replacing S by an infinite subset, we may assume that there is some set D
such that

C ∩ C
′ = D , for all C ≠ C′ in S .

LetU be a set containing exactly one element of C ∖D, for every C ∈ S . Let
G′ be the graph of obtained from G by deleting all vertices in

(D ∖ {v0}) ∪ ⋃
C∈S

C ∖ (U ∪ D) .

It follows that, in the graphG′, we obtain infinitely manyminimal separators
{u, v0}, for u ∈ U. A contradiction to the case n = 2 above.

Lemma 6.10. Let (Ut)t∈T be a tight tree-decomposition of finite width of a

Cayley graph Γ(G, S). There exists a constant L < ω such that

u, v ∈ Ut implies d(u, v) ≤ L , for all t ∈ T .
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Proof. Let k be the width of (Ut)t . By definition, the intersectionUs ∩Ut is
a minimal separator, for each edge ⟨s, t⟩ of T. Let S be the set of all minimal
separators C such that ∣C∣ ≤ k and e ∈ C (where e denotes the neutral
element of G). It follows by Lemma 6.9 that S is finite. We claim that the
desired constant is

L ∶= k(k + l + 1) , where l ∶= max
u ,v∈W

d(u, v) , W ∶= ⋃S .

Before giving the full proof, we start with a special case. Let ⟨s, t⟩ be an
edge of T and let C ∶= Us ∩Ut be the associated separator. Fixing a vertex
w ∈ C, there is an automorphism σ of Γ(G, S) with σ(w) = e. It follows
that σ[C] is a minimal separator with e ∈ σ[C]. Hence, σ[C] ∈ S and
σ[C] ⊆W . This implies that

d(u, v) ≤ l , for all u, v ∈ C .

To conclude the proof, we show that

d(u, v) ≤ k(k + l + 1) , for all u, v ∈ Ut , t ∈ T .

Fix t ∈ T and u, v ∈ Ut . Let s0 , . . . , sn−1 ∈ T be the neighbours of t and let
p be a path of minimal length between u and v. This path induces a walk
on T. Since T is a tree, we can therefore factorise p as

p0 , q0 , p1 , q1 , . . . , pm−1 , qm−1 , pm ,

where each p i is contained in Ut and each q i connects two vertices of
Ut ∩Us j i , for some j i < n. Note that ∣Ut ∣ ≤ k implies ∣p i ∣ ≤ k. Furthermore,
since the path p has minimal length, so do the paths q i . As the end-points
of q i belong toUt ∩Us j i , it therefore follows by the special case above that
∣q i ∣ ≤ l . Finally, since each vertex ofUt appears at most once on p, we have
m ≤ ∣Ut ∣ ≤ k. Thus,

d(u, v) = ∣p∣ ≤ (m + 1)m + ml ≤ (k + 1)k + kl .

Lemma 6.11. If a Cayley graph Γ(G, S) as finite tree-width, it is κ-triangulable,
for some κ < ω.
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Proof. Suppose that Γ(G, S) has finite tree-width. By Lemmas 6.8 and 6.10,
Γ(G, S) has a tight tree-decomposition (Ut)t∈T of width k < ω such that
u, v ∈ Ut implies d(u, v) ≤ L. Set κ ∶= 2L + 1. To see that Γ(G, S) is
κ-triangulable, we will prove that every sequence v0 , . . . , vn−1 of distinct
vertices such that d(v i , v i+1) ≤ L, for all i < n (index arithmetic modulo n),
has an L-triangulation.
Given v0 , . . . , vn−1, we construct this triangulation as follows. For each

index i, fix a path p i of length at most L from v i to v i+1, and let S be the
subtree of the decomposition which contains edges of these paths. (Since the
union of the paths is connected, so is S.Hence, S indeed forms a subtree.)The
triangulation is constructed by induction on the size of S. Consider a leafUt
of S containing v i , . . . , v i+m but neither v i−1 nor v i+m+1. Note that any two
vertices in Ut are connected by a path of length at most L. If m = 1, the
edge ⟨v i , v i+1⟩ is also contained in the predecessor ofUt . Consequently, can
remove t from S and the existence of a L-triangulation follows by inductive
hypothesis.
Suppose that m > 1. Since d(v i , v i+m) ≤ L, we can construct a smaller

cycle by replacing the sequence v i , . . . , v i+m by a path of length at most L.
Then we can use the inductive hypothesis to find an L-triangulation of the
resulting cycle v0 , . . . , v i , v i+m , . . . , vn . We can complete it to a triangula-
tion of the original cycle by adding the components {v i , v i+ j , v i+ j+1}, for
j < m − 1. (These components form a path which we can attach to the par-
tial triangulation by adding an edge between Ut and the new component
{v i , v i+m−1 , v i+m}.)

Open Question. Is it true that every tree-interpretable graph is κ-triangulable,
for some κ < ω ?

Exercise 6.1. Find a graph in CH2 that is not κ-triangulable for any κ < ω.
⌟

End+

A second notion we will need is that of an end of a graph, which can be
considered a generalisation of the notion of a branch from trees to more
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general graphs.

Definition 6.12. Let G = ⟨V , (Ea)a∈A⟩ be a directed, edge-labelled graph
and fix a vertex v0 of G, which we call the origin.

(a) For a vertex u, we denote by End(u) the connected component of the
set

{w ∈ V ∣ d(v0 ,w) ≥ d(v0 , u) }

that contains the vertex u.
(b)The corresponding frontier is the set

Fr(u) ∶= {w ∈ End(u) ∣ d(v0 ,w) = d(v0 , u) } .

(c) An end of G is a subgraph induced by a set of the form End(u).
(d)The number of ends is the limit

sup
n→∞
∣{End(u) ∣ d(v0 , u) = n }∣ .

(e)We say that two ends End(u) and End(v) are isomorphic if there exists
a bijection End(u) → End(v) that preserves each edge relation and that
maps Fr(u) bijectively to Fr(v). ⌟

Remark. One can show that a finitely generated groupG has either 0, 1, 2, or
infinitely many ends. Furthermore, this number is 0 if, and only if,G is finite;
and it is 2 if, and only if, G has a subgroup of finite index that is isomorphic
to Z. Every free group with more than one generator has infinitely many
ends, all of them isomorphic. ⌟

Wewill need the following two observations about ends of κ-triangulable
Cayley graphs.

Lemma 6.13. If a Cayley graph Γ(G, S) is κ-triangulable, then

u
′ ∈ Fr(u) implies d(u, u′) ≤ 3κ .
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Proof. Fix vertices u, u′ with d(e , u) = d(e , u′). Let p and p′ be the shortest
paths from e to u and u′, respectively. Since End(u) = End(u′), there exists
a path q from u to u′ that is contained in End(u). Without loss of generality,
we may assume that p and p

′ are of the form p = rp0 and p
′ = rp

′
0, for

some r, p0 , p′0, where p0 and p
′
0 are disjoint (except for the first vertex). By

assumption, the cycle consisting of p0 , q, p′0 (with p
′
0 in inverse direction)

has a κ-triangulation. (Note that these three paths really form a cycle since
p0 and p

′
0 are disjoint by definition, and q being contained in End(u) does

not intersect either of them.) Hence, we can use Lemma 6.6 to find a triangle
{x , y, x′} with x ∈ p0, y ∈ q, and x

′ ∈ p′0. Let p1 and p
′
1 be the suffixes of

p0 and p
′
0 between, respectively, x and u and between x

′ and u′. Note that
d(u, x) ≤ κ since, otherwise,

d(e , y) ≤ d(e , x) + d(x , y)

≤ d(e , x) + κ
= d(e , u) − d(u, x) + κ < d(e , u) − κ + κ = d(e , u) .

This contradicts the fact that y ∈ End(u). Similarly, we obtain d(u′ , x′) ≤ κ.
It follows that

d(u, u′) ≤ d(u, x) + d(x , x′) + d(x′ , u′) ≤ 3κ ,

as desired.

Lemma 6.14. No κ-triangulable Cayley graph Γ(G, S) has exactly 1 end.

Proof. If G is finite, its number of ends is 0. Hence, we may suppose that it
is infinite. Then Γ(G, S) contains an infinite path w0 ,w1 ,w2 , . . . such that
d(w i ,w0) = i, for all i. Since the automorphism group of G acts transitively
on Γ(G, S), there exists an automorphism σi with σi(w i) = e. Set u i ∶=
σi(w0) and v i ∶= σi(w2i). It follows that d(e , u i) = d(e , v i) = i and
d(u i , v i) = 2i. Set n ∶= 2κ + 1. If Fr(u i) = Fr(v i), it follows by Lemma 6.13
that

2i = d(u i , v i) ≤ 3κ < 4κ + 2 = 2n .

Hence, Fr(u i) ≠ Fr(v i), for all i ≥ n, which implies that End(u i) ≠
End(v i). In particular, the number of ends of Γ(G, S) is at least 2.
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Virtua\y Finite Group+

Finally, we need some results about virtually finite groups. We start by
showing that every virtually finite group is tree-interpretable. The following
lemmas are needed in the proof. First, let us note that the choice of generators
does not matter when proving that a Cayley graph is tree-interpretable.

Lemma 6.15. If Γ(G, S) is tree-interpretable, so is Γ(G,T), for every other
set T of generators.

Proof. We show that there exists anMSO-interpretation mapping Γ(G,T)
to Γ(G, S). For each generator t ∈ T, we fix a word wt ∈ S

∗ with product t.
It follows that ut = v if, and only if, there exists a path from u to v in Γ(G, S)
whose label is wt . This property can be expressed inMSO.

Let us also note that, in the definition of a virtually free group, we can
choose the free subgroup to be normal.

Lemma 6.16. Let G be a group. For every subgroup H ⊆ G of finite index there

exists a normal subgroup N ⊆ G of finite index with N ⊆ H.

Proof. Let α ∶ G → Sym(S) be the action of G on S ∶= { gH ∣ g ∈ H }
defined by

a ⋅ gH ∶= (ag)H .

We claim that the set N ∶= ker α induces the desired subgroup. First, note
thatN is normal inG since it is the kernel of a homomorphism. Furthermore,
its index is bounded by ∣Sym(S)∣ = ∣Syn(n)∣ = n!, where n ∶= ∣S∣ is the
index of H. To see that N ⊆ H, note that

a ∈ N = α−1(id) iff a ⋅ gH = gH , for all g ∈ G ,

iff ag ∈ H , for all g ∈ G .

In particular, a ∈ N implies a = ae ∈ H.

Corollary 6.17. If G is a finitely generated virtually free group, it has a normal

subgroup of finite index that is finitely generated and free.
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6 Context-free groups

Proof. Let H be a free subgroup of G of finite index and let N be the normal
subgroup from Lemma 6.16. Since subgroups of free groups are themselves
free, it follows that N is a free group. It is also finitely generated since every
subgroup of a finitely generated group that has finite index is itself finitely
generated.

After these preparations we can show that virtually free groups have
tree-interpretable Cayley graphs.

Lemma 6.18. LetG be a finitely generated virtually free group.Then Γ(G, S) is
tree-interpretable.

Proof. LetG be finitely generated and virtually free. By Corollary 6.17,G has
a normal subgroup N of finite index that is finitely generated and free. Let
C be a finite set of generators of N, fix an enumeration Nb0 , . . . ,Nbm−1
(without repetitions) of G/N, and set B ∶= {b0 , . . . , bm−1}. Then every
element of G can be written uniquely as a product hb with h ∈ N and
b ∈ B. By Lemma 6.15, it is sufficient to prove that Γ(G,C ∪ B) is prefix-
recognisable.
As universe we take the (regular) set C∗B ⊆ (C + B)∗. By the above

remark the product function C
∗
B → G is a bijection. Hence, it remains

to show that multiplication by a generator are prefix-recognisable. For the
proof, fix s ∈ C ∪ B. For b, b′ ∈ B and c ∈ C, choose α(b, b′), γ(b, c) ∈ C∗
and β(b, b′), δ(b, c) ∈ B such that

bb
′ = α(b, b′)β(b, b′) and bc = γ(b, c)δ(b, c) .

(By the above remark, these choices are unique.) For s ∈ B, it follows that

ubs = uα(b, s)β(b, s) , for u ∈ C∗ and b ∈ B .

For s ∈ C, we have

ubs = uγ(b, s)δ(b, s) , for u ∈ C∗ and b ∈ B .

To see that these relations are prefix-recognisable note that the words α(b, s)
and γ(b, s) have bounded length. (There are only finitely many of them.)
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Consequently, going from ub to uα(b, s)β(b, s) or uγ(b, s)δ(b, s) involves
removing a bounded suffix and replacing it with another one.This operation
can be expressed inMSO.

It remains to show that every context-free group is virtually free. To do
so we need some machinery from group theory. We omit the proofs as
they would lead us too far afield. We will use two different operations to
decompose groups. The exact definitions are only given for completeness
sake, we will not use them below. So the reader may skip them if desired.

Definition 6.19. (a) LetG andH be two groups with a common subgroup C.
We denote by G ∗C H the push-out (in the category of groups) of the em-
beddings C → G and C → H. Thus G ∗C H is the ‘freest’ group admitting
embeddings of G and H that agree on C. We call C the base of the push-out.
A push-out G ∗C H is trivial if C = G or C = H.

(b) Let G be a group with presentation ⟨S ∣ R⟩ and let α ∶ C → D be an
isomorphism between two subgroups C,D ⊆ G. TheHNN-extension of G
with respect to α is the group G ∗α Z (this is non-standard notation) with
presentation

⟨S , t ∣ R, tct−1 = α(c) (for all c ∈ C)⟩ ,

where t is a new symbol. We call C the base of the extension. (The letters
HNN stand for Higman, Neumann, and Neumann.) ⌟

Lemma 6.20 (Gregorac [91], Karrass, Pietrowski, Solitar [114]). The class of

finitely generated virtually free groups is closed under push-outs with finite base

and HNN-extensions with finite base.

Definition 6.21. A group G splits if at least one of the following conditions
holds.

(i) G can be written as a non-trivial push-out H ∗C K with a finite base C.

(ii) G is anHNN-extension H ∗α Z with a finite base.

In this case we say that G splits into the groups H,K and into H, respectively.
⌟
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6 Context-free groups

Themain structure theorem our proof below is based on is the following
result of Stallings.

Theorem 6.22 (Stallings [197]). A finitely generated group G has more than

one end if, and only if, it splits.

The proof below is by induction on the number of times a group splits.
This number is called its accessibility length.

Definition 6.23. LetG be a group. By induction on s < ω, we say thatG has
accessibility length ifG only splits into groups of accessibility length less than s.
If no such number exists, we say that G has no accessibility length. We call
G accessible if it has an accessible length. ⌟

The existence of an accessibility length follows from the following result
of Dunwoody.

Theorem 6.24 (Dunwoody [74]). Every finitely presentable group is accessible.

Corollary 6.25. If Γ(G, S) is κ-triangulable, then G is accessible.

Proof. ByTheorem 6.24, it remains to prove that G is finitely presentable.
Let π ∶ S∗ → G be the function multiplying a sequence of generators and set

R ∶= {w ∈ S∗ ∣ π(w) = e and ∣w∣ ≤ 3κ } .

We claim that ⟨S ∣ R⟩ is a presentation of G. Clearly, every w ∈ R evaluates
to e. Conversely, letw ∈ S∗ be a word with π(w) = e.Thenw induces a cycle
in Γ(G, S). By assumption, this cycle has a κ-triangulation. Every triangle
of this triangulation is a cycle of length at most 3κ, which implies that its
label belongs to R. Thus each triangle evaluates to e in the group presented
by ⟨S ∣ R⟩. This implies that w also evaluates to e in this group.

Lemma 6.26. If Γ(G, S) is κ-triangulable, then G is virtually free.

Proof. Suppose that Γ(G, S) is κ-triangulable. By Corollary 6.25, G has an
accessibility length s. We proceed by induction on s. If s = 0, it follows by
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Theorem 6.22 and Lemma 6.14 that the number of ends of Γ(G, S) is 0.
Hence, G is finite and, therefore, virtually free.

For the inductive step, suppose that s > 0.This implies that G = H ∗C K
or G = H∗α Z where H and K have accessibility length less than s, C is finite,
and α ∶ C → D. By inductive hypothesis, it follows thatH andK are virtually
free. Hence, we can use Lemma 6.20 to show that so is G.

The Proof of the Theorem

Proof of Theorem 6.4. Let π ∶ S∗ → G be the function mapping a sequence
of generators to its product.
(4)⇔ (6) follows by Proposition 5.5 as Cayley graphs have bounded

degree.
(6)⇒ (8), (9), (11) Suppose that Γ(G, S) is tree-interpretable. Then it

follows by Lemma 1.14 that it has finite crossing-width. Since Γ(G, S) is ∣S∣-
sparse, we can useTheorem IX.4.5 to show that it even has finite tree-width.
Hence, the claim follows by Proposition 1.15.
(11)⇒ (10) is trivial.
(10) ⇒ (8) Suppose that Γ(G, S) has infinite tree-width. Then The-

orem VIII.4.1 implies that Γ(G, S) contains arbitrarily large grids as minors.
Consequently, the GSO-theory of Γ(G, S) is undecidable. Since Γ(G, S) is
∣S∣-sparse, it follows that itsMSO-theory is also undecidable.
(8)⇒ (5) has been proved in Lemma 6.11.
(5)⇒ (3) Suppose that Γ(G, S) is κ-triangulable. For each u ∈ G, fix an

automorphism αu of Γ(G, S)mapping u to e, and set

W ∶= ⋃
u∈G

αu[Fr(u)] .

We have shown in Lemma 6.13 that

u
′ ∈ Fr(u) implies d(u, u′) ≤ 3κ .

This implies that every element ofW has distance at most 3κ from e. Since
Γ(G, S) has bounded degree, it follows thatW is a finite set. Furthermore,
αu[Fr(u)] = αu′[Fr(u′)] implies that αu′○α−1u maps Fr(u) to Fr(u′). Since

792



6 Context-free groups

W has only finitely many subsets, it therefore follows that the equivalence
relation

u ∼ u′ : iff there is an automorphism mapping Fr(u) to Fr(u′)

has finite index. Finally, note that u ∼ u′ implies that End(u) and End(u′)
are isomorphic. (Any automorphism mapping Fr(u) to Fr(u′)must map
End(u) to End(u′).)
(3)⇒ (6) Let

T ∶= {Fr(u) ∣ u ∈ G } and N ∶= max{ ∣C∣ ∣ C ∈ T } .

(Note that N < ω since there are only finitely many frontiers, up to iso-
morphism.) We define an edge relation E ⊆ T × T by making two frontiers
C ,D ∈ T adjacent if there are adjacent vertices u ∈ C and v ∈ D. The result-
ing graph T ∶= ⟨T , E⟩ forms a tree. Furthermore since, up to isomorphism,
there are only finitely many ends, it follows that this tree is regular. Con-
sequently, we can interpret the structure copyN(T) in the infinite binary
tree. As we can interpret Γ(G, S) in copyN(T), the claim follows.
(6)⇒ (7) is trivial.
(7)⇒ (9) follows by Lemma 1.14.
(9)⇒ (8) follows fromTheorem IX.4.5 since Cayley graphs are ∣S∣-sparse.
(5)⇒ (2)⇒ (6) follow by Lemmas 6.26 and 6.18, respectively.
(5)⇒ (1) Suppose that Γ(G, S) is κ-triangulable.We construct a context-

free grammar for the set π−1[e] as follows. Let C ⊆ G be the set of all ele-
ments of the form π(w)with ∣w∣ ≤ κ.The grammar has one non-terminalAc ,
for every c ∈ C, and the rules

Ac → aAd , Ac → Adb , and Ac → AdAd′ ,

for all a, b ∈ G and c, d , d′ ∈ C with ad = c, db = c, and dd′ = c. In addition,
we use the rule

Ae → ⟨⟩ .
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The start symbol is Ae . By induction on the length of a derivation it now
follows that

Ac ⇒
∗
w0Ad1w1⋯wn−2Adn−1wn−1

implies

c = π(w0) ⋅ d1 ⋅ π(w1)⋯ π(wn−2) ⋅ dn−1 ⋅ π(wn−1) .

For n = 0, it follows that Ae ⇒ w implies π(w) = e.
Conversely, suppose that π(w) = e wherew = a0⋯an−1. Let v0 , . . . , vn−1

be vertices corresponding to w (i.e., v i ∶= π(a0⋯a i−1)), and fix a κ-trian-
gulation (Ut)t∈T of w in Γ(G, S). We prove that Ae ⇒

∗
w by induction

on ∣T∣. If T = {t}, the triangulation consists of a single triangle with edges
a0 , a1 , a2. Consequently, we have the derivation

Ae ⇒ a0Aa1a2 ⇒ a0a1Aa2 ⇒ a0a1a2Ae ⇒ a0a1a2 .

For the inductive step, fix a leaf t ofT.ThenUt = {v i , v i+1 , v i+2}, for some i
(index arithmetic modulo n), and

Aa i a i+1 ⇒ a iAa i+1 ⇒ a ia i+1Ae ⇒ a ia i+1 .

Applying the inductive definition to the sequence

a0 , . . . , a i−1 , c, a i+2 , . . . , an−1 with c ∶= a ia i+1

we obtain a derivation

Ae ⇒
∗
a0⋯a i−1ca i+2⋯an−1 .

Replacing in this derivation the step introducing the terminal c by the above
derivation Ac ⇒

∗
a ia i+1, we obtain a derivation of w.

(1)⇒ (5) Let S′ be a set of generators such that the corresponding preim-
age π−1(e) ⊆ T∗ is context-free. We claim that Γ(G, S′) is κ′-triangulable,
for some κ′. Since we have already proved the equivalence (5)⇔ (6), it
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6 Context-free groups

then follows that Γ(G, S′) is tree-interpretable. Hence, so is Γ(G, S), by
Lemma 6.15. This implies that Γ(G, S) is κ-triangulable, for some κ.

Hence, fix a grammar in Chomsky normal form for the language π−1(e).
We assume that it is reduced in the sense that we cannot remove any rule
without altering the language and that, for every non-terminal A, the lan-
guage

L(A) ∶= {w ∈ S′∗ ∣ A⇒∗
w }

is non-empty. For each non-terminal A, fix a word zA ∈ L(A) of minimal
length and set

κ′ ∶= max
A
∣zA∣ .

We claim that Γ(G, S′) is κ′-triangulable.
Letw be (the label of ) a cycle in Γ(G, S′).We construct a κ′-triangulation

ofw by induction on n ∶= ∣w∣. If n ≤ 3 there is nothing to do. Hence, suppose
otherwise. Let Z be the start symbol of our grammar. By assumption, there
exists a derivation Z ⇒∗

w. Let Z ⇒ AB be its first step and let u, v be
words such that w = uv, A⇒∗

u, and B⇒∗
v.

First, suppose that ∣u∣, ∣v∣ > 1. Let x be the first vertex of u and y the
first one of v. We split the cycle w into two cycles by inserting an edge with
label zB from x to y. Below, we will show that π(zB) = π(v). Consequently,

π(uzB) = π(w) = e and π(v(zB)−1) = e .

By inductive hypothesis, the two resulting cycles have κ′-triangulations.
Each of them must have a component containing the edge ⟨x , y⟩. To obtain
a κ′-triangulation of w we can combine these two triangulations by adding
an edge between these two components.

Next, suppose that ∣u∣ = 1. (The case where ∣v∣ = 1 is handled analogously.)
Let B⇒ C0C1 be the second step in the derivation Z ⇒∗

w and let v0 , v1
be words such that v = v0v1 and C i ⇒

∗
v i . Since n ≥ 4, there is some i < 2

with ∣v i ∣ > 1. Let x be the first vertex of the path v i and y be the last one.We
split the cycle w into two cycles by inserting an edge with label zC i from x
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XI. The Caucal Hierarchy

to y. Then we can use the inductive hypothesis as above to construct the
desired triangulation of w.
It remains to prove the above claim. More generally, we will show that

u, v ∈ L(A) implies π(u) = π(v). Since the grammar is reduced, there
exists a derivation Z ⇒∗

xAy. Since the grammar describes the language
π−1(e), it follows that

π(xuy) = e and π(xvy) = e .

Consequently, π(u) = π(x−1 y−1) = π(v).

7 Graph+ and Path+

Let us collect a few technical results about the structure of graphs in the
Caucal hierarchy, in particular, about the existence of certain paths and the
distances between vertices. Such results can be used to prove that a structure
does not belong to a given level of the Caucal hierarchy. We will also use
them for an axiomatisation result in Section 8 below.

Graph+ of Finite Outdegree

We start with graphs in the Caucal hierarchy where each vertex has finite
out-degree. Note that the universe of a structure A ∈ CHn in the n-th level
of the hierarchy has the form A ⊆ Γ∗n , for some finite set Γ. We define
a norm ∥z∥k on such sets by taking the maximal length of a level k word
contained in z.

Definition 7.1. Let Γ be a finite set. For k ≤ n and z = x0⋯xm−1 ∈ Γ∗n with
x i ∈ Γ∗(n−1), we define, by induction on k,

∥z∥k ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 if m = 0 ,
∥z∥ if k = n ,
max{ ∥x i∥k ∣ i < m } if k < n and m > 0 . ⌟

796



7 Graphs and paths

Lemma 7.2. Let Γ be a finite set with at least two elements and let k1 , . . . , kn
be numbers. There are less than ∣Γ∣k1⋯kn

words z ∈ Γ∗n such that ∥z∥i < k i , for
all i ≤ n.

Proof. The claim follows by a straightforward induction on n. For n = 1, we
have

∑
i<k1
∣Γ∣i =

∣Γ∣k1 − 1
∣Γ∣ − 1

< ∣Γ∣k1

words z ∈ Γ∗ with ∣z∣ < k1. For n > 1, we can employ the inductive hypothesis
to obtain the bound

∑
i<kn
(∣Γ∣k1⋯kn−1)i < ∣Γ∣k1⋯kn .

It follows by Lemma 1.7 that every graph G = ⟨V , (Ea)a⟩ ∈ Chn is of the
form

V = { z ∈ C∗n ∣ C∗n ⊧ δ(z) } ,

E = { (z, z′) ∈ C∗n × C
∗n ∣ C∗n ⊧ φ(z, z′) } ,

for some finite structure C and suitableMSO-formulae δ(x) and φa(x , y).
Therefore, we will consider a structure of the formC∗n and anMSO-formula
φ(x , y) with two free first-order variables.

Definition 7.3. Let A be a structure and φ(x , y) ∈ MSO a formula. The
φ-out-degree of a ∈ A in A is the number of elements b ∈ A such that
A ⊧ φ(a, b). ⌟

We obtain the following bound on the φ-out-degree.

Theorem7.4. Let φ(x , y) be anMSO-formula and n < ω.There are constants

s1 , . . . , sn < ω such that, for every finite structure C with at least two elements

and every element u ∈ C∗n of finite φ-out-degree in C∗n , we have

C∗n ⊧ φ(u, v) implies ∥v∥i ≤ L i(u) for all i ≤ n ,

where L i(u) ∶= ∥u∥i + s i ∣C∣
L1(u)⋯L i−1(u)

.
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XI. The Caucal Hierarchy

Proof. We prove the claim by induction on n. Fix an element u ∈ C
∗n

of finite φ-out-degree. Let m be the quantifier-rank of φ. We denote by
π ∶ C∗n → C

∗(n−1) the function mapping a sequence w ∶ c to its last
element c. (For the root we set π(⟨⟩) ∶= �.) Finally, for w ≤pf u, set

V(u,w) ∶= { z ∣ w <pf z ≤pf v
′ for some v′ such that u ⊓ v

′ = w

and C∗n ⊧ φ(u, v′) } .

We will prove below that the projection π[V(u,w)] is definable in C∗(n−1)

given the element π(w). It then follows by inductive hypothesis that

∥π(z)∥i ≤ L i(π(w)) ≤ L i(u) , for all z ∈ V(u,w) and i < n .

Consequently,

∥v∥i = max{ ∥π(z)∥i ∣ z ≤pf v }

= max ({∥u ⊓ v∥i} ∪ { ∥π(z)∥i ∣ u ⊓ v <pf z ≤pf v })

≤ L i(u) , for all i < n .

For i = n note that, if there are vertices u ⊓ v <pf z <pf z
′ ≤pf v with

π(z) = π(z′) and C∗n ∣⇑z , v ≡
m
MSO C∗n ∣⇑z′ , v ,

we can replace the subtree C∗n ∣⇑z′ by C∗n ∣⇑z and obtain a vertex v′ with

C∗n ⊧ φ(u, v′) and ∣v′∣ > ∣v∣ .

Repeating this construction we obtain an infinite number of vertices v′ with
C∗n ⊧ φ(u, v′). A contradiction.
As V(u,w) is finite, it therefore follows by inductive hypothesis that

∣v∣ − ∣u ⊓ v∣ = ∣V(u, u ⊓ v)∣

≤ r ⋅ ∣π[V(u, u ⊓ v)]∣

≤ r ⋅ s′ ⋅ ∣C∣L1(u⊓v)⋯Ln−1(u⊓v) ≤ rs′ ⋅ ∣C∣L1(u)⋯Ln−1(u) ,
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7 Graphs and paths

where r the number ofMSOm-theories with one first-order parameter.
It remains to prove the above claim about the definability of π[V(u,w)].

Fix w <pf u and let a ∈ C∗(n−1) be the element such that wa ≤pf u. (The
case where w = u is handled analogously.) Note that, given w ≤pf z <pf v
and elements b, c ∈ C∗(n−1) with wb ≤pf zc ≤pf v, we can compute the
theoryThm

MSO(C
∗n , u, v) from the theories

ρ ∶=Thm
MSO(C

∗n ∣C∗n∖⇑wb , u) ,

σ ∶=Thm
MSO(C

∗n ∣⇑wb∖⇑zc ,wb, z) ,

τ ∶=Thm
MSO(C

∗n ∣⇑zc , zc, v) .

We use the notation ρ+σ +τ ∶=Thm
MSO(C

∗n , u, v) for the composed theory.
Below we will construct MSO-formulae χρ(x , y), ψσ(x , y), ϑτ(x) such
that

C∗(n−1) ⊧ χρ(a, b) iff Thm
MSO(C

∗n ∣C∗n∖⇑wb , u) = ρ ,

C∗(n−1) ⊧ ψσ(b, c) iff Thm
MSO(C

∗n ∣⇑wb∖⇑zc ,wb, z) = σ ,

C∗(n−1) ⊧ ϑτ(c) iff there is some v ≥pf zc such that

Thm
MSO(C

∗n ∣⇑zc , zc, v) = τ .

It then follows that

c ∈ π[V(u,w)]
iff there exist elements w <pf z ≤pf v such that π(z) = c and

Thm
MSO(C

∗n ∣C∗n∖⇑wb , u) +Thm
MSO(C

∗n ∣⇑wb∖⇑zc ,wb, z)

+Thm
MSO(C

∗n ∣⇑zc , zc, v) ⊧ φ
iff there exist theories ρ, σ , τ such that

ρ + σ + τ ⊧ φ and τ ⊧ cl(c)
iff there exist theories ρ, σ , τ and an element b such that

ρ + σ + τ ⊧ φ and C∗(n−1) ⊧ χρ(a, b) ∧ ψσ(b, c) ∧ ϑτ(c)

iff C∗(n−1) ⊧ ⋁
ρ ,σ ,τ
[χρ(a, b) ∧ ψσ(b, c) ∧ ∧ϑτ(c)] ,
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XI. The Caucal Hierarchy

where the disjunction above ranges over all theories ρ, σ , τ that satisfy
ρ + σ + τ ⊧ φ.
It remains to construct the formulae χρ , ψσ and ϑτ . Given a theory τ, it

follows byTheorem V.3.7 that there exists a formula ϑτ such that

⟨C∗n , ⟨c⟩⟩ ⊧ ∃z⋀ τ iff C∗(n−1) ⊧ ϑτ(c) .

To define ψσ , note that set of all the theories of the form

Thm
MSO(C

∗n ∣⇑x∖⇑y , x , y
′) ,

where x <pf y and y
′ is the predecessor of y, carry a natural semigroup

structure. Consequently, we have

Thm
MSO(C

∗n ∣⇑x∖⇑y , x , y
′) = σ

if, and only if, there exist c0 , . . . , cn and σ0 , . . . , σn such that π(y) = cn ,
σ0 +⋯ + σn = σ , and

Thm
MSO(C

∗n ∣⇑x∖⇑xc i , x) = σi , for all i ≤ n .

(Strictly speaking we have to replace x by xc0⋯c i−1 here, but since the
corresponding structures are isomorphic, we have used just x to simplify
notation.) It is therefore sufficient to construct formulae ψ0

σ(x , y) such that

C∗(n−1) ⊧ ψ0
σ(π(x), c) iff Thm

MSO(C
∗n ∣⇑x∖⇑xc , x) = σ ,

for all x ∈ C∗n and c ∈ C∗(n−1).Then the above property can be expressed in
MSO by guessing sets (Pσ ′)σ ′ ; stating that these are the least sets satisfying
◆ C∗(n−1) ⊧ ψ0

σ0
(π(x), c) implies c ∈ Pσ0 ,

◆ C∗(n−1) ⊧ ψ0
σ0
(c, d) and c ∈ Pσ1 implies d ∈ Pσ1+σ0 ;

and then checking that π(y) ∈ Pσ .
To construct ψ0

σ , note that we can express the structure ⟨C
∗n
⇑x∖⇑xc , x⟩ as a

generalised sum

∑
d∈⟨C∗(n−1) ,b⟩

Dd where Dd ∶=

⎧⎪⎪
⎨
⎪⎪⎩

⟨C∗n , ⟨d⟩⟩ if d ≠ c ,
⟨{d}, d⟩ otherwise .
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7 Graphs and paths

where b ∶= π(x), followed by an interpretation. Consequently, for each
theory σ , there exist formulae ξ and η0 , . . . , ηn−1 such that

Thm
MSO(C

∗n
⇑x∖⇑xc , x) = σ

iff ⟨C∗(n−1) , b, c⟩ ⊧ ξ(⟦η0⟧, . . . , ⟦ηn−1⟧) .

Furthermore, we can use theTheorem of Muchnik to construct formulae η′i
such that

⟨C∗n , ⟨d⟩⟩ ⊧ η i iff ⟨C∗(n−1) , c, d⟩ ⊧ η′i .

Substituting these into ξ, we obtain a formula ψ0
σ such that

Thm
MSO(C

∗n
⇑x∖⇑xc , x) = σ iff C∗(n−1) ⊧ ψ0

σ(b, c) .

The construction of χρ is similar to that of ψ0
σ . We write ⟨C∗n ∣⇑w∖⇑wb , u⟩

as a generalised sum

∑
d∈⟨C∗(n−1) ,a⟩

Dd

followed by an interpretation.The only difference is that the theory of Da
(which depends on u) is fixed.This way we obtain formulae ξρ′ such that

C∗(n−1) ⊧ ξρ′(a, b) iff Thm
MSO(C

∗n ∣⇑w∖⇑wb , u) = ρ′ .

Since we can compute the theory of ⟨C∗n ∣C∗n∖⇑wb , u⟩ from the theories of
C∗n ∣C∗n∖⇑w (which is fixed) and ⟨C∗n ∣⇑w∖⇑wb , u⟩, we can use these formu-
lae ξρ′ to build the desired formula χρ .

We can derive several corollaries from this result that are easier to apply
in practice.

Definition 7.5. (a) We denote by expn the n-fold iteration of the exponenti-
ation function

exp0(k) ∶= k and expi+1(k) ∶= 2
exp i(k) .
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XI. The Caucal Hierarchy

(b) Let A be a structure and φ(x , y) a formula. A φ-path is a sequence
a0 , . . . , an−1 of elements of A such that

A ⊧ φ(a i , a i+1) , for all i < n − 1 . ⌟

Corollary 7.6. Let C be a finite structure and φ(x , y) ∈ MSO a formula that

defines a relation of finite out-degree in C∗n . Every φ-path u0 , u1 , ⋅ ⋅ ⋅ ∈ C∗n
satisfies

∥uk∥i ≤ ∥u0∥i + expi−1(O(k + ∥u0∥1 + ⋅ ⋅ ⋅ + ∥u0∥i−1)) ,

for all i ≤ n.

Proof. ByTheorem 7.4, we have

∥uk∥1 ≤ ∥uk−1∥1 + c1 ≤ ∥u0∥1 + c1k ≤ ∥u0∥1 + exp0(O(k)) .

It follows by induction that

∥uk∥i ≤ ∥uk−1∥i + c i ∣C∣
L1(uk−1)⋯L i−1(uk−1)

≤ ∥u0∥i +∑
l<k

c i ∣C∣
L1(u l )⋯L i−1(u l ) .

Since

L1(u l)⋯L i−1(u l)

≤ [∥u0∥1 + exp0(O(l))]

⋯[∥u0∥i−1 + expi−2(O(l + ∥u0∥1 + ⋅ ⋅ ⋅ + ∥u0∥i−2))]

≤ [∥u0∥1 + ⋅ ⋅ ⋅ + ∥u0∥i−1 + expi−2(O(l + ∥u0∥1 + ⋅ ⋅ ⋅ + ∥u0∥i−2))]
i−1

≤ [∥u0∥1 + ⋅ ⋅ ⋅ + ∥u0∥i−1 + expi−2(O(k + ∥u0∥1 + ⋅ ⋅ ⋅ + ∥u0∥i−2))]
i−1

≤ [k + ∥u0∥1 + ⋅ ⋅ ⋅ + ∥u0∥i−1

+ expi−2(O(k + ∥u0∥1 + ⋅ ⋅ ⋅ + ∥u0∥i−2 + ∥u0∥i−1))]
i−1

≤ expi−2(O(k + ∥u0∥1 + ⋅ ⋅ ⋅ + ∥u0∥i−2 + ∥u0∥i−1))
i−1

≤ expi−2(O(k + ∥u0∥1 + ⋅ ⋅ ⋅ + ∥u0∥i−2 + ∥u0∥i−1)) ,
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we obtain

∥uk∥i

≤ ∥u0∥i +∑
l<k

c i2exp i−2(O(k+∥u0∥1+⋅⋅⋅+∥u0∥i−2+∥u0∥i−1))

≤ ∥u0∥i + c ik expi−1(O(k + ∥u0∥1 + ⋅ ⋅ ⋅ + ∥u0∥i−2 + ∥u0∥i−1))

≤ ∥u0∥i + expi−1(O(k + ∥u0∥1 + ⋅ ⋅ ⋅ + ∥u0∥i−2 + ∥u0∥i−1)) .

Corollary 7.7. Let C be a finite structure and φ(x , y) ∈ MSO a formula that

defines a relation of finite out-degree in C∗n . The size of every k-neighbourhood

Nk(u) ∶= { v ∈ C
∗n ∣ d(u, v) ≤ k }

of an element u ∈ C∗n is bounded by

∣Nk(u)∣ ≤ expn(O(k + ∥u∥1 + ⋅ ⋅ ⋅ + ∥u∥n)) .

Proof. If the distance between u and v is at most k, we know by Corollary 7.6
that

∥v∥i ≤ ∥u∥i + expi−1(O(k + ∥u∥1 + ⋅ ⋅ ⋅ + ∥u∥i−1)) .

It therefore follows by Lemma 7.2 that there are less than

∣C∣(∥u∥1+O(k))⋯(∥u∥n+expn−1(O(k+∥u∥1+⋅⋅⋅+∥u∥n−1)))

≤ ∣C∣(∥u∥1+⋅⋅⋅+∥u∥n+expn−1(O(k+∥u∥1+⋅⋅⋅+∥u∥n−1)))
n

≤ ∣C∣expn−1(O(k+∥u∥1+⋅⋅⋅+∥u∥n−1+∥u∥n))
n

≤ ∣C∣expn−1(O(k+∥u∥1+⋅⋅⋅+∥u∥n−1+∥u∥n))

= expn(O(k + ∥u∥1 + ⋅ ⋅ ⋅ + ∥u∥n))

such words v.

Corollary 7.8. Let C be a finite structure, φ(x , y) ∈ MSO, and u ∈ C∗n . If
the φ-out-degree of u in C∗n is finite, it is bounded by

expn(O(∥u∥1 + ⋅ ⋅ ⋅ + ∥u∥n)) .
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XI. The Caucal Hierarchy

We can use the above results to show that the Caucal hierarchy is strict
and that it does not contain all structures with a decidableMSO-theory.

Examples. (a) For n < ω, we consider the tree Un ∶= ⟨Un , suc⟩ with domain

Un ∶= {0i j ∈ ω∗ ∣ i < ω, j < expn(i) } .

We can interpret Un in the tree Tn from the example on page 718. Con-
sequently, Un ∈ CHn+2. We use the above results to show that U2n ∉ CHn .
This implies in particular that the hierarchy is strict. For a contradiction, sup-
pose otherwise. Let wn ∈ C

∗k be the word encoding the element 0n ∈ U2k .
According to Corollary 7.6, we have

∥wn∥i ≤ expi−1(O(n)) .

Hence, Corollary 7.8 implies that the out-degree of wn is bounded by

exp2k−1(O(n)) .

A contradiction.
(b) Similarly, we can show that the tree Uω ∶= ⟨Uω , suc⟩ with domain

Uω ∶= {0n i ∈ ω∗ ∣ i < exp2n(n) } is not contained in any level of the
hierarchy. But we can show that Uω has a decidableMSO-theory since Pro-
position I.4.3 implies that, for every m < ω, we can compute a constant
k < ω such that

Uω ≡
m
MSO Uk . ⌟

Path+ in Tree-Interpretable Graph+

For tree-interpretable graphs, we can derive more precise bounds on the
degree of vertices. The following notation comes in handy.

Definition 7.9. Given a word w, we denote by w/k its prefix of length
∣w∣ − k. ⌟

We start with two combinatorial lemmas.The first one allows us to obtain
information about the words encoding an element.
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7 Graphs and paths

Lemma 7.10. Let A be a tree-interpretable structure and φ(x̄ , y) a CMSO-
formula. There exists a constant N < ω with the following properties.

(i) A ⊧ φ(ā, b) implies A ⊧ φ(ā, b′) ,
for some b

′
such that

◆ b
′ ⊓ a i = b ⊓ a i , for all i ,

◆ b
′/N <pf a i , for some i .

(ii) If ā ∈ An
has finite φ-out-degree, then

A ⊧ φ(ā, b) implies b/N <pf a i , for some i < n .

In particular, if the φ-out-degree of ā ∈ An
is finite, it is bounded by a linear

function in maxi ∣a i ∣.

Proof. Let φ ∈ CMSOm and let N be the number of CMSOm-theories. Fix
ā ∈ An and b ∈ Awith A ⊧ φ(ā, b). For (i), choose b′ ∈ A such that

A ⊧ φ(ā, b) , b
′ ⊓ a i = b ⊓ a i , for all i ,

and ∣b∣ is minimal. For (ii), we set b′ ∶= b.
Let i < n be an index such that ∣a i ⊓ b′∣ is maximal. It is sufficient to prove

that

∣b′∣ < ∣a i ⊓ b
′∣ +N .

For a contradiction, suppose otherwise. Then we can find words

b
′/N ≤pf x <pf y ≤pf b

′ such that ⟨A, ā, x⟩ ≡mCMSO ⟨A, ā, y⟩ .

Setting u ∶= x−1 y and z ∶= y−1b′, it follows that

A ⊧ φ(ā, b′) implies A ⊧ φ(ā, xu j
z) , for all j < ω .

For (ii), this contradicts the fact that ā has finite φ-out-degree. For (i), we
also obtain a contradiction since ∣xz∣ < ∣b′∣ and ∣b′∣ is minimal.
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Our second lemma states that the class of tree-interpretable structures is
closed under expansions by Skolem functions.

Lemma 7.11. Let A be tree-interpretable and φ(x , ȳ) ∈ CMSO. There exists a

function f ∶ An → A such that the expansion ⟨A, f ⟩ is tree-interpretable and

A ⊧ ∃xφ(x , c̄) implies A ⊧ φ( f (c̄), c̄) , for all c̄ ∈ An .

Furthermore, we can choose f such that, for all sequences (c̄ i)i<ω satisfying

A ⊧ ∀x[φ(x , c̄ i) → φ(x , c̄ i+1)] ,

the sequence of images ( f (c̄ i))i<ω is eventually constant.

Proof. Let R be the relation defined by φ, fix a tuple ā ∈ An , and let N be
the constant from Lemma 7.10. Then there is some element b ∈ Awith

⟨b, ā⟩ ∈ R and ∣b∣ < ∣b ⊓ a i ∣ +N , for some i < n .

Let ā ∈ An and b ∈ A. We define a linear order ⊑b on ā by

a i ⊑b a j : iff b ⊓ a i <pf b ⊓ a j ,

or both are equal and a i ≤lex a j .

Let h(b, ā) be the ⊑b-maximal element of {a0 , . . . , an−1}.
For ā ∈ An , let f (ā) be the element b such that, in the following order,

(1) A ⊧ φ(ā, b),
(2) the element h(b, ā) is ≤lex-maximal,

(3) the prefix b ⊓ h(b, ā) is ≤pf -minimal,

(4) the suffix (b ⊓ h(b, ā))−1b is ≤llex-minimal.

As this function is MSO-definable in Tbin, the expansion ⟨A, f ⟩ is tree-
interpretable.

To conclude the proof, suppose that there exists a sequence (ā i)i<ω such
that

⟨b, ā i⟩ ∈ R implies ⟨b, ā i+1⟩ ∈ R
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7 Graphs and paths

and the sequence b i ∶= f (ā i) is not eventually constant. Note that b i = b j

implies bk = b
j for all i ≤ k ≤ j. Hence, by considering an appropriate

subsequence of (ā i)i<ω , we may assume that all the b i are different and,
since for each b there are only finitely many b′ with b′/N ≤pf b/N, that

b
i/N ≰pf b

j/N , for all j < i < ω .

Since b i/N ≤pf h(b i , ā i), it follows that h(b j , ā i) ≠ h(b i , ā i) and, hence,

h(b j , ā i) ⊓ h(b i , ā i) ≤pf b
j for j < i < ω .

By induction on k, we construct infinite sets Jk ⊆ ω, indices jk ∈ Jk ,
words wk ∈ Σ<ω , and letters ck ≠ dk satisfying

Jk ⊇ Jk+1 , jk < jk+1 , wk <pf wk+1 ,

w l ck ≤pf h(b
i , ā i) for all i ∈ Jk with i > jk .

w ldk ≤pf h(b
jk , ā i) for all i ∈ Jk with i > jk .

These conditions imply that h(b jk , ā i) ≠ h(b jk′ , ā i), for all k, k′ ≤ n with
k ≠ k′ and for every i ∈ Jn such that i > jn . As h can take only n different
values this yields the desired contradiction. We start the construction by
setting J0 ∶= ω, j0 ∶= 0, and c0 is the first letter of b0 while d0 ≠ c0 is
arbitrary.

Given Jk , jk , ck , and dk , we construct the next stage as follows. Since

h(b jk , ā i) ⊓ h(b i , ā i) ≤pf b
jk

for all i ∈ Jk , i > jk , there is some word wk+1 with

h(b jk , ā i) ⊓ h(b i , ā i) = wk+1 for infinitely many i ∈ Jk , i > jk .

Thus, we can find symbols ck+1 , dk+1 such that

wk+1ck+1 ≤pf h(b
i , ā i) and wk+1dk+1 ≤pf h(b

jk , ā i)

for infinitely many i ∈ Jk , i > jk . Finally, let Jk+1 be the set of these indices
and jk+1 the first element of Jk+1.
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XI. The Caucal Hierarchy

We also need a bit more terminology concerning paths.

Definition 7.12. Let G be a prefix-recognisable graph where each edge rela-
tion is of the formW(U ×V), for regular languagesW ,U ,V .

(a)The base point of an edge ⟨a, b⟩ is the word a ⊓ b. The spine of a path
is the sequence of the base points of its edges.
(b) A path above c is a path a0 , . . . , an such that c ≤pf a i for all i.
(c) A path a0 , . . . , an is bounded by l if ∣a i ∣ ≤ l for all i.
(d) A sequence a0 , . . . , an is k-increasing if ∣a j ∣ ≥ ∣a i ∣ − k for all i < j.
(e) A path a0 , . . . , an with spine w0 , . . . ,wn−1 is called k-normal if both

the path and its spine are k-increasing and we have a i/k ≤pf a j , for all
i ≤ j. ⌟

Our aim is to show that every vertex can be reached by a k-normal path.
The importance of such paths stems from the fact that, by following a k-
normal path to a vertex x, we can compute certain information about x like,
e.g., its theory. This fact will be needed in Section 8 below. We start with
some immediate observations.

Lemma 7.13. Let a0 , . . . , an be a path with spine w0 , . . . ,wn−1.

(a) For all i < n − 1, either w i ≤pf w i+1 or w i ≥pf w i+1.

(b) If w0 , . . . ,wn−1 is k-increasing then w i/k ≤pf w j for all i < j.

The next two lemmas can be used to find a k-normal path once we have
shown how to obtain a path with a k-increasing spine.

Lemma 7.14. Let G = ⟨V , E⟩ be a tree-interpretable graph. There exists a

constant N with the following properties.

(a) Given a path a0 , a1 , a2 with spine w0 ,w1 , there exists a vertex a
′
1 of length

∣a′1∣ < max{∣w0∣, ∣w1∣} +N

such that a0 , a′1 , a2 is a path with spine w0 ,w1.

(b) Given a path from x to y with a k-increasing spine w0 , . . . ,wn−1, there
exists a path a0 , . . . , an from x to y with the same spine such that

a i/(k +N − 1) ≤pf w j for all 0 < i ≤ j < n .
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7 Graphs and paths

Proof. Let N be the constant from Lemma 7.10.
(a) Applying Lemma 7.10 to the formula

φ(xx′ , y) ∶= Exy ∧ Eyx
′ ,

we obtain an element a′ such that a0 , a′ , a2 forms a path,

a
′ ⊓ a0 = a1 ⊓ a0 = w0 and a

′ ⊓ a2 = a1 ⊓ a2 = w1 ,

and a′/N ≤pf a i , for i = 0 or i = 2.
(b) By (a), we can replace each a i for 0 < i < n by some a′i with

∣a′i ∣ < max{∣w i−1∣, ∣w i ∣} +N .

Since w i−1/k ≤pf w i , it follows that a′i/(k + N − 1) ≤pf w i ≤pf w j , for all
j ≥ i.

In the proofs below, we frequently need to remove parts of a path and glue
the remaining pieces together. The following construction is the main tool
in this process.

Definition 7.15. Let a0 , . . . , an be a path with spine w0 , . . . ,wn−1 and let
x be a word such that x ≤pf w i , for all i < n. Shifting the path from x to
some other word y yields the sequences a′0 , . . . , a

′
n and w

′
0 , . . . ,w

′
n−1 where

a
′
i and w

′
i are obtained from, respectively, a i and w i by replacing the prefix x

by y. ⌟

Lemma7.16. LetG be a tree-interpretable graph and let m be the quantifier-rank

of the formula defining the edge relation of G. Let a
′
0 , . . . , a

′
n and w

′
0 , . . . ,w

′
n−1

be the sequences obtained by shifting a path a0 , . . . , an with spine w0 , . . . ,wn−1
from x to y. Then

⟨Tbin , x⟩ ≡mMSO ⟨Tbin , y⟩

implies that a
′
0 , . . . , a

′
n is a path with spine w

′
0 , . . . ,w

′
n−1.
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XI. The Caucal Hierarchy

Proof. ⟨Tbin , x⟩ ≡mMSO ⟨Tbin , y⟩ implies that

⟨Tbin , a ia i+1⟩ ≡mMSO ⟨Tbin , a′ia
′
i+1⟩ , for all i < n .

Consequently, ⟨a i , a i+1⟩ ∈ E implies ⟨a′i , a
′
i+1⟩ ∈ E.

Now we are ready to prove the main result needed to obtain k-normal
paths.

Proposition 7.17. Let G be a tree-interpretable graph. There is a constant K0
such that, for all paths a0 , . . . , an with spine w0 , . . . ,wn−1, there exists a path
of length m ≤ n from a0 to an with spine w

′
0 , . . . ,w

′
m−1 satisfying

∣w′i ∣ < max{∣w0∣, ∣wn−1∣} +K0 , for all i < m .

Proof. LetN be the constant from Lemma 7.10. Recall thatN is the number
ofMSOm-theories, where m is the quantifier-rank of the formula defining
the edge relation. We set

K0 ∶= N
4 .

Let a′0 , . . . , a
′
m be a path from a0 to an such that∑i<m ∣w

′
i ∣ is minimal. We

will prove the following claims.
(i) For all k, l with k + 1 < l , there is some k < i < l such that

∣w′i ∣ < max{∣w′k ∣, ∣w
′
l ∣} +N .

(ii) ∣w′i+1∣ < ∣w
′
i ∣ +N

2 , for all i < m − 1 .
(iii) ∣w′i ∣ < max{∣w0∣, ∣wn−1∣} +K0 , for all i < n .

(i) For a contradiction, suppose that there is no such index i. Since
w i−1 ,w i ≤pf a i , we have

w
′
k , w

′
l <pf w

′
i , for all k < i < l .

Hence, either w′k ≤pf w
′
l or w

′
l ≤pf w

′
k . W.l.o.g. assume the latter. Then

there exists a word x of length N such that w′kx ≤pf w
′
i , for all 0 < i < n − 1.

Since ∣x∣ = N, there are prefixes y <pf z ≤pf x with

⟨Tbin ,w′0 y⟩ ≡
m
MSO ⟨Tbinw

′
0z⟩ .
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7 Graphs and paths

Let a′′k+1 , . . . , a
′′
l−1 be the path obtained by shifting the path a

′
k+1 , . . . , a

′
l−1

from w
′
0z to w

′
0 y. Then

a
′
0 , . . . , a

′
k , a

′′
k+1 , . . . , a

′′
l−1 , a

′
l , . . . , a

′
m

is a path from a0 to a1 with spine w′′0 , . . . ,w
′′
m−1 such that∑i ∣w

′′
i ∣ < ∑i ∣w

′
i ∣.

