
Abstract Algebraic Language Theory

Achim Blumensath

Ab#ra$t
Algebrai$ Language Theory

Achim Blumensath

ab
BRNO 2022

Achim Blumensath
blumens@fi.muni.cz

This document was last updated 2022-12-11.
The latest version can be found at

www.fi.muni.cz/~blumens

Copyright 2022 Achim Blumensath

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license,

visit http://creativecommons.org/licenses/by/4.0/.

Content+

I Monad+ 1
1. An overview . 1
2. Discrete categories . 8
3. Polynomial functors . 21
4. Monads . 33
5. Eilenberg-Moore algebras . 39
6. Lifting monads . 60
7. Bialgebras . 81

II Algebra 93
1. Factorisation systems . 93
2. Subalgebras . 104
3. Reducts . 116
4. Congruences . 119
5. Varieties . 127

III Language+ 135
1. Weights . 135
2. Languages . 145
3. Minimal algebras . 151
4. Syntactic algebras . 160
5. Varieties . 182
6. The profinitary term monad 191
7. Axiomatisations . 213

IV Logi$ 219

abstract algebraic language theory 2022-12-11 — ©achim blumensath v

Contents

1. Abstract logics . 219
2. Compositionality . 227
3. Definable algebras . 233
4. Definable languages . 239

V Tree+ 253
1. Monads and logics for trees and forests 253
2. Finite forests . 263
3. Countable chains . 265
4. Counterexamples . 278
5.MSO-definable algebras . 284
6. First-order logic . 294

VI Temporal Logi$+ 303
1. Temporal logics . 303
2. Bisimulation . 308
3. The logic EF . 314
4. Wreath products . 334
5. Distributive algebras . 348
6. Path algebras . 353

Re$ommended Literature 375
Bibliography 377
Symbol Index 379
Index 383

vi

I. Monad+

1. An Overview

There are many different formalisms to specify formal languages based on
automata, grammars, regular expressions, homomorphisms, logics, and so on.
The central topic of formal language theory is the study of such formalisms.
In particular, we are interested in their expressive power and their algorithmic
properties, i.e., which questions are decidable for them and what the respect-
ive complexity is. Several frameworks exist for answering such questions.
Here we will adopt a very general category-theoretic point of view that cov-
ers many of them. Our focus will be on algebraic and logical approaches
with a special emphasis on languages of infinite trees and their monadic
second-order theories.

Before starting to develop the general theory, let us shortly present some
of the specific examples it is supposed to subsume.We will be rather succinct
and intended mainly as a reminder to readers already familiar with the
material. The reader is encouraged to ignore and/or skip any parts that look
incomprehensible.

Finite Word+

The prototypical example of a formal language theory is that of finite words.
A finite word over a given alphabetΣ is a finite sequence (possibly empty) of ele-
ments of Σ. We denote the set of all finite words by Σ∗. (When not explicitly
mentioned otherwise, we will assume alphabets to be finite.) A (formal) lan-
guage is a set L ⊆ Σ∗ of such words. The main algebraic framework for such
languages is based on monoids (or semigroups). A monoid M = ⟨M, ⋅ , e⟩ is

abstract algebraic language theory 2022-12-11 — ©achim blumensath 1

I. Monads

a structure with universe M, a binary operation ⋅ ∶ M ×M → M, and a
constant e ∈M such that◆ ⋅ is associative: a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c ;◆ e is a neutral element: e ⋅ a = a = a ⋅ e.
Examples include◆ the set {0, 1} with the usual multiplication and the neutral element 1;◆ the natural numbers ⟨N,+, 0⟩ with addition;◆ the natural numbers ⟨N, ⋅ , 1⟩ with multiplication;◆ the set Σ∗ of all finite words with concatenation as the product and the

empty sequence ⟨⟩ as the neutral element.

Themonoid ⟨Σ∗ , ⋅ , ⟨⟩⟩ is also called the free monoid since it has the following
universal property: for every monoid M and every function f ∶ Σ →M, there
exists a unique homomorphism φ ∶ Σ∗ → M that agrees with f on the
elements of Σ.
A homomorphism φ ∶ M → N of monoids is a function φ ∶ M → N

between their universes that preserves products and the neutral element,
that is

φ(a ⋅ b) = φ(a) ⋅ φ(b) and φ(e) = e .
We can use a homomorphism φ ∶ Σ∗ →M from the free monoid to another
(usually finite) monoid M to represent languages of Σ. We say that L ⊆ Σ∗
is recognised by φ if L = φ−1[P], for some P ⊆M.

Examples. (a)The monoid ⟨{0, 1}, max, 0⟩ recognises the language Σ∗aΣ∗
via the morphism mapping a to 1 and every other letter to 0.

(b)The monoid Z/2Z recognises the language of all words with an even
number of letters a via the morphism mapping a to 1 and every other letter
to 0. ⌟

Note that we can encode every language L = φ−1[P] recognised by some
finite monoid M by specifying◆ the multiplication table of M,

2

1. An overview

◆ the neutral element of M,◆ the set P, and◆ the values φ(c), for c ∈ Σ.
This is a finite amount of information. Hence, we can use this encoding for
algorithms that take languages as input.
Of course, not every language can be encoded this way: there are only

countably many encodings but uncountably many languages (if the alphabet
contains at least two letters). So, which languages can be recognised by a
homomorphism in this way? It turns out that these are exactly the well-
known regular languages.

Theorem 1.1. Let L ⊆ Σ∗. The following statements are equivalent.
(1) L is recognised by a finite automaton.
(2) L is the value of a regular expression.
(3) L is denoted by a linear grammar.
(4) L is definable in monadic second-order logic.
(5) L is recognised by a homomorphism to a finite monoid.
(6) The syntactic congruence of L has only finitely many classes.

Let us briefly explain the last item in the above characterisation. The
syntactic congruence ∼L of a language L ⊆ Σ∗ is a binary relation on Σ∗ which
is defined by

u ∼L v iff (xuy ∈ L⇔ xvy ∈ L) , for all x , y ∈ Σ∗ .
It turns out that ∼L forms a congruence on the free monoid ⟨Σ∗ , ⋅ , ⟨⟩⟩
and the quotient homomorphism Σ∗ → Σ∗/∼L recognises L. Hence, if∼L has only finitely many classes, the quotient Σ∗/∼L forms a finite monoid
recognising L

In[nite Word+

An ω-word over an alphabet Σ is an infinite sequence w = (cn)n<ω of letters
cn ∈ Σ, i.e., a function w ∶ ω → Σ. We denote the set of all ω-words by Σω .

3

I. Monads

To adapt the algebraic approach to infinite words, we need a suitable kind
of algebra to replace monoids.This replacement is called an ω-semigroup.An
ω-semigroup S = ⟨S1 , Sω , ⋅ , π⟩ is a two-sorted structure where S1 contains
the finite elements and Sω the infinite ones.These two sets are equipped with
three kinds of multiplication:◆ a finite product ⋅ ∶ S1 × S1 → S1,◆ a mixed product ⋅ ∶ S1 × Sω → Sω , and◆ an infinite product π ∶ (S1)ω → Sω .
All products are assumed to the associative. That is,

a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c ,
a ⋅ (b ⋅ u) = (a ⋅ b) ⋅ u ,

b ⋅ π(a0 , a1 , . . .) = π(b, a0 , a1 , . . .) ,
π(a0 , a1 , a2 , . . .) = π((a0⋯ak0−1), (ak0⋯ak1−1), . . .) ,

for all a, b, c, a0 , a1 , ⋅ ⋅ ⋅ ∈ S1, u ∈ Sω , and 0 < k0 < k1 < ⋅ ⋅ ⋅ < ω. In case
of a finite ω-semigroup, we can replace the infinite product by an ω-power
operation

aω ∶= π(a, a, a, . . .) .
The resulting kind of algebra is called aWilke algebra.Using a straightforward
Ramsey argument one can show that every finiteWilke algebra is associated
with a unique ω-semigroup.

Again, a free ω-semigroup ⟨Σ+ , Σω , ⋅ , π⟩ consists of all words over some
alphabet Σ. The finite elements are the finite, non-empty words w ∈ Σ+, the
infinite ones are the infinite words w ∈ Σω .
A homomorphism φ ∶ S→ T of ω-semigroups consists of a pair of maps

φ1 ∶ S1 → T1 and φω ∶ Sω → Tω that commute with all three products.

Examples. Let Σ = {a, b}.
(a)The language of all wordsw ∈ Σ∞ containing the letter a is recognised

by the morphism φ ∶ Σ∞ → S where

S1 ∶= {0, 1} , Sω ∶= {0, 1} , φ(a) ∶= 1 , φ(b) ∶= 0 ,

4

1. An overview

and the product is just the maximum operation.
(b)The language of all words w ∈ Σ∞ containing infinitely many occur-

rences of the letter a is recognised by the morphism φ ∶ Σ∞ → S where

S1 ∶= {0, 1} , Sω ∶= {0, 1} , φ(a) ∶= 1 , φ(b) ∶= 0 ,
and the product is defined by

c ⋅ d ∶= max{c, d} , π(c0 , c1 , . . .) ∶= lim sup
n<ω cn ,

c ⋅ u ∶= u ,
for c, d , c0 , c1 , ⋅ ⋅ ⋅ ∈ S1 and u ∈ Sω . ⌟

Again we obtain the following equivalent characterisations of the class of
regular languages.

Theorem 1.2. Let L ⊆ Σω . The following statements are equivalent.
(1) L is recognised by a finite automaton.
(2) L is definable in monadic second-order logic.
(3) L is recognised by a homomorphism to a finite ω-semigroup.
(4) The syntactic congruence of L has only finitely many classes.

Finite and In[nite Tree+

Many results about words (finite or infinite) and their languages generalise
to trees.There are two main kinds of trees considered in language theory:
ranked ones and unranked ones. An unranked tree over an alphabet Σ is a
directed tree whose vertices are labelled by letters from Σ. To define ranked
trees we have to equip each symbol a ∈ Σ with an arity ar(a) ∈ ω. A Σ-
labelled directed tree is ranked if the arity of a vertex’ label coincides with
the number of outgoing edges. Both kinds of trees come in finite or infinite
versions. For instance, every term over a signature Γ can be seen as a ranked
tree.

Algebraic descriptions of tree languages turn out to be more complicated
than those for words.The simplest one uses so-called forest algebras to recog-
nise languages of finite trees (and forests). A forest algebra ⟨H,V , ⋅ ,+⟩ is

5

I. Monads

two-sorted:H is the domain for forests and V is the domain for contexts. It
is equipped with three horizontal products and two vertical ones

+ ∶ H ×H → H , ⋅ ∶ V ×H → H ,+ ∶ H ×V → V , ⋅ ∶ V ×V → V ,+ ∶ V ×H → V

satisfying various associativity laws.
A more popular formalism is based on automata. A tree automaton is

device that labels each vertex of the given input tree with a state in a way
that is consistent with the transition relation. For infinite trees, there is an
additional condition for every branch concerning the states appearing on it
infinitely many times.

Weighted Language+

Sometimes it is helpful to view a language not only as a set of words (or
trees, or . . .), but as a function associating with every word some weight.
For instance, instead of just recording whether or not a word is accepted
by a given automaton, one could count how many different ways there are
for the automaton to accepting the word (if the automaton is nondetermin-
istic). Or if it is a more complicated automaton model, one could count
how many operations of a certain kind the automaton uses, or what the
maximal value of some counter is, and so on.This leads to the notion of a
weighted language, which is just a function κ ∶ Σ∗ → Ω, where Ω is some set
of weights. Frequently, one assumes that Ω forms a semiring. In this case the
set of all weighted languages Σ∗ → Ω also forms a semiring, which is usually
denoted Ω⟪Σ∗⟫ and called the semiring of formal power-series over Ω. It is
then customary to write a function κ ∶ Σ∗ → Ω as a formal infinite sum

∑
w∈Σ∗ aww

with coefficients aw ∶= κ(w) ∈ Ω. We will not use this notation, since the
analogy with sums breaks down when considering weighted languages of
other objects than words.

6

1. An overview

Again, we can set up some algebraic machinery to define weighted lan-
guages where homomorphisms into finite monoids are now replaced by
homomorphisms into finite-dimensional Ω-modules.

Data Word+

When considering infinite alphabets one can preserve many nice properties of
the finite-alphabet case if one uses formalisms that cannot check for specific
letters. Instead, we only allow checking whether two letters are equal or, more
generally, whether they satisfy any of a fixed set of predefined relations.Thus,
one works with alphabets with additional structure like ⟨N, =⟩ or ⟨Q, ≤⟩
and one requires that every language is closed under automorphisms of the
alphabet. An example of such a language is the one of all words that contain
some letter at least twice.
Technically this means working with sets ⟨X, α⟩ equipped with a group

action α ∶ G → Aut(X). Such sets are called G-set, where G is the group
in question. Since an action is just a homomorphism α ∶ G→ Aut(X), the
category G-Set of all G-sets is just the comma category (G ↓ Aut). In this
category the rôle of finite sets is played by the orbit-finite ones: sets with only
finitely many orbits under the associated action.

One can now define automata inG-Set as follows. Let Σ be an orbit-finite
G-set serving as the alphabet. For the set of states, we take some G-set Q .
Usually Q = Q0 × Σn consists of a finite part Q0 together with several
registers holding letters of the alphabet. The transition relation then takes
the usual form ∆ ⊆ Q × Σ × Q . Instead of requiring Q and ∆ to be finite,
we now assume that they are orbit-finite. For instance, to check that some
letter appears at least twice, an automaton can non-deterministically guess
some position, store the letter at this position in memory, and then compare
it with each of the remaining letters until there is a match.

Prerequi@te+ and Notation

Unfortunately, in a book like this some prior knowledge of category theory
has to be assumed.While I have tried to keep the prerequisites at aminimum,

7

I. Monads

I assume that the reader has worked through some basic introductory text
covering, in particular, limits and adjunctions. More advanced concepts like
monads, distributive laws, etc. will be introduced below as needed.
Let us fix some basic notation. For n < ω, we set [n] ∶= {0, . . . , n − 1}.

In a partial order, we denote the upwards closure of a set X by ⇑X and its
downwards closure by ⇓X. We denote the comma category for two functors
F and G by (F ↓ G). For a family (A i)i∈I of objects in a category, we
denote the product by∏i∈I A i and the coproduct by∑i∈I A i . The associated
canonical morphisms are

∏
i∈I f i ∶ ∏i∈I A i →∏

i∈I B i , ∑
i∈I f i ∶ ∑i∈I A i →∑

i∈I B i ,

⟨g i⟩i∈I ∶ A→∏
i∈I B i , ⊕

i∈I h i ∶ ∑i∈I A i → B .

Note that the notation for the last one is non-standard. We denote the
terminal object by 1.

2. Dis$rete Categorie+

We start by introducing the kind of category we are working in.The most
important one is of course the category Set of sets. But sometimes it is useful
to equip the sets under consideration with some additional structure. For
instance, when characterising logics that are not closed under negation, it
will be necessary to use ordered sets. Similarly, when dealing with data words,
we need to equip the sets with a group action. We will therefore work more
generally in some a base category D that behaves sufficiently like Set for
the proofs below to go through, but that is general enough to cover all the
cases we are interested in. Let us quickly introduce the main categories we
are interested in before presenting the generalisation we will use.

Definition 2.1. We denote by Set the category of all sets and functions,
and by Pos the category of all partial orders and monotone functions. Top
denotes the category of topological spaces and continuous maps, andMet is

8

2. Discrete categories

the category of bounded metric spaces and non-expansive functions, that is,
metric spaces ⟨X, d⟩ satisfying

d(x , y) ≤ 1 , for all x , y ∈ X ,

and functions f ∶ X → Y satisfying

d(f (x), f (y)) ≤ d(x , y) , for all x , y ∈ X .

Finally, for a group G, we denote by G-Set the category of all G-sets, i.e.,
sets S equipped with an action G × S → S and functions preserving this
action. ⌟
Our base category D will be one of these categories or one similar to

them. One of the things these categories have in common is that there exists
an adjunction J ⊣ V between Set and D ; that is, every object A ∈ D
has an underlying set VA and we can equip every set X ∈ Set with the
’weakest possible‘D-structure JX. For instance, forD = Pos,VA is just the
underlying set of the partial order A, while JB is the set B equipped with
the trivial order =. Similarly forD = Top,Vmaps a topological space to its
underlying set while J equips a set with the discrete topology. Furthermore,
we will assume that the forgetful functor V ∶ D → Set is faithful and that
the objects inD are ‘discrete’ in the sense thatV commutes with coproducts.
That means that the underlying set of a coproduct∑i A i is just the disjoint
union of the setsVA i . Note that this rules out most algebraic categories like
groups, modules, or term algebras.

Faithfulness ofV ensures that every morphism ofD is uniquely determ-
ined by the induced function on the underlying sets. But note that not every
such function needs to correspond to a morphism ofD. (Note very function
is monotone/continuous/etc..) Furthermore,V induces a partial order ⊑ on
the objects ofD by

A ⊑ B iff there exists a morphism f ∶ A→ B withV f = id .
Intuitively, A ⊑ B means that A and B have the same underlying set, but the
additional structure of A is more permissive/general/weaker than that of B.

9

I. Monads

For instance, ifD = Pos, we have
⟨A, ≤⟩ ⊑ ⟨A′ , ≤′⟩ iff A = A′ and ≤ ⊆ ≤′ .

Similarly, forD = Top, we have
⟨X, T ⟩ ⊑ ⟨X′ , T ′⟩ iff X = X′ and T ⊇ T ′ .

Let us formalise these assumptions onD.
Definition 2.2. (a) A category D is disjunctive if, for every morphism φ ∶
A → ∑i∈I B i , there exist unique objects A i and unique morphisms φ i ∶
A i → B i , for i ∈ I, such that

A = ∑
i∈I A i and φ = ∑

i∈I φ i .

Uniqueness here means that, ifA′i and φ′i are other such objects and morph-
isms, there exist isomorphisms σi ∶ A′i → A i such that φ i ○ σ = φ′i , for
all i.
(b) A categoryD is discrete if it is disjunctive, has arbitrary coproducts,

and there exists an adjunction J ⊣ V between Set and D such that V is
faithful and preserves coproducts, ⌟

We will develop our language theory for a base categoryD that is (i) dis-
crete, (ii) has arbitrary colimits, and (iii) all countable limits. In this chapter,
we will still be explicit about these assumptions; in later chapters, they will
be left implicit.

Examples. Let us check that the categories introduced above are discrete.
(a) For Set, we can take V ∶= Id. To show that Set is disjunctive, let

f ∶ C → A + B be a function. Then C = f −1[A] + f −1[B] and f = (f ↾
f −1[A]) + (f ↾ f −1[B]) and this decomposition is clearly unique.
(b) For Pos, we define the adjunction J ⊣ V by

V⟨A, ≤⟩ ∶= A and JA ∶= ⟨A, =⟩ .

10

2. Discrete categories

The unit ε ∶ A → A and the counit ι ∶ ⟨A, =⟩ → ⟨A, ≤⟩ of this adjunction
are given by the identity maps. The proof that Pos is disjunctive is the same
as for Set.
A limit is computed as in Set with the ordering defined component-

wise, while coproducts∑i⟨A i , ≤⟩ are simply disjoint unions. Note that the
forgetful functorV ∶ Pos→ Set does not preserve pushouts: consider the
two bijections f , g ∶ ⟨{a, b}, =⟩ → ⟨{0, 1}, ≤⟩. The pushout of f and g has a
single element, while the one ofV f andVg has two. To compute an arbitrary
colimit in Pos one first forms the corresponding colimit in Set. In general,
this results in a preorder. To obtain the colimit in Pos we have to take the
quotient of this preorder by the associated equivalence relation.

(c) For Top, we define the adjunction J ⊣ V by

V⟨X, C⟩ ∶= X and JX ∶= ⟨X,℘(X)⟩ .
The unit ε ∶ X → X and the counit ι ∶ ⟨X,℘(X)⟩ → ⟨X, C⟩ of this
adjunction are given by the identity maps. The proof that Top is disjunctive
is the same as for Set.
Note that the functorV also has a right adjoint: the functorR ∶ Set→

Topmapping each set X to the space RX ∶= ⟨X, {∅,X}⟩ with the trivial
topology.

A limit limD ⊆ ∏i D(i) is computed as inSetwith the topology induced
by the product topology on∏i D(i), and coproducts∑i⟨X i , Ci⟩ are disjoint
unions.

(d) For G-Set, we define the adjunction J ⊣ V by

V⟨X, α⟩ ∶= X and JX ∶= ⟨G × X, γ⟩ ,
where

γ(h)(⟨g, x⟩) ∶= ⟨hg, x⟩ , for g, h ∈ G and x ∈ X .

The corresponding bijection maps f ∶ X → Y in Set to

⟨G × X, γ⟩ → ⟨Y , α⟩ ∶ ⟨g, x⟩ ↦ α(g)(f (x))

11

I. Monads

in G-Set. The unit ε ∶ X → G × X and the counit ι ∶ ⟨G × X, γ⟩ → ⟨X, α⟩
of this adjunction are given by

ε(x) ∶= ⟨e , x⟩ and ι(g, x) ∶= α(g)(x) .
Limits are again computed as inSetwith an action that is defined compon-

ent-wise. Coproducts∑i⟨X i , α i⟩ are disjoint unions and the proof of dis-
junctiveness is again similar to that of Set.

(e) ForMet, we define the adjunction J ⊣ V by

V⟨X, d⟩ ∶= X and JX ∶= ⟨X, d1⟩ ,
where d1 is the discrete metric

d1(x , y) ∶= ⎧⎪⎪⎨⎪⎪⎩
0 if x = y ,
1 if x ≠ y .

The unit ε ∶ X → X and the counit ι ∶ ⟨X, d1⟩ → ⟨X, d⟩ are given by the
identity maps.
A limit of metric spaces is computed as in Set where the metric is given

by

d(a, b) ∶= sup
i
d(p i(a), p i(b)) ,

where p i are the projections.The coproduct∑i⟨X i , d i⟩ is the disjoint union
with elements from different components at distance 1 from each other. The
proof of disjunctiveness is again similar to that of Set. ⌟

For reference, let us collect a few useful standard facts about adjunctions.

Lemma 2.3. Let J ⊣ V be an adjunction between Set and D where V is
faithful, and let ε ∶ Id ⇒ VJ and ι ∶ JV ⇒ Id be the unit and counit of the
adjunction.
(a) The adjunction J ⊣ V maps

f ∶ A→ VB to ι ○ J f ∶ JA→ B ,

g ∶ JA→ B to Vg ○ ε ∶ A→ VB .

12

2. Discrete categories

(b) Vι ○ ε = id and ι ○ Jε = id.
(c) f ∶ A→ B is a monomorphism if, and only if,V f ∶ VA→ VB is injective.
(d) If V f ∶ VA→ VB is surjective, then f ∶ A→ B is an epimorphism.
(e) All morphisms of the counit ι ∶ JV⇒ Id are surjective.

Proof. (a) follows by naturality of the bijectionD(JX,A) ≅ Set(X,VA).
(b) By definition, ι ∶ JVA → A is the image of id ∶ VA → V under the

adjunction. Hence, we must obtain id when mapping ι back. By (a), this
backwards translation is equal toVι ○ ε. The second equation follows in the
same way.
(c) (⇐) Suppose thatV f is injective and consider two morphisms g, h ∶

C → Awith f ○ g = f ○ h. ThenV f ○Vg = V f ○Vh and injectivity ofV f
implies thatVg = Vh. AsV is faithful, it follows that g = h.(⇒) Suppose that V f is not injective. Then there exist two functions
s, t ∶ 1 → VA with s ≠ t but V f ○ s = V f ○ t. Let ε ∶ Id ⇒ VJ and
ι ∶ JV⇒ Id be the unit and counit of the adjunction, respectively, and let
ŝ ∶= ι ○ Js and t̂ ∶= ι ○ Jt be the morphisms J1→ A corresponding to s and t
under the adjunction. Then the morphism corresponding to f ○ ŝ under the
adjunction is

V(f ○ ŝ) ○ ε = V f ○Vι ○VJs ○ ε = V f ○Vι ○ ε ○ s = V f ○ s ,
and similarly for f ○ t̂. Consequently,

V f ○ s = V f ○ t implies f ○ ŝ = f ○ t̂ .
But s ≠ t implies ŝ ≠ t̂. Thus, f is not a monomorphism.
(d) Suppose that the functionV f is surjective and consider two morph-

isms g, h ∶ B → C with g ○ f = h ○ f . Then Vg ○ V f = Vh ○ V f and
surjectivity of V f implies that Vg = Vh. As V is faithful, it follows that
g = h.
(e) By (b),Vι has a right inverse.

Example. The converse of (e) does not hold. Let D be the category of all
Hausdorff spaces. Then D is discrete. We claim that a continuous map

13

I. Monads

e ∶ X → Y is an epimorphism if, and only if, rng e is dense inY. In particular,
there exists non-surjective epimorphisms.
Let us prove the interesting direction. Suppose that rng e is dense in Y

and consider two different continuousmaps g, h ∶ Y→ Z. AsY is Hausdorff,
the equaliser

E ∶= { y ∈ Y ∣ g(y) = h(y) }
is closed in Y. HenceU ∶= Y ∖ E is open and non-empty. This implies that
U ∩ rng e ≠ ∅. Consequently, g ○ e ≠ h ○ e and e is not an epimorphism. ⌟
Exercise 2.1. Prove that, in a discrete category D, JX = ∑x∈X J1 and
VJX = X ×VJ1, for every X ∈ Set. ⌟
Sort+

Discrete categories will be our generalisation of sets. But actually, we will
frequently not work with ordinary sets, but with sorted ones. That is, we
fix a set Ξ of sorts and we consider sets where each element has some sort
ξ ∈ Ξ. Such a set can be formalised either (i) as a family A = (Aξ)ξ∈Ξ of
sets where Aξ contains all the elements of sort ξ ; or (ii) as a set A together
with a function σ ∶ A → Ξ that maps each element of A to its sort. Both
definitions are equivalent. We will adopt the first one as it is usually simpler
to work with.