A contradiction.
(ii) For a contradiction, suppose that there is some index k with ∣w′k+1∣ ≥

∣w′k ∣ +N
2. Let i0 , . . . , it be the sequence of all indices i > k such that

∣w′i ∣ ≥ ∣w
′
k ∣ and ∣w′i ∣ < ∣w

′
j ∣ , for all k < j < i .

w′k

w′k+1

w′i1
w′i2

w′i3

By (i) and choice of is+1, we have

∣w′is+1 ∣ < ∣w
′
is ∣ < ∣w

′
is+1 ∣ +N , for all s < t − 1 .

This implies that t ≥ N. Consequently, there are i < j in {i0 , . . . , it} such
that

⟨Tbin ,w′i⟩ ≡
m
MSO ⟨Tbin ,w′j⟩ .

Let x be the word with w
′
i = w

′
jx. Then w

′
jx ≤pf w

′
l , for all k < l < i.

Let (a′′i )i be the path obtained from (a′i)i by (1) shifting the subpath
ak+1 , . . . , a i fromw

′
i tow

′
j and (2) removing the subpath a i+1 , . . . , a j . A con-

tradiction to the minimality of∑i ∣w
′
i ∣.

(iii) Fix some base point w′k such that ∣w
′
k ∣ is maximal, and consider the

sequences i0 < ⋅ ⋅ ⋅ < is < k < j0 < ⋅ ⋅ ⋅ < jt of indices such that

∣w′i′ ∣ > ∣w
′
i l ∣ for all i l < i

′ ≤ k ,

∣w′j′ ∣ > ∣w
′
j l ∣ for all k ≤ j

′ < j l .
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w′k

w′j0
w′j1

w′j2w′i0

w′i1

w′i2

For a contradiction, suppose that ∣w′k ∣ ≥ max{∣w′0∣, ∣w
′
m−1∣} +K0. By (ii),

it follows that

w i l+1 ≤ w i l+1 < w i l +N
2 and w j l−1 ≤ w i l−1 < w i l +N

2 ,

for all l . Consequently,

s ≥ K0/N
2 = N2 and k ≥ K0/N

2 = N2 .

For l ≤ s, let f (l) ∈ { j0 , . . . , jt} be the index such that ∣w′f (l)∣ is minimal
with ∣w′f (l)∣ ≥ ∣w

′
i l ∣. Since s ≥ N

2, we can find indices l < l ′ such that

⟨Tbin ,w i l ⟩ ≡
m
MSO ⟨Tbin ,w i l′ ⟩ ,

⟨Tbin ,w f (l)⟩ ≡
m
MSO ⟨Tbin ,w f (l ′)⟩ .

Let x be the word such that w′i l′ = w
′
i l x. Then

w
′
i l x ≤pf w

′
i , for i l ′ ≤ i < f (l ′) .

Hence, we obtain a new path from a
′
0 , . . . , a

′
m by

◆ removing the subpaths a′i l+1 , . . . , a
′
i l′ and a

′
f (l ′)+1 , . . . , a

′
f (l), and

◆ by shifting the subpath a i l′+1 , . . . , a f (l ′) from w
′
i l′ to w

′
i l .

The resulting path contradicts the minimality of∑i ∣w
′
i ∣.

Corollary 7.18. Let G be a tree-interpretable graph. There exists a constant K

such that all vertices a, b in the same connected component of G are connected

by a path that is bounded by max{∣a∣, ∣b∣} +K.
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Proof. Let K0 be the constant from Proposition 7.17 and N the constant
from Lemma 7.14 (a). Given vertices a and b in the same connected compon-
ent, it follows that there exists a path a0 , . . . , an from a to b whose spine
w0 , . . . ,wn−1 satisfies

∣w i ∣ < max{∣w0∣, ∣wn−1∣} +K0 , for all i < n .

Applying Lemma 7.14 (a), we obtain a path a
′
0 , . . . , a

′
n from a to b with the

same spine that satisfies

∣a′i ∣ ≤ max{∣w i−1∣, ∣w i ∣} +N < max{∣w0∣, ∣wn−1∣} +K0 +N .

With these preparations we are able to prove the existence of k-normal
paths.

Proposition 7.19. Let G be a tree-interpretable graph. There is a constant K

such that each connected component C of G contains a vertex v0 such that there

are K-normal paths from v0 to all other vertices of C

Proof. Let K0 be the constant from Proposition 7.17 and N the constant
from Lemma 7.14. We set K ∶= K0 +N − 1.
Given a connected component C we choose v0 ∈ C such that ∣v0∣ is

minimal. Let a0 , . . . , an be a path starting at v0 and let w0 , . . . ,wn−1 be its
spine. We transform it into a path with a K0-increasing spine as follows.
Suppose there are indices i < j such that ∣w j ∣ < ∣w i ∣ − K0. Let k < i be
the greatest index such that ∣wk ∣ < ∣w j ∣. By Proposition 7.17, there is a path
b0 , . . . , bm from ak to a j whose spine is bounded by ∣w j ∣ +K0. We replace
the path ak , . . . , a j by b0 , . . . , bm . Iterating this operation, we obtain a path
with a K0-increasing spine. Then we can use Lemma 7.14 (b) to construct a
path a

′
0 , . . . , a

′
n′ from v0 to an with

a
′
i/K ≤pf w j ≤pf a

′
j , a

′
j+1 , for all 0 < i ≤ j < n′ .

It remains to prove that a′0/K = v0/K ≤pf a
′
1/K. Since ∣a

′
1∣ ≥ ∣v0∣, it is

sufficient to show v0/K ≤pf a
′
1. For a contradcition, suppose that ∣v0 ⊓ a

′
1∣ <

∣v0∣ −K. Then ∣a′1∣ ≥ ∣v0∣ ≥ ∣v0 ⊓ a
′
1∣ +K. Recall that the constant N from
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XI. The Caucal Hierarchy

Lemma 7.14 is the number ofMSOm-theories, wherem is the quantifier-rank
of the formula defining the edge relation E. Therefore, there exists a vertex b
with

◆ v0 ⊓ a
′
1 ≤pf b ≤pf a

′
1 ,

◆ ∣b∣ < ∣v0 ⊓ a
′
1∣ +N < ∣v0∣ ,

◆ ⟨Tbin , x⟩ ≡mMSO ⟨Tbin , y⟩ ,

where x and y are the words such that

b = (v0 ⊓ a
′
1)x and a

′
1 = (v0 ⊓ a

′
1)y .

Consequently, ⟨v0 , a′1⟩ ∈ E implies ⟨v0 , b⟩ ∈ E. In particular b ∈ C, which
contradicts the fact that ∣b∣ < ∣v0∣.

We conclude this section with some applications bounding the length of
paths and the degree of vertices.

Lemma 7.20. Let k > 1. If a0 , . . . , an is a path with k-increasing spine

w0 , . . . ,wn−1 then its length is bounded by

n < (∣wn−1∣ − ∣w0∣ + k + 1)2k+1 .

Proof. By assumption we have w i/k ≤pf w j for all i < j, i.e., there are words
x i j ∈ {0, 1}∗ such that w j = (w i/k)x i j . Since there are

∆ ∶= 2k+1 − 1

words of length at most k (we are working in the binary tree, so the alphabet
is binary), all sets of the form {x i i , . . . , x im} with m ≥ i + ∆ contain some
word x i j of a greater length. It follows that ∣w j ∣ > ∣w i ∣ and, by induction,
there is some δ ≤ ∆ such that

∣wn−1−δ ∣ ≥ ∣w0∣ + ⌊(n − 1)/∆⌋ .

Thus, ∣wn−1∣ ≥ ∣w0∣ + ⌊(n − 1)/∆⌋ − k

and n ≤ (∣wn−1∣ − ∣w0∣ + k + 1)∆ < (∣wn−1∣ − ∣w0∣ + k + 1)2k+1 .
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7 Graphs and paths

Proposition 7.21. LetG be a tree-interpretable graph.There exists a constant K

such that every pair of vertices a, b in the same connected component of G is

connected by a path of length less than

(∣a∣ + ∣b∣ + 2K + 2)2K+1 .

Proof. By Proposition 7.19, there are K-normal paths from some vertex v
to a and to b. Their concatenation yields a path from a to b whose length is
bounded by

(∣a∣ +K + 1)2K+1 + (∣b∣ +K + 1)2K+1

according to Lemma 7.20.

Lemma 7.22. Let G = ⟨V , E , P⟩ be a tree-interpretable graph with an addi-
tional unary predicate P. There exists a constant N such that, if there exists a

k-normal path from a vertex x to some element in P, we can find such a path of

length less than (N + 1)2k+1.

Proof. Fix some k-normal path a0 , . . . , an with spine w0 , . . . ,wn−1 starting
in a0 = x, ending in an ∈ P, and such that n is minimal. Let i0 , . . . , is be
the subsequence of all indices i such that ∣w j ∣ > ∣w i ∣, for all j > i. By (the
proof of ) Lemma 7.20, it follows that i l+1 − i l < 2k+1.

Let N be the number ofMSOm-theories, where m is the quantifier-rank
of the formulae defining the edge relation E and the predicate P. We claim
that s < N. Then that n < (s + 2)2k+1 ≤ (N + 1)2k+1, as desired.
For a contradiction, suppose otherwise.Then we can find indices j < j

′

in {i0 , . . . , is} such that

⟨Tbin ,w j⟩ ≡
m
MSO ⟨Tbin ,w j′⟩ .

Hence, we can obtain a shorter path by deleting the subpath a j+1 , . . . , a j′

and shifting the path a j′+1 , . . . , an from w j′ to w j . This new path ends in
some vertex a′ satisfying

⟨Tbin , a′⟩ ≡mMSO ⟨Tbin , an⟩ .

In particular, a′ ∈ P.
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8 Axiomatisation+

Each tree-interpretable structure can be encoded by a finite amount of in-
formation, e.g., by anMSO-interpretation in the binary tree. It is therefore
not very surprising that every such structure can be axiomatised in a suitable
logic. The goal of this section is to proof the following theorem. Note that
we have proved similar statements for linear orders inTheorem VI.4.10 and
for trees inTheorem ??.

Theorem 8.1. Every tree-interpretable structure is the unique countable model
of a suitable GSO-formula.

Before giving the proof, let us mention a few consequences. We start with
a weak form of the converse statement.

Proposition 8.2. Let A be a structure of finite crossing-width. If A is the unique

countable model of a CMSO-formula, it is tree-interpretable.

Proof. Let φ be the CMSO-formula whose only countable model is A. Since
A has finite crossing-width, there exists an MSO-interpretation τ and a
tree T0 such that A ≅ τ(T0), for some tree T. The class T of trees T with
τ(T) ≅ A is finitely CMSO-axiomatisable since

τ(T) ≅ A iff τ(T) ⊧ φ iff T ⊧ φτ .

ByTheorem V.2.17, it follows that T contains a regular tree S. Since every
regular tree can be interpreted in Tbin, we can find anMSO-interpretation σ
mapping Tbin to S. It follows that

A ≅ τ(S) = (τ ○ σ)(Tbin)

is tree-interpretable.

ForHR-equational structures, where GSO collapses toMSO, we obtain
a precise characterisation.

Corollary 8.3 (Courcelle). A structureA isHR-equational if, and only if, it has
finite tree-width and it is the unique countable model of a suitableMSO-formula.
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It is currently an open question whether the corresponding statement for
tree-interpretable structures is also true.

Conjecture. A structure A is tree-interpretable if, and only if, it has finite

crossing-width and it is the unique countable model of a suitableMSO-formula.

Let us also mention that the strengthening of Proposition 8.2 to GSO
does not hold.

Lemma 8.4. There exists a countable structure A with finite crossing-width that

is finitely GSO-axiomatisable but not tree-interpretable.

Proof. LetA ∶= ⟨N, ≤, P⟩where P ⊆ N is any arithmetical but non-recursive
set. Then A has finite crossing width since ⟨N, ≤⟩ is tree-interpretable and
the crossing-width is not affected by expansions by unary predicates. On the
other hand, A is not tree-interpretable since itsMSO-theory is undecidable.
Finally note that, because of ≤, the expressive power of GSO equals full

second-order logic. In particular, we can define addition and multiplication.
Consequently, there exists a GSO-formula defining P based on the FO-
definition of P in ⟨N, ⋅ ,+⟩.

We can also prove an analogue toTheorem VI.4.7.

Theorem 8.5. Let m < ω. For every countable structure A with finite crossing-

width, there exists a tree-interpretable structure B with B ≡mMSO A.

Proof. AsAhas finite crossing-width, there exist someMSO-interpretation τ
and some tree T such that A = τ(T). Let k be the quantifier-rank of τ.
By Corollary V.2.18, we can find a regular tree S ≡m+kMSO T. It follows that
A = τ(T) ≡mMSO τ(S).

Corollary 8.6. Let m < ω. For every structure A with finite tree-width, there

exists anHR-equational structure B with

A ≡mGSO B .

Finally, let us take a look at the isomorphism problem.
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Theorem8.7 (Courcelle [56]). It is decidable whether two givenHR-equational
structures are isomorphic.

Proof. Although not stated explicitly, the construction of the formula in
Theorem 8.1 is effective. Thus, in order to determine whether A ≅ B, one
can construct the GSO-formula φA for A and check whether B ⊧ φA.

Again, the case of tree-interpretable structures is still open.

Open Question. Is the isomorphism problem for tree-interpretable structures

decidable?

It remains to prove Theorem 8.1. The idea is as follows. Given a tree-
interpretable structure A, we guess guarded relations that encode a regular
tree T which A can be interpreted in. Since regular trees are axiomatisable
the result then follows. Hence, the proof is very similar to the statement of
Theorem X.2.6. The difference is that we require the resulting tree T to be
regular and that we do not need the mapping A↦ T to be an interpretation.
As a consequence, we cannot useTheorem X.2.6 directly. But the proof is
fortunately a lot simpler than the one of that theorem.

Fore#+

We start slowly by showing that forests are finitely axiomatisable. We regard
forests as partial orders such that the elements below any given one form a
finite linear order.
As a technical tool in the proof we use colourings of single elements and

of pairs of elements the following form.

Definition 8.8. (a) Let u be a word. Recall that u/k denotes the prefix of u
of length ∣u∣ − k. We denote by suf k(u) the suffix of u of length k.

(b) For each m < ω, we define the equivalence relation

x ≡m y : iff ⟨Tbin , x⟩ ≡mMSO ⟨Tbin , y⟩ .

We denote the ≡m-class of a word x by [x]m .
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(b) Let m, k < ω. The m,k-colouring χmk maps each word x ∈ {0, 1}∗ to
the pair

χmk (x) ∶= ⟨[x/k]m , suf k(x)⟩ ,

and each pair of words ⟨x , y⟩ ∈ {0, 1}∗ × {0, 1}∗ to the pair

χmk (x , y) ∶= ⟨χ
m
k (w

−1
x), χmk (w

−1
y)⟩ , where w ∶= x ⊓ y .

(c)The m,k-expansion ⟨A, χmk ⟩ of a structure A expands A by unary and
binary relations for each colour class where the binary colour classes consists
only of pairs ⟨x , y⟩ which are guarded. ⌟

The restriction to guarded pairs is essential since GSO allows only quan-
tification over relations of this form. But below we frequently will need to
obtain the value χ(x , y) for pairs ⟨x , y⟩which are not guarded.These values
must be computed explicitly from available data.This is where the k-normal
paths of Section 7 come into play.

Remark. Note that them,k-expansion of a structureA isMSO-interpretable
in A. ⌟

Definition 8.9. We say that a set P of vertices codes a path between x and y

if P is connected and every element of P except for x and y has exactly two
neighbours in P, whereas x and y have only one such neighbour. ⌟

Clearly, not every path can be coded in this way. Fortunately, for our
purposes it is sufficient that, if there exists a k-normal path between two
vertices, then we can obtain a codable k-normal path between them by
removing some vertices.

Lemma 8.10. Let m, k < ω, and let c be a colour.There exists anMSO-formula
φc(P, x , y) such that, for all graphs G,

⟨G, χmk ⟩ ⊧ φc(P, x , y) iff P codes a k-normal path from x to y

and χmk ((x ⊓ y)−1 y) = c .
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Proof. We label each elements z ∈ P by χmk ((x/k
′)−1z), for some k ≤ k′ ≤

2k. Since x/k ≤pf y, we can compute the colour χmk ((x ⊓ y)−1 y) from
χmk (x) and the label of y. To decide whether a given labelling is correct note
that, if ⟨z, z′⟩ is an edge of the path and z is labelled ⟨[u]m ,w⟩, the label
of z′ consists of the suffix w′ of z′ of length min{2k, ∣w∣ + ∣z′∣ − ∣z∣} and
the ≡m-class of (x/k)−1 ⋅ z′ ⋅ (w′)−1, both of which can be calculated from
the colour of z. (Note that ∣w∣ + ∣z′∣ − ∣z∣ ≥ 2k − k = k since the path is
k-normal.)

As a first application of the colourings, let us note that the colour of a
vertex determines the attached subtree up to isomorphism.

Lemma 8.11. Let T ∶= ⟨T , ≤⟩ be a tree-interpretable forest. There exists con-

stants m, k < ω such that

χmk (x) = χ
m
k (y) implies ⇑x ≅ ⇑y , for x , y ∈ T .

Proof. Let m be the quantifier-rank of the formula defining the ordering ≤
and let N be the constant from from Lemma 7.10. For each b ∈ T, there
are only finitely many a ≤ b. By choice of N, it follows that a ≤ b implies
a/N ≤pf b. Hence, we have ⇑a ⊆ (a/N){0, 1}∗, and the function

f ∶ (x/N){0, 1}∗ → (y/N){0, 1}∗ ∶ (x/N)z ↦ (y/N)z

is the desired isomorphism.

This property can be used to prove the special case of Theorem 8.1 for
forests.

Proposition 8.12. Let T ∶= ⟨T , ≤⟩ be a tree-interpretable forest. There exist

constants m0 , k0 < ω such that, for all m ≥ m0 and k ≥ k0, the expansion

⟨T, χmk ⟩ is the unique countable model of someMSO-formula.

Proof. Let m0 , k0 be the constants from Lemma 8.11 and let T0 ⊆ T be the
set of minimal elements of T. We denote by Suc(x) the set of immediate
successors of x ∈ T. For X ⊆ T, let µ(X) be the function which maps each
colour c to the number of elements x ∈ X coloured c.
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We claim that a countable structure X ∶= ⟨X, ≤, χ′⟩ is isomorphic to
⟨T, χ⟩ if, and only if,

(i) ≤ is a partial order such that, for all x ∈ X, the set ⇓x forms a finite
linear order,

(ii) µ(X0) = µ(T0), where X0 ⊆ X is the set of minimal elements, and

(iii) χ′(x) = χmk (u) implies µ(Suc(x)) = µ(Suc(u)), for all x ∈ X and
u ∈ T.

Clearly, all these conditions can be expressed inMSO.
To prove the non-trivial direction we construct an isomorphism h ∶ X →

T given some orderX that satisfies the above conditions.Note that (i) implies
that X is a forest. Let ht(x) ∶= ∣⇓x∣ − 1. We construct h as the limit of partial
isomorphisms

h i ∶ { x ∈ X ∣ ht(x) ≤ i } → { u ∈ T ∣ ht(u) ≤ i } , i < ω ,

as follows.
(i = 0) Since µ(X0) = µ(T0), there is a bijection h0 ∶ X0 → T0 that

preserves the colouring.
(i > 0) For every x ∈ X with ht(x) = i − 1, we can use (iii) to find

a colour preserving bijection gx ∶ Suc(x) → Suc(h i−1x). Then h i is the
extension of h i−1 by all these functions gx .
Using Lemma 8.11, it is now straightforward to show that the limit h is

well-defined and indeed an isomorphism.

Partial Order+

The next step consists in extending the result to tree-interpretable certain
partial orders A = ⟨A, ≤⟩. To do so we define a forest in A and reduce the
problem to the preceding proposition. When speaking of paths we always
consider undirected paths in this section, that is, we ignore the direction of
the edges.
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XI. The Caucal Hierarchy

Definition 8.13. Let A = ⟨A, ≤⟩ be a partial order and K < ω. We write
x ⊑ y if there exists an undirected ≤-path z0 , . . . , zn from x to y with

x/K ≤pf z i/K , for all i ≤ n .

We set x ≡ y if x ⊑ y and y ⊑ x. ⌟

Lemma 8.14. Let A = ⟨A, ≤⟩ be a partial order and K < ω.
(a) ⟨A, ⊑⟩/≡ is a forest.

(b) ∣[a]≡∣ ≤ 2K , for all a ∈ A.

(c) For every m < ω, the set A0 ⊆ A of lexicographically minimal elements of

each ≡-classMSO-definable in ⟨A, ⊑, χmK⟩.

Proof. (a) It is sufficient to show that ↓[x]≡ is a linear order, for all [x]≡ ∈
A/≡. Suppose that [y]≡ , [z]≡ ⊑ [x]≡. Then y/K, z/K ≤pf x/K and, by
symmetry, we may assume that y/K ≤pf z/K. We claim that [y]≡ ⊑ [z]≡.
By definition, there are undirected ≤-paths y0 , . . . , y l from y to x and

z0 , . . . , zm from z to x such that

y/K ≤pf y i/K and z/K ≤pf z i/K , for all i .

Furthermore, y/K ≤pf z/K implies y/K ≤pf z i/K. The concatenated path
y0 , . . . , y l , zm−1 , . . . , z0 leading from y to z therefore witnesses that y ⊑ z.
(b) By definition, x ≡ y implies x/K = y/K. Hence, [x]≡ ⊆ w{0, 1}K ,

for w ∶= x/K.
(c) Since x ≡ y implies x/K = y/K, one can determine whether x ≤lex y

by looking at the suffices sufK(x) and sufK(y). This information is con-
tained in the colouring χmK .

Using the result of the previous section we first prove that ⟨A, ⊑, χ⟩ is
axiomatisable by defining a suitable copy of ⟨A, ⊑⟩/≡ inside of it. Then we
transfer the result to ⟨A, ≤, χ⟩.

Proposition 8.15. Let A = ⟨A, ≤⟩ be a partial order and K < ω. There

exist constants m0 , k0 < ω such that, for all m ≥ m0 and k ≥ k0, the order

⟨A, ⊑, χmk ⟩ is the unique countable model of someMSO-formula.

822



8 Axiomatisations

Proof. Set m ∶= m
′ and k ∶= max{K, k′}, where m′ , k′ are the constants

from Proposition 8.12 (applied to the structure B/≡). By Lemma 8.14 (c),
there exists anMSO-formula δ(x) defining the set A0 in ⟨B, χmk ⟩, where
B ∶= ⟨A, ⊑⟩.
A structure ⟨X, χ′⟩ ∶= ⟨X, ⊑′ , χ′⟩ is isomorphic to ⟨B, χmk ⟩ if, and only

if, there is an isomorphism f ∶ ⟨X/≡′ , χ′⟩ → ⟨B/≡, χmk ⟩ such that [x]≡′ ≅
f [x]≡, for all x ∈ X, where ≡′ ∶= ⊑′ ∩ ⊒′. This condition is equivalent to the
following ones.

(i) δX contains exactly one element of each ≡′-class of X.

(ii) ⟨δX , ⊑′ , χ′⟩ ≅ ⟨δB , ⊑, χmk ⟩.
(iii) χ′(x) = χmk (a) implies [x]≡′ ≅ [a]≡, for x ∈ X and a ∈ A.

These statements can be expressed in MSO. For (ii), note that the forest
⟨δB , ⊑, χmk ⟩ ≅ ⟨B/≡, χ

m
k ⟩ can be axiomatised usingProposition 8.12. For (iii),

note that Lemma 8.14 (b) provides a bound on the size of each ≡-class.

In order to transfer this result from ⟨A, ⊑⟩ to A, we have to show that
each of the structures is definable in the other one.

Lemma 8.16. Let A = ⟨A, ≤⟩ be a partial order and K < ω. There exist

constants m0 , k0 < ω with the following properties.

(a) If x ⊑ y, there is a k0-normal path z0 , . . . , zn from x to y with x/K ≤pf
z i/K for all i.

(b) If x ≡ y, there exists an undirected ≤-path z0 , . . . , zn from x to y with

x/K ≤pf z i/K and ∣z i ∣ ≤ ∣x∣ + k0 , for all i ≤ n .

(c) The relation ⊑ isMSO-definable in ⟨A, χm0
k0 ⟩.

(d) ⟨A, ⊑, χmk ⟩ isMSO-definable in ⟨A, χmk ⟩, for all m ≥ m0 and k ≥ k0.

Proof. Let m0 be arbitrary and set k0 ∶= max{K,K′ ,K′′} where K′ is the
constant from Proposition 7.19 and K′′ the one from Corollary 7.18.
(a) is implied by Proposition 7.19, while (b) follows from Corollary 7.18

since x and y are connected by a path above x/K = y/K.
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(c) By (a), we have x ⊑ y if, and only if, there is a k0-normal undirected
path z0 , . . . , zn from x to y with x/K ≤pf z i/K, for all i.Thus, x ⊑ y if, and
only if, there is a k0-normal path p such that each initial segment p′ of p
leads to some vertex z with ∣z∣ ≥ ∣x∣. It follows from Lemma 8.10 that the
condition ∣z∣ > ∣x∣ can be expressed by anMSO-formula.
(d) By (c), it remains to define the colours χmk (x , y), for x ⊑ y. This can

by done using Lemma 8.10 since we have shown in (a) that there exists a
k-normal path from x to y.

Lemma 8.17. Let K < ω and let A be a tree-interpretable partial order such

that x ≤ y implies x/K ≤pf y/K.There exist constants m0 , k0 < ω such that

⟨A, χmk ⟩ isMSO-definable in ⟨A, ⊑, χmk ⟩, for all m ≥ m0 and k ≥ k0.

Proof. Set k0 ∶= K and let m0 be the quantifier-rank of the formula defin-
ing ≤. Fix m ≥ m0 and k ≥ k0. Since ≤ isMSOm-definable and since x ≤ y
implies x/K ≤pf y/K, it follows that there exists a set Θ of triples ⟨ρ, σ , τ⟩
ofMSOm-theories such that

x ≤ y iff x/K ≤pf y/K and there are ⟨ρ, σ , τ⟩ ∈ Θ such that

Thm
MSO(Tbin ,w) = ρ ,

Thm
MSO(Tbin ,w−1x) = σ ,

Thm
MSO(Tbin ,w−1 y) = τ ,

where w ∶= x ⊓ y .

As x ≤ y implies x ⊑ y, all of the above conditions can be expressed inMSO
using χmk (x), χ

m
k (y), and χmk (x , y). The colouring of ⟨A, χmk ⟩ is definable

for the same reason.

Proposition 8.18. Let K < ω and let A be a tree-interpretable partial order

such that x ≤ y implies x/K ≤pf y/K.There exist constants m0 , k0 < ω such

that, for all m ≥ m0 and k ≥ k0, the order ⟨A, χmk ⟩ is the unique countable
model of someMSO-formula.
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Proof. Let m1 , k1 be the constants from Proposition 8.15. m2 , k2 be the con-
stants from Lemma 8.17, and m3 , k3 those from Lemma 8.16. We set

m0 ∶= max{m1 ,m2 ,m3} and k0 ∶= max{K, k1 , k2 , k3} .

Let τ be theMSO-definition of ⟨A, ⊑, χmk ⟩ in ⟨A, χ
m
k ⟩. It follows by Lem-

mas 8.17 and 8.16, a structure ⟨X, χ′⟩ is isomorphic to ⟨A, χmk ⟩ if, and only
if, τ(X, χ′) ≅ τ(A, χmk ). The claim therefore follows by applying Proposi-
tion 8.15 to τ(A, χmk ).

The General Case

Finally, we consider an arbitrary tree-interpretable structure A. For the
reduction to the previous case we define, as above, a partial order ≤ and show
that the structures ⟨A, ≤⟩ and A are definable within each other.

Definition 8.19. Let A be a structure and K < ω. We denote by ≤K the
reflexive and transitive closure of the relation

x ⊢K y : iff x/K ≤pf y/K and the pair ⟨x , y⟩ is guarded. ⌟

Lemma 8.20. Let A be a structure and K < ω. The structure ⟨A, ≤K , χmK⟩ is
MSO-definable in ⟨A, χmK⟩, for all m < ω.

Proof. The relation ⊢ isMSO-definable since, for a guarded tuple, one can
tell whether x/K ≤pf y/K holds by looking at χmK(x , y). Thus, the reflexive
and transitive closure ≤K is alsoMSO-definable.
To show that the colouring is definable we prove that, for each colour c

of χmk , there is a formula φc(x , y) such that

⟨A, χmk ⟩ ⊧ φc(x , y) iff x ≤K y and χmk (x , y) = c .

If x ⊢ y, there is a relation R of A and a tuple ā ∈ R with x , y ∈ ā. Hence,
the colour χmk (x , y) is available in ⟨A, χ

m
k ⟩ and we can construct a formula

φ⊢c (x , y) expressing that x ⊢ y and χmk (x , y) = c. We have x ≤K y if, and
only if, there is a path x = z0 ⊢ ⋅ ⋅ ⋅ ⊢ zn = y. Note that z i ⊢ z i+1 implies
z i/K ≤pf z i+1/K. Therefore, we can compute χmk (x , z i+1) from χmk (x , z i)
and χmk (z i , z i+1).
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Theproof of the converse is more involved. It follows by PropositionV.1.11
that we can compute theMSOm-theory of an n-tuple ā in the binary tree
from theMSOm-theories of the words (a i ⊓ a l)−1(a j⊓ a l), for all i , j, l < n.
To do so, we need access to the words a i⊓a j .The problem is that these words
do not have to be elements of the given tree-interpretable structure A. But
using a pumping argument we can find elements b i j ofAwhich a ‘sufficiently
close’ to a i ⊓ a j that we can use them instead. The formal definition is as
follows.

Definition 8.21. Let ā ∈ An and K < ω.
(a) A K-code of ā is a family (b i j)i , j<n of elements of A such that, for all

i , j, l < n,

◆ b i i = a i ,

◆ b i j/K <pf a i ⊓ a j ≤pf b i j ,

◆ a i ⊓ a l <pf a j ⊓ a l implies b i l ⊢K b j l or b i l = b j l .

(b)The branching type of ā is the set

{ ⟨i , j, l⟩ ∈ [n]3 ∣ a i ⊓ a l ≤pf a j ⊓ a l } . ⌟

In particular, given b i l ⊢k b j l , we can compute the theory of the word
(a i ⊓ a l)

−1(a j ⊓ a l) from the colour χ(b i l , b j l).

Lemma 8.22. LetA be a structure, n,m, k < ω constants and H ⊆ [n]3 . There

exists anMSO-formula β(x̄ , ȳ) such that, for every ā ∈ An
,

⟨A, ≤k , χmk ⟩ ⊧ β(ā, b̄)

if, and only if, b̄ is a k-code of ā and H is its branching type.

Proof. It is straightforward to express the facts that b i i = a i and that
⟨i , j, l⟩ ∈ H implies b i l ⊢k b j l .
We also have to say that b i j/s i j = a i ⊓ a j , for some s i j < k. Since

b i j ⊢k b i i = a i and b i j ⊢k b j j = a j , this can be determined by looking at
χmk (b i j , a i) and χmk (b i j , a j).
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Finally, we have to check thatH is the branching type of ā. If b i l /⊢k b j l ,
we must have ⟨i , j, l⟩ ∉ H. For b i l ⊢k b j l , we can check whether or not

a i ⊓ a l = b i l /s i l ≤pf b j l /s j l = a j ⊓ a l

by looking at the colour χmk (b i l , b j l).

Lemma 8.23. Let A be tree-interpretable. There exists a constant K < ω such

that every guarded n-tuple ā has an nK-code (b i j)i , j .

Proof. Let K be the number of MSOm-theories where m is the minimal
number such that every relation of A isMSOm-definable.
We call two n-tuples ā, b̄ in {0, 1}∗ similar if they have the same branching

type and

⟨Tbin , a i ⊓ a j⟩ ≡
m
MSO ⟨Tbin , b i ⊓ b j⟩

⟨Tbin , (a i ⊓ a l)
−1(a j ⊓ a l)⟩ ≡

m
MSO ⟨Tbin , (b i ⊓ b l)

−1(b j ⊓ b l)⟩ ,

for all i , j, l . An n-tuple b̄ is a reduct of ā if it is similar to ā and

∣b i ∣ ≤ nK , for all i < n .

More generally, we say that b̄ is a reduct of ā over some word w ∈ {0, 1}∗ if
there are words c̄, d̄ such that

a i = wc i , b i = wd i , and d̄ is a reduct of c̄ .

We start by proving the following claims.

(i) If ā and b̄ are similar, then

⟨Tbin , ā⟩ ≡mMSO ⟨Tbin , b̄⟩ .

(ii) Every tuple ā has a reduct b̄.

(i) follows by Proposition V.1.11.
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(ii) Let ā be an n-tuple. We prove the claim by induction on n. If n = 0,
the claim is trivial. Hence, suppose that n > 1. Set w ∶= a0 ⊓⋯ ⊓ an−1. By
choice of K, there exists a word w′ of length less than K such that

⟨Tbin ,w′⟩ ≡mMSO ⟨Tbin ,w⟩ .

Let a′i be the word obtained from a i by replacing the prefix w by w′. Then
ā
′ is similar to ā. For d ∈ {0, 1}, let

Id ∶= { i < n ∣ wd ≤pf a i } .

By inductive hypothesis, the tuple ā′∣Id has a reduct c̄d over w
′. Let b̄ be

the tuple obtained from ā
′ by replacing the subtuples ā′∣I0 and ā

′∣I1 by,
respectively, c̄0 and c̄1. Then b̄ is a reduct of ā.

To conclude the proof, fix a guarded n-tuple.We define (b i j)i , j as follows.
For i , j < n, set

J i j ∶= { l < n ∣ a j ⊓ a i <pf a l ⊓ a i } .

By (ii), we can find a reduct c̄ i j of ā∣ J i j over the word a i ⊓ a j . If J i j = ∅, we
set b i j ∶= a j . Otherwise, b i j ∶= (c i j)l , for some l ∈ J i j . We choose both c̄ i j
and the index l such that ∣b i j ∣ is minimal. It follows that J i j ⊆ J i′ j′ implies
∣b i j ∣ ≤ ∣b i′ j′ ∣.
We claim that the family (b i j)i , j is the desired nK-code of ā. By con-

struction, J i i = ∅ implies that b i i = a i . Furthermore,

b i j/nK = (c i j)l /nK <pf a i ⊓ a j ≤pf (c i j)l = b i j .

For the last condition, fix indices i , j, l such that a i ⊓ a l <pf a j ⊓ a l . Note
that the tuple d̄ obtained from ā by replacing the subtuple ā∣ J i l by c̄ i l is
similar to ā. In the same way, the tuple d̄′ obtained from d̄ by replacing the
subtuple d̄∣ J j l by c̄ j l is similar to d̄ and, hence, to ā. Hence, it follows by (i)
that d̄′ ∈ R. Since b i l , b j l ∈ d

′, the pair ⟨b i l , b j l ⟩ is guarded. Finally,

b i l /K <pf a i ⊓ a l <pf a j ⊓ a l ≤pf b j l ,

which implies that b i l /K ≤pf b j l /K since, as mentioned above, we have
∣b i l ∣ ≤ ∣b j l ∣. Consequently, b i l ⊢nK b j l .
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At last, we are able to prove the other direction.

Lemma 8.24. Let A be tree-interpretable. There exist constants m0 , k0 < ω
such that the structure ⟨A, χmk ⟩ isMSO-definable in ⟨A, ≤k , χmk ⟩, for all m ≥ m0
and k ≥ k0.

Proof. Let r be the maximal arity of a relation of A, fix m0 such that every
relation of A isMSOm0 -definable, and set k0 ∶= rK where K is the constant
from Lemma 8.23.

Let m ≥ m0, k ≥ k0, and let R be an n-ary relation of ⟨A, χmk ⟩. We prove
that R is definable in ⟨A, ≤k , χmk ⟩ by induction on n.
If n = 1, we can decide whether an element a belongs to R by looking at

Thm
MSO(Tbin , a). This theory can be computed from the colour χmk (a).
Suppose that n > 1 and consider a tuple ā ∈ An . By Proposition V.1.11 it

follows that, in order to determine whether or not ā ∈ R holds, it is sufficient
to know

◆ the branching typeH of ā and

◆ the theoriesThm
MSO(Tbin , (a i ⊓ a l)

−1(a j ⊓ a l)), for ⟨i , j, l⟩ ∈ H.

By Lemma 8.23, the tuple ā has some nK-code (b i j)i , j . Furthermore, this
nK-code and the branching type are definable from ā using Lemma 8.22.
Finally note that, since we have b i l ⊢nK b j l , for ⟨i , j, l⟩ ∈ H, the above
theories can be computed from the colours χmk (b i l , b j l), for ⟨i , j, l⟩ ∈ H.

It remains to prove that the colouring ofA is definable from that of ⟨A, ≤k⟩.
The colours of single elements is the same in both structures.Hence, consider
a guarded pair ⟨a, a′⟩ in A. By Lemma 8.23, there exists an element b ∈ A
such that

b ⊢2K a , b ⊢2K a
′ , and b/2K ≤pf a ⊓ a

′ ≤pf b .

Consequently, the colour χmk (a, a
′) can be computed from χmk (b, a) and

χmk (b, a
′).

The following results concludes the proof ofTheorem 8.1.
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Theorem 8.25. Let A be a tree-interpretable structure. There exist constants

m, k < ω and an MSO-formula φ such that ⟨A, χmk ⟩ is the unique countable
model of φ.

Proof. The proof is analogous to the one of Proposition 8.18. Let m0 , k0 be
the constants from Lemma 8.24 and m1 , k1 those from Proposition 8.18 (for
the structure ⟨A, ≤k0⟩). We set

m ∶= max{m0 ,m1} and k ∶= max{k0 , k1} .

We have shown in Lemmas 8.20 and 8.24 that the structures ⟨A, χmk ⟩ and
⟨A, ≤k , χmk ⟩ areMSO-definable within each other. Let τ be an interpretation
mapping the former to the latter.
Given a structure X, it follows that

X ≅ ⟨A, χmk ⟩ iff τ(X) ≅ τ(A, χmk ) .

The later condition can be expressed in MSO with the help of Proposi-
tion 8.18.

Proof of Theorem 8.1. Let φ be the formula from the preceding theorem and
let P̄ be the predicates encoding the colouring χmk . Then the GSO-formula
∃P̄φ has a unique countable model: the structure A.

Note+

A good survey on finitely presentable structures can be found in [9]. The
class of prefix-recognisable relations were introduced in [131] under the name
of special relations. The main result of that paper is the characterisation
in Proposition 2.4. Theorem 1.2 is from [49]. Prefix-recognisable graphs
were independently introduced in [44, 45] using the point of view of formal
language theory.Their characterisation in terms of pushdown automata is
due to [198], while the connection toVR-grammars is from [11]. Regular path-
interpretations were introduced in [44] under the name ‘inverse rational
substitution’.
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Originally,VR-equational andHR-equational structures and classes were
introduced in [55, 54, 61] in the study of graph grammars. For more inform-
ation see [60].
Higher-order pushdown automata were introduced in [138, 139]. The

characterisations of the Caucal Hierarchy in terms of path-interpretations
and higher-order pushdown automata is due to [42, 209, 38]. There is also
a considerable amount of work relating higher-order pushdown automata
and certain recursion schemes for the λ-calculus. Damm and Goerdt [65,
66] have shown that higher-order pushdown automata correspond to a
subclass of such schemes called ‘safe’. To capture the full class of all recursion
schemes, so-called ‘collapsible pushdown automata’ are needed; see, e.g., [41]
for an overview. Collapsible pushdown automata have been omitted from
this chapter, since their configuration graphs have an undecidable MSO-
theory [99].
Context-free groups where introduced in [144, 145], where the equival-

ences (1)–(5) ofTheorem 6.4where proved (under the additional assumption
of accessibility which can be eliminated by a result of [74]).The equivalences
between (5), (6), (8), and (10) are from [124].Theorem 6.22 in a consequence
ofTheorems 4.A.6.5 and 5.A.9 in [197], see also [189, 73, 147].
The pumping lemma for the Muchnik iteration is from [18]. (Note that

the second part of that article concerning higher-order pushdown automata
is wrong.The correct result can be found in [152].)
The axiomatisation of tree-interpretable structures is from [16] general-

ising the corresponding result forHR-equational graphs in [56].
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XII Automati$ Stru$ture+

1 Automati$ Presentation+

We have already studied certain finitely-presentable infinite struc-
tures in Chapter XI. In the following we take a look at other such

classes where this time the structures are encoded by automata of some kind.
To do so we will need automata that recognise relations, i.e., sets of tuples,
instead of sets of single words. We could use so-called multi-head automata
for this task, but it is much simpler to encode tuples of words as a single
word and use ordinary automata instead.The idea is to simply lay all input
words (or trees) on top of each other and simultaneously read a letter from
each of them.Thus, a k-tuple of words over an alphabet Σ is turned into a
single word over the alphabet Σk . One technicality we have to deal with is
supporting words of different length. To do so we pad the shorter words by
a special blank symbol ◻ to make all words of the tuple the same length.The
same idea also works for trees. The formal definition is as follows.

Definition 1.1. (a) For an alphabetΣ, we denote byΣ◻ ∶= Σ+◻ the extension
by a new blank symbol ◻ ∉ Σ.
(b) Let s0 , . . . , sk−1 be either words or trees (finite or infinite) over the

alphabet Σ, which we regard as functions s i ∶ dom(s i) → Σ. The convolution
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⎢
⎢
⎢
⎣
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b
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Figure 1: abbac ⊗ ba ⊗ aaaccbaba
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XII. Automatic Structures

s0 ⊗ ⋅ ⋅ ⋅ ⊗ sk−1 is the word/tree

s0 ⊗ ⋅ ⋅ ⋅ ⊗ sk−1 ∶ ⋃
i<k

dom(s i) → Σk
◻

over the alphabet Σk
◻ where the labelling is given by

(s0 ⊗ ⋅ ⋅ ⋅ ⊗ sk−1)(x) ∶=

⎡
⎢
⎢
⎢
⎢
⎣

s0(x)
s1(x)
⋮

sk−1(x)

⎤
⎥
⎥
⎥
⎥
⎦

, for x ∈ ⋃
i<k

dom(s i) ,

with the convention that s i(x) = ◻, if x ∉ dom(s i). Usually, we write the ele-
ments of Σk

◻ as columns as above, but sometimes we use rows [c0 , . . . , ck−1]
instead to save vertical space. We also use the shorthand

s̄
⊗ ∶= s0 ⊗ ⋅ ⋅ ⋅ ⊗ sk−1 .

(c) We identify a relation R ⊆ (Σ∗)k with the language

R
⊗ ∶= { s̄⊗ ∣ s̄ ∈ R } ⊆ (Σk

◻)
∗ ,

and similarly for relations on ω-words or on trees. In particular, we call
R regular if R⊗ is a regular language. ⌟

Remark. Note that, strictly speaking, the operation ⊗ is not associative.
But we treat it as such by identifying s̄⊗ ⊗ t̄

⊗ ∈ ((Σm
◻ )◻ × (Σn

◻)◻)
∗
with

s̄ t̄
⊗ ∈ (Σm+n

◻ )∗. ⌟

Examples. The following relations are regular.
(a)The equality relation = is given by

(∑
a∈Σ
[ aa ])

∗
.

(b)The total relation Σ∗ × Σ∗ is given by

( ∑
a ,b∈Σ
[ ab ])

∗
⋅ [(∑

a∈Σ
[◻a ])

∗
+ (∑

a∈Σ
[ a◻ ])

∗
] ,
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1 Automatic presentations

and similarly for Σ∗ × ⋅ ⋅ ⋅ × Σ∗.
(c)The prefix order ≤pf has the expression

(∑
a∈Σ
[ aa ])

∗
⋅ (∑

a∈Σ
[◻a ])

∗
.

(d) The equal length relation =len ∶= { ⟨u, v⟩ ∣ ∣u∣ = ∣v∣ } has the regular
expression

( ∑
a ,b∈Σ
[ ab ])

∗
.

(e)The lexicographic ordering ≤lex is given by

(∑
a∈Σ
[ aa ])

∗
⋅ (∑

a∈Σ
[◻a ])

∗

+ (∑
a∈Σ
[ aa ])

∗
⋅ ∑
a ,b∈Σ
a<b

[ ab ] ⋅ ( ∑
a ,b∈Σ
[ ab ])

∗
⋅ [(∑

a∈Σ
[◻a ])

∗
+ (∑

a∈Σ
[ a◻ ])

∗
] .

(f ) The length-lexicographic ordering ≤llex has the regular expression

( ∑
a ,b∈Σ
[ ab ])

∗
⋅ (∑

a∈Σ
[◻a ])

+
+ ( ∑

a ,b∈Σ
[ aa ])

∗
⋅ ∑
a ,b∈Σ
a<b

[ ab ]⋅ ( ∑
a ,b∈Σ
[ ab ])

∗
.

(g) For the alphabet Σ = {0, . . . , p − 1}, several forms of addition are
regular. We can encode natural numbers in base p with the least significant
digit first, i.e,

∑
i<n

a i p
i ∈ N is encoded by a0⋯an−1 ∈ [p]

∗ .

Then the relation { ⟨a, b, c⟩ ∈ N3 ∣ a + b = c } is regular. It is recognised by
the following automaton (which keeps track of the carry bit).
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XII. Automatic Structures

0 1[
0
0
0
] , [

0
1
1
] , [

1
0
1
] [

0
1
0
] , [

1
0
0
] , [

1
1
1
]

[
1
1
0
]

[
0
0
1
]

(We have only given the part of the automaton that does not mention
blanks ◻. The full automaton is obtained from the above one by adding
several more copies where some labels 0 are replaced by ◻.)
Similarly, for the p-adic rationals Z[ 1p ] ∶= { k/p

n ∣ k ∈ Z , n ∈ N} we
can encode a number

∑
i<n

a i p
−i ∈ Z[ 1p ] ∩ [0, 1) by a0⋯an−1 .

Then the two relations

{ ⟨a, b, c⟩ ∈ (Z[ 1p ] ∩ [0, 1))
3 ∣ a + b = c }

{ ⟨a, b, c⟩ ∈ (Z[ 1p ] ∩ [0, 1))
3 ∣ a + b = 1 + c }

are regular and can be recognised by automata similar to the one above. ⌟

Let us take a look at a few operations that allow us to construct regular
relations.

Definition 1.2. A homomorphism φ ∶ Σ∗ → Γ∗ is uniform if

∣φ(a)∣ = ∣φ(b)∣ , for all a, b ∈ Σ .

Similarly, a homomorphism for ω-words/trees/ω-trees is called uniform if

dom(φ(a)) = dom(φ(b)) , for all a, b ∈ Σ . ⌟

Lemma 1.3. The class of regular relations over Σ∗ is closed under (i) boolean
operations, (ii) direct products, (iii) projections, (iv) inverse uniform homo-

morphisms, and (v) uniform homomorphisms. The same holds for relations over

ω-words, trees, and ω-trees.

836



1 Automatic presentations

The proofs are based on the standard constructions for regular languages
and are left to the reader.

Exercise 1.1. Show that regular relations are not closed under homomorph-
isms that are not uniform. ⌟

We are interested in structures where every relation is regular. More
precisely, structures where every element can be encoded by a finite word
(several words are allowed to encode the same element) and where every
relation is regular when using these encodings.

Definition 1.4. Let A be a Γ-structure, for some relational signature Γ.
(a) An automatic presentation of A (over the alphabet Σ) is a surjective

partial function π ∶ Σ∗ → A such that the languages

Lδ ∶= dom(π) ,
L= ∶= { u ⊗ v ∣ π(u) = π(v) } ,
LR ∶= π−1[R]⊗ , for R ∈ Γ ,

are all regular.
(b)The structureA is automatic if it has an automatic presentation.A struc-

ture with functions is automatic, if it is automatic when we replace every
function f ∶ An → A by its graph G f ⊆ A

n+1.
(c) If, instead of languages of finite words, we use languages of infinite

words, finite trees, or infinite trees, we speak of, respectively, ω-automatic,
tree automatic, and ω-tree automatic presentations or structures. ⌟

Remark. (a) Sometimes we will be sloppy and also use the term automatic
presentation for the tuple ⟨Lδ , L= , (LR)R⟩, leaving themap π implicit. Note
that π can be recovered from ⟨Lδ , L= , (LR)R⟩ (up to isomorphism) since

A ≅ ⟨Lδ , (LR)R⟩/L= .

(b) If not explicitly stated otherwise, all trees in this chapter will be as-
sumed to be successor-ordered binary trees, i.e., trees with two successor
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XII. Automatic Structures

relations suc0 and suc1 where every non-leaf has exactly two successors.
Infinite trees are assumed not to have leaves.

(c)When specifying presentations, having to deal with blanks ◻ is often a
nuisance. When defining the language LR for a relation R we will therefore
often be sloppy and only present some language L′ such that

LR = L
′ ∩ Lδ ⊗ ⋅ ⋅ ⋅ ⊗ Lδ .

Regularity of LR then follows by Lemma 1.3.
Frequently, it is also the case that the blank symbol◻ is ‘equivalent’ to some

letter c of the alphabet. For instance, when encoding numbers ◻ is usually
identified with the digit 0. In such cases we will use the letter c throughout
with the implicit understanding that, at the end of every word, an arbitrary
number of occurrences of c can be changed to ◻. We can do so since regular
relations are closed under inverse uniform homomorphisms. ⌟

Let us give some examples to get a feel for automatic structures. Note that,
while some of the following claims are quite easy to prove, others require
a major effort to establish. The missing proofs will be given later in this
chapter.

Examples. (a) ⟨N,+, ≤⟩, ⟨Z,+, ≤⟩, and ⟨N ∪ {∞}, min,+⟩ are automatic.
To see this, note that we can encode every natural number in binary with
the least significant bit first. Using this encoding, we have

Lδ ∶= (0 + 1)+ ,

L= ∶= ([
0
0 ] + [

1
1 ])

∗
([ 0◻ ]

∗
+ [◻0 ]

∗
) .

The language L+ for addition was already given in the example on page 834.
It is straightforward to check that the relations ≤ and min are also regular
with this encoding. For Z, we have to add a sign bit at the beginning of every
word (an alternative encoding will be given in Lemma 2.6 below).

(b) Let 1 < p < ω. The structure ⟨Z[1/p],+, ∣p , ≤⟩ is automatic, where

x ∣p y : iff x is a power of p dividing y .
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1 Automatic presentations

Every element of Z[1/p] has a finite expansion ±ak . . . a0 .b0 . . . bk in
base p. We can encode such a number by the word

s [
a0
b0 ] [

a1
b1 ]⋯[

ak−1
bk−1 ] [

ak
bk ]

over the alphabet [p]2, where s ∈ [p]2 encodes the sign. Using similar
expressions as those in the example on page 834, it follows that the relations
+, ∣p , and ≤ are regular when using this encoding.
(c) In the same way, one can show that the quotient ⟨Z[1/p]/Z,+⟩ is

automatic, and that ⟨R,+⟩ and the additive group of the p-adic numbers
⟨Zp ,+⟩ are ω-automatic.
(d)We will show in Proposition 4.1 below that the configuration graph

of every Turing machine is automatic.
(e) We will prove in Section 9 that ⟨Q,+⟩ is not automatic.
(f ) We will show in Section 8 that ⟨N, ⋅ ⟩ is tree-automatic but not

automatic.
(g)We will prove in Section 8 that the random graph is not automatic. ⌟

The following relationships follow immediately from the definitions.

Proposition 1.5.

(a) Every finite structure is automatic.

(b) Every automatic structure is countable, ω-automatic, and tree automatic.
(c) Every tree-automatic structure is countable and ω-tree automatic.
(d) Every ω-automatic structure is ω-tree automatic.

Proposition 1.6. Every tree-interpretable structure is automatic. There are

automatic structures that are not tree-interpretable.

Proof. Every prefix-recognisable relation is obtained from regular languages
using concatenation, union, and direct products. By Lemma 1.3, the class
of regular relations is closed under these operations. Hence, every prefix-
recognisable relation is regular.
The second statement follows from the fact that there are automatic

structures like ⟨Z,+⟩ with an undecidableMSO-theory.
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XII. Automatic Structures

The main reason why one is interested in automatic structures is that
their first-order theory is decidable. In fact, as we will show in Section 7,
this remains true if we add counting quantifiers.

Theorem 1.7. Given an automatic presentation of a structure A and an FO-
formula φ(x̄), one can effectively construct an automaton recognising the rela-
tion φA

.

Proof. We construct the desired automatonA by induction on φ. Suppose
that x̄ = ⟨x0 , . . . , xm−1⟩. If φ is an atomic formula Rx i0 . . . x in−1 or x i0 = x i1 ,
we have

φA = h−1[LR] or φA = h−1[L=] ,

where LR and L= are the languages from the presentation π and h ∶ Σm
◻ →

Σn
◻ is the homomorphism defined by

h([c0 , . . . , cm−1]) ∶= [c i0 , . . . , c in−1] , for c0 , . . . , cm−1 ∈ Σ◻ .

By Lemma 1.3, the regular relations are closed under all operations of FO.
For quantifiers, there is one technical issue we have to pay attention to. Given
a formula of the form ∃yφ(x̄ , y), we can take the language for φ(x̄ , y) and
project it down to the components corresponding to the variables x̄. For
languages of ω-words and ω-trees this is sufficient, but for finite words or
finite trees, we have to be more careful since the resulting language L might
contain all-blank symbols [◻, . . . ,◻] (if the word/tree y can be larger than
all the x̄). Forwords, we can remove these symbols by first taking the quotient
LK

−1 where K is the set of all words containing only all blank letters. Then
the intersection with Σ∗ × ⋅ ⋅ ⋅ × Σ∗ (which is regular as we have seen in
the example on page 834) produces the desired language for ∃yφ(x̄ , y). For
languages of finite trees, we can use a similar construction.

Corollary 1.8. Every ω-tree automatic structure has a decidable first-order

theory.

Proof. Given a first-order formula φ, we can compute the corresponding
automatonA and check that it recognises a non-empty language.
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2 Interpretations

Finally, let us make a small observation that sometimes can be used to
simplify proofs involving automatic structures.

Lemma 1.9. Every automatic structure has a presentation over a binary alphabet.

The same holds for ω-automatic, tree automatic, and ω-tree automatic structures.

Proof. Wepresent the proof for a tree automatic strcutureA.The other cases
are analogous. Let π be a presentation over an alphabet Σ of size k. Fix some
finite tree t with at least log2 k vertices and let T be the set of all labellings
of t with labels 0 and 1. Then there exists an injective function Σ → T

which induces a uniform homomorphism between the set of Σ-labelled trees
and the set of [2]-labelled ones. By Lemma 1.3, the image of π under this
homomorphism is again regular.

Exercise 1.2. Prove that every tree automatic structure has a tree automatic
presentation over a unary alphabet. ⌟

2 Interpretation+

The representation of automatic structures by lists of automata is mainly
useful for algorithmic purposes. But when proving statements about them
other encodings are often more convenient. Here we derive a purely logical
representation based on interpretations of the following form.

Definition 2.1. (a) A k-dimensional first-order interpretation (from the signa-
ture Σ to Γ) is given by a list of FO[Σ]-formulae

τ = ⟨δ(x̄), ε(x̄ , ȳ), (φR(x̄0 , . . . , x̄nR−1))R∈Γ⟩

where x̄ , ȳ, x̄ i are k-tuples of variables and nR is the arity of the relation R.
Given a Σ-structure A, it produces the Γ-structure

τ(A) ∶= ⟨δA , (φA
R)R⟩/≈ ,

where ≈ is the equivalence relation on Ak generated by the relation εA, i.e.,

≈ ∶= (εA ∪ (εA)−1)
∗
.
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XII. Automatic Structures

In case we do not want to specify the number k, we speak of a multi-dimen-
sional interpretation.
(b) We write A ≤FO B if, for some k < ω, there exists a k-dimensional

FO-interpretation mapping B to A.
(c) We denote the infinite binary tree by Tbin ∶= ⟨[2]∗ , ≤pf , suc0 , suc1⟩.

⌟

We start with the observation that automatic structures are closed under
first-order interpretations.

Theorem 2.2. The classes of (i) automatic structures, (ii) ω-automatic struc-
tures, (iii) tree automatic structures, and (iv) ω-tree automatic structures are
closed under multi-dimensional FO-interpretations.

Proof. Let A be an automatic structure (of any of the four kinds) and let τ =
⟨δ, ε, (φR)R⟩ be a k-dimensional FO-interpretation. ByTheorem 1.7, the
languages δA, εA, and φA

R are regular. Hence, ⟨δA , εA , (φA
R)R⟩ is a presenta-

tion of τ(A)

The equivalence of regularity andMSO-definability immediately leads to
the following characterisation of automatic structures in terms of interpreta-
tions.

Theorem 2.3. Let A be a structure.

(a) A is automatic if, and only if, A ≤FO ℘fin⟨ω, ≤⟩.
(b) A is ω-automatic if, and only if, A ≤FO ℘⟨ω, ≤⟩.
(c) A is tree automatic if, and only if, A ≤FO ℘fin(Tbin).

(d) A is ω-tree automatic if, and only if, A ≤FO ℘(Tbin).

Proof. (⇐) ByTheorem 2.2, it is sufficient to find automatic presentations
of the above structures.
(b)We encode each set X ⊆ ω by its characteristic function.This leads to

the languages

Lδ ∶= (0 + 1)ω ,

L= ∶= ([
0
0 ] + [

1
1 ])

ω
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2 Interpretations

L⊆ ∶= ([
0
0 ] + [

0
1 ] + [

1
1 ])

ω

L≤ ∶= [
0
0 ]

∗
([ 11 ] + [

1
0 ] [

0
0 ]

∗
[ 01 ]) [

0
0 ]

ω .

(a) is similar to (b), except that finite sets can be encoded by finite words.
When ignoring blanks ◻, the corresponding expressions for the languages
look like in (b), except that the ω-power is replaced by a star ∗. Adding
support for blanks can then be done as in the remark above.
(c) and (d) are analogous, except that we use trees. Lδ contains all trees;

L= contains all trees with letters [ 00 ] and [
1
1 ] ; L⊆ contains all trees with

letters [ 00 ], [
0
1 ], and [

1
1 ] ; and Lsuc0 contains all trees where every position is

labelled [ 00 ], expect for two which are labelled by, respectively, [
1
0 ] and [

0
1 ],

and where the second one is the 0-successor of the first one.The language
Lsuc1 is defined analogously. All of the above properties are clearly regular.

(⇒) Fix a presentation ⟨Lδ , L= , (LR)R⟩ of A over the alphabet {0, 1},
and let φδ , φ=, φR beMSO-formulae defining these languages.
(b) Let us start with ω-automatic structures, since this is the easiest case.

We encode a word w ∈ {0, 1}ω by the set

Uw ∶= { i < ω ∣ a i = 1} .

We can then turn the formulae φδ , φ=, φR from the presentation into the
desired interpretation as follows. Let φ be one of these formulae and let n be
the arity of the corresponding relation. We will construct anMSO-formula
φ∗(X̄) such that

⟨ω, ≤, (Pc)c∈Σn ⟩ ⊧ φ iff ⟨ω, ≤⟩ ⊧ φ∗(Uw0 , . . . ,Uwn−1) ,

where ⟨ω, ≤, (Pc)c∈Σn ⟩ is the structure encoding the word w0 ⊗ ⋅ ⋅ ⋅ ⊗ wn−1.
This formula φ∗(X̄) can be obtained from φ by replacing every atomic
formula of the form P[c0 , . . . ,cn−1]z by

⋀
i<n

ϑc i (X i , z) ,
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where

ϑ1(X, z) ∶= z ∈ X and ϑ0(X, z) ∶= z ∉ X .

This results in MSO-formulae φ∗δ(X), φ∗=(X,Y), and φ∗R(X̄) over the
structure ⟨ω, ≤⟩ with the desired property. According to Proposition I.2.2,
we can translate them into FO-formulae φ̂δ(x), φ̂=(x , y), and φ̂R(x̄) over
the structure ℘⟨ω, ≤⟩. The desired interpretation is τ = ⟨φ̂δ , φ̂= , (φ̂R)R⟩.
(d) is entirely analogous to (b).We encode a tree t by the set of all vertices

labelled 1. Then we can use the same construction for the formulae φ∗(X̄)
and φ̂(x̄).
(a) We proceed similarly to (b), but since we are now dealing with finite

words, we have to take the length of a word into account. In particular, the
alphabet might now contain ◻. We therefore encode a word w = a0 . . . an−1
by the set

{n} ∪ { i < n ∣ a i = 1} ,

where the additional element n marks the end of the word. For the construc-
tion of φ∗(X̄) we replace atoms P[c0 , . . . ,cn−1]z by

⋀
i<n

ϑc i (X i , z) ,

where

ϑ1(X, z) ∶= z ∈ X ∧ ∃y[z < y ∧ y ∈ X] ,

ϑ0(X, z) ∶= z ∉ X ∧ ∃y[z < y ∧ y ∈ X] ,

ϑ◻(X, z) ∶= ∀y[y ∈ X → y ≤ z] .

In addition we have to relativise every quantifier to the elements that are
less than the maximal element of⋃i X i . The rest of the construction then
proceeds as in (b).
(c) We adapt the construction from (a). We encode a finite tree t by the

set

{ v ∈ dom(t) ∣ t(v) = 1}

∪ { v ∈ [2]<ω ∣ v ∉ dom(t) , but u ∈ dom(t) for all u <pf v } ,
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where the second set marks the bottom of the tree.Then the formulae for
the letters are

ϑ1(X, z) ∶= z ∈ X ∧ ¬ϑ◻(X, z) ,

ϑ0(X, z) ∶= z ∉ X ∧ ¬ϑ◻(X, z) ,

ϑ◻(X, z) ∶= ∀y[z <pf y → y ∉ X] .

Besides replacing the predicates Pc̄ by these formulae we also have to

◆ relativise every quantifier to the set of all elements z with y ∈ ⋃i X i , for
some y ≻ z, and

◆ add the condition that every free variable X i is a valid encoding of a
finite tree, i.e., that every branch β contains some vertex z with z ∈ X i
and y ∉ X i , for all y ≻ z.

The rest of the construction then proceeds as in the other cases.

We can use this theorem to derive other interpretation results. Let us
start by introducing the corresponding structures.

Definition 2.4. (a) For k,m, p ∈ N with p > 1, we write

k ∣p m : iff k = pn ∣ m , for some n ∈ N .

(b)The equal-length relation on finite words is defined by

u =len v : iff ∣u∣ = ∣v∣ . ⌟

Theorem 2.5. Let A be a structure. The following statements are equivalent.

(1) A is automatic.

(2) A ≤FO ℘fin⟨ω, ≤⟩
(3) A ≤FO ⟨[p]∗ , ≤pf , (suck)k<p , =len⟩ , for some number p ≥ 2.

(4) A ≤FO ⟨N,+, ∣p⟩ , for some number p ≥ 2.

Proof. (1)⇔ (2) was already proved inTheorem 2.3
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XII. Automatic Structures

(3) ⇒ (1) By Theorem 2.2, it is sufficient to prove that the structure
⟨[p]∗ , ≤pf , (suck)k<p , =len⟩ is automatic. We obtain a presentation over
the alphabet Σ ∶= [p] with languages

L≤pf = ([
0
0 ] + ⋅ ⋅ ⋅ + [

p−1
p−1 ])

∗
⋅ ([◻0 ] + ⋅ ⋅ ⋅ + [

◻
p−1 ])

∗
,

Lsuck = ([
0
0 ] + ⋅ ⋅ ⋅ + [

p−1
p−1 ])

∗
⋅ [◻k ] ,

L=len = ( ∑
i , j<p
[ ij ])

∗
.

(4)⇒ (3) It is sufficient to construct an interpretation

⟨N,+, ∣p⟩ ≤FO ⟨[p]∗ , ≤pf , (suck)k<p , =len⟩ .

We encode a number n ∈ N in base p with the least significant digit first.
To construct the formulae of the interpretation we start with a formula to
access the digits in a word.The formula

ψk(x , y) ∶= (∃z.z =len x)[suck(z) ≤pf y ∨ (k = 0 ∧ y ≤pf z)]

states that the ∣x∣-th letter of y0ω is equal to k. It follows that we can define
p-divisibility by

φ∣p(x , y) ∶= ∀z[z <pf x → [suc1(z) = x

∨ (suc0(z) <pf x ∧ ψ0(z, y))]]

and addition by

φ+(x , y, z) ∶= ∃u∀v[suc0(⟨⟩) ≤pf u

∧ ⋁
⟨k , l ,c ,d ,m⟩∈H

[ψk(v , x) ∧ ψ l(v , y) ∧ ψc(v , u)

∧ ψd(suc0(v), u) ∧ ψm(v , z)]] ,
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whereH is the set of all tuples ⟨k, l , c, d ,m⟩ ∈ [p]2 × [2]2 × [p] such that
k + l + c = dp + m. (c is the old carry and d is the new one.)
(2)⇒ (4) It is sufficient to find an interpretation

℘fin⟨ω, ≤⟩ ≤FO ⟨N,+, ∣p⟩ .

To do so, we encode a finite set w ⊆ ω by the number

nw ∶= ∑
i∈w

p
i .

To construct the formulae of the interpretation we start with a formula for
set membership. Setting

ψ(x , y) ∶= ∃y0∃y1[y = y0 + y1 ∧ y0 < x ∧ x ∣p y1

∧ ¬(px ∣p y1)]

we have

N ⊧ ψ(k, nw) iff k = pi and i ∈ w .

Consequently, we can define set inclusion and the order by

φ⊆(x , y) ∶= ∀z[ψ(z, x) → ψ(z, y)] ,
φ≤(x , y) ∶= ∃u∃v[u ≤pf v ∧ ∀u′[ψ(u′ , x) ↔ u

′ = x]

∧ ∀v′[ψ(v′ , y) ↔ v
′ = v]] .

Lemma 2.6. ⟨Z,+⟩ is automatic.

Proof. By the preceding theorem, it is sufficient to present an interpretation
of ⟨Z,+⟩ in ⟨N,+⟩. We encode every integer k ∈ Z by the pairs ⟨m, n⟩ ∈ N2

with k = m − n. Then addition and equality are given by

⟨m, n⟩ + ⟨m′ , n′⟩ ∶= ⟨m + m
′ , n + n

′⟩ ,

⟨m, n⟩ = ⟨m′ , n′⟩ : iff m + n
′ = m′ + n .

This is expressible in first-order logic.
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XII. Automatic Structures

For ω-automatic structures we obtain a similar characterisation.

Theorem 2.7. Let A be a structure. The following statements are equivalent.

(1) A is ω-automatic.
(2) A ≤FO ℘⟨ω, ≤⟩.
(3) A ≤FO ⟨[p]∞ , ≤pf , (suck)k<p , =len⟩, for some number p ≥ 2.

Proof. (1)⇔ (2) was already proved inTheorem 2.3
(3)⇒ (1) It is sufficient to prove that ⟨[p]∞ , ≤pf , (suck)k<p , =len⟩ is ω-

automatic. We obtain a presentation over the alphabet Σ◻ ∶= [p] + ◻ by
encoding (i) infinite words w ∈ [p]ω by themselves and (ii) finite words
w ∈ [p]∗ by the ω-word w◻ω . Then the set of these encodings and the
relations ≤pf , suck , and =len are all regular.
(2)⇒ (3) It is sufficient to construct an interpretation

℘⟨ω, ≤⟩ ≤FO ⟨[2]∞ , ≤pf , (suck)k<p , =len⟩ .

We encode a set X ⊆ ω by its characteristic function. The relation ∣x∣ ∈ y
can then be defined by the formula

ψ(x , y) ∶= ∃z[z =len x ∧ suc1(z) <pf y] .

Hence, we obtain formulae for inclusion and order by

φ⊆(x , y) ∶= ∀z[ψ(z, x) → ψ(z, y)] ,
φ≤(x , y) ∶= ∃u∃v[u ≤pf v ∧ ∀u′[ψ(u′ , x) ↔ u

′ = x]

∧ ∀v′[ψ(v′ , y) ↔ v
′ = v]] .

For automatic and tree automatic strucutres, the closure result for inter-
pretations extends to interpretations with parameters.

Lemma 2.8. If A is automatic or tree automatic, so is ⟨A, ā⟩, for all ā ∈ An
.

Proof. Let ⟨Lδ , L= , (LR)R⟩ be a presentation of A. For each i < n, we fix
an encoding u i ∈ π−1(a i). Then the relations

π−1(a i) = {w ∣ w ⊗ u i ∈ L= }

are regular.
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3 Closure properties

Remark. The characterisation inTheorem 2.3 can be used to generalise the
notion of an automatic structure as follows. A higher-order automatic structure

is a structure A such that

A ≤FO ℘(C
∗⋯∗) , for some finite structure C ,

where −∗ denotes the Muchnik iteration. Clearly, every ω-tree automatic
structure is higher-order automatic. Furthermore, it follows immediately by
Theorem V.3.5, that every higher-order automatic structure has a decidable
first-order theory. Apart from that, not much is know about such structures.

⌟

3 Closure Propertie+

Besides interpretations there are other natural operations the class of auto-
matic structures is closed under. We start with disjoint unions and direct
products.

Proposition 3.1. If A and B are both automatic, ω-automatic, tree automatic,
or ω-tree automatic, so are A⊕B and A ×B.

Proof. Fix presentations

⟨Lδ , L= , (LR)R⟩ and ⟨Kδ ,K= , (KR)R⟩

of, respectively, A and B over the alphabet Σ ∶= {0, 1}. We present construc-
tions for languages of finite words. The other cases are exactly the same.
We construct a presentation of the disjoin union A⊕B as follows. We

encode elements of A+ B by prefixing them with 0 or 1 depending on which
component they belong to. The corresponding presentation is

Mδ ∶= 0Lδ + 1Kδ ,

M= ∶= [
0
0 ] ⋅ L= + [

1
1 ] ⋅K= ,

MR ∶= [
0
⋮
0
] ⋅ LR + [

1
⋮
1
] ⋅KR .
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XII. Automatic Structures

For the direct product, we encode pairs by their convolution.This yields
the presentation

Mδ ∶= Lδ ⊗Kδ ,

M= ∶= h(L= ⊗K=) ,

MR ∶= h(LR ⊗KR) .

where h is the relabelling by the canonical bijection (Σn
◻)

2
◻ → (Σ2

◻)
n
◻.

Definition 3.2. Let A be a structure and c ∈ A some fixed element.
(a)The ω-power Aω of A is the infinite direct product∏n<ω A.
(b) The infinite direct sum A(ω) is the substructure of the ω-power Aω

consisting of all sequence (an)n<ω such that an = c, for all but finitely
many n. ⌟

Remark. We have omitted the element c form the notation for the direct
sum. In most cases, the choice of c is obvious, e.g., if A contains a neutral
element. ⌟

Proposition 3.3. If A is finite, then A(ω) is automatic and Aω
is ω-automatic.

Proof. ForAω , there exists an ω-automatic presentation over the alphabetA
consisting of the languages

Lδ ∶= A
ω , L= ∶= (∑

a∈A
[ aa ])

ω
, LR ∶= R

ω .

ForA(ω), we can use the same construction with slight modifications. Let
c be the neutral element. Ignoring some special cases concerning blanks ◻,
we have

Lδ ∶= A
∗ and L= ∶= (∑

a∈A
[ aa ] + [

c
◻ ] + [

◻
c ])

∗
.

For each relation R, we can set

LR ∶=

⎧⎪⎪
⎨
⎪⎪⎩

R
∗ if ⟨c, . . . , c⟩ ∈ R ,

∅ otherwise .

850



3 Closure properties

Corollary 3.4. Every countably-dimensional vector space over a finite field is
automatic.

Proof. Let K be a finite field. Every finitely-dimensional vector space over K
is finite and, thus, automatic. IfV is a countably infinitely dimensional vector
space over K, then V ≅ K(ω) which, according to the preceding proposition,
is also automatic.

Proposition 3.5.

(a) If A is tree automatic or ω-tree automatic, then so is A(ω).

(b) If A is ω-tree automatic, so is Aω
.

Proof. (b) We encode a sequence (an)n<ω where an is represented by the
tree tn , by the tree t consisting of an infinite branch where we attach to the
n-th vertex the tree tn as a subtree.

t0
t1

t2
t3

t4

GivenMSO-formulae defining the relations of A is it now straightforward
to construct corresponding formulae for Aω .

(a) is similar to (b), except that we use a finite path with the understanding
that all elements not on the path are equal to the neutral element c.

Examples. Using the above closure properties, we can find automatic present-
ations for several groups and semigroups.
(a) ⟨N, ⋅ ⟩ is tree automatic. We can interpret ⟨N, ⋅ ⟩ in the structure

⟨N,+⟩(ω) ⊕ {0} by encoding a product of primes pk00 ⋯p
kn
n by the tuple

⟨k0 , . . . , kn⟩.
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XII. Automatic Structures

(b)The following structures are ω-automatic.

(i) ⟨R,+⟩ (iii) ⟨R, ⋅ ⟩ (iv) ⟨C,+⟩
(ii) ⟨R/Z,+⟩ (v) ⟨C, ⋅ ⟩

For the proof, note that we have seen in Lemma 2.6 that Z ∶= ⟨Z,+, ≤⟩ is
automatic. It is also straightforward to construct an ω-automatic presenta-
tion of I ∶= ⟨R/Z,+, ≤⟩. This establishes (ii). (i) now follows since we can
interpret ⟨R,+⟩ in Z⊕ I. For (iii), note that the exponential map provides
an isomorphism exp ∶ ⟨R,+⟩ → ⟨R+ , ⋅ ⟩ (where R+ denotes the set of
positive real numbers), and that we can interpret ⟨R, ⋅ ⟩ in the structure
⟨R+ , ⋅ ⟩ ⊕ {0}. For (iv), note that

⟨C,+⟩ ≅ ⟨R,+⟩ × ⟨R,+⟩ .

Finally, for (v), we can use polar coordinates to interpret ⟨C, ⋅ ⟩ in

{0} ⊕ ⟨R/Z,+⟩ × ⟨R+ , ⋅ ⟩ . ⌟

Open Question. Are there other ω-automatic Lie groups? In particular, for
which n > 1 are SO(n) and SU(n) are ω-automatic?

Finally, let us make a few remarks about closure under elementary sub-
structures.

Exercise 3.1. Let A be an ω-automatic structure and let A0 ⊆ A be the
substructure consisting of all ultimately periodic words. Prove that A0 is an
elementary substructure of A (but not necessarily automatic). ⌟

Exercise 3.2. Let A be an ω-tree automatic structure and let A0 ⊆ A be the
substructure consisting of all regular trees. Prove that A0 is an elementary
substructure of A (not necessarily automatic). ⌟

Example. Let ≈∗ be the equivalence relation on ℘(ω) saying that the sym-
metric difference of the given sets if finite. The atomless boolean algebra
⟨℘(ω),∩,∪⟩/≈∗ is ω-automatic, but it follows byTheorem 10.2 below that
it has no countable elementary substructure that is automatic. ⌟
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4 Undecidability

Exercise 3.3. The Stupp-iteration A# of a structure A is obtained from its
Muchnik-iteration by removing the clone predicate. Prove that the Stupp-
iteration of an automatic structure is automatic. ⌟

4 Unde$idability

Unfortunately,most logics stronger thanFO, likemonadic second-order logic
or various fixed-point logics, are undecidable. The reason is that reachability
is undecidable for automatic structures.

Proposition 4.1. The configuration graph of every Turing machine is automatic.

Proof. A configuration consists of a triple ⟨q, h,w⟩ where q is the current
state, h the head position, and w the tape contents. We can encode such a
configuration by the word uqv where uv = w and ∣u∣ = h.The set of all words
of the form uqv is clearly regular. As each transition modifies a configuration
only locally, the transition relation is also regular. For the latter, suppose that
u = u′a and v = bv′. Then we have transitions

u
′
apbv

′ ⊢ u′acqv′ if ⟨p, b, c, 1, q⟩ ∈ ∆ ,

u
′
apbv

′ ⊢ u′aqcv′ if ⟨p, b, c, 0, q⟩ ∈ ∆ ,

u
′
apbv

′ ⊢ u′qacv′ if ⟨p, b, c,−1, q⟩ ∈ ∆ .

These conditions can easily be checked by an automaton.

Proposition 4.2. There exists an automatic directed graph such that it is un-

decidable whether, for two given vertices x and y, there exists a path from x

to y.

Proof. LetM be a universal Turing machine. We can modifyM such that,
before accepting, it erases its tape and moves its head to the beginning. Con-
sequently, we may assume thatM as a unique accepting configuration cacc.
Let cw be the initial configuration ofM for the input w. Then it is undecid-
able whether the configuration graphG ofM contains a path from cw to cacc.
Furthermore, we have seen in Proposition 4.1 that G is automatic.
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XII. Automatic Structures

From an algebraic point of view, the class of automatic structures is un-
fortunately not that well-behaved. In the remainder of this section, we will
present a first piece of evidence for this fact: the isomorphism problem
for automatic structures is extremely complicated. Other, more concrete
examples will be given in Sections 8 and 9 below.

Theorem4.3. The isomorphism problem for automatic structures is Σ1
1-complete.

Theproof consists of a reduction of the isomorphism problem for a certain
class of trees to that for automatic structures. Note that every countably-
branching successor tree can be encoded as a prefix-closed subset T ⊆ ω<ω .
(We do not require that wk ∈ T and i < k implies wi ∈ T, for w ∈ ω<ω
and i , k < ω.) We call such a tree recursively enumerable if T is a recursively
enumerable subset of ω<ω . We will make use of the following fact from
computable model theory.

Theorem 4.4 (Goncharov, Knight [88]). The isomorphism problem for re-

cursively enumerable trees is Σ1
1-complete.

Proposition 4.5. Let S be the tree obtained from ω<ω by attaching to every

vertex infinitely many paths of length n, for every n < ω. Then S is automatic.

Proof. We describe a 4-dimensional FO-interpretation of S in the tree
⟨{0, 1}∗ , suc0 , suc1 , ≤pf , =len⟩. We can encode a vertex ⟨k0 , . . . , kn−1⟩ ∈
ω<ω as tuple

⟨10k0 10k1 1 . . . 0kn−2 10kn−1 , ⟨⟩, ⟨⟩, ⟨⟩⟩ .

The edges between such tuples are

⟨w , ⟨⟩, ⟨⟩, ⟨⟩⟩ → ⟨w10n , ⟨⟩, ⟨⟩, ⟨⟩⟩ ,

which is clearly FO-definable. The attached paths consists of the vertices

⟨w , u, 0n , 0k⟩ , for w , u ∈ {0, 1}∗ and k < n < ω ,
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4 Undecidability

(n is the length of the path, w is the vertex it is attached to, and u specifies
which of the infinitely many copies of the path the vertex belongs to) with
edges

⟨w , ⟨⟩, ⟨⟩, ⟨⟩⟩ → ⟨w , u, 0n , 0n⟩
and ⟨w , u, 0n , 0k+1⟩ → ⟨w , u, 0n , 0k⟩ .

Again these transitions are FO-definable.

For the reduction, we consider configuration graphs of Turing machines.
These can be considerably simplified if we assume that the machine is revers-
ible.

Definition 4.6. A Turing machineM is reversible if its configuration graph
consists of a disjoint union of finite paths and (one-way) infinite paths, and
if every finite path ends in an accepting configuration. ⌟

Lemma 4.7. Every deterministic Turing machineM can be transformed into

an equivalent reversible one.

Proof. This is a standard construction from computability theory. We only
give a sketch.The main idea is that the machine maintains a log of all irre-
versible operations it performs. For instance, if the machine overwrites a cell
on the tape it adds a note to the log containing the old contents of the cell.
This ensures that every configuration has at most one predecessor.
To ensure that all finite computations are accepting, it is sufficient for the

new machine to enter an infinite loop whenever the old one would reject
the input. (To make this reversible it can, for instance, move the head to the
right in each iteration of the loop, so no configuration repeats.)

Proof of Theorem 4.3. To see that the problem is in Σ1
1 note that in existential

second-order logic we can express that there exists a binary relation I ⊆ N×N
that is the graph of an isomorphism between the two structures encoded by
the given presentations.
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Hence, it remains to prove hardness. For a reversible Turing machineM,
let Conf(M) be its configuration graph and let T (M) be the graph ob-
tained from the disjoint union of Conf(M) and the tree S in Proposi-
tion 4.5 by adding edges from w ∈ ω<ω ⊆ S to the initial configuration
⟨q0 , 0,w⟩ ofM associated with the input word w.
The following two claims conclude the proof by providing a reduction

of the isomorphism problem for recursively enumerable trees (which is
Σ1
1-complete byTheorem 4.4) to the isomorphism problem for automatic

structures.

Claim. LetM be a reversible Turing machine. T (M) is automatic and a
presentation can be computed fromM.

For the proof note that S and Conf(M) are both automatic and auto-
matic structures are closed under disjoint unions. Furthermore, with the
encoding of configuration in the proof of Proposition 4.1, the additional
edges belong to the relation

{ ⟨w , q0w⟩ ∣ w ∈ ω<ω } ,

which is regular.

Claim. Let S and T be recursive enumerable trees and letM andN be revers-

ible Turing machines recognising S and T. Then

S ≅ T iff T (M) ≅ T (N) .

By construction of T (M), we have

w ∈ S iff there is no infinite path attached to w in T (M) .

It follows that every isomorphism S → T can be extended to one T (M) →
T (N). Conversely, every isomorphism T (M) → T (N) restricts to one
S → T.

For ω-tree automatic structures, the isomorphism problem is even harder:
it turns out that it is independent of set theory!
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Definition 4.8. ForU ,V ⊆ [2]∗, we define

U ≈∗ V : iff the symmetric difference ofU and V is finite,

U ≈ac V : iff the symmetric difference ofU and V does not

contain an infinite anti-chain with respect to the

prefix ordering. ⌟

Theorem 4.9 (Finkel, Todorčević [81]). The question of whether

⟨℘([2]∗), ⊆⟩/≈∗ ≅ ⟨℘([2]∗), ⊆)/≈ac

is independent of ZFC.

Theorem 4.10. The isomorphism problem for ω-tree automatic structures is
independent of ZFC.

Proof. The two boolean algebras in the preceding theorem are ω-tree auto-
matic.

5 Inje$tive Presentation+

Sometimes it can be convenient to choose a presentation with particularly
useful properties. But one has to be careful when doing so since not all
presentations are equal: some relations are only regular with respect to
certain presentations, but not with respect to others.

Definition 5.1. Two presentations π0 and π1 are equivalent if, for every
relation R,

π−10 [R] is regular iff π−11 [R] is regular.

We say that π0 and π1 are effectively equivalent if, when given an automaton
for π−1i [R], one can effectively compute an automaton for π−11−i[R]. ⌟

Example. The structure ⟨ω, suc⟩ has several non-equivalent presentations.

857



XII. Automatic Structures

(i) We can encode n < ω in unary 1n . Then the successor function is

Lsuc = { ⟨1n , 1n+1⟩ ∣ n < ω } ,

which is regular.
(ii) We can use binary encoding (with the least significant bit first). Then

the successor function is

Lsuc = [
1
0 ]

∗
⋅ [ 01 ] ⋅ ([

0
0 ] + [

1
1 ])

∗ .

(iii) We can represent a number n < ω by the pair ⟨i , j⟩ ∈ ω × ω with
n = 1

2 (i + j)(i + j + 1) + j. Then the successor function becomes

⟨i + 1, j⟩ ↦ ⟨i , j + 1⟩ and ⟨0, j⟩ ↦ ⟨ j + 1, 0⟩ .

We obtain an automatic presentation by encoding each pair ⟨i , j⟩ by all words
of the form u#v where u and v are binary representations of, respectively,
i and j (as usual with the least significant bit first) and # is some separator.
To see that these presentations are not equivalent, note that the function

f ∶ n ↦ 2n is regular in the second presentation, but not in the first one.
Furthermore, the order relation ≤ is regular in the first two presentations,
while in the third one

L≤ = { ⟨i , j⟩ ⊗ ⟨k, l⟩ ∣ i + j < k + l or, [i + j = k + l and j ≤ l] }

is not. ⌟

One way to show that two presentations are equivalent is the following
lemma. Note that this statement is far from the best possible, but it suffices
for our needs.

Lemma 5.2. Let π0 and π1 be presentations of the same structure A. If the
relation

π−11 ○ π = { ⟨w0 ,w1⟩ ∣ π0(w0) = π1(w1) }

is regular, then π0 and π1 are effectively equivalent.
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Exercise 5.1. Find effectively equivalent presentations π0 and π1 such that
π−11 ○ π0 is not regular. ⌟

Our next goal is to extendTheorem 1.7 to logics with counting quantifiers.
As a preparation, we take a look at presentations where each element has
only a single encoding, which makes counting much easier. For automatic
and tree automatic structures, we can always find such a presentation, but
unfortunately not for ω-automatic or ω-tree automatic ones.

Definition 5.3. An (ω-/tree/ω-tree) automatic presentation π is called
injective if the encoding function π ∶ Lδ → A is injective. ⌟

Remark. We can define injective presentations also in terms of interpreta-
tions.The presentation associated with an interpretation ⟨δ, ε, (φR)R⟩ in
one of the structures fromTheorems 2.3, 2.5, or 2.7 is injective if, and only if,
the formula ε(x , y) is equivalent to x = y. ⌟

In the proof we make use of the orders ≤lex and ≤llex from Definitions
VI.1.18 and VI.6.15, respectively (which we have already shown to be regular
in the example on page 834).

Lemma 5.4. Let Σ be a finite alphabet. The lexicographic order ≤lex and the
length-lexicographic order ≤llex on Σ∗ are regular.

Corollary 5.5. For every automatic structure A, there exists a well-order ≤ such
that ⟨A, ≤⟩ is also automatic and with an effectively equivalent presentation.

Proof. Fix a presentation π of A. Note that the length-lexicographic or-
der ≤llex is a regular well-ordering. Hence, so is the relation

a ≤ b : iff the ≤llex-least element of π−1(a) is ≤llex-smaller

than the ≤llex-least element of π−1(b) .

Furthermore, ≤ is first-order definable in ⟨A, ≤llex⟩ and, therefore, regular.

Proposition 5.6. For every automatic presentation π, there exists an equivalent
injective one. The same holds for tree automatic presentations.
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Proof. First, suppose thatA has an automatic presentation ⟨Lδ , L= , (LR)R⟩.
By Corollary 5.5, we can extend this presentation (or an equivalent one) by a
well order ≤. LetU be the set of ≤-minimal representatives of every L=-class.
ThenU is FO-definable and, hence, regular. We obtain the injective present-
ation with universeU and relations LR ∩ (U ⊗ ⋅ ⋅ ⋅ ⊗U). Furthermore, the
map taking an element of Lδ to its representative inU is FO-definable and,
hence, regular. Consequently, the new presentation is effectively equivalent
to the old one.

For the second claim, consider a tree automatic structure A with presenta-
tion π. We cannot use the same trick as for automatic structures since there
is no regular well-ordering on the set of all trees. What we do instead is to
represent an element of A by the ‘intersection’ of all trees encoding it. For
a ∈ A, we call the intersection

C(a) ∶= ⋂
t∈π−1(a)

dom(t)

the core of a and the set F(a) of minimal elements of [2]∗∖C(a) its frontier.
For trees t, we also write C(t) and F(t) instead of C(π(t)) and F(π(t)).
Let A be a tree automaton recognising L= and Q its set of states. The

profile of a finite Σ-labelled tree t is the triple χ(t) ∶= ⟨F(t), t ↾ C(t), λ⟩
where λ ∶ F(a) → ℘(Q)maps each vertex v ∈ F(a) to the set of states from
whichA accepts the tree ◻⊗ t∣v (where ◻ denotes the tree entirely labelled
by blanks). We claim that

χ(t) = χ(t′) implies π(t) = π(t′) .

Hence, suppose that χ(t) = ⟨F , s, λ⟩ = χ(t′).
By transitivity of equality and the fact that F is finite, it is sufficient to

consider the case where there is a single vertex v ∈ F with t∣v ≠ t
′∣v . Since

v ∈ F(t), there exists some tree r with π(r) = π(t) such that v ∉ dom(r).
Fix an accepting run ρ ofA on r ⊗ t. To prove the claim, it is sufficient to
find an accepting run ρ′ ofA on r⊗ t

′.Then the claim follows by transitivity
and symmetry. Since ρ(v) ∈ λ(v), there exists a run σ of A on the tree
◻⊗ t

′∣v with σ(v) = ρ(v). We obtain the desired run ρ′ by replacing in ρ
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5 Injective presentations

the subtree ρ∣v by σ . (Note that r ⊗ t and r ⊗ t
′ agree on all vertices not in

the subtree attached to v.)
Having established the above claim, we can conclude the proof as follows.

Note that we can encode every profile ⟨F , s, λ⟩ by a finite tree over a suitable
alphabet. Furthermore, for every element a ∈ A, the set

χ(a) ∶= { χ(t) ∣ t ∈ π−1(a) }

of possible profiles is finite (since the first component F(t) is the same for
all of them). Finally, we can define a linear ordering on χ(a) by

⟨F , s, λ⟩ < ⟨F , s′ , λ′⟩
iff s(v) < s′(v) or (s = s′ and λ(v) < λ(v′)) ,

where v is the ≤lex-least vertex with s(v) ≠ s′(v) or λ(v) ≠ λ′(v) .

As χ(a) is finite and non-empty, it has a minimal element. We use the tree
encoding this element as the new representative of a. Again, the resulting
presentation is equivalent to the original one since the function mapping a
tree to the encoding of its equivalence class is regular.

For ω-automatic structures we obtain a negative result. The proof is
based on a translation of the problem into the realm of topology. Recall the
definitions of a Borel set and of the Cantor topology from Section V.5.

Definition 5.7. Let Σ be an alphabet. A Borel structure is a structure D
where the universe D ⊆ Σω is Borel and every n-ary relations R is a Borel
subsets of (Σω)n . A Borel presentation of a Γ-structure A is a Borel structure
⟨D, ∼, (RD)R∈Γ⟩ such that ⟨D, (RD)R⟩/∼ ≅ A. ⌟

Below we will construct an ω-automatic structure that has no inject-
ive Borel presentation. Before doing so, let us show that every injective
ω-automatic presentation is Borel (and injective).

Lemma 5.8. Every ω-automatic presentation is Borel.

Proof. Let D = ⟨Lδ , L= , (LR)R⟩ be an ω-automatic presentation of some
structure A over the alphabet Σ. According to Lemma V.5.23, the languages
Lδ , L= , LR are all Borel. Hence, D is a Borel presentation.
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The example below makes use of the observation that there is basically
only one Borel presentation of the boolean algebra ⟨℘(ω), ⊆⟩.

Lemma 5.9. Let D = ⟨D, ∼, ≤⟩ and D′ = ⟨D′ , ∼′ , ≤′⟩ be two Borel presenta-
tions of B ∶= ⟨℘(ω), ⊆⟩. Every isomorphism φ ∶ D/∼ → D′/∼′ is Borel.

Proof. By LemmaV.5.20, it is sufficient to prove that the graph of φ is Borel.
Let (an)n<ω be an enumeration of all the atoms ofD/∼ and set bn ∶= φ(an).
Then

φ(x) = y iff an ≤ x⇔ bn ≤
′
y , for all n < ω .

Consequently, the graph of φ is equal to⋂n Rn , where

Rn ∶= { ⟨x , y⟩ ∣ an ≤ x⇔ bn ≤ y } .

As Borel sets are closed under countable intersections, it therefore remains
to prove that each relation Rn is Borel. By Lemma V.5.19 (c), the relations

Pn ∶= { x ∣ an ≤ x } and Qn ∶= { y ∣ bn ≤ y }

are both Borel. Hence, it follows by Lemma V.5.19 (b) that so is

Rn = (Pn × Qn) ∪ (B ∖ Pn) × (B ∖ Qn) .

Theorem 5.10. There exists an ω-automatic structure that does not have an
injective presentation.

Proof. SetB ∶= ⟨℘(ω), ⊆⟩ andA ∶= copy2(B), and let ≈ be the equivalence
relation that is equal to the identity on the first copy of B and equal to ≈∗
on the second one.Then the structure ⟨A, ≈⟩ is ω-automatic. Hence, so is
the quotient A/≈.
We claim that A/≈ has no injective ω-automatic presentation. Accord-

ing to Lemma 5.8, it is sufficient to prove that A/≈ has no injective Borel
presentation. For a contradiction, suppose otherwise. Let ⟨D, =, ≤, L,R, I⟩
be such a presentation where L encodes the left copy of B, R the right one,
and I ⊆ L × R relates the two copies of each element of B. Let i ∶ L → R
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be the function whose graph is I and let φ0 ∶ L → B and φ1 ∶ R → B/≈∗
be the restrictions of the isomorphism φ ∶ ⟨D, ≤, L,R, I⟩ → A/≈. Since
I is Borel, so is i, by Lemma V.5.20. Let ⟨[2]ω , =, ≤⟩ be the canonical Borel
presentation of B and let ψ ∶ [2]ω → ℘(ω) be the associated isomorph-
ism. By Lemma 5.9, the map φ−1 ○ ψ ∶ [2]ω → D is Borel. Consequently,
f ∶= i ○ φ−10 ○ ψ ∶ 2ω → D is also Borel. Let p ∶ B→ B/≈∗ be the quotient
map.Then

f = i ○ φ−10 ○ ψ = φ−11 ○ p ○ ψ

implies that

f (x) = f (y) iff (φ−11 ○ p ○ ψ)(x) = (φ−11 ○ p ○ ψ)(y)
iff (p ○ ψ)(x) = (p ○ ψ)(y)
iff x ≈∗ y .

A contradiction toTheorem V.5.22.

Using a bit more machinery from Descriptive SetTheory, the preceding
theorem can be strengthened as follows. We omit the proof, a sketch of
which can be found in [103].

Theorem 5.11. There exists an ω-automatic structure that does not have an
injective ω-tree automatic presentation.

6 Partition Theorem+

A partition theorem is a statement of the form: every sufficiently large struc-
ture of a given kind contains a large configuration of a certain type. A typical
example is theTheorem of Ramsey saying that every sufficiently large col-
oured set has a large homogeneous subset. In this section we collect several
such results specific to ω-automatic structures. We start with the following
auxiliary relation, which turns out to be central in our proofs.
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XII. Automatic Structures

Definition 6.1. For two infinite words or trees s and t, we define

s ≈∗ t : iff there are only finitely many positions x with

s(x) ≠ t(x) .

We denote the ≈∗-class of s by [s]∗. ⌟

We have shown in the previous section that, for every automatic equi-
valence relation, we can find a regular set of representatives, while this is
no longer the case for ω-automatic relations. In particular, there does not
exist a regular well-ordering on Σω . The following lemma provides a weak
substitute for such an ordering, which sometimes can be used instead.

Lemma 6.2. There exists a regular ternary relation x ⊑z y on Σω
such that,

for every u ∈ Σω
, the induced binary relation ⊑u well-orders the ≈∗-class [u]∗.

Proof. Fix an order ≤ on Σ. For x , y ∈ Σω , we set

δ(x , y) ∶= sup{ i < ω ∣ x(i) ≠ y(i) } ,

and

x ⊑u y : iff x = y , or δ(u, x) < δ(u, y) ,
or δ(u, x) = δ(u, y) and

x(δ(x , y)) ≤ y(δ(x , y)) .

Clearly, ⊑u is reflexive. For transitivity, suppose that x ⊏u y ⊏u z. If
δ(u, x) < δ(u, y) or δ(u, y) < δ(u, z), we have δ(u, x) < δ(u, z) and
x ⊏u z, as desired. In the other case, we have δ(u, x) = δ(u, y) = δ(u, z).
Setting k ∶= δ(x , y) and l ∶= δ(y, z), we distinguish three cases.
◆ If k = l , then x(k) < y(k) < z(k) implies x ⊏u z.
◆ If k < l , then x(l) = y(l) < z(l) implies x ⊏u z.
◆ If k > l , then x(k) < y(k) = z(k) implies x ⊏u z.
For linearity, suppose that x ⋢u y, for x ≈∗ u ≈∗ y. Then δ(u, x) >

δ(u, y), or δ(u, x) = δ(u, y) and x(δ(x , y)) > y(δ(x , y)). In both cases,
it follows that y ⊏u x.
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6 Partition theorems

To prove well-foundedness, suppose that [u]∗ contains an infinite de-
creasing sequence x0 ⊒u x1 ⊒

u . . . . Then

δ(u, x0) ≥ δ(u, x1) ≥ . . .

Consequently, there is some index n such that

δ(u, x i) = δ(u, xn) , for all i ≥ n .

Then the words xn , xn+1 , . . . differ only in the first k ∶= δ(u, xn) letters.
Consequently, there can be at most ∣Σ∣k indices i ≥ n with x i ⊏

u
x i+1 and

the sequence x0 , x1 , . . . is ultimately constant.

The following remark is a first indication of why the relation ≈∗ is useful
when dealing with cardinality questions.

Lemma 6.3. A regular set L ⊆ Σω
is infinite if, and only if, L∩[w]∗ is infinite,

for some ≈∗-class [w]∗.

Proof. (⇐) is trivial. For (⇒), let η ∶ Σ∞ → S be a homomorphism
into a finite ω-semigroup that recognises L. Then there exists elements
a0 , . . . , an−1 , e0 , . . . , en−1 ∈ S such that η[L] = {a0eω0 , . . . , an−1eωn−1}.
This implies that

L = ⋃
i<n

U iV
ω
i , whereU i ∶= η−1(a i) and Vi ∶= η−1(e i) .

Furthermore, as L is infinite, one of the languages U iV
ω
i is also infinite.

It is consequently sufficient to prove the claim for languages of the form
L = UV

ω , whereU ,V ⊆ Σ∗ are non-empty and regular.
First, consider the case where Vω = {vω}, for some word v. Since

uv
ω ≈∗ u

′
v
ω , for all u, u′ ∈ U with ∣u∣ ≡ ∣u′∣ (mod ∣v∣) ,

it follows thatUV
ω is contained in the union of at most ∣v∣ ≈∗-classes. One

of these must have an infinite intersection withUV
ω .
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It remains to consider the case where there are words v ,w ∈ V with
v
ω ≠ wω . SettingU′ ∶= Uw∗ we have

U
′
v
ω ⊆ UV

∗
V

ω = UV
ω .

If we can show thatU′
v
ω is infinite, the claim follows therefore by the first

case. For a contradiction, suppose that U′
v
ω is finite. Then w

∗
v
ω is also

finite and there are i < j with w
i
v
ω = w j

v
ω . Consequently, wk = vn , for

some k, n > 0, which implies that wω = vω . A contradiction.

Equivalen$e Relation+

Thefact thatω-automatic structures do not necessarily have injective present-
ations makes counting elements of such structures more complicated as we
have to count equivalence classes instead of single elements. We therefore
start with a partition theorem for structures with equivalence relations that
allows us to count equivalence classes.

Definition 6.4. Let E , ∼ ⊆ A×A be equivalence relations.
(a) We denote the E-class of a by [a]E .
(b) We say that a set S ⊆ A is E-covered by a setW ⊆ A/∼ of ∼-classes if,

for every s ∈ S, there is some [w]∼ ∈W such that

[s]E ∩ [w]∼ ≠ ∅ .

(c) If the relation E is clear from the context, we simply speak of S being
covered byW. In particular, if A is an ω-automatic structure, we say that a
set S ⊆ A is covered byW if it is L=-covered by it. ⌟

Definition 6.5. Let η ∶ Σω → S be a homomorphism into a finite ω-
semigroup and let w ∈ Σω be a word. We say that an infinite subsetH ⊆ ω
induces an η-homogeneous factorisation of w of type ⟨b, e⟩ if

η(w[0, i)) = b , where i ∶= minH ,

and η(w[i , j)) = e , for all i < j inH . ⌟
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6 Partition theorems

A homogeneous factorisation is thus similar to a Ramsey factorisation
(see Section III.3), except that we do not require that η(w[0, i)) = b, for all
i ∈ H. In particular, Lemma III.3.4 (a) implies that every word w ∈ Σ∗ has
an η-factorisation of some type ⟨b, e⟩. Furthermore, it follows immediately
from the definition that e is idempotent.
The combinatorial core of our argument is contained in the following

rather technical lemma which generalises the construction in the proof of
LemmaV.6.21. Intuitively, it states that sets notE-covered by a few≈∗-classes
contain two words that share a common, highly homogeneous factorisation.

Lemma 6.6. Let K ⊆ (Σ × Γ)ω and E ⊆ (Σ × Σ)ω be regular languages

recognised by the homomorphisms ηK ∶ (Σ×Γ)ω → T and ηE ∶ (Σ×Σ)ω → S,

respectively, and assume that E is an equivalence relation on Σω
. Set

K(γ) ∶= { α ∈ Σω ∣ α ⊗ γ ∈ K } , for γ ∈ Γω .

There exists a constant k with the following property.

For every word γ ∈ Γω
such that K(γ) is not E-covered by k ≈∗-classes, there

exist words α0 , α1 ∈ K(γ), an infinite set H ⊆ ω, and elements c, f ∈ T and

b, e< , e= , e> ∈ S with the following properties.

(i) α0 , α1 ∈ K(γ)
(ii) α0 ⊗ α1 ∉ E

(iii) α0[0, i) = α1[0, i) , where i ∶= minH .
(iv) α0[i , j) ≠ α1[i , j) , for all i < j in H .
(v) H induces ηK-homogeneous factorisations of α0 ⊗ γ and α1 ⊗ γ of the

same type ⟨c, f ⟩.
(vi) H induces ηE -homogeneous factorisations of α i⊗α j , for all i , j < 2, whose

types are

⟨b, e=⟩ , for α0 ⊗ α0 , ⟨b, e<⟩ , for α0 ⊗ α1 ,

⟨b, e=⟩ , for α1 ⊗ α1 , ⟨b, e>⟩ , for α1 ⊗ α0 .

(vii) e< , e= , e> are idempotent and satisfy the equations

e<e= = e< , e>e= = e> , be= = b .
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Proof. Set k ∶= ∣S∣ ⋅ ∣T∣ and suppose that there are words β0 , . . . , βk ∈ K(γ)
such that

[β i]E ∩ [β j]∗ = ∅ , for all i ≠ j .

We label each pair m < n of natural numbers by the semigroup elements

⟨ηK((β i ⊗ γ)[m, n))⟩i≤k and ⟨ηE((β i ⊗ β j)[m, n))⟩i≤ j≤k

By theTheorem of Ramsey, there exists an infinite set I ⊆ ω and elements
f̄ ∈ Tk+1 and t̄ ∈ Sk(k+1)/2 such that

ηK((β i ⊗ γ)[m, n)) = f i and ηE((β i ⊗ β j)[m, n)) = t i j ,

for all m < n in I. Since there are only k different possible pairs ⟨ f i , t i i⟩, we
can find i ≠ j with f i = f j and t i i = t j j . W.l.o.g. we may assume that i = 0
and j = 1. Then I induces
◆ an ηK-homogeneous factorisation of β i ⊗ γ of type ⟨c i , f0⟩, for each

i < 2, and
◆ an ηE-homogeneous factorisation of β i ⊗ β j of type ⟨s i j , t i j⟩, for all

i , j < 2.
Since β0 ≉∗ β1, there exists an infinite subset I0 ⊆ I such that

β0[i , j) ≠ β1[i , j) , for all i < j in I0 .

Let g0 < g1 < . . . be an enumeration of I0. We define α0 and α1 by

α0 ∶= β1[0, g1)β0[g1 ,∞) ,
α1[0, g1) ∶= β1[0, g1) ,

α1[g2i+1 , g2i+3) ∶= β1[g2i+1 , g2i+2)β0[g2i+2 , g2i+3) .

β0
β1
α0
α1

g0 g1 g2 g3 g4 g5 g6 g7 g8
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Fix a number m such that am = aπ , for all elements a of S or T, and set

h i ∶= g2mi+1 and H ∶= { h i ∣ i < ω } ⊆ I0 .

Then (iii) and (iv) follow by choice of I0. To prove (i) and (v), it is sufficient
to note that

ηK(α0 ⊗ γ) = c1 f1 ⋅ f ω0 = c1 f
ω
0 = ηK(β1 ⊗ γ) ,

ηK(α1 ⊗ γ) = c1 f1 ⋅ ( f1 f0)ω = c1 f ω0 = ηK(β1 ⊗ γ) .

In particular, the factorisation induced by H is ηK-homogeneous of type
⟨c1 , f0⟩. Concerning (ii), we suppose for a contradiction that α0 ⊗ α1 ∈ E.
Then

ηE(α0 ⊗ α1) = s11 t11 ⋅ (t01 t00)
ω

= s11 t11 ⋅ (t01 t11)
ω

= s11 ⋅ (t11 t01)
ω = ηE(α1 ⊗ β1)

and α1⊗β1 ∈ E implies by transitivity that α0⊗β1 ∈ E.Thus, β1 E α0 ≈∗ β0.
A contradiction.

It remains to prove (vi) and (vii). Set

r= ∶= t11 , r> ∶= t01 t00 , r< ∶= t10 t00 ,

e= ∶= r= , e> ∶= r
m
> , e< ∶= r

m
< , and b ∶= s11 t11 .

Then we have

r=r= = t11 t11 = t11 = r= ,

r>r= = t01 t00 t11 = t01 t00 t00 = t01 t00 = r> ,

r<r= = t10 t00 t11 = t10 t00 t00 = t10 t00 = r< ,
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which, by choice of m, implies that

e= ⋅ e= = r= ⋅ r= = r= = e= ,

e> ⋅ e> = r
m
> ⋅ r

m
> = r

m
> = e> ,

e< ⋅ e< = r
m
< ⋅ r

m
< = r

m
< = e< ,

e> ⋅ e= = r
m
> ⋅ r

m
= = r

m
> = e> ,

e< ⋅ e= = r
m
< ⋅ r

m
= = r

m
< = e< ,

b ⋅ e= = s11 t11 ⋅ t11 = s11 t11 = b .

This establishes (vii). For (vi), note that

ηE((α i ⊗ α j)[0, h0)) = s11 t11 = b= ,

ηE((α0 ⊗ α0)[h i , h j)) = r
2m( j−i)
= = r= = e= ,

ηE((α0 ⊗ α1)[h i , h j)) = r
m( j−i)
< = rm< = e< ,

ηE((α1 ⊗ α0)[h i , h j)) = r
m( j−i)
> = rm> = e> ,

ηE((α1 ⊗ α1)[h i , h j)) = r
2m( j−i)
= = r= = e= .

The main result of this section is the following characterisation of regular
languages that intersect at most countably many ≈∗-classes.

Theorem 6.7. Let K ⊆ (Σ × Γ)ω and E ⊆ (Σ × Σ)ω be regular languages

such that E is an equivalence relation on Σω
, and set

K(γ) ∶= { α ∈ Σω ∣ α ⊗ γ ∈ K } , for γ ∈ Γω .

We can compute a constant k such that, for every γ ∈ Γω
, the following statements

are equivalent.