The reason for using several sorts is that, for certain kinds of languagesK,
we need different sorts of elements to build up the objects inK. For instance,
for languages of infinite words, we need to distinguish between finite and
infinite word. Similarly, for languages of trees, we need both ordinary trees
and trees with one or several holes. Sorts help us to keep these types of
elements apart. In our setting, we will therefore be working in the categoryDΞ whose objects are familiesA = (Aξ)ξ∈Ξ where eachAξ is an object ofD.
Amorphism f ∶ A→ B between such families is then just a family f = (fξ)ξ
of morphisms fξ ∶ Aξ → Bξ . Similarly, a functor F ∶ C → DΞ is given by
a family F = (Fξ)ξ of functors Fξ ∶ C → D. For a property P, we say that

14

2. Discrete categories

A ∈ DΞ is sort-wise P if each set Aξ has property P. In particular, sort-wise
finitemeans that every Aξ is finite.
From this point on, we will use the terms ‘set’ and ‘function’ as a short-

hand for ‘object ofD’ and ‘morphism ofD’, or their many-sorted counterparts
inDΞ . If we mean any other kind of set or function, we will mention this
explicitly. Furthermore, to keep notation simple, we will frequently not
distinguish between an object A ∈ D and its underlying setVA.
As mentioned above, we can identify a sorted object A = (Aξ)ξ∈Ξ ∈ DΞ

with its coproduct A = ∑ξ∈Ξ Aξ . Using this point of view, a morphism
f ∶ A→ B corresponds to a sort-preserving morphism between the corres-
ponding coproducts. Let us prove that these two points of view are equi-
valent for the categories we are interested in. Formally, we have to show
thatDΞ is equivalent to the arrow category (D ↓ Ξ ⋅ 1), where we have set
X ⋅A ∶= ∑x∈X A, for X ∈ Set and A ∈ D.
Proposition 2.4. LetD be a discrete category. Then

DΞ ≅ (D ↓ Ξ ⋅ 1) , for every set Ξ .

Proof. Wedefine a functorF ∶ DΞ → (D ↓ Ξ ⋅1) as follows. Given an object(Aξ)ξ∈Ξ ∈ DΞ , we set

F(Aξ)ξ ∶= ∑
ξ∈Ξ αξ ∶ ∑

ξ∈ΞAξ → Ξ ⋅ 1 ,
where αξ ∶ Aξ → 1 is the unique morphism into the terminal object. For a
morphism (fξ)ξ ∶ (Aξ)ξ → (Bξ)ξ , we set

F(fξ)ξ ∶= ∑
ξ
fξ ∶ ∑

ξ
Aξ →∑

ξ
Bξ .

As 1 is terminal, we have βξ ○ fξ = αξ (where αξ and βξ are the components
of, respectively, F(Aξ)ξ and F(Bξ)ξ), and it follows that

F(Bξ)ξ ○ F(fξ)ξ = ∑
ξ
(βξ ○ fξ) = ∑

ξ
αξ = F(Aξ)ξ .

15

I. Monads

Note that F is faithful since F(fξ)ξ = F(gξ)ξ implies that, for every
ζ ∈ Ξ,

fζ = (∑
ξ
fξ) ○ iζ = F(fξ)ξ ○ iζ = F(gξ)ξ ○ iζ = (∑

ξ
gξ) ○ iζ = gζ ,

where iζ ∶ Aζ → ∑ξ Aξ is the corresponding inclusion morphism.
To see that F is full, consider a morphism f ∶ α → β where α ∶= F(Aξ)ξ

and β ∶= F(Bξ)ξ . AsD is disjunctive, it follows that f = ∑ξ fξ for (unique)
fξ ∶ Aξ → Bξ . Hence, f = F(fξ)ξ .
It remains to show that every object α ∶ A → Ξ ⋅ 1 of (D ↓ Ξ ⋅ 1) is

isomorphic to one of the form F(Aξ)ξ . Hence, fix α ∶ A→ Ξ ⋅ 1. AsD is
disjunctive, we have A = ∑ξ Aξ and α = ∑ξ αξ , for suitable Aξ and αξ ∶
Aξ → 1. It follows that α = ∑ξ αξ = F(Aξ)ξ .

Let us introduce the following operations to work with families inDΞ .We
will only be using them in a few places where the notation would otherwise
become unmanageable.

Definition 2.5. Let C be a category and f ∶ I → K a function in Set. We
define functors ◻ f ∶ CK → C I and Σ f , Π f ∶ C I → CK by

◻ f (Ak)k∈K ∶= (A f (i))i∈I ,
Σ f (A i)i∈I ∶= (∑i∈ f−1(k)A i)k∈K ,

Π f (A i)i∈I ∶= (∏i∈ f−1(k)A i)k∈K ,

and similarly for morphisms. ⌟
We can also formulate these operations in the comma category (C ↓ Ξ ⋅1).

Exercise 2.2. Using the correspondence in Proposition 2.4, the functor ◻ f
induces a functor (C ↓ K ⋅ 1) → (C ↓ I ⋅ 1). Prove that this functor maps a
morphism α ∶ C → JK to its pullback along J f ∶ JI → JK. ⌟
The relationship between the three functors is given via the following

adjunctions.

16

2. Discrete categories

Proposition 2.6. Let C be a category with products and coproducts of size ∣I∣
and let f ∶ I → K be a function in Set.

Σ f ⊣ ◻ f ⊣ Π f .

Proof. For the first adjunction, consider a morphism φ ∶ Σ fA→ B.Wemap
it to the morphism ψ ∶ A→ ◻ f B with components

ψ i ∶= φ ○ j i , for i ∈ I .
where j i ∶ A i → ∑ j∈ f−1(f (i))A j is the inclusion morphism. Conversely, we
map ψ ∶ A→ ◻ f B to the morphism φ ∶ Σ fA→ B defined by

φk ∶= ⊕
i∈ f−1(k)ψ i , for k ∈ K .

It is straightforward to check that these transformations are natural. Fur-
thermore, they are inverses of each other since

⊕
i∈ f−1(k)(φ ○ j i) = φk ○ ⊕

i∈ f−1(k) j i = φk ,

(⊕
i∈ f−1(k)ψ i) ○ j i = ψ i .

For the second adjunction, consider a morphism φ ∶ ◻ fA→ B. We map
it to the morphism ψ ∶ A→ Π f B with components

ψk ∶= ⟨φ i⟩i∈ f−1(k) , for k ∈ K .

Conversely, we map ψ ∶ A→ Π f B to the morphism φ ∶ ◻ fA→ B defined
by

φ i ∶= p i ○ ψ f (i) , for i ∈ I .
where p i ∶ ∏ j∈ f−1(f (i)) B j → B i is the projection. It is again straightfor-
ward to check that these transformations are natural. Furthermore, they are
inverses of each other since

p i ○ ⟨φ j⟩ j∈ f−1(f (i)) = φ i ,⟨p i ○ ψ⟩i∈ f−1(k) = ⟨p i⟩i∈ f−1(k) ○ ψ = ψk .

17

I. Monads

Let us also mention the following commutation relation between them.

Exercise 2.3. Let f ∶ I → K and g ∶ J → K be functions and u ∶ L → I and
v ∶ L → J their pullbacks. Prove that

◻ f Σg ≅ Σu ◻v and ◻ f Πg ≅ Πu ◻v . ⌟
Finally, we can rephrase the definition of a disjunctive category in terms

of the functor Σ f as follows.

Lemma 2.7. A category D is disjunctive if, and only if, for every function
f ∶ I → J in Set, the following two conditions hold.
(i) For every morphism φ ∶ A → Σ f B in D J , there exist A∗ ∈ DI and

φ∗ ∶ A∗ → B such that

A = Σ fA∗ and φ = Σ f φ∗ .
(ii) Σ fA = Σ f B and Σ f φ = Σ f ψ implies A = B and φ = ψ .

The Power Operator

Having fixed a base categoryD and a set Ξ of sorts, we also need to choose
a notion of an ‘A-labelled object with domain X’, for a set X ∈ Set and an
object A ∈ D. This can be captured by the concept of a power operator,
which we introduce next. Many categoriesD have the property that, given
an object A ∈ D and a set X, we can equip the set of all functions X → VA
with the structure of anD-object. For instance, if A is a partial order, then
so is AX by setting

f ≤ g : iff f (x) ≤ g(x) , for all x .

Similarly, if A is a topological space, we can equip AX with the product
topology. Or, if A is an abelian group, we can define an addition on AX by
setting

(f + g)(x) ∶= f (x) + g(x) .

18

2. Discrete categories

It turns out that in the categories we are interested in, we can identify
the set of functions X → VAwith a product∏x∈X A. Let us introduce the
corresponding notation.

Definition 2.8. LetD be a category.
(a) For A ∈ D and X ∈ Set, we define the power operator

AX ∶= ∏
x∈XA ∈ D .

Similarly, for A ∈ DΞ and X ∈ SetΞ , we set
AX ∶= ∏

ξ∈ΞA
X ξ
ξ ∈ D .

(b) We extend this operation to a functor as follows. For f ∶ A→ B and
g ∶ X → Y, we define

f X ∶= ∏
x∈X f ∶ AX → BX and Ag ∶= ⟨pg(x)⟩x∈X ∶ AY → AX ,

where py ∶ ∏y∈Y A→ A is the projection to the y-th component. ⌟
Let us collect a few properties of this operation. We start by showing that

the functor B(−) is left adjoint to the hom-functorD(−, B).
Lemma 2.9. Let D be a category with products of size less than κ and let
Setκ ⊆ Set be the full subcategory of all sets of size less than κ. Then

D(A, BX) ≅ Setκ(X,D(A, B)) , for A, B ∈ D and ∣X∣ < κ ,
and this isomorphism in natural in A, B, and X. In particular, the functor
B(−) ∶ Setopκ → D is a right adjoint to the hom-functorD(−, B) ∶ D → Setopκ .

Proof. Wemap a function f ∶ X → D(A, B) to the morphism

φ(f) ∶= ⟨ f (x)⟩x∈X ∶ A→ BX ,

19

I. Monads

and, conversely, we map g ∶ A→ BX to the function ψ(g) ∶ X → D(A, B)
given by

ψ(g)(x) ∶= px ○ g ,
where px ∶ ∏z∈X B → B is the projection to the x-th component. Then

φ(ψ(g)) = ⟨px ○ g⟩x = g ,
ψ(φ(f))(x) = px ○ ⟨ f (z)⟩z = f (x) .

Hence, φ and ψ are inverses of each other. It therefore remains to prove
naturality of φ. For h ∶ Y → X, we have

(D(A, Bh) ○ φ)(f) = ⟨ph(y)⟩y∈Y ○ φ(f)
= ⟨ph(y)⟩y∈Y ○ ⟨ f (x)⟩x∈X= ⟨ f (h(y))⟩y∈Y= φ(f ○ h)
= (Setopκ (D(A, B), h) ○ φ)(f) .

For h ∶ C → A, we have

(D(h, BX) ○ φ)(f) = D(h, BX) ○ φ(f)
= D(h, BX) ○ ⟨ f (x)⟩x∈X= ⟨ f (x) ○ h⟩x∈X= φ(D(h, B)(f))
= (Setopκ (D(h, B),X) ○ φ)(f) .

For h ∶ B → C, we have

(D(A, hX) ○ φ)(f) = D(A, hX) ○ φ(f)
= D(A, hX) ○ ⟨ f (x)⟩x∈X= ⟨h ○ f (x)⟩x∈X= φ(D(A, h)(f))
= (Setopκ (D(A, h),X) ○ φ)(f) .

20

3. Polynomial functors

The following consequences of the category D being discrete simplify
working with power operators.

Lemma 2.10. Let J ⊣ V be an adjunction between Set andD and let ∗ ∶= J1
where 1 is an 1-element set.
(a) V ≅ D(∗,−) .
(b) V(AX) ≅ Set(X,VA) .
Proof. (a) For A ∈ D, we have
D(∗,A) = D(J1,A) ≅ Set(1,VA) ≅ VA .

(b) Consider X ∈ Set and A ∈ D such that AX is defined. Setting κ ∶=∣X∣+, it follows by (a) and Lemma 2.9 that

V(AX) ≅ D(∗,AX) ≅ Setκ(X,D(∗,A))≅ Setκ(X,VA) = Set(X,VA) .
3. Polynomial Fun$tor+

In formal language theory one studies sets of labelled objects like words,
trees, traces, pictures, (hyper-)graphs, and so on. To capture all these various
settings we start by introducing an operationMmapping a given set A of
labels to the setMA of all A-labelled objects. A language in this context is
then simply a subset K ⊆MA. For instance, for languages of finite words
we can useMA ∶= A+. Similarly, for languages of infinite words we use two
sorts Ξ = {1,ω} where sort 1 represents the ‘finite’ elements and sort ω the
‘infinite’ ones. The operationM then maps a Ξ-sorted set A = ⟨A1 ,Aω⟩ to
MA = ⟨M1A,MωA⟩ where

M1A ∶= A+1 and MωA ∶= A+1Aω ∪Aω
1 .

(So a finite word is a finite sequence of finite elements, while an infinite word
can either be a finite sequence of finite elements followed by a single infinite
one, or an infinite sequence of finite elements.)

21

I. Monads

Furthermore, every function f ∶ A → B induces an operation M f ∶
MA→MB which applies the function f to each label. This turnsM into a
functor. In this section, we introduce the kind of functorsM ∶ DΞ → DΞ

that can be interpreted as producing sets of labelled objects. The definition
is based on the power operators (−)X we have introduced above. Note that
we can interpret the elements in AX as labellings of X positions by elements
of A.

Definition 3.1. LetD be a category and let Ξ be a set of sorts.
(a) A functor F ∶ DΞ → DΞ is polynomial if it is of the form

FX = (FξX)ξ∈Ξ where FξX ∶= ∑
i∈I ξ

XD i
ξ ,

for fixed sets Iξ ∈ Set and D i
ξ ∈ SetΞ .

(b)The arity of a polynomial functor F is the least infinite cardinal κ such
that ∣D i

ξ ∣ < κ, for all ξ ∈ Ξ and i ∈ Iξ . ⌟
Example. (a)The word functor FX ∶= X+ is a polynomial functor on Pos
since we can write

FX = ∑
n<ωX

n+1 .
The ordering is defined componentwise:

u ≤ v iff ∣u∣ = ∣v∣ and u(i) ≤ v(i) for all i .
(b) Similarly, the functor for ω-words

F⟨X,Y⟩ ∶= ⟨X+ , X∗Y + Xω⟩
is a polynomial functor on Pos2. ⌟
Our first aim is to show that we can indeed interpret FA as a set of A-

labelled objects of some sort. First, note that we can recover the index set I
from a polynomial functor F ∶ DΞ → DΞ with

FξX = ∑
i∈I ξ

XD i
ξ , for ξ ∈ Ξ ,

22

3. Polynomial functors

as follows. Let 1 be the terminal object ofDΞ . Since right adjoints preserve
limits, its image V1 = 1 is terminal in SetΞ . If D is discrete, it follows by
Lemma 2.10 (b) that

VFξ1 = ∑
i∈I ξ

V(1D i
ξ)

≅ ∑
i∈I ξ

SetΞ(D i
ξ ,V1)

≅ ∑
i∈I ξ

SetΞ(D i
ξ , 1) = ∑

i∈I ξ
1 ≅ Iξ .

For i ∈ I, we use the notation dom(i) ∶= D i
ξ . Thus, we can write

FξX = ∑
i∈I ξ

Xdom(i) .

Furthermore, identifying a set S of elements of a given sort ξ ∈ Ξ with the
family (Sξ)ξ ∈ SetΞ where Sξ ∶= S and Sζ ∶= ∅, for ζ ≠ ξ, we can also write

FX = ∑
ξ∈Ξ∑i∈I ξ X

dom(i) = ∑
i∈I X

dom(i) where I ∶= (Iξ)ξ .
IfD is discrete, it follows by Lemma 2.10 (b) that

VFξA = ∑
i∈I ξ

V(Adom(i)) ≅ ∑
i∈I ξ

SetΞ(dom(i),VA) .
Therefore, we can regard elements of FξA as functions s ∶ dom(i) → VA
(or, more precisely, as pairs ⟨i , s⟩, but we usually omit the index i). We write
dom(s) ∶= dom(i) in this case. Thus, the elements of FA are functions
s ∶ dom(s) → A, i.e., A-labelled objects.
Similarly, for a function f ∶ A→ B and an element s ∈ VFA, we obtain
VF f (s) = V(f dom(s))(s) = Set(dom(s),V f)(s) = V f ○ s .

Hence, F f acts on FA as a relabelling s ↦ f ○ s.
These remarks justify our intuition of FA as a set of labelled objects. Let

us summarise them in the following result.

23

I. Monads

Lemma 3.2. Let D be a discrete category. For every polynomial functor F ∶DΞ → DΞ there exists a polynomial functor F○ ∶ SetΞ → SetΞ such that

F○ ○V = V ○ F .

Proof. Suppose that

FX = ∑
s∈I X

dom(s) .

If we use the same expression

F○X = ∑
s∈I X

dom(s)

in the category SetΞ , we obtain

VFX = V∑
s∈I X

dom(s)

= ∑
s∈I V(Xdom(s)) = ∑

s∈I(VX)dom(s) = F○VX ,

where the second step follows from the assumption thatV commutes with
coproducts and the third one from the fact that right adjoints preserve
limits.

There exists a more elegant and concise way to describe polynomial func-
tors.We can encodeF = ∑s∈I(−)dom(s) by the function f ∶ ∑s∈I dom(s) →
I mapping each v ∈ dom(s) to s. But note that this function f does not
preserve sorts.Therefore, to fully specify Fwe need two additional functions
α ∶ ∑s∈I dom(s) → Ξ and β ∶ I → Ξ telling us which sorts the elements of
the respective sets have. Conversely, given three functions

Ξ α←Ð D
fÐ→ I

βÐ→ Ξ

24

3. Polynomial functors

in Set, we can define the polynomial functor F = ∑s∈I(−)Ds where Ds ∶=
f −1(s) and we regard I and Ds as sorted sets via α and β. A straightfor-
ward direct calculation shows that, using the functors ◻ f , Σ f , and Π f from
Proposition 2.6, we can write F as the composition

F = Σβ ○ Π f ○ ◻α .

We will mostly not use this formalism, since the more concrete description
of F as coproduct of powers leads to more elementary proofs.

Lemma 3.3. Every polynomial functor preserves monomorphisms, injective
morphisms, and surjective morphisms.

Proof. Let FX = ∑i∈I XD i be a polynomial functor and f ∶ A → B a
morphism. First, suppose that f ∶ A→ B is injective. To show that so is F f ,
consider two elements ⟨i , s⟩, ⟨ j, t⟩ ∈ FAwith

F f (⟨i , s⟩) = F f (⟨ j, t⟩) .
This implies that i = j and f (s(v)) = f (t(v)), for all v ∈ dom(s). Since
f is injective, it follows that s(v) = t(v), for all v. Hence, s = t.
Next, suppose that f ∶ A → B is surjective. To show that so is F f , let⟨i , t⟩ ∈ FB. As f is surjective,V f has a right inverse g ∶ VB → VA. Setting

s ∶= g ○ t, it follows that
F f (⟨i , s⟩) = ⟨i , f ○ s⟩ = ⟨i , f ○ g ○ t⟩ = ⟨i , t⟩ .

Finally, preservation of monomorphisms follows from what we have
already proved since a morphism is a monomorphisms if, and only if, it
is injective.

Remark. Every functor F ∶ Set → Set preserves epimorphisms since epi-
morphisms in Set have right inverses. ⌟

Let us take a quick lock at how the composition of two polynomial functors
looks like with this notation.

25

I. Monads

Lemma 3.4. If F = ∑i∈I (−)dom(i) and G = ∑k∈K (−)dom(k) are polyno-
mial functors so is F ○G and

FGX = ∑
i∈I ∑

g∶dom(i)→K
X∑v∈dom(i) dom(g(v)) .

Proof. We have

FGX = ∑
i∈I ∏

v∈dom(i)GX

= ∑
i∈I ∏

v∈dom(i)∑t∈K ∏
w∈dom(t)X= ∑

i∈I ∑
g∶dom(i)→K

∏
v∈dom(i) ∏

w∈dom(g(v))X
= ∑

i∈I ∑
g∶dom(i)→K

X∑v∈dom(i) dom(g(v)) .

Remark. We obtain the following concrete descriptions of the elements of
FGX. The index set is

{ ⟨i , g⟩ ∣ i ∈ I , g ∈ Kdom(i) } ,
and the domains are

dom(⟨i , g⟩) = ∑
v∈dom(i)dom(g(v))
= { ⟨v , u⟩ ∣ v ∈ dom(i) , u ∈ dom(g(v)) } . ⌟

Next, we turn to the study of natural transformations between polynomial
functors.

Definition 3.5. A morphism of polynomial functors is a natural transforma-
tion α ∶ F⇒ G. For a category C, we denote the category of all polynomial
functors C → C and their morphisms by Poly(C). ⌟

We would like to obtain a more concrete description of such morphisms.
To do so, we compare Poly(C) with the following category.

26

3. Polynomial functors

Definition 3.6. For a category C, we denote by Π(C) the category whose
objects are families (A i)i∈I of objects A i ∈ C (for varying I). A morphism(A i)i∈I → (B j) j∈ J is a pair ⟨ f , (φ j) j∈ J⟩ consisting of a function f ∶ J → I
and a family of morphisms φ j ∶ A f (j) → B j , for j ∈ J. The composition of
two such morphisms is defined by

⟨g, (ψ j) j⟩ ○ ⟨ f , (φ i)i⟩ = ⟨g ○ f , (φ i ○ ψ f (i))i⟩ . ⌟
There are obvious maps between Π(Set) and Poly(C) that associate a

family (A i)i∈I of sets with the functor∑i∈I XA i and vice versa. Let us show
that this correspondence also preserves morphisms.

Proposition 3.7. LetD be a discrete category.The above correspondence induces
a functor

I ∶ Π(Set)op → Poly(D)
that is faithful and bijective on objects.

Proof. Let A = (A i)i∈I and B = (B j) j∈ J be objects of Π(Set) and let
FA ∶= IA and FB ∶= IB be the associated polynomial functors. We map a
morphism ⟨ f , (φ i)i⟩ ∶ B → A to the natural transformation τ ∶ FA⇒ FB
defined by

τ(⟨i , s⟩) ∶= ⟨ f (i), s ○ φ i⟩ , for i ∈ I and s ∈ VXA i ≅ Set(A i ,VX) ,
where we have written s ○ φ i instead of the formally correct Xφ i (s). To see
that τ is natural, consider a function g ∶ X → Y. For ⟨i , s⟩ ∈ FAX, it follows
that

(τ ○ FAg)(⟨i , s⟩) = τ(⟨i , g ○ s⟩)
= ⟨ f (i), g ○ s ○ φ i⟩= FB g(⟨ f (i), s ○ φ i⟩) = (FB g ○ τ)(⟨i , s⟩) ,

as desired.

27

I. Monads

To see that I is functorial, consider two morphisms ⟨ f , (φ i)i⟩ ∶ B → A
and ⟨g, (ψ j) j⟩ ∶ C → B. Then

⟨g, (ψ j) j⟩ ○ ⟨ f , (φ i)i⟩ = ⟨g ○ f , (φ i ○ ψ f (i))i⟩ .
Let σ ∶ FA ⇒ FB , τ ∶ FB ⇒ FC , and ρ ∶ FA ⇒ FC be the corresponding
natural transformations. Then

(τ ○ σ)(⟨i , s⟩) = τ(⟨ f (i), s ○ φ i⟩)= ⟨g(f (i)), s ○ φ i ○ ψ f (i)⟩ = ρ(⟨i , s⟩) .
Clearly, the function A↦ FA induced by I on objects is bijective. Hence,

it remains to prove that I is faithful. Suppose that there are morphisms⟨ f , (φ i)i⟩ ∶ B → A and ⟨g, (ψ i)i⟩ ∶ B → Awith the same image. That is,

⟨ f (i), s ○ φ i⟩ = ⟨g(i), s ○ ψ i⟩ , for all i and s .

Equality in the first component implies that f = g, while equality in the
second one implies that φ i = ψ i (by choosing suitable values for s).

In general, the embedding functor I ∶ Π(Set)op → Poly(D) is not full.
Hence, there can be natural transformations that do not correspond to a
morphism of Π(Set). To get an idea of how these addional transformations
look like, we derive a translation in the other direction. We start with power
operators.

Lemma 3.8. Let D be a discrete category. Every natural transformation α ∶(−)D ⇒ (−)E is of the form

α(s) = V(ι ○ Js) ○ α0 , for s ∶ D → VX ,

for some α0 ∶ E → VJD, where ι ∶ JVA→ A is the counit of the adjunction.

Proof. By Lemma 2.10, we haveV(AD) ≅ Set(D,VA). Consequently, the
morphism

VαJD ∶ V((JD)D) → V((JD)E)

28

3. Polynomial functors

induces a function

α̂JD ∶ Set(D,VJD) → Set(E ,VJD) .
We set

α0 ∶= α̂JD(ε) ∈ Set(E ,VJD) ,
where ε ∶ Id⇒ VJ is the unit of the adjunction.

To show that α is of the required form, let A ∈ D and s ∈ Set(D,VA) ≅
VAD . Then ŝ ∶= ι ○ Js ∶ D(JD,A) is the morphism corresponding to s via
the adjunction. Consequently, s = Vŝ ○ ε and

VŝD(ε)(d) = Vŝ(ε(d)) = s(d) , for all d ∈ D .

This implies that

VαA(s) = VαA(VŝD(ε))= VŝE(VαJD(ε))= VŝE(α0)= Vŝ ○ α0 = V(ι ○ Js) ○ α0 .

Examples. The reverse is not true in general. For categories that are suffi-
ciently close to Set, we will provide a precise characterisation inTheorem 3.11
below. But other categories are more complicated. Here are two examples
showing that, in G-Set, the behaviour depends on the group G in question.

(a) Let A be an abelian group and D, E two sets. The natural transforma-
tions τ ∶ (−)D ⇒ (−)E on A-Set are precisely the functions of the form

τ(s)(v) = β(v) ⋅ s(α(v)) , for s ∈ XD and v ∈ E ,

where α ∶ E → D and β ∶ E → A are arbitrary functions. Consequently,
there exists a bijection between natural transformations (−)D ⇒ (−)E and
functions E → A× D = VJD.

29

I. Monads

(b) Let G be a non-abelian group, fix two elements g, h ∈ G with gh ≠ hg.
The function τ ∶ GD → GD defined by

τ(s)(v) = h ⋅ s(v) , for s ∈ XD and v ∈ D ,

is not a morphism in G-Set since, for s(v) = e, we have
(g ⋅ τ(s))(v) = gh ⋅ e ≠ hg ⋅ e = τ(g ⋅ s)(v) . ⌟

For arbitrary polynomial functors, we obtain the following description.

Proposition 3.9. LetD be a discrete category, and let F = ∑i∈I XD i andG =∑ j∈ J XE j be polynomial functors. For every natural transformation τ ∶ F⇒ G,
there exists a morphism ⟨ f , (φ i)i⟩ ∶ (E j) j → (VJD i)i of Π(Set) such that

τA(⟨i , s⟩) = ⟨ f (i), V(ι ○ Js) ○ φ i⟩ ,
where ι ∶ JVA→ A is the counit of the adjunction.

Proof. Let τ ∶ F⇒ G be a natural transformation. We start by recovering
the function f ∶ I → J. Let 1 be the terminal object of DΞ . As we have
shown above, we can identify the index sets I and J with the setsVF1 and
VG1, respectively. In particular, Vτ1 ∶ VF1 → VG1 induces a function
f ∶ I → J. Given some object A, let u ∶ A→ 1 be the unique morphism. For⟨i , s⟩ ∈ VFA it follows that

VGu(VτA(⟨i , s⟩)) = Vτ1(VFu(⟨i , s⟩))= Vτ1(⟨i , ∗⟩) = ⟨ f (i), ∗⟩ ,
where ∗ denotes the unique elements of V(1D i) and of V(1E f(i)). This
implies that

τA(⟨i , s⟩) = ⟨ f (i), t⟩ , for some t ∶ E f (i) → A .

It thus remains to construct the functions f ′i ∶ E f (i) → VJD i . We have just
shown that τ ∶ F⇒ G induces a natural transformation

σi ∶ (−)D i ⇒ (−)E f(i) ∶ s ↦ t .

30

3. Polynomial functors

By Lemma 3.8, this transformation is of the form

s ↦ V(ι ○ Js) ○ φ i , for some φ i ∶ E f (i) → VJD i .

Definition 3.10. Let τ ∶ F⇒ G be a natural transformation between polyno-
mial functors and let ⟨ f , (φ i)i⟩ ∶ (E j) j → (VJD i)i be the corresponding
morphism of Π(Set).We call f the shape map of τ and φ i its origin maps. ⌟
Remark. The above proposition yields a function

Poly(C)(IA, IB) → Π(Set)op(VJA, B) .
This function is injective, but usually not surjective. In particular, this means
that the functor IA↦ VJA does not form a left adjoint of I. ⌟
Again, depending on the category, not all transformations of the above

form are natural. The following set of additional assumptions is sufficient to
show that they are.

Theorem 3.11. Suppose that D is discrete, that VJ = Id, and that the counit
ι ∶ Id⇒ VJ is the identity. Then I ∶ Π(Set)op ≅ Poly(C) is an isomorphism.
Proof. It remains to prove that the functor I is full. Hence, let τ ∶ IA→ IB
be a natural transformation. By Proposition 3.9, τ is of the form

τ(⟨i , s⟩) = ⟨ f (i), V(ι ○ Js) ○ φ i⟩ ,
for some morphism ⟨ f , (φ i)i⟩ of Π(Set). By our assumptions, it follows
that

τ(⟨i , s⟩) = ⟨ f (i), s ○ φ i⟩ = I⟨ f , (φ i)i⟩ .
Categories satisfying the conditions of this theorem include Set, Pos,

Top, andMet, but not G-Set.
It is easy to find examples showing that polynomial functors do not pre-

serve colimits or products. For instance, for the word functor X+, we have
(X + Y)+ ≠ X+ + Y+ and (X × Y)+ ≠ X+ × Y+ .

31

I. Monads

But one can show that, for discrete categories, polynomial functors do pre-
serve connected limits, i.e., limits of diagrams whose index category is con-
nected (as a directed graph). We start with the operation Σ f from Proposi-
tion 2.6.

Proposition 3.12. LetD be a disjunctive category and f ∶ I → J a function in
Set. The functor Σ f ∶ DI → D J preserves connected limits.

Proof. Let D ∶ K → DI be a connected diagram with limit A, and let(λk)k be the corresponding limiting cone. To prove that (Σ f λk)k is limiting
for Σ f ○ D, we consider an arbitrary cone (µk)k from B ∈ D J to Σ f ○ D.
For every n ∈ K, we can use Lemma 2.7 to find objects Ck ∈ DI and

morphisms ψk ∶ Ck → D(k) such that
B = Σ fCk and µk = Σ f ψk .

For every morphism h ∶ k → l ofDI , it follows that

Σ f (Dh ○ ψk) = Σ fDh ○ µk = µ l = Σ f ψ l .

By Lemma 2.7 it follows that

Ck = C l and Dh ○ ψn
k = ψn

l .

Since K is connected, it follows that Ck = C l for all k, l ∈ K. Let C be
this object. Then (ψk)k is a cone from C to D and we can find a unique
morphism σ ∶ C → A such that

λk ○ σ = ψk , for all k .

Thus,

Σ f λk ○ Σ f σ = Σ f ψk .

To show that Σ f σ is the unique morphism with this property, suppose that

Σ f λk ○ τ = Σ f ψk .

By Lemma 2.7, it follows that τ = Σ f τ∗, for some τ∗. As Σ f is faithful, this
implies that λk ○ τ∗ = ψk . Hence, we have τ∗ = σ , by uniqueness of σ .

32

4. Monads

Corollary 3.13. Let D be a disjunctive category. Every polynomial functorDΞ → DΞ preserves connected limits.

Proof. Every polynomial functor can be written as composition Σβ ○Π f ○◻α ,
for functions α, β, f . The functor Π f ○ ◻α is nothing but a product and,
therefore, commutes with all limits. Moreover, we have shown above that
Σβ preserves connected limits.

Remark. One can show that, for D = Set, the converse holds as well: a
functor F ∶ SetΞ → SetΞ is polynomial if, and only if, it preserves connected
limits. ⌟
Remark. We will prove in Corollary II.2.10 below that, under certain ad-
ditional assumptions on the category, every polynomial functor preserves
κ-filtered colimits. ⌟
Exercise 3.1. We consider limits and colimits in the category Poly of poly-
nomial functors and natural transformations.

(a) Given a family (Fs)s∈S of polynomial functors, show that

(∑
s∈S Fs)A = ∑

s∈S FsA , for all A ∈ D .

(b) Given a diagram F ∶ S → Poly(D,D) of polynomial functors, show
that

(lim
s
F(s))A = lim

s
(F(s)A) , for all A ∈ D . ⌟

4. Monad+

To study languages of A-labelled objects we can now work with sets of the
formMA for some polynomial functorM. Of course, just having a set is
not sufficient to build a meaningful theory. Usually, the objects in a formal
language are subject to various composition operations, like concatenation
of words, substitution for terms, etc.. To capture such operations we will

33

I. Monads

therefore introduce two more ingredients. Firstly, the concatenation oper-
ation in question is often of the form flat ∶MMA→MA, that is, it takes
anMA-labelled object s ∈MMA and assembles the appearing labels into a
single large object.We call flat(s) the flattening of s. Secondly, there is usually
a singleton operation sing ∶ A→MA that takes a label a ∈ A and produces
an object with a single position which is labelled by a. For instance, in the
case of words flat ∶ (A∗)∗ → A∗ is simply the concatenation operation and
sing ∶ A→ A∗ produces 1-letter words.

flat(⟨w0 , . . . ,wn−1⟩) ∶= w0 . . .wn−1 , for w0 , . . . ,wn−1 ∈ A∗ ,
sing(a) ∶= ⟨a⟩ , for a ∈ A .

Usually, the flattening operation is associative, which makes the functorM
into a monad.

Definition 4.1. Amonad on a category C consists of a functorM ∶ C → C
that is equipped with two natural transformations: a multiplication flat ∶
M ○M⇒M and a unit morphism sing ∶ Id⇒M (where Id is the identity
functor), that satisfying the following equations.

flat ○ sing = id , flat ○Msing = id , flat ○ flat = flat ○Mflat .

MA MMA MA

MA

MMMA MMA

MMA MA

sing

id

Msing

flat

id

flat

Mflat flat

flat ⌟
Examples. (a) The word functor MX = X∗ forms a monad where mul-
tiplication is concatenation and the unit morphism is the singleton map
a ↦ ⟨a⟩.
(b) The covariant power-set functor on Set is defined by PX ∶= ℘(X)

and P f (X) ∶= f [X]. It forms a monad where multiplication is the union

34

4. Monads

operation⋃ ∶ ℘(℘(X)) → ℘(X) and the unit morphism is the singleton
map x ↦ {x}.

(c) Similarly, we can define an upper-set functor on Pos by

UX ∶= { I ⊆ X ∣ I upwards closed} ,
U f (X) ∶= { b ∣ b ≥ f (a) , for some a ∈ X } .

It also forms a monad with the union operation as multiplication and the
principle filter map a ↦ { b ∣ b ≥ a } as unit morphism (see Section ??). ⌟
Examples. (a) Fix an infinite cardinal κ.The chainmonad is defined as follows.
For A ∈ Set, we denote byCκA the set of all A-labelled linear orders of size
less than κ (up to isomorphism).The product flat ∶ CκCκA→ CκAmaps a
chain (Ai)i∈I of linear orders to their ordered sum∑i∈I Ai . As κ2 = κ, the
resulting order still has size less than κ. Let us check one of the monad laws.

flat ○Cκflat = flat ○ flat .
Note that the ordered sum ∑i∈I A i consists of all pairs ⟨i , a⟩ with i ∈ I
and a ∈ A i , ordered in the appropriate way. Consequently, the elements of
flat(Cκflat(((Ai

j) j∈ J i)i∈I)) take the form
⟨i , ⟨ j, a⟩⟩ , with i ∈ I , j ∈ J i , and a ∈ Ai

j ,

while those of flat(flat(((Ai
j) j∈ J i)i∈I)) have the form

⟨⟨i , j⟩, a⟩ , with i ∈ I , j ∈ J i , and a ∈ Ai
j .

The natural bijection between these two sets of elements forms an isomorph-
ism showing that

flat(Cκflat(((Ai
j) j∈ J i)i∈I)) = flat(flat(((Ai

j) j∈ J i)i∈I)) .
(b) Every subclass of linear orders that is closed under flat induces a

corresponding submonad ofCκ . For instance, there are monads for (i) well-
founded linear orders and (ii) scattered linear orders. ⌟

35

I. Monads

Example. For a semiring S, we consider the functor LinS mapping a set X
to the S-module S[X] generated by X. That is, LinSX consists of all finite
linear combinations

s0x0 + ⋅ ⋅ ⋅ + sn−1xn−1 , with s0 , . . . , sn−1 ∈ S and x0 , . . . , xn−1 ∈ X .

The corresponding flattening operation maps a nested linear combination

s(r0x0 + . . . rm−1xm−1) + ⋅ ⋅ ⋅ + t(p0 y0 + ⋅ ⋅ ⋅ + pn−1 yn−1)
to

sr0x0 + . . . srm−1xm−1 + ⋅ ⋅ ⋅ + tp0 y0 + ⋅ ⋅ ⋅ + tpn−1 yn−1 . ⌟
Example. For A ∈ Set, setMA ∶= Aω . We can turnM into a monad with
unit

sing(a) = ⟨a, a, a, . . . ⟩
and multiplication

flat((aki)i ,k) = ⟨a00 , a11 , a22 , . . . ⟩ .
A subset K ⊆ Aω is recognised by a morphism into a finiteM-algebra if,
and only if, it is clopen. ⌟

The prototypical example of a monad is the term monad for an algebraic
signature.

Definition 4.2. Let Ξ be a set of sorts.
(a) A Ξ-sorted algebraic signature Σ is a set of function symbols, each of

which has an associated type of the form η̄ → ξ, where ξ ∈ Ξ and η̄ ∈ Ξκ , for
some cardinal κ. We call κ the arity of f . The arity of a signature is the least
infinite cardinal κ such that every function symbol f ∈ Σ has an arity less
than κ. A signature of arity ℵ0 is also called finitary.

(b) Let Σ be a Ξ-sorted signature and X ∈ SetΞ a set of variables.The set
Term[Σ,X] ∈ SetΞ of Σ-terms is defined inductively as follows.

36

4. Monads

◆ Every variable x ∈ Xξ is a Σ-term of sort ξ.◆ If f ∈ Σ is a function symbol of type η̄ → ξ and, for each index i,
t i ∈ Termη i [Σ,X] is a Σ-term of sort η i , then f (t̄) is a Σ-term of sort ξ.

For a function f ∶ X → Y, we denote by

Term[Σ, f] ∶ Term[Σ,X] → Term[Σ,Y]
the function replacing every variable x ∈ X in a given term t ∈ Term[Σ,X]
by the variable f (x) ∈ Y. ⌟
Remark. The above recursive definition of terms is equivalent to saying that
a term is a well-founded tree whose vertices are labelled by elements of Σ+X
and such that the number of successors of a vertex match the arity of its
label. ⌟
Examples. (a)The (one-sorted) signature of semigroups is Σ ∶= { ⋅ }. Some
terms are

x , x ⋅ y , (x ⋅ y) ⋅ x , x ⋅ (y ⋅ x) ,
where x and y are variables.Note that the last two terms above are considered
to be different, as there is no built in assumption of associativity.

(b)The (one-sorted) signature of rings is Σ ∶= {+,−, ⋅ , 0, 1}. Some terms
are

(x + 1) + y , x + (1 + y) , (1 + 1) ⋅ x , (0 ⋅ x) ⋅ y .
(c) The {1,ω}-sorted signature of ω-semigroups is Σ ∶= { ⋅ ,×, π} where

the finite product ⋅ has the type 11→ 1, the mixed one× has the type 1ω → ω,
and the infinite product π the type 111 . . . → ω. An example of a term is

x × π(x , x ⋅ x , (x ⋅ x) ⋅ x , . . .) . ⌟
The functor Term[Σ,−] is clearly polynomial. We can write

Term[Σ,X] ≅ ∑
t∈T XD t ,

37

I. Monads

where T ∶= Term[Σ, {◻}] and Dt is the set of all positions of the term t
that are labelled by the variable ◻. We can turn Term[Σ,−] into a monad as
follows.

Definition 4.3. Let Σ be a signature.
(a) For t ∈ Term[Σ, Term[Σ,X]], we denote by flat(t) the substitution

operation. Formally, we define flat(t) by induction on t as follows.

flat(x) ∶= x , for x ∈ X ,

and flat(f (s̄)) ∶= f ′((flat(s i))i) , for f ∈ Term[Σ,X] ,
where the function f ′ is defined by induction on f as follows.

x′(s̄) ∶= sx , for x ∈ X ,(g(ū))′(s̄) ∶= g((u′i(s̄))i) , for g ∈ Σ .

(b) For x ∈ X, we set
sing(x) ∶= x ∈ Term[Σ,X] . ⌟

Proposition 4.4. Let Σ be a Ξ-sorted algebraic signature. Then

⟨T[Σ,−], flat, sing⟩
forms a polynomial monad on SetΞ . The arity of Term[Σ,−] as a polynomial
functor coincides with the arity of Σ.

Remark. Let ⟨M, µ, ε⟩ be a monad whereM = ∑i∈I (−)D i is polynomial.
We have seen in Lemma 3.4 that

M ○M = ∑
k∈K (−)Ek ,

where

K ∶= { ⟨i , σ⟩ ∣ i ∈ I, σ ∈ ID i } and E⟨i ,σ⟩ ∶= ∑
v∈D i

Dσ(v) .

38

5. Eilenberg-Moore algebras

Applying Proposition 3.9 to the natural transformations µ ∶MM⇒M and
ε ∶ Id⇒M, we obtain morphisms

⟨ f , (φ i)i⟩ ∶ (D i)i∈I → (VJEk)k∈K ,⟨g, (ψ i)i⟩ ∶ (D i)i∈I → (VJ1) j<1
of Π(SetΞ) where

g ∶ 1→ I f ∶ K → I
ψ∗ ∶ Dg(∗) → VJ1 φk ∶ D f (k) → VJEk , for k ∈ K .

With our conventions regarding polynomial functors, we can write the latter
as

φs ∶ dom(µ(s)) → ∑
v∈dom(s)VJdom(s(v)) , for s ∈MMA . ⌟

5. Eilenberg-Moore Algebra+

We can use a monad M to specify what kinds of objects the languages
we study contain and in which way these compose. Next we need a way to
describe such a language in an algebraic way.This will be done by amorphism
MΣ → A for some suitable algebraA.The goal of this section is to define the
kind of algebras we use for this. As it turns out there is a canonical notion of
an algebra associated with every monadM. To motivate the definition, let
us first take a look at Σ-algebras. To specify an algebra for a signature Σ, we
have to provide a set of elements and functions for each operation in Σ.

Definition 5.1. Let Σ be an Ξ-sorted algebraic signature. A Σ-structure

A = ⟨A, (f A) f ∈Σ⟩
consists of◆ a universe A ∈ SetΞ and

39

I. Monads

◆ one function f A ∶ ∏i Aη i → Aξ , for each function symbol f ∈ Σ of type
η̄ → ξ. ⌟

Examples. (a) For the signature Σ = { ⋅ } of semigroups, a Σ-algebra S =⟨S , ⋅S ⟩ consists of a set S together with a function ⋅S ∶ S × S → S. Such an
algebra forms a semigroup, if ⋅S is associative.

(b) For ω-semigroups, we can use the signature Σ = { ⋅ , ⋅′ , π} with sorts
Ξ = {1,∞}, where the types of ⋅ , ⋅ , and π are, respectively, 11→ 1, 1∞→∞,
and 111 . . . →∞. An ω-semigroup is then a Σ-algebra where all operations
are associative. ⌟

Thus, a Σ-algebra A allows one to compute all operations in the signature.
Since terms are built up from these operations, it follows that we can also
evaluate every Σ-term. But note that, if the term in question contains vari-
ables, we also need to know their values. In general we obtain an evaluation
map

Term[Σ,X] ×AX → A ,

where the second argument β ∶ X → Amaps each variable to its value. We
can simplify this map if, instead of providing β, we replace in the given term
each variable by its value. In that way, we obtain a map

Term[Σ,A] → A .

Such an evaluation map contains sufficient information to completely de-
scribe the algebraA in question. For a general monadM, we can use a similar
description: we can use algebras consisting of a setA equipped with a product
operation of the form π ∶ MA → A. For instance, for words this product
takes the form π ∶ A+ → A, i.e., it multiplies a sequence of elements into
a single element. Hence, π can be seen as a semigroup product of variable
arity. But note that not every operation π ∶ A+ → A is of the form

π(⟨a0 , . . . , am⟩) = a0 ⋅ a1 ⋅ ⋯ ⋅ am
for some semigroup product ⋅ ∶ A×A→ A. If we want to exactly capture
the notion of a semigroup, we have to impose additional conditions on π. It

40

5. Eilenberg-Moore algebras

turns out, there are two such conditions: associativity requires that

π(π(w0), . . . , π(wm)) = π(w0 . . .wm) , for all w0 , . . . ,wm ∈ A+ ,
and the fact that the product of a single element should return that element
again requires that

π(⟨a⟩) = a , for a ∈ A .

These two conditions can be phrased more concisely as

π ○Mπ = π ○ flat and π ○ sing = id .
where flat and sing are the multiplication and the unit map of the monad.
This leads us to the following definition.

Definition 5.2. LetM ∶ DΞ → DΞ be a monad.
(a) An Eilenberg-Moore algebra for M, or M-algebra for short, is a pair

A = ⟨A, π⟩ consisting of an object A ∈ DΞ and a morphism π ∶ MA→ A
satisfying

π ○Mπ = π ○ flat ,
π ○ sing = id .

The first of these equations is called
the associative law for π, the second
one the unit law.

MA A

MMA MA

π

Mπ

flat

π

(b) A morphism φ ∶ A → B ofM-
algebras, orM-morphism for short, is a
function φ ∶ A→ B commuting with
the respective products in the sense
that

φ ○ π = π ○Mφ .
A B

MA MB

φ

π

Mφ

π

(c) We denote the category of all M-algebras and their morphisms by
Alg(M).

41

I. Monads

(d) An algebra A is finitary if its universe A is sort-wise finite and A is
finitely generated, i.e., there exists a finite set C ⊆ A such that every element
a ∈ A can be written as a = π(s), for some s ∈MC. ⌟
Examples. (a) As already explained above,M-algebras for the monadMX =
X+ are just semigroups. Similarly, algebras for the monadMX = X∗ corres-
pond to monoids. We obtain commutative monoids if we take the monad
MX = X∗/≈ where

u ≈ v : iff u is a permutation of v .

Semilattices, i.e., idempotent commutative monoids, correspond to the finite
power-set monadMX = {w ∣ w ⊆ X finite}.

(b) Let us take a look at the functor

M⟨A1 ,A∞⟩ ∶= ⟨A+1 , A+1A∞ ∪Aω
1 ⟩

for infinite words. In this case anM-algebra has two product functions

π1 ∶ A+1 → A1 and π∞ ∶ A+1A∞ ∪Aω
1 → A∞ .

The laws of anM-algebra ensure that π1 corresponds to a semigroup product
A1 ×A1 → A1 and π∞ correspond to the additional products A1 ×A∞ →
A∞ and Aω

1 → A∞ of an ω-semigroup. Hence, in this caseM-algebras are
nothing but ω-semigroups.
(c) Let M = ⟨M, ⋅ ⟩ be a monoid. The functorMX ∶= M × X forms a

monad with product

act ∶ M × (M × X) →M × X ∶ ⟨a, ⟨b, x⟩⟩ ↦ ⟨ab, x⟩
and unit function

unit ∶ X →M × X ∶ x ↦ ⟨1, x⟩ .
AnM-algebra then corresponds to a set X together with an action of M
on X. In particular, if M is a group, the category Alg(M) ofM-algebras is
isomorphic to the category M-Set of M-sets. ⌟

42

5. Eilenberg-Moore algebras

There is a natural way to turn a set of the formMA into anM-algebra:
we can chose the function flat ∶MMA→MA as the product. It turns out
that algebras of this form are exactly the free algebras.

Proposition 5.3. For every A ∈ DΞ , there exists a freeM-algebra over A. It
has the form ⟨MA, flat⟩.
Proof. Two of the three axioms of a monad precisely express that ⟨MA, flat⟩
is anM-algebra. Hence, it remains to prove freeness. Consider a function
f ∶ A→ B where B is the domain of anM-algebra B. Then

φ ∶= π ○M f ∶MA→ B

is a morphism ofM-algebras since

φ ○ flat = π ○M f ○ flat= π ○ flat ○MM f= π ○Mπ ○MM f = π ○Mφ .

For uniqueness, suppose that ψ ∶MA→ B is a morphism with ψ ○ sing = f .
Then

φ = π ○M f = π ○M(ψ ○ sing) = ψ ○ flat ○Msing = ψ .

Example. (a) The free monoid generated by X is X∗ where the product
is given by concatenation. This is also the free M-algebra for the monad
MX = X∗.
(b) A free Σ-algebra is called a term algabra. of the from Term[Σ,X],

for some set X. Its elements are all terms and a function f maps a tuple of
terms t̄ to the term f (t̄). ⌟
Corollary 5.4. For every monadM ∶ C → C there exists an adjunction F ⊣ U
between C and Alg(M) such thatM = U ○ F.
Proof. Let F be the functor sending A ∈ C to the freeM-algebra ⟨MA, flat⟩,
and letU be the functor mapping anM-algebra ⟨A, π⟩ to its universe A. By

43

I. Monads

the Proposition 5.3, there exists a bijection

Alg(M)(FA,B) ≅ C(A,UB) .
It is straightforward to check that it is natural in A and B.