(1) ∣K(γ)/E∣ ≤ ℵ0

(2) ∣K(γ)/E∣ < 2ℵ0

(3) K(γ) is E-covered by at most k ≈∗-classes.

Proof. Fix homomorphisms ηE ∶ (Σ × Σ)ω → S and ηK ∶ (Σ × Γ)ω → T
recognising E and K, and let k be the constant from Lemma 6.6.
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(1) ⇒ (2) is trivial.
(3) ⇒ (1) Note that every ≈∗-class is countable. Hence K(γ) can

contain only countably many E-classes.
(2) ⇒ (3) If K(γ) is not covered by k ≈∗-classes, we can find words

α0, α1, and a setH ⊆ ω as in Lemma 6.6.
Let h0 < h1 < . . . be an enumeration ofH. For every word σ ∈ [2]ω , we

denote by α̂σ the word with

α̂σ[0, h0) ∶= α1[0, h0) and α̂σ[h i , h i+1) ∶= ασ(i)[h i , h i+1) .

Then

ηK(α̂σ ⊗ w) = c f ω = ηK(α1 ⊗ w) implies α̂σ ⊗ w ∈ K ,

for all σ . Furthermore, α0[h i , h i+1) ≠ α1[h i , h i+1)means that

σ ≉∗ τ implies α̂σ ≉∗ α̂τ .

Hence, the set { α̂σ ∣ σ ∈ [2]ω } has size 2ℵ0 . To conclude the proof it is
therefore sufficient to show that

σ ≉∗ τ implies α̂σ ⊗ α̂τ ∉ E .

Let β0 ∶= α̂(01)ω and β1 ∶= α̂(10)ω . It is sufficient to establish the following
two claims.
(a) σ ≉∗ τ implies ηE(α̂σ ⊗ α̂τ) = ηE(β i ⊗ β j) for some i ≠ j .
(b) β0 ⊗ β1 ∉ E
(a) Set

m ∶= min{ i ∣ σ(i) ≠ τ(i) } , c i ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

e< if τ(i) > σ(i) ,
e> if τ(i) < σ(i) ,
e= if τ(i) = σ(i) .

By symmetry, wemay assume that σ(m) = 1. Since e< and e> are idempotent
and the elements b, e< , e> absorb e= from the right, it follows that

ηE(α̂σ ⊗ α̂τ) = b= ⋅ ∏
i<ω

c i = b=(e<e>)
ω = ηE(β0 ⊗ β1) .
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(b) Set γ i j l ∶= α̂(i j l)ω . By idempotency of e< and e> it follows that

ηE(γ010 ⊗ γ101) = b(e<e>e<)ω = b(e<e>)ω = ηE(β0 ⊗ β1) ,
ηE(γ101 ⊗ γ110) = b(e=e<e>)ω = b(e<e>)ω = ηE(β0 ⊗ β1) ,
ηE(γ010 ⊗ γ110) = b(e<e=e=)ω = beω< = ηE(α0 ⊗ α1) .

For a contradiction, suppose that β0 ⊗ β1 ∈ E. Then the first two of the
above equations imply that

γ010 ⊗ γ101 ∈ E and γ101 ⊗ γ110 ∈ E .

By transitivity of E and the third equation, we therefore have

γ010 ⊗ γ110 ∈ E and α0 ⊗ α1 ∈ E .

A contradiction.

Corollary 6.8. Let A be an ω-automatic structure and φ(x; z̄) a first-order
formula. Given a presentation of A we can compute a constant k such that, for

all tuples c̄ in A the following two statements are equivalent.

(1) The set defined by φ(x; c̄) is non-empty and countable.
(2) There exist k elements a0 , . . . , ak−1 ∈ φ(x; c̄)A such that φ(x; c̄)A is

covered by [a0]∗ , . . . , [ak−1]∗.

Corollary 6.9. A regular language K ⊆ Σω
is countable if, and only if, it is a

finite union of languages of the form Uw
ω
with regular U ⊆ Σ∗ and w ∈ Σ+.

Proof. (⇐) is trivial as every set of the formUw
ω is countable.

(⇒)We consider the equivalence relation

u ∼ v : iff u ∈ K⇔ v ∈ K .

Clearly, ∼ is regular. Fix u ∈ K. Then [u]∼ = K is countable and it follows
byTheorem 6.7 that [u]∼/≈∗ is finite. Consequently, there are finitely many
words w0 , . . . ,wn−1 such that every u ∈ K is ≈∗-equivalent to some w i .
Note that every regular language of ω-words can be written in the form K =

⋃i<m U iV
ω
i , for regular languagesU i ,Vi ⊆ Σ+. It follows that Vω

i = {v
ω
i },

for some v i ∈ Σ+ such that vωi is ≈∗-equivalent to one of the w j .
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Corollary 6.10. Let ∼ be a regular equivalence relation on Σω
with countably

many classes. Then there exists a regular language U ⊆ Σω
containing exactly

one representative of every ∼-class.

Proof. Applying Theorem 6.7 to the language K = Σω we obtain words
u0 , . . . , uk−1 ∈ Σω such that every ∼-class intersects some ≈∗-class [u i]∗.
These words satisfy the formula

φ(z̄) ∶= ∀x∃x′⋁
i<k
[x ∼ x′ ∧ x

′ ≈∗ z i] .

Hence, φ defines a non-empty regular language over Σk .This language must
contain some ultimately periodic word ū. Then the set P ∶= ⋃i<k[u i]∗ is of
the form

P ∶= ⋃
i<k

Σ∗pωi , for some p0 , . . . , pk−1 ∈ Σ+ .

Using the well-order ⊑u from Lemma 6.2, we can now define our set of
representatives by

φ(x) ∶= ⋁
i<k
[x ∈ Pi ∖ P<i

∧ ∀x′[x ∼ x′ ∧ x
′ ∈ P → x

′ ∉ P<i ∧ x ⊑p
ω
i
x
′]] ,

where

Pi ∶= Σ∗pωi and P<i ∶= P0 ∪ ⋅ ⋅ ⋅ ∪ Pi−1 .

(Note that Pi and p
ω
i are definable.)

Linear Order+

In the presense of a linear order, we can strengthenTheorem 6.7 as follows.

Theorem 6.11. Let K ⊆ Σω
, E ⊆ (Σ × Σ)ω , and R ⊆ (Σ × Σ)ω be regular

languages such that K is uncountable, E is an equivalence relation on Σω
, and

R is a strict linear order on K/E. There exists a regular set M ⊆ K such that

⟨M,R⟩ ≅ ⟨[2]ω , <lex⟩ and α ⊗ β ∉ E , for all α ≠ β in M .
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Proof. We fix homomorphisms

κ ∶ Σω → S , ε ∶ (Σ × Σ)ω → T , and ρ ∶ (Σ × Σ)ω → U

into finite ω-semigroups recognising, respectively, K, E, and R. Then

η ∶= ⟨ε, ρ⟩ ∶ (Σ × Σ)ω → T × U

also recognises E. Since K is uncountable, it is not covered by countably
many ≈∗-classes. Therefore, we can use Lemma 6.6 to find words α0 and α1
and an infinite setH ⊆ ω with the proprerties from the lemma.
Let h0 < h1 < . . . be an enumeration ofH and set

u ∶= α0[0, h0) , v0 ∶= α0[h0 , h1) , and v1 ∶= α1[h0 , h1) .

We claim thatM ∶= u{v0 , v1}ω is the desired set. For a word σ ∈ [2]ω , set

α̂σ ∶= uvσ(0)vσ(1)vσ(2)⋯ ∈ Σω .

Then

κ(α̂σ) = c f
ω = κ(α0) implies α̂σ ∈ K , for all σ .

We have therefore found a regular set M ⊆ K. It remains to check that it
has the desired properties.
First, set β i j ∶= u(v iv j)

ω and γ i j l ∶= u(v iv jv l)
ω . By idempotency of

e< and e> it follows that

η(γ010 ⊗ γ101) = b(e<e>e<)ω = b(e<e>)ω = η(β01 ⊗ β10) ,
η(γ101 ⊗ γ110) = b(e=e<e>)ω = b(e<e>)ω = η(β01 ⊗ β10) ,
η(γ010 ⊗ γ110) = b(e<e=e=)ω = beω< = η(α0 ⊗ α1) .

We claim that β01 ⊗ β10 ∈ E. For a contradiction, suppose otherwise. Then
the first two of the above equations imply that

γ010 ⊗ γ101 ∈ E and γ101 ⊗ γ110 ∈ E .
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By transitivity of E and the third equation, we therefore have

γ010 ⊗ γ110 ∈ E and α0 ⊗ α1 ∈ E .

A contradiction.
Having shown that β01 ⊗ β10 ∉ E, it follows that

β01 ⊗ β10 ∈ R or β10 ⊗ β01 ∈ R .

By symmetry, we may assume the former. To conclude the proof, it is suffi-
cient to show that

α̂σ ⊗ α̂τ ∈ R iff σ <lex τ .

(If β10 ⊗ β01 ∈ R, the ordering would be reversed.) Fix σ ≠ τ. Then we can
write η(α̂σ , α̂τ) as the product of some sequence in b{e< , e= , e>}ω . By the
idempotency and absorption relations between the elements b, e< , e= , e>, we
can transform every such product into one of the following forms:

a0 ∶= b(e<e>)
ω

a5 ∶= b(e>e<)
ω

a1 ∶= b(e<e>)
n
e
ω
< a6 ∶= b(e>e<)

n
e
ω
>

a2 ∶= b(e<e>)
n+1

e
ω
= a7 ∶= b(e>e<)

n+1
e
ω
=

a3 ∶= b(e<e>)
n
e<e

ω
> a8 ∶= b(e>e<)

n
e>e

ω
<

a4 ∶= b(e<e>)
n
e<e

ω
= a9 ∶= b(e>e<)

n
e>e

ω
= .

Furthermore, it is one of the values of the left side if, and only if, we have
σ(i) < τ(i), where i is the least index with σ(i) ≠ τ(i). Consequently, we
have

σ <lex τ iff η(α̂σ ⊗ α̂τ) = a i , for some i < 5 .

As R is anti-symmetric, it is therefore sufficient to find, for every i < 5, words
x i ⊗ y i ∈ R with η(x i ⊗ y i) = a i . We already know that

β01 ⊗ β10 ∈ R and η(β01 ⊗ β10) = b(e<e>)ω = a0 .
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Since η recognises R, this implies that

η(x ⊗ y) = a0 implies x ⊗ y ∈ R .

For the remaining cases, it is therefore sufficient to find words x i , y i , z i such
that

η(x i ⊗ y i) = a0 = η(y i ⊗ z i) and η(x i ⊗ z i) = a i .

By transitivity of R, it then follows that x i ⊗ z i ∈ R.
(i = 1) Setting

x ∶= u(v0v1)
n(v0v0v1)

ω ,

y ∶= u(v1v0)
n(v0v1v0)

ω ,

z ∶= u(v1v0)
n(v1v0v1)

ω ,

we have

η(x ⊗ y) = b(e<e>)
n(e=e<e>)

ω = b(e<e>)
ω = a0 ,

η(y ⊗ z) = b(e=e=)
n(e<e>e<)

ω = b(e<e>)
ω = a0 ,

η(x ⊗ z) = b(e<e>)
n(e<e=e=)

ω = b(e<e>)
n
e
ω
< = a1 .

(i = 2) Setting

x ∶= u(v0v1)
n+1(v0v1)

ω ,

y ∶= u(v0v1)
n+1(v1v0)

ω ,

z ∶= u(v1v0)
n+1(v0v1)

ω ,

we have

η(x ⊗ y) = b(e=e=)
n+1(e<e>)

ω = b(e<e>)
ω = a0 ,

η(y ⊗ z) = b(e<e>)
n+1(e>e<)

ω = b(e<e>)
ω = a0 ,

η(x ⊗ z) = b(e<e>)
n+1(e=e=)

ω = b(e<e>)
n+1

e
ω
= = a2 .

876



6 Partition theorems

(i = 3) Setting

x ∶= u(v0v1)
n
v0(v1v0v1)

ω ,

y ∶= u(v0v1)
n
v0(v1v1v0)

ω ,

z ∶= u(v1v0)
n
v1(v0v0v1)

ω ,

we have

η(x ⊗ y) = b(e=e=)
n
e=(e=e<e>)

ω = b(e<e>)
ω = a0 ,

η(y ⊗ z) = b(e<e>)
n
e<(e>e>e<)

ω = b(e<e>)
ω = a0 ,

η(x ⊗ z) = b(e<e>)
n
e<(e>e=e=)

ω = b(e<e>)
n
e<e

ω
> = a3 .

(i = 4) Setting

x ∶= u(v0v1)
n
v0(v0v1)

ω ,

y ∶= u(v0v1)
n
v0(v1v0)

ω ,

z ∶= u(v1v0)
n
v1(v0v1)

ω ,

we have

η(x ⊗ y) = b(e=e=)
n
e=(e<e>)

ω = b(e<e>)
ω = a0 ,

η(y ⊗ z) = b(e<e>)
n
e<(e>e<)

ω = b(e<e>)
ω = a0 ,

η(x ⊗ z) = b(e<e>)
n
e<(e=e=)

ω = b(e<e>)
n
e<e

ω
= = a4 .

Fun$tion+

Finally, we derive a partition theorem based on functions. We start with a
simple lemma.

Lemma 6.12. Let R ⊆ (Σ × Γ)ω be regular and set

R(γ) ∶= { α ∈ Γω ∣ γ ⊗ α ∈ R } , for γ ∈ Σω .

There exist constants c, d such that, for every ultimately periodic word γ = wvω ∈
Σω

with period p = ∣v∣ and R(γ) ≠ ∅, there is some ultimately periodic word
α = zuω ∈ R(γ) with ∣z∣ ≤ ∣w∣ + cp and ∣u∣ = i p, for some i ≤ d.
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Proof. Fix a homomorphism η ∶ (Σ × Γ)ω → S into a finite ω-semigroup
recognising R, let γ = wvω ∈ Σω be an ultimately periodic word with period
p ∶= ∣v∣, and suppose that β ∈ R(γ). Set n ∶= ∣w∣. By theTheorem of Ramsey,
there exists an infinite setH ⊆ ω and an element a ∈ S such that

η((γ ⊗ β)[n + i p, n + jp)) = a , for all i < j inH .

Let u be a word of minimal length kp such that

η(vk ⊗ u) = a .

If k > ∣S∣, there would be two prefixes of u with the same image under η and
we could shorten the word u. Hence, minimality implies that k ≤ ∣S∣. Set

z
′ ∶= β[0, h) where h ∶= minH ,

and let z be the shortest word of length ∣w∣ + i p, for some i, such that

η(γ[0, ∣w∣ + i p) ⊗ z) = η(γ[0, h) ⊗ z
′) .

By the same pumping argument as above, it follows that i ≤ ∣S∣. It follows
that α ∶= zuω has period kp and

η(γ ⊗ α) = η(γ ⊗ z
′
u
ω) = η((γ ⊗ β)[0, h)) ⋅ aω = η(γ ⊗ β) ,

implies that α ∈ R(γ).

Theorem 6.13. Let A be an uncountable ω-automatic structure. There exists a

number k > 0 such that, for every FO-definable function f ∶ Ak+1 → A, there

exists uncountable regular sets U ⊆ Ak
and V ⊆ A such that

f (u, v) = f (u′ , v) , for all u, u′ ∈ U , v ∈ V .

Proof. We fix a presentation ⟨Lδ , L= , (LR)R⟩ of A and let κ ∶ Σω → Sδ
and η ∶ (Σ × Σ)ω → S= be homomorphisms into finite ω-semigroups
recognising, respectively, Lδ and L=. SinceA is uncountable, it is not covered
by countably many ≈∗-classes. Therefore, we can use Lemma 6.6 to find
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6 Partition theorems

words α0 and α1 and an infinite set H ⊆ ω with the properties from the
lemma. We proceed in several steps.

(i) Let h0 < h1 < . . . be an enumeration ofH and set

u ∶= α0[0, h0) , v0 ∶= α0[h0 , h1) , and v1 ∶= α1[h0 , h1) .

Note that ∣v0∣ = ∣v1∣. LetM ∶= u{v0 , v1}ω . As in the proof ofTheorem 6.7
it follows that

β ≉∗ β′ implies β ⊗ β′ ∉ L= , for β, β′ ∈M .

Set k ∶= ∣v0∣ + 1 and suppose that f ∶ Ak+1 → A is FO-definable. Fix a
homomorphism φ ∶ (Σk+2)ω → S f recognising f and set m ∶= ∣S f ∣. We
consider the sets

U0 ∶= { uv
ω ∣ v ∈ (v0 + v1)

m
x0 } , where x0 ∶= vm(2k+1)0 ,

V0 ∶= { uv
ω ∣ v ∈ x1(v0 + v1)

m(2k+1) } , where x1 ∶= vm0 .

ThenU0 ,V0 ⊆M and β ≉∗ β′, for all β ≠ β′ inU0 ∪V0.
Given ᾱ ∈ Uk

0 and β ∈ V0, let γ ∶= f (ᾱ, β). Since ᾱ ⊗ β is ultimately
periodic with a period dividing 2m(k + 1), it follows by Lemma 6.12 that
γ is ultimately periodic with period at most r ∶= d ⋅ 2m(k + 1) and a prefix
of length at most s ∶= ∣u∣ + c ⋅ ∣v0∣, for some constants c, d (independent of
ᾱ and β). Set h i ∶= s + ri.
For an infinite word γ and i < ω, we set

p i(γ) ∶= γ[h i , h i + m∣v0∣) ,

q i(γ) ∶= γ[h i + m∣v0∣, h i + 2m(k + 1)∣v0∣) .

Thus,

ᾱ = u ⋅ p0(ᾱ) ⋅ x0 ⋅ p1(ᾱ) ⋅ x0 ⋅ p2(ᾱ) . . . = u ⋅ (p0(ᾱ) ⋅ x0)ω

β = u ⋅ x1 ⋅ q0(β) ⋅ x1 ⋅ q1(β) ⋅ x1 ⋅ q2(β) . . . = u ⋅ (x1 ⋅ q0(β))ω .

(ii) We fix words ᾱ, ᾱ′ ∈ Uk
0 and β, β′ ∈ V0 as follows. By definition,

∣Uk
0 ∣ = ∣p0[U

k
0]∣ = ∣Σ∣

mk and ∣V0∣ = ∣q0[V0]∣ = ∣Σ∣m(2k+1) .

879



XII. Automatic Structures

By choice of k, it follows that

∣Uk
0 ∣ = ∣Σ∣

mk ≥ ∣Σ∣m ⋅ ∣Σ∣m⋅∣v0 ∣ > m ⋅ ∣Σ∣m⋅∣v0 ∣ = ∣S f ∣ ⋅ ∣Σm⋅∣v0 ∣∣ .

Consequently, for every β ∈ V0, there exist two tuples ᾱβ , ᾱ′β ∈ U
k
0 such

that, for some/all i < ω,

p i( f (ᾱβ , β)) = p i( f (ᾱ′β , β))
and φ(p i(ᾱβ) ⊗ x1 ⊗ p i( f (ᾱβ , β))) = φ(p i(ᾱ′β) ⊗ x1 ⊗ p i( f (ᾱ′β , β))) .

Then there is some pair ᾱ, ᾱ′ that is assigned to at least

∣V0∣

∣Uk
0 ×U

k
0 ∣
=
∣Σ∣m(2k+1)

∣Σ∣mk ⋅ ∣Σ∣mk = ∣Σ∣
m > m

words β ∈ V0. Consequently, we can find two words β, β′ ∈ V0 both associ-
ated with ᾱ, ᾱ′ such that

φ(x0 ⊗ q i(β) ⊗ q i( f (ᾱ, β))) = φ(x0 ⊗ q i(β′) ⊗ q i( f (ᾱ, β′)))

(iii) For every word σ ∈ [2]ω , we define words α̂σ ∈M
k and β̂σ ∈M by

α̂σ[0, h0) ∶= ᾱ[0, h0) ,

α̂σ[h i , h i+1) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

ᾱ[h i , h i+1) if σ(i) = 0 ,
ᾱ′[h i , h i+1) if σ(i) = 1 ,

βσ[0, h0) ∶= β[0, h0) ,

βσ[h i , h i+1) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

β[h i , h i+1) if σ(i) = 0 ,
β′[h i , h i+1) if σ(i) = 1 .

Then ᾱ[h i , h i+1) ≠ ᾱ′[h i , h i+1) implies that

σ ≠ τ ⇒ α̂σ ≉∗ α̂τ ⇒ α̂σ ⊗ α̂τ ∉ L
k
= .
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6 Partition theorems

Similarly, β[h i , h i+1) ≠ β′[h i , h i+1) implies that

σ ≠ τ ⇒ β̂σ ≉∗ β̂τ ⇒ β̂σ ⊗ β̂τ ∉ L= .

For ρ ∈ [2]ω , set γρ ∶= f (ᾱ, βρ). Then

φ(ᾱσ ⊗ βρ ⊗ γρ)

= φ((ᾱσ ⊗ βρ ⊗ γρ)[0, h0)) ⋅ ∏
i<ω

φ((ᾱσ ⊗ βρ ⊗ γρ)[h i , h i+1))

= φ((ᾱσ ⊗ βρ ⊗ γρ)[0, h0))

⋅ ∏
i<ω
[φ(p i(ᾱσ ⊗ βρ ⊗ γρ)) ⋅ φ(q i(ᾱσ ⊗ βρ ⊗ γρ))]

d

= φ((ᾱσ ⊗ βρ ⊗ γρ)[0, h0))

⋅ ∏
i<ω
[φ(p i(ᾱσ) ⊗ x1 ⊗ p i( f (ᾱ, βρ))))

⋅ φ(x0 ⊗ q i(βρ) ⊗ q i( f (ᾱ, βρ))))]
d

= φ((ᾱ ⊗ βρ ⊗ f (ᾱ, βρ))[0, h0))

⋅ ∏
i<ω
[φ(p i(ᾱ) ⊗ x1 ⊗ p i( f (ᾱ, βρ))))

⋅ φ(x0 ⊗ q i(βρ) ⊗ q i( f (ᾱ, βρ))))]
d

= φ(ᾱ ⊗ βρ ⊗ f (ᾱ, βρ))

implies that

f (ᾱσ , βρ) = f (ᾱ, βρ) , for all σ ∈ [2]ω .

Consequently,

U ∶= { α̂σ ∣ σ ∈ [2]ω } and V ∶= { β̂ρ ∣ ρ ∈ [2]ω }

are the desired uncountable regular sets.

Remark. This theorem also holds if the function f is FOC-definable. The
proof is exactly the same usingTheorem 7.4 to show that the graph of f is
regular. ⌟
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Countable Stru$ture+

Let us conclude this section with a remark about countable ω-automatic
structures.

Theorem 6.14. Let A be a countable structure. The following conditions are

equivalent.

(1) A is ω-automatic
(2) A is automatic.

(3) A has an injective ω-automatic presentation.

Proof. (3)⇒ (1) is trivial ; (1)⇒ (2) follows by Corollary 6.10; and (2)⇒ (3)
holds since we can turn every injective automatic presentation of A into an
injective ω-automatic one. (We can turn every finite word w encoding an
element of A into an ω-word by appending, say, ◻ω .)

For ω-tree automatic structures, we would like to have results analogous
to those above. But due to the much more involved combinatorics we are
only able to handle the case of injective presentations, i.e., we cannot count
equivalence classes but only elements. This results in the following weaker
result.

Theorem 6.15. A countable structure A has an injective ω-tree automatic
presentation if, and only if, A is tree automatic.

Proof. (⇒) Fix an injective tree automatic presentation of A. We can turn
every finite tree into an infinite one by appending some padding symbol ◻.
This operation preserves regularity.
(⇐) Let ⟨Lδ , (LR)R⟩ be an injective ω-automatic presentation ofA. We

can use the function fromTheorem V.6.27 to encode every tree in Lδ by a
finite one. Clearly, the images of Lδ and LR under this map are regular and
form a tree automatic presentation of A.

There are still several open questions regarding the existence of injective
presentations. For instance, every injective ω-automatic presentation can be
equipped with a linear order (say, the lexicographic one). Does the converse
hold?
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7 Counting quantifiers

Open Questions.

(a) Is it true that every linearly ordered ω-automatic structure has an injective
presentation?

(b) Does an analogue of Theorem 6.14 hold for countable ω-tree automatic
structures?

(c) Is it true that an ω-automatic structure has an injective ω-automatic
presentation if, and only if, it has an injective ω-tree automatic one?

(d) Is there an ω-tree automatic structure that is not ω-automatic?

7 Counting Quanti[er+

Wehave shown inTheorem 1.7 that every automatic structure has a decidable
first-order theory. This result can be extended to the following version of
first-order logic with counting quantifiers.

Definition 7.1. First-order logic with counting quantifiers FOC is the extension
of FO by quantifiers of the form

◆ ∃κx ‘There exist at least κ many x.’ , for every infinite cardinal κ, and
◆ ∃k ,m

x ‘The number of values x is finite and congruent k modulo m.’ ,
for 0 ≤ k < m < ω. ⌟

Using injective presentations it is easy to eliminate such quantifiers.

Lemma 7.2. Let L be a regular language of finite words or finite trees over the

alphabet Σ◻×Γ◻.The following languages are also regular, and one can effectively

compute automata recognising them.

(a) K∞ ∶= {w ∣ there are only finitely many u with w ⊗ u ∈ L } .

(b) Kkm ∶= {w ∣ the number of u with w ⊗ u ∈ L is finite and congruent

k modulo m } .

Proof. (a)We start with the case of words. Note that w ∈ K∞ if, and only if,

w ⊗ u ∈ L implies ∣u∣ < ∣w∣ + n ,
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where n is the number of states of some automaton recognising L. (If u is
longer, we can pump some factor to obtain infinitely many words u′ with
w ⊗ u

′ ∈ L. This argument is spelt out in detail in Lemma 8.2 below.) Let
h ∶ (Σ◻ × Γ◻)∗ → Σ∗◻ be the projection to the first component. It follows
that

w ∈ K∞ iff there is no k ≥ n with w◻k ∈ h[L] .

LetA be an automaton for h[L]. We can construct an automaton for K∞
by

◆ removing fromA all transitions with the letter ◻, and

◆ marking a state p as final if inA there is no path labelled by ◻n starting
at p.

The proof for trees is similar. There are infinitely many u with w ⊗ u ∈ L
if, and only if, some tree u with w ⊗ u ∈ L contains a path that is at least n
edges longer than the corresponding path of w. An automaton can recognise
the complement of K∞ by guessing such a tree.
(b)We start with the case of word languages. Suppose that L = φ−1[P]

for some homomorphism φ ∶ (Σ◻ × Γ◻)∗ →M into a finite monoid M. We
will construct a homomorphism ψ ∶ Σ∗ → N where N ∶= [m]M such that

ψ(w) = σ iff for all a ∈M, the number of u with φ(w ⊗ u) = a

is congruent σ(a)modulo m .

To do so, we define ψ by

ψ(c)(a) ∶= ∣{ d ∈ Γ ∣ φ(c ⊗ d) = a }∣ mod m , for c ∈ Σ and a ∈M.

The monoid multiplication is given by

(σ ⋅ τ)(a) ∶= ∑{ σ(b) ⋅ τ(c) ∣ b, c ∈M , b ⋅ c = a } mod m .

It is straightforward to check that [m]M together with this product forms
a monoid. For a ∈ M, let na be the number of words u ∈ Γ∗ such that
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φ(⟨⟩ ⊗ u) = a. Then we have Kkm = ψ−1[Q] ∩ K∞ where Q ⊆ [m]M is
the set of all functions σ such that

∑{ σ(a) ⋅ nb ∣ a ⋅ b ∈ P , nb finite} ≡ k (mod m) .

The proof for trees is similar. Given a homomorphism into a tree algebra
recognising L, we can use the same construct as above to find a homomorph-
ism recognising Kkm . Alternative, we can use an automata construction.
Given an automatonA for L, we can build an automaton B that computes,
for each vertex v of the input tree w and each state q ofA, the number of
trees u (modulo m) such that from state qA accepts the tree w∣v ⊗ u. These
numbers can be computed by B while reading the input tree w from the
leaves to the root.

Lemma 7.3. Let R ⊆ Σω × Γω
and E ⊆ Σω × Σω

be regular and suppose that

E is an equivalence relation. The following languages are also regular, and one

can effectively compute automata recognising them.

(a) K∞ ∶= {w ∣ there are infinitely many E-classes [u]E with

u ⊗ w ∈ R } .

(b) K lm ∶= {w ∣ the number of E-classes [u]E with u ⊗ w ∈ R is finite

and congruent l modulo m } .

Proof. (a) By Theorem 6.7, w ∈ K∞ if, and only if, there is some ≈∗-
class [u]∗ such that the set

{ [v]E ∣ v ⊗ w ∈ R, [v]E ∩ [u]∗ ≠ ∅}

is infinite. Let ⊑u be the well-ordering from Lemma 6.2. It follows that
w ∈ K∞ if, and only if, the set

{ v ∣ v ⊗ w ∈ R, v is the ⊑u-minimal element of [v]E ∩ [u]∗ }

is infinite. This is equivalent to the condition that, for every n < ω, there
exists some v ∈ Γω such that
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◆ v ⊗ w ∈ R ,

◆ v is the ⊑u-minimal element of [v]E ∩ [u]∗, and

◆ v(i) ≠ u(i) , for some i ≥ n.

These conditions are all regular.
(b) Let k be the constant fromTheorem6.7 and let⊑u be thewell-ordering

from Lemma 6.2. For u0 , . . . , uk−1 ∈ Σω , let S i(ū) be the set of all words
v ∈ Σω such that

◆ v ⊗ w ∈ R ,

◆ v is the ⊑u i -minimal element of [v]E ∩ [u i]∗ , and

◆ [v]E ∩ ([u0]∗ ∪ ⋅ ⋅ ⋅ ∪ [u i−1]∗) = ∅ .

Then w ∈ K lm if, and only if, w ∉ K∞ and there are u0 , . . . , uk−1 ∈ Σω such
that

◆ v ⊗ w ∈ R implies [v]E ∩ [u i]∗ ≠ ∅, for some i, and

◆ ∣S0(ū)∣ + ⋅ ⋅ ⋅ + ∣Sk−1(ū)∣ ≡ l (mod m) .

It remains show that the latter condition is regular. It is sufficient to show
that a statement of the form ∣S i(ū)∣ ≡ l (mod m) is regular. Note that all
ω-words v ∈ [u i]∗ can be represented by the finite prefix where they differ
from u i . Consequently, S i(ū) corresponds to a finite set of finite words and
we can use the same construction as in Lemma 7.2 to count them modulo m.

Theorem 7.4. Given an automatic presentation π for some structure A and an

FOC-formula φ(x̄), one can effectively compute an automaton recognising the
relation φA

defined by φ. The same holds for ω-automatic and tree automatic
presentations, and for injective ω-tree automatic ones.

Proof. We start with the automatic and tree automatic case. Then we can
use Proposition 5.6 to replace the given presentation π by an injective one π′.
Since the function mapping between these presentations is regular, we can
translate every automaton for π′ back into one for π.
Hence, let us assume that π is injective. We construct the desired auto-

maton by induction on φ. For boolean operations and the usual first-order
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7 Counting quantifiers

quantifiers, we proceed as inTheorem 1.7. The quantifiers ∃ℵ0 and ∃k ,m can
be eliminated using Lemma 7.2. Finally, note that, for uncountable cardin-
als κ, a formula of the form ∃κ yφ is always false. Hence, the relation defined
by it is empty and, therefore, regular.
For ω-automatic structures, we cannot assume that the presentation is

injective. Instead, we use Corollary 6.8 to eliminate the quantifier ∃κ , for
uncountable κ, and Lemma 7.3 for the quantifiers ∃ℵ0 and ∃k ,m .

Finally, let A be an ω-tree automatic structures with an injective present-
ation. Fixing an interpretation A ≤FO ℘(Tbin), we can translate every
FOC-formula φ(x̄) for A into an C2MSO-formula φ̂(X̄) for Tbin. ByThe-
oremV.6.4 (c), this formula is equivalent to anMSO-formula ψ̂(X̄). Finally,
translating this formula back to the structure ℘(Tbin), we obtain an FO-
formula ψ(x̄) that is equivalent to φ(x̄). We can translate this formula to
the desired automaton usingTheorem 1.7.

Theorem 7.5. Let A be a structure with an ω-automatic presentation or an
injective ω-tree automatic one. Then A has a decidable FOC-theory.

Proof. We can use Theorem 7.4 to translate a given FOC-sentence φ into
an automatonA. As a sentence φ has no free variables, this automaton is
over the unary alphabet Σ0 = {⟨⟩}. Furthermore,A accepts some input if,
and only if, φ holds. As emptiness for tree automata is decidable, the claim
follows.

Besides counting quantifiers, regular relations are also closed under several
other generalised quantifiers. Let us take a look at two of them.

Definition 7.6. (a) For a formula φ(x̄0 . . . x̄n−1 , ȳ) where ∣x̄0∣ = ⋅ ⋅ ⋅ =
∣x̄n−1∣ = k, a structureA, and a tuple c̄ inA, we define theRamsey quantifierH
by setting

A ⊧ H[x̄0 , . . . , x̄n−1]φ(x̄0 , . . . , x̄n−1 , c̄)

if, and only if, there exists an infinite relationH ⊆ Ak such that

A ⊧ φ(ā0 , . . . , ān−1 , c̄) , for all pairwise distinct ā0 , . . . , ān−1 ∈ H .
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XII. Automatic Structures

(b) For a formula φ(X) in which the second-order variable X (not neces-
sarily monadic) occurs only negatively, we denote byUXφ(X) the statement
that there exists an infinite relation X satisfying φ.

(c) We denote by FOC(H) and FOC(U) the coresponding extensions of
FOC by these quantifiers. ⌟

Example. (a) We can express that an order tree T = ⟨T , ≤pf ⟩ contains an
infinite branch by the formula

φ ∶= H[x , x′][x <pf x
′ ∨ x

′ <pf x] .

(b) We can express than an undirected graph G = ⟨V , E⟩ contains an
infinite clique by the formulae

φ ∶= H[x , x′][Exx′]

or ψ ∶= UZ∀xy[x ∈ Z ∧ y ∈ Z ∧ x ≠ y → Exy] . ⌟

Remark. Note that we can express the quantifier H with the help of U since

H[x̄0 , . . . , x̄n−1]φ ≡ UZ∀x̄0⋯∀x̄n−1[⋀
i<n

Zx̄ i ∧⋀
i< j

x̄ i ≠ x̄ j → φ] .
⌟

To prove that these quantifiers preserve regularity, we start with the fol-
lowing observation.

Definition 7.7. Let Σ be an alphabet.
(a) A comb of words is a sequence γ = ⟨s i , t i⟩i<ω where s i , t i ∈ Σ+ are

words with ∣t i ∣ ≤ ∣s i ∣.

s0
s1

s2
s3

s4
s5

t0
t1

t2
t3

t4
t5

The set encoded by a comb γ is

{ s0⋯s i−1 t i ∣ i < ω } .
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7 Counting quantifiers

We usually do not distinguish between a comb and the set it represents. In
particular, we write w ∈ γ for w = s0⋯s i−1 t i .
(b) A comb of trees is a pair γ = ⟨s, ⟨t i⟩i<ω⟩ where s is an infinite tree

over Σ and ⟨t i⟩i is a sequence of finite trees over Σ such that

dom(t i) ⊆ s ⊓ t i+1 , for all i < ω ,

where s ⊓ t ∶= { v ∈ dom(t) ∣ s(u) = t(u) for all u ≤pf v }. ⌟

Lemma 7.8. A set P of finite words or finite trees is infinite if, and only if, there

exists a comb γ with γ ⊆ P.

Proof. (⇐) is trivial since every comb encodes an infinite set. For (⇒),
let P be an infinite set of finite words or finite trees. The closure of P un-
der prefixes together with the prefix-ordering ≤pf forms an infinite finitely-
branching tree which contains an infinite branch, by the Lemma of Kőnig.
Consequently, we can find an infinite word/tree ζ such that every finite prefix
z <pf ζ is a prefix of some p ∈ P. Using ζ , we can pick an infinite sequence
(p i)i<ω of elements of P such that

dom p i ⊆ ζ ⊓ p i+1 , for all i < ω .

In the case of trees, the pair ⟨ζ , ⟨p i⟩i⟩ forms the desired comb. For words,
we inductively construct two sequences (s i)i and (t i)i of words by

p i ⊓ ζ = s0⋯s i and p i = s0⋯s i t i .

Then ⟨s i+1 , t i⟩i<ω is the desired comb.

The advantage of combs over arbitrary infinite sets is that they can easily
be encoded as ω-words/ω-trees. Therefore they can be used as a weak kind
of power-set operation on automatic structures.

Definition 7.9. Let A be an automatic or tree-automatic Γ-structure with
an injective presentation π.

889



XII. Automatic Structures

(a) For k < ω, we denote by k ×A the structure with universe A+A
k , all

relations from A (on the universe A), and the additional relations

pri ∶= { ⟨a, b̄⟩ ∈ A×A
k ∣ a = b i } , for i < k .

(b)We denote by cb(A) the (Γ+{C , in})-structure with universeA+C,
where C is the set of all combs γ such that γ ⊆ A. The relations are those
of A, the predicate C, and the element relation

in ∶= { ⟨a, γ⟩ ∈ A× C ∣ a ∈ γ } . ⌟

Lemma 7.10. Let A be an automatic structure or a tree-automatic one with an

injective presentation ⟨Lδ , (LR)R⟩ over the alphabet Σ.
(a) The structure k × A has an automatic/tree-automatic presentation such

that the set A is represented by Lδ .

(b) cb(A) has an injective ω-automatic/ω-tree automatic presentation such
that the set A is represented by Lδ◻

ω
, for some new symbol ◻ ∉ Σ.

Proof. For the first claim, we can encode elements a ∈ A as in the given
presentation while tuples ā ∈ Ak are encoded by words/trees of the form
$(w0 ⊗⋯⊗wk−1) over the alphabet Σk +{$} where w i encodes a i and $ is
a new marker symbol.
For the second one, first note that A has an ω-automatic presentation

where each a ∈ A is encoded by the ω-word a◻ω . Furthermore, we can
encode a comb γ = ⟨s i , t i⟩i by the ω-word

(s0 ⊗ t0 ⊗ $)(s1 ⊗ t1 ⊗ $)⋯ ∈ (Σ2
◻ × {$,◻})

ω ,

s0
t0

$ ◻⋯◻

s1
t1

$ ◻⋯◻

s2
t2

$ ◻⋯◻

s3
t3

$ ◻⋯◻

s4
t4

$ ◻⋯◻

s5
t5

$ ◻⋯◻

s6
t6

$ ◻⋯◻

s7
t7

$ ◻⋯◻

s8
t8

$ ◻⋯◻

where the third component is used as a marker for the beginning of a new
segment. Clearly, this language is regular and so is the element relation in.
A similar encoding works for trees.
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7 Counting quantifiers

Proposition 7.11. Let A be an automatic or tree-automatic structure. For every

FOC(U)-formula φ(x̄) (without free second-order variables), we can effectively
construct an FOC-formula ψ(x̄) such that

A ⊧ φ(ā) iff cb(k × A) ⊧ ψ(ā) , for all ā in A ,

where k is the maximal arity of a second-order variable in φ.

Proof. Let ψ be the formula obtained from φ by replacing

◆ every subformula of the form UZϑ by ∃zϑ and

◆ every atomic subformula of the form Zȳ (with n ∶= ∣ ȳ∣) by

∃u[in(u, z) ∧ ⋀
i<n

pri(y i , u) ∧ ⋀
n≤i<k

pri(yn−1 , u)] .

To show that this translation works, first note that every infinite relation
R ⊆ A

n , with n ≤ k, can be encoded as a subset R′ ⊆ A
k : we can turn

every n-tuple into a k-tuple by repeating the last component (k − n) times.
Consequently, every such relation can be represented by a comb over Ak .

Therefore we only have to show that we can restrict second-order quanti-
fiers to subsets of Ak that can be encoded by a comb without changing the
meaning of the formula. A straightforward induction on φ using Lemma 7.8
establishes that, for every FOC-formula φ(x̄ , Ȳ ,Z)where the variables Ȳ ,Z
occur only negatively, for all parameters ā in A, and all combs γ̄,

A ⊧ UZφ(ā, γ̄,Z) iff A ⊧ φ(ā, γ̄, δ) , for some comb δ .

Theorem 7.12. Given an injective automatic or tree-automatic presentation π
for some structure A and an FOC(U)-formula φ(x̄) (without free second-order
variables), one can effectively compute an automaton recognising the relation φA

defined by φ.

Proof. By Proposition 7.11, there exists an FOC-formula ψ(x̄) and a con-
stant k such that

A ⊧ φ(ā) iff cb(k × A) ⊧ ψ(ā) , for all ā in A .
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XII. Automatic Structures

We have shown in Lemma 7.10 that cb(k × A) is ω-automatic/ω-tree auto-
matic, and that the corresponding presentation restricts on the set A to π.
Therefore, we can useTheorem 7.12 to construct an automatonA recognising
ψcb(k×A). Since the presentations of the two structures are compatible, this
automaton also recognises ψA.

Corollary 7.13. The classes of automatic structures and tree-automatic structures

are closed under many-dimensional FOC(U)-interpretations.

8 Proving Non-Automati$ity

Proving that a certain structure is automatic is rather easy: one just has to
find a presentation. But proving that it is not automatic is much harder:
one has to show that no presentation can exist. The goal of this section is to
develop tools to make this task easier. The central idea of all what follows is
contained in the following observation (which is a variant of LemmaXI.7.10).

Definition 8.1. Let A be a relational structure.
(a) Given a presentation π and an element a ∈ A, we write

∥a∥ ∶= min{ ∣w∣ ∣ π(w) = a } .

For tuples ā and sets S, we set

∥ā∥ ∶= max
i
∥a i∥ and ∥S∥ ∶= max

a∈S
∥a∥ .

(b) We say that a relation R ⊆ A
k+l has finite out-degree if, for every

ā ∈ Ak , there are only finitely many b̄ ∈ Al with āb̄ ∈ R. A formula φ(x̄ , ȳ)
has finite out-degree if the relation φA defined by it has. ⌟

Lemma 8.2. Let A be an automatic structure with an injective presentation.

For every FOC(U)-formula φ(x̄; z̄), there exists a constant k with the following
two properties.

(i) For all tuples ā, c̄ ⊆ A, there exist a tuple ā′ such that

A ⊧ φ(ā; c̄) ↔ φ(ā′; c̄) and ∥ā′∥ ≤ ∥c̄∥ + k .
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8 Proving non-automaticity

(ii) ∥ā∥ > ∥c̄∥ + k implies that there are infinitely many tuples ā
′
with

A ⊧ φ(ā; c̄) ↔ φ(ā′; c̄) .

Proof. Fix a morphism η ∶ (Σm
◻ )

∗ →M into a finite monoid recognising the
relation φA. We claim that k ∶= ∣M∣ is the desired constant. For the proof,
fix tuples ā and c̄. If ∥ā∥ ≤ ∥c̄∥ + k, there is nothing to do. Hence, we may
assume that ∥ā∥ > ∥c̄∥ + k. We can factorise the word ā⊗0 ⊗ c̄

⊗ as wu where
∣w∣ = ∥c̄∥. Then ∣u∣ > k implies that there exists a factorisation u = u0u1u2
such that η(u0) = η(u0u1).

a0
a1
a2
c0
c1

w u0 u1 u2

Consequently,

η(wu0u1u2) = η(wu0(u1)nu2) , for all n < ω .

Let ān c̄n be the tuple encoded bywu0(u1)nu2. By choice ofw it follows that
all components of u corresponding to the elements c i contain only blanks.
Hence, c̄n = c̄ and we have

A ⊧ φ(ā; c̄) ↔ φ(ān ; c̄) , for all n < ω .

Furthermore, ∥ā0∥ < ∥ā∥. Replacing ā by ā0 and repeating this construction
we will therefore eventually obtain a tuple ā0 with ∥ā0∥ ≤ ∥c̄∥ + k.

The fact that we will mainly use below is the following consequence of
this lemma.

Corollary 8.3. Let A be an automatic structure with an injective presentation.

For every FOC(U)-formula φ(x̄; z̄) of finite out-degree, there exists a constant k
such that

A ⊧ φ(ā; c̄) implies ∥ā∥ ≤ ∥c̄∥ + k , for all ā, c̄ .
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XII. Automatic Structures

A similar lemma holds for tree automatic structures. Instead of paramet-
rising the encodings by their length, we can now bound their number of
vertices or their height.

Definition 8.4. Let A be a Γ-structure andU ⊆ A.
(a) Suppose that A has an injective tree automatic presentation. We set

D(U) ∶= ∣⋃c∈U dom(c)∣ ,

h(U) ∶= max{ n ∣ there is some tree c ∈ U with height n } .

For tuples ā or single elements a, we also use the notation D(ā), D(a), etc.
(b) For a set ∆ of formulae of the form φ(x̄; z̄), a set U ⊆ A, and two

tuples ā, b̄ ∈ Am , we define

ā ≃∆U b̄ : iff A ⊧ φ(ā; c̄) ↔ φ(b̄; c̄) ,
for all c̄ ∈ Un and all φ(x̄; z̄) ∈ ∆. ⌟

Lemma 8.5. Let A be a tree automatic structure and φ(x̄; z̄) an FOC(U)-
formula. There exist constants k,m with the following two properties.

(i) For all tuples ā ⊆ A and all U ⊆ A, there exist a tuple ā′ ≃
φ
U ā such that

D(ā′) ≤ k ⋅ D(U) and h(ā′) ≤ h(U) + m .

(ii) If D(ā) > k ⋅D(U) or h(ā) > h(Ū)+m, then there are infinitely many

tuples ā
′
with ā

′ ≃
φ
U ā.

Proof. We fix an injective presentation of the structure A and two automata
A = ⟨Q , Σ, ∆, q0 , F⟩ andA′ = ⟨Q ′ , Σ, ∆′ , q′0 , F′⟩ recognising the relations
φA and ¬φA, respectively. Set s ∶= ∣Q ∣ + ∣Q ′∣. We claim that the desired
constants are m ∶= ss and k ∶= 2m+2. For the proof, fix a tuple ā and a setU.
If D(ā) ≤ k ⋅ ∣D(U)∣ and h(ā) ≤ h(U) +m, there is nothing to do. Hence,
we may assume that

D(ā) > k ⋅ ∣D(U)∣ or h(ā) > h(U) + m .

We claim that in both cases the set dom(ā⊗) ∖ D(U) contains a path of
length at least m.
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8 Proving non-automaticity

If h(ā) > h(U) + m this is clear. Hence, we may assume that D(ā) >
k ⋅ ∣D(U)∣. Note that every connected component of the subforest of ā⊗

induced by the set dom(ā⊗)∖D(U) is attached to some leaf of D(U). Fur-
thermore, there are at most two components attached to each leaf. Since the
tree D(U) has (∣D(U)∣+ 1)/2 leaves, it follows that dom(ā⊗)∖D(U) has
at most ∣D(U)∣ + 1 components. Consequently, there exists a component C
of size

k ⋅ ∣D(U)∣

∣D(U)∣ + 1
≥
k

2
= 2m+1 .

As C is a binary tree of size ∣C∣ ≥ 2m+1, it contains the desired path of length
at least m.
Having found our path p, we proceed as follows. For every tuple c̄ ⊆ U,

we fix an accepting run ρ c̄ of A or A′ on ā ⊗ c̄. We may assume that, if
ρ c̄ and ρd̄ agree on the first vertex of p, they agree on all vertices of p. As the
length of p is at least m = ss , there exist two vertices u <pf v of p such that
ρ c̄(u) = ρ c̄(v), for all c̄ ⊆ U. (We can apply the Pigeon Hole Principle to
the colouring assigning to each vertex v of p the function mapping ρ c̄(w) to
ρ c̄(v), where w is the first vertex of p.) Let ā i be the tuple obtained from ā

by repeating the part between u and v i-times.Then ā0 , ā1 , . . . are infinitely
many tuples with ā i ≃

φ
U ā. Furthermore,D(ā0) < D(ā) and h(ā0) ≤ h(ā),

and at least one branch of ā0 is strictly shorter that the corresponding one
of ā. Hence, repeating this construction (if necessary) we obtain a tuple ā0
with D(ā0) ≤ k ⋅ D(U) and h(ā0) ≤ h(U) + m.

The following dual point of view is sometimes useful.

Exercise 8.1. Let A be a structure, R ⊆ An ×A an FOC-definable relation,
andU ⊆ A a set. We call a subset of the from

{ a ∈ U ∣ ⟨c̄, a⟩ ∈ R } , for c̄ ∈ An ,

an R-trace ofU.
(a) Prove that, if A is automatic, there exists a constant k such that, for all

n < ω, the number of different R-traces ofU ∶= A∩ Σ<n is at most k ⋅ ∣U∣.
Hint. If c̄ ≃U c̄

′, the R-traces associated with c̄ and c̄′ are the same.
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XII. Automatic Structures

(b) Prove that, if A is tree automatic, there exists a constant k such that,
for all n < ω, the number of different R-traces of U ∶= A ∩ Σ<n is at
most ∣U∣k . ⌟

The basic observation in Lemmas 8.2 and 8.5 can be used in several differ-
ent ways to restrict the form of automatic structures. Let us present them
one by one.

Length Argument+

The simplest way to use Lemma 8.2 is to (i) compute explicit length bounds
for the encodings of elements and then (ii) show that the number of elements
of a given length exceeds the number of possible codes of this length. To do
so, the following bound is frequently useful.

Lemma 8.6. Let L ⊆ Σ∗ be regular. There exist constants d and m such that

∣L ∩ Σ≤k+1∣ ≤ d ⋅ ∣L ∩ Σ≤k ∣ , for all k ≥ m .

Proof. Let η ∶ Σ∗ → M be a homomorphism into a finite monoid recog-
nising L, set m ∶= ∣M∣, and let

Pk ∶= {w ∈ Σk ∣ wu ∈ L for some u } , for k < ω .

Note that for every v ∈ Σ∗, there is some u ∈ Σ<m with η(u) = η(v). This
implies that, for every w ∈ Pk , there is some word u ∈ Σ<m with wu ∈ L.
Hence,

∣Pk ∣ ≤ ∣L ∩ Σ<k+m ∣ .

Since, for every w ∈ Pk , there are at most ∣Σm ∣ words u with wu ∈ Pk+m , we
have

∣Pk+m ∣ ≤ ∣Σm ∣ ⋅ ∣Pk ∣ ≤ ∣Σm ∣ ⋅ ∣L ∩ Σ<k+m ∣ , for all k < ω .

For k ≥ m, we obtain

∣Pk ∣ = ∣P(k−m)+m ∣ ≤ ∣Σm ∣ ⋅ ∣L ∩ Σ<(k−m)+m ∣ = ∣Σm ∣ ⋅ ∣L ∩ Σ<k ∣ .
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8 Proving non-automaticity

Similarly there are, for everyw ∈ Pk , at most ∣Σ∣ letters c withwc ∈ L∩Σk+1.
For k ≥ m, it therefore follows that

∣L ∩ Σ≤k+1∣ = ∣L ∩ Σ≤k ∣ + ∣L ∩ Σk+1∣

≤ ∣L ∩ Σ≤k ∣ + ∣Σ × Pk ∣

≤ ∣L ∩ Σ≤k ∣ + ∣Σ∣ ⋅ ∣Σ∣m ⋅ ∣L ∩ Σ≤k ∣

= (1 + ∣Σ∣m+1) ⋅ ∣L ∩ Σ≤k ∣ .

As an example let us use arguments based on length bounds in the context
of semigroups. In particular, we are interested in the question of which semi-
groups can and cannot be embedded into a given structure. To be applicable
not only to semigroups, we use the following slightly more general notion.

Definition 8.7. Let R ⊆ A3 be a ternary relation on a set A. We say that a
semigroup S can be embedded into R if there exists a function f ∶ S → A

such that

⟨ f (s), f (t), a⟩ ∈ R iff a = f (st) , for all s, t ∈ S and a ∈ A. ⌟

Lemma 8.8. Let A be an automatic structure and R ⊆ A
3
an FOC(U)-

definable relation. There exists a constant k such that, for every semigroup S =
⟨S , ⋅ ⟩ that can be embedded into R, we have

∥a0⋯an−1∥ ≤ ∥ā∥ + k⌈log2 n⌉ , for all ā ∈ Sn .

Proof. By Corollary 8.3, there exists a constant k such that

∥a ⋅ b∥ ≤ max{∥a∥, ∥b∥} + k .

By induction on n and setting m ∶= ⌈n/2⌉, it now follows that

∥a0⋯an−1∥ ≤ k +max{∥a0⋯am−1∥, ∥am⋯an−1∥}

≤ k +max{max
i<m
∥a i∥ + k⌈log2 m⌉,

max
m≤i<n

∥a i∥ + k⌈log2(n − m)⌉}
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≤ max
i<n
∥a i∥ + k(1 +max{⌈log2 m⌉, ⌈log2(n − m)⌉})

≤ ∥ā∥ + k(1 + ⌈log2 n⌉ − 1)

= ∥ā∥ + k⌈log2 n⌉ .

Proposition 8.9. Let A be an automatic structure and R ⊆ A3
an FOC(U)-

definable relation. There exists a number n < ω such that the semigroup ⟨N,+⟩n
cannot be embedded into R.

Proof. Fix an injective presentation of A over the alphabet Σ. For a contra-
diction, suppose that there exist functions fn ∶ Nn → A as above, for every
n < ω. Let k be the constant from Lemma 8.8. Choose n such that

n > 2(k + 1) log2∣Σ∣ .

and let P = {p0 , . . . , pn−1} be the image of the generators ofNn under fn .
We set

Nm ∶= {∑i<n c i p i ∣ 0 ≤ c i < 2
m } .

By choice of k, it follows for m ≥ ∥P∥ that

∥c i p i∥ ≤ ∥P∥ + k⌈log2 2
m⌉ ≤ m(k + 1) , for all i < n , c i < 2m .

By the same argument, we have

∥a∥ ≤ m(k + 1) + k⌈log2 n⌉ , for all a ∈ Nm and m < ω .

Since all the sums in Nm are different, it therefore follows that

(2m)n ≤ ∣Nn ∣ ≤ ∣Σ∣m(k+1)+k⌈log2 n⌉+1 .

Consequently,

mn ≤ log2∣Σ∣ ⋅ [m(k + 1) + k⌈log2 n⌉ + 1]

≤ (k + 1)(m + log2 n) log2∣Σ∣ ,
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8 Proving non-automaticity

which, for m ≥ log2 n, implies that

n ≤ (k + 1)(1 +
1
m

log2 n) log2∣Σ∣ ≤ 2(k + 1) log2∣Σ∣ .

A contradiction to our choice of n.

Corollary 8.10. If the semigroup ⟨N,+⟩(ω) can be embedded into a semigroup
S = ⟨S ,+⟩ (not necessarily commutative), then S is not automatic.

Corollary 8.11.

(a) Skolem arithmetic ⟨N, ⋅ ⟩ is not automatic.
(b) No free group with at least two generators is automatic.

Exercise 8.2. Let p be a prime number and let S be a semigroup into which
we can embedN[1/p](ω) or (Z[1/p]/Z)(ω). Prove that S is not automatic.

⌟

Let us also give an example of a structure that is not tree-automatic. The
Rado graph R is a countably infinite, undirected graph such that, for every
pair of disjoint finite sets A and B, there is some vertex v that has edges to
all vertices in A but to none in B. A simple back-and-forth argument shows
that this condition uniquely determines R up to isomorphism.

Exercise 8.3. Prove that there exists exactly one countably infinite graph
satisfying the above condition. ⌟

Theorem 8.12. The Rado graph is not tree automatic and not ω-automatic.

Proof. It is sufficient to prove that the Rado graph R = ⟨V , E⟩ is not tree
automatic. Since R is countable, it then follows byTheorem 6.14 that it is
also not ω-automatic.

For a contradiction, suppose that R is tree automatic and fix an injective
presentation ofR over a binary alphabet. LetWn ⊆ V be the set of all vertices
encoded by a tree of height at most n. Letm be the constant from Lemma 8.5
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for the formula φ(x , z) ∶= Exz. It follows that, for every X ⊆ Wn , there
exists some vertex v with

⟨v , x⟩ ∈ E iff x ∈ X , for all x ∈Wn ,

and h(v) ≤ h(Wn) + m = n + m .

This implies that v ∈Wn+m . Since there are 2∣Wn ∣ subsetsX ⊆Wn , it follows
that ∣Wn+m ∣ ≥ 2∣Wn ∣. By induction, we obtain

∣Wn+im ∣ ≥ exp(∣Wn ∣, i) ,

where the iterated exponential function exp is defined by

exp(k, 0) ∶= k and exp(k, i + 1) ∶= 2exp(k , i) .

For large enough i, we obtain a contradiction since the number of binary
{0, 1}-labelled trees of height at most n + im is at most 32

n+im+1
. (We can

encode a {0, 1}-labelled tree of height at most n by a {0, 1,◻}-labelled full
binary tree of height n, and such a tree has less than 2n+1 vertices.)

Counting Argument+

Length bounds can frequently be simplified by replacing them by certain
counting arguments. We start with a simple version, a more elaborate one
will be presented below.

Definition 8.13. Let A be a structure and R ⊆ Ak+l a relation.
(a) Suppose that R has finite out-degree. The expansion of R is the func-

tion exR ∶ ω → ω defined by

exR(n) ∶= min{ ∣R[S]∣ ∣ S ⊆ A , ∣S∣ = n } ,

where

R[S] ∶= { b i ∈ A ∣ i < l and ⟨ā, b̄⟩ ∈ R for some ā ∈ Sk } .

(b) We say that R has bounded expansion if there exists a constant c such
that exR(n) ≤ cn, for all n. ⌟
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8 Proving non-automaticity

Proposition 8.14. Let A be an automatic structure. Every FOC(U)-definable
relation of finite out-degree has bounded expansion.

Proof. Fix an injective presentation ⟨Lδ , L= , (LR)R⟩ of A over the alpha-
bet Σ and let R ⊆ Ak+l be FOC(U)-definable. Given n < ω, let m < ω be
theminimal number such that ∣Lδ∩Σ≤m ∣ ≥ n and choose a set S ⊆ Lδ∩Σ≤m
of size ∣S∣ = n. Let c be the constant from Corollary 8.3. Then

R[S] ⊆ Lδ ∩ Σ≤m+c ,

which implies that

exR(n) ≤ ∣R[S]∣ ≤ ∣Lδ ∩ Σ≤m+c ∣ ≤ d c+1 ⋅ ∣Lδ ∩ Σ≤m−1∣ ≤ d c+1n ,

where d the constant from Lemma 8.6.

Example. Let A be a structure with an FOC(U)-definable pairing function
f ∶ A×A→ A. Then ex f (n) = n2 and A is not automatic. ⌟

Growth Argument+

In cases where the preceding proposition does not apply, the following, more
involved condition is often useful.

Definition 8.15. LetA be a structure and φ(x̄ , y) a formula. For a setU ⊆ A
and a number n < ω, we define the set Nφ(U , n) of reachable elements at
distance n by

Nφ(U , 0) ∶= U ,

and Nφ(U , n + 1) ∶= Nφ(U , n) ∪ { b ∈ A ∣ A ⊧ φ(ā, b) for some ā ⊆ U } .⌟

Proposition 8.16. Let A be an automatic structure, U ⊆ A finite, and let

φ(x̄ , y) ∈ FOC(U) be a formula of finite out-degree. There exist constants d , k
such that

∣Nφ(U , n)∣ ≤ 2dn+k , for all n < ω .
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Proof. Fix an injective presentation π of A over a binary alphabet and set
k ∶= ∥U∥. Since φ has finite out-degree, we can use Corollary 8.3 to find a
constant d such that

∥a∥ ≤ ∥N(U , n)∥ + d , for all a ∈ N(U , n + 1) .

By induction, we obtain

∥a∥ ≤ dn + k , for all a ∈ N(U , n) .

Consequently,

∣N(U , n)∣ ≤ ∣{0, 1}<(dn+k)∣ = 2dn+k+1 − 1 .

Let us give a few applications. First, we consider pairing functions.

Proposition 8.17. Let A be a structure with an infinite subset U ⊆ A such that

there exists an FOC(U)-definable injective function f ∶ U ×U → U.Then A is

not automatic.

Proof. For a contradiction, suppose thatA is automatic.Note that, for S ⊆ U,
the set

N f (S , 1) = S ∪ { f (a, b) ∣ a, b ∈ S }

has size ∣N f (S , 1)∣ = ∣S∣ + ∣S∣2 ≥ ∣S∣2. By induction it follows that

∣N f (S , n)∣ = ∣N f (N f (S , n − 1), 1)∣ ≥ ∣N f (S , n − 1)∣2

≥ (∣S∣2
(n−1)
)2 = ∣S∣2

n
.

For ∣S∣ > 1, this contradicts Proposition 8.16.

Corollary 8.18.

(a) The structure ⟨N, f ⟩ is not automatic where f ∶ N ×N→ N is a pairing

function.

(b) No free semigroup with at least two generators is automatic.
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8 Proving non-automaticity

(c) If Γ is a signature with at least one constant symbol and at least one symbol

of arity at least 2, the term algebra over Γ is not automatic.

Exercise 8.4. Let A be an automatic structure with a FOC(U)-definable
equivalence relation∼ and let [a0]∼ , [a1]∼ , . . . be an enumeration of all finite
∼-classes such that ∣[a0]∼∣ ≤ ∣[a1]∼∣ ≤ . . . . Prove that there exist constants
c, d such that

∣[an]∼∣ ≤ 2cn+d . ⌟

We can strengthen Corollary 8.11 (a) as follows.

Proposition 8.19. The divisibility order ⟨N, ∣ ⟩ is not automatic.

Proof. Let φ(x; zz′) be the FO-formula stating that
◆ x is the ≤llex-minimmal prime number with x >llex z, or

◆ x is the least common multiple of z and z′, or

◆ x = pz, for some prime factor p of z.

Note that the latter condition can be expressed in FO by expressing that
z ∣ x, z ≠ x, every prime factor of x is also a prime factor of z, and z ∣ y ∣ x
implies y = x or y = z.

Let p0 <llex p1 <llex be an enumeration of all prime numbers. Then

p0 , . . . , pn−1 ∈ Nφ({p0}, n) .

Hence,

p
k
n ∈ Nφ({p0}, n + k) .

Set γ(n) ∶= ∣Nφ({p0}, n)∣. It follows that Nφ({p0}, n) contains at least

◆ n numbers p0 , p20 , . . . , p
n
0,

◆ γ(n − 1) numbers that are coprime to p0,

◆ for every 0 < k < n, γ(n − 2) − 1 numbers of the form p
k
0m, where m is

coprime to p0.
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It follows that

γ(n) ≥ n + γ(n − 1) + (n − 1)(γ(n − 2) − 1)

= γ(n − 1) + (n − 1)γ(n − 2)

≥ γ(n − 2) + (n − 1)γ(n − 2) = nγ(n − 2) .

For even n > 0, we obtain by induction

γ(n) ≥ n(n − 2)(n − 4)⋯4 ⋅ 2 ⋅ γ(0)
= n(n − 2)(n − 4)⋯4 ⋅ 2 ⋅ 1

≥ (n/2)!

≥ 2cn log2 n ,

for some constant c. A contradiction to Proposition 8.16.

There also exists a version of Propositions 8.16 for tree automatic struc-
tures.

Proposition 8.20. Let A be a tree automatic structure, U ⊆ A finite, and let

φ(x̄ , y) ∈ FOC(U) be a formula of finite out-degree. There exist constants d , k
such that

∣Nφ(U , n)∣ ≤ 22
dn+k

, for all n < ω .

Proof. Fix an injective presentation π of A over a binary alphabet and set

k ∶= max{ ∣dom(c)∣ ∣ c ∈ U } .

Since φ has finite out-degree, we can use Lemma 8.5 (ii), to find a constant d
such that

∣dom(a)∣ ≤ d ⋅max{ ∣dom(c)∣ ∣ c ∈ N(U , n) } ,

for all a ∈ N(U , n + 1). By induction on n, it follows that

∣dom(a)∣ ≤ dnk , for all a ∈ N(U , n) .

904



8 Proving non-automaticity

Since there are at most 1
m+1(

2m
m ) ≤ 4

m unlabelled binary trees with a domain
of size at most m (these are the Catalan numbers) and, therefore, at most
2m ⋅ 4m = 6m {0, 1}-labelled binary trees, it follows that

∣N(U , n)∣ ≤ 6d
n k = 2cd

n
= 22

n log2 d+log2 c
, for c ∶= k ⋅ log2 6 .

Note that the bound in the preceding proposition is rather weak. For
instance, the sets N f grow doubly exponential for every function f . Hence,
NR is only really useful for relations R.

De$ompo@tion Argument+

A powerful argument of a different kind is based on decompositions of a
given structure.

Definition 8.21. Let A be a Γ-structure and S a class of Γ-structures. A
sum-decomposition of A over S consists in a finite partition (C i)i<n of A
such that, for every class C i , the substructure A∣C i is isomorphic to some
structure in S . ⌟

Proposition 8.22. Let A be automatic. For every formula φ(x; ȳ) there exists
a finite class S of structures such that, for every tuple c̄ ∈ An

of parameters, the

substructure of A induced by φ(x; c̄)A has a sum-decomposition over S .

Proof. Fix an injective presentation of A over the alphabet Σ and let Γ be the
signature of A. Fix homomorphisms κ and η, and ψR , for R ∈ Γ, recognising
respectively, L=, φA, and LR . For c̄ ∈ An , and u ∈ Σ∗ with ∣u∣ ≥ ∥c̄∥, define

f (u; c̄) ∶= ⟨κ(u), η(u ⊗ c̄
⊗), (ψR(u ⊗ ⋅ ⋅ ⋅ ⊗ u))R⟩ .

We claim that the isomorphism type of

φ(x; c̄)A ∩ uΣ∗

only depends on f (u; c̄). Then we can find a finite sum-decomposition of
φ(x; c̄)A into the sets

{a} and φ(x; c̄)A ∩ uΣ∗ , for ∥a∥ < ∥c̄∥ and u ∈ Σ∥c̄∥ .
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It remains to prove the claim. Suppose that f (u, c̄) = f (v , d̄), and let
τ ∶ uΣ∗ → vΣ∗ be the bijection defined by τ(uw) ∶= vw.Then κ(u) = κ(v)
implies that τ restricts to a bijection Lδ ∩ uΣ∗ → Lδ ∩ vΣ∗. Similarly,
ψR(u ⊗ ⋅ ⋅ ⋅ ⊗ u) = ψR(v ⊗ ⋅ ⋅ ⋅ ⊗ v) implies that

b̄ ∈ R iff τ(b̄) ∈ R , for all b̄ in uΣ∗ .

By the same argument, η(u ⊗ c̄
⊗) = η(v ⊗ c̄

⊗) implies that τ maps the set
φ(x; c̄)A ∩ uΣ∗ to φ(x; c̄)A ∩ vΣ∗. Thus, τ is an isomorphism between the
substructures of A induced by the sets φ(x; c̄)A ∩ uΣ∗ and φ(x; c̄)A ∩ vΣ∗.

The main drawback of this result is that we do not have any information
about how the parts of the decomposed structure look like. Consequently,
its applicability is restricted to classes of structures where all induced sub-
structures are sufficiently simple. A typical example is the class of linear
orders.

Exercise 8.5. Let α be an ordinal and let (C i)i<m be a sum-decomposition
of ⟨ωα , ≤⟩. Prove that there is one component ⟨C i , ≤⟩ that is isomorphic to
⟨ωα , ≤⟩. ⌟

Proposition 8.23. The ordinal ⟨ωω , ≤⟩ is not automatic.

Proof. For a contradiction, suppose that ωω is automatic. Applying Propos-
ition 8.22 to the formula φ(x; z) ∶= x < z, we then obtain a finite set S of
linear orders such that every subset of the form

↓β ∶= { i < α ∣ i < β } , for β < α ,

can be partitioned into finitely many orders from S . Since S is finite, there
is some number n < ω, such that ωn ∉ S . Hence, there must exist a finite
partition of ↓ωn into classes whose order type is different from ωn . This
contradicts the above exercise.

For tree automatic structures, the above results take the following form.
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8 Proving non-automaticity

Definition 8.24. Let S be a class of Γ-structures.
(a) We denote by prod(S) the class of all finite direct products of struc-

tures in S .
(b) A Γ-structureA is a superposition of Γ-structures C0 , . . . ,Cn−1 if there

exist bijections σi ∶ C i → A, for i < n, such that

R
A = ⋃

i<n
σi[R

Ci ] , for every relation R ∈ Γ .

In this case we write A = C0 ∪ ⋅ ⋅ ⋅ ∪ Cn−1.
For a class S of Γ-structures, we denote by supp(S) the class of all super-

positions of finitely many structures from S . ⌟

Theorem 8.25. Let A be a tree automatic Γ-structure. For every FOC(U)-
formula φ(x; ȳ) there exists a finite class S of structures such that, for every

tuple c̄ ∈ An
of parameters, the substructure of A induced by φ(x; c̄)A has a

sum-decomposition over supp(prod(S)).

Proof. Fix an injective presentation of A, let Aδ and AR , R ∈ Γ, be the
corresponding automata, and letAφ be the automaton recognising φA. We
assume that these automata are deterministic bottom-up automata. We
denote by δx(t) the (unique) state from which the automatonAx accepts
the tree t. Similarly, given a tree t with several holes and a tuple of states q̄,
we write δx(t, q̄) be the state from whichAx accepts t when the holes are
labelled by the states q̄.

Fix a tuple c̄ of parameters. We denote by D ∶= ⋃i dom(c i) the union of
the domains and by F the set of minimal elements of [2]∗ ∖D (with respect
to the prefix order). We define the type τ(t) of a finite tree t as the triple
τ(t) ∶= ⟨s, λ⟩ where
◆ s is the restriction of t to the domain dom(t) ∩ D and

◆ λ is the function mapping every vertex v ∈ dom(t) ∩ F to the state

λ(v) ∶= δφ(t∣v ⊗◻⊗ ⋅ ⋅ ⋅ ⊗ ◻) ,

where ◻ denotes the empty tree.
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We can partition φ(x; c̄)A into the sets

Csλ ∶= { t ∈ φ(x; c̄)A ∣ τ(t) = ⟨s, λ⟩ } ,

for all possible values of s and λ. Note that these sets are disjoint and there
are only finitely many of them. To conclude the proof it is therefore sufficient
to find a finite set S such that

Csλ ∈ supp(prod(S)) , for all s, λ ,

where Csλ is the substructure of A induced by Csλ .
For a state p ofAφ and states q̄ = (qR)R∈Γ ofAR , let

Sp, q̄ ∶= { t ∣ δφ(t ⊗◻
n) = p } .

We turn Sp, q̄ into a Γ-structure Sp, q̄ with relations

Rp, q̄ ∶= { t̄ ∈ (Sp, q̄)
k ∣ δR(t̄⊗) = qR } ,

where k is the arity of R ∈ Γ. We claim that the class S of all structures Sp, q̄
has the desired properties. For a subsetH ⊆ F, letM(H) be the set of all
functions µmapping each v ∈ H to some tuple µ(v) = (qR)R∈Γ where qR is
a state of AR . For µ ∈ M(H) and R ∈ Γ, we denote by µR the function
mapping v ∈ H to the R-component of µ(v). We claim that

Csλ ≅ ⋃
µ
∏

v∈dom(λ)
Sλ(v),µ(v) ,

where the union ranges over all functions µ ∈M(dom(λ)) such that

δR(s ⊗ ⋅ ⋅ ⋅ ⊗ s, µR) is an accepting state.

Let σ be the function mapping a tree t ∈ Csλ to the tuple (t∣v)v∈dom(λ). To
see that σ is the desired isomorphism, first note that

δφ(t∣v ⊗◻
n) = λ(v) implies t∣v ∈ Sλ(v),µ(v) , for all µ .
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8 Proving non-automaticity

Hence, σ(t) ∈ ∏v Sλ(v),µ(v). Furthermore, σ has an inverse that maps a
tuple (tv)v to the tree obtain from s by attaching tv as a subtree to the
vertex v.

Finally, note that t̄ ∈ RCsλ implies σ(t̄) ∈ R∏v Sλ(v),µ(v) where

µR(v) ∶= δR(t0∣v ⊗ ⋅ ⋅ ⋅ ⊗ tk−1∣v) .

Furthermore, this function µ is part of the above union since t̄ ∈ RCsλ implies
that the state δR(s ⊗ ⋅ ⋅ ⋅ ⊗ s, µR) is accepting.
Conversely, σ(t̄) ∈ R∏v Sλ(v),µ(v) implies that t̄ ∈ RCsλ . Since

δR(t̄) = δR(s ⊗ ⋅ ⋅ ⋅ ⊗ s, µR) ,

which is accepting.

An application of this theorem can be found in Section 11.

ω-Automati$ Stru$ture+

Most of the tools we have developed for (tree) automatic structures do not
work for ω-automatic (or ω-tree automatic) ones for the simple reason that
we have no analogue to the length of an element.The exception is the bound
on the expansion of a relation, which is based on a simple counting argument.
Unsurprisingly, the proofs for the ω-automatic case turn out to be much
more involved. We start with the following refinement of the relation ≈∗.

Definition 8.26. For m < ω and u, v ∈ Σω , we define

u ≈m∗ v : iff u[m,∞) = v[m,∞) .

We denote the ≈m∗ -class of u by [u]
m
∗ . ⌟

Recall the notion of a set being E-covered by a set of ≈∗-classes we intro-
duced in Definition 6.4.

Lemma 8.27. Let A be an ω-automatic structure and f ∶ Ak+l → A an FOC-
definable function. There exists a constant d with the following property. For

every m < ω, every c̄ ∈ Al
, and every set S ⊆ A that is covered by n ≈m∗ -classes,

the image f (S , c̄) is covered by a set of at most dn ≈m∗ -classes.
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Proof. Let η ∶ (Σk+l+1)∞ → T be a morphism into a finite ω-semigroup
recognising the graph of f and set d ∶= ∣T∣. Every set S that is covered by n
≈m∗ -classes can be written as a union S = ⋃i<n S i , where each S i is covered
by a single class. Since

f (S , c̄) = ⋃
i<n

f (S i , c̄) ,

it is therefore sufficient to prove that each image f (S i , c̄) is covered by at
most d ≈m∗ -classes.Therefore, we may assume without loss of generality that
n = 1.

Fix an ω-word v representing c̄, let D be the ≈m∗ -class covering S, and, for
each s ∈ S, choose an ω-word u(s) ∈ D representing s and set

U ∶= { u(s) ∣ s ∈ S }

and u(s̄) ∶= ⟨u(s0), . . . , u(sk−1)⟩ , for s̄ ∈ Sk .

Finally, let w(s̄) be an ω-word representing f (s̄, c̄) and set

α(s̄) ∶= η((u(s̄) ⊗ v ⊗ w(s̄))[0,m)) .

We claim that

α(s̄) = α(s̄′) implies [ f (s̄′ , c̄)]= ∩ [w(s̄)]m∗ ≠ ∅ ,

where [a]= denotes the set of ω-words encoding a and [w]m∗ is the ≈m∗ -class
of w. Then it follows that, picking one tuple s̄t ∈ α−1(t), for every t ∈ T, we
obtain a set

W ∶= { [w(s̄t)]
m
∗ ∣ t ∈ T }

of at most ∣T∣ = d ≈m∗ -classes covering f (Sk , c̄). Hence, it remains to prove
the claim. Note that

u(s̄), u(s̄′) ∈ D implies u(s̄) ⊗ v ≈m∗ u(s̄′) ⊗ v ,
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8 Proving non-automaticity

for all s̄, s̄′ ∈ Sk . Consequently, α(s̄) = α(s̄′) implies that

η(u(s̄) ⊗ v ⊗ w(s̄))

= η((u(s̄) ⊗ v ⊗ w(s̄))[0,m)) ⋅ η((u(s̄) ⊗ v ⊗ w(s̄))[m,∞))

= η((u(s̄′) ⊗ v ⊗ w(s̄′))[0,m)) ⋅ η((u(s̄′) ⊗ v ⊗ w(s̄))[m,∞))

= η(u(s̄′) ⊗ v ⊗ (w(s̄′)[0,m) ⋅ w(s̄)[m,∞)))

Hence,

w(s̄′)[0,m) ⋅ w(s̄)[m,∞) ∈ [ f (s̄′ , c̄)]= ∩ [w(s̄)]m∗ ≠ ∅ .

Lemma 8.28. Let A be an ω-automatic structure with presentation π and let

U ⊆ A be an infinite regular subset such that π ↾ U is injective. There exists an

infinite set S ⊆ U that is covered by a single ≈∗-class.

Proof. SinceU is infinite, we can use Lemma 6.3 to find a ≈∗-class [w]∗ such
that U ∩ [w]∗ is infinite. Let S ⊆ U be the set of all elements represented
by a word inU ∩ [w]∗. As the presentation is injective onU, it follows that
S is also infinite.

We start by generalising Proposition 8.14 to ω-automatic structures with
injective presentations.

Lemma 8.29. Let A be an ω-automatic structure. If there exists an infinite

subset S ⊆ A covered by a single ≈∗-class, then every FOC-definable function
has bounded expansion.

Proof. Suppose that S ⊆ A is infinite and covered by the ≈∗-class [w]∗.
For a contradiction, suppose that there exists an FOC-definable function
f ∶ Ak → A such that ex f grows super-linearly. Let d be the constant from
Lemma 8.27 and choose n such that

ex f (n) > 2dn .

Since [w]∗ = ⋃m<ω[w]
∗
m and each ≈m∗ -class has size at most 2m , it follows

that there exists some number m < ω such that some ≈m∗ -class contains
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representatives of at least n different elements. We choose m minimal. Let
D ⊆ A be a set of maximal size that is covered by some ≈m∗ -class. By choice
of m, we have ∣D∣ ≥ n. Furthermore, since D is covered by at most 2 ≈m−1∗ -
classes, it follows by minimality of m that

∣D∣ ≤ 2n .

By Lemma 8.27, the image f (Dk) is covered by at most d ≈m∗ -classes. One
of these classes contains representatives of at least

f (Dk)

d

>
2dn
d

= 2n ≥ ∣D∣

elements of f (Dk). A contradiction to the choice of D.

Corollary 8.30. Let A be an infinite structure with an injective ω-automatic
presentation. Every FOC-definable function has bounded expansion.

Proof. As the presentation is injective, we can use Lemma 8.28 to find an
infinite set S ⊆ A that is covered by a single ≈∗-class. Hence, the claim
follows by Lemma 8.29

We were only able to prove the preceding corollary for injective presenta-
tions. Next, we will strengthen this result to ω-automatic structures (not
necessarily injective) that admit an FOC-definable linear order.

Theorem 8.31. Let A be an uncountable ω-automatic structure with an FOC-
definable linear order ≤. For every presentation π of A, there exists a regular
subset U ⊆ A such that ⟨U , ≤⟩ ≅ ⟨[2]ω , ≤lex⟩ and the restriction of π to U is

injective.

Proof. The claim follows immediately fromTheorem 6.11, except for a minor
technical issue: the languages L= and L≤ from the presentation are only
defined on Lδ , and not on all of Σω . But this can easily be corrected by
adding Σω ∖ Lδ as a new equivalence class to L= and by making this class
the least element of L≤. Since these operations preserve regularity, we can
now applyTheorem 6.11.
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8 Proving non-automaticity

As a consequence of this theorem, we can generalised Corollary 8.30 to
ordered ω-automatic structures.

Proposition 8.32. Let A be an ω-automatic structure with an FOC-definable
linear order ≤. Every FOC-definable function has bounded expansion.

Proof. By Lemma 8.29 it is sufficient to find an infinite subset S ⊆ A that is
covered by a single ≈∗-class.

IfA is countable, we can useTheorem6.14 to construct an injective present-
ation of A. Consequently, the existence of S follows by Lemma 8.28.
Hence, we may assume that A is uncountable. By Theorem 8.31, there

exists a regular subsetU ⊆ A such that ⟨U , ≤⟩ ≅ ⟨[2]ω , ≤lex⟩ and the restric-
tion of the presentation toU is injective. Hence, we can use Lemma 8.28 to
find an infinite subset S ⊆ U that is covered by a single ≈∗-class.

A second method to prove the non-existence of an ω-automatic presenta-
tion is based onTheorem 6.13.

Lemma 8.33. Let A be an uncountable ω-automatic structure. There exists an

integer n > 0 such that no FOC-definable function f ∶ An → A is injective.

Proof. Let k be the constant fromTheorem 6.13 and set n ∶= k + 1. By choice
of k, it follows that no FOC-definable function Ak+1 → A is injective.

Proposition 8.34. No ω-automatic structure has an FOC-definable pairing
function.

Proof. For a contradiction, suppose that there exists an ω-automatic struc-
ture A with an FOC-definable pairing function f ∶ A × A → A. If A is
countable, it is automatic and the claim follows by Proposition 8.14 since
ex f (n) = n2. Consequently, we may assume thatA is uncountable. Consider
the functions f i defined by

f0(x , y) ∶= f (x , y) and f i+1(x̄ , ȳ) ∶= f ( f i(x̄), f i( ȳ)) .

By induction on i, it follows that every f i is injective and FOC-definable.
This contradicts Lemma 8.33.
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9 Automati$ Group+

We have already seen several examples of which groups are and are not
automatic. Let us take a look at this question more systematically. Before
doing so, a remark is in order about terminology.

Remark. (a) Before automatic structures were introduced, group theorists
had already started studying groups represented by automata, which they
called ‘automatic groups’. Unfortunately, their definition is slightly different
from ours. A group G is automatic in the group-theoretic sense if it has a
finite set S of generators and there exists a regular language L ⊆ S

∗ such
that the relations

Mc ∶= { u ⊕ w ∣ π(u) = π(w) ⋅ c } , for c ∈ S ∪ {1} ,

are regular, where π ∶ S∗ → G is group multiplication. It follows that every
automatic group has an automatic presentation in our sense, but one where
the encoding map π ∶ Lδ → G has a prescribed form. Furthermore, this
presentation is not one of the structure ⟨G , ⋅ ⟩, but one of the Cayley graph
of G, i.e., of the structure ⟨G , (µc)c∈S⟩ where µc(g) = gc is multiplication
by the generator c.
Finally, let us mention that there are examples of groups whose Cayley

graph is automatic in our sense, but not in the group-theoretic ones. One
such example is the discrete Heisenberg group H = ⟨H, ⋅ ⟩, which is the
multiplicative group of all upper triangular matrices

⎛
⎜
⎝

1 a b

0 1 c

0 0 1

⎞
⎟
⎠
∈ Z3×3 .

The group is generated by the two matrices

α ∶=
⎛
⎜
⎝

1 1 0
0 1 0
0 0 1

⎞
⎟
⎠

and β ∶=
⎛
⎜
⎝

1 0 0
0 1 1
0 0 1

⎞
⎟
⎠
.
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9 Automatic groups

One can prove that H is not automatic in the group-theoretic sense, but it is
straightforward to give a 3-dimensional interpretation of the Cayley graph
⟨H, µα , µβ , µα−1 , µβ−1⟩ in ⟨Z,+⟩.
(b)There is another related concept used in group-theory, which is that

of an automaton group. One way to define such groups is as follows. Let
A = ⟨A, f0 , . . . , fn−1⟩ be an automatic structure with finitely many unary
functions f0 , . . . , fn−1 that are assumed to be bijective. Then the subgroup
of Sym(A) generated by f0 , . . . , fn−1 is an automaton group. Clearly, if the
Cayley graph of a group G is automatic in our sense, then G is an auto-
maton group. Conversely, if G is the automaton group presented by the
automatic structure A = ⟨A, f0 , . . . , fn−1⟩ and if the action of the functions
f0 , . . . , fn−1 on the set A is transitive, then A is isomorphic to the Cayley
graph of G. In particular, G has a Cayley graph that is automatic in our
sense. ⌟

In the remainder of this chapter we will use the term ‘automatic group’
for a group G = ⟨G , ⋅ ⟩ that has an automatic presentation in our sense. We
have already seen a few examples of such groups. In particular, the following
groups are automatic:

◆ every finite group;

◆ the additive groups Z, Z[1/k], and Z[1/k]/Z, for k ≥ 2;
◆ groups of the form G(ω), for finite G ;

◆ finite sums of such groups.

Finitely Generated Group+

It is possible to characterise all finitely generated automatic groups via the
following algebraic property.

Definition 9.1. Let G be a group and P a property of groups.
(a)The index [G ∶ H] of a subgroup H ⊆ G is the number ∣G/H∣ of cosets.
(b)We say that G is virtually abelian if it has an abelian subgroup of finite

index. ⌟
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Theorem 9.2. Let G be an automatic group. Every finitely generated subgroup

of G is virtually abelian.

Corollary 9.3. Let G be a finitely generated group. The following statements

are equivalent.

(1) G is automatic.

(2) G is ω-automatic.
(3) G is virtually abelian.

(4) There exists an FO-interpretation of G in ⟨N,+⟩.

The rest of this section is devoted to a proof of these two results. Let us
start with the observation that, in a finitely generated virtually abelian group,
we can always choose the abelian subgroup to be normal.

Lemma 9.4. Every finitely generated virtually abelian group G has a normal

abelian subgroup of finite index.

Proof. Fix an abelian subgroup A ⊆ G of finite index. Since G is finitely
generated, so is A. Hence, A ≅ Zm × C, for some finite group C and m < ω.
Let A0 ⊆ A be the subgroup isomorphic to Zm . Then A0 has finite index
in G. By Lemma XI.6.16, there exists a normal subgroup N ⊆ G of finite
index with N ⊆ A0. Since A0 is free, so is N. In particular, N is abelian.

This allows us already to prove one half of Corollary 9.3.

Lemma 9.5. Every finitely generated virtually abelian group can be FO-inter-
preted in ⟨N,+⟩.

Proof. Let G be a finitely generated group and A ⊆ G an abelian subgroup
such that G/A is finite. By Lemma 9.4, we may assume that A is normal.
Then A is finitely generated and therefore of the form Zm × C, for some
finite group C. Since Zm also has finite index in G, we can replace A by Zm

and assume that A ≅ Zm . Let g0A, . . . , gn−1A be the elements of G/A. Let
µ ∶ [n]2 → [n] be the function such that

g iA ⋅ g jA = gµ(i , j)A ,
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9 Automatic groups

and choose elements a i j ∈ A, for i , j < n, such that

g i ⋅ g j = gµ(i , j)a i j .

For b, c ∈ A it then follows that

g ib ⋅ g jc = g i g j ⋅ g
−1
j bg j ⋅ c = gµ(i , j)a i j ⋅ g

−1
j bg j ⋅ c .

Note that, for every j, the function f j ∶ Zm → Zm mapping b to f j(b) ∶=
g
−1
j bg j forms an automorphism of Zm . Consequently, it takes the from
f j(x) = M jx, for some matrix M j ∈ GLm(Z). This implies that f j is
definable when viewed as an 2m-ary relation on ⟨Z,+⟩. Thus, we obtain the
following formula for multiplication in G.

g ib ⋅ g jc = gµ(i , j)(a i j ⋅ f j(b) ⋅ c) .

Representing an element g ib by the pair ⟨i , b⟩ ∈ [n] ×Zm ⊆ Zm+1 we can
therefore define multiplication by

⟨i , b⟩ ⋅ ⟨ j, c⟩ = ⟨µ(i , j), a i j ⋅ f j(b) ⋅ c⟩ .

Since this is first-order definable in ⟨Z,+⟩, we obtain an m + 1-dimensional
FO-interpretation of G in ⟨Z,+⟩. As the latter can be interpreted in ⟨N,+⟩,
so can the former.

To prove the converse, we need some group theory. We start by taking
a look at the discrete Heisenberg group, which we have already encountered
above. Recall that it consists of all invertible upper triangular matrices
in Z3×3.

Definition 9.6. Let G be a group.The commutator of two elements a, b ∈ G
is

[a, b] ∶= a−1b−1ab .

We can extend this notation to more elements by

[a0 , . . . , an] ∶= [[a0 , . . . , an−1], an] .
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XII. Automatic Structures

ForH,K ⊆ G, we set

[H,K] ∶= { [h, k] ∣ h ∈ H , k ∈ K } . ⌟

The following equation follows immediately from the definition by a direct
calculation.

Lemma 9.7. [ab, c] = b−1[a, c]b ⋅ [b, c] and [a−1 , b] = a[b, a]a−1 .

We can use the Heisenberg group as a criterion for non-automaticity.

Proposition 9.8. The Heisenberg group is generated by three elements a, b, g
satisfying

g = [a, b] , [a, g] = e , and [b, g] = e .

Furthermore, the element g has infinite order.

Proof. Let I ∈ Z3×3 be the identity matrix and

A ∶=
⎛
⎜
⎝

0 1 0
0 0 0
0 0 0

⎞
⎟
⎠
, B ∶=

⎛
⎜
⎝

0 0 0
0 0 1
0 0 0

⎞
⎟
⎠

and C ∶=
⎛
⎜
⎝

0 0 1
0 0 0
0 0 0

⎞
⎟
⎠
.

Note that

A
2 = B2 = C2 = AC = BC = CA = CB = BA = 0 and AB = C .

We claim that the elements

a ∶= I +A , b ∶= I + B , and g ∶= I + C

have the desired properties. We start by computing their powers. For k > 1,
we have

a
k = (I +A)k = I + kA+A

2(. . .) = I + kA .

Hence,

(I − kA)(I + kA) = I − k
2
A
2 = I implies a

−k = I − kA .
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9 Automatic groups

In the same way, we obtain analogous expressions for bk and g
k . Thus,

a
k = I + kA , b

k = I + kB , g
k = I + kC , for all k ∈ Z .

In particular, g has infinite order. Furthermore,

a
i
b
j
c
k = (I + iA)(I + jB)(I + kC)

= I + iA+ jB + kC + i jAB + ikAC + jkBC + i jkABC

= I + iA+ jB + kC

implies that every group element can be uniquely written in the form a
i
b
j
c
k ,

for some i , j, k ∈ Z. It remains to check the commutator relations.

[a, b] = (I −A)(I − B)(I +A)(I + B)

= (I −A− B + C)(I +A+ B + C)

= (I + C)2 − (A+ B)(I + C) + (I + C)(A+ B) − (A+ B)2

= (I + 2C + C
2) − (AC + BC) + (CA+ CB)

− (A2 + C + BA+ B
2)

= I + C

= g,

[a, g] = (I −A)(I − C)(I +A)(I + C)

= (I −A− C +AC)(I +A+ C +AC)

= I + (A+ C) − (A+ C) − (A+ C)(A+ C)

= I −A
2 −AC − CA− C

2

= I ,

and similarly for [b, g].

Corollary 9.9. There exists an embedding of the Heisenberg group into G if,

and only if, G contains elements a, b, g ∈ G such that

g = [a, b] , [a, g] = e , [b, g] = e , and g has infinite order.
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Proposition 9.10. Let G be a group. If there exists an embedding of the Heis-

enberg group into G, then G is not automatic.

Proof. Suppose that there exists an embedding of the Heisenberg group
into G. Then we can find three elements a, b, g ∈ G such that

g = [a, b] , [a, g] = e , and [b, g] = e ,

and g has infinite order. Below we will prove the following statements where
0 < i , k < ω and c ∈ G.

(a) [a, c] = gk implies [a i , c] = gk i

(b) [a i , b] = g i , [a−i , b] = g−i , [a, bk] = gk , [a i , bk] = g i k .

(c) There exists an FO-formula ψ(x , y, z; u, v) such that

G ⊧ ψ(g i , gk , c; a, b) iff c = g i k , for all c ∈ G .

Then the fact that G is not automatic can be established as follows. Let
R ∶= ψ(x , y, z; a, b)G be the relation defined by the formula from (c). By
Proposition 8.9, it is sufficient to find an embedding ofNn into ⟨G ,R⟩, for
every n < ω. Hence, fix n. Let p0 , . . . , pn−1 be n distinct prime numbers
and set

P ∶= { pk00 ⋯p
kn−1
n−1 ∣ k0 , . . . , kn−1 < ω } .

Then ⟨P, ⋅ ⟩ ≅ Nn and the function f ∶ p ↦ g
p satisfies

⟨ f (p), f (q), h⟩ ∈ R iff h = f (pg) , for all p, q ∈ P , h ∈ G ,

as desired. It therefore remains to prove the above claims.
(a)We prove the claim by induction on i. For i = 1 the claim is trivial. For

the inductive step, suppose that [a i , h] = gk i . Since [a, g] = e, we have

[a i+1 , h] = a−1[a i , h]a ⋅ [a, h] = a−1 gk ia ⋅ gk = gk(i+1) .
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(b)The first equation follows by (a) for h = b and k = 1. For the second
one, note that [a, g] = e implies

e = [a i , b] ⋅ [a−i , b] = a i[a i , b]a−i ⋅ [a−i , b]

= a i g ia−i ⋅ [a−i , b] = g i ⋅ [a−i , b] .

For the third one, note that [b, a] = [a, b]−1 = g
−1. Hence, applying (a)

to h = a and k = 1 we obtain [bk , a] = g
−k , which implies that [a, bk] =

[bk , a]−1 = gk .
Finally, the last equation follows by the third equation using (a) for h = bk .
(c) We define

ψ(x , y, z; a, b) ∶= [a, x] = e ∧ [b, y] = e

∧ (∃u, v ∈ C(g))[C(b) ⊆ C(v) ∧ z = [u, v]

∧ x = [u, b] ∧ y = [a, v]] ,

where C(x) = { y ∣ [x , y] = e } and g ∶= [a, b]. We claim that ψ has the
desired property.
(⇐)Given x = g i , y = gk , and z = g i k , we set u ∶= a i and v ∶= bk . Then

a
i , bk ∈ C(g) and C(b) ⊆ C(bk). Furthermore, we have shown in (b) that

[a i , bk] = g i k , [a i , b] = g i , and [a, bk] = gk .

(⇒) Suppose that η(g i , gk , z; a, b) holds and let u and v the the corres-
ponding witnesses.

Note that, by (b),

[u, b] ⋅ [a−i , b] = [u, b] ⋅ g−i = g i ⋅ g−1 = e .

Hence, [u, b] ∈ C(a) implies that

a
i[u, b]a−i ⋅ [a−i , b] = [ua−i , b] = [u, b] ⋅ [a−i , b] = e .

Setting c ∶= ua−1, it follows that s ∈ C(b) ⊆ C(v) and

[u, v] = [sa i , v] = a−i[s, v]a i ⋅ [a i , v] = a−ia i ⋅ [a i , v] = [a i , v] .
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Finally, by (a), we know that [a, v] = g
k implies [a i , v] = g

i k Con-
sequently,

z = [u, v] = [a i , v] = g i k .

Finally, we need some results about nilpotent groups.

Definition 9.11. Let G be a group.
(a) Let C ⊆ G be a finite set of generators such that c ∈ C implies c−1 ∈ C.

We say that G has polynomial growth if there exists a polynomial p(x) such
that

∣{ c0⋯ cn−1 ∣ c0 , . . . , cn−1 ∈ C }∣ ≤ p(n) , for all n < ω .

(b) G is nilpotent if there is some n < ω such that

[g1 , . . . , gn] = e , for all g1 , . . . , gn ∈ G .

It is virtually nilpotent if it has a nilpotent subgroup of finite index. ⌟

Exercise 9.1. Prove that, if G has polynomial growth with respect to some
set C of generators, it has polynomial growth with respect to every finite set
of generators. ⌟

The following result is more substantial. For the proof we refer to the
literature.

Theorem 9.12 (Gromov [92]). Every finitely generated group of polynomial
growth is virtually nilpotent.

Proposition 9.13. Every finitely generated nilpotent group G has a normal

subgroup H of finite index that is torsion-free.

Proof. Let C be a finite set of generators of G and set G0 ∶= G and G i+1 ∶=
[G i ,G]. Note that, sinceG is nilpotent, this sequence stabilises atG i = {e},
for some i. We start by proving that G i−1 is generated by the set G i ∪ D i ,
where

D i ∶= { [c1 , . . . , c i] ∣ c1 , . . . , c i ∈ C } ⊆ G i−1 .
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Weproceed by induction on i.The statement is trivial for i = 1 since,G0 = G
is generated by C = D1. For the inductive step, note that G i−1 is generated
by elements of the form [x , y] with x ∈ G i and y ∈ G. As G i−1 is a normal
subgroup of G, we can use the inductive hypothesis to write

x = x e00 ⋯ x
en−1
n−1 z ,

where e0 , . . . , en−1 ∈ {−1, 1}, z ∈ G i−1 and x0 , . . . , xn−1 ∈ D i−1. Writing z
as a product of elements of C and using the equations from Lemma 9.7, it
follows that we can write x as a product of elements (and their inverses) of
the form

g
−1[x j , c]g = [x j , c][x j , c, g] and g

−1[z, c]g , for c ∈ C , g ∈ G .

Since [x j , c, g], [z, c] ∈ G i and [x j , c] ∈ D i the claim follows.
Having proved the claim, it follows that every subgroup G i is finitely

generated and each quotientG i/G i+1 = G i/[G i ,G] is abelian. Hence, there
exists a finite sequence

G i = H
i
0 ⊇ ⋯ ⊇ H

i
m i
= G i+1

of subgroups such that each factorH i
j/H

i
j+1 is cyclic and [H

i
j ,G i] is a nor-

mal subgroup ofH i
j+1. Concatenating these sequences, we obtain a sequence

G = H0 ⊇ ⋯ ⊇ Hn = {e}

such that each factorH j/H j+1 is cyclic and [H j ,G] is a normal subgroup
ofH j+1. We prove the claim by induction on the length n of this sequence.
If n = 0, the claim is trivial. Hence, suppose that n > 0. Let j be the minimal
index with H i ≠ G and set H ∶= H j . By assumption, there exists some
element a ∈ G generating G/H. By inductive hypothesis, H has a normal
subgroup K of finite index that is torsion-free. If H has finite index in G, the
group K is the desired torsion-free subgroup of G. Hence, suppose that the
index of H in G is infinite. Let U be the subgroup of G induced by the set

U ∶= ⟪a⟫ ⋅K .
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This group is torsion-free and its index is

∣G ∶ U∣ = ∣G ∶ ⟪a⟫ ⋅K∣ = ∣H ∶ H ∩ ⟪a⟫ ⋅K∣ = ∣H ∶ K∣ ,

which is finite by choice of K.

Lemma 9.14. Let G be a finitely generated nilpotent group. If G is not virtually

abelian, it has a subgroup isomorphic to the Heisenberg group.

Proof. By Proposition 9.13, G has a torsion-free subgroup H of finite index.
As G is not virtually abelian, it follows that H is not abelian. Consider the
sequence defined by H0 ∶= H and H i+1 ∶= [H i ,H], for i < ω. Since H
is nilpotent, there exists some number n such that Hn+1 = {e}. Let n be
the least such number. As H is not abelian, we have n ≥ 1. Furthermore,
Hn induces a non-trivial abelian subgroup of H. Fix some element g ∈ Hn
with g ≠ e. By definition g = [a, b] for some a ∈ Hn−1 and b ∈ H. Then
[Hn ,H] = Hn+1 = {e} implies that [g, a] = e and [g, b] = e. Furthermore,
since H ⊆ G is torsion-free, the order of g is infinite. Consequently, a, b,
and g determine an embedding of the Heisenberg group into G.

The connection between automatic groups and nilpotent ones is given by
the following lemma.

Lemma 9.15. Let H be a finitely generated subgroup of an automatic group G.

Then H has polynomial growth.

Proof. Fix a finite set C ⊆ H of generators such that c ∈ C implies c−1 ∈ C,
and set l ∶= ∥C∥. By Lemma 8.8, there exists a constant k such that

∥c0⋯cn−1∥ ≤ l + k⌈log2 n⌉ , for all c0 , . . . , cn−1 ∈ C and n < ω .

Thus the number of elements of H that can be written as a product of at
most n generators is bounded by

2l+k⌈log2 n⌉ ≤ 2l+k(log2 n+1) = 2l+k(2log2 n)k = 2l+knk .

Using these tools, we can finally proof the theorem and its corollary.
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Proof of Theorem 9.2. LetH be a finitely generated subgroup of an automatic
group G. If H is finite, there is nothing to prove. Hence, we may assume that
it is infinite. By Lemma 9.15, H has polynomial growth. Consequently, we
can useTheorem 9.12 to find a nilpotent subgroup H0 of H that has finite
index. If H0 is virtually abelian, so is H.

Hence, suppose otherwise.Thenwe can use Lemma 9.14 to find an embed-
ding of the Heisenberg group in H and, therefore, also in G. Consequently,
it follows by Proposition 9.10 that G is not automatic.

Proof of Corollary 9.3. (1) ⇒ (3) follows by Theorem 9.2; (3) ⇒ (4) was
proved in Lemma 9.5; (4)⇒ (2) holds since ⟨N,+⟩ is ω-automatic and
ω-automatic structures are closed under FO-interpretations; and (2)⇒ (1)
follows byTheorem 6.14 and the fact that every finitely generated group is
countable.

Open Questions.

(a) Does every finitely generated (subgroup of an) ω-automatic group have
polynomial growth?

(b) Does every finitely generated (subgroup of a) tree automatic group have

polynomial growth?

The Rational+

What about groups that are not finitely generated?Here, we have only partial
results, even for abelian groups. We have already seen that Z, Z[1/k], and
Z[1/k]/Z are automatic, and so are all finite products of such groups. This
is in contrast to the rationals, which are not automatic.

Definition 9.16. Let p > 1 be an integer. An abelian group A is p-divisible if,
for every a ∈ A, there is some b ∈ Awith pb = a. ⌟

Theorem 9.17 (Tsankov). Let P be an infinite set of prime numbers.

(a) If A is a torsion-free abelian group that is p-divisible, for all p ∈ P, then
A is not automatic.

(b) ⊕p∈P Z[1/p]/Z is not automatic.
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Corollary 9.18. ⟨Q,+⟩ and ⟨Q/Z,+⟩ are not automatic.

For the proof ofTheorem 9.17, we need some results from additive com-
binatorics concerning progressions and lattices. We will omit some of the
rather lengthy proofs. The missing material can be found in, e.g., Chapters
3 and 5 of [201].

Definition 9.19. (a) For n̄ ∈ Nd , we set

[n̄] ∶= { ⟨s0 , . . . , sd−1⟩ ∈ Nd ∣ 0 ≤ s i < n i } ,

[n̄]± ∶= { ⟨s0 , . . . , sd−1⟩ ∈ Nd ∣ −n i < s i < n i } .

(b) Let A be an abelian group. A progression is a set P of the form

P = a + [n̄] ⋅ b̄ ∶= { a +∑i<d s ib i ∣ s i < n i } ,

where a, b0 , . . . , bd−1 ∈ A, d , n0 , . . . , nd−1 < ω, and ⋅ denotes the scalar
product.

Such a progression is proper if ∣P∣ = ∣[n̄]∣, that is, if every element of P can
be uniquely expressed as a linear combination of a, b0 , . . . , bd−1. We call the
number d the rank of the progression.

(c) A coset progression is a subset of A of the form P +H, where P ⊆ A is
a progression andH ⊆ A a finite subgroup.The rank of P +H is the rank
of P. A coset progression P +H is proper if P is proper and the sum P +H

is direct, i.e., every element of P +H can be uniquely written as p + h with
p ∈ P and h ∈ H. ⌟
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A characteristic property of progressions P is that the sets of the form
P + P ∶= { p + q ∣ p, q ∈ P } are small, that is, linear in the size of P. The
following theorem of Freiman states the converse: every set S such that S+S
is small is close to a progression.

Theorem 9.20 (Freiman). Let A be an abelian group and let α > 0 be a

constant. There exist numbers β and d with the following property. For every

finite S ⊆ Asatisfying ∣S+S∣ ≤ α⋅∣S∣, there exists a proper coset progression P+H
of rank at most d with

S ⊆ P +H and ∣P∣ ⋅ ∣H∣ ≤ β ⋅ ∣S∣ .

The next result can be used to make a progression proper without increas-
ing its size too much.

Lemma 9.21. Let A be an abelian group. There exists a constant β such that

every progression P of rank d is contained in a proper progression Q of rank at

most d and size ∣Q ∣ ≤ dβd
3
⋅ ∣P∣.

As a technical tool we introduce norms on abelian groups.

Definition 9.22. Let A be an abelian group.
(a) A norm on A is a function ∥ ⋅ ∥ ∶ A→ ω such that

∥a∥ = ∥−a∥ and ∥a + b∥ ≤ max{∥a∥, ∥b∥} , for all a, b ∈ A .

For a set S ⊆ A, we set

∥S∥ ∶= max{ ∥s∥ ∣ s ∈ S } .

(b) Let p be a prime. A p-norm onA is a norm ∥ ⋅∥ satisfying the following
additional conditions for all a ∈ A and k ∈ Z.
◆ ∥ka∥ < ∥a∥ implies p ∣ k

◆ lim
n→∞
∥pna∥ = 0

◆ 0 is the only accumulation point of A. ⌟
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Example. Theprototypical p-norm is the p-adic norm onQ, which is defined
by ∥0∥p ∶= 0 and

∥a∥p ∶= p
m for a =

k

qp
m with k and q coprime to p .

⌟

Below we will need the following two technical results on norms and
progressions.

Lemma 9.23. LetA be an abelian group with a norm ∥⋅∥, and let P = a+[n̄]⋅ b̄
be a progression containing an element c ∈ P with ∥c∥ < ∥P∥. Then

∥b i∥ = ∥P∥ , for some i .

Proof. Let d be the rank of P and letH ∶= ⟪b0 , . . . , bd−1⟫A be the subgroup
generated by b0 , . . . , bd−1. By the properties of a norm, it follows that

∥h∥ ≤ max
i
∥b i∥ , for all h ∈ H .

Hence, ∥H∥ = maxi∥b i∥ and it remains to prove that ∥H∥ ≥ ∥P∥.
For a contradiction, suppose that ∥H∥ < ∥P∥. Then ∥P∥ = ∥a∥. By

assumption, there is c ∈ P with ∥c∥ < ∥P∥. Let c = a + h, for some h ∈ H.
Then

∥P∥ = ∥a∥ ≤ max{∥a + h∥, ∥−h∥} = ∥a + h∥ < ∥P∥ ,

where the third step follows from the fact that ∥−h∥ = ∥h∥ < ∥a∥. We have
obtained a contradiction.

Lemma 9.24. Let A be an abelian group with a p-norm ∥ ⋅ ∥, and let

T = { t < n ∣ ∥a + tb∥ < ∥b∥ } , for some a, b ∈ A and n < ω .

Then

∣T∣ ≤ ⌈n/p⌉ and
1
n ∣T∣ ≤ max{ 1

n ,
2
p} .
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Proof. For t, t′ ∈ T, we have

∥b∥ > max{∥a + tb∥, ∥a + t
′
b∥} ≥ ∥(t − t

′)b∥ .

Since ∥ ⋅ ∥ is a p-norm, it follows that

p ∣ t − t
′ , for all t, t′ ∈ T .

This implies that

∣T∣ ≤ ⌈n/p⌉ .

For the second claim, we distinguish two cases. If n ≤ p, we have

⌈n/p⌉

n

≤
1
n

.