We conclude this section with three technical results that sometimes
come in handy. First, checking the associative law is often tedious. In many
cases we can use the following result to avoid having to do these kind of
calculations.

Lemma 5.5. Let A be an M-algebra and f ∶ A → B and p ∶ MB → B
functions such that f andMM f are epimorphisms and

f ○ π = p ○M f .

Then B ∶= ⟨B, p⟩ is anM-algebra and f ∶ A→ B a morphism of M-algebras.

Proof. By assumption, f satisfies the equation for a morphism. Hence, we
only need to check the axioms of anM-algebra. We have

p ○ sing ○ f = p ○M f ○ sing= f ○ π ○ sing= f ,

p ○Mp ○MM f = p ○M(p ○M f)= p ○M(f ○ π)= f ○ π ○Mπ= f ○ π ○ flat= p ○M f ○ flat = p ○ flat ○MM f .

Since f andMM f are epimorphisms, this implies that p ○ sing = id and
p ○Mp = p ○ flat.
Another useful result is the following observation which allows us to

prove that a function is a morphism.

44

5. Eilenberg-Moore algebras

Lemma 5.6. Let φ ∶ A→ B and ε ∶ A→ C beM-morphisms whereMε is an
epimorphism. If f ∶ C → B is a function satisfying f ○ ε = φ, then f is also an
M-morphism.

Proof. Note that

π ○M f ○Mε = π ○Mφ = φ ○ π = f ○ ε ○ π = f ○ π ○Mε .

SinceMε is an epimorphism, this implies that π ○M f = f ○ π.

Limit+ and Colimit+ of Algebra+

Finally, let us take a look at limits and colimits ofM-algebras.

Proposition 5.7. The forgetful functor Alg(M) → DΞ reflects limits. Hence,
Alg(M) has all limits that exist inD.
Proof. Suppose thatD has limits with index category I . Then so doesDΞ .
(As limits inDΞ are computed componentwise.) Let D ∶ I → Alg(M) be a
diagram and let U ∶ Alg(M) → DΞ be the forgetful functor. Then U ○ D
has a limit A. Let (λ i)i be the corresponding limiting cone. We claim that
there exists anM-algebra A with universe A such that A = limD and each
λ i ∶ A→ D(i) is anM-morphism. To define the product of A, we set

µ i ∶= π i ○Mλ i ∶MA→ D(i) , for i ∈ I ,
where π i ∶ MD(i) → D(i) is the product of D(i). For every morphism
f ∶ i → j of I , it follows that

UD f ○ µ i = UD f ○ π i ○Mλ i= π i ○MUD f ○Mλ i = π i ○Mλ i = µ i .

Hence, (µ i)i is a cone fromMA to U ○ D. By universality, there exists a
unique morphism ρ ∶MA→ A satisfying

λ i ○ ρ = µ i = π i ○Mλ i , for all i .

45

I. Monads

This implies that λ i is anM-morphism from A ∶= ⟨A, ρ⟩ to D(i), where
the fact that A forms anM-algebra follows since

λ i ○ ρ ○ sing = π i ○Mλ i ○ sing= π i ○ sing ○ λ i= λ i ,
λ i ○ ρ ○ flat = π i ○Mλ i ○ flat= π i ○ flat ○MMλ i= π i ○Mπ i ○MMλ i= π i ○Mλ i ○Mρ= λ i ○ ρ ○Mρ ,

for all i. Limiting cones being jointly monomorphic, we obtain ρ ○ sing = id
and ρ ○ flat = ρ ○Mρ. Consequently, (λ i)i forms a cone from ⟨A, ρ⟩ to D
in Alg(M). This cone is limiting since, given any cone (ν i)i from someM-
algebra B = ⟨B, π⟩ to D, there exists a unique function σ ∶ B → A (inDΞ)
such that

λ i ○ σ = ν i , for all i .

This function is in fact a morphism ofM-algebras since

λ i ○ σ ○ π = ν i ○ π= π i ○Mν i= π i ○Mλ i ○Mσ = λ i ○ π i ○Mσ ,

for all i.

The existence of colimits is less straightforward and requires additional
assumptions onM and C. We start with a technical lemma.

Lemma 5.8. Let M be a monad on C and let A = ⟨A, π⟩ be an M-algebra.
Then π ∶MA→ A is the coequaliser of flat andMπ in Alg(M).

46

5. Eilenberg-Moore algebras

Proof. First, note that π ∶ MA → A and flat, Mπ ∶ MMA → MA are
M-morphisms since

π ○ flat = π ○Mπ ,

flat ○ flat = flat ○Mflat ,

Mπ ○ flat = flat ○MMπ .

The first of these equations also shows that π (together with π ○Mπ) forms
a cocone of the diagram. Hence, we only have to prove that π is limiting.
Suppose φ ∶MA→ B is anotherM-morphism such that φ ○flat = φ ○Mπ.
The function σ ∶= φ ○ sing satisfies

σ ○ π = φ ○ sing ○ π= φ ○Mπ ○ sing= φ ○ flat ○ sing = φ .

Furthermore, it is unique since τ ○ π = φ implies

τ = τ ○ π ○ sing = φ ○ sing = σ ○ π ○ sing = σ .

Hence, it remains to show that σ is anM-morphism.

σ ○ π = φ ○ sing ○ π= φ ○Mπ ○ sing= φ ○ flat ○ sing= φ= φ ○ flat ○Msing= flat ○Mφ ○Msing= flat ○Mσ .

The following criterion greatly simplyfies existence proofs.

Proposition 5.9. LetM be a monad on a cocomplete category C.ThenAlg(M)
is cocomplete if, and only if, it has coequalisers.

47

I. Monads

Proof. (⇒) is trivial. For (⇐), suppose thatAlg(M)has coequalisers. Since
a category is cocomplete if, and only if, it has coproducts and coequalisers,
it is sufficient to show that Alg(M) has coproducts. As an example of the
construction let us take a look at how we can construct coproducts of groups.
We cannot simply take their disjoint union since then the product of elements
from different components would be undefined. What we can do instead
is to take the free group generated by this disjoint union and then quotient
it by all equalities that hold in each component. (This last step requires a
coequaliser.)
The general case is analogous. ConsiderM-algebras Ai = ⟨A i , π i⟩, for

i ∈ I. To compute ∑i Ai , let s i ∶ A i → ∑ j A j and t i ∶ MA i → ∑ j MA j
be the inclusion morphisms (where the coproducts are computed in C).
ThenMs i forms a cocone from the coproduct diagram (MA i)i toM∑ j A j .
Consequently, there exists a unique morphism w ∶ ∑ j MA j → M∑ j A j
such that

w ○ t i =Ms i , for all i .

Let q ∶M∑ j A j → C be the coequaliser (in Alg(M)) of
M∑i π j , flat ○Mw ∶M∑ j MA j →M∑ j A j .

To see that this is well-defined, note thatM∑i π i , flat, andMw are indeed
M-morphisms since

M∑i π i ○ flat = flat ○MM∑i π i ,

flat ○ flat = flat ○Mflat

Mw ○ flat = flat ○MMw .

For every i ∈ I, as similar computation shows thatMs i ∶MA i →M∑ j A j
is anM-morphism. Since

q ○Ms i ○ flat = q ○ flat ○MMs i= q ○ flat ○M(w ○ t i)= q ○M∑ j π j ○Mt i = q ○M(s i ○ π i) ,

48

5. Eilenberg-Moore algebras

we can use Lemma 5.8 to find uniqueM-morphisms λ i ∶ Ai → C satisfying

λ i ○ π i = q ○Ms i , for all i .

We claim thatC = ∑i Ai and that (λ i)i is the corresponding limiting cocone.
Hence, suppose that (µ i)i is a cocone from (Ai)i to some algebra B.

Since (λ i)i form a cocone inC, we obtain a uniquemorphism u ∶ ∑ j A j → B
such that

u ○ s i = µ i , for all i .

Similarly, for the cocone (Mµ i)i , we obtain a uniquemorphism v ∶ ∑ j MA j →
MB such that

v ○ t i =Mµ i , for all i .

We will show below that the morphism ρ ∶= π ○Mu ∶ M∑ j A j → B
satisfies

ρ ○ (flat ○Mw) = ρ ○M∑ j π j .

Since q is the coequaliser, we then obtain a unique morphism φ ∶ C → B
satisfying

φ ○ q = ρ .

This implies that

φ ○ λ i = φ ○ λ i ○ π i ○ sing= φ ○ q ○Ms i ○ sing= ρ ○Ms i ○ sing= π ○Mu ○Ms i ○ sing= π ○Mµ i ○ sing= µ i ○ π i ○ sing= µ i .

49

I. Monads

Hence, the cocone (µ i)i factorises through (λ i)i via φ. To show that this
factorisation is unique, we consider someM-morphimsψ satisfyingψ ○ λ i =
µ i . Then

ψ ○ q ○ w ○ t i = ψ ○ q ○Ms i= ψ ○ λ i ○ π i= µ i ○ π i= u ○ s i ○ π i= u ○ ∑ j π j ○ t i , for all i .

Since limiting cocones are jointly epimorphic, it follows that

ψ ○ q ○ w = u ○ ∑ j π j .

Consequently,

ψ ○ q = ψ ○ q ○M∑ j(π j ○ sing)= ψ ○ q ○ flat ○Mw ○M∑ j sing= ψ ○ π ○Mq ○Mw ○M∑ j sing= π ○Mψ ○Mq ○Mw ○M∑ j sing= π ○M(u ○ ∑ j π j) ○M∑ j sing= π ○Mu= φ ○ q .
Since q is an epimorphism, this implies that ψ = φ, as desired.
Hence, it remains to prove the above claim. First, ρ is indeed an M-

morphism since

π ○Mu ○ flat = π ○ flat ○MMu= π ○Mπ ○MMu = π ○M(π ○Mu) .

50

5. Eilenberg-Moore algebras

Furthermore, for all i ∈ I, we have
π ○Mu ○ w ○ t i = π ○Mu ○Ms= π ○Mµ i= π ○ v ○ t i= π ○Mµ i= µ i ○ π i= u ○ s i ○ π i = u ○ ∑ j π j ○ t i ,

where π is the product of B. Since the morphisms of a limiting cocone are
jointly epimorphic, it follows that

π ○Mu ○ w = u ○ ∑ j π j .

Hence,

ρ ○ (flat ○Mw) = π ○Mu ○ flat ○Mw= π ○ flat ○MMu ○Mw= π ○Mπ ○M(Mu ○ w)= π ○M(u ○ ∑ j π j)= π ○Mu ○M∑ j π j = ρ ○M∑ j π j ,

as desired.

Exercise 5.1. (a) LetM be a monad on a category C with coequalisers and
suppose thatM preserves coequalisers. Show that Alg(M) is cocomplete.

(b) Show that every polynomial functor Set→ Set preserves coequalisers.⌟
Thus, we only have to show that the category Alg(M) has coequalisers.

We start with a lemma simplifying this task: it is sufficient to construct weak
coequalisers.

51

I. Monads

Definition 5.10. A weak coequaliser of two morphisms φ,ψ ∶ A → B is a
morphism ρ ∶ B → C such that ρ○φ = ρ○ψ and everymorphism σ ∶ B → D
with σ ○ φ = σ ○ ψ factorises (not necessarily uniquely) through ρ. ⌟

The idea behind the following construction comes from the theory of
partial orders: a supremum can be computed as the infimum of all upper
bounds. Since colimits can be regarded as generalisations of suprema, we
can try to compute a colimit as a limit of suitable ‘upper bounds’. In our case,
we obtain a coequaliser as a limit of weak coequalisers. Before giving the
formal construction, let us mention the following technical result.

Lemma 5.11. Let C be a category and A ∈ C. The comma category (A ↓ C) has
all limits that exist in C.
Proof. Let U ∶ (A ↓ C) → C be the functor mapping an object f ∶ A→ B
to B and a morphism φ ∶ f → g to the corresponding morphism between the
codomains of f and g. It is sufficient to show thatU creates limits. Hence,
let D ∶ I → (A ↓ C) be a diagram such that U ○ D has a limit B and let(λ i)i be the corresponding limiting cone. For i ∈ I , set µ i ∶= D(i). For
every morphism h ∶ i → k of I , the fact that Dh is a morphism µ i → µk in(A ↓ C) implies that

UDh ○ µ i = µk .

Consequently, (µ i)i is a cone from A toU ○ D. As (λ i)i is limiting, there
exists a unique morphism σ ∶ A→ B such that

λ i ○ σ = µ i , for all i .

We can consider λ i as a morphism λ i ∶ σ → µ i of (A ↓ C). Hence, (λ i)i
induces a cone from σ to D. It is straightforward to check that it is limiting.

Lemma 5.12. Let C be a complete category. Every pair of morphisms with a
weak coequaliser has a coequaliser.

52

5. Eilenberg-Moore algebras

Proof. Fix two morphisms φ,ψ ∶ A→ B with a weak coequaliser q ∶ B → C.
To construct their coequaliser, we consider the category E ⊆ (B ↓ C) of
morphisms σ with σ ○ φ = σ ○ ψ and the subcategoryW ⊆ E of all weak
coequalisers σ ∶ B → C of φ andψ with codomainC.We have to show thatE
has an initial element. We do so by proving thatW has an initial element
and that the inclusionW → E is final (which means that the inclusionsW → (B ↓ C) and E → (B ↓ C) have the same limit).

Let D ∶ W → (B ↓ C) be the inclusion functor. SinceW ⊆ C(B,C) is a
set, D has a limit τ ∶ B → C. Let ε ∶ ρ → τ be the equaliser of all morphisms
in E(τ, τ) (which exists by Lemma 5.11). We claim that its domain ρ is the
initial element of E .
We start by proving that ρ ∈ W . Hence, fix some σ ∈ E . To find a

morphism ρ → σ we choose an arbitrary υ ∈ W . Let λ ∶ τ → υ be the
corresponding component of the limiting cone from τ to D. Since υ ∈ W
there also exists a morphism f ∶ υ → σ . We therefore obtain a morphism

f ○ λ ○ ε ∶ ρ → τ → υ → σ .

Hence, ρ is a weak coequaliser of φ and ψ, which implies that ρ ∈ W .
It remains to prove uniqueness. Suppose that, for some σ ∈ E , there are

two morphisms f , g ∶ ρ → σ . Let e ∶ υ → ρ be their equaliser (which exists
by Lemma 5.11).Then υ ∈ E and ρ ∈ W implies that there is somemorphism
h ∶ ρ → υ. Since ε ○ e ○ h and id are both morphisms τ → τ and ε is the
equaliser of all such morphisms, it follows that

ε ○ e ○ h ○ ε = id ○ ε = ε ○ id .
Equalisers being monomorphisms this implies that e ○ (h ○ ε) = id. Con-
sequently,

f = f ○ e ○ (h ○ ε) = g ○ e ○ (h ○ ε) = g .
Theorem 5.13. LetM be a monad on a category C that is complete and cocom-
plete. If there exists a regular cardinal κ such thatM preserves κ-filtered colimits,
then Alg(M) is complete and cocomplete.

53

I. Monads

Proof. Completeness follows by Proposition 5.7. For cocompleteness, we
only have to check the existence of coequalisers by Proposition 5.9. Hence,
fix twoM-morphisms φ,ψ ∶ A→ B. By Lemma 5.12 and since Alg(M) is
complete, it is sufficient to find a weak coequaliser of φ and ψ. We construct
it as the colimit of a chain Q(i), i < κ + 1. In fact, we will construct◆ two diagrams P,Q ∶ κ + 1→ C,◆ natural transformations σ ∶ P⇒ Q and τ ∶ P⇒M ○ Q , and◆ two cones (p i)i and (q i)i from B to, respectively, P and Q ,
such that Q∗ ∶= Q(κ) will be the universe of the weak coequaliser, P∗ ∶=
P(κ) will be equal toMQ∗, the morphism σκ ∶ P∗ → Q∗ will the product
morphism, and qκ ∶ B→ Q∗ will be the coequaliser morphism.

MA MB

P(i) P(k)

A B Q(i) Q(k)

MQ(i) MQ(k)Mφ

Mψ

π

p i

π

Mq i

P(i, k)
σi σk

φ

ψ qk Q(i, k)

τ i

MQ(i, k)
τk

Our construction proceeds by induction on i < κ + 1. For i = 0, let
p i ∶ B → P(0) be the coequaliser (in C) ofMφ andMψ and let q i ∶ B →
Q(0) the one of φ andψ.The product morphisms ofA andB form a natural
transformations between the coequaliser diagrams forMφ,Mψ and φ,ψ.
This transformation induces a unique morphism σ0 ∶ P(0) → Q(0) such
that

σ0 ○ p0 = q0 ○ π .

Finally,M(q0 ○ φ) = M(q0 ○ ψ) and universality of p0 implies that that
there exists a unique morphism τ0 ∶ P(0) →MQ(0) such that

τ0 ○ p0 =Mq0 .

54

5. Eilenberg-Moore algebras

For the inductive step, suppose that P(i), Q(i), σi , τ i , p i , q i are defind
for all i < α. We distinguish two cases. If α is a limit ordinal, we choose
for P(α) the colimit of the diagram P∣α ∶ α → C and for Q(α) the colimit
of Q ∣α ∶ α → C. Let (P(i , α))i<α and (Q(i , α))i<α be the corresponding
limiting cocones. Set

pα ∶= P(0, α) ○ p0 and qα ∶= Q(0, α) ○ q0 .
The morphisms (σi)i<α form a natural transformation P∣α ⇒ Q ∣α while(τ i)i<α form one P∣α ⇒M ○ Q ∣α . Consequently, we obtain unique morph-
isms σα ∶ P(α) → Q(α) and τα ∶ P(α) →MQ(α) satisfying

σα ○ P(i , α) = Q(i , α) ○ σi . and τα ○ P(i , α) =MQ(i , α) ○ τ i .

It remains to consider the case where α = i + 1 is a successor ordinal. Set
P(i + 1) ∶=MQ(i) and let σi+1 ∶MQ(i) → Q(i + 1) be the coequaliser of

Mσi , flat ○Mτ i ∶MP(i) →MQ(i) .
We set

P(i , i + 1) ∶= τ i ,

Q(i , i + 1) ∶= σi+1 ○ sing ,
τ i+1 ∶=MQ(i , i + 1) ,
p i+1 ∶= P(i , i + 1) ○ p i ,
q i+1 ∶= Q(i , i + 1) ○ q i .

To check that these morphisms have the desired properties, note that

σi+1 ○ P(i , i + 1) = σi+1 ○ τ i= σi+1 ○ flat ○ sing ○ τ i= σi+1 ○ flat ○Mτ i ○ sing= σi+1 ○Mσi ○ sing= σi+1 ○ sing ○ σi= Q(i , i + 1) ○ σi ,

τ i+1 ○ P(i , i + 1) =MQ(i , i + 1) ○ τ i .

55

I. Monads

This concludes the construction of P, Q , and the associated morphisms.
Set

P∗ ∶= P(κ) , σ∗ ∶= σκ ∶ P∗ → Q∗ ,
Q∗ ∶= Q(κ) , q∗ ∶= qκ ∶ B → Q∗ .

As P(i + 1) =MQ(i), we have
colimi<κ P(i) = colimi<κ MQ(i) and τκ is an isomorphism .

Furthermore, regularity of κ implies that the diagrams P∣κ ,Q ∣κ ∶ κ → C are
κ-filtered. By assumption onM, it therefore follows that

P∗ = P(κ)= colimi<κ P(i)= colimi<κ MQ(i)
=M(colimi<κ Q(i)) =MQ(κ) =MQ∗ .

Hence, σ∗ ○ τ−1∗ ∶MQ∗ → Q∗. We claim that q∗ ∶ B → ⟨Q∗ , σ∗ ○ τ−1∗ ⟩ is
the desired weak coequaliser of φ and ψ in Alg(M). First, note that q∗ is
anM-morphism since

q∗ ○ π = Q(0, κ) ○ q0 ○ π= Q(0, κ) ○ σ0 ○ p0= σ∗ ○ P(0, κ) ○ p0= σ∗ ○ pκ= (σ∗ ○ τ−1∗) ○Mq∗ .
Next, we prove that Q ∶= ⟨Q∗ , σ∗⟩ it is indeed anM-algebra. For i < κ,

let E i be the diagram consisting of the morphisms

MMQ(i) MP(i) MQ(i) Q(i + 1)Mτ i Mσi

flat ○Mτ i

σi+1

56

5. Eilenberg-Moore algebras

We take the colimit of the diagram consisting of the diagrams E i , i < κ, and
the morphisms

MMQ(i) MP(i) MQ(i) Q(i + 1)

MMQ(k) MP(k) MQ(k) Q(k + 1)

Mτ i Mσi

flat ○Mτ i

σi+1

Mτk Mσk

flat ○Mτk

σk+1

MMQ(i, k) MP(i, k) MQ(i, k) Q(i, k)

This colimit is of the form

MMQ(κ) MP(κ) MQ(κ) Q(κ)α β

γ
δ

By definition of a colimit of functors, α is the unique morphismMP∗ →
MMQ∗ satisfying

α ○MP(i , κ) =MMQ(i , κ) ○Mτ i , for all i < κ .
Consequently, α =Mτκ . Similarly, it follows that

β =Mσκ , γ = flat ○Mτκ , δ = σκ ○ τ−1κ .

Hence, we have

(σκ ○ τ−1∗) ○M(σκ ○ τ−1∗) = δ ○ β ○Mτ−1∗= δ ○ γ ○Mτ−1∗= (σκ ○ τ−1∗) ○ flat ○Mτκ ○Mτ−1∗= (σκ ○ τ−1∗) ○ flat ,
as desired.

As q∗ ○ φ = Q(0, κ) ○ q0 ○ φ = Q(0, κ) ○ q0 ○ψ = q∗ ○ψ, it remains to
prove weak universality. We will show below that, for everyM-morphism

57

I. Monads

χ ∶ B → C satisfying χ ○ φ = χ ○ ψ, there exist a cone (µ i)i from Q to C
such that

µ i ○ q i = χ and µ i ○ σi = π ○Mµ i ○ τ i , for all i ≤ κ .
Note that this immediately implies weak universality: for i = κ, we obtain
χ = µκ ○ q∗ and µκ is anM-morphism since

µκ ○ (σ∗ ○ τ−1∗) = π ○Mµκ ○ τ∗ ○ τ−1∗ = π ○Mµκ .

It therefore remains to prove the above claim. We construct µ i by induc-
tion on i. For i = 0, note that χ ○φ = χ ○ψ implies that χ factorises through
the coequaliser q0 (in C). Hence, χ = µ0 ○ q0, for some µ0 ∶ Q(0) → C. It
follows that

µ0 ○ σ0 ○ p0 = µ0 ○ q0 ○ π= χ ○ π= π ○Mχ= π ○Mµ0 ○Mq0 = π ○Mµ0 ○ τ0 ○ p0 .
Since p0 is an epimorphism, this implies that µ0 ○ σ0 = π ○Mµ0 ○ τ0.

For the successor step, suppose that we have already defined µ i . Since

π ○M(µ i ○ σi) = π ○M(π ○Mµ i ○ τ i)= π ○ flat ○MMµ i ○Mτ i= π ○Mµ i ○ flat ○Mτ i ,

the function π ○Mµ i ∶ MQ(i) → C factorises through the coequaliser
ofMσi and flat ○Mτ i , which is σi+1. Hence, there exists a function µ i+1 ∶
Q(i + 1) → C such that

µ i+1 ○ σi+1 = π ○Mµ i .

58

5. Eilenberg-Moore algebras

It follows that

µ i+1 ○ σi+1 = π ○Mµ i= π ○M(π ○ sing) ○Mµ i= π ○M(π ○Mµ i ○ sing)= π ○M(µ i+1 ○ σi+1 ○ sing)= π ○Mµ i+1 ○MQ(i , i + 1)= π ○Mµ i+1 ○ τ i+1 ,
µ i+1 ○ Q(i , i + 1) = µ i+1 ○ σi+1 ○ sing= π ○Mµ i+1 ○ sing= π ○ sing ○ µ i= µ i .

Finally, suppose that we have already defined µ i , for every i < δ, where
δ is some limit ordinal. Then (µ i)i<δ forms a cocone from Q ∣δ to C. Since(Q(i , δ))i is limiting, there exists a morphism µδ ∶ Q(δ) → C such that

µδ ○ Q(i , δ) = µ i , for all i < δ .
This implies that

µδ ○ qδ = µδ ○ Q(i , δ) ○ q i= µ i ○ q i= χ ,
µδ ○ σδ = µδ ○ Q(i , δ) ○ σi= µ i ○ σi= π ○Mµ i ○ τ i= π ○M(µδ ○ Q(i , δ)) ○ τ i= π ○Mµδ ○ τδ .

59

I. Monads

6. Li}ing Monad+

The free monad construction allows us to turn arbitrary functors into mon-
ads. In this section we present several ways to construct monads by trans-
ferring a monad from one category to another one. We start with a transfer
along an adjunction.

Proposition 6.1. Let F ⊣ G be an adjunction between the categories C andD,
let e ∶ Id ⇒ GF be its unit, i ∶ FG ⇒ Id the counit, and let ⟨M, µ, ε⟩ be a
monad onD.
(a) ⟨N, ν, η⟩ forms a monad onD, where

N ∶= GMF , ν ∶= G(µ ○Mi) , and η ∶= Gε ○ e .
(b) The functorG ∶ D → C can be lifted to a functor Ĝ ∶ Alg(M) → Alg(N)

which maps A = ⟨A, π⟩ to ⟨GA,G(π ○Mi)⟩.
(c) If Alg(M) has coequalisers, then Ĝ has a left adjoint F̂ mapping an

algebra A = ⟨A, π⟩ to the coequaliser (in Alg(M)) of
MFπ, (µ ○Mi) ∶MFNA→MFA .

Proof. (a) Clearly,N is a functor C → C and ν and η are natural transforma-
tions

ν ∶ GMFGMF⇒ GMF and η ∶ Id⇒ GMF .

For the monad axioms, note that

ν ○ η = Gµ ○GMi ○Gε ○ e= G(µ ○ ε ○ i) ○ e= id ○Gi ○ e= id ,

60

6. Lifting monads

ν ○Nη = Gµ ○GMi ○GMF(Gε ○ e)= G(µ ○M(i ○ FGε ○ Fe))= G(µ ○M(ε ○ i ○ Fe))= G(µ ○Mε)= id ,
ν ○Nν = Gµ ○GMi ○GMF(Gµ ○GMi)= G(µ ○M(i ○ FGµ ○ FGMi))= G(µ ○M(µ ○ i ○ FGMi))= G(µ ○ µ ○M(i ○ FGMi))= G(µ ○ µ ○M(Mi ○ i))= G(µ ○Mi ○ µ ○Mi)= Gµ ○GMi ○Gµ ○GMi= ν ○ ν .

(b) LetA = ⟨A, π⟩ be anM-algebra. To see that ĜA is anN-algebra, note
that

G(π ○Mi) ○ η = G(π ○Mi ○ ε) ○ e= G(π ○ ε ○ i) ○ e= Gi ○ e= id ,
G(π ○Mi) ○ ν = G(π ○Mi ○ µ ○Mi)= G(π ○ µ ○MMi ○Mi)= G(π ○Mπ ○MMi ○Mi)

= G(π ○M((π ○Mi) ○ i))
= G(π ○M(i ○ FG(π ○Mi)))
= G(π ○Mi) ○NG(π ○Mi) .

If φ ∶ A→ B is a morphism ofM-algebras, thenGφ ∶ Â→ B̂ is a morphism

61

I. Monads

ofN-algebras since

Gφ ○G(π ○Mi) = G(π ○Mφ ○Mi)
= G(π ○M(i ○ FGφ)) = G(π ○Mi) ○NGφ .

(c)The idea of the proof is as follows.When constructingQ ∶= F̂A fromA
we have to transfer the product π ∶ NA→ A to a functionMQ → Q . A first
try would be to set Q ∶= FA and to use some correspondence between
elements of A and elements of Q to transfer the definition of π from A
to Q. But this does not work since not every term s ∈MFA corresponds to
some t ∈ NA. And for such elements we do not know how to choose the
value π(s). Our solution is to simply leave such terms unevaluated. That
is, we set π(s) ∶= s. Of course, to do so we have to also add these terms
as elements to our algebra. This leads to an algebra with universe MFA
where multiplication is just the monad multiplication µ. But doing so is not
compatible with the original product π. As a final step we therefore have to
take a quotient that identifies terms s, t ∈MFAwhere the products of the
corresponding terms inNA coincide. Thus, we arrive at our final definiton,
we take for Q a suitable quotient ofMFA.

The formal definition is as follows. Let ρ ∶MFA→ Q with Q = ⟨Q , σ⟩
be the coequaliser (in Alg(M)) of

MFπ, µ ○Mi ∶MFNA→MFA .

(To see that this is well-defined, note thatM f ○ µ = µ ○MM f , for every
function f . Therefore,MFπ andMi areM-morphisms.) We set F̂A ∶= Q.

MFNA MFA Q

MMFA MQ

MFπ

µ ○Mi

Mi

ρ

µ

Mρ

σ

Todefine the action of F̂ onmorphisms, letφ ∶ A→ B be anN-morphism.
Then φ induces morphisms between the coequaliser diagrams assciated with
F̂A and F̂B. (This is in fact the definition of F̂φ.)

62

6. Lifting monads

MFNA MFA QA

MFNB MFB QB

MFπ

µ ○Mi

ρA

MFNφ MFφ F̂φ
MFπ

µ ○Mi ρB

Note that this immediately implies that ρ ∶MF⇒ F̂ is a natural trans-
formation since, by definition of F̂φ, we have

F̂φ ○ ρ = ρ ○MFφ .

Furthermore, every component ρA of ρ is an epimorphism (in Alg(M)):
given M-morphisms f , g ∶ Q → C with f ○ ρ = g ○ ρ, we can apply the
universality of ρ to the morphism ψ ∶= f ○ ρ, to obtain a unique morphism
h ∶ Q→ C such that h ○ ρ = ψ. This implies that f = h = g.
Having defined F̂, it remains to show that it is the left adjoint of Ĝ. We

define the unit τ ∶ Id ⇒ ĜF̂ of the adjunction by τ ∶= Gρ ○ η. Note that
τ is anN-morphism A→ ĜQ since

τ ○ π = Gρ ○ η ○ π= Gρ ○Gε ○ e ○ π= G(ρ ○ ε ○ Fπ) ○ e= G(ρ ○MFπ ○ ε) ○ e= G(ρ ○ µ ○Mi ○ ε) ○ e= Gρ ○ ν ○ η= Gρ

= G(ρ ○ µ ○Mε))
= G(σ ○Mρ ○M(ε ○ id))

63

I. Monads

= G(σ ○M((ρ ○ ε) ○ i ○ Fe))
= G(σ ○M(i ○ FG(ρ ○ ε) ○ Fe))
= G(σ ○Mi) ○GMF(Gρ ○ η)= G(σ ○Mi) ○Nτ .

Furthermore, τ is natural in A since, given anM-morphim φ ∶ A→ B,

τ ○ φ = Gρ ○ η ○ φ= Gρ ○Nφ ○ η= G(ρ ○MFφ) ○ η= G(Fφ ○ ρ) ○ η= GFφ ○ τ ,

where the fourth step follows from the fact that ρ ∶ MF⇒ F̂ is a natural
transformation.
To define the counit, let A = ⟨A, π⟩ be anM-algebra and let ρ = ρGA ∶

MFA→ QĜA be the coequaliser used in the definition of F̂(ĜA). Since
(π ○Mi) ○MF(G(π ○Mi)) = π ○M(i ○ FG(π ○Mi))= π ○M(π ○Mi ○ i)= π ○ µ ○MMi ○Mi= π ○Mi ○ µ ○Mi= (π ○Mi) ○ (µ ○Mi)

and π ○Mi is anM-morphism, we can use universality of ρ to find a unique
M-morphism υ ∶ F̂ĜA→ A with

υ ○ ρ = π ○Mi .

To prove that F̂ and Ĝ form an adjunction, it is now sufficient to show

64

6. Lifting monads

that υ ○ F̂τ = id and Ĝυ ○ τ = id. For the second equation, we have
Ĝυ ○ τ = Gυ ○Gρ ○ η= G(π ○Mi) ○Gε ○ e= G(π ○ ε ○ i) ○ e= Gi ○ e= id .

For the first one, we have

υ ○ F̂τ ○ ρ = υ ○ ρ ○MFτ= σ ○Mi ○MFτ= σ ○M(i ○ FGρ ○ Fη)= σ ○M(ρ ○ i ○ Fη)= ρ ○ µ ○M(i ○ Fη)= ρ ○ µ ○M(i ○ FGε ○ Fe)= ρ ○ µ ○M(ε ○ i ○ Fe)= ρ ○ µ ○M(ε ○ id)= ρ ○ id= ρ .

Since ρ is an epimorphism in Alg(M) and υ ○ F̂τ is anM-morphism, the
claim follows.

Di#ributive Law+

Our second construction provides a way to combine twomonads into a single
one. This is needed when we want to expand anM-algebra with operations
provided by a second monad N. An equivalent way of looking at such an
expansion is by finding a lift ofN from the base category toAlg(M). It turns
out that, in order for this to work, the two monads M and N need to be
compatible: there needs to be what is called a distributive law between them.

65

I. Monads

Definition 6.2. Let ⟨M, µ, ε⟩ and ⟨N, ν, η⟩ be monads. A natural trans-
formation δ ∶MN⇒ NM is a distributive law if

δ ○ µ = Nµ ○ δ ○Mδ , δ ○ ε = Nε ,
δ ○Mν = ν ○Nδ ○ δ , δ ○Mη = η .

MNA NMA

MMNA MNMA NMMA

δ

µ

Mδ δ

Nµ

MNA NMA

MNNA NMNA NNMA

δ

Mν

δ Nδ

ν

MNA

NA

NMA
δ

ε Nε

MNA

MA

NMA
δ

Mη
η

⌟
Example. LetMA ∶= A∗ be the monad for finite words and AA ∶= A∗/≈
its quotient by the relation

u ≈ v : iff u is a permutation of v .

ThenM-algebras are monoids andA-algebras commutative monoids. We
will write elements ofAA as sums a + ⋅ ⋅ ⋅ + b and those ofMA as products.
A distributive law δ ∶MA⇒ AMmaps a product of sums

∑
i<n0

a0i ⋅ ∑
i<n1

a1i ⋅ ⋯ ⋅ ∑
i<nk−1

ak i

to the sum

∑
σ
a0,σ(0)⋯ak−1,σ(k−1)

that ranges over all functions σ ∈ [n0] × ⋅ ⋅ ⋅ × [nk−1]. For instance,
δ((a + b)(c + d)) = ac + ad + bc + bd . ⌟

66

6. Lifting monads

Theabove axioms for a distributive law are not always themost convenient
to work with. In the following we will present several characterisations of
when a distributive law between two monads exists. One of them tells us
that a distributive law is precisely what is needed to life a monadN from the
base category to the category ofM-algebras.

Definition 6.3. Let ⟨M, µ, ε⟩ and ⟨N, ν, η⟩ be monads on some category C
and letU ∶ Alg(M) → C be the forgetful functor mapping anM-algebra to
its universe.
(a) We say that a monad ⟨N̂, ν̂, η̂⟩ is a lift of N to the category of M-

algebras if

U ○ N̂ = N ○U , Uν̂ = ν , Uη̂ = η .
(b)TheKleisli category Free(N) of N is the full subcategory of Alg(N)

induced by all freeN-algebras. The free functor FN ∶ C → Free(N)maps an
object C ∈ C to the freeN-algebra generated by C, that is,

FNC ∶= ⟨NC , ν⟩ , for objects C ∈ C ,
FNφ ∶= Nφ , for C-morphisms φ ∶ A→ B .

(c) An extension of M to Free(N) is a monad ⟨M̂, µ̂, ε̂⟩ on Free(N)
satisfying

M̂ ○ FN = FN ○M , µ̂ = FNµ , ε̂ = FNε . ⌟
Theorem6.4 (Beck). Let ⟨M, µ, ε⟩ and ⟨N, ν, η⟩ bemonads on the categoryC.
There exist bijections between the following objects :
(1) distributive laws δ ∶MN⇒ NM ;
(2) liftings N̂ of N to the category of M-algebras;
(3) extensions M̂ of M to the Kleisli category Free(N) ;
(4) functions κ such that

(m1) ⟨NM, κ, η ○ ε⟩ is a monad,

67

I. Monads

(m2) the functionsNε and η induce morphisms of monadsN⇒ NM and
M⇒ NM,

(m3) κ satisfies the middle unit law: κ ○N(ε ○ η) = id ;
(5) functions κ such that

(c1) ⟨NM, κ, η ○ ε⟩ is a monad,
(c2) κ ○NMη =Mµ,

(c3) κ ○Nε = ν,
(c4) ν ○Nκ = κ ○ ν,
(c5) Nµ ○ κ = κ ○NMNµ .

Proof. (1)⇒ (3) Let δ be a distributive law. We set

M̂⟨NC , ν⟩ ∶= ⟨NMC , ν⟩ , for an algebra ⟨NC , ν⟩ ∈ Free(N) ,
M̂φ ∶= ν ○Nδ ○NM(φ ○ η) , for a morphism φ ∶ A→ B .

We start by checking that M̂ is a functor. Clearly, M̂A ∈ Free(N), for every
A ∈ Free(N). Consider a morphism φ ∶ A → B. Then M̂φ ∶ M̂A → M̂B
is also a morphism since

M̂φ ○ ν = ν ○Nδ ○NM(φ ○ η) ○ ν= ν ○ ν ○NNδ ○NNM(φ ○ η)= ν ○Nν ○NNδ ○NNM(φ ○ η)
= ν ○N(ν ○Nδ ○NM(φ ○ η)) = ν ○NM̂φ .

Next, we show that M̂ is an extension ofM, that is, that M̂ ○ FN = FN ○M.
For an object C ∈ C, we have

M̂FNC = M̂⟨NC , ν⟩ = ⟨NMC , ν⟩ = FNMC .

68

6. Lifting monads

Similarly, for a morphism φ ∶ A→ B, we have

M̂FNφ = ν ○Nδ ○NM(Nφ ○ η)= ν ○N(δ ○MNφ ○Mη)= ν ○NNMφ ○N(δ ○Mη)= NMφ ○ ν ○Nη = NMφ = FNMφ .

Hence, it remains to show that ⟨M̂,FNµ,FNε⟩ is a monad.

FNµ ○ M̂FNµ = Nµ ○ ν ○Nδ ○NM(Nµ ○ η)= Nµ ○ ν ○NNMµ ○N(δ ○Mη)= Nµ ○NMµ ○ ν ○Nη= Nµ ○Nµ ○ id= FNµ ○ FNµ ,

FNµ ○ FNε = Nµ ○Nε = Nid = id ,
FNµ ○ M̂FNε = Nµ ○ ν ○Nδ ○NM(Nε ○ η)= ν ○NNµ ○NNMε ○N(δ ○Mη)= ν ○NNid ○Nη= id .

(3)⇒ (1) Given an extension M̂ ofM to Free(N), we set
δ ∶= UM̂ν ○ η .

(Note that M̂ν ∶ NMN⇒ NM, so this is well-typed.) To simplify notation
we will identify in the following morphisms ofN-algebras with their images
under the forgetful functorU. That is, we will omit all occurrences ofU and
we replace FN byN. Then the axioms for an extension M̂ take the form

M̂ ○N = N ○M , µ̂ = Nµ , ε̂ = Nε .

69

I. Monads

Since M̂φ is anN-algebra morphism between free algebras whose product
function is ν, we also have the equation

ν ○NM̂φ = M̂φ ○ ν , for every morphism φ ∶ FNA→ FNB .

To see that δ is a natural transformation, consider a morphism f ∶ A→ B.
Then

δ ○MN f = M̂ν ○ η ○MN f

= M̂ν ○NMN f ○ η
= M̂ν ○ M̂NN f ○ η
= M̂(ν ○NN f) ○ η
= M̂(N f ○ ν) ○ η
= M̂N f ○ M̂ν ○ η = NM f ○ δ .

Furthermore, δ is a distributive law since

δ ○ µ = M̂ν ○ η ○ µ
= M̂ν ○Nµ ○ η
= M̂ν ○ µ̂ ○ η
= µ̂ ○ M̂M̂ν ○ η
= Nµ ○ M̂(M̂ν ○ ν ○Nη) ○ η
= Nµ ○ M̂(ν ○NM̂ν ○Nη) ○ η
= Nµ ○ M̂ν ○ M̂N(M̂ν ○ η) ○ η
= Nµ ○ M̂ν ○NM(M̂ν ○ η) ○ η
= Nµ ○ M̂ν ○ η ○M(M̂ν ○ η) = Nµ ○ δ ○Mδ

70

6. Lifting monads

δ ○Mν = M̂ν ○ η ○Mν

= M̂ν ○NMν ○ η
= M̂ν ○ M̂Nν ○ η
= M̂(ν ○Nν) ○ η
= M̂(ν ○ ν) ○ η
= M̂ν ○ M̂ν ○ η
= M̂ν ○ ν ○Nη ○ M̂ν ○ η
= ν ○NM̂ν ○Nη ○ M̂ν ○ η
= ν ○N(M̂ν ○ η) ○ M̂ν ○ η = ν ○Nδ ○ δ ,

δ ○ ε = M̂ν ○ η ○ ε
= M̂ν ○Nε ○ η
= M̂ν ○ ε̂ ○ η = ε̂ ○ ν ○ η = Nε ,

δ ○Mη = M̂ν ○ η ○Mη

= M̂ν ○NMη ○ η
= M̂ν ○ M̂Nη ○ η
= M̂(ν ○Nη) ○ η = M̂id ○ η = η .

(1)⇒ (2) Let δ ∶MN⇒ NM be a distributive law. Given anM-algebra
A = ⟨A, π⟩, we set N̂A ∶= ⟨NA, π̂⟩ with π̂ ∶= Nπ ○ δ ∶MNA→ NA. For a
morphism φ ∶ A→ B, we set N̂φ ∶= Nφ.

We start by showing that this defines a functor Alg(M) → Alg(M). If

71

I. Monads

A = ⟨A, π⟩ is anM-algebra, then so is N̂A since

π̂ ○Mπ̂ = Nπ ○ δ ○M(Nπ ○ δ) π̂ ○ є = Nπ ○ δ ○ є= Nπ ○NMπ ○ δ ○Mδ = Nπ ○Nє= Nπ ○Nµ ○ δ ○Mδ = id .= Nπ ○ δ ○ µ= π̂ ○ µ ,
Furthermore, for morphism a φ ∶ A→ B ofM-algebras, we have

N̂φ ○Mπ̂ = Nφ ○Nπ ○ δ= N(π ○Mφ) ○ δ
= Nπ ○ δ ○MNφ = π̂ ○MN̂φ .

It now follows that N̂ forms a monad with multiplication ν̂ ∶= N̂ν and
unit map η̂ ∶= N̂η : we have just shown that ν̂ and η̂ are morphisms ofM-
algebras and the equations for the monad laws immediatly follow from those
for ν and η.

Finally, to show that N̂ is a lift ofN it is sufficient to note that, by definition,

U ○ N̂ = N ○U , Uν̂ = ν , Uη̂ = η .
(2)⇒ (4) Given a set A, we lift the free algebra FA = ⟨MA, µ⟩ to N̂FA

and N̂N̂FA. The products of these algebras are morphisms

µ̂ ∶MNMA→ NMA and ˆ̂µ ∶MNNMA→ NNMA .

We claim that

κ ∶= ν ○Nµ̂

is the desired morphism.
First, note that, µ̂ being the product of anM-algebra, we have

µ̂ ○Mµ̂ = µ̂ ○ µ and µ̂ ○ ε = id .

72

6. Lifting monads

The first of these two equations implies that µ̂ is a morphism ofM-algebras.
Consequently, so is N̂µ̂ = Nµ̂ and we have

Nµ̂ ○ µ̂ = ˆ̂µ ○MNµ̂ .

Furthermore, by definition of a lift, the underlying morphisms of ν̂ and η̂
are, respectively, ν and η. As ν̂ ∶ N̂N̂MA → N̂MA and η̂ ∶ MA → N̂MA
are morphisms ofM-algebras, it follows that

µ̂ ○Mν = ν ○ ˆ̂µ and µ̂ ○Mη = η ○ µ .
For (m1), we have to show that κ is a natural transformationNMNM⇒ NM
and that κ and η○ ε satisfy the three monad laws. For the former, let φ ∶ A→
B be amorphism.ThenMφ is amorphismFA → FB and, therefore, N̂Mφ =
NMφ is one of NFA → NFB . This implies that µ̂ ○MNMφ = NMφ ○ µ̂.
Thus, µ̂ is a natrual transformationMNM⇒ NM. Since ν ∶ NN⇒ N is
also a natrual transformation it follows that so is the composition κ = ν○Nµ̂.

It remains to check the monad laws.

κ ○ κ = ν ○Nµ̂ ○ ν ○Nµ̂= ν ○ ν ○NNµ̂ ○Nµ̂

= ν ○Nν ○N ˆ̂µ ○NMNµ̂= ν ○Nµ̂ ○NMν ○NMNµ̂= κ ○NMκ ,

κ ○ η ○ ε = ν ○Nµ̂ ○Nε ○ η = ν ○ η = id ,
κ ○NM(η ○ ε) = ν ○Nµ̂ ○NM(η ○ ε)= ν ○N(µ̂ ○Mη) ○NMε= ν ○N(η ○ µ) ○NMε= id .

73

I. Monads

For (m2), we have

κ ○Nε ○NNε = ν ○Nµ̂ ○Nε ○NNε = ν ○NNε = Nε ○ ν ,
κ ○ η ○Mη = ν ○Nµ̂ ○ η ○Mη = ν ○ η ○ µ̂ ○Mη = µ̂ ○Mη = η ○ µ .

For (m3), we have

κ ○N(ε ○ η) = ν ○Nµ̂ ○N(ε ○ η) = ν ○Nη = id .
(4)⇒ (5) Suppose that κ satisfies (m1)–(m3).We claim that it also satisfies

(c1)–(c5). (c1) is the same as (m1). For (c3), we have

κ ○Nε = κ ○N(ε ○ κ ○N(ε ○ η))= κ ○NMκ ○N(ε ○Nε ○Nη)= κ ○ κ ○Nε ○NNε ○NNη= κ ○Nε ○ ν ○NNη= κ ○N(ε ○ η) ○ ν= ν ,
where the first and last steps follow from (m3) and the fourth step from (m2).
(c4) nows follow by (c3).

ν ○Nκ = κ ○Nε ○Nκ= κ ○NMκ ○Nε= κ ○ κ ○Nε= κ ○ ν .
For (c2), we have

κ ○NMη = κ ○ ν ○Nη ○NMη= ν ○Nκ ○Nη ○NMη= ν ○N(η ○ µ)= ν ○Nη ○Nµ= Nµ ,

74

6. Lifting monads

where the second step follows by (c4) and the third one by (m2). Finally,
(c6) follows by (c5).

Nµ ○ κ = κ ○NMη ○ κ= κ ○ κ ○NMNMη= κ ○NMκ ○NMNMη= κ ○NM(κ ○NMη)= κ ○NMNµ .

(5)⇒ (1) Given κ satisfying (c1)–(c5), we set

δ ∶= κ ○ η ○MNε .

Then δ is a natural transformation since so are κ, η, and ε. Furthermore,

δ ○ µ = κ ○ η ○MNε ○ µ= κ ○ η ○ µ ○MMNε= κ ○Nµ ○ η ○MMNε= κ ○ (κ ○NMη) ○ η ○MMNε= κ ○NMκ ○NMη ○ η ○MMNε= κ ○ η ○Mκ ○Mη ○MMNε= κ ○ η ○MN(µ ○ ε) ○Mδ= κ ○NMNµ ○ η ○MNε ○Mδ= Nµ ○ κ ○ η ○MNε ○Mδ= Nµ ○ δ ○Mδ

75

I. Monads

δ ○Mν = κ ○ η ○MNε ○Mν= κ ○ η ○MNε ○M(κ ○Nε)= κ ○NMNε ○NMκ ○ ηMNε= κ ○NMκ ○NMNMNε ○ η ○MNε ,= κ ○ κ ○NMNMNε ○ η ○MNε ,= κ ○NMNε ○ κ ○ η ○MNε ,= κ ○ ν ○Nη ○NMNε ○ κ ○ η ○MNε ,= ν ○N(κ ○ η ○MNε) ○ κ ○ η ○MNε ,= ν ○Nδ ○ δ ,
δ ○ ε = κ ○ η ○MNε ○ ε= κ ○ η ○ ε ○Nε= κ ○ ζ ○Nε= Nε ,

δ ○Mη = κ ○ η ○MNε ○Mη= κ ○ η ○M(η ○ ε)= κ ○NMζ ○ η= η .

It remains to prove that the above translations are bijective. We start by
showing that (1) ⇒ (3) and (3) ⇒ (1) are inverse to each other. We map a
given distributive law δ, to the functor M̂ with

M̂φ = ν ○ δ ○NM(φ ○ η) .

76

6. Lifting monads

This functor is then mapped back to

δ′ = M̂ν ○ η= ν ○Nδ ○NM(ν ○ η) ○ η= ν ○Nδ ○ η= ν ○Nδ ○ δ ○Mη= δ ○Mν ○Mη= δ .
Conversely, given an extention M̂, we construct the distributive law

δ ∶= M̂ν ○ η ,
which in turn produces the functor M̂′ with

M̂′⟨NC , ν⟩ = ⟨NMC , ν⟩ = M̂⟨NC , ν⟩ ,
M̂′φ = ν ○Nδ ○NM(φ ○ η)

= ν ○N(M̂ν ○ η) ○NM(φ ○ η)
= ν ○NM̂ν ○Nη ○NM(φ ○ η)
= M̂ν ○ ν ○Nη ○NM(φ ○ η)
= M̂ν ○NM(φ ○ η)
= M̂ν ○ M̂N(φ ○ η)
= M̂(ν ○N(φ ○ η))
= M̂(φ ○ ν ○Nη)
= M̂φ .

For the remaining translations (1) ⇒ (2) ⇒ (4) ⇒ (5) ⇒ (1), we prove
bijectivity by showing that, starting with one of the four kinds of objects and
applying all translations in order, we obtain the original object back.