Otherwise,

⌈n/p⌉

n

≤
n/p + 1

n

≤
1
p

+
1
n

≤
1
p

+
1
p

=
2
p

.

Hence, 1
n ∣T∣ ≤

⌈n/p⌉
n ≤ max{ 1

n ,
2
p}.

Lemma 9.25. Let A be an abelian group, H ⊆ Aa subgroup, p a prime number,

and n < ω, and a, b ∈ A elements with b /p H.The size of the set

T = { t < n ∣ a + tb ∈ H }

is bounded by

∣T∣ ≤ ⌈n/p⌉ and
1
n ∣T∣ ≤ max{ 1

n ,
2
p} .

Proof. For t, t′ ∈ T,

a + tb0 , a + t
′
b0 ∈ H implies (t − t

′)b0 = (a + tb0) − (a + t
′
b0) ∈ H .
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Since b /p H, it follows that

p ∣ t − t
′ , for all t, t′ ∈ T .

This implies that

∣T∣ ≤ ⌈n/p⌉ .

For the second claim, we distinguish two cases. If n ≤ p, we have

⌈n/p⌉

n

≤
1
n

.

Otherwise,

⌈n/p⌉

n

≤
n/p + 1

n

≤
1
p

+
1
n

≤
1
p

+
1
p

=
2
p

.

Hence, 1
n ∣T∣ ≤

⌈n/p⌉
n ≤ max{ 1

n ,
2
p}.

We also need some results about lattices in Rd (which are not to be
confused by lattices in the order-theoretic sense).

Definition 9.26. Let 0 < d < ω.
(a) A lattice is an discrete additive subgroup L ⊆ Rd . The rank of L is

dim span(L).
(b) A fundamental domain of a lattice L ⊆ Rd is a convex subset D ⊆

Rd that contains exactly one element from every coset inRd/L. Below we
identify the quotientRd/L with some fixed fundamental domain.

(b) A set B ⊆ Rd is symmetric if it is closed under negation.
(c) We denote by vol(B) the Lebesgue measure of B ⊆ Rd . ⌟

We are interested in the intersection of a convex set and a lattice. The
following two results provide bounds on the size of this intersection and of
its dimension.
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Lemma 9.27. Let B ⊆ Rd
be open, symmetric, and convex, and let L ⊆ Rd

be

a lattice of rank r. There exists a tuple s̄ ∈ Lr
of linearly independent vectors and

a tuple k̄ ∈ Nr
of positive integers such that

[k̄]± ⋅ s̄ ⊆ B ∩ L ⊆ [r2r k̄]± ⋅ s̄ .

Lemma 9.28. Let B ⊆ Rd
be open, symmetric, and convex, and let L ⊆ Rd

be

a lattice of rank d. Then

vol(B) <
2d

d!
vol(Rd/L) implies dim span(B ∩ L) < d .

Proof. For a contradiction, suppose that B∩ L contains d linearly independ-
ent vectors v0 , . . . , vd−1. Applying a linear bijection to Rd (which scales
the volumes on both sides of the above inequality by the same factor) we
may assume w.l.o.g. that v0 , . . . , vd−1 is the standard basis. This implies that
L contains the sublattice Zd . Hence, vol(Rd/L) ≤ 1. Since B is convex and
symmetric, it contains the polyhedron with vertices ±v0 , . . . ,±vd−1, which
has volume 2d/d!. A contradiction.

The sets L we will apply the previous lemmas to are of the following form.

Lemma 9.29. Let A be an abelian group with a p-norm ∥ ⋅ ∥, define

φ ∶ Zd → A ∶ s̄ ↦ s̄ ⋅ b̄ , for some b̄ ∈ Ad ,

let α < ∥b̄∥ be a number, and set

L ∶= φ−1[Λ] ⊆ Zd , where Λ ∶= { a ∈ A ∣ ∥a∥ ≤ α } .

For every open, symmetric, convex set B ⊆ Rd
,

vol(B) <
2d p
d!

implies dim span(B ∩ L) < d .
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Proof. Note that L, considered as a subset ofRd , forms a discrete subgroup
ofRd . Furthermore, L has rank d since

lim
n
∥pnb i∥ = 0 , for all i ,

there is some n < ω such that pnZd ⊆ L. By Lemma 9.28, it is therefore
sufficient to show that

vol(Rd/L) ≥ p .

Recall that [Zd ∶ L] denotes the index of L in Zd . Since the fundamental
domain of Zd is the unit cube (which has volume 1), we have

vol(Rd/L) = vol(Rd/Zd) ⋅ [Zd ∶ L] = 1 ⋅ [Zd ∶ L] .

To compute [Zd ∶ L], we consider the sets

H ∶= rng φ ⊆ A and K ∶= Λ ∩H .

Note that H and K are closed under addition and negation. Hence, they
form subgroups of A. Furthermore, we have

φ(s̄) ∈ Λ ∩ rng φ = Λ ∩H = K , for every s̄ ∈ L = φ−1[Λ] .

Consequently,

[Zd ∶ L] = [φ[Zd] ∶ φ[L]] = [H ∶ φ[L]] ≥ [H ∶ K] .

Fix i < d with ∥b i∥ > α and set a ∶= b i . Since ∥ ⋅ ∥ is a p-norm, we have

∥a∥ = ∥2a∥ = ⋅ ⋅ ⋅ = ∥(p − 1)a∥ > α .

For 0 ≤ i < j < p, it follows that

∥ ja − ia∥ = ∥( j − i)a∥ > α ,
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As ∥K∥ ≤ α, we therefore have ja − ia ∉ K. Hence, the cosets

K, a +K, 2a +K, . . . , (p − 1)a +K

are all different and we have [H ∶ K] ≥ p. Thus,

vol(Rd/L) = [Zd ∶ L] ≥ [H ∶ K] ≥ p .

The next result can be used to reduce the rank of a progression.

Lemma 9.30. Let A be an abelian group with a p-norm ∥ ⋅ ∥, let α < ω, and
let P0 = a + [n̄] ⋅ b̄ and P1 = a

′ + [n̄′] ⋅ b̄′ be proper progressions of rank,
respectively, d ≥ 1 and d′ ≥ 0 such that

d + d
′ ≥ 2 , ∣P0∣ < p/d! , ∥b̄∥ > α ≥ ∥b̄′∥ ,

and P0+P1 contains some element of norm atmost α.There exists a progression Q

of rank strictly less than d + d
′
such that

∣Q ∣ < 4dd2d
2
⋅ ∣P0∣ ⋅ ∣P1∣ and Q ⊇ { c ∈ P0 + P1 ∣ ∥c∥ ≤ α } .

Proof. Set m ∶= ∣P0∣, let Λ ∶= { c ∈ A ∣ ∥c∥ ≤ α } be the set of elements of
norm at most α, define

φ ∶ Zd → A ∶ s̄ ↦ s̄ ⋅ b̄ ,

and set

L ∶= φ−1[Λ] ⊆ Zd and B ∶= { x̄ ∈ Rd ∣ −n i < x i < n i } .

Note that B is open, symmetric, and convex, and its volume is

vol(B) = (2n0)⋯(2nd−1) = 2
d
m <

2d p
d!

.

Since ∥b̄∥ > α, it therefore follows by Lemma 9.29 that B ∩ L is contained
in a sublattice of L of rank r < d.
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By assumption, we have (P0 + P1) ∩ Λ ≠ ∅ and ∥b̄′∥ ≤ α. Hence, there
exists a tuple t̄ ∈ [n̄] with a + a

′ + t̄ ⋅ b̄ ∈ Λ. Setting â ∶= a + t̄ ⋅ b̄, we have

P0 + P1 = a + P1 + φ([n̄]) = â + P1 + φ([n̄] − t̄) .

Since â + P1 ⊆ Λ, it follows that

(P0 + P1) ∩ Λ = â + P1 + φ([n̄] − t̄) ∩ Λ
= â + P1 + φ([n̄] − t̄ ∩ L) ⊆ â + P1 + φ(B ∩ L) .

In the case where d = 1, dim span(B ∩ L) = r < d = 1 implies that
B ∩ L = {0}. Setting Q ∶= â + P1, we have

(P0 + P1) ∩ Λ ⊆ â + P1 + φ(B ∩ L) = â + P1 = Q .

Furthermore, the rank of Q is d′ < d + d
′ and its size is

∣Q ∣ = ∣P1∣ < 4 ⋅ ∣P0∣ ⋅ ∣P1∣ = 4dd2d
2
⋅ ∣P0∣ ⋅ ∣P1∣ ,

as desired.
Hence, it remains to consider the case where d > 1. We use Lemma 9.27

to find a tuple s̄ ∈ Lr of linearly independent vectors and a tuple k̄ ∈ Nr of
positive integers such that

[k̄]± ⋅ s̄ ⊆ B ∩ L ⊆ [r2r k̄]± ⋅ s̄ .

Setting Q ∶= â + P1 + [r
2r
k̄]± ⋅ φ(s̄), it then follows that

(P0 + P1) ∩ Λ ⊆ â + P1 + φ(B ∩ L)

⊆ â + P1 + φ([r2r k̄]± ⋅ s̄)

⊆ â + P1 + [r
2r
k̄]± ⋅ φ(s̄) = Q .

Furthermore, the rank of Q is r + d
′ < d + d

′, and the independence of s̄
implies that

∣[k̄]±∣ = ∣[k̄]± ⋅ s̄∣ ≤ ∣B ∩ L∣ ≤ ∣B ∩Zd ∣ < 2dm .
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Hence, we can bound the size of Q by

∣Q ∣ ≤ ∣P1∣ ⋅ ∣[r
2r
k̄]±∣

< ∣P1∣ ⋅ 2rr2r
2
⋅ ∣[k̄]±∣ < ∣P1∣ ⋅ 2rr2r

2
⋅ 2dm < 4dd2d

2
⋅ ∣P0∣ ⋅ ∣P1∣ .

The key argument of the proof ofTheorem 9.17 is contained in the follow-
ing technical lemma. We introduce a measure θ(S , d) that indicates how
well a set S is approximated by a progression P of rank d. Then the lemma
provides a lower bound for how θ changes when we add a new element to
the set S.

Definition 9.31. Let A be an abelian group. For S ⊆ A and d < ω, we define

θ(S , d) ∶= min{ ∣P∣/∣S∣ ∣ P ⊇ S a proper progression of rank

at most d } .

If this minimum does not exist, we set θ(S , d) ∶= ∞. ⌟

Lemma 9.32. For every abealian group A there exists a constant γ > 0 with the
following property. Given an integer d ≥ 1, a prime p > d!, a p-norm ∥ ⋅ ∥, a set
S ⊆ A of size ∣S∣ > 1, and an element c ∈ Awith ∥c∥ > ∥S∥, we have

θ(S ∪ {c}, d) ≥ min{
p
1/d

4d
,

θ(S , d − 1)
d
γd 3 } .

Proof. If θ(S ∪ {c}, d) = ∞, the claim is trivial. Hence, suppose otherwise.
We choose a proper progression P = a + [n̄] ⋅ b̄ of rank at most d such that
S ∪ {c} ⊆ P and

θ(S ∪ {c}, d) =
∣P∣

∣S ∪ {c}∣
.

The set

Λ ∶= { a ∈ A ∣ ∥a∥ < ∥c∥ }
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induces a subgroup of A with S ⊆ P ∩ Λ.
Since ∥S∥ < ∥c∥ = ∥S ∪ {c}∥, we can use Lemma 9.23 to find an index i

with ∥b i∥ ≥ ∥c∥. Reordering b0 , . . . , bd−1 if necessary, we may therefore
assume that there is some index 0 < k ≤ d such that

∥b0∥, . . . , ∥bk−1∥ ≥ ∥c∥ > ∥bk∥, . . . , ∥bd−1∥ .

Set m ∶= n0⋯nk−1. We distinguish two cases.
(i) First suppose that m ≥ p/k!. Then

n i ≥ (p/k!)1/k ≥ (p/k!)1/d , for some i < k .

Without loss of generality, we may assume that i = 0. For s1 , . . . , sd−1 ∈ Z,
set

T(s̄) ∶= { t < n0 ∣ ∥a + tb0 + s1b1 + ⋅ ⋅ ⋅ + sd−1bd−1∥ < ∥c∥ } .

By Lemma 9.24, we have

∣T(s̄)∣

n0
≤ max{

1
n0

,
2
p

} ≤ max{(
d!
p

)
1/d

,
2
p

} .

Choose s̄′ such that T(s̄′) has maximal size. As P is proper, it follows that

∣P ∩ Λ∣
∣P∣

≤
∑s̄ ∣T(s̄)∣

n0⋯nd−1

≤
n1⋯nd−1 ⋅ ∣T(s̄

′)∣

n0⋯nd−1
≤
∣T(s̄′)∣

n0
≤ max{(

d!
p

)
1/d

,
2
p

} .

Furthermore, the bounds n! ≤ nn+1
en−1 and ln x ≤ x + 1 imply that

d!1/d ≤ (
d
d+1

e
d−1 )

1/d
= d ⋅

(de)1/d

e

= d ⋅
e

1
d ln(de)

e

= d ⋅
e

1
d (ln d+1)

e

≤ d ⋅
e

1
d (d−1+1)

e

= d .
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Therefore,

2
p

≤
2

p
1/d ≤

2d
p
1/d and (

d!
p

)
1/d
≤

2d
p
1/d implies

∣P ∩ Λ∣
∣P∣

≤
2d
p
1/d .

Since S ⊆ P ∩ Λ it follows that

θ(S ∪ {c}, d) =
∣P∣

∣S ∪ {c}∣
≥
∣P∣

2 ⋅ ∣S∣
≥

∣P∣

2 ⋅ ∣P ∩ Λ∣
≥

1

2 2d
p1/d
≥
p
1/d

4d
,

as desired.
(ii) It remains to consider the case where m < p/k!. First, let us check

that this implies that d > 1. For a contradiction, suppose that d = 1. Applying
Lemma 9.24 to the set

T ∶= { t < n0 ∣ ∥a + tb0∥ < ∥c∥ }

we obtain ⌈n0/p⌉ ≥ ∣T∣ = ∣P ∩ Λ∣ ≥ ∣S∣ > 1. Hence, m = n0 > p = p/k!.
A contradiction.

Consider the progressions

P0 ∶= [n0 , . . . , nk−1] ⋅ ⟨b0 , . . . , bk−1⟩ ,

P1 ∶= a + [nk , . . . , nd−1] ⋅ ⟨bk , . . . , bd−1⟩ .

Then ∣P0∣ = m < p/k! and P = P0 + P1 contains the elements of S, which
have norm less than ∥c∥. Consequently, we can apply Lemma 9.30 and we
obtain a progression Q ⊇ (P0 + P1) ∩ Λ ⊇ S of rank less than d such that

∣Q ∣ < 4kk2k
2
⋅ ∣P0∣ ⋅ ∣P1∣ ≤ 4dd2d

2
⋅ ∣P∣ .

Using Lemma 9.21, there exists a constant β (independent of S and d) and a
proper progression Q ′ ⊇ Q whose rank is at most that of Q such that

∣Q ′∣ ≤ dβd
3
⋅ ∣Q ∣ .
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Since

2 ⋅ 4d ⋅ d2d
2
⋅ dβd

3
≤ d ⋅ (d2)d ⋅ d2d

2
⋅ dβd

3

= d1+2d+2d
2+βd 3

≤ dd
3+d 3+d 3+βd 3

= d(3+β)d
3
,

it follows that

θ(S ∪ {c}, d) =
∣P∣

∣S ∪ {c}∣

≥
∣Q ∣

2 ⋅ ∣S∣ ⋅ 4dd2d2

≥
∣Q ′∣

2 ⋅ ∣S∣ ⋅ 4dd2d2 ⋅ dβd 3

≥
θ(S , d − 1)

2 ⋅ 4dd2d2 ⋅ dβd 3 ≥ d
−(3+β)d 3

⋅ θ(S , d − 1) .

We are finally able to put all the parts together.

Proposition 9.33. Let A be an abelian group and P an infinite set of primes

with the following properties.

◆ Every finite subgroup of A is trivial or cyclic.

◆ For every p ∈ P, there exists an unbounded p-norm ∥ ⋅ ∥p on A.

◆ For every p ∈ P, the map a ↦ pa has a finite kernel.

Then A is not automatic.

Proof. For a contradiction, suppose that A is automatic. We fix an injective
automatic presentation of A. By Lemma 8.8, there exists a constant k such
that

∥a0 + ⋅ ⋅ ⋅ + an−1∥ ≤ ∥ā∥ + k⌈log2 n⌉ , for all ā ∈ An .

(Here, ∥a∥ denotes the length of the word encoding a, not the p-norm ∥ ⋅∥p .)
Choose a number l ≥ ∥0∥ such that there are at least two elements a ∈ A
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with ∥a∥ ≤ l and set

Sn ∶= { a ∈ A ∣ ∥a∥ ≤ l + nk } , for n < ω .

Then

0 ∈ S0 , ∣S0∣ ≥ 2 , and Sn + Sn ⊆ Sn+1 .

Furthermore, it follows by Lemma 8.6 that there exists some constant α
such that

∣Sn+1∣ ≤ α∣Sn ∣ , for all n .

Then ∣Sn + Sn ∣ ≤ ∣Sn+1∣ ≤ α∣Sn ∣, and we can use theTheorem 9.20 to find
constants β and d0 such that every set Sn has a proper coset progression
P +H of rank d0 and size ∣P +H∣ ≤ β ⋅ ∣Sn ∣. Note that every finite subgroup
of A is trivial or cyclic and that cyclic groups form progressions of rank 1.
Consequently, P +H can be written as a proper progression of rank at most
d0 + 1. This implies that

θ(Sn , d0 + 1) ≤ β , for all n < ω .

Set d ∶= d0 + 1.
Since the definable functions a ↦ pa, for p ∈ P, have finite kernels, it

follows by Corollary 8.3 that there exists a function m ∶ P → N such that

p
−1
Sn ⊆ Sn+m(p) , for every p ∈ P .

We inductively choose a sequence pd < ⋅ ⋅ ⋅ < p0 of prime numbers in P

(starting with pd ) such that

pd > (4dαβ)d and p i−1 > p iαdm(p i)
d
γd4

,

where γ is the constant from Lemma 9.32. Since⋃n Sn = A and the norms
∥ ⋅ ∥p i are unbounded on A, we can now choose a sequence n0 < ⋅ ⋅ ⋅ < nd of
natural numbers by

n0 ∶= 0 and n i+1 ∶= min{ n ∣ ∥Sn∥p i+1 > ∥Sn i ∥p i+1 } .
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We claim that

θ(Sn i , i) ≥
p
1/d
i

4dα
.

For i = d, it then follows that

θ(Snd , d) ≥
p
1/d
d

4dα
>
4dαβ
4dα

= β .

A contradiction.
Hence, it remains to prove the claim. We proceed by induction on i. For

i = 0, we have

θ(Sn0 , 0) = θ(S0 , 0) = ∞ ,

since ∣S0∣ ≥ 2 and every progression of rank 0 is a singleton. For the inductive
step, suppose that we have already established the claim for i − 1.
Fix b ∈ Sn i−1 with ∥Sn i−1∥p i = ∥b∥p i . Then p

−1
i b ∈ Sn i−1+m(p i) implies

that

∥Sn i−1+m(p i)∥p i ≥ ∥p
−1
i b∥p i > ∥b∥p i = ∥Sn i−1∥p i .

By choice of n i , it follows that n i ≤ n i−1 + m(p i). Consequently,

∣Sn i−1∣ ≤ α
m(p i)−1∣Sn i−1 ∣ .

Note that, by definition of θ,

S ⊆ T implies θ(T , i) ≥
∣S∣

∣T∣
θ(S , i) .
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Therefore,

θ(Sn i−1 , i − i) ≥
∣Sn i−1 ∣

∣Sn i−1∣
θ(Sn i−1 , i − 1)

≥
∣Sn i−1 ∣

αm(p i)−1∣Sn i−1 ∣
θ(Sn i−1 , i − 1)

= α1−m(p i)θ(Sn i−1 , i − 1)

≥ α1−m(p i) p
1/d
i−1

4dα
= α−m(p i) p

1/d
i−1
4d

.

Similarly, for every a ∈ Sn i , ∣Sn i ∣ ≤ α∣Sn i−1∣ ≤ α∣Sn i−1 ∪ {a}∣ implies that

θ(Sn i , i) ≥
∣Sn i−1 ∪ {a}∣

∣Sn i ∣
θ(Sn i−1 ∪ {a}, i)

≥
∣Sn i−1 ∪ {a}∣

α∣Sn i−1 ∪ {a}∣
θ(Sn i−1 ∪ {a}, i) = α

−1θ(Sn i−1 ∪ {a}, i) .

By choice of n i , there is some element a ∈ Sn i with ∥a∥p i > ∥Sn i−1∥p i . Since
∥ ⋅ ∥p i is a p i-norm and p i > d

d ≥ i!, we can therefore use Lemma 9.32 to
show that

θ(Sn i , i) ≥ α
−1θ(Sn i−1 ∪ {a}, i)

≥ α−1min{
p
1/d
i
4d

, d−γd
3
θ(Sn i−1 , i − 1)}

≥ min{
p
1/d
i

4dα
, α−1d−γd

3
α−m(p i) p

1/d
i−1
4d
} =

p
1/d
i

4dα
,

where the last step follows from the fact that, by choice of p i−1,

d
γd 3

αm(p i)
p
1/d
i < p

1/d
i−1 .

We can now reduce both claims ofTheorem 9.17 to Proposition 9.33.
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XII. Automatic Structures

Proof of Theorem 9.17. (a) For a contradiction, suppose that there exists an
automatic torsion-free abelian group A and an infinite set P of primes such
that A p-divisible for all p ∈ P. If A contains an infinite linearly independent
subset, it is not automatic by Proposition 8.10. Consequently, A ⊆ Qn , for
some n < ω.
We obtain the desired contradiction via Proposition 9.33. To do so we

need three ingredients. First note that, A being torsion-free, the only finite
subgroup is trivial. Furthermore, for each p ∈ P, the map a ↦ pa is injective
and has trivial kernel. Therefore, it remains to construct unbounded p-
norms ∥ ⋅ ∥p , for p ∈ P. Let ∥ ⋅ ∥p be the p-adic norm on Q defined by
∥0∥p = 0 and

∥a∥p ∶= p
m for a =

k

qp
m with k and q coprime to p .

(It is straightforward to check that ∥ ⋅ ∥p is an unbounded p-norm on A.)
For a ∈ A ⊆ Qn , we then set

∥a∥p ∶= max{∥a0∥p , . . . , ∥an−1∥p} ,

where a0 , . . . , an−1 are the components of the tuple a.
(b) For a contradiction, suppose that there exists an infinite set P of primes

such that A ∶= ⊕p∈P Z[1/p]/Z is automatic. Again, we obtain the desired
contradiction via Proposition 9.33.

First, note that every finite subgroup of A is cyclic. Furthermore, for each
p ∈ P, the map a ↦ pa has finite kernel. (pa ∈ Z implies that a = k/p for
some k < p.) Finally, for each p ∈ P, we define an unbounded p-norm on A
as follows. Let πp ∶ ⋃p∈P Z[1/p]/Z → Z[1/p]/Z be the projection to the
p-th component. We set

∥a∥p ∶= ord(πp(a)) ,

where ord(b) denotes the order of b. (Again it is straightforward to check
that ∥ ⋅ ∥p is an unbounded p-norm on A.)

Open Question. Does there exist an infinite set P of numbers such that the

group⊕p∈P Z/pZ embeds into some automatic group?
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10 Automatic semirings

Conjecture. Every torsion-free abelian automatic group is an extension of Zn

by a finite direct sum of Z(p∞), for prime numbers p.

10 Automati$ Semiring+

After groups, we take a look at rings and semirings. Unsurprisingly it turns
out that few semirings are automatic. A notable exception is the tropical
semiring ⟨N ∪ {∞}, min,+,∞, 0⟩, which is automatic.

Laµi$e+ and Boolean Algebra+

We start with automatic boolean algebras.

Definition 10.1. Let B = ⟨B,⊓,⊔, ∗ , ⊑, ⊺, �⟩ be a boolean algebra.
(a) An atom is an element a ∈ B such that b ⊏ a implies b = �.
(b) Two a, b ∈ B have a finite difference if they satisfy the relation

a ≈∗ b : iff (a ⊓ b
∗) ⊔ (a∗ ⊓ b) is a finite supremum of atoms.⌟

Theorem 10.2. Let F be the boolean algebra of all finite and all cofinite subsets

of ω. For a boolean algebra B, the following statements are equivalent.

(1) B is automatic.

(2) B is finite or isomorphic to Fn
, for some n < ω.

(3) B is countable and B/≈∗ is finite.

Proof. (2) ⇒ (1) Since all finite structures are automatic and automatic
structures are closed under direct products, it is sufficient to prove that F is
automatic. We have trivial interpretations

F ≤FO ⟨℘fin(ω), ⊆⟩ ≅ ℘fin⟨ω⟩ ≤FO ℘fin⟨ω, ≤⟩ .

Hence, the claim follows byTheorem 2.3.
(3)⇒ (2) Let B be a countably infinite boolean algebra such that B/≈∗

is finite. Let [a′0]∗ , . . . , [a
′
n−1]∗ be the atoms of B/≈∗. Set

a0 ∶= a
′
0 ⊓ (a

′
1 ⊔ ⋅ ⋅ ⋅ ⊔ a

′
n−1)

∗ and a i+1 ∶= a
′
i ⊓ (a

′
0 ⊔ ⋅ ⋅ ⋅ ⊔ a

′
i−1)

∗ .
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XII. Automatic Structures

Then

a i ≈∗ a
′
i , a0 ⊔ ⋅ ⋅ ⋅ ⊔ an−1 = ⊺ , and a i ⊓ a j = � , for i ≠ j .

For b ∈ B, define

A(b) ∶= { a ∣ a atom, a ⊑ b } .

For i < n, let φ i ∶ B → B be the function sending b ∈ B to b ⊓ a i . Clearly,
φ i is a lattice homomorphism. Since a i ≉∗ �, each set A(a i) is countably
infinite and, for every b ∈ B, A(b ⊓ a i) is a finite or cofinite subset of A(a i).
Consequently, the range of φ i induces a sublattice of B that is isomorphic
to F. We therefore obtain a lattice homomorphism

φ ∶= ⟨φ i⟩i<n ∶ B→ Fn .

First of all, note that φ is even a homomorphism of boolean algebras since

φ(b∗) = ⟨b∗ ⊓ a0 , . . . , b∗ ⊓ an−1⟩

= ⟨b ⊓ a0 , . . . , b ⊓ an−1⟩
∗ = φ(b)∗ .

For injectivity, note that

φ0(b) ⊔ ⋅ ⋅ ⋅ ⊔ φn−1(b) = (b ⊓ a0) ⊔ ⋅ ⋅ ⋅ ⊔ (b ⊓ an−1)

= b ⊓ (a0 ⊔ ⋅ ⋅ ⋅ ⊔ an−1)

= b .

Finally, surjectivity follows from the fact that F is the range of φ i .
(1)⇒ (3) We start by introducing some terminology. Let a ∈ B.

◆ a is large if its ≈∗-class [a]∗ is not a finite supremum of atoms, i.e., if
[a]∗ ≉∗ � in B/≈∗.

◆ a is infinite if there are infinitely many elements b ⊑ a, i.e., if a ≉∗ �.

◆ a splits an element b ∈ B if a ⊓ b ≠ � and a∗ ⊓ b ≠ �.

Note that
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10 Automatic semirings

◆ every large element is infinite;
◆ for every large element a, there exists some c ∈ B such that c ⊓ a is large

and c∗ ⊓ a is infinite; and
◆ for every infinite element a, there exists some c ∈ B such that at least

one of c ⊓ a is large and c∗ ⊓ a is infinite.
For a contradiction, suppose that B is automatic but B/≈∗ is infinite.

Then ⊺ is large. Since every large element can be split into a large element
and an infinite one, we can construct an infinite strictly descending sequence

⊺ = a0 ⊐ a1 ⊐ ⋯

where, for each n < ω, an+1 is the ≤llex-least large element such that the
difference bn ∶= an ⊓ a

∗
n+1 is infinite. Similarly, since every infinite element

can be split into two elements at least one of which is also infinite, we can
constrcut infinite strictly descending sequences

bn = c
n
0 ⊐ c

n
1 ⊐ . . .

where, for each i < ω, cni+1 is the ≤llex-least infinite element such that the
difference dni ∶= c

n
i ⊓ c

n
i+1 ≠ �.

Note that the properties of being large and being infinite are both FOC-
definable. Hence, there exists an FOC-formula φ(x , x′ , y) stating that there
exists some element z such that
◆ y = x ⊓ x

′ ; or
◆ y = x ⊔ x

′ ; or
◆ x is large, z is the ≤llex-least large element such that z ⊏ x and x ⊓ z

∗ is
infinite, and [y = z or y = x ⊓ z

∗]; or
◆ x is infinite, z is the ≤llex-least infinite element such that z ⊏ x and

x ⊓ z
∗ ≠ �, and [y = z or y = x ⊓ z

∗].
Then

an ∈ Nφ(a0 , n) ,

c
n
i ∈ Nφ(a0 , n + i + 1) ,

d
n
i ∈ Nφ(a0 , n + i + 2) .
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XII. Automatic Structures

Consequently, Nφ(a0 , s + 2 + s) contains all elements of the sublattice
generated by Ds ∶= { d

n
i ∣ n + i < s }. Since dmi ⊓ d

n
j = �, for ⟨m, i⟩ ≠ ⟨n, j⟩,

this sublattice has size 2∣Ds ∣ and it follows that

∣Nφ(a0 , s + 2 + s)∣ ≥ 2∣Ds ∣ = 2s(s−1)/2 .

A contradiction to Proposition 8.16.

The following result shows that tree automatic boolean algebras are more
general than automatic ones.

Definition 10.3. A boolean algebra is atomless if it has no atoms. ⌟

One can use a standard back-and-forth construction like in the The-
orem of Cantor to show that all countable atomless boolean algebras are
isomorphic.

Theorem 10.4. Up to isomorphism there exists a unique countable atomless

boolean algebra.

Proposition 10.5. The countable atomless boolean algebra is tree automatic.

Proof. The countable atomless boolean algebra B is isomorphic to the set of
clopen subsets of Cantor space [2]ω . Such sets are of the formW[2]ω , for
finiteW ⊆ [2]∗.We can encode each finite setW as a [2]-labelled finite tree.
Then intersection, union, and complement for such sets are regular.

For ω-automatic lattices, we have the following partial result.

Proposition 10.6. Let L = ⟨L,⊔,⊓⟩ be an uncountable ω-automatic lattice.
Then there are elements a, b ∈ L such that ⇓a and ⇑b are both uncountable.

Proof. Let k be the constant fromTheorem 6.13 and define

f (x0 , . . . , xk) ∶= ⋀
i<k+1

x i and g(x0 , . . . , xk) ∶= ⋁
i<k+1

x i .

By choice of k, there exist uncountable regular setsU ,U′ ⊆ Ak andV ,V ′ ⊆
A such that the restrictions f ↾ U×V and g ↾ U′×V ′ are constant. Setting
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10 Automatic semirings

a ∶= f (c̄, d) and b ∶= g(c̄′ , d′), for c̄, c̄′ ∈ U and d , d′ ∈ V , it follows that
f
−1(a) and g

−1(b) are uncountable. Hence, so are the sets

⋃
i<k+1

p i[ f
−1(a)] ⊆ ⇓a and ⋃

i<k+1
p i[g

−1(b)] ⊆ ⇑b ,

where p i ∶ Ak+1 → A denotes the projection to the i-th component.

Exercise 10.1. Show that every automatic boolean algebra is finitely FOC-
axiomatisable. ⌟

Exercise 10.2. Show that the isomorphism problem for automatic boolean
algebras is decidable. ⌟

Integral Domain+

Next, let us take a look at automatic integral domains, i.e., commutative
rings without zero-divisors. (For us, rings will always be rings with identity.)

Proposition 10.7. An integral domain is automatic if, and only if, it is finite.

Proof. For a contradiction, suppose that there exists an infinite integral
domain R = ⟨R,+,−, ⋅ , 0, 1⟩ that is automatic. Fix an injective presentation
of R. We say that an element c ∈ R separates a setW ⊆ R if

ac + b = a′c + b implies a = a′ and b = b′ ,

for all a, a′ , b, b′ ∈ W. We start by proving that every finite set W ⊆ R

is separated by some c ∈ R. For a contradiction, suppose there is some
finiteW ⊆ R which is not. For every c ∈ R, it then follows that there are
a, a′ , b, b′ ∈W with ac+b = a′c+b′ and ⟨a, b⟩ ≠ ⟨a′ , b′⟩. SinceW is finite,
we can find elements a, a′ , b, b′ ∈W such that ⟨a, b⟩ ≠ ⟨a′ , b′⟩ and

ac + b = a′c + b
′ , for infinitely many c ∈ R .

This implies that (a − a
′)c = b − b′. If a = a′, it follows that b = b′, contrary

to our assumption. Hence, a ≠ a
′. Furthermore, by choice of a, a′ , b, b′,

there are elements c, c′ with

(a − a
′)c = b − b

′ = (a − a
′)c′ .
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Since R is an integral domain, this implies c = c′. A contradiction.
Fix an automatic well-ordering ≤ on R and let φ(x , y) be the formula

stating that
‘y = az + b where a, b ≤ x and z is the ≤-least element separating ⇓x.’

Then φ has finite out-degree and

∣Nφ(U , 1)∣ ≥ ∣U∣2 .

By induction on n it follows that

∣Nφ(U , n)∣ = ∣Nφ(Nφ(U , n − 1), 1)∣

≥ ∣Nφ(U , n − 1)∣2 ≥ (∣U∣2
n−1
)2 = ∣U∣2

n
.

A contradiction to Proposition 8.16.

We can extend this result to ω-automatic structures.

Theorem 10.8. An integral domain is ω-automatic if, and only if, it is finite.

Proof. (⇐) is trivial since all finite structures are ω-automatic.
(⇒)For a contradiction, suppose that there exists an infiniteω-automatic

integral domain A. By Proposition 10.7, A is not automatic and, hence,
uncountable. Let k be the constant fromTheorem 6.13 and define a function
f ∶ Ak+1 → A by

f (ā, x) ∶= ∑
i<k

a ix
i .

This function is FOC-definable and, by choice of k, there exists uncountable
sets U ⊆ A

k and V ⊆ A such that f ↾ U × V is constant. In an integral
domain, every polynomial of degree n has at most n roots. This implies that,
for all ā ≠ b̄ inU, there are at most k − 1 elements x ∈ Awith

f (ā, x) − f (b̄, x) = 0 .

Thus, ∣V ∣ < k. A contradiction.

Corollary 10.9. ⟨R,+, ⋅ ⟩ and ⟨C,+, ⋅ ⟩ are not ω-automatic.
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10 Automatic semirings

General Ring+

Finally, we consider possibly non-commutative rings.The aim of this section
is to prove the following result.

Definition 10.10. An algebra A is locally finite if every finitely generated
subalgebra is finite. ⌟

Theorem 10.11. Every automatic ring is locally finite.

Before giving the proof let us note that this result allows us to remove the
assumption of commutativity from Proposition 10.7.

Corollary 10.12. Every automatic ring without zero-divisors is finite.

Proof. Let R be an automatic ring without zero-divisors. ByTheorem 10.11,
R is locally finite. We claim that R is commutative. Then the claim follows
by Proposition 10.7.
Consider two elements r, s ∈ R and let S the the subring generated by

them. By assumption, S is finite. Hence, the non-zero elements of S form a
finite cancellative monoid S× under multiplication. This implies that S× is
a group and S is a finite skew-field. By the Theorem of Wedderburn, all
finite skew-fields are commutative. Hence, r, s ∈ S implies that rs = sr.

For the proof ofTheorem 10.11, we start by looking at finiteness conditions
for rings.

Lemma 10.13. Let R be a ring of positive characteristic q > 0 and let C ⊆ R be

finite.

(a) The closure of C under addition is finite.

(b) If the closure of C under multiplication is finite, so is the subring ⟪C⟫R

of R generated by C.

Proof. (a) Let S be the closure of C under addition. Every element of S can
be written as

∑
c∈S

λc c , for λc ∈ Z .
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Since R has characteristic q it follows that it is sufficient to consider coeffi-
cients λc ∈ {0, . . . , q − 1}. Consequently, S contains at most q∣S∣ elements.
(b) Suppose that the closureM of C under multiplication is finite. The

subring ⟪C⟫R generated by C is the closure ofM under addition. Hence,
the claim follows by (a).

Lemma 10.14. Let R be a finitely generated ring and H ⊆ R an ideal such that

R/H is finite and H
2 = 0. Then R is finite.

Proof. We start by proving that R has positive characteristic p > 0. By as-
sumption, the quotient R/H is finite. Hence, its characteristic p0 is positive.
This implies that p0 ∈ H (where p0 is considered as the sum 1+ ⋅ ⋅ ⋅ + 1 in R).
SinceH2 = 0, it follows that p0p0 = 0. Consequently, the characteristic p
of R divides p20. In particular, p > 0.
Fix a finite set of generators C ⊆ R of R, let π ∶ C∗ → R be the function

mapping a sequence inC to its product, and let q ∶ R → R/H be the quotient
map. Since q[π[C∗]] ⊆ R/H is finite, we can find some finite set X ⊆ C∗

such that q[π[X]] = R/H. Let n < ω be some number such that X ⊆ C<n .
For every u ∈ C∗, it follows that the quotient q(π(u)) ∈ R/H can be written
as a product of less than n elements of q[C]. Hence, there exist hu ∈ H and
vu ∈ C

<n such that

π(u) = π(vu) + hu .

Let K andU be the closures of the sets

K0 ∶= {0, 1} ∪ { hu ∣ u ∈ Cn } ,

U0 ∶= { kπ(u) ∣ k ∈ K , u ∈ C<n }

under addition. Since Cn and C
<n are finite, it follows by Lemma 10.13

that so are K andU. Furthermore,H2 = 0 implies that K is closed under
multiplication. Hence, K induces a subring of R. We claim that π[C∗] ⊆ U.
Then it follows that R = ⟪C⟫R = U. In particular, R is finite.

950



10 Automatic semirings

To prove the claim, we show that, for every u ∈ C+ of length at least n,
there exists a function α ∶ C<n → K such that

π(u) = ∑
w∈C<n

α(w)π(w) ∈ U .

We proceed by induction on ∣u∣. If ∣u∣ = n, we have

π(u) = π(vu) + hu = 1 ⋅ π(vu) + hu ⋅ π(⟨⟩) .

For the inductive step, suppose that u = u0c, for u0 ∈ C∗ and c ∈ C. By
inductive hypothesis, there exists a function α0 such that

π(u) = π(u0) ⋅ c = ( ∑
w∈C<n

α0(w)π(w)) ⋅ c = ∑
w∈C<n

α0(w)π(wc) .

Since π(wc) = π(vwc) + hwc , it follows that

π(u) = ∑
w∈C<n

α0(w)(π(vwc) + hwc)

= ∑
w∈C<n

α0(w)π(vwc) + ∑
w∈C<n

α0(w)hwcπ(⟨⟩)

= ∑
w∈C<n

α(w)π(w) ,

where the function α takes the form

α(w) = ∑
i
α0(w

′
i) +∑

i
α0(w

′′
i )hw′′i c i , for suitable w′i ,w

′′
i and c i .

Note that the sum on the right-hand side belongs to ⟪K⟫R = K.

To find an ideal as in the previous lemma, we will use certain matrix
groups.

Definition 10.15. Let R be a ring and let I ∈ Rn×n be the unit matrix. A
transvection is a matrix of the form E i j(r) ∶= I + e

r
i j , where i ≠ j and e

r
i j is

the matrix whose entries are all 0, except for the entry in row i and column j,
which has value r. We denote by En(R) the subgroup of the matrix group
GLn(R) generated by all transvections. ⌟
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XII. Automatic Structures

Let us collect a few arithmetic laws for such matrices.

Lemma 10.16. Let R be a ring, r, s ∈ R, and let i , j, k < n be pairwise distinct
indices.

(a) E i j(r)
−1 = E i j(−r)

(b) E i j(r + s) = E i j(r) ⋅ E i j(s)

(c) E i k(rs) = [E i j(r), E jk(s)]

(Here [x , y] = x−1 y−1xy denotes the commutator for groups, not for rings.)

Proof. (a) follows by (b) for s = −r.
(b) Note that eri j ⋅ e

s
i j = 0 and e

r
i j + e

s
i j = e

r+s
i j . Hence,

E i j(r) ⋅ E i j(s) = (I + e
r
i j)(I + e

s
i j)

= I + e
r
i j + e

s
i j + e

r
i je

s
i j = I + e

r+s
i j = E i j(r + s) .

(c) Since eri j ⋅ e
s
jk = e

rs
ik and e

s
jk ⋅ e

r
i j = 0 (as k ≠ i), we have

[E i j(r), E jk(s)]

= [I + e
r
i j , I + e

s
jk]

= (I + e
−r
i j )(I + e

−s
jk)(I + e

r
i j)(I + e

s
jk)

= (I + e
−r
i j + e

−s
jk + e

−r
i j e

−s
jk)(I + e

r
i j + e

s
jk + e

r
i je

s
jk)

= (I − e
r
i j − e

s
jk + e

rs
ik)(I + e

r
i j + e

s
jk + e

rs
ik)

= (I + e
rs
ik)

2 − (eri j + e
s
jk)(I + e

rs
ik) + (I + e

rs
ik)(e

r
i j + e

s
jk)

− (eri j + e
s
jk)

2

= I + 2ersik + (e
rs
ik)

2 − ((eri j)
2 + e

r
i je

s
jk + e

s
jk e

r
i j + (e

s
jk)

2)

= I + e
rs
ik .

Lemma 10.17. For every finitely generated ring R, the group En(R) is finitely
generated.
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Proof. Let S ⊆ R be a set of generators of R. We claim that En(R) is
generated by the matrices E i j(s) and E i j(−s), for s ∈ S and i ≠ j. Let us
call these the elementarymatrices.
By definition, every element of En(R) can be written as a product of

transvections and their inverses. By Lemma 10.16 (a), each inverse of a trans-
vection is also a transvection. Consequently it is sufficient to show that every
transvection E i j(r) with r ∈ R can be written as a product of elementary
ones. This follows by Lemma 10.16 (b) and (c) since r can be written as a
sum of products of elements of S.

Proof of Theorem 10.11. LetR be an automatic ring andS a finitely generated
subring.We have to show thatS is finite. Representing 3× 3 matrices overR
by 9-tuples, we can interpret GL3(R) inR. Hence, GL3(R) is an automatic
group. According to Lemma 10.17, the subgroupE3(S) ⊆ GL3(R) is finitely
generated. Consequently it follows byTheorem 9.2 that E3(S) is virtually
abelian. By Lemma 9.4, this means it has a normal abelian subgroup A ⊆
E3(S) of finite index.
Let S+ ∶= ⟨S ,+⟩ be the additive group of S. For i ≠ j, we consider the

functions g i j ∶ S+ → E3(S) with

g i j(s) ∶= E i j(s) ,

and the set

H ∶= ⋂
i≠ j

S i j , where S i j ∶= g
−1
i j [A] = { s ∈ S ∣ E i j(s) ∈ A} .

Below, we will prove the following claims.

(a) H induces a subgroup of S+ of finite index.

(b) H is an ideal of S and S/H is finite.

(c) H
2 = 0.

Then it follows by Lemma 10.14 that S is finite.
(a) By Lemma 10.16 (b), the function g i j ∶ S+ → En(S) is a group

homomorphism. Since the preimage of a subgroup under a homomorphism
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is again a subgroup, it follows that Si j ∶= ⟨S i j ,+⟩ forms a subgroup of S+.
Hence, so does the intersectionH. Furthermore, since E3(S)/A is finite, so
is

g
−1
i j [E3(S)]/ g

−1
i j [A] ≅ S+/Si j .

Since every subgroup Si j has finite index in S+, so does the subgroup
induced byH.

(b)The fact that the quotient S/H (if it exists) is finite, follows immedi-
ately from (a). Furthermore, we have already shown in (a) thatH is closed
under addition. To prove that H is an ideal, it therefore remains to prove
closure under multiplication with elements of S. Hence, fix h ∈ H and s ∈ S.
We have to show that hs, sh ∈ H. Since A is a normal subgroup of E3(S)
(and therefore closed under conjugation) and since E i j(h) ∈ A, we have

M
−1 ⋅ E i j(h) ⋅M ∈ A , for allM ∈ En(S) .

This implies that

[E i j(h), E i j(s)] = E i j(h)
−1 ⋅ (E i j(s)

−1 ⋅ E i j(h) ⋅ E i j(s)) ∈ A .

Hence, it follows by Lemma 10.16 (c) that, for i , j, k pairwise distinct,

E i k(hs) = [E i j(h), E jk(s)] ∈ A ,

E i k(sh) = [E i j(s), E jk(h)] ∈ A .

Consequently, hs, sh ∈ S i k . As this holds for all i ≠ k, we have hs, sh ∈ H, as
desired.

(c) Let h, k ∈ H. Then E12(h), E23(k) ∈ A. Since A is abelian, it follows
by Lemma 10.16 (c) that

E13(hk) = [E12(h), E23(k)] = I .

This implies that hk = 0.

Unfortunately, this theorem does not provide a complete characterisation
of automatic rings. Let us collect a few more restrictions on such rings.
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10 Automatic semirings

Lemma 10.18. Every automatic ring has positive characteristic.

Proof. If R has characteristic 0, the element 1 generates an infinite subring.
Hence, R cannot be automatic.

Proposition 10.19. For every automatic ring R, there exists a finite set Q of

prime powers such that we can write

R = ⊕
q∈Q

Rq ,

where Rq is an automatic ring of characteristic q.

Proof. By Lemma 10.18,R has a positive characteristicm.We prove the claim
by induction on m. If m is a prime power, there is nothing to do. Otherwise,
we can write m = kl where k and l are coprime. Hence, there are i , j ∈ Z
with ik + jl = 1. For every r ∈ R, it follows that

r = (ik + jl)r = is + jt , where s ∶= kr and t ∶= l r .

This implies that l s = mr = 0 and kt = mr = 0. Consequently, setting

S ∶= { s ∈ R ∣ l s = 0} and T ∶= { t ∈ R ∣ kt = 0}

we obtain R = S + T. Furthermore, if u ∈ S ∩ T, then

lu = 0 = ku implies u = (ik + jl)u = 0 + 0 .

Thus, S ∩ T = {0}. Since S and T are closed under addition and multiplic-
ation, it follows that R = S⊕ T.

Furthermore, the fact that the sets S and T are FO-definable in R implies
that S and T are automatic. By inductive hypothesis, each of S and T has a
decomposition of the desired kind. Hence, so does R.

By this proposition, it follows that in order to characterise all automatic
rings, it is sufficient to characterise those that cannot be decomposed as a
direct sum.The next result takes a look at such rings.
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Proposition 10.20. Let R be an automatic ring that cannot be written as the

direct sum of two non-trivial automatic rings. Then

R = N ⊍U ,

where

N ∶= { r ∈ R ∣ rn = 0 for some n > 0} ,

U ∶= { r ∈ R ∣ rn = 1 for some n > 0} .

Proof. Let R be such a ring. We start by proving that 0 and 1 are the only
idempotent elements of R.
For a contradiction, suppose that there is some idempotent e different

from 0 and 1. For every r ∈ R, it follows that r = (1 − e)r + er. Hence,

R = (1 − e)R ∪ eR .

To show that (1−e)R∩eR = {0}, consider an element r ∈ (1−e)R∩eR.Then
there are s, t ∈ R with r = (1− e)s = et. Hence, (1− e)2 = 1− 2e + e

2 = 1− e

implies that

r = (1 − e)s = (1 − e)2s = (1 − e)r = (1 − e)et = (e − e
2)t = 0 .

Since e and 1 − e are idempotent, the sets (1 − e)R and eR are closed under
addition and multiplication. Consequently, R = (1 − e)R⊕ eR.
Note that, for c ∈ {e , 1 − e}, the formula

φc(x) = ∃y[x = c ⋅ y]

defines the set cR. Consequently, (1− e)R and eR are both first-order inter-
pretable in R and, therefore, automatic. This contradicts our assumptions
on R.
We conclude the proof as follows. To show that R = N ∪U, consider an

element r ∈ R. Since R is locally finite, we can find two numbers k,m > 0
with r

k = r
k+m . Fixing i with im ≥ k, it follows that (r im)2 = r

2im =
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r
im . Hence, r im is idempotent, which implies that r im = 0 or r im = 1.
Consequently, r ∈ N ∪U, as desired.
Finally, we have to show that N ∩U = ∅. For a contradiction, suppose

that there is some r ∈ N ∩U. Then there are numbers m, n > 0, such that
r
m = 0 and rn = 1. Consequently,

0 = 0n = (rm)n = (rn)m = 1m = 1 .

A contradiction.

Exercise 10.3. Show that the setU in the preceding proposition is closed
under multiplication and that it is the set of units of R ⌟

For commutative rings, we obtain the following corollary.

Corollary 10.21. Let R be a commutative automatic ring that cannot be written

as the direct sum of two non-trivial automatic rings. Then R is a local ring and

R/m is finite, where m is the maximal ideal of R.

Proof. Let N and U be the sets from the preceding proposition. If R is
commutative, N is closed by multiplication with elements of R. Hence,
N forms an ideal. To show thatN is the unique maximal ideal ofR, consider
somemaximal ideal I. If I ≠ N, then there exists some element u ∈ I∖N ⊆ U.
Thus, I contains a unit, which implies that I = R. A contradiction.
It remains to show that R/N is finite. Being the set of non-units, N is

FO-definable. Consequently, we can interpret the quotientR/N inR, which
means that R/N is also an automatic ring. It is even a field since the ideal N
is maximal. By Corollary 10.12, every automatic field is finite.

11 Automati$ Order+

Linear Order+

Another class of automatic structures that has extensively been studied are
partial orders of various kinds. We start with linear orders.
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Examples. The following partial orders are automatic: (i) every finite partial
order, (ii) the orders

⟨ω, ≤⟩ , ⟨Z, ≤⟩ , ⟨[2]∗ , ≤lex⟩ ,

⟨ω, ≥⟩ , ⟨Q, ≤⟩ , ⟨[2]∗ , ≤pf ⟩ ,

and (iii) the order ⟨F , ⊆⟩ where F is the set of all finite and cofinite subsets
of ω (seeTheorem 10.2). ⌟

Given these examples we can construct new automatic linear orders using
the following operations.

Proposition 11.1. (a)The classes of automatic, ω-automatic, tree automatic, and
ω-tree automatic linear orders are closed under (i) finite ordered sums; (ii) finite
ordered products; and (iii) dense shuffles.

(b)The classes of tree automatic and ω-tree automatic linear orders are also
closed under (iv) ω-ordinal powers.

Proof. We have shown in Theorem 2.2 and Proposition 3.1 that all four
classes are closed under interpretations, disjoint union, and direct products.
This implies (i), (ii), and (iv). Hence, it remains to prove (iii). Let A0 =
⟨A0 , ≤0⟩, . . . ,An−1 = ⟨An−1 , ≤n−1⟩ be automatic linear orders with injective
presentations ⟨L i

δ , L
i
≤⟩ over the same alphabet Σ. Without loss of generality,

we may assume that Σ and {0, 1} are disjoint. Note that the sets

K i ∶= { u01i ∣ u ∈ [2]∗ } , for i < n ,

are dense in ⟨⋃i<n K i , ≤lex⟩. We obtain a presentation of the shuffle with
universe

K0L
0
δ ∪ ⋅ ⋅ ⋅ ∪Kn−1L

n−1
δ

and ordering

uw ≤ u′w′ : iff u <lex u
′ or u = u′ and w ≤i w′ ,

for u, u′ ∈ {0, 1}∗ and w ,w′ ∈ Σ∗. Both of these relations are regular.
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11 Automatic orders

Corollary 11.2. Every regular linear order is automatic.

To prove that certain linear orders are not automatic we use some tech-
niques from the structure theory of linear orders. Recall the notion of the
generalised FC-rank from Definition VI.1.9.

Proposition 11.3. Every automatic linear order has finite gFC-rank.

Proof. LetA be an automatic linear order. ByTheoremVI.1.11, we canwriteA
as an ordered sum ∑i∈I Bi , where every Bi is scattered and I is dense.
Applying Proposition 8.22 to the formula φ(x; z, z′) ∶= z ≤ x ≤ z

′, we
obtain a finite set S of linear orders such that every interval [a, b] can be
partitioned into finitely many orders from S . Let α be the maximal gFC∗-
rank of an order in S . Then Lemma VI.1.13 implies that

FC∗([a, b]) ≤ α , for all a, b ∈ B i with i ∈ I .

By definition of the gFC-rank, this means that

cnα+2(a) = cnα+2(b) , for all a, b ∈ B i with i ∈ I .

Consequently, we have gFC(Bi) ≤ gFC(Bi) ≤ α + 1 for all i, and it follows
that

cnα+2(A) = ⟨I, ≤⟩ .

Note that cn(I) = I since I is dense. Hence, gFC(A) ≤ gFC∗(A) + 1 ≤
α + 2.

Open Question. Is there an automatic linear order that is not regular?

Exercise 11.1. Let n < ω be finite. Show that the class of all linear orders of
gFC-rank n is FOC-axiomatisable. ⌟

For ω-automatic linear orders, we only have the following remark, which
follows immediately byTheorem 8.31.

Proposition 11.4. Every uncountable ω-automatic linear order contains a regu-
lar subset U of order type ⟨[2]ω , ≤lex⟩.
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Exercise 11.2. Find a 2-dimensional interpretation

⟨[2]∗ , ≤pf , suc0 , suc1⟩ ≤ ⟨[2]
ω , ≤lex⟩ . ⌟

Exercise 11.3. Prove that every infinite automatic linear order A contains a
regular subsetU of order type ω or ωop. ⌟

Ordinal+

Next, let us take a look at automatic ordinals where a complete classification
is possible. We start with the remark that the class of automatic ordinals is
downwards closed.

Lemma 11.5. Let α be an ordinal. If ⟨α, ≤⟩ is automatic or tree-automatic then
so is ⟨β, ≤⟩, for every β ≤ α.

Proof. For β = α, the claim is trivial. Otherwise, we can interpret ⟨β, ≤⟩ in
⟨α, ≤, k⟩, where k ∶= min (α ∖ β).

Corollary 11.6. Every ordinal α < ωω
is automatic. Every ordinal α < ωωω

is

tree automatic.

Proof. By Proposition 11.1, every ordinal of the form ωn with n < ω is
automatic, and every ordinal of the form ωωn

is tree automatic. By the
preceding lemma, so is every ordinal bounded by an ordinal of this form.

For the converse, we require some terminology.

Definition 11.7. (a)TheCantor normal form of an ordinal ξ is the expression

ξ = ωα0 + ⋅ ⋅ ⋅ + ωαm−1 where α0 ≥ ⋅ ⋅ ⋅ ≥ αm−1 .

(b) For two ordinals ξ = ωα0 + ⋅ ⋅ ⋅ + ωαm−1 and ζ = ωβ0 + ⋅ ⋅ ⋅ + ωβn−1 in
Cantor normal form, we define the natural sum ⊞ and the natural product ⊠
by

ξ ⊞ ζ ∶= ωγ0 + ⋅ ⋅ ⋅ + ωγm+n−1 and ξ ⊠ ζ ∶= 31
i<m
j<n

ωα i⊞β j ,
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11 Automatic orders

where γ0 ≥ ⋅ ⋅ ⋅ ≥ γm+n−1 is a decreasing enumeration of the sequence
α0 , . . . , αm−1 , β0 , . . . , βn−1.
(c) The height h(A) of a partial order A is the minimal ordinal α such

that there exists a function ρ ∶ A→ α with a < b⇒ ρ(a) < ρ(b). ⌟

Theoperations⊞ and⊠ are closely related to partitions and superpositions
of orders.

Exercise 11.4. Prove the following statements.

(a) α, β < ωγ implies α ⊞ β < ωγ .

(b) α, β < ωωγ
implies α ⊠ β < ωωγ

. ⌟

Exercise 11.5. Suppose that α ⊞ β = γ. Prove that there exists a partition
P ∪ Q = γ such that the order type of P is equal to α and that of Q equal
to β. ⌟

Lemma 11.8. Let P0 ∪ ⋅ ⋅ ⋅ ∪Pn−1 be a finite partition of a partial order A. Then

h(A) ≤ h(P0) ⊞ ⋅ ⋅ ⋅ ⊞ h(Pn−1) .

Proof. It is sufficient to prove the claim for n = 2. Set ξ i ∶= h(Pi) and
let ρ i ∶ Pi → ξ i be the corresponding functions. We define a function
σ ∶ A→ ξ0 ⊞ ξ1 by

σ(a) ∶= ρ0(↓a ∩ P0) ⊞ ρ1(↓a ∩ P1) .

By definition of h(A) it is sufficient to prove that

a < b implies σ(a) < σ(b) .

Hence, suppose that a < b. By symmetry, we may assuem that a ∈ P0. Then
ρ0(↓a ∩ P0) < ρ0(↓b ∩ P0) implies that

σ(a) = ρ0(↓a ∩ P0) ⊞ ρ1(↓a ∩ P1)

< ρ0(↓b ∩ P0) ⊞ ρ1(↓a ∩ P1)

≤ ρ0(↓b ∩ P0) ⊞ ρ1(↓b ∩ P1) = σ(b) .
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Proposition 11.9. LetA ≅ B0∪⋅ ⋅ ⋅∪Bm−1 be a superposition of partial orders.
Then

h(A) ≤ h(B0) ⊠ ⋅ ⋅ ⋅ ⊠ h(Bm−1) .

Proof. Since ⊠ is monotone, it is sufficient to prove that

h(Bi) ≤ ξ i , for all i , implies h(A) ≤ ξ0 ⊠ ⋅ ⋅ ⋅ ⊠ ξm−1 .

We proceed by induction on ξ0 , . . . , ξm−1 (w.r.t. the componentwise order-
ing). There are three cases to distinguish.
If ξk = 0 for some k, then Bk is empty and so is A.
Next, suppose that some of the ξk is of the form ξk = ζ ⊞ ζ′ for some

ζ , ζ′ < ξk . By Exercise 11.5, there exists a partition ξk = P ∪ P
′ such that

P has order type ζ and P
′ has order type ζ′. Let ρ ∶ Bk → ξk be the

function witnessing that h(Bk) = ξk . Using the bijections between Bk , A,
and B i , obtain functions ρ i ∶ B i → ξk . Let Ci and C′i be the substructures
of Bi induced by, respectively, ρ−1i [P] and ρ−1i [P

′], and let D and D′ be the
corresponding substructures of A. Then

D = C0 ∪ ⋅ ⋅ ⋅ ∪ Cm−1 and D′ = C′0 ∪ ⋅ ⋅ ⋅ ∪ C′m−1 .

Furthermore, we have h(Ck) = ζ and h(C′k) = ζ′ and h(Ci), h(C′i) ≤
h(Bi), for all i. By inductive hypothesis, it follows that

h(D) ≤ ξ0 ⊠ ⋅ ⋅ ⋅ ⊠ ζ ⊠ ⋅ ⋅ ⋅ ⊠ ξm−1
h(D′) ≤ ξ0 ⊠ ⋅ ⋅ ⋅ ⊠ ζ′ ⊠ ⋅ ⋅ ⋅ ⊠ ξm−1 .

Consequently,

h(A) ≤ h(D) ⊞ h(D′)

≤ (ξ0 ⊠ ⋅ ⋅ ⋅ ⊠ ζ ⊠ ⋅ ⋅ ⋅ ⊠ ξm−1) ⊞ (ξ0 ⊠ ⋅ ⋅ ⋅ ⊠ ζ′ ⊠ ⋅ ⋅ ⋅ ⊠ ξm−1)
≤ ξ0 ⊠ ⋅ ⋅ ⋅ ⊠ (ζ ⊞ ζ′) ⊠ ⋅ ⋅ ⋅ ⊠ ξm−1)
≤ ξ0 ⊠ ⋅ ⋅ ⋅ ⊠ ξk ⊠ ⋅ ⋅ ⋅ ⊠ ξm−1) .
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It remains to consider the case, where no ordinal ξk can be written as a
natural sum of two other ordinals. For every a ∈ A, we will prove that the
substructure induced by ↓a has height

h(A∣↓a) < ξ0 ⊠ ⋅ ⋅ ⋅ ⊠ ξm−1 .

Then

h(A) = sup
a∈A

h(↓a) ≤ ξ0 ⊠ ⋅ ⋅ ⋅ ⊠ ξm−1 ,

as desired.
Let Ci k be the substructure of Bi induced by

↓ka ∶= { b ∈ B i ∣ b <k a } ,

where <k is the order of Bk . Set ζ i ∶= ρ i(a), where ρ i ∶ B i → ξ i is the
function witnessing that h(Bi) = ξ i . Then

ζ i < ξ i
h(Ckk) ≤ ρk(a) = ζk ,
h(Ci k) ≤ h(A) = ξ i , for i ≠ k .

Note that B i = B j implies C i k = C jk . Hence, the restriction of A to ↓ka is
the superposition of C0k , . . . ,C(m−1)k and the inductive hypothesis implies
that

h(A∣↓k a) ≤ ξ0 ⊠ ⋅ ⋅ ⋅ ⊠ ζk ⊠ ⋅ ⋅ ⋅ ⊠ ξm−1 .

Since ↓a = ↓0a ∪ ⋅ ⋅ ⋅ ∪ ↓m−1a it therefore follows by Lemma 11.8 that

h(A∣↓a) ≤ 31
k<m
(ξ0 ⊠ ⋅ ⋅ ⋅ ⊠ ζk ⊠ ⋅ ⋅ ⋅ ⊠ ξm−1)

≤ ξ0 ⊠ ⋅ ⋅ ⋅ ⊠ ( 31
k<m

ζk) ⊠ ⋅ ⋅ ⋅ ⊠ ξm−1

< ξ0 ⊠ ⋅ ⋅ ⋅ ⊠ ξk ⊠ ⋅ ⋅ ⋅ ⊠ ξm−1 .
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Proposition 11.10. The linear order ⟨ωωω
, ≤⟩ is not tree-automatic.

Proof. We apply Theorem 8.25 to the formula φ(x; z) ∶= x < z. Let S be
the corresponding class of structures. It follows that, for every n < ω, the
initial segment ωωn

has a sum-decomposition over supp(prod(S)). By
Exercise 11.4 and Lemma 11.8, it follows that

ωωn
∈ supp(prod(S)) , for all n < ω .

We start by showing that we can assume without loss of generality that
the structures in S are partial orders. First, note that every finite partition
of a linear order consists of linear orders. Hence, we are only interested
in the linear orders contained in supp(prod(S)). Furthermore, if a linear
order A is a superposition of structures C0 , . . . ,Cn−1, we can replace the
relation ≤i of Ci by its transitive and reflexive closure without changing the
superposition.Thus, if we replace every structure in S by its transitive and
reflexive closure, then class of linear orders contained in supp(prod(S)) is
not changed.
Consequently, modifying S in this way we may assume without loss of

generality that every structure in S is a partial order. We will prove below
that, for every class C of partial orders,

ωωn
∈ supp(C) implies ωωn

∈ C .

Since the only linear orders in prod(S) are the structures in S , it then
follows that ωωn

∈ S , for all n < ω. A contradiction to the finiteness of S .
Hence, it remains to prove the claim. Suppose that ωωn

is the suposition
of partial orders A0 , . . . ,Am−1. For a contradiction, suppose that no Ai is
isomorphic to ωωn

. This implies that h(Ai) < ωωn
, for all i. As α, β < ωωn

implies α ⊠ β < ωωn
, it follows by Proposition 11.9 that

ωωn
= h(ωωn

) ≤ h(A0) ⊠ ⋅ ⋅ ⋅ ⊠ h(Am−1) < ωωn
.

A contradiction.

We obtain the following classification of all automatic ordinals.
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Theorem 11.11. Let α be an ordinal.

(a) ⟨α, ≤⟩ is automatic if, and only if, α < ωω
.

(b) ⟨α, ≤⟩ is ω-automatic if, and only if, α < ωω
.

(c) ⟨α, ≤⟩ is tree automatic if, and only if, α < ωωω
.

(d) ⟨α, ≤⟩ has an injective ω-tree automatic presentation if, and only if,
α < ωωω

.

Proof. (a), (c) One direction has already been proved in Corollary 11.6. For
the other one, note that we have shown in Proposition 8.23 that ωω is not
automatic, and in Proposition 11.10 that ωωω

is not tree-automatic.
(b) If there were an uncountable ω-automatic ordinal ⟨α, ≤⟩ we could

use Proposition 11.4 to find some subset U ⊆ α of order type ⟨[2]∗ , ≤lex⟩.
But the latter is not a well-order. A contradiction. Thus, all ω-automatic
ordinals are countable and, therefore, automatic byTheorem 6.14. Hence,
the claim follows by (a).
(d)One direction follows by (c). For the other one, let α be an ordinal with

an injective ω-tree automatic presentation. If α is countable, it follows by
Theorem 6.15 that it is tree automatic and the claim follows by (c). Hence, it
is sufficient to prove that no model V of ZFC contains uncountable ordinals
with an injective ω-tree automatic presentation. For a contradiction, sup-
pose that there is a model V in which some uncountable ordinal α has such
a presentation. As the element ω1 is FOC-definable in every uncountable
ordinal ⟨α, ≤⟩, we can interpret ⟨ω1 , ≤⟩ in ⟨α, ≤⟩. This implies that ω1 also
has an injective ω-tree automatic presentation. LetAδ andA≤ be the two
automata for this presentation. Since the universe of ⟨ω1 , ≤⟩ is an uncount-
able language of infinite trees, it follows byTheoremV.6.5 that its cardinality
is 2ℵ0 . This implies the Continuum Hypothesis (CH): 2ℵ0 = ∣ω1∣ = ℵ1.
Hence, V ⊧ CH.

By a known result of set theory, every modelV ofZFC+CH has an exten-
sions V+ ⊃ V that is a model of ZFC + ¬CH. We fix such an extension V+.
In V

+, the automata Aδ and A≤ form an injective presentation of some
structure ⟨A, ≤⟩. Note that the decision procedure for the FOC-theory of
an ω-tree automatic structure inTheorem 7.5 works entirely in ZFC. Con-
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sequently, ⟨A, ≤⟩ has the same FOC-theory as ⟨ω1 , ≤⟩. In particular,A forms
an uncountable linear order where each proper initial segment is countable.
ByTheorem V.6.5, this implies that A has cardinality 2ℵ0 > ℵ1. Choose a
strictly increasing sequence (a i)i<γ of maximal length γ. If γ were countable,
then A = ⋃i<γ ⇓a i would be a countable union of countable sets and, hence,
countable. A contradiction. Hence, γ ≥ ω1 and the union

I ∶= ⋃
i<ω1

↓a i

forms an initial segment of A of size ∣I∣ = ℵ1 < 2ℵ0 = ∣A∣. Consequently, we
can find an element b ∈ Awith I ⊆ ↓b. A contradiction to the fact that every
initial segment of A is countable.

Exercise 11.6. Show that every automatic ordinal is finitely FOC-axiomatis-
able. ⌟

Exercise 11.7. Show that the isomorphism problem for automatic ordinals
is decidable. ⌟

Tree+

Next, let us take a look at order-trees. Recall the definition of the generalised
Lifsches-Shelah rank of a tree from Definition VI.1.20.

Lemma 11.12. Let T be a finitely-branching automatic order-tree. Then we have

gLS(T) < ω.

Proof. Fix an injective presentation of T over some alphabet Σ. First, note
that we can use the length-lexicographic ordering on Σ∗ to turn T into a
successor-ordered tree. With the help of this successor-ordering, we can
define the lexicographic ordering ≤lex on T (which is different from the
lexicographic ordering on Σ∗). Since these relations are FO-definable in
⟨T , ≤pf , ≤llex⟩, the linear order ⟨T , ≤lex⟩ is automatic. By Proposition 11.3, it
has finite gFC-rank. Consequently, the claim follows by Proposition VI.1.21.
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Proposition 11.13. Every automatic order-tree has a finite generalised Lifsches-
Shelah rank.

Proof. Fix an injective presentation of T over some alphabet Σ. First, note
that we can use the length-lexicographic ordering on Σ∗ to define well-
orderings on the successors of each vertex. We denote by p(v) the prede-
cessor of v and by s(v) its first successor (if they exist). Furthermore, we
define the ‘first-child-next-sibling’ relation

u ≤′ v : iff u ≤ v or p(u) < v and u <lex v .

≤ ≤′

Note that ≤′ is a partial order that contains ≤ and that is contained in ≤lex.
Furthermore, T′ ∶= ⟨T , ≤′⟩ is a tree where every vertex v has at most two
successors: the first successor of v in T and the next sibling of v in T. Since
≤′ is FOC-definable, T′ is automatic and it follows by Lemma 11.12 that its
gLS-rank is finite. To conclude the proof, we show that gLS(T) ≤ gLS(T′).
Let [T] and [T′] be the sets of infinite branches of the respective trees.

Since every infinite branch of T induces one of T′, there exists an injective
function e ∶ [T] → [T′]. It follows that

v ∈ ζ implies s(v) ∈ e(ζ) , for all ζ ∈ [T] .

By induction on n, we prove that

v ∈ ∂nT implies s(v) ∈ ∂nT′ , for all v such that s(v) is defined.

For n = 0, the claim is trivial. For the inductive step, suppose that v ∈ ∂n+1T.
By definition of ∂, there exists infinitely many infinite branches ζ i , i < ω,
of ∂nT that contain v. Consequently, s(v) belongs to e(ζ i). Furthermore,
e(ζ i) belong to ∂nT′ by inductive hypothesis. Since e is injective, it follows
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that s(v) belongs to infinitely many infinite branches of ∂nT′. This means
that s(v) ∈ ∂n+1T′.
For n ∶= gLS(T′) it follows that

s(v) ∈ ∂n+1T′ implies ∣{ ζ′ ∈ [T′] ∣ s(v) ∈ ζ′ }∣ > ℵ0 .

Every branch in [T′] ∖ rng e consists of some finite prefix leading to some
vertex v with infinitely many successors (in T) followed by an enumeration
of the successors of v. In particular, the number of these additional branches
is countable. For v as above, it therefore follows that

∣{ ζ ∈ [T] ∣ v ∈ ζ }∣ > ℵ0 .

Hence, T∣v has uncountably many infinite branches. Conversely, every v ∈ T
such that T∣v has uncountably many infinite branches belongs to ∂n+1T. It
follows that

∂
n+1T = { v ∈ T ∣ T∣v has uncountably many infinite branches} .

This implies that ∂n+2T = ∂n+1T. Thus, gLS(T) ≤ n < ω.

Next, let us turn to definability questions concerning branches in auto-
matic trees.

Lemma 11.14. Let T be an automatic order-tree. The sets

U ∶= { v ∈ T ∣ v ∈ ζ for some ζ ∈ [T] } and ∂
n
T , for n < ω ,

are FOC[H]-definable.

Proof. The formula

φ(x) ∶= H[y, y′][x ≤ y ∧ x ≤ y′ ∧ (y ≤ y′ ∨ y
′ ≤ y)]

states that x lies on an infinite branch. Hence,U = φT is definable.
To prove that ∂nT is definable, it is sufficient to show that ∂T is definable.

Then the claim follows by induction. Let φ(x) be the FOC[H]-formula
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11 Automatic orders

from Lemma 11.14. SetU ∶= φT and letU0 ⊆ U be the subset of all vertices v
such that

U0 ∶= { u ∈ U ∣ there are incomparable vertices v , v′ with u ≤ v , v′ } .

Then

∂T = { u ∈ U0 ∣ u ∈ ζ for some ζ ∈ [U0] } .

This set is definable using the formula φ.

Proposition 11.15. Let T be an automatic order-tree.

(a) If T has infinite branches, at least one of them is regular.

(b) If T has only countably many infinite branches, every infinite branch is

regular.

(c) If T has only countably many infinite branches, there exists an FOC[H]-
formula φ(x; z) such that

{φ(x , v)T ∣ v ∈ T } = {∅} ∪ { P ⊆ T ∣ P an infinite branch of T } .

Proof. (a) LetU be the set fromLemma 11.14 and let≤lex be the lexicographic
order on Σ∗. Then ⟨T, ≤lex ,U⟩ is automatic and the left-most (with respect
to ≤lex) infinite branch is FOC-definable in ⟨T, ≤lex ,U⟩.
(b) follows immediately from (c).
(c) We have shown in Lemma 11.14 that, for every n < ω, the set

Pn ∶= { v ∈ T ∣ gLS(T∣v) ≥ n }

is FOC[H]-definable. Let n ∶= gLS(T) < ω and set

φ(x; z) ∶= ⋁
k<n
[z ∈ Pk ∖ Pk+1 ∧ x ∈ Pk ∧ (x ≤ z ∨ z ≤ x)

∧ ∀y∀y′[Pk y ∧ Pk y
′ ∧ z ≤ y ∧ z ≤ y′

→ (y ≤ y′ ∨ y
′ ≤ y)]] .
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XII. Automatic Structures

For every v ∈ T, it follows that φ(x; v)T is either empty or an infinite branch.
Conversely, let β be an infinite branch.Then there is some k ≤ n such that
all but finitely many elements of β belong to Pk ∖ Pk+1. Furthermore, there
exists some vertex v ∈ β such that all elements of Pk ∩ β that are greater
than v form a branch.Then φ(x; v)T = β.

12 Sub$la^e+ of Automati$ Stru$ture+

As we have seen, characterising which structures have an automatic present-
ation is a very hard problem. To simplify the task, we introduce several
subclasses of automatic structures where it is easier to prove characterisa-
tions. We start with the following one.

Definition 12.1. A language L ⊆ Σ∗ has polynomial growth if there exists a
polynomial p(x) such that

∣{w ∈ L ∣ ∣w∣ ≤ n }∣ ≤ p(n) , for all n < ω .

Similarly, we say that an automatic structure A has polynomial growth if
there exists a polynomial p(x) such that

∣{ a ∈ A ∣ ∥a∥ ≤ n }∣ ≤ p(n) , for all n < ω .

In this case we also say that A is poly-growth automatic. ⌟

Example. The infinite grid ⟨Z ×Z, E0 , E1⟩ is poly-growth automatic. (We
can represent a point ⟨i , k⟩ ∈ Z ×Z by the word a ibk .) ⌟

Westartwith a characterisation ofwhen a regular language has polynomial
growth.

Proposition 12.2. Let L ⊆ Σ∗ be regular. The following statements are equival-

ent.

(1) L has polynomial growth.

(2) L has less than exponential growth.
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12 Subclasses of automatic structures

(3) L is a finite union of languages of the form

u0v
∗
0u1v

∗
1 ⋯uk−1v

∗
k−1uk with u0 , . . . , uk , v0 , . . . , vk−1 ∈ Σ∗ .

(4) L is recognised by an automaton A such that every strongly connected

component of the transition graph of A is either an induced cycle or a

singleton with at most one loop.

Proof. (3)⇒ (1)⇒ (2) is trivial.
(2)⇒ (4) LetA be the minimal deterministic automaton recognising L.

For a contradiction, suppose that A contains a strongly connected com-
ponent C that is neither a singleton nor an induced cycle. Let u be a word
labelling some path from the initial state to some state q ∈ C. By choice of C
there are two distinct paths in C that both start and end in q. Let v0 and v1
be their labels. Finally, there is some path form q to some final state. Let
w be its label. Fixing some number n with

n ≥ ∣u∣, ∣v0∣, ∣v1∣, ∣w∣ ,

it follows that

u(v0 + v1)
∗
w ⊆ L ,

which implies that, for all 2 ≤ k < ω, L contains at least 2k−2 words of length
at most kn. Consequently,

∣{w ∈ L ∣ ∣w∣ ≤ k }∣ ≥ 2k/n−2 , for all k < ω .

In particular, L has exponential growth. A contradiction.
(4)⇒ (3) Fix an automatonA of the above form.We prove the claim by

induction on the number of strongly connected components ofA. IfA has
a single state, L is of one of the following forms

∅ , {⟨⟩} , or a
∗ .

IfA consists of a single cycle, we have

L = ⋃
i<n

w
∗
u i ,
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wherew is the word labelling the whole cycle and each u i is the word labelling
some part of the cycle starting at the initial state and ending at some final
state.
For the inductive step, suppose thatA has more than one strongly con-

nected component. Let C be the component containing the initial state. Set
n ∶= ∣C∣ and let u i , for i ≤ n, be the path from the initial state to the i-th
state of C. For i < n, let a i ,0 , . . . , a i ,m i−1 ∈ Σ be an enumeration of all letters
such that the transition with label a i , j from the i-th state of C leads to some
state q i , j that does not belong to C and let K i , j be the language recognised
byA when starting in state q i , j . Finally, let F ⊆ [n] be the set of numbers i
such that the i-th state of C is accepting. Then

L = ⋃
i∈F

u
∗
nu i ∪ ⋃

i<n
⋃
j<m i

u
∗
nu ia i , jK i , j .

Furthermore, each language K i , j is of the form required by (3). Hence, so
is L.

We can use this lemma to derive a corresponding characterisation for
poly-growth automatic structures. This characterisation also contains a de-
scription in logical terms whose proof rests on the following two technical
lemmas.

Lemma 12.3. For all m, r, k < ω, there exists a constant N < ω with the

following property. Given tuples n̄, n̄′ ∈ ωk
satisfying

◆ n0 ≤ ⋯ ≤ nk−1 and n
′
0 ≤ ⋯ ≤ n

′
k−1,

◆ n i+1 − n i = n
′
i+1 − n

′
i or n i+1 − n i , n′i+1 − n

′
i ≥ N , for all i < k− 1 ,

we have

⟨ω, ≤,m ∣ ⋅, n̄⟩ ≡rFO ⟨ω, ≤,m ∣ ⋅, n̄
′⟩ .

Proof. We prove the claim by induction on the quantifier-rank r. For r = 0,
the claim is trivial. Hence, suppose that r > 0. Let N0 be the constant from
the inductive hypothesis and set N ∶= 2N0. Consider tuples n̄, n̄′ ∈ ωk

as above. To show that they are r-equivalent, we check the back-and-forth
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12 Subclasses of automatic structures

condition. Hence, fix l < ω. Let i be the index such that n i ≤ l ≤ n i+1. (The
cases where l < n0 or l > nk−1 are analogous.) If n i+1−n i = n′i+1−n

′
i , we can

choose l ′ ∶= n′i+(l−n i) and it follows by inductive hypothesis that tuples n̄l
and n̄′ lL are (r−1)-equivalent. Hence, suppose that n i+1−n i , n′i+1−n

′
i ≥ N.

By symmetry, we may assume that l − n i ≤ n i+1 − l . If l − n i < N0, we set
l
′ ∶= n′i +(l − n i). Otherwise, we use l ′ ∶= n′i +N0. In both cases, it follows
by inductive hypothesis that n̄l and n̄′ l ′ are (r − 1)-equivalent.

Lemma 12.4. Let L ⊆ Σ∗ be regular and u0 , . . . , un , v0 , . . . , vn−1 ∈ Σ∗.
There exist a constant m and a first-order formula φ(x̄) such that

u0v
k0
0 u1v

k1
1 ⋯un−1v

kn−1
n−1 un ∈ L iff

⟨ω, ≤,m ∣ ⋅⟩ ⊧ φ(k0 , k0 + k1 , . . . , k0 + ⋅ ⋅ ⋅ + kn−1) .

Proof. Let φ ∶ Σ∗ → M be a homomorphism to a finite monoid M re-
cognising L. Setting c i ∶= φ(u i), d i ∶= φ(v i), and P ∶= φ[L] it follows
that

u0v
k0
0 u1v

k1
1 ⋯un−1v

kn−1
n−1 un ∈ L iff c0d

k0
0 c1d

k1
1 ⋯cn−1d

kn−1
n−1 cn ∈ P .

It is therefore sufficient to show that, for every set P ⊆ M, all elements
c0 , . . . , cn , d0 , . . . , dn−1 ∈ M, and every number m < ω such that dmi is
idempotent for all i < n, there exists an FO-formula φ(x̄) such that

c0d
k0
0 c1d

k1
1 ⋯cn−1d

kn−1
n−1 cn ∈ P iff

⟨ω, ≤,m ∣ ⋅⟩ ⊧ φ(k0 , k0 + k1 , . . . , k0 + ⋅ ⋅ ⋅ + kn−1) .

We construct the desired formula φ by induction on n. For n = 1, set

K ∶= { k < 2m ∣ c0dk0 c1 ∈ P } .

Then we have c0dk00 c1 ∈ P if, and only if, either

◆ k0 < m and k0 ∈ K, or

◆ k0 ≥ m and k0 ≡ k′ (mod m) for some k′ ∈ K with k
′ ≥ m.

973
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This property can be expressed in FO.
For the inductive step, suppose that n > 1. Set

Q i ∶= { b ∈M ∣ bd
i
n−1cn ∈ P } , for i < 2m .

By inductive hypothesis, there exist formulae ψ i , i < 2m, such that

c0d
k0
0 c1d

k1
1 ⋯cn−2d

kn−2
n−2 cn−1 ∈ Q i iff

⟨ω, ≤,m ∣ ⋅⟩ ⊧ ψ i(k0 , k0 + k1 , . . . , k0 + ⋅ ⋅ ⋅ + kn−2) ,

It follows that

c0d
k0
0 c1d

k1
1 ⋯cn−1d

kn−1
n−1 cn ∈ P

if, and only if, there is some i < 2m such that

c0d
k0
0 c1d

k1
1 ⋯cn−2d

kn−2
n−2 cn−1 ∈ Q i

and either
◆ i < m and k0 +⋯ + kn−1 = k0 +⋯ + kn−2 + i, or
◆ i ≥ m and there is some j < m such that k0 +⋯ + kn−2 ≡ j (mod m)

and k0 +⋯ + kn−1 ≡ j + i (mod m).
Using the formulae ψ i , this property can be expressed in FO.

Theorem 12.5. Let A be a structure. The following statements are equivalent.

(1) A is an automatic structure of polynomial growth.

(2) A has an automatic presentation whose universe is a finite union of languages

of the form

u0v
∗
0u1v

∗
1 ⋯uk−1v

∗
k−1uk , with u0 , . . . , uk , v0 , . . . , vk−1 ∈ Σ∗ .

(3) A has an automatic presentation whose universe is a finite union of languages

of the form

a
m0
0 (b

k0
0 )

∗
a
m1
1 (b

k1
1 )

∗⋯a
mn−1
n−1 (b

kn−1
n−1 )

∗
a
mn
n

for distinct letters a0 , . . . , an , b0 , . . . , bn−1 (with distinct members of the
union using disjoint alphabets).
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12 Subclasses of automatic structures

(4) A is (k-dimensional) FO-interpretable in ⟨ω, ≤,m ∣ ⋅⟩, for some m.
(5) A is (k-dimensional) FO-interpretable in copym(⟨ω, ≤⟩), for some m.

Proof. (3)⇒ (1) is trivial and (1)⇔ (2) follows by Proposition 12.2.
(2)⇒ (3) Let E be the relation of all pairs ⟨w ,w′⟩ where

w = u0v
i0
0 u1v

i1
1 ⋯un−1v

in−1
n−1un

and w
′ = am0

0 b
k0 i0
0 a

m1
1 b

k1 i1
1 ⋯a

mn−1
n−1 b

kn−1 in−1
n−1 a

mn
n ,

for i0 , . . . , in−1 < ω and m j ∶= ∣u j ∣ and k j ∶= ∣v j ∣. Note that E is regular
since we can write it as

[u0 ⊗ a
m0
0 ][v0 ⊗ b

k0
0 ]

∗[u1 ⊗ a
m1
1 ][v1 ⊗ b

k1
1 ]

∗⋯

[un−1 ⊗ a
mn−1
n−1 ][vn−1 ⊗ b

kn−1
n−1 ]

∗[un ⊗ a
mn
n ] .

We claim that the image of the presentation of A under E is again an auto-
matic presentation ofA. Let R ⊆ An be a relation ofA and let R′ be its image
under E. We have to show that R′ is regular. Let Σ be the alphabet used by
the given presentation of A and let Γ be the alphabet such that E ⊆ Σ∗ × Γ∗.
By (a variant of )Theorem 2.5, there exists an FO-formula φ(x̄) defining R
in the tree ⟨Σ∗ , ≤pf , (suca)a∈Σ , =len⟩ Modifying φ slightly, we obtain an
FO-formula φ′(x̄) defining R in

T ∶= ⟨(Σ + Γ)∗ , ≤pf , (suca)a∈Σ+Γ , =len⟩ .

We can define the image R′ inside T by the formula

ψ(x̄) ∶= ∃ ȳ[φ′( ȳ) ∧ ⋀
i<n

Ey ix i] .

This implies that R′ is regular.
(3)⇒ (4) We encode a word

w = ak00 b
l0
0 a

k1
1 b

l1
1 ⋯a

kn−1
n−1 b

ln−1
n−1a

kn
n
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XII. Automatic Structures

by a tuple ⟨x′ , x0 , . . . , x2n⟩ ∈ ω2n+1 where x′ is a number encoding the tuple
⟨a0 , b0 , . . . , an−1 , bn−1 , an⟩ (there are only finitely many possibilities), and

x0 = k0 ,

x1 = k0 + l0 ,

⋮

x2n = k0 + l0 +⋯ + kn−1 + ln−1 + kn .

LetR be an r-ary regular relation. To show that the encoding ofR is definable
in ⟨ω, ≤,m ∣ ⋅⟩, let x′0 x̄0 , . . . , x′r−1 x̄r−1 be encodings of words w0 , . . . ,wr−1.
Then the wordw0⊗⋯⊗wr−1 (which is also of the above form, see Figure 2)
has an encoding z′z̄ that can be obtained from x

′
0 x̄0 , . . . , x

′
r−1 x̄r−1. It follows

that we can define R using Lemma 12.4.

a0 b0 b0 a1 b1 a2 a2 ◻ ◻
c0 c0 d0 d0 c1 c1 d1 d1 c2

x0 y0 x1 x2 ,y1 x3 y2 x4 y3 y4

Figure 2: Merging two encodings x′ x̄ and y
′
ȳ.

(4)⇒ (3) We encode a tuple m̄ ∈ ωn by a word of the form

σ ck00 ⋯c
kn−1
n−1

where σ ∶ [n] → [n] is some permutation such that mσ(0) ≤ ⋅ ⋅ ⋅ ≤ mσ(n−1)
and

k0 ∶= mσ(0) and k i+1 ∶= mσ(i+1) − mσ(i) .

It follows by Lemma 12.3 that, for every tuple m̄ ∈ ωn , the set of all words
encoding a tuple r-equivalent to m̄ is a regular language of the form required
by (3).The claim follows since every FO-definable relation R is a finite union
of r-equivalence classes.
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12 Subclasses of automatic structures

(5)⇒ (4) We can construct an FO-interpretation of copym(⟨ω, ≤⟩) in
⟨ω, ≤,m ∣ ⋅⟩ by encoding the pair ⟨i , k⟩ as the number mk + i. This leads to
the formulae

δ(x) ∶= true ,
φ≤(x , y) ∶= x ≤ y ∧ x ≡ y (mod m) ,

φI(x , y) ∶= ∃z[m ∣ z ∧ x , y ∈ [z, z + m)] ,

φH i (x) ∶= x ≡ i (mod m) .

(4) ⇒ (5) We can construct an FO-interpretation of ⟨ω, ≤,m ∣ ⋅⟩ in
copym(⟨ω, ≤⟩) by encoding the number mk + i by the pair ⟨i , k⟩.This leads
to the formulae

δ(x) ∶= true ,

φ≤(x , y) ∶= [Ix y ∧⋁
i≤ j
(H ix ∧H j y)] ∨ ∃y

′[Iyy′ ∧ x < y′] ,

φm∣⋅(x) ∶= H0x ,

whereH0 , . . . ,Hm−1 , I are the relations added by the copy operation.

Exercise 12.1. Prove that the class of poly-growth automatic structures is
closed under finite disjoint unions and finite direct products. ⌟

Presburger Stru$ture+

Our second class is slightly larger than that of the poly-growth automatic
structures. The definition is as follows.

Definition 12.6. (a) A Presburger structure is a structure A for which there
exists a (k-dimensional) FO-interpretation of A in ⟨N,+⟩.

(b)We say that a subset S ⊆ Nn is Presburger-definable if it is FO-definable
in ⟨N,+⟩. ⌟

Proposition 12.7. Every poly-growth automatic structure is a Presburger struc-
ture.
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Proof. The claim follows fromTheorem 12.5 and the fact that there exists an
FO-interpretation of ⟨N, ≤,m ∣ ⋅⟩ in ⟨N,+⟩.

To better understand such structures, we need some results about which
kinds of relations are definable in ⟨N,+⟩.

Definition 12.8. (a) A set S ⊆ Nn is semilinear if it can be written as a finite
union of sets of the form

u + ⟪v0 , . . . , vm−1⟫ ∶= { u +∑i<m µ iv i ∣ µ0 , . . . , µm−1 ∈ N} ,

for u, v0 , . . . , vm−1 ∈ Nn

(b)We call S simple if it is of the form S = u+⟪V⟫where the setV ⊆ Nn

is linearly independent inQn . ⌟

Since it would lead us too far away, we will omit some of the more substan-
tial proofs. The following classical result can be found, e.g., in Corollary 7.1a
of [188].

Theorem 12.9 (Farkas, Minkowski,Weyl). A set S ⊆ Rn
is the set of solutions

to a set of inequalities Ax ≥ c with A ∈ Rm×n
and c ∈ Rm

if, and only if,

S = cone(P) + conv(Q) , for finite P,Q ⊆ Rn ,

where

cone(P) ∶= { λ0p0 +⋯ + λk−1pk−1 ∣ p i ∈ P, λ i ≥ 0} ,
conv(Q) ∶= { λ0q0 +⋯ + λk−1qk−1 ∣ q i ∈ Q , λ i ≥ 0,

λ0 +⋯ + λk−1 = 1} .

Another classical result is the following theorem by Cobham and Se-
menov (see [75] for an introduction; the relation ∣k has been introduced in
Definition 2.4 above).

Definition 12.10. Two natural numbers k, l ∈ N are multiplicatively inde-
pendent if the only integer solution to the equation kn = lm is n = 0 = m. ⌟
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12 Subclasses of automatic structures

Theorem 12.11 (Cobham, Semenov). Let k, l ≥ 2 be multiplicatively inde-
pendent integers. A set S ⊆ Nn

is FO-definable in both ⟨N,+, ∣k⟩ and ⟨N,+, ∣l ⟩
if, and only if, it is FO-definable in ⟨N,+⟩.

Proposition 12.12 (Ito [110], Eilenberg, Schützenberger [76]). Every semi-
linear set S ⊆ Nn

can be written as a finite disjoint union of simple semilinear

sets.

Themain characterisation of Presburger-definable sets is the following
one.

Theorem 12.13. Let S ⊆ Nn
. The following statements are equivalent.

(1) S is semilinear.

(2) S is FO-definable in ⟨N,+⟩.
(3) S is FOC(U)-definable in ⟨N,+⟩.
(4) There are multiplicatively independent numbers k, l ≥ 2 such that S is

FO-definable in both ⟨N,+, ∣k⟩ and ⟨N,+, ∣l ⟩.
(5) There is some m < ω such that S is quantifier-free definable in the structure

⟨N,+, ≤,m ∣ ⋅, 0, 1⟩.

Proof. (1)⇒ (3) We can define the set ū + ⟪v̄0 , . . . , v̄k−1⟫ by the formula

φ(x̄) ∶= ∃z̄[⋀
i<n

x i = u i + v0, iz0 +⋯ + vk−1, izk−1] ,

where vz is an abbreviation for the term z + ⋯ + z (v times). Since every
semilinear set is a finite union of such sets, the claim follows by the closure
of FO under disjunction.
(3)⇒ (4) Fix an FOC(U)-definable set S ⊆ Nn . The structures Nk ∶=
⟨N,+, ∣k⟩ and Nl ∶= ⟨N,+, ∣l ⟩ have automatic presentations based on, re-
spectively, the k-ary encoding and the l-ary encoding. ByTheorem 7.12, these
presentations can be expanded to ones of, respectively, ⟨Nk , S⟩ and ⟨Nl , S⟩.
Finally, it follows by (the proof of ) Theorem 2.5 that S is FO-definable in
both Nk and Nl .
(4)⇒ (2) follows byTheorem 12.11.
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(2)⇒ (5) Set

Nω ∶= ⟨N,+,−, ≤, (m ∣ ⋅)1<m<ω⟩ .

We use the abbreviation

x ≡ k (mod m) ∶= m ∣ x + (m − k) .

We start by proving a normal form for quantifier-free formulaeφ(x̄) in the
structure Nω . Transforming φ into disjunctive normal form and eliminating
all negations using the equivalences

¬(m ∣ t) ≡
m−1
⋁
i=1

m ( t + i) ,

¬(s = t) ≡ s < t ∨ t < s ,

¬(s < t) ≡ t < s + 1 ,

we may assume that φ is in disjunctive normal form without any negations.
Furthermore, using the equivalences

m ∣ t ≡ ⋁{⋀i x i ≡ k i (mod m) ∣ m ∣ t(k̄) } ,

[x ≡ k (mod m) ∧ x ≡ k′ (mod m
′)]

≡ ⋁
i<m
i′<m′

[x ≡ i′m + k (mod mm
′) ∧ x ≡ im′ + k

′ (mod mm
′)]

wemay assume that all atomic subformulae involving the divisibility predicate
are of the form m ∣ x i + k, for some constants m, k, and that the constant m
is the same for all such formulae. Adding disjunctions

⋁
k<m

x i ≡ k (mod m) ,

for each variable x i , and transforming the resulting formula into disjunctive
normal form, it follows that φ(x̄) is equivalent to a disjunction of formulae
of the form

⋀
i
x i ≡ k i (mod m) ∧⋀

j
s j = t j ∧⋀

j
u j < v j ,
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12 Subclasses of automatic structures

for terms s j , t j , u j , v j and constants k i ,m ∈ N. We call this form the normal
form of φ.

Let us next show that every formula of the form

φ(x̄) = ∃y[⋀
i
x i ≡ k i (mod m) ∧ y ≡ l (mod m)

∧⋀
j
s j = t j ∧⋀

j
u j < v j]

is equivalent to some quantifier-free formula. By multiplying each equation
s j = t j and each inequality u j < v j by a suitable constant, we may assume
that the coefficient of y is the same in all terms s j , t j , u j , v j which y appears
in. Let µ be this common coefficient. It follows that

φ(x̄) ≡ ∃y[⋀
i
x i ≡ k i (mod m) ∧ y ≡ l (mod m)

∧⋀
j
µy = t j ∧⋀

j
u j < µy ∧⋀

j
µy < v j] ,

where t j , u j , v j are terms in the variables x̄ only. Replacing µy by a new
variable y′, we obtain

φ(x̄) ≡ ∃y′[⋀
i
x i ≡ k i (mod m) ∧ y

′ ≡ µ l (mod m)

∧⋀
j
y
′ = t j ∧⋀

j
u j < y

′ ∧⋀
j
y
′ < v j] .

If φ contains an equation of the form y
′ = s, the value of y′ is uniquely

determined by x̄ and we can replace every occurrence of y′ in φ by t. It
follows that

φ(x̄) ≡ ⋀
i
x i ≡ k i (mod m) ∧ s ≡ µ l (mod m)

∧⋀
j
s = t j ∧⋀

j
u j < s ∧⋀

j
s < v j .
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Hence, we may assume that

φ(x̄) ≡ ∃y′[⋀
i
x i ≡ k i (mod m) ∧ y

′ ≡ µ l (mod m)

∧⋀
j
u j < y

′ ∧⋀
j
y
′ < v j] .

Adding a disjunction checking which of the u j is the largest one and which
of the v j the smallest one, we can transform φ into

⋁
j0 , j1

∃y′[⋀
i
x i ≡ k i (mod m) ∧ y

′ ≡ µ l (mod m)

∧⋀
j
u j ≤ u j0 ∧⋀

j
v j1 < v j ∧ u j0 < y

′ < v j1] .

Note that the values k i = x i mod m determine p ∶= u j0 mod m. Note that
there is an element y′ with y

′ ≡ µ l (mod m) between u j0 and v j1 if, and
only if,

u j0 + q < v j1 where 1 ≤ q ≤ m and p + q ≡ µ l (mod m) .

Hence, we can rewrite the formula into

⋁
j0 , j1
[⋀

i
x i ≡ k i (mod m) ∧⋀

j
u j ≤ u j0 ∧⋀

j
v j1 < v j

∧ u j0 + q < v j1] .

Having proved the special case above, we can now translate every FO-
formulaφ(x̄) into an equivalent quantifier-free one (still in the structureNω).
We proceed by induction on the quantifier-rank r of φ(x̄). By inductive hy-
pothesis, we can replace every subformula of φ of quantifier-rank less than r
by a quantifier-free formula. Hence, we may assume that φ has quantifier-
rank 1. As φ is a boolean combination of formulae of the form ∃yψ(x̄ , y)
with quantifier-free ψ, we may further assume that φ = ∃yψ(x̄ , y) and
that ψ is in normal form. Finally, using the fact that disjunctions commute
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with existential quantifiers, it follows that φ is equivalent to a disjunction of
formulae of the form considered in the previous step.
To conclude the proof, it remains to prove that every relation that is

quantifier-free definable in Nω is also quantifier-free definable in the struc-
ture ⟨N,+, ≤,m ∣ ⋅, 0, 1⟩, for somem.We have seen that, in the structureNω ,
every quantifier-free formula φ(x̄) can be written as a disjunction of formu-
lae of the form

⋀
i
x i ≡ k i (mod m) ∧⋀

j
s j − s

′
j = t j − t

′
j ∧⋀

j
u j − u

′
j < v j − v

′
j ,

for constants k i ,m ∈ N and terms s j , s′j , t j , t
′
j , u j , u′j , v j , v′j without sub-

straction. Furthermore, we can assume that the constant m is the same for
all terms of the disjunction. Such a formula can be written equivalently as

⋀
i
x i ≡ k i (mod m) ∧⋀

j
s j + t

′
j = t j + s

′
j ∧⋀

j
u j + v

′
j < v j + u

′
j ,

which can be evaluated in ⟨N,+, ≤,m ∣ ⋅, 0, 1⟩.
(5)⇒ (1) We start by proving that every atomic formula defines a semi-

linear set. There are two types of such formulae. First, consider an equation

a0x0 +⋯ + an−1xn−1 = b0x0 +⋯ + bn−1xn−1 + c .

Let C be the set of minimal solutions of this equation (with respect to the
component-wise ordering) and let P be the set ofminimal non-zero solutions
of the homogeneous equation

a0x0 +⋯ + an−1xn−1 = b0x0 +⋯ + bn−1xn−1 .

Then C and P are finite and we can write the set of all solutions of the above
equation as

⋃
c∈C

c + ⟪P⟫ .

The other type of atomic formula involves the modulo predicate.

m ∣ (a0x0 +⋯ + an−1xn−1 + b) .
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This statement is equivalent to

∃z[a0x0 +⋯ + an−1xn−1 + c = mz] .

As above, we can show that the solutions S of the equation

a0x0 +⋯ + an−1xn−1 + c = mz .

form a semilinear set, say,

S = ⋃
i<k

u i + ⟪Vi⟫ .

By removing the z-component from u i and the vectors in the set Vi , we
obtain a similar expression for the solutions of the original statement.
To conclude the proof, we have to show that the class of semilinear sets

is closed under boolean operations. Closure under finite unions is trivial.
For closure under finite intersections, it is sufficient to prove that each set of
the form S = u + ⟪V⟫ ∩ u

′ + ⟪V ′⟫ is semilinear. Let A be the matrix with
columns V and let A′ be the matrix with columns V ′. Note that

u +Ay = u′ +A
′
y iff Ay −A

′
y
′ = u′ − u

iff [A∣ −A
′] [

y
y′ ] = u

′ − u

iff [
y
y′ ] ∈ C + ⟪W⟫ ,

for suitable finite sets C ,W . It follows that

x ∈ S iff there are y, y′ such that x = u +Ay and x = u′ +A
′
y

iff there is some y′ ∈ C + ⟪W⟫ such that x = u +Ay

iff x ∈ u +A[C + ⟪W⟫] = [u +AC] + ⟪AW⟫ ,

which is semilinear.
It remains to prove closure under complements. By Proposition 12.12 and

the fact thatwe have already proved closure under intersections, it is sufficient
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12 Subclasses of automatic structures

to show that the complement of a simple semilinear set S = u+⟪V⟫ ⊆ Nn is
semilinear. Let Ŝ ⊆ Rn be the convex hull of S.Wewill prove that (Ŝ∖S)∩Nn

andNn ∖ Ŝ are both semilinear.
For the latter, note that we can useTheorem 12.9 to define Ŝ by a system

of linear inequalities Ax ≥ c with A ∈ Rm×n and c ∈ Rm . Let

a0x ≥ c0 , . . . , am−1x ≥ cm−1

be the rows of this system. Then the complement Rn ∖ Ŝ is given by the
union of the solutions to the inequalities

a0x < c0 , . . . , am−1x < cm−1 .

The solution to each such inequality (in Nn) is semilinear. Hence, so is
(Rn ∖ Ŝ) ∩Nn .

It remains to show that (Ŝ ∖ S) ∩Nn is also semilinear. For every x ∈ S,
there is a unique vector y ∈ Nm with x = u + By, where B is the matrix with
columns V . Hence,

Ŝ ∖ S = { u + By ∣ y ∈ Rm ∖Nm } .

Setting

C ∶= u +⋃{By ∩Nn ∖ {0} ∣ y ∈ [0, 1)n }

(which is finite), it follows that

(Ŝ ∖ S) ∩Nn = C + ⟪V⟫ .

The following relationship between regular languages and semilinear sets
holds more generally for all context-free languages, but we only need the
regular case where the proof is much simpler.

Theorem 12.14 (Parikh). Let K ⊆ Σ∗ be regular and let Φ ∶ Σ∗ → NΣ
be the

function mapping each word w to the tuple Φ(w) ∶= (kc)c∈Σ where kc is the

number of letters c in w. Then Φ[K] ⊆ NΣ
is semilinear.

985



XII. Automatic Structures

Proof. Let α be a regular expression denoting K. We prove the claim by
induction on α. To simplify notation, we set Φ[α] ∶= Φ(K), whereK is the
language denoted by α.
If α = c is a single letter, Φ[α] contains a single tuple and is semilinear.
If α = β ⋅ γ, we have Φ[α] = Φ[β] + Φ[γ]. Since semilinear sets are

closed under finite sums, the claim follows.
If α = β + γ, we have Φ[α] = Φ[β] ∪ Φ[γ]. Since semilinear sets are

closed under finite unions, the claim follows.
Finally, if α = β∗, we have

Φ[α] = ∑
n<ω
[Φ[β] + ⋯ + Φ[β]] . (n times)

To show that this set is semilinear, suppose that

Φ[β] = {u0 + ⟪V0⟫, . . . , uk−1 + ⟪Vk−1⟫} .

It follows that the above sum is equal to

⋃
I⊆[k]
{∑i∈I λ iu i +∑i∈I∑v∈Vi µ i ,vv ∣ λ i ∈ N ∖ {0}, µ i ,v ∈ N}

= ⋃
I⊆[k]
∑
i∈I

u i + ⟪{ u i ∣ i ∈ I } ∪ ⋃i∈I Vi⟫

(with the convention that the above sums equals 0 if I = ∅).

Our next aim is to derive a bound on the out-degree of a semilinear
relation.

Definition 12.15. (a)The vector partition function ψA ∶ Nn → N associated
with a matrix A ∈ Nn×m maps a tuple x̄ ∈ Nn to the number of tuples
ȳ ∈ Nm such that x̄ = Aȳ.
(b) A generalised vector partition function is a function of the form

g(x̄) ∶= ∑
i<s

ψA i (x̄ + c̄ i) , for A i ∈ Nn×m i and c̄ i ∈ Nn .

(c) A function g ∶ Nn → N is a piecewise polynomial if there exists a parti-
tion S ofNn into semilinear sets such that, for every S ∈ S , the restriction
g ↾ S is a polynomial inQ[x0 , . . . , xn−1]. ⌟
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Proposition 12.16 (Sturmfels [199]). Every vector partition function is piece-
wise polynomial.

Corollary 12.17. Every generalised vector partition function is piecewise polyno-

mial.

Proposition 12.18. Let R ⊆ Nk×Nl
be a semilinear relation of finite out-degree.

The function d ∶ Nk → N mapping each tuple ū ∈ Nk
to its R-out-degree is a

generalised vector partition function.

Proof. With each relation S ⊆ Nk+l we associate the formal power-series

fS(x̄ , ȳ) ∶= ∑
⟨c̄ ,d̄⟩∈S

x̄
c̄
ȳ
d̄ .

We can use Proposition 12.12 to write R = S0 ∪ ⋅ ⋅ ⋅ ∪ Sn−1 as a finite
disjoint union of simple semilinear sets

S i = ū i ū
′
i + ⟪v̄ i ,0v̄

′
i ,0 , . . . , v̄ i ,s i−1v̄

′
i ,s i−1⟫ .

A direct calculation shows that

fS i (x̄ , ȳ) =
x̄
ū i
ȳ
ū′i

(1 − x̄
v̄ i ,0 ȳv̄

′
i ,0)⋯(1 − x̄

v̄ i ,s i−1 ȳ
v̄′i ,s i−1)

.

Hence, we obtain

fR(x̄ , ȳ) = ∑
i<n

x̄
ū i
ȳ
ū′i

(1 − x̄
v̄ i ,0 ȳv̄

′
i ,0)⋯(1 − x̄

v̄ i ,s i−1 ȳ
v̄′i ,s i−1)

,

which implies that

∑
c̄∈Nk

d(c̄)x̄ c̄ = ∑
c̄∈Nk

∣{ d̄ ∣ ⟨c̄, d̄⟩ ∈ R }∣ ⋅ x c̄

= ∑
⟨c̄ ,d̄⟩∈R

x̄
c̄
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= ∑
⟨c̄ ,d̄⟩∈R

x̄
c̄ 1̄d̄

= fR(x̄ , 1 . . . 1)

= ∑
i<n

x̄
ū i

(1 − x̄
v̄ i ,0)⋯(1 − x̄

v̄ i ,s i−1)
.

Since generalised vector partition functions are closed under addition, it is
therefore sufficient to prove that, given a power-series of the form,

∑
b̄
g(b̄)x̄ b̄ =

x̄
c̄

(1 − x̄
ā0)⋯(1 − x̄

ām−1)
,

the coefficient function g is a generalised vector partition function. In this
case, we obtain

∑
b̄
g(b̄ + c̄)x̄ b̄ =

1
(1 − x̄

ā0)⋯(1 − x̄
ām−1)

= [ ∑
µ0<ω

x̄
µ0 ā0]⋯[ ∑

µm−1<ω
x̄
µm−1 ām−1]

= ∑
µ0 , . . . ,µm−1<ω

x̄
µ0 ā0+⋯+µm−1 ām−1 ,

which implies that g(z̄+ c̄) is equal to the number of tuples µ̄ ∈ Nm satisfying

z̄ = µ0 ā0 +⋯ + µm−1 ām−1 .

Hence, g(z̄) = ψA(z̄ + c̄), for some A and c.