Given a distributive law δ, the first translation maps it to a monad N̂ with
µ̂ = Nµ ○ δ. The second step, maps this to the morphism κ = ν ○Nµ̂. The

77

I. Monads

third step is the identity, and the last stepmaps κ to κ○η○MNε. Composing
these steps we obtain

κ ○ η ○MNε = ν ○Nµ̂ ○ η ○MNε= ν ○N(Nµ ○ δ) ○ η ○MNε= Nµ ○ ν ○Nδ ○ η ○MNε= Nµ ○ ν ○ η ○ δ ○MNε= Nµ ○NMε ○ δ= δ ,
as desired.
Similarly, if we start with κ as in (4) or (5), we translate it into δ =

κ ○ η ○MNε and then into the functor mapping ⟨A, π⟩ to ⟨NA, Nπ ○ δ⟩.
Finally, we obtain the morphism

ν ○Nµ̂ = ν ○N(Nµ ○ δ)= ν ○NNµ ○N(κ ○ η ○MNε)= Nµ ○ ν ○Nκ ○Nη ○NMNε= Nµ ○ κ ○ ν ○Nη ○NMNε= Nµ ○ κ ○NMNε= κ ○NMNµ ○NMNε= κ .
Finally, consider the case where we start with a lifting N̂. Then we obtain

κ = ν ○ Nµ̂, δ = κ ○ η ○MNε, and finally the functor mapping ⟨A, π⟩
to ⟨A, Nπ ○ δ⟩. We have to prove that the resulting algebra is equal to
N̂⟨A, π⟩ = ⟨NA, π̂⟩. Note that the associative law

π ○ µ = π ○Mπ

implies that the morphism π ∶ MA → A is a morphism of M-algebras⟨MA, µ⟩ → ⟨A, π⟩. Consequently, its image under N̂ is also a morphism of

78

6. Lifting monads

M-algebras and we have

N̂π ○ µ̂ = π̂ ○MN̂π .

Since N̂π = Nπ it follows that

Nπ ○ δ = Nπ ○ κ ○ η ○MNε= Nπ ○ ν ○Nµ̂ ○ η ○MNε= Nπ ○ ν ○ η ○ µ̂ ○MNε= Nπ ○ µ̂ ○MNε= π̂ ○MNπ ○MNε= π̂ ,

as desired.

Corollary 6.5. Let δ ∶MN⇒ NM be a distributive law between the monads⟨M, µ, ε⟩ and ⟨N, ν, η⟩.
(a) The composition NM forms a monad where multiplication and singleton

operation are given by the morphisms

ν ○NNµ ○Nδ ∶ NMNM⇒ NM and η ○ ε ∶ Id⇒ NM .

(b) One can lift N to a functor onM-algebras that maps anM-algebra A =⟨A, π⟩ to theM-algebra NA with product

Nπ ○ δ ∶MNA→ NA .

(c) Every liftNA of anM-algebraA = ⟨A, π⟩ carries a canonicalNM-algebra
structure with product

ν ○NNπ ○Nδ ∶ NMNA→ NA .

Remark. What do we do if we can to combine two monadsM andN but
there is no distributive law between them? In this case we can use the free
monad construction and use the more complicated monad (NM)∗. ⌟

79

I. Monads

Exercise 6.1. LetM andN be two monads.

(a) Prove that (M +N)∗ ≅ (NM)∗.
(b) Show that every distributive law δ ∶MN⇒ NM induces an isomorph-

ism (NM)∗ ≅ NM. ⌟
We conclude this section with a simple observation of how to transfer

a distributive law along a morphism of monads. A similar result holds for
monomorphic ρ.

Lemma 6.6. Let ⟨M, µ, ε⟩, ⟨M′ , µ′ , ε′⟩, and ⟨N, ν, η⟩ be monads, ρ ∶M⇒
M′ amorphism of monads, δ ∶MN⇒ NM a distributive law, and δ′ = (δ′A)A
a family of functions such that

δ′ ○ ρ = Nρ ○ δ .
If ρ andMρ are epimorphisms, then δ′ is a distributive lawM′N⇒ NM′.
Proof. We start by checking that δ′ is natural. Given a morphism f ∶ A→ B,
we have

NM′ f ○ δ′ ○ ρ = NM′ f ○Nρ ○ δ= Nρ ○NM f ○ δ= Nρ ○ δ ○MN f = δ′ ○M′N f .

It remains to prove the four equations for a distributive law. Note that

δ′ ○ ε′ = δ′ ○ ρ ○ ε= Nρ ○ δ ○ ε= Nρ ○Nε= Nε′ ,
δ′ ○M′η ○ ρ = δ′ ○ ρ ○Mη= Nρ ○ δ ○Mη= Nρ ○ η= η ○ ρ ,

80

7. Bialgebras

δ′ ○ µ′ ○ (ρ ○Mρ) = δ′ ○ ρ ○ µ= Nρ ○ δ ○ µ= Nρ ○Nµ ○ δ ○Mδ= N(µ′ ○ ρ ○Mρ) ○ δ ○Mδ= Nµ′ ○Nρ ○ δ ○MNρ ○Mδ= Nµ′ ○ δ′ ○ ρ ○M(δ′ ○ ρ)= Nµ′ ○ δ′ ○M′δ′ ○ (ρ ○Mρ) ,
δ′ ○M′ν ○ ρ = δ′ ○ ρ ○Mν= Nρ ○ δ ○Mν= Nρ ○ ν ○Nδ ○ δ= ν ○NNρ ○Nδ ○ δ= ν ○N(δ′ ○ ρ) ○ δ= ν ○Nδ′ ○ δ′ ○ ρ .

As ρ and ρ ○Mρ are epimorphisms, it follows that

δ′ ○ ε′ = Nε , δ′ ○ µ′ = Nµ′ ○ δ′ ○M′δ′ ,
δ′ ○M′η = η , δ′ ○M′ν = ν ○Nδ′ ○ δ′ .

7. Bialgebra+

The theory of distributive laws also provides a criterion on when two al-
gebra structures π ∶ MA → A and ρ ∶ NA → A on the same set A can
be combined into a single NM-algebra structure. The case where we are
particularly interested in, consists in adding a meet operation inf ∶ UA→ A
to anM-algebra π ∶MA→ A.

Definition 7.1. Let δ ∶ MN ⇒ NM be a distributive law between the
monads ⟨M, µ, ε⟩ and ⟨N, ν, η⟩.

(a) A δ-bialgebraA = ⟨A, π, ρ⟩ consists of an objectA and twomorphisms
π ∶MA→ A and ρ ∶ NA→ A such that

81

I. Monads

◆ ⟨A, π⟩ forms anM-algebra,◆ ⟨A, ρ⟩ forms anN-algebra,◆ π ○Mρ = ρ ○Nπ ○ δ .
(b) A morphism of δ-bialgebras is a morphism φ ∶ A→ B that is both an

M-morphism and anN-morphism.
(c) We denote the category of all δ-bialgebras and their morphisms by

Bialg(δ). ⌟
Example. Let δ ∶MA⇒ AM be the distributive law from the example on
page 66. A δ-bialgebra is a structure ⟨S , π, ρ⟩ where ⟨S , π⟩ is an arbitrary
monoid and ⟨S , ρ⟩ a commutative. If we write the former multiplicatively
and the latter additively, the bialgebra axiom

π ○Mρ = ρ ○Nπ ○ δ
reduces to the familiar distributive law

(a + b) ⋅ (c + d) = ac + ad + bc + bd .

Hence, δ-bialgebras are the same as semirings. ⌟
It turns out that a δ-bialgebra is just another formalisation for an NM-

algebra.

Theorem 7.2. Let δ ∶MN⇒ NM be a distributive law between the monads⟨M, µ, ε⟩ and ⟨N, ν, η⟩.
(a) Every δ-bialgebra A = ⟨A, π, ρ⟩ induces an NM-algebra ⟨A, σ⟩ with

product

σ = ρ ○Nπ .

(b) Every NM-algebra A = ⟨A, σ⟩ induces a δ-bialgebra ⟨A, π, ρ⟩ with
products

π = σ ○ η and ρ = σ ○Nε .

82

7. Bialgebras

(c) This correspondence between NM-algebras and δ-bialgebras is bijective.

(d) A morphism φ ∶ A → B is an NM-morphism if, and only if, it is a
δ-bialgebra morphism.

Proof. Remember formTheorem 6.4 that the monadNM has the unit map
η ○ ε and the product

κ ∶= ν ○NNµ ○Nδ .
(a) Let A = ⟨A, π, ρ⟩ be a δ-bialgebra. Then

σ ○ (η ○ ε) = ρ ○Nπ ○ η ○ ε= ρ ○ η ○ π ○ ε= id ○ id ,
σ ○NMσ = ρ ○Nπ ○NM(ρ ○Nπ)= ρ ○N(π ○Mρ) ○NMNπ= ρ ○N(ρ ○Nπ ○ δ) ○NMNπ= ρ ○Nρ ○NNπ ○NNMπ ○Nδ= ρ ○ ν ○NN(π ○ µ) ○Nδ= (ρ ○Nπ) ○ (ν ○NNµ ○Nδ)= σ ○ κ .

(b) LetA = ⟨A, σ⟩ be anNM-algebra.Then ⟨A, σ○η⟩ is the η-reduct ofA.
By Lemma II.3.2, it is therefore also anM-algebra. Furthermore, ⟨A, σ ○Nε⟩
is anN-algebra since

ρ ○ η = σ ○Nε ○ η= σ ○ η ○ ε= id ,

83

I. Monads

ρ ○Nρ = σ ○Nε ○N(σ ○Nε)= σ ○NM(σ ○Nε) ○Nε= σ ○ κ ○N(MNε ○ ε)= σ ○ ν ○NNµ ○Nδ ○N(MNε ○ ε)= σ ○ ν ○N(Nµ ○NMε ○ δ ○ ε)= σ ○ ν ○N(δ ○ ε)= σ ○ ν ○NNε= σ ○Nε ○ ν= ρ ○ ν .
Finally, we have

ρ ○Nπ ○ δ = (σ ○Nε) ○N(σ ○ η) ○ δ= σ ○NMσ ○Nε ○Nη ○ δ= σ ○ κ ○Nε ○Nη ○ δ= σ ○ ν ○NNµ ○Nδ ○Nε ○Nη ○ δ= σ ○ ν ○NNµ ○NNε ○Nη ○ δ= σ ○ ν ○Nη ○ δ= σ ○ δ= σ ○N(µ ○Mε) ○ δ= σ ○Nµ ○ δ ○MNε= σ ○Nµ ○ (ν ○ η) ○ δ ○MNε= σ ○ ν ○NNµ ○Nδ ○ η ○MNε= σ ○ κ ○ η ○MNε= σ ○NMσ ○ η ○MNε= (σ ○ η) ○M(σ ○Nε)= π ○Mρ .

(c)We have to show that themappings from (a) and (b) are inverse to each
other. First, let ⟨A, σ⟩ be an NM-algebra. The corresponding δ-bialgebra

84

7. Bialgebras

has products π = σ ○ η and ρ = σ ○ Nε. Mapping it back, we obtain the
product

σ ′ = ρ ○Nπ= (σ ○Nε) ○N(σ ○ η)= σ ○N(Mσ ○ ε ○ η)= σ ○ κ ○N(ε ○ η)= σ ,

where the last step follows byTheorem 6.4 (4).
Conversely, let ⟨A, π, ρ⟩ be a δ-bialgebra.The correspondingNM-algebra

has the product σ = ρ ○Nπ. Mapping it back, we obtain the products

π′ = σ ○ η= ρ ○Nπ ○ η= ρ ○ η ○ π= π ,

ρ′ = σ ○Nε= ρ ○Nπ ○Nε= ρ .

(d) Let ⟨A, σ⟩ and B = ⟨B, σ ′⟩ be NM-algebras, and let ⟨A, π, ρ⟩ and⟨B, π′ , ρ′⟩ be the corresponding δ-algebras. If φ ∶ A → B is an NM-
morphism, we have

φ ○ π = φ ○ σ ○ η= σ ′ ○NMφ ○ η= σ ′ ○ η ○Mφ= π′ ○Mφ ,

85

I. Monads

φ ○ ρ = φ ○ σ ○Nε= σ ′ ○NMφ ○Nε= σ ′ ○Nε ○Nφ= ρ′ ○Nφ .

Conversely, if φ ∶ A→ B is a δ-bialgebra morphism, we have

φ ○ σ = φ ○ ρ ○Nπ= ρ′ ○Nφ ○Nπ= ρ′ ○Nπ ○NMφ= σ ′ ○NMφ .

As a consequence the functor Alg(M) → Alg(NM) from Corollary 6.5
can be used to turn everyM-algebra into a δ-bialgebra.

Theorem 7.3. Let δ ∶MN⇒ NM be a distributive law. The forgetful functor
Bialg(δ) → Alg(M) has a left adjoint, which maps anM-algebra A = ⟨A, π⟩
to the δ-bialgebra ⟨NA,Nπ ○ δ, ν⟩. The unit of this adjunction is given by the
unit morphism η of the monad N.

Proof. LetW ∶ Bialg(δ) → Alg(M) be the forgetful functor and let N̂ ∶
Alg(M) → Bialg(δ) be its supposed left adjoint.

First, note that N̂ is the functor Alg(M) → Alg(NM) → Bialg(δ) that
is induced byN according to Corollary 6.5 (c) andTheorem 7.2 (b). To see
that, note that it maps anM-algebra A = ⟨A, π⟩ first to the NM-algebra⟨NA, σ⟩ with

σ = ν ○NNπ ○Nδ ,

86

7. Bialgebras

and then to the δ-bialgebra ⟨NA, π̂, ρ̂⟩ where
π̂ = σ ○ η= ν ○NNπ ○Nδ ○ η= Nπ ○ ν ○Nδ ○ δ ○Mη= Nπ ○ δ ○Mν ○Mη= Nπ ○ δ ,
ρ̂ = σ ○Nε= ν ○NNπ ○Nδ ○Nε= ν ○NNπ ○NNε= ν .

To prove that N̂ ⊣W, we construct the unit and counit. Let A = ⟨A, π⟩
be anM-algebra and B = ⟨B, π′ , ρ′⟩ a δ-bialgebra. Then

WN̂A = ⟨NA,Nπ ○ δ⟩ = NA ,

N̂WB = ⟨NB,Nπ′ ○ δ, ν⟩ .
We claim that the unit of the adjunction is given by η ∶ Id →WN̂ and its
counit by τ ∶ N̂W → Id where τB ∶= ρ′ is the N-product of B. Note that
they satisfy the identities

τ ○Nη = ν ○Nη = id and Wρ ○ η = ρ ○ η = id
characterising the unit and counit. Hence, it remains to prove that η and τ
are natural transformations of the correct form.

First, note that η is indeed anM-morphism since

(Nπ ○ δ) ○Mη = Nπ ○ η = η ○ π ,

87

I. Monads

while τ is a morphism of δ-bialgebras since

τ ○ (Nπ′ ○ δ) = ρ′ ○Nπ′ ○ δ= π′ ○Mρ′= π′ ○Mτ ,
τ ○ ν = ρ′ ○ ν= ρ′ ○Mρ′= ρ′ ○Mτ .

For naturality, we consider two morphisms φ ∶ ⟨A0 , π0⟩ → ⟨A1 , π1⟩ and
ψ ∶ ⟨B0 , π′0 , ρ′0⟩ → ⟨B1 , π′1 , ρ′1⟩. Then

η ○ φ = Nφ ○ η and ρ′1 ○Nψ = ψ ○ ρ′0
follow from naturality of η and the fact that ψ is anN-morphism.

Corollary 7.4. LetA = ⟨A, π⟩ be anM-algebra,B = ⟨B, π′ , ρ′⟩ a δ-bialgebra,
and φ ∶ A→ B anM-morphism. Then

φ̂ ∶= π′ ○Nφ

is the unique δ-bialgebra morphism φ̂ ∶ NA→ B such that

φ = φ̂ ○ η .
A B

NA

φ

η φ̂

For our second construction of δ-bialgebras, we need to generalise the
notion of a δ-bialgebra as follows.

Definition 7.5. Let δ ∶ MN ⇒ NM be a distributive law between the
monads ⟨M, µ, ε⟩ and ⟨N, ν, η⟩. A function j ∶ A→ B from anM-algebraA
to an N-algebra B is δ-distributive if there exists a function σ ∶ MB → B
such that

σ ○M(ν ○N j) = ν ○Nπ ○ δ ○MN j . ⌟

88

7. Bialgebras

Lemma 7.6. Let δ ∶ MN⇒ NM be a distributive law between the monads⟨M, µ, ε⟩ and ⟨N, ν, η⟩. Let A be both anM-algebra and an N-algebra. Then
A is a δ-bialgebra if, and only if, the identity id ∶ A→ A is δ-distributive.

Proof. (⇒) In the definition of meet-distributivity, we can take σ ∶= π.(⇐) Let σ be the function from the definition of meet-distributivity.
Then

σ = σ ○M(ν ○ η)= ν ○Nπ ○ δ ○Mη= ν ○Nπ ○ η= ν ○ η ○ π= π .

Hence,

π ○Mν = σ ○M(ν ○Nid)= ν ○Nπ ○ δ ○MNid = ν ○Nπ ○ δ ,
and A is a δ-bialgebra.

Proposition 7.7. Let δ ∶ MN ⇒ NM be a distributive law between the
monads ⟨M, µ, ε⟩ and ⟨N, ν, η⟩ and suppose that E is a class of epimorphisms
preserved by bothM andN. Let φ ∶ C → A be a δ-distributive function such that
ρ ○Nφ ∈ E (i.e., such that rng φ generates A = ⟨A, ρ⟩ as an N-algebra). There
exists a unique function σ ∶MA→ A such that ⟨A, σ , ρ⟩ forms a δ-bialgebra
and φ anM-morphism.

Proof. Let σ ∶MA→ A be the function from the definition of δ-distributiv-

89

I. Monads

ity. We start by proving that ⟨A, σ⟩ is anM-algebra. Note that

σ ○ ε ○ (ρ ○Nφ) = σ ○M(ρ ○ η) ○ ε ○ (ρ ○Nφ)= σ ○M(ρ ○ η) ○M(ρ ○Nφ) ○ ε= σ ○Mρ ○MN(ρ ○Nφ) ○Mη ○ ε= ρ ○Nπ ○ δ ○MN(ρ ○Nφ) ○Mη ○ ε= ρ ○Nπ ○ δ ○ ε ○N(ρ ○Nφ) ○ η= ρ ○Nπ ○ δ ○ ε ○ η ○ (ρ ○Nφ)= ρ ○Nπ ○Nε ○ η ○ (ρ ○Nφ)= ρ ○ η ○ (ρ ○Nφ)= ρ ○Nφ ,

σ ○Mσ ○MM(ρ ○Nφ) = σ ○M(ρ ○Nπ ○ δ ○MNφ)= σ ○M(ρ ○Nπ ○NMφ ○ δ)= σ ○M(ρ ○Nφ ○Nπ ○ δ)= ρ ○Nπ ○ δ ○MNφ ○M(Nπ ○ δ)= ρ ○Nπ ○NM(φ ○ π) ○ δ ○Mδ= ρ ○N(π ○M(π ○Mφ)) ○ δ ○Mδ= ρ ○N(π ○ µ ○MMφ) ○ δ ○Mδ= ρ ○N(π ○Mφ ○ µ) ○ δ ○Mδ= ρ ○N(π ○Mφ) ○ δ ○ µ= ρ ○Nπ ○ δ ○MNφ ○ µ= ρ ○Nπ ○ δ ○ µ ○MMNφ= σ ○Mρ ○ µ ○MMNφ= σ ○ µ ○MM(ρ ○Nφ) .
Since ρ ○Nφ ∈ E andMM(ρ ○Nφ) ∈ E are epimorphisms, it follows that

σ ○ ε = id and σ ○Mσ = σ ○ µ .

90

7. Bialgebras

To check that A is even a δ-bialgebra, note that

σ ○M(ρ ○Nid) ○MN(ρ ○Nφ)= σ ○M(ρ ○Nρ ○NNφ)= σ ○M(ρ ○ ν ○NNφ)= σ ○M(ρ ○Nφ ○ ν)= ρ ○Nπ ○ δ ○MNφ ○Mν= ρ ○Nπ ○ δ ○M(ν ○NNφ)= ρ ○Nπ ○ ν ○Nδ ○ δ ○MNNφ= ρ ○Nπ ○ ν ○Nδ ○NMNφ ○ δ= ρ ○ ν ○N(Nπ ○ δ ○MNφ) ○ δ= ρ ○Nρ ○N(Nπ ○ δ ○MNφ) ○ δ= ρ ○N(σ ○M(ρ ○Nφ)) ○ δ= ρ ○Nσ ○ δ ○MN(ρ ○Nφ))= ρ ○Nσ ○ δ ○MNid ○MN(ρ ○Nφ) .
By surjectivity ofMN(ρ ○Nφ) ∈ E, this implies that

σ ○M(ρ ○Nid) = ρ ○Nσ ○ δ ○MNid .

To see that φ is anM-morphism, note that

σ ○Mφ = σ ○M(ρ ○ η ○ φ)= σ ○M(ρ ○Nφ ○ η)= ρ ○Nπ ○ δ ○MNφ ○Mη= ρ ○Nπ ○NMφ ○ δ ○Mη= ρ ○N(φ ○ π) ○ δ ○Mη= ρ ○N(φ ○ π) ○ η= ρ ○ η ○ φ ○ π= φ ○ π .

91

I. Monads

Finally, for uniqueness suppose that σ ′ ∶ MA → A is another function
like this. Then we have

σ ○M(ρ ○Nφ) = ρ ○Nπ ○ δ ○MNφ = σ ′ ○M(ρ ○Nφ) ,
and surjectivity ofM(ρ ○Nφ) ∈ E implies that σ = σ ′.

Note+

Much of the material in this chapter is standard and can be found in various
accounts on category theory.The definition of discrete categories seems to be
new. For a treatment of polynomial functors in a general category-theoretical
setting, see [14].

92

II. Algebra

1. Fa$torisation Sy#em+

To further develop our algebraic machinery we need the notions of a sub-
algebra and a quotient. We start with the observation that, in Set, every
function can be uniquely factorised into a surjective function followed by an
injective one. Let us axiomatise this property.

Definition 1.1. Let C be a category and E andM two sets of morphisms.
(a) We call the morphisms inM embeddings, orM-morphisms, and those

in E projections, or E-morphisms.
(b) An EM-factorisation of a morphism φ ∶ A → B consists of two

morphisms ε ∈ E and µ ∈M such that φ = µ ○ ε.
(c) A factorisation system for C is a pair ⟨E ,M⟩ of classes of morphisms

satisfying the following conditions.

(fs1) E consists of epimorphisms and it contains all isomorphisms.

(fs2) M consists of monomorphisms and it contains all isomorphisms.

(fs3) E andM are both closed under composition.

(fs4) Every morphism φ ∶ A→ B has an EM-factorisation.

(fs5) For every choice of morphisms φ,ψ, µ, ε with µ ∈ M, ε ∈ E,
and ψ ○ ε = µ ○ φ, there exists a unique morphism δ such that

µ ○ δ = ψ ,

δ ○ ε = φ .

A B

C D

ε

φ ψ

µ

δ

abstract algebraic language theory 2022-12-11 — ©achim blumensath 93

II. Algebra

(fs5) is often referred to as the diagonal fill-in property.
(d) If φ = µ ○ ε with µ ∈M and ε ∈ E, we call µ the image of φ and ε its

kernel.We denote them by imφ and kerφ, respectively. (We will see below
that this factorisation is unique, up to isomorphism.) ⌟
Remark. Axiom (fs5) is the category-theoretical analogue of the Factorisa-
tion Lemma from Universal Algebra. The following reformulation makes
this more apparent: given morphisms ε ∶ A → B, φ ∶ A → C, ψ ∶ B → C
with ε ∈ E satisfying φ = ψ ○ ε, it follows that

kerφ = (kerψ) ○ ε and imφ = imψ .

A B

C

A B

X

C

ε

φ ψ

ε

ker φ kerψ

im φ = imψ ⌟
Example. (a)The only factorisation system for Set is ⟨E ,M⟩ where E con-
sists of all surjective functions and M of all injective ones. Most axioms
follow immediately, only (fs5) requires a bit of thought.
Hence, suppose that ψ ○ ε = µ ○ φ where ε is surjective and µ injective.

We define δ as follows. Given an element b, we choose some a ∈ ε−1(b) and
we set δ(b) ∶= φ(a). This definition immediately implies that

δ(ε(a)) = φ(a) , for all a .

Hence, it remains to check that the definition of δ does not depend on
the choice of a. Suppose that ε(a) = ε(a′). Then

µ(φ(a)) = ψ(ε(a)) = ψ(ε(a′)) = µ(φ(a′)) ,
which by injectivity of µ implies that φ(a) = φ(a′), as desired.

(b) We obtain a factorisation system for Pos by taking forM all injective
functions and for E all surjective functions ε ∶ A→ B satisfying

ε(a) ≤ ε(b) ⇔ a′ ≤ b′ , for some a′ ∈ ε−1(a) and b′ ∈ ε−1(b) .

94

1. Factorisation systems

Again most of the axioms are trivial. For (fs5) we can proceed as in the
case of sets above. It only remains to check that the function δ is monotone.
Hence, suppose that b ≤ b′. This implies that a ≤ a′ for all a ∈ ε−1(b) and
a′ ∈ ε−1(b′). Consequently, δ(b) = φ(a) ≤ φ(a′) = δ(b′).
(c) A second factorisation system for Pos consists of all surjective mono-

tone functions for E all and all embeddings forM, i.e., all functions µ ∶ A→
B satisfying

a ≤ b iff µ(a) ≤ µ(b) , for all a, b ∈ A .

To check (fs5), consider morphisms ψ ○ ε = µ ○ φ where ε is surjective and
µ is an embedding. Again, we define

δ(b) ∶= φ(a) , for some a ∈ ε−1(b) .
To show that this is well-defined and that δ is monotone, note that

ε(a) ≤ ε(a′) ⇒ ψ(ε(a)) ≤ ψ(ε(a′))⇒ µ(φ(a)) ≤ µ(φ(a′))⇒ φ(a) ≤ φ(a′) ,
where the last step follows since µ is an embedding.

(d) For Top there are again two canonical factorisation systems: we can
either take all surjective continuousmaps and all embeddings, or all quotients
and all injective maps.

(e) In G-Set, the only factorisation system consists of the surjective maps
and the injective ones. ⌟
Let us collect a few useful properties of factorisation systems. We start

with two simple remarks that save us some work.The first one tells us that it
is sufficient to prove certain properties only for one of the two sets E andM.
The corresponding statement for the other set then follows by duality. By the
second remark, it is sufficient to define a factorisation system forD. Then
we can lift it toDΞ . The proofs are straightforward.

Lemma 1.2. Let ⟨E ,M⟩ be a factorisation system for C.

95

II. Algebra

(a) ⟨M, E⟩ is a factorisation system for Cop.
(b) ⟨EΞ ,MΞ⟩ is a factorisation system for CΞ .
Let us collect a few basic consequences of the axioms.

Lemma 1.3. Let ⟨E ,M⟩ be a factorisation system for C.
(a) If µ ○ ε = µ′ ○ ε′ for morphisms µ, µ′ ∈M and ε, ε′ ∈ E, then there

exists a unique isomorphism σ such that ε′ = σ ○ ε and µ = µ′ ○ σ .

A

B

B′
C

ε

ε′
σ

µ

µ′

(b) A morphism belongs to E ∩M if, and only if, it is an isomorphism.
(c) q ○ f ∈ E implies q ∈ E.
(d) f ○ e ∈M implies e ∈M.

Proof. (a) Suppose that µ ○ ε = µ′ ○ ε′. By (fs5), there exists a unique
morphism δ such that

µ′ ○ δ = µ and δ ○ ε = ε′ .
In the sameway, µ′○ε′ = µ○ε implies that there exists a uniquemorphism δ′
with

µ ○ δ′ = µ′ and δ′ ○ ε′ = ε .
We claim that δ and δ′ are inverse to each other. Since µ ○ ε = µ ○ ε, there
exists a unique morphism γ such that µ ○ γ = µ and γ ○ ε = ε. As both id
and δ′ ○ δ satisfy these two equations it follows that δ′ ○ δ = id. In the same
way, one can show that δ ○ δ′ = id.
(b) By (fs1) and (fs2), every isomorphism belongs to both E and M.

Conversely, let σ ∈ E ∩M. Then id ○ σ = σ ○ id and, by (fs5), there exists a
unique morphism δ such that σ ○ δ = id and δ ○ σ = id. Hence, σ has the
inverse δ.

96

1. Factorisation systems

(c) Let q ○ f ∈ E and fix EM-factorisations q = µ ○ ε and ε ○ f = µ′ ○ ε′
of, respectively, q and ε ○ f . Then we have

id ○ (q ○ f) = µ ○ ε ○ f = (µ ○ µ′) ○ ε′ .
By (fs5), we obtain a unique morphism δ such that

δ ○ q ○ f = ε′ and µ ○ µ′ ○ δ = id .
Hence, µ is a monomorphism with a right inverse, which implies that µ is
an isomorphism. In particular, µ ∈ E and it follows that q = µ ○ ε ∈ E.
(d) follows from (c) by duality.

It turns out that each class E and M in a factorisation system uniquely
determines the other one via the diagonal fill-in property. Let us start with
introducing notation for this property.

Definition 1.4. Let ε ∶ A → B and µ ∶ C → D be morphisms. We write
ε ⊥ µ if, for allmorphismsφ ∶ A→ C andψ ∶ B → Dwithψ○ε = µ○φ, there
exists a unique morphism δ ∶ B → C such that δ ○ ε = φ and µ ○ δ = ψ. ⌟
Lemma 1.5. Let ⟨E ,M⟩ be a factorisation system.
(a) E = ⊥M ∶= { ε ∣ ε ⊥ µ for all µ ∈M }
(b) M = E⊥ ∶= { µ ∣ ε ⊥ µ for all ε ∈ E }
Proof. We only need to prove (a), since (b) then follows by duality. We have
E ⊆ ⊥M by (fs5). Conversely, suppose that η ∈ ⊥M and let η = µ ○ ε be
its EM-factorisation. Since η ⊥ µ and id ○ η = µ ○ ε, there exists a unique
morphism δ with

δ ○ η = ε and µ ○ δ = id .
Furthermore, ε ⊥ µ and µ ○ ε = µ ○ ε implies that there exists a unique
morphism ζ with

ζ ○ ε = ε and µ ○ ζ = µ .

97

II. Algebra

Since ζ = id and ζ = δ ○ µ both satisfy these equations, it follows that
δ ○ µ = id. Hence, µ is an isomorphism with inverse δ. This implies that
µ ∈ E and, thus, η = µ ○ ε ∈ E.
It follows in particular from this lemma that each of the two sets of a

factorisation system is determined by the other one.

Exercise 1.1. Prove that ⟨E ,M⟩ is a factorisation system if, and only if,
E = ⊥M andM = E⊥. ⌟
Exercise 1.2. Prove that id ⊥ µ implies that µ is a monomorphism, and
ε ⊥ id implies that ε is an epimorphism. ⌟
The following remark saves us some work when checking the diagonal

fill-in property.

Lemma 1.6. Suppose that ψ ○ ε = µ ○ φ.
(a) If ε is an epimorphism, there exists at most one morphism δ satisfying

δ ○ ε = φ and this morphism automatically satisfies µ ○ δ = ψ.
(b) If µ is a monomorphism, there exists at most one morphism δ satisfying

µ ○ δ = ψ and this morphism automatically satisfies δ ○ ε = φ.

Proof. (a) As ε is an epimorphism,

µ ○ δ ○ ε = µ ○ φ = ψ ○ ε implies µ ○ δ = ψ .

Furthermore, uniqueness of δ follows since

δ′ ○ ε = φ = δ ○ ε implies δ′ = δ .
(b) follows by (a) and duality.

Let us take a look at closure properties of E andM. Our first observation
concerns morphisms with inverses. The proof is based on the relation ⊥.
Lemma 1.7. Let ⟨E ,M⟩ be a factorisation system.
(a) Every coequaliser belongs to E.

98

1. Factorisation systems

(b) Every equaliser belongs to M.
(c) Every morphism with a right inverse belongs to E.
(d) Every morphism with a left inverse belongs to M.

Proof. By duality it is sufficient to prove (b) and (d).
(b) Let µ be the equaliser of f and g. We claim µ ∈ E⊥, i.e., that ε ⊥ µ,

for all ε ∈ E. Hence, let ε ∈ E and suppose that µ ○ φ = ψ ○ ε. Then

f ○ ψ ○ ε = f ○ µ ○ φ = g ○ µ ○ φ = g ○ ψ ○ ε
implies that f ○ ψ = g ○ ψ since ε ∈ E is an epimorphism. By universality
of µ, we can therefore find a unique morphism δ such that ψ = µ ○ δ. Since
equalisers are monomorphisms, it therefore follows by Lemma 1.6 (b) that
φ = δ ○ ε.
(d) By (b) it is sufficient to prove that every morphism µ ∶ A→ B with

a left inverse ε ∶ B → A is an equaliser. We claim that µ is the equaliser of
µ ○ ε and idB . Clearly,

µ ○ ε ○ µ = µ ○ id = id ○ µ .
For universality, suppose that φ ∶ C → B is amorphismwith µ○ε○φ = id○φ.
Then φ = µ ○(ε ○φ) and this factorisation is unique since φ = µ ○ψ implies
that ψ = ε ○ µ ○ ψ = ε ○ φ.

Next, we consider closure under limits.

Definition 1.8. Let F be a class of morphisms.
(a) We say that F is closed under limits (of a certain kind) if, for every

natural transformation τ ∶ D⇒ E between two diagrams (of the given kind)
with τ i ∶ D(i) → E(i) ∈ F, for all i, the canonical map limD → limE also
belongs to F. Similarly, we say that F is closed under products if this is true for
all products. Finally, F is closed under colimits if, for every such τ ∶ D⇒ E,
the canonical map colimD → colimE belongs to F.
(b)We say that F is closed under pushouts or pullbacks if, for every f ∈ F

and every morphism g, the pushout/pullback of f along g belongs to F. ⌟

99

II. Algebra

Note that our terminology is not entirely consistent: closure under pull-
backs is not the same as closure under limits that are pullbacks.

Lemma 1.9. Let ⟨E ,M⟩ be a factorisation system.
(a) E is closed under colimits.
(b) M is closed under limits.
(c) E is closed under pushouts.
(d) M is closed under pullbacks.

Proof. Again we only prove (a) and (c), since the other two follow by duality.
(a) Let (κ i)i be the limiting cocone forD and (λ i)i the one for F. Suppose

that ε i ∶ D(i) → F(i) is an E-morphism, for each index i, and let ε̂ ∶
colimD → colim F be the corresponding morphism between the colimits.
Consider a commuting square ψ ○ ε̂ = µ ○ φ with µ ∶ A→ B inM. We have
to find a diagonal morphism δ̂ ∶ colim F → A. Applying (fs5) to the square(ψ ○ λ i) ○ ε i = µ ○ (φ ○ κ i), we obtain a diagonal morphism δ i ∶ F(i) → A.
Let δ̂ ∶ colim F → A be the unique morphism with δ̂ ○ λ i = δ i . Then

δ̂ ○ ε̂ ○ κ i = δ̂ ○ λ i ○ ε i = δ i ○ ε i = φ ○ κ i ,
and µ ○ δ̂ ○ λ i = µ ○ δ i = ψ ○ λ i .
Since this holds for all i and (κ i)i and (λ i)i are limiting cocones, it follows
that δ̂ ○ ε̂ = φ and µ ○ δ̂ = ψ.
(c) Let ε ∶ A→ B be an E-morphism, let g ∶ C → D be the pushout of ε

along f ∶ A→ C, and let f ′ ∶ B → D be the other morphism of the pushout
square. We claim that g ∈ ⊥M. Consider a square ψ ○ g = µ ○ φ with µ ∈M.
Applying (fs5) to the square ψ ○ f ′ ○ ε = µ ○ φ ○ f , we obtain a unique
morphism ζ with

ζ ○ ε = φ ○ f and µ ○ ζ = ψ ○ f ′ .
The first equation shows that ζ and φ form a cocone for the pushout diagram.
Consequently, there exists a unique morphism δ with

ζ = δ ○ f ′ and φ = δ ○ g .

100

1. Factorisation systems

This implies that µ ○ δ ○ g = µ ○ φ = ψ ○ g. Since g is an epimorphism, we
obtain µ ○ δ = ψ. Furthermore, it follows by Lemma 1.6 (b) that δ is unique
and that δ ○ ε = φ.

Corollary 1.10. Let ⟨E ,M⟩ be a factorisation system where E is closed under
products and M is closed under coproducts. Then M and E are closed under all
polynomial functors.

Proof. This follows from the preceding lemma since every polynomial functor
is composed out of products and a coproduct.

We have already seen above that a factorisation system ⟨E ,M⟩ on D
induces one onDΞ . Let us show next that this factorisation system in turn
induces one forM-algebras.

Lemma 1.11. Let ⟨E ,M⟩ be a factorisation system on D where EΞ and MΞ

are closed under the monadM. Then the sets

EM ∶= { ε ∈ EΞ ∣ ε anM-morphism} ,
MM ∶= { µ ∈MΞ ∣ µ anM-morphism}

form a factorisation system ⟨EM ,MM⟩ on Alg(M).
Proof. (fs1) If ε is an epimorphism ofDΞ and anM-morphism, it is also an
epimorphism of Alg(M). Furthermore, every isomorphism of Alg(M) is
also an isomorphism ofDΞ .

(fs2) analogous.
(fs3) EΞ andMΞ are closed under composition.
(fs4) Let φ ∶ A → B be an M-morphism and let φ = µ ○ ε be its

factorisation with respect to ⟨EΞ ,MΞ⟩. Let C be the codomain of ε. We
start by equipping C with the structure of anM-algebra such that ε and µ
becomeM-morphisms. SinceMε ∈ EΞ and

(π ○Mµ) ○Mε = π ○Mφ = φ ○ π = µ ○ (ε ○ π) ,

101

II. Algebra

it follows by (fs5) that there exists a unique map σ ∶MC → C such that

µ ○ σ = π ○Mµ and σ ○Mε = ε ○ π .

Hence, Lemma I.5.5, implies that ⟨C , σ⟩ forms anM-algebra and ε ∶ A→ C
is a morphism ofM-algebras.

For µ, it now follows that

π ○Mµ ○Mε = π ○Mφ = φ ○ π = µ ○ ε ○ π = µ ○ π ○Mε .

SinceMε is an epimorphism, this implies that π ○Mµ = µ ○ π.
(fs5) Suppose that ψ ○ ε = µ ○ φ where µ ∈ MM and ε ∈ EM. Let δ be

the unique function with

µ ○ δ = ψ and δ ○ ε = φ .

Since ε and φ areM-morphisms, it follows by Lemma I.5.6 that so is δ.

The Standard Fa$torisation Sy#em

The following factorisation system is the one we will use in the rest of this
book.

Definition 1.12. LetD be a category.
(a)The standard factorisation system ⟨E ,M⟩ forD consists of

E ∶= { ε ∣ Vε surjective} and M ∶= E⊥ .
(b) We say that the standard factorisation system ofD is well-defined if

the standard factorisation system is indeed a factorisation system. ⌟
In general, the standard factorisation system does not need to be a factor-

isation system, but in the examples we are interested in it is.

Remark. For each of the categories Set,Pos,Top,Met, andG-Set, we have
already seen factorisation systems where E consists of all surjective morph-
isms. Consequently, in every of these categories the standard factorisation
system is well-defined. ⌟

102

1. Factorisation systems

The reason why we are interested in the standard factorisation system is
that it has several special properties. Of particular importance will be the
closure of E under limits and pullbacks.

Lemma 1.13. Let ⟨E ,M⟩ be the standard factorisation system onD.
(a) E is closed under limits.
(b) E is closed under pullbacks.

Proof. (a) Let τ ∶ C ⇒ D be a natural transformation between two dia-
grams where τ i ∈ E, for all indices i. Let (λ i)i and (µ i)i be the limiting
cones of, respectively, C and D, and let ε ∶ limC → limD be the unique
morphism with τ i ○ λ i = µ i ○ ε. Since V preserves limits, it follows that(Vλ i)i and (Vµ i)i are the limiting cones of V ○ C and V ○ D, and that
Vε ∶ lim (V ○ C) → lim (V ○ D) satisfies

Vτ i ○Vλ i = Vµ i ○Vε .
We claim that ε ∈ E. By Lemma I.2.3, it is sufficient to prove that Vε is
surjective.

Hence, let b be an element of limD. Set b i ∶= µ i(b) ∈ D(i). By surjectiv-
ity of τ i , there is some a i ∈ C(i) with τ i(a i) = b i . For every morphism
f ∶ i → j of the index category, it follows that

(τ j ○ C f)(a i) = (D f ○ τ i)(a i)= D f (b i)= (D f ○ µ i)(b) = µ j(b) = b j = τ j(a j) .
As τ j is surjective, this implies that C f (a i) = a j . Hence, there is some
a ∈ limC with λ i(a) = a i , for all i. It follows that

µ i(ε(a)) = τ i(λ i(a)) = τ i(a i) = b i , for all i .

This implies that ε(a) = b. Hence, b ∈ rng ε.
(b) Let ε ∈ E and let ε′ be the pullback of ε along somemorphism f . Since

V preserves limits, it follows that Vε′ is the pullback of Vε along V f . In
Set pullbacks of surjective functions are surjective. Hence,Vε′ is surjective,
which implies by Lemma I.2.3 that ε′ is a surjective epimorphism. Hence,
ε′ ∈ E.

103

II. Algebra

2. Subalgebra+

Using a factorisation system we can now define subobjects and quotients.
We start with the former. In general, we can represent a subobject of A by
anM-morphism µ ∶ C → A. For discrete categories, we can be a bit more
concrete.

Definition 2.1. Let A ∈ D, X ⊆ VA, and let j ∶ JX → A be the morphism
corresponding to the inclusion map X → VA via the adjunction.

(a)The subobject of A generated by X is the domain of the image

⟪X⟫A ∶= dom (im j) .
(b) Similarly, for anM-algebra A and X ⊆ A, we define the subalgebra

of A generated by X by

⟪X⟫A ∶= ⟨C , π0⟩ where C ∶= dom (im (π ○M j))
and the product π0 is chosen according to the following lemma. ⌟
Lemma 2.2. Let A be anM-algebra, X ⊆ A, and let C be the domain of ⟪X⟫A.
There exists a function π0 ∶ MC → C turning ⟪X⟫A = ⟨C , π0⟩ into anM-
algebra and the inclusion map ⟪X⟫A → A into a morphism of M-algebras.
Furthermore, VC = π[VX].
Proof. Let µ ○ ε be the EM-factorisation of π ○M j ∶ MX → A and let
C be the domain of µ. Similarly, let µ′ ○ ε′ be the EM-factorisation of
π ○Mµ ∶MC → A and let C′ be the domain of µ′.

104

2. Subalgebras

MX MC MC′ MA

X C C′ A

Mi

M j

ε

Mi′
Mµ

ε′
Mµ′

πsing

i

j

sing

i′
µ

µ′

Set i ∶= ε ○ sing and i′ ∶= ε′ ○ sing. Then

µ ○ i = µ ○ ε ○ sing = π ○M j ○ sing = π ○ sing ○ j = j ,
µ′ ○ i′ = µ′ ○ ε′ ○ sing = π ○Mµ ○ sing = π ○ sing ○ µ = µ .

We claim that i′ is an isomorphism. For the proof, note that the two EM-
factorisations

µ ○ (ε ○ flat) = µ′ ○ (ε′ ○Mε)
must be isomorphic. Hence, there exists a morphism k ∶ C′ → C such that

µ ○ k = µ′ and ε ○ flat = k ○ (ε′ ○Mε) .
In particular, it follows that

µ ○ k ○ i′ = µ′ ○ i′ = µ and µ′ ○ i′ ○ k = µ ○ k = µ′ .
Since µ and µ′ are monomorphisms this implies that k and i′ are inverses of
each other. We define the product of ⟪X⟫A by π0 ∶= k ○ ε′.
We start by checking that ⟪X⟫A is anM-algebra. For the unit law, we

have

π0 ○ sing = k ○ ε′ ○ sing = k ○ i′ = id .

105

II. Algebra

For the associative law, note that

µ ○ π0 = µ ○ k ○ ε′ = µ′ ○ ε′ = π ○Mµ

implies that

µ ○ π0 ○ flat = π ○Mµ ○ flat= π ○ flat ○MMµ= π ○Mπ ○MMµ= π ○M(µ ○ π0) = µ ○ π0 ○Mπ0 .

Since µ ∈ M, it follows that π0 ○ flat = π0 ○Mπ0. Finally, to see that the
inclusion µ ∶ C → A is a morphism ofM-algebras, note that

µ ○ π0 = µ ○ k ○ ε′ = µ′ ○ ε′ = π ○Mµ .

The concept of a subobject generated by some set immediately provides
a notion of cardinality for objects: the minimal cardinality of a generating
set. The aim of the rest of this section is to link this cardinality to purely
category theoretical properties. The usual approach is in terms of so-called
accessible categories and κ-presentable objects.Here, we will use a slightly non-
standard formalisation that better fits with the categories we are interested
in.
We start by studying how objects are built up from their subobjects. It

turns out that the axioms of a discrete category are not quite strong enough,
to make this notion as well-behaved as we would like.

Lemma 2.3. For every A ∈ D and every regular cardinal κ, there exists a
κ-directed diagram D ∶ I → D and a bijective morphism σ ∶ colimD → A.

Proof. Let I consist of all subsets X ⊆ VA of size ∣X∣ < κ ordered by
inclusion and set D(X) ∶= ⟪X⟫A. Then I is κ-directed because κ is regular.
To find the desired morphism σ , let (λX)X be the limiting cocone of D and
let jX ∶ JX → A be the inclusion morphism.Then (jX)X forms a cocone

106

2. Subalgebras

from D to A. Since (λX)X is limiting, there exists a unique morphism
σ ∶ colimD → Awith

σ ○ λX = jX , for all X ∈ I .
It remains to show that Vσ is bijective. Surjectivity follows from the fact
that colim(V ○ D) ⊆ ⋃X X = VA. For injectivity, fix two elements a, b ∈
V colimD with a ≠ b. As I is κ-filtered, we can find some index X ∈ I with
a, b ∈ rngVλX = VλX[V⟪X⟫A]. Consequently, there are a′ , b′ ∈ ⟪X⟫A
with a = λX(a′) and b = λX(b′). Hence,

a ≠ b implies σ(a) = a′ ≠ b′ = σ(b) .
To continue, we have to assume that σ is actually an isomorphism.This

leads to the following definition.

Definition 2.4. LetD be a discrete category that has a standard factorisation
system ⟨E ,M⟩ and let κ a regular cardinal.
(a) The canonical κ-subobject diagram D ∶ I → D of an object A ∈ D

is defined as follows. The index category I is the subcategory of (D ↓ A)
consisting of all morphisms i ∶ C → A with i ∈ M and C = ⟪X⟫C , for
some set X of size ∣X∣ < κ. The functor D maps an object i ∶ C → A to its
domain C and a morphism γ ∶ i → j to itself (now regarded as a morphism
between the corresponding domains).
(b) We say that D has canonical subobject diagrams if, for every regular

cardinal κ and every A ∈ D with canonical κ-subobject diagram D ∶ I → D,
the morphisms i ∈ I form a limiting cocone from D to A. ⌟
Example. The categories Set, Pos,Met, and G-Set all have canonical su-
bobject diagrams. Top does not. A counterexample is the space X where
X = κ and a setU ⊆ X is closed if, and only if, ∣C∣ < κ. Every subspace of X
of size less than κ is discrete. Hence, the colimit of the canonical κ-subobject
diagram has the discrete topology. ⌟

In categories with canonical subobject diagrams, we can characterise the
cardinality of an object in the following way.

107

II. Algebra

Definition 2.5. Let κ a regular cardinal and C a category with a factorisation
system ⟨E ,M⟩.
(a) Let D ∶ I → C be a diagram and (µ i)i a cocone from D to some

object B. We say that a morphism φ ∶ A→ B factorises through (µ i)i if there
exists an index i ∈ I such that

φ = µ i ○ ψ , for some morphism ψ ∶ A→ D(i) .
We say that such a factorisation is essentially unique if, given two morphisms
ψ,ψ′ ∶ A → D(i) with µ i ○ ψ = φ = µ i ○ ψ′, there exist a morphism
f ∶ i → k of I such that D f ○ ψ = D f ○ ψ′.
(b) A diagram D ∶ I → C is κ-M-generating if it has a limiting cocone(λ i)i such that
⊕
i∈I λ i is surjective and λ i ∈M , for all i ∈ I .

(c) An object A ∈ C is κ-M-generated if, for every diagram D ∶ I → C
that is κ-filtered and κ-M-generating, every morphism f ∶ A → colimD
factorises essentially uniquely through (λ i)i . ⌟
Remark. Note that the canonical κ-subobject diagram is κ-M-generating
and κ-directed. ⌟
Proposition 2.6. Let κ be a regular cardinal and letD be a discrete category
that has canonical subobject diagrams. An object A ∈ D is κ-M-generated if,
and only if, it is of the form ⟪X⟫A, for some set X of size ∣X∣ < κ.
Proof. Suppose that A is κ-M-generated. By assumption there exists a κ-
filtered diagram D ∶ I → D such that colimD = A and D(i) = ⟪X i⟫A
with ∣X i ∣ < κ, for all i. This diagram is κ-M-generating. Let (λ i)i be the
corresponding limiting cocone. By assumption, the identity map id ∶ A→ A
factorises through (λ i)i . Hence, there is some i ∈ I and some function
γ ∶ A→ D(i) such that

id = λ i ○ γ .

108

2. Subalgebras

Thus, g has a left inverse, which means thatVg is injective. Fix a set X ⊆ A
of size ∣X∣ < κ such that D(i) = ⟪X⟫A. Let j ∶ X → VD(i) be the
inclusion map and j∗ ∶ JX → D(i) the morphism associated with it via the
adjunction J ⊣ V. Since D(i) = ⟪X⟫A, we have j∗ ∈ E. As λ i has a right
inverse, it also belongs to E. Consequently, λ i ○ j∗ ∈ E, which implies that
A = ⟪Vλ i[X]⟫A. Since ∣Vλ i[X]∣ ≤ ∣X∣ < κ, the claim follows.(⇐) Suppose that A = ⟪X⟫A, for some set of size ∣X∣ < κ. Let j ∶
X → VA be the corresponding inclusion morphism and j∗ ∶ JX → A its
associate via the adjunction J ⊣ V. By assumption, j∗ is an isomorphism.
To show that A is κ-M-generated, we consider a diagram D ∶ I → Set
that is κ-filtered and κ-M-generating. Let B be its colimit and (λ i)i the
corresponding limiting cocone. Given a morphism f ∶ A → B, we set
f0 ∶= V f ○ j ∶ X → VB. To show that f factorises through (λ i)i we
pick, for every x ∈ X, some index ix ∈ I such that f0(x) ∈ rngVλ ix . (This
is possible since surjectivity of⊕i λ i implies thatVB = ⋃i rngVλ i .) SinceI is κ-filtered, we can find some index k ∈ I and morphisms gx ∶ ix → k.
Then

f0(x) ∈ rngVλ ix = rngV(λk ○ Dgx) ⊆ rngVλk , for all x ∈ X .