Example. Let R ⊆ N2 ×N be the set of all triples ⟨a, b, c⟩ such that c is an
even number with a ≤ c ≤ b. This relation is definable in ⟨N,+⟩ and, hence,
semilinear. Its out-degree is

d(a, b) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if a > b ,
1
2 (b − a) + 1 for a ≤ b and a, b even,
1
2 (b − a) for a ≤ b and a, b odd,
1
2 (b − a + 1) otherwise. ⌟

988



12 Subclasses of automatic structures

Growth Argument+

To prove that certain structures are not poly-growth automatic, we can use
the following variant of Proposition 8.16.

Lemma 12.19. Let A be a poly-growth automatic structure, U ⊆ A finite, and

φ a formula of finite out-degree. Then there exist constants d , k > 0 such that

∣Nφ(U , n)∣ ≤ nd + k , for all n < ω .

Proof. Let l ∶= max{ ∥c∥ ∣ c ∈ U }. By Corollary 8.3, there exists a constant c
such that

∥a∥ ≤ l + cn , for all a ∈ Nφ(U , n) .

By assumption, there exists a polynomial p(x) such that the universe of A
contains at most p(n) words of length at most n. Consequently,

∣Nφ(U , n)∣ ≤ p(l + mn) .

Our first applications of this lemma concern linear orders.

Theorem 12.20. An ordinal ⟨α, ≤⟩ is poly-growth automatic if, and only if,
α < ωω

.

Proof. (⇒)We have shown inTheorem 11.11 that all automatic ordinals are
smaller than ωω .
(⇐)As in Proposition 11.1, one can show that the class of poly-growth

automatic ordinals is closed under addition andmultiplication. Furthermore,
⟨ω, ≤⟩ is poly-growth automatic.

Proposition 12.21. LetA be a coloured linear order. If A is regular and scattered,

it is poly-growth automatic.

Proof. If A is regular and scattered, it is denoted by a finite Leonard-Läuchli
term without the shuffle operation. Hence, it is sufficient to prove that
each Leonard-Läuchli operation preserves poly-growth automaticity. Clearly,
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every finite linear order is poly-growth automatic and so is the ordered sum
of two poly-growth automatic linear orders. Finally, note that ω and ωop

are poly-growth automatic and that poly-growth automatic linear orders are
closed under binary products.

Example. The converse is not true. Let ⟨ω, ≤, P⟩ be the order with

P ∶= { n(n + 1)/2 ∣ n < ω } .

This order has an automatic presentation ⟨a∗b∗ , ≤lex , a∗⟩ with polynomial
growth, but it is not regular. ⌟

Instead of the converse, we can only prove the following weaker statement.

Proposition 12.22. For every poly-growth automatic linear order A, we have
FC(A) < ω.

Proof. For a contradiction, suppose that FC(A) = ∞. We have shown in
Proposition 11.3 that n ∶= gFC(A) is finite. It follows that cnn(A) ≅ Q ∶=
⟨Q, ≤⟩. Since we can FOC-interpret cnn(A) inA, the orderQ is poly-growth
automatic. Let φ(x , y, z) be the formula stating that z is the ≤llex-least
element with x < z < y. Then φ has finite out-degree and

∣Nφ({a, b}, n)∣ = 2 + 2n−1 , for a < b

(in the structure Q). A contradiction to Lemma 12.19.

OpenQuestion. Find a characterisation of poly-growth automatic linear orders.

Next, let us take a look at semigroups. In Corollary 9.3 above, we have
already derived a characterisation of all finitely generated Presburger groups.

Proposition 12.23. A finitely generated group G is a Presburger structure if,

and only if, G is automatic.

Next, let us take a look at poly-growth automatic groups.

Lemma 12.24. Let S be a semigroup such that there exists an embedding of

⟨N ∖ {0},+⟩ into S. Then S is not poly-growth automatic.
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12 Subclasses of automatic structures

Proof. Suppose that S is an automatic structure into which ⟨N ∖ {0},+⟩
can be embedded, and let c be the image of 1 under this embedding. By
Lemma 8.8, there exists a constant k such that

∥nc∥ ≤ ∥c∥ + k log2 n , for all n .

It follows that

n ≤ 2(m−∥c∥)/k implies ∥nc∥ ≤ m .

Hence, the set { a ∈ S ∣ ∥a∥ ≤ m } contains at least 2(m−∥c∥)/k elements and
S is not of polynomial growth.

It turns out that the only poly-growth automatic groups are the finite
ones.

Theorem 12.25. A group is poly-growth automatic if, and only if, it is finite.

Proof. LetG be a poly-growth automatic group. By Corollary 8.3 there exists
a constant k such that

◆ for every a ∈ G, there is some b ∈ G with ∥a∥ < ∥b∥ ≤ ∥a∥ + k ,

◆ ∥ab∥ ≤ max{∥a∥, ∥b∥} + k ,

◆ ∥a−1∥ ≤ ∥a∥ + k .

Setting m ∶= ∥e∥ it follows that, for each n < ω, there exists some element
an ∈ A of length

m + 4kn ≤ ∥an∥ < m + 4kn + k .

Set D0 ∶= {e},

Cn ∶= { a
e0
0 ⋯a

en−1
n−1 ∣ e0 , . . . , en−1 ∈ {0, 1}} ,

Dn ∶= { a
−1
b ∣ a, b ∈ Cn } .

We claim that

(i) ∥c∥ < m + 4k(n − 1) + 2k, for all n > 0 and c ∈ Cn ,
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(ii) ∥c∥ < m + 4kn, for all c ∈ Dn ,

(iii) ∣Cn ∣ = 2n .

It follows that G contains at least 2n elements of length at most 4kn. A con-
tradiction to the fact that G has polynomial growth. Hence, it remains to
prove the above claims.
(i) We proceed by induction on n. For n = 1, we have ∥e∥ = m and

∥a0∥ < m + k ≤ m + 2k. For the inductive step, let c ∈ Cn . If c ∈ Cn−1, the
claim follows by inductive hypothesis. Otherwise, we can write c = dan−1
with d ∈ Dn−1. Then ∥d∥, ∥an−1∥ < m + 4k(n − 1) + k implies, by choice
of k, that

∥c∥ < m + 4k(n − 1) + 2k .

(ii) Let a, b ∈ Cn . By (i), we have ∥a∥, ∥b∥ < m + 4k(n − 1) + 2k. By
choice of k, this implies that

∥a−1b∥ < m + 4k(n − 1) + 2k + 2k = m + 4kn .

(iii) Suppose that

a
d0
0 ⋯a

dn
n = a

e0
0 ⋯a

en
n , for d0 , . . . , dn , e0 , . . . , en ∈ {0, 1} .

We prove that d i = e i by induction on n. Set

b ∶= ad00 ⋯a
dn−1
n−1 and c ∶= ae00 ⋯a

en−1
n−1 .

If dn = en , we obtain b = c and the claim follows by inductive hypothesis.
Otherwise, we may assume without loss of generality that dn = 0 and en = 1.
Hence,

b = can implies an = c
−1
b ∈ Dn .

By (iii), it follows that ∥an∥ < m + 4kn. A contradiction to our choice
of an .

For Cayley graphs, we obtain the following result.
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Proposition 12.26. Every finitely generated automatic group has a Cayley graph

that is poly-growth automatic.

Proof. This follows immediately by Lemma 9.15.

Exercise 12.2. Theconverse is false: theHeisenberg group has a poly-growth
automatic Cayley graph but it is not automatic. ⌟

Equivalen$e Stru$ture+

Our aim is to prove characterisations both of Presburger equivalence rela-
tions and of poly-growth automatic equivalence relations.

Definition 12.27. (a) An equivalence structure is a structure of the form
⟨A, ∼⟩ where ∼ is an equivalence relation on A.
(b) Given a function g ∶ Nn → N, we denote by E(g) the equivalence

structure with exactly ∣g−1(k)∣ classes of size k, for each k ∈ N ∖ {0}.
(c) A polynomial p ∈ Q[x0 , . . . , xn−1] is positive if the associated polyno-

mial functionQn → Q restricts to a functionNn → N ∖ {0}.
(d) For x̄ , ā ∈ Nn , we write

x̄
ā ∶= xa00 ⋯x

an−1
n−1 . ⌟

We start with a simple lemma that helps us to define interpretations of
structures of the form E(g).

Lemma 12.28. Let A be a well-ordered structure and g ∶ Nn → N a function.

There exists a (k-dimensional) FO-interpretation of E(g) in A if, and only if,

there exist k,m < ω, an injective function σ ∶ Nn → A
k
, and an FO-definable

relation R ⊆ Ak×m
such that

dR(ā) =

⎧⎪⎪
⎨
⎪⎪⎩

g(c̄) if ā = σ(c̄) ,
0 otherwise ,

where dR is the function mapping a tuple ā to its R-out-degree.
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Proof. (⇐)Given R, we set

⟨x̄ , ȳ⟩ ∼ ⟨x̄′ , ȳ′⟩ : iff x̄ = x̄′ .

Then ⟨R, ∼⟩ ≅ E(g).
(⇒) Let τ = ⟨δ(x̄), φ(x̄ , ȳ)⟩ be a k-dimensional FO-interpretation of

E(g) = ⟨E , ∼⟩ in A and let υ ∶ δA → E be the corresponding isomorphism.
By definition of E(g), there exists a bijection ρ ∶ Nn → E/∼ such that

∣ρ(k̄)∣ = g(k̄) , for all k̄ ∈ Nn .

Set ≈ ∶= φA and let P ⊆ δA be the set containing the ≤lex-minimal element of
each ≈-class.Then R ∶= ≈∩(P×Nm) is FO-definable and the R-out-degree
of an element ā ∈ P is

∣[ā]≈∣ = ∣[υ(ā)]∼∣ = g(ρ−1([υ(ā)])) = g((ρ−1 ○ q ○ υ)(ā)) ,

where q ∶ E → E/∼ is the projection. Since the restriction of ρ−1 ○ q ○ υ to P
is bijective, we obtain the desired function σ by setting

σ ∶= (ρ−1 ○ q ○ υ ↾ P)−1 ∶ Nn → A
k .

Presburger equivalence structures can be characterised as follows.

Theorem 12.29. An equivalence structure A is a Presburger structure if, and

only if,

A ≅ E(g) + C

where g is a generalised vector partition function and C is a countable equivalence

structure with only infinite classes.

Proof. (⇐)Note that the equivalence structures C1 ∶= ⟨N, E1⟩ and C∞ ∶=
⟨N2 , E∞⟩ with

E1 ∶= N ×N and E∞ ∶= { ⟨⟨n, i⟩, ⟨n, j⟩⟩ ∣ n, i , j ∈ N}
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12 Subclasses of automatic structures

are Presburger structures. (C1 has a single infinite class and C∞ has count-
ably infinitely many.) Since Presburger structures are closed under finite
disjoint unions, it therefore remains to show that E(g) is Presburger, for
every generalised vector partition function

g(x̄) ∶= ∑
k<s

ψAk(x̄ + c̄k) , for Ak ∈ Nn×mk and c̄k ∈ Nn .

Given such a function g, set m ∶= maxk mk . The relation

R ∶= { ⟨x̄ , ȳ, k⟩ ∈ Nn ×Nm ×N ∣ k < s, Ak ȳ = x̄ + c̄k ,

y i = 0 for i ≥ mk }

is Presburger definable and the out-degree of x̄ ∈ Nn is equal to

∑
k<s

ψAk(x̄ + c̄k) = g(x̄) .

Consequently, we can use Lemma 12.28 to find an FO-interpretation of E(g)
in ⟨N,+, ≤⟩.
(⇒) Suppose that there exists an k-dimensional FO-interpretation of A

in ⟨N,+⟩. Note that the substructure A0 of A consisting of all finite equival-
ence classes can be defined by the FOC-formula

φ(x) ∶= ¬∃ℵ0
y[y ∼ x] .

By Theorem 12.13, it therefore follows that A0 is also a Presburger struc-
ture. Hence, it is sufficient to prove that A0 ≅ E(g), for some generalised
vector partition function. Let P ⊆ A ⊆ Nn be the set containing the ≤lex-
minimal element of every ∼-class. Since P is definable, so is the relation
R ∶= ∼ ∩ (P ×A). It therefore follows by Proposition 12.18 that the function
d ∶ Nn → Nmapping a tuple k̄ to its R-out-degree is of the form

p(x̄) ∶= ∑
i<s

ψA i (x̄ + c̄ i) .
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Since

d(k̄) =

⎧⎪⎪
⎨
⎪⎪⎩

∣[k̄]∣ if k̄ ∈ P ,
0 otherwise ,

we further have A ≅ E(d).

We can improve one direction of the preceding theorem as follows.

Lemma 12.30. Let g be a generalised vector partition function. Then E(g)
can be written as a finite union of structures of the form E(p), for positive
polynomials p with integer coefficients.

Proof. By Proposition 12.16, g ∈ Q[x̄] is piecewise polynomial. Hence, there
exists a finite partition S ofNn into semilinear sets and a family of polyno-
mials (qS)S∈S such that

g ↾ S = qS , for all S ∈ S .

By Proposition 12.12, we may assume that every S ∈ S is simple. For S ∈ S
with S = u + ⟪V⟫, let hS ∶ NV → Nn be the function defined by

hS(µ̄) ∶= u + ∑
v∈V

µvv .

Then qS ○ hS is a polynomial inQ[x̄]. Furthermore, we have

E(g) ≅ ∑
S∈S

E(qS ○ hS)

because simplicity of S implies that the functions hS are injective.
To conclude the proof, it is therefore sufficient to show that every structure

of the form E(q) with q ∈ Q[x̄] can be written as a finite disjoint union
of structures E(h) with positive h ∈ Z[x̄]. We can write q = 1

µ q0 with
q0 ∈ Z[x̄] and 0 < µ < ω. For each tuple c̄ ∈ [µ]n , we obtain a polynomial

p c̄(x̄) ∶= q(µx̄ + c̄) ∈ Z[x̄] .
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12 Subclasses of automatic structures

(Note that the constant term of p c̄ belongs to Z since q induces a function
Nn → N.) Furthermore, we have

E(q) ≅ ∑
c̄∈[µ]n

E(p c̄) .

Open Question. Is E(p) a Presburger structure, for every positive p ∈ Z[x̄]?

For poly-growth automatic equivalence structures, we obtain only a partial
result. Again, we start with a lemma.

Lemma 12.31. For every p ∈ Q≥0[x0 , . . . , xn−1], the structure E(p) is poly-
growth automatic.

Proof. Suppose that

p = 1
µ ∑

j<m
λ j x̄

ā j , for µ, λ0 , . . . , λm−1 ∈ N .

Let k i ∶= max j a j, i be the maximal exponent of x i in p. Let R be the relation
of all tuples

⟨x̄ , ȳ0 . . . ȳn−1 , z,w⟩ ∈ Nn ×Nk0 ×⋯ ×Nkn−1 ×N ×N

such that

z < m ,

w < λz ,
y i , j < x i , for i < n and j < a j, i ,

y i , j = 0 , for i < n and a j, i ≤ j < k i .

Then R is definable in ⟨N, ≤⟩ and the R-out-degree of x̄ ∈ Nn is equal to

∑
j<m

λ j x̄
ā j .

Consequently, we can use Lemma 12.28 to construct an FO-interpretation
of E(p0) in ⟨N, ≤⟩, where p0 ∶= µp.
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Finally, note that E(p) can be obtained from E(p0) by taking every µ-
th element of each equivalence class. Hence, E(p) is isomorphic to the
substructure of E(p0) defined by the formula

φ(x) ∶= ∃0,µ y[y ∼ x ∧ y ≤llex x] .

We have obtained FOC-interpretations E(p) ≤ E(r) ≤ ⟨N, ≤⟩. By The-
orem 12.5, it follows that E(p) is poly-growth automatic.

Exercise 12.3. Find a poly-growth automatic presentation of E(x2). ⌟

Theorem 12.32. There exists a class P of positive polynomials with integer

coefficients such that an equivalence structure A is poly-growth automatic if, and

only if, it can be written as a finite disjoint union of

◆ structures of the form E(p), for p ∈ P , and

◆ countable equivalence structures where every class is infinite.

Furthermore, every polynomial with natural coefficients belongs to P .

Proof of Theorem 12.32. (⇐)We have seen in Lemma 12.31 that every struc-
ture of the formE(p)with p ∈ N[x̄] is poly-growth automatic. Furthermore,
the equivalence structures A1 ∶= ⟨0∗ , E1⟩ and A∞ ∶= ⟨0∗1∗ , E∞⟩ with

E1 ∶= 0∗ × 0∗ and E∞ ∶= { ⟨0n1k , 0n1l ⟩ ∣ n, k, l < ω }

are poly-growth automatic. (A1 has a single infinite class and A∞ has count-
ably infinitely many.) The claim follows since the class of poly-growth auto-
matic structures is closed under finite disjoint unions.
(⇒) According toTheorems 12.5 and 12.13, every poly-growth automatic

equivalence structure is a Presburger structure. Consequently, it follows
by Theorem 12.29 that A0 ≅ E(g) + C, for some generalised vector parti-
tion function g and some equivalence structure C with only infinite classes.
Furthermore, we can use Lemma 12.30 to write E(g) as a finite union of
structures of the form E(q), for positive polynomials g with integer coeffi-
cients.

Open Question. Find an explicit description of the above class P .
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12 Subclasses of automatic structures

Unary Automati$ Stru$ture+

There exists a subclass of the poly-growth automatic structure that is even
simpler: those where the presentation is over a unary alphabet.

Definition 12.33. An unary automatic structure is a structure that has an
automatic presentation over a unary alphabet. ⌟

For these structures the characterisation fromTheorem 12.5 simplifies as
follows.

Theorem 12.34. Let A be a structure. The following statements are equivalent.

(1) A is unary automatic.

(2) A isMSO-interpretable in ⟨ω, ≤⟩.
(3) A is (1-dimensional) FO-interpretable in ⟨ω, ≤,m ∣ ⋅⟩, for some m < ω.
(4) A is (1-dimensional) FO-interpretable in copym(⟨ω, ≤⟩), for some m.

Exercise 12.4. Prove the theorem. ⌟

Unary automatic structure are too simple to be of much interest. Let us
just mention the following relationship to tree-interpretable structures.

Proposition 12.35. Every unary automatic structure is tree-interpretable. There

are tree-interpretable structures that are not unary automatic.

Proof. If A is unary automatic, we can useTheorem 12.34 to find anMSO-
interpretation of A in ⟨ω, ≤⟩. Since ⟨ω, ≤⟩ can beMSO-interpreted in the
binary tree Tbin, it follows that A is tree-interpretable.
For strictness, note that it follows by Corollary X.4.8 that Tbin is tree-

interpretable, but not unary automatic.

Remark. Note that there are poly-growth automatic structures that are not
tree-interpretable, like the infinite grid ⟨Z ×Z, E⟩. ⌟

We can prove a converse statement for well-ordered tree-interpretable
structures.
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Proposition 12.36. A structure A equipped with a well-ordering is unary auto-

matic if, and only if, it is tree-interpretable and its order type is less than ω2
.

Proof. (⇒)The fact that A is tree-automatic follows immediately from
Proposition 12.35. For a contradiction, suppose that the order type of A is at
least ω2. Fix an increasing enumeration (a i)i<α of A and let f ∶ A→ A and
g ∶ A→ A be the functions

f (a i) ∶= a i+1 and g(a i) ∶= a i+ω ,

respectively. Since f and g are definable, we can use Corollary 8.3 to find a
constant k < ω such that

∥a i+1∥ ≤ ∥a i∥ + k and ∥aω(i+1)∥ ≤ ∥aω i∥ + k .

It follows that

∥aω i+ j∥ ≤ ∥a0∥ + (i + j)k .

Consequently, the number of elements a with ∥a∥ ≤ n is quadratic in n. But
there are only linearly many words of length at most n. A contradiction.
(⇐) Let A be tree-interpretable and well-ordered of order-type α. Fix

n < ω such that ω(n − 1) ≤ α < ωn. For l < ω and i < n, set

C(l , i) ∶= { a ∈ A ∣ ωi ≤ a < ω(i + 1) and ∥a∥ = l } .

It follows by Lemma XI.7.10 that the size of C(i , l) is bounded by some
constant k. We identifyAwith a subset of the binary tree Tbin. Applying the
homomorphism 0↦ 0nk and 1↦ 1nk , we can assume that A contains only
elements whose length is amultiple of nk. Let a(l , i , j) be the j-th element of
C(nkl , i). To construct a unary presentation ofA, we encode a(l , i , j) by the
word w(l , i , j) ∶= 1nk l+k i+ j . (Note that the mapping a(l , i , j) ↦ w(l , i , j)
is injective.) We will show that this encoding is definable in the structure
⟨Tbin , =len⟩. Then we can construct formulae φR , for each relation R of A,
such that

⟨Tbin , =len⟩ ⊧ φR(w(l0 , i0 , j0), . . . ,w(lr−1 , ir−1 , jr−1))

iff ⟨a(l0 , i0 , j0), . . . , a(lr−1 , ir−1 , jr−1)⟩ ∈ R .
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12 Subclasses of automatic structures

Since every FO-definable relation in ⟨Tbin , =len⟩ is regular and φR defines a
relation over words containing only the letter 1, it follows that we obtain a
unary automatic presentation of A.
As all tree-interpretable structures are automatic, there exists a (1-dimen-

sional) FO-interpretation τ = ⟨δ(x), (ψR(x̄))R⟩ of A in ⟨Tbin , =len⟩. To
define the function mapping w(l , i , j) to a(l , i , j), we pick the (ki + j)-th
element of C(nkl , 0)∪ ⋅ ⋅ ⋅ ∪C(nkl , n− 1). (This is possible since the length
of these elements is equal to ∣w(l , i , j)∣−ki+ j.)We define a formula χ(x , y)
stating that x = w(l , i , j) and y ∈ C(l , i), for some i , j, l , by

ϑ i(x) ∶= ⋁
j<k
∣x∣ ≡ ki + j (mod nk)

η i(y) ∶= (∃
=i+1

z ≤ y)(∀u < z)∃v[u < v < z]

and χ(x , y) ∶= δ(y) ∧ ∣x∣ − nk < ∣y∣ ≤ ∣x∣ ∧ ⋀
i<n
[ϑ i(x) ↔ η i(y)] .

For simplicity, consider the case of a unary relation R only. We can define
the encoding of R by

φR(x) ∶=

⋁
i<n
m≤k

∃x0⋯xm−1[∃
=m

y.χ(x , y) ∧ ⋀
i<m

χ(x , x i) ∧⋀
i< j

x i <lex x j

∧ ⋁
i<n
j<m

[∣x∣ = ∣x0∣ + ki + j ∧ ψR(x j)]] .

Exercise 12.5. Prove that the class of unary automatic structures is closed
under binary disjoint unions and binary ordered sums, but it is not closed
under binary products. ⌟

Exercise 12.6. Let A = ⟨A, f ⟩ be a countable structure with a bijective
function f ∶ A→ A. Prove that A is unary automatic if, and only if,

◆ the size of the finite orbits of f is bounded and

◆ there are only finitely many infinite orbits of f . ⌟
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Exercise 12.7. Let A = ⟨A, ∼⟩ be a countable structure where ∼ ⊆ A×A is
an equivalence relation.Then A is unary automatic if, and only if,

◆ the cardinality of the finite ∼-classes is bounded and

◆ there are only finitely many infinite ∼-classes. ⌟

Exercise 12.8. A linear order A is unary automatic if, and only if, A can be
written as a finite sum of orders of the form 1, ω, or ωop. ⌟

Note+

Automatic structures where first defined by Hodgeson [104, 106, 105] and
later rediscovered by Khoussainov and Nerode in [116]. The approach via
interpretations is due to [14, 24]. Σ1

1-completeness of the isomorphism prob-
lem was proved in [117].
The constructions of injective presentations are from [14, 52], while the

non-existence proof in the ω-automatic case is due to [103]. The material
on ω-automatic structures is mostly taken from [125, 112, 122, 1]. Counting
quantifiers were introduced in [14, 119], the quantifier H in [186], and the
quantifier U in [126].

Most of the algebraic characterisations are taken from [14, 68, 120, 117, 149,
207, 83, 108, 1, 187]. The paper [32] claims to improve on the results of [207]
by proving a characterisation of all automatic torsion-free abelian groups.
But the proof sketched in [32] does not seem to work. So I consider this
result a mere conjecture at the moment. A good treatise on automatic groups
in the group-theoretic sense can be found in [79]. A short introduction to
automaton groups can be found in [12]. There exists an extensive literature
about which sequences and sets of numbers are regular when encoded in
various numeration systems. See [3] and [4] for an overview.

Unary automatic structures were introduced in [14, 118]. The generalisa-
tion to structures of polynomial growth is due to [8]. Algebraic character-
isations of such structures can be found in [107, 85]. Note that the proof
in [85] contains a gap.The statement they actually prove isTheorem 12.32
above. Proposition 12.2 is from [200]. For surveys on Presburger arithmetic
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12 Subclasses of automatic structures

and semilinear sets, see, e.g., [98, 46]. Theorem 12.13 is by [154, 86, 87]. The
full version ofTheorem 12.14 can be found in [151] and Proposition 12.18 is
from [210].
For space reasons, several topics had to be omitted from this chapter.

These include

◆ complexity questions related to automatic structures [24, 135, 121, 127, 2];

◆ questions regarding decidability and undecidability [185, 120, 117, 148,
123];

◆ equivalence and non-equivalence of presentations, intrinsically regular
relations [119, 7, 8];

◆ automatic structures with non-regular advice [211];

◆ automatic structures over words of length ωα and over other kinds of
structures [82, 83, 111, 109].
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Symbol Index

Chapter I

[n] {0, . . . , n − 1}, 3
ā tuple, 3
⟨⟩ empty tuple, 3
℘(A) power set, 3
A+ B disjoint union, 3
dom f domain of a function, 3
rng f range of a function, 3
f ↾ X restriction to X, 3
⇑X elements above X, 3
⇓X elements below X, 3
M ⊧ φ satisfaction relation, 4
FO[Σ] first-order logic, 5
MSO[Σ] monadic second-order logic,

5
A ⊧ φ(ā, P̄) satisfaction relation, 6
WMSO[Σ] weak monadic-second

order logic, 7
CMSO[Σ] MSO with first-order

counting, 7
MSO[inf]MSO with finiteness

predicate, 7
GSO[Σ] guarded second-order logic,

7
MSO0[Σ] simplified syntax forMSO, 8
℘(A) power-set structure, 11

℘fin(A) finite power-set structure, 11
Σin signature of the incidence

structure, 13
Ain incidence structure, 13
ink incidence relation, 13
qr(φ) quantifier rank, 16
Thl(M) L-theory ofM, 16
M ⊑L N directed L-equivalence, 17
M ≡L N L-equivalence, 17
Mod(φ) models of φ, 17
A⊕B disjoint union, 24
∑i∈I Ai ordered sum, 35
A0 + A1 finite ordered sum, 36
A/≈ quotient, 40
fuseP(A fusion, 41
copyk(A) k copies of A, 43
∑i∈I Ai generalised sum, 45
MSO0

n̄[Σ]MSO0-formulae with
quantifier structure n̄, 46

Thn̄
MSO0(A, P̄) MSO0-theory of

quantifier structure n̄, 46
A, P̄ ≡n̄MSO0 B, Q̄ n̄-equivalence, 46
⟦χ(P̄)⟧ set of indices satisfying χ, 46
A ×B direct product, 52
Ak power of A, 53
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Symbol Index

Chapter II

ω first infinite ordinal, 61
⟨⟩ empty sequence, 62
∣w∣ length of a word, 62
Σ∗ finite words, 62
Σ+ finite non-empty words, 62
Σω ω-words, 62
w[i , k) factor of w, 63
S1 semigroup with added

neutral element, 64
a ≤L b Greene’s relation, 66
a ≤R b Greene’s relation, 66
a ≤J b Greene’s relation, 66
a ≡L b Greene’s relation, 66
a ≡R b Greene’s relation, 66
a ≡J b Greene’s relation, 66
a ≡H b Greene’s relation, 66
[a]Lb L-class of a, 67
[a]Rb R-class of a, 67
[a]Jb J-class of a, 67
[a]Hb H-class of a, 67
⊑σ relation induced by a split, 76
p

aÐ→ q transition, 86
L(A) language recognised byA, 86
∼L syntactic congruence, 87
LTL linear temporal logic, 99
φ U ψ until operator, 99
Xφ next operator, 100
Fφ finally operator, 100
Gφ generally operator, 100
F∗φ reflexive finally operator, 100
G∗φ reflexive generally operator,

100

Chapter III

ChainJ(S) set of J-chains, 110
µ(ā) last element of ā, 111
π(ā) product of ā, 111
tχ equivalent w.r.t. J-chain

labelling, 111
a
ω ω-power, 121
a[i ,k) product a i⋯ak−1 , 123
p

aÐ→ q transition, 130
L(A) language recognised byA,

130
WMSO[Σ] weak monadic

second-order logic, 139

Chapter IV

V◇ positions for◇, 146
V◻ positions for ◻, 146
Wσ winning region, 146
◇X some successor in X, 148
◻X all successor in X, 148
σ opponent, 148
Stepσ step function, 148
Attrσ attractor, 148
G(S, φ) model-checking game, 155
G ×α M product game, 165
Pσ period set, 167
Lµ µ-calculus, 179

Chapter V

x ≤pf y prefix ordering, 193
Suc(x) set of successors, 193
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Suc∗(x) pointed set of successors, 193
Tv attached subtree, 194
dom(t) domain of t, 194
≤so successor order, 194
u ⊓ v infimum, 195
ΣQ signature for transition logic,

207
Su$∗(v; ρ) successor structure, 207
Lnd(A) language recognised by a

nondeterministic
automaton, 208

Su$∗(v; ρ/q) successor structure for
alternating automata, 212

Lalt(A) language recognised by an
alternating automaton, 212

φ dual of φ, 214
SΩ(Q) trace semigroup, 219
A∗ Muchnik iteration, 228
cl clone relation, 228
G0(A,A) reduced automaton game,

229
Tbin infinite binary tree, 236
[T] space of branches, 244
∂X Cantor-Bendixson derivative,

245
CB(X) Cantor-Bendixson rank of a

space, 245
CB(x , X) Cantor-Bendixson rank of a

point, 245
∂T Lifsches-Shelah derivative,

248
LS(T) Lifsches-Shelah rank, 248
LS(x , X) Cantor-Bendixson rank of a

point, 248
C2MSO MSO with second-order

counting, 259
∃κ counting quantifier, 259

Ch(P) P-choice vertices, 266
CB(P) P-choice branches, 266
Ū ≈∗ V̄ finite difference, 271
tv subtree at v, 275
p(s̄) substitution of trees, 275

Chapter VI

∑i∈I Ai ordered sum, 283
A ×B ordered product, 283
Aop opposite ordering, 284
[a, b] interval, 284
[a, b) interval, 284
cn condensation map, 288
FC(A) finite-condensation rank, 288
gFC(A) finite-condensation rank, 288
FC∗(A) variant of FC-rank, 289
gFC∗(A) variant of generalised

FC-rank, 289
HR(A) Hausdorff rank, 291
HR∗(A) variant of Hausdorff rank,

291
len(A) length, 291
≤lex lexicographic ordering, 295
cl2(X) two-sided closure, 327
cl(X) topological closure, 333
len(P) level in the tree, 339
⟦φ(P̄)⟧ elements where φ holds

locally, 362
A ⊧loc φ(P̄) local satisfaction, 362
≤llex length-lexicographic order,

408
WO(A) well-ordering index, 425
BLTL linear temporal logic, 441
φ U ψ until operator, 442
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φ S ψ since operator, 442
LTL linear temporal logic, 442
Xφ next operator, 442
Yφ yesterday operator, 442
Fφ eventual operator, 442
Gφ always operator, 442

Chapter VII

Hin incidence representation, 462
Hadj adjacency representation,

462
G ⊆ H subhypergraph, 462
HU induced subhypergraph, 463
Av auxiliary nodes, 472
B(X/F) vertices X is attached to, 473
β(X/F) maximal vertex X is attached

to, 473
Oε(H) oriented hypergraph, 487
B ∪A C amalgamation, 492
BG(Z) border of Z, 497
d f defect of f , 498
Chk(P) vertices with a lot of choice,

520
pbr(C) prime branching point, 521
mprk(C) minimal prefix, 524
pprk(C) prime prefix, 525

Chapter VIII

twdA tree-width, 531
pwdA path-width, 532
twdn A height-n tree-width, 532
Min minor transduction, 543

G − F deleting edges, 547
∂A boundary of A, 548
N(P) set of neighbours, 554
Km ,n complete bipartite graph, 562
C(k) k-th column, 562
R(i) i-th row, 562
σ̂ edge-flow of a

branch-decomposition,
578

supp(X) support of X, 578
rk(X) rank of a set of edges, 578
τ○ leaf labelling induced by a

flow, 584
B(τ) blocks of a k-flow, 584

Chapter IX

≃U crossing equivalence, 600
crk(P/A) crossing rank, 600
A[P] induced substructure with

auxiliary relations, 603
⊗τ

i∈I Ai composition with an update
specification, 606

H
n[P] the classes in P, 607

cwdA crossing-width, 610
val(t) value of t, 618
cwdns A non-standard crossing width,

639

Chapter X

expm(A) unary expansion of A, 654
τ(A/P̄) transduction with

parameters, 662
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En n-equivalence structures, 667
Tn trees of height n, 667
C ⊑L D L-transduction fromD to C,

685
P finite paths, 685
G finite grids, 685
Tn trees of bounded height, 686
Ad(t) adhesion set, 692
µ(a) component introducing a,

693
a ⊑ b introduction order, 693
a ≡ b equivalence associated with

the introduction order,
693

A[F] fragment induced by F, 697
A∗[F] fragment without root

adhesion edge, 697

Chapter XI

CHn Caucal hierarchy, 718
A ∥ξ,ζ B parallel sum, 736
val(t) value of aHR-term, 736
U(G, v0) unravelling, 742
G∗′ modified Muchnik iteration,

747
nop(z) no-op operation, 757
popk(z) pop operation, 757
pushγ(z) push operation, 757
clonek(z) clone operation, 757
Opn stack operations, 757
top(z) top of stack, 757
Sn tree of higher-order stacks,

766
d(u, v) distance, 779

Tst subtree attached at s, 780
End(u) end containing u, 786
G ∗C H push-out, 790
expn iteratied exponential, 801
w/k prefix, 804
x ≡m y same m-theory, 818
[x]m ≡m-class, 818
x ⊑ y existence of path, 822

Chapter XII

Σ◻ alphabet with blank, 833
◻ blank, 833
s ⊗ t convolution, 834
s̄
⊗ convolution, 834
u =len v equal length, 835
Z[ 1p ] p-adic rationals, 836
A ≤FO B FO-interpretation, 842
Tbin binary tree, 842
k ∣p m power of p divides, 845
u =len v equal length, 845
Aω ω-power, 850
A(ω) infinite direct sum, 850
s ≈∗ t only finitely many

differences, 864
[s]∗ ≈∗-class, 864
[a]E equivalence class, 866
FOC FO with counting

quantifiers, 883
Hx̄φ Ramsey quantifier, 887
UXφ infinite quantifier, 888
∥a∥ length of the encoding, 892
D(U) size of domain, 894
h(U) maximal height, 894
ā ≃∆U b̄ same ∆-type overU, 894
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exR expansion of R, 900
Nφ(U , n) reachable elements, 901
prod(S) finite direct products, 907
A ∪B superposition, 907
supp(S) superpositions, 907
u ≈m∗ v equal from position n, 909
[G ∶ H] index of H in G, 915

[a, b] commutator, 917
θ(S , d) coverage measure, 935
a ≈∗ b finite difference, 943
E i j(r) transvection, 951
En(R) group of transvections, 951
ψA vector partition function, 986
E(g) equivalence structure, 993
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n-equivalence structure, 667
— associated with a tree, 667

accepting a tree, 208
accepting a word, 86, 130
accepting run, 86, 130, 208, 212
accessibility length of a group, 791
accessible group, 791
actual relations, 603
acyclic flow, 498
additive colouring, 107
additive labelling, 314
additive labelling of a linear order, 75
adhesion edge, 697
adhesion set, 692
adjacency representation of a

hypergraph, 462
admissible labelling, 270
alphabet, 62
alternating automaton, 211
alternating game, 145
alternating parity game, 188
aperiodic semigroup, 94
atom, 943
attached subtree, 194
attachment set, 473
attractor, 148

automatic presentation, 837
automatic structure, 837
automaton, 86
L-automaton, 207
ω-automaton, 130
automaton game, 213
auxiliary node, 472
auxiliary relations, 603

back property, 21
base of a push-out, 790
base of anHNN-extension, 790
base point of an edge, 808
basic temporal formula, 444
bicofinality, 314
bicompatible operation, 15
bidirectional linear temporal logic, 441
big vertex of a tree-decomposition, 554
binary tree, 236
binary vertex in a Simon tree, 75
blank symbol, 833
block of a flow, 584
boolean algebra, 943
border hyperedge, 463
border of a factor, 697
border of a set of vertices, 497
Borel determinacy, 158
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Borel function, 255
Borel hierarchy, 256
Borel relation, 255
Borel set, 158, 255, 861
Borel structure, 861
boundary of a set of vertices, 548
bounded expansion, 900
bounded path, 808
bramble, 553
branch of a generalised tree, 195
branch of a tree, 193
branch-decomposition, 578
branch-width, 578
branching degree of a generalised tree,

394
branching type of a tuple, 826
Büchi automaton, 131

cancellative function, 644
Cantor normal form, 960
Cantor topology, 244, 861
Cantor-Bendixson derivative, 245
Cantor-Bendixson rank, 245
Cantor-Bendixson rank of a tree, 250
Caucal hierarchy, 718
Cayley graph, 914
Cayley-graph, 777
choice, 393
P-choice factor of a tree, 266
choice function, 393
choice function for a hypergraph, 483
clique-width, 599
clone relation, 228
code, 362
K-code of a tuple, 826
coding a path, 819
coherent set, 327

colour trace, 616
colour trace of a tuple, 616
C-coloured order, 35
coloured tree, 194
colouring, 107
T-colouring, 487
m,k-colouring, 819
colouring property of a weak

subhypergraph, 469
colours, 603
column of a pseudo-grid, 562
comb, 888
commutator of a group, 917
compatible operation, 15
complete bipartite graph, 562
component of a tree-decomposition, 531
composition method, 23
composition of path-decompositions,

701
composition of transductions, 653
composition theorem, 23
computing a split by a transducer, 116
condensation, 288, 370
configuration graph of a pushdown

automaton, 751
conforming to a finite-memory strategy,

164
conforming to a strategy, 146
congruence of a linear order, 370
connected component, 462
context for a tree, 275
context-free group, 778
contracting an edge in a graph, 543
convex equivalence relation, 196
convex set, 196
convolution, 833
copy operation, 43
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copying transduction, 655
core of a star, 465
coset progression, 926
counting monadic-second order logic, 7
counting quantifier, 259
covered by a ≈∗-class, 866
crossing equivalence, 600
crossing formula, 599
crossing rank, 600
crossing-width, 610
cut, 372
cyclically finite semigroup, 65

d-rearrangement of a transduction, 679
decomposition

tree —, 531
decomposition of a generalised tree

induced by a substructure,
198

Dedekind-complete order, 441
Dedekind-complete orders, 372
defect of a flow, 498
definability, 62
definable distribution, 499
definable expansion, 491
definable flow, 499
defining a choice function, 487
defining a tree-decomposition, 693
definition scheme of an interpretation, 31
dense colouring, 285
dense linear order, 284
dense subset, 284
depth-first H-forest, 474
determined games, 146
deterministic automaton, 131
deterministic graph, 743
deterministic transducer, 115

k-dimensional first-order interpretation,
841

k-dimensional interpretation, 54
direct product, 52
direction, 193
disjoint union, 24
disjoint union of sets, 3
disjoint weak subhypergraphs, 463
distance in graphs, 779
distinguishable contexts, 276
distinguishing vertex, 276
distribution, 498
σ-domain, 161
draw, 145
dual formula, 214
Dyck sequence, 767

ec-pushdown graph, 765
edge ordering, 479
edge-bounded flow, 498
edge-flow, 578
effective uniformisation, 414
effectively equivalent presentations, 857
embedding of a semigroup into a

relation, 897
embedding of generalised trees, 247
embedding of linear orders, 284
k-embedding of trees, 683
embedding of well-ordered trees, 410
emptiness for ω-automata, 141
empty word, 62
encoding a colouring, 487
end of a graph, 786
enough successors, 410
enriched tree, 195
entirely S-colourless set, 348
equal length, 835
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equal-length relation, 845
equality, 834
equality checks, 764
L-equivalence, 17
equivalence structure, 993
n-equivalence structure, 667

— associated with a tree, 667
equivalent models, 17
equivalent presentations, 857
equivalent to a parity condition, 167
even cycle, 173
expandable tree, 276
m-expansion, 654
m,k-expansion, 819
expansion of a relation, 900
extendible sequence, 548
externally linked sets in a graph, 572

factor of a tree, 265, 697
factor of a word, 63
factorisation tree, 74
finite colouring, 107
finite difference, 943
finite out-degree, 892
finite power-set structure, 11
finite-condensation rank, 288
finite-memory strategy, 164
finitely branching generalised tree, 394
first-order counting, 7
first-order m-equivalence, 17
first-order interpretation, 841
first-order logic, 5
first-order logic over words, 93
first-order logic with counting

quantifiers, 883
first-order parameter, 20
δ-flow, 498

flow in a graph, 498, 584
H-forest, 473
forest of ordinal height, 463
formula, 4
forth property, 21
fragment of a tree-decomposition, 697
frame embedding, 341
frame for a coherent set, 334
free monoid, 64
free semigroup, 64
free ω-semigroup, 121
frontier of an end, 786
full k-ary tree, 535
fundamental domain, 930
fusion of a structure, 41

Gaifman graph, 533
Gale-Stewart game, 157
game with memory, 165
generalised finite-condensation rank,

288
generalised Lifsches-Shelah rank, 296
generalised path-decomposition, 537
generalised product, 55
generalised sum, 45
generalised tree, 195
generalised tree-decomposition, 537
generalised vector partition function,

986
globally consistent colour trace, 616
good tree-decompositions, 554
graph minor, 543
Greene’s relations, 66
grid, 558
groups of polynomial growth, 922
GSO-transduction, 654
GSO-transduction hierarchy, 686
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guard, 329
guarded m-equivalence, 17
guarded parameter, 20
guarded relation, 7
guarded second-order logic, 7
guarded set, 330
guarded tuple, 7

H-class, 67
handle of a structure, 736
Hausdorff rank of a linear order, 291
height of a forest, 463
height of a partial order, 961
height of a split, 75
height of an order-tree, 610
height-n tree-width, 532
Heisenberg group, 914, 917
higher-order automatic structure, 849
higher-order pushdown automaton, 757
higher-order pushdown graph, 758
HNN-extension, 790
holographic relation of a tree, 640
homogeneous factorisations, 866
homogeneous subset, 315
homomorphism between games, 186
homomorphism of ω-semigroups, 121
Horn formula, 153
Horn satisfiability, 153
HR-equational, 737
HRk-term, 736
hyperedge, 461
hypergraph, 461
hypertree, 465

idempotent element, 64
idempotent vertex in a Simon tree, 75
immersion of games, 186

incidence relation, 13, 461
incidence representation of a

hypergraph, 462
incidence structure, 13
increasing path, 808
indegree of a choice function, 483
independence property, 649
index of a subgroup, 915
index tree of a tree-decomposition, 531
inducing a distribution, 514
infinite direct sum, 850
injective presentation, 859
inner component, 701
inner path, 701
integral domain, 948
internal hyperedge, 463
internally connected

tree-decomposition, 693
interpretation, 31
interval, 284
introducing an element in a

tree-decomposition, 693
introduction order of a

tree-decomposition, 693
isolated branch, 248
isolated point, 245
isomorphism of ends, 786

J-class, 67

L-class, 67
labelled tree, 194
language, 62
latest appearance record, 132
lattice closed logic, 17
lattice (inRd ), 930
Läuchli-Leonard operation, 313
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leaf of a non-standard tree, 639
leaf of a pseudo-tree, 466
leaf of an order-tree, 610
leaf-based interpretation, 631
least solution of a system of equations,

320
left-containing a minor-embedding, 572
left-guarded split, 76
length of a linear order, 291
length of a word, 62
length-lexicographic order, 408
length-lexicographic ordering, 835
letter, 62
lexicographic ordering, 295, 835
Lifsches-Shelah derivative, 248
Lifsches-Shelah rank, 248, 296
linear order, 61
linear temporal logic, 99, 441
linkage, 562
little choice below a vertex, 520
local colouring induced by a

tree-decomposition, 696
local satisfaction, 362
local tree-decomposition, 697
locally consistent colour trace, 616
locally finite, 949
logic, 4
Löwenheim-Skolem theorem, 239
LTL-transduction, 102

many-dimensional interpretation, 54
meet-embedding between trees, 595
meet-irreducible element, 639
meet-reducible element, 639
memory-free strategy, 146
minimal prefix of a branch, 524
minimal separator, 780

minor, 8
minor of a graph, 543
minor-embedding, 543
modal µ-calculus, 179
modal logic, 155
model, 4
model-checking game for modal logic,

155
model-checking game for the µ-calculus,

181
modest linear order, 330
monadic m-equivalence, 17
monadic expansion of a class, 648
monadic independence property, 649
monadic parameter, 20
monadic second-order logic, 5
monadic second-order logic with

first-order counting, 7
monadic second-order logic with

second-order counting, 259
monoid, 64
move, 145
MSO-colouring, 203
MSO-filtering, 654
MSO-transduction, 654
Muchnik iteration, 228, 635, 718, 849
Muchnik-iteration, 853
multiplicatively independent numbers,

978
mutually dense family, 284

natural product of ordinals, 960
natural sum of ordinals, 960
neighbours, 554
nilpotent group, 922
non-copying transduction, 655
non-standard crossing-width, 639
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non-standard partition decomposition,
639

non-standard tree, 537
nondeterministic automaton, 86, 130,

207
norm, 927
normal path, 808
normal spanning tree, 544
normalised game, 188
number of ends, 786

ω-automatic presentation, 837
ω-automatic structure, 837
ω-power, 850
ω-tree automatic presentation, 837
ω-tree automatic structure, 837
opposite of an ordering, 284
order, 61
order of a separation, 547
order topology, 333
order-preserving⊕-term, 616
order-tree, 194
order-trees of ordinal height, 610
ordered product, 53, 283
ordered sum, 35, 283
ordered tree sum, 264
ordering, 61
ordinal, 61
origin map, 655
out-degree, 797
outcome, 145

p-adic norm, 928
p-adic rationals, 836
p-divisible group, 925
p-norm, 927
pairing rank, 648

parameter, 20
parity condition, 130, 160
parity game, 160
partial order, 61
partial ordering, 61
partial play, 145
partition decomposition, 610
φ-path, 802
path above, 808
path in a hypergraph, 462
path-decomposition, 532
path-interpretation, 739
path-width, 532
perfect subset, 245
period set, 167
petal of a tree-decomposition, 554
piecewise polynomial, 986
play, 145
player, 145
poly-growth automatic structure, 970
polynomial growth, 970
polynomial growth for a group, 922
position, 145
positional determinacy, 147
positional game, 145
positional strategy, 146
positive polynomial, 993
ω-power, 121, 850
power of a structure, 53
power-set structure, 11
predecessor, 193
predecessor ordering, 480
prefix, 63
prefix ordering, 193, 835
prefix-closed, 193
prefix-invariant, 166
prefix-recognisable, 725
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Presburger arithmetic, 64, 979
Presburger structure, 977
Presburger-definable set, 977
prime branching point, 521
prime prefix of a branch, 525
principal cut, 372
principle point of attachment, 473
priority function, 130, 160, 207
product game, 165
profile of a path-decomposition, 701
progression, 926
proper progression, 926
pseudo-grid, 562
pseudo-tree, 466
pumping argument, 91
push-out of groups, 790
pushdown automaton of level n, 757
pushdown automaton with

ε-transitions, 751
pushdown automaton with equality

checks, 764
pushdown graph, 755
ε-pushdown graph, 751
ε-pushdown graph of level n, 758

quantifier rank, 16
quantifier rank of an interpretation, 31
quantifier structure, 46
quotient structure, 40

R-class, 67
Rado graph, 899
Ramsey factorisation, 123
Ramsey quantifier, 887
Ramseyan split, 76
random graph, 899
rank for reachability games, 149

rank of a hypergraph, 462
rank of a lattice, 930
rank of a progression, 926
rank of a set of edges, 578
ray of a star, 465
reachability game, 147
reachable elements, 901
realising a cut, 372
recognising a language by an automaton,

86, 130, 208, 212
recognising by a semigroup, 87
recognising by an ω-semigroup, 121
reduced game, 229
reduced tree-decomposition, 692
refinement of a tree-decomposition, 697
regular game, 159
regular J-class, 71
regular linear order, 314
regular path-interpretation, 739
regular relation, 834
regular tree, 226
regular tree language, 222
regular winning condition, 167
replete set, 327
respecting the crossing equivalence, 603
restricted pushdown automaton, 752
restricted pushdown graph, 755
reversible Turing machine, 855
right-guarded split, 75
root of a factor, 697
root of a pseudo-tree, 466
row of a pseudo-grid, 562
run, 86, 130, 207, 211
run of a transducer, 116

satisfaction reation, 4
satisfaction relation, 6
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scattered linear order, 284
second-order counting, 259
second-order parameter, 20
semigroup, 64
ω-semigroup, 120
semilinear set, 978
separable linear order, 327
separation of a graph, 547
separator, 780
set of neighbours, 554
shifting a path, 809
short linear order, 327
shuffle of linear orders, 313
signature, 4
Simon tree, 75
simple semilinear set, 978
simultaneous game, 145
skeleton of a code, 353
skeleton of a tree, 248
Skolem arithmetic, 64, 851, 899
solution of a system of equations, 320
sort, 4
spanning H-forest, 474
spanning tree, 544
sparse distribution, 498
k-sparse hypergraph, 481
spine of a path, 808
split, 75
split of a tuple, 618
splitting a group, 790
splitting at vertices, 618
stack operations, 757
stack-aware stack operation, 769
standard temporal formula, 444
star, 465
star-free regular expressions, 97
state, 86, 130, 207

step function, 148
strategy, 146
stratification of a tree, 339
stratum, 353
strong choice, 393
strong uniformisation, 414
structure, 4
Stupp-iteration, 853
subdivision, 482
subhypergraph, 462
submodularity of branch-width, 579
subranch of a tree, 248
subtree, 194
subtree of a generalised tree, 195
successor, 193
successor structure, 207
successor-ordered tree, 194
successor-tree, 194
suffix, 63
sum-decomposition, 905
sunflower, 465
superposition, 907
support of a set of edges, 578
symmetric set inRd , 930
symmetric update specification, 606
syntactic congruence, 87, 129
syntactic semigroup, 96

tame tree, 394
tangle, 587
⊕-term, 615
theory, 16
thin tree, 247
tight linkage, 562
tight tree-decomposition, 780
topological closure, 333
touching sets of vertices, 543
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trace of a run, 212
trace semigroup, 219
transducer, 115
transduction, 653
transduction hierarchy for GSO, 686
transduction with origin information,

653
transition function, 131, 207
transition logic, 207
transition ω-semigroup of an

automaton, 133
transition relation, 86, 130
transition semigroup of an automaton,

88
transition system, 179
transvection, 951
trap, 149
tree, 194
tree automatic presentation, 837
tree automatic structure, 837
tree automaton, 207, 211
tree domain, 193
tree-decomposition, 531
tree-interpretable structure, 716
tree-width, 531
triangle, 779
κ-triangulable graph, 779
triangulation of a cycle, 779
trivial push-out, 790
tropical semiring, 943
two-sided closure of a set, 327
type of a Ramsey factorisation, 124

ubiquitous elements, 701
unary automatic structure, 999
undirected tree, 193
uniform condensation, 370

uniform height, 667
uniform homomorphism, 836
n̄-uniform linear order, 369
uniform theory, 371
uniformisation, 414
unravelling, 742
update specification, 606

value of a⊕-term, 618
varying at a level, 348
vector partition function, 986
vertex, 194, 461
vertex with enough successors, 410
vertex-bounded flow, 498
very tame tree, 434
virtually abelian, 915
virtually free group, 778
virtually nilpotent, 922
VR-equational structure, 736

weak choice, 393
weak monadic second-order logic, 139
weak monadic-second order logic, 7
weak Ramseyan split, 115
weak subhypergraph, 463
weak uniformisation, 414
well-formed⊕-term, 618
well-order, 61
well-ordered tree, 409
well-ordering index, 425
well-quasi-order, 109
well-quasi-ordering, 593
width of a tree-decomposition, 531
Wilke algebra, 127
win, 145
winning a game, 146
winning region, 146
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winning strategy, 146

word, 62

word structure, 62

zero-dimensional linear order, 333
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The Roman and Fraktur alphabets

A a A a N n N n
B b B b O o O o
C c C $ P p P p
D d D d Q q Q q
E e E e R r R r
F f F f S s S s +
G g G g T t T t
H h H h U u U u
I i I i V v V v
J j J j W w W w
K k K k X x X x
L l L l Y y Y y
M m M m Z z Z z

TheGreek alphabet

A α alpha N ν nu
B β beta Ξ ξ xi
Γ γ gamma O o omicron
∆ δ delta Π π pi
E ε epsilon P ρ rho
Z ζ zeta Σ σ sigma
H η eta T τ tau
Θ ϑ theta Υ υ upsilon
I ι iota Φ ϕ phi
K κ kappa X χ chi
Λ λ lambda Ψ ψ psi
M µ mu Ω ω omega
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