Consequently, there exists a function f ′ ∶ X → VD(k) such that
Vλk(f ′(x)) = f0(x) , for all x ∈ X .

Via the adjunction J ⊣ V this function induces a morphism f∗ ∶ JX →
D(k). It follows that

Vλk ○ f ′ = f0 = V f ○ j is associated with λk ○ f∗ = f ○ j∗ .
As j∗ is an isomorphism, we have j∗ ∈ E. Since λk ∈M, we can therefore
use the diagonal fill-in property to find a morphism δ ∶ A→ D(k) such that

δ ○ j∗ = f∗ and λk ○ δ = f .

Hence, f factorises through (λ i)i and it remains to show that this factorisa-
tion is essentially unqiue.

109

II. Algebra

Suppose that f = λk ○ g, for some g ∶ A → D(k). For every x ∈ X, we
have

(Vλk ○Vδ ○ j)(x) = (V f ○ j)(x) = (Vλk ○Vg ○ j)(x) .
As λk ∈M, it follows thatVδ○ j = Vg○ j, which, via the adjunction, implies
that δ ○ j∗ = g ○ j∗. As j∗ is an isomorphism, we obtain δ = g.
This results applies to Set, Pos, Met, and G-Set, but not to Top. For

topological spaces, we obtain the following characterisation.

Example. In Top, a space X is κ-presentable if, and only if, ∣X∣ < κ and
X is discrete. The implication (⇐) follows using the same proof as in the
preceding proposition. For (⇒), suppose that X is κ-presentable. We only
have to show that X is discrete. Then it follows that ∣X∣ < κ using the same
proof as for Set. Let X be a topological space of size that is not discrete and
fix a subset P ⊆ X that is not closed. Let D ∶ κ → Top be the diagram with
D(i) ∶= X + κ where a setU is closed if, and only if,

U ∩ X is closed in X or ⇓i ⊆ U .

For i < k < κ, we choose forD(i , k) the identitymap.Then colimD = X+κ
where the closed sets are exactly those which are closed in everyD(i). Hence,
the only closed sets are X + κ and those which are closed in X. In particular,
the inclusion X → X + κ is continuous, but it does not factorise through
any D(i) since the set P is closed in D(i) but not in X. ⌟
Since we have used κ-filtered colimits to characterise cardinality, it is of

interest to know whether a given functor preserves such colimits. Our aim
is to prove that this is the case for all polynomial functors. Unfortunately,
in the general case, we only obtain a slightly weaker statement involving a
bijective morphism instead of an isomorphism.

Definition 2.7. (a) We say that a functor F ∶ C → D preserves limits of a
certain kind if, whenever D ∶ I → C is a diagram of this type and (λ i)i is a
limiting cocone of D, then (Fλ i)i is a limiting cocone of F ○ D.

110

2. Subalgebras

(b) Similarly, we say that F reflects limits of this kind if, whenever D ∶I → C is a diagram of this type and (Fλ i)i is a limiting cocone of F ○ D,
then (λ i)i is a limiting cocone of D.

(c)We use the same terminology for preserving and reflecting colimits. ⌟
Example. The forgetful functors from Pos, Top, Met, and G-Set to Set
preserve and reflect κ-filtered colimits. ⌟

The case for arbitrary polynomial functors follows once we can prove the
statement for power operators. For a general discrete category, we have the
following statement.

Proposition 2.8. Let D be a discrete category, D ∶ I → DΞ a κ-filtered
diagram, and X a set of size ∣X∣ < κ. There exists a unique bijective morphism

σ ∶ colim(DX) → (colimD)X
satisfying

σ ○ µ i = λXi , for all i ∈ I ,
where (λ i)i is the limiting cocone of D and (µ i)i the one of DX .

Proof. Set A ∶= colimD and B ∶= colimDX . Then (λXi)i is a cocone
from DX to AX . As (µ i)i is limiting, there exists a unique morphism
σ ∶ B → AX with

σ ○ µ i = λXi , for all i ∈ I .
It remains to show thatVσ is bijective.
For surjectivity, consider a sequence (ax)x∈X ∈ AX . Since ax ∈ A =

colimD, we can find, for every x ∈ X, some index i ∈ I and an element
b ∈ D(i)with ax = λ i(b). As ∣X∣ < κ and I is κ-directed, there is therefore
some index k ∈ I with { ax ∣ x ∈ X } ⊆ λk[D(k)]. Consequently, we have(ax)x = λXk (b) for some b ∈ D(k)X . It follows that

(ax)x = λXk (b) = (σ ○ µk)(b) ∈ rng σ .

111

II. Algebra

For injectivity, consider elements b, b′ ∈ B with σ(b) = σ(b′). Since
b, b′ ∈ colimDX , we can find indices i , i′ ∈ I with b ∈ µ i[D(i)X] and
b′ ∈ µ i′[D(i′)X]. As I is κ-directed, we may assume that i = i′. Fix
a, a′ ∈ D(i)X with b = µ i(a) and b′ = µ i(a′). Then

λXi (a) = (σ ○ µ i)(a) = σ(b) = σ(b′) = (σ ○ µ i)(a′) = λXi (a′) .
For x ∈ X, it follows that

λ i(px(a)) = px(λXi (a)) = px(λXi (a′)) = λ i(px(a′)) .
Consequently, we can find, for every x ∈ X, some I-morphism fx ∶ i → kx
with

D fx(px(a)) = D fx(px(a′)) .
As I is κ-filtered and ∣X∣ < κ, we may assume that kx = ky and fx = fy , for
all x , y ∈ X. Let use denote this morphism by f ∶ i → k. Then DX f (a) =
DX f (a′), which implies that

b = µ i(a) = µk(DX f (a)) = µk(DX f (a′)) = µ i(a′) = b′ .
As above, if our category has canonical subobject diagrams, we can im-

prove the result as follows.

Proposition 2.9. LetD be a discrete category with canonical subobject diagrams
and let X be a set of size ∣X∣ < κ. The functor (−)X ∶ DΞ → DΞ preserves
κ-filtered colimits.

Proof. Let D ∶ I → DΞ be a κ-filtered diagram with colimit A ∶= colimD
and limiting cocone (λ i)i . Set B ∶= colimDX and let (µ i)i be the limiting
cocone from DX to B. We have to show that B ≅ AX .
As (λXi)i is a cocone from DX to AX , there exists a unique morphism

σ ∶ B → AX such that

σ ○ µ i = λXi , for all i ∈ I .

112

2. Subalgebras

We claim that σ is the desired isomorphism. We construct its inverse as
follows.

Note thatVσ is bijective by Proposition 2.8. If we can find a right inverse
τ ∶ AX → B of σ , then

Vσ ○Vτ = V(σ ○ τ) = id
implies by bijectivity ofVσ thatVτ = (Vσ)−1. Hence,

V(τ ○ σ) = Vτ ○Vσ = id .
As V is faithful, we obtain τ ○ σ = id. Hence, σ is an isomorphism with
inverse τ.
It remains to construct τ. Let E ∶ K → D be the canonical κ-subobject

diagram of AX . By assumption, we have colimE = AX . Let (κk)k be the
corresponding limiting cocone and let px ∶ AX → A be the projection to the
x-th component. We obtain morphisms px ○ κk ∶ E(k) → A, for all k ∈ K
and x ∈ X. By Proposition 2.6, each E(k) is κ-M-generated. Hence, these
morphisms factorise essentially uniquely as px ○ κk = λ ik ,x ○ ηxk , for some
ik ,x ∈ I and some morphism ηxk ∶ E(k) → D(ik ,x).

E(k)

AX A

D(i(k))DX(i(k))

B

κk

ηxkηk

px

λ i(k)
λXi(k)µ i(k)

σ

SinceK is κ-directed, there exists some index i(k) ≥ ik ,x for all x ∈ X. It
follows that, for every k ∈ K, we find factorisations of the form

px ○ κk = λ i(k) ○ ηxk , for all x ∈ X .

113

II. Algebra

Set ηk ∶= ⟨ηxk⟩x∈X ∶ E(k) → D(i(k))X . Then

λXi(k) ○ ηk = λXi(k) ○ ⟨ηxk⟩x= ⟨λXi(k) ○ ηxk⟩x= ⟨px ○ κk⟩x= ⟨px⟩x ○ κk = id ○ κk = κk .
We obtain morphisms µ i(k) ○ ηk ∶ E(k) → B. To see that these form a
cocone form E to B, consider indices k ≤ l inK. As I is κ-filtered, we can
fix morphisms f ∶ i(k) → m and g ∶ i(l) → m in I for some m. Then

λm ○ Dg ○ ηxl ○ E(k, l) = λ i(l) ○ ηxl ○ E(k, l)
and λm ○ D f ○ ηxk = λ i(k) ○ ηxk
are two factorisations of px ○ κk . By essential uniqueness, it follows that
there is some morphism h ∶ m → n in I such that

Dh ○ Dg ○ ηxl ○ E(k, l) = Dh ○ D f ○ ηxk .
Hence,

µ i(l) ○ η l ○ E(k, l) = µn ○ DX(h ○ g) ○ η l ○ E(k, l)= µn ○ DX(h ○ f) ○ ηk= µ i(k) ○ ηk ,

as desired.
Since AX is the colimit of E, we therefore obtain a unique morphism

τ ∶ AX → B with

τ ○ κk = µ i(k) ○ ηk , for all k .

It follows that

σ ○ τ ○ κk = σ ○ µ i(k) ○ ηk = λXi(k) ○ ηk = κk .
As limiting cocones are jointly epimorphic, it follows that σ ○ τ = id. Hence,
τ is indeed the right inverse of σ .

114

2. Subalgebras

We obtain the following corollaries for polynomial functors.

Corollary 2.10. Let κ be a regular cardinal and D a discrete category with
canonical κ-subobject diagrams. Every polynomial functor F ∶ DΞ → DΞ of
arity at most κ preserves κ-filtered colimits.

Proof. LetD ∶ I → DΞ be κ-filtered and suppose thatFX = ∑k∈K Xdom(k).
Then

colimi(FD(i)) = colimi ∑
k∈KD(i)dom(k)

= ∑
k∈K colimi D(i)dom(k)
= ∑

k∈K(colimD)dom(k) = F(colimD) ,
where the third step follows by Proposition 2.9.

Without canonical subobject diagrams, we only obtain the following
statements.

Corollary 2.11. Let D be a discrete category, κ a regular cardinal, and F ∶DΞ → DΞ a polynomial functor of arity at most κ. For every κ-filtered diagram
D ∶ I → DΞ , there exists a unique bijective morphism

σ ∶ colim (F ○ D) → F(colimD) .
Proof. LetD ∶ I → DΞ be κ-filtered and suppose thatFX = ∑k∈K Xdom(k).
Then

colimi(FD(i)) = colimi ∑
k∈KD(i)dom(k) = ∑

k∈K colimi D(i)dom(k)
and F(colimD) = ∑

k∈K(colimD)dom(k) .
We can therefore obtain the desired morphism from the former to the latter
by Proposition 2.8.

115

II. Algebra

A bijective morphism is sufficient to prove the following corollary about
the elements of FA.

Corollary 2.12. Let D be a discrete category, κ a regular cardinal, and F ∶DΞ → DΞ a polynomial functor of arity at most κ. Then

VFA = ⋃{FC ∣ C ⊆ VA , ∣C∣ < κ } .
3. Redu$t+

Besides adding or removing elements of an algebra we can also add or remove
operations or sorts. We start by taking a look at the former. Removing oper-
ations corresponds to replacing the product π ∶MA→ A by a restriction
π ↾M○A ∶M○A→ AwhereM○A ⊆MA.

Definition 3.1. Let ρ ∶M○ ⇒M be a morphism of monads and A = ⟨A, π⟩
anM-algebra.
(a)The ρ-reduct of A is theM○-algebra A∣ρ ∶= ⟨A, π ○ ρ⟩. If ρ is under-

stood, we also speak of theM○-reduct of A.
(b) For anM-morphism φ ∶ A→ B, we define φ∣ρ ∶ A∣ρ → B∣ρ by

φ∣ρ ∶= φ . ⌟
Lemma 3.2. Let ρ ∶ ⟨M○ , µ○ , ε○⟩ → ⟨M, µ, ε⟩ be morphism of monads. Then∣ρ ∶ Alg(M) → Alg(M○) is a functor.
Proof. Let A be an M-algebra. Then A∣ρ is an M○-algebra since, by the
axioms of a morphism of monads,

(π ○ ρ) ○ ε○ = π ○ ε = id ,
(π ○ ρ) ○ µ○ = π ○ µ ○ ρ ○M○ρ= π ○Mπ ○ ρ ○M○ρ = (π ○ ρ) ○M○(π ○ ρ) .

Similarly, let φ ∶ A → B be an M-morphism. Then φ∣ρ is an M○-
morphism since

φ ○ (π ○ ρ) = π ○Mφ ○ ρ = π ○ (ρ ○M○φ) .

116

3. Reducts

Finally, the fact that (φ ○ ψ)∣ρ = φ∣ρ ○ ψ∣ρ follows immediately from the
definition.

Instead of operations, we can also add or remove sorts to an algebra.

Definition 3.3. Let ∆ ⊆ Ξ be sets of sorts.
(a) The expansion of A = (Aξ)ξ∈∆ ∈ D∆ to DΞ is the set A ↑ Ξ ∈ DΞ

defined by

(A ↑ Ξ)ξ ∶= ⎧⎪⎪⎨⎪⎪⎩
Aξ if ξ ∈ ∆ ,
0 otherwise ,

where 0 denotes the initial object ofD. Similarly, we define the expansion
f ↑ Ξ ∶ A ↑ Ξ → B ↑ Ξ of a morphism f = (fξ)ξ∈∆ ∶ A→ B by

(f ↑ Ξ)ξ ∶= ⎧⎪⎪⎨⎪⎪⎩
fξ if ξ ∈ ∆ ,
id0 otherwise .

(b)The ∆-reduct of A = (Aξ)ξ∈Ξ ∈ DΞ is the set

A∣∆ ∶= (Aξ)ξ∈∆ ∈ D∆ .

Similarly, for a function f ∶ A→ B inDΞ , we denote the induced function
A∣∆ → B∣∆ by f ∣∆ .
(c)The ∆-reduct of a functorM ∶ DΞ → DΞ is defined by

M∣∆A ∶= (M(A ↑ Ξ))∣∆ and M∣∆ f ∶= (M(f ↑ Ξ))∣∆ .
(d) The ∆-reduct of an M-algebra A = ⟨A, π⟩ is the M∣∆-algebra A∣∆

with universeA∣∆ and product π∣∆ ↾M∣∆(A∣∆). For a class C ofM-algebras
we set C∣∆ ∶= {A∣∆ ∣ A ∈ C }. ⌟

Let us check that these notions are well-behaved.

Lemma 3.4. Let ∆ ⊆ Ξ be sets of sorts andM a monad onDΞ .

117

II. Algebra

(a) The reduct functor ∣∆ ∶ DΞ → D∆ has the left adjoint − ↑ Ξ ∶ D∆ → DΞ .
(b) ⟨M∣∆ , (flat∣∆ ↾M∣∆M∣∆A∣∆), sing∣∆⟩ is a monad onD∆ .
(c) The reduct functor induces a functor ∣∆ ∶ Alg(M) ⇒ Alg(M∣∆).
(d) If Alg(M) has coequalisers, the functor ∣∆ from (c) has a left adjoint−↑ ∶ Alg(M∣∆) ⇒ Alg(M).
(e) If Alg(M) has coequalisers andM preserves E-morphisms, the functor −↑

from (d) preserves E-morphisms.

Proof. (a) It is straightforward to check that ∣∆ and − ↑ Ξ are functors: we
have to show that

◆ A∣∆ ∈ D∆ , for A ∈ DΞ ,◆ φ∣∆ ∶ A∣∆ → B∣∆ , for φ ∶ A→ B, and◆ (φ ○ ψ)∣∆ = φ∣∆ ○ ψ∣∆ ,◆ the corresponding statements for − ↑ Ξ.
All of these statements follow immediately from the definition.

It remains to prove that − ↑ Ξ and ∣∆ form an adjunction. We define a
bijection

DΞ(A ↑ Ξ, B) ≅ D∆(A, B∣∆)
by mapping f ∶ A ↑ Ξ → B to f ∣∆ ∶ A → B∣∆ . This function is indeed
bijective since its inverse is given by f ↦ f ↑ Ξ. To see that the bijection is
natural inA and B note that, for f ∶ A ↑ Ξ → B, g ∶ A→ A′, and h ∶ B → B′,
we have

(f ○ g ↑ Ξ)∣∆ = f ∣∆ ○ g and (h ○ f)∣∆ = g∣∆ ○ f ∣∆ .
Before proving the other statements, let us quickly derive the unit and

the counit of the adjunction. Since (A ↑ Ξ)∣∆ = A, the identity morphisms
induce a natural isomorphism e ∶= id ∶ Id ⇒ (− ↑ Ξ)∣∆ which forms the
unit. For the counit, we define morphisms i ∶ A∣∆ ↑ Ξ → A by choosing
iξ ∶= idA ξ , for ξ ∈ ∆, while, for ξ ∈ Ξ ∖ ∆, iξ ∶ 0 → Aξ is the unique

118

4. Congruences

morphism from the initial object. Then i forms a natural transformation
i ∶ −∣∆ ↑ Ξ⇒ Id, which is the counit of the adjunction.
(b), (c), (d) follow immediately by Proposition I.6.1.
(e) Let ε ∶ A → B be an E-morphism. By Lemma 1.7, the coequalisers

ρA ∶ MA → A↑ and ρB ∶ MB → B↑ belong to E. By assumption, we also
haveMε ∈ E. Hence, ρB ○Mε ∈ E and ρA ∈ E. Since f ↑ ○ ρA = ρB ○Mε,
it therefore follows by Lemma 1.3 that f ↑ ∈ E.
Open Question. Under which conditions is the unit υ ∶ A → A↑∣∆ of the
adjunction in (d) as isomorphism?

4. Congruen$e+

Finally, we turn to quotients and congruences. For Σ-algebras and partial
orders, there is a one-to-one correspondence between quotients and con-
gruences. Thus, a congruence is simply a concise encoding of a quotient. As
there there is no general definition of a congruence, we will use quotients
throughout but adapting the terminology of congruences. One of the most
important general facts about congruences is that they form a complete
partial order.

Definition 4.1. Let C be a category with a factorisation system ⟨E ,M⟩.
(a) Let CPOκ be the category of all partial orders where every set of size

less than κ has an infimum. The morphisms of CPOκ are all monotone
functions preserving such infima.
(b) Given an object A ∈ C, we define a preorder ≤ on the class of all

E-morphisms with domain A by setting

ε ≤ ε′ : iff ε′ = ρ ○ ε , for some ρ .

The equivalence classes associated with ≤ are called congruences ofA. Usually,
we identify a congruence with its representatives. Given a congruence θ ∶
A→ B on A, we denote the quotient by A/θ ∶= B.

119

II. Algebra

(c) We define a contravariant functor Cong ∶ C → Pos as follows. For
an object A ∈ C, Cong(A) is the partial order of congruences of A. For a
morphism φ ∶ A→ B and a congruence θ ∶ B → C, we define

Cong(φ)(θ) ∶= ker (θ ○ φ) .
Since we will frequently be considering congruences of anM-algebra A and
of the underlying universe A at the same time, we will use the notation
CongM(A) for the former and Cong(A) for the latter.
(d) A category C has congruences if the quotients of every object form a

partial order in CPOκ . ⌟
Let us quickly check that the functor Cong is well-defined.

Lemma 4.2. Let φ ∶ A → B, q ∶ B → C, and q′ ∶ B → C′ be morphisms.
Then

ker q ≤ ker q′ implies ker (q ○ φ) ≤ ker (q′ ○ φ) .
Proof. Without loss of generality, we may assume that q and q′ belong to E.
Suppose that q ≤ q′ and fix a morphism ρ such that q′ = ρ ○ q. Let µ ○ ε,
µ′ ○ ε′, and µ̂ ○ ε̂ be the EM-factorisations of, respectively, q ○ φ, q′ ○ φ, and
ρ ○ µ.Then µ̂ ○(ε̂ ○ ε) is a second EM-factorisation of q′ ○φ. By uniqueness
of factorisations, we obtain an isomorphism σ such that

σ ○ (ε̂ ○ ε) = ε′ and µ′ ○ σ = µ̂ .
Consequently, ker (q ○ φ) = ε ≤ ε′ = ker (q′ ○ φ).

Computing infima and suprema of congruences is fortunately straightfor-
ward.

Lemma 4.3. Suppose that C has products of size κ and let θ i ∶ A → B i , for
i < κ, be a family of congruences of A. Then

inf
i<κ θ i = ker ⟨θ i⟩i<κ .

120

4. Congruences

Proof. Let pk ∶ ∏i B i → Bk be the projection.Then

pk ○ ⟨θ i⟩i = θk implies ker ⟨θ i⟩i ≤ θk .

Conversely, suppose that q ∶ A→ C is some epimorphism with

q ≤ θ i , for all i < κ .
Then there exist morphisms f i ∶ C → B i such that f i ○ q = θ i . Hence,(f i)i forms a cone from C to (B i)i . Since (p i)i is limiting, there exists a
unique morphism g ∶ C →∏i B i with p i ○ g = f i , for all i. It follows that

p i ○ g ○ q = f i ○ q i = θ i .

Hence, g ○ q = ⟨θ i⟩i , which implies that q ≤ ⟨θ i⟩i , as desired.
Exercise 4.1. Show that supi<κ θ i = ker⊕i θ i , if the coproduct is defined.⌟
Lemma 4.4. Let C be a category with products of size less than κ. Then Cong ∶C → CPOκ is a contravariant functor.

Proof. Let f ∶ A→ B be a morphism and letH be a set of congruences of B
of size ∣H∣ < κ. Then

inf {Cong(f)(η) ∣ η ∈ H } = ⟨Cong(f)(η)⟩η∈H= ker⟨η ○ f ⟩η∈H= ker(⟨η⟩η∈H ○ f)= ker((inf H) ○ f)= Cong(f)(inf H) .
Congruen$e+ in Set

The rather abstract definition of the congruence lattice of some object A
above is not very useful when one is trying to understand Cong(A) since it

121

II. Algebra

requires considering all possible morphisms from A to some other object of
the category. A definition that only depends onA itself would be much more
convenient. Of course, such a definition requires knowledge of the internal
structure of A, which is not accessible in an abstract category. Consequently,
we will have to work in concrete categories. We start with the category Set.

Definition 4.5. Let A be a set.
(a) For an equivalence relation ∼ on A, we denote by [a]∼ the ∼-class of

a ∈ A.
(b)The kernel of a function f ∶ A→ B is the relation

ker f ∶= { ⟨a, b⟩ ∈ A×A ∣ f (a) = f (b) } .
(We use the same notation as above. It should always be obvious from the
context which version we are referring to.) ⌟
Proposition 4.6. Let A ∈ Set be a set. Cong(A) is isomorphic to the lattice of
all equivalence relations on A ordered by inclusion. This isomorphism maps a
surjective function ε ∶ A→ C to its kernel ker ε.

Proof. Clearly, each kernel ker ε is an equivalence relation. Consequently,
the map σ ∶ ε ↦ ker ε is well-defined. To show that it is monotone, suppose
that ε ≤ ε′. Then ε′ = ρ ○ ε for some function ρ. Consequently,

⟨a, b⟩ ∈ ker ε ⇒ ε(a) = ε(b)⇒ ε′(a) = ε′(b) ⇒ ⟨a, b⟩ ∈ ker ε′ .
Conversely, If ker ε ⊆ ker ε′, then

ε(a) = ε(b) implies ε′(a) = ε′(b) .
As ε is surjective, this implies that there exists some function ρ with ε′ = ρ○ε.
We have shown that

ε ≤ ε′ iff σ(ε) ≤ σ(ε′) .

122

4. Congruences

Hence, it remains to show that σ is bijective. Injectivity follows immedi-
ately from the fact that

ε ≤ ε′ iff σ(ε) ≤ σ(ε′) .
For surjectivity, let∼ be an equivalence relation onA.Then∼ = ker p∼, where
p∼ ∶ A→ A/∼ is the projection mapping each a ∈ A to its ∼-class [a]∼.
Congruen$e+ in Pos

Next, let us take a look at Pos. As seen above there are two natural factorisa-
tion system for this categories. We start with the one consisting of quotients
and injective functions. In that case, we can again use equivalence relations
for congruences. Given a partial order ⟨A, ≤⟩ and an equivalence relation ∼
on A, we can define the quotient as the set A/∼ equipped with the ordering

[a]∼ ≤ [b]∼ : iff a′ ≤ b′ for some a′ ∈ [a]∼ and b′ ∈ [b]∼ .
If we define the kernel of a function φ ∶ A→ B in the same way as for sets,
we again obtain an isomorphism between kernels and quotients.

For the standard factorisation system, which consists of surjective func-
tions and embeddings, a different approach is needed based on preorders
instead of equivalence relations.

Definition 4.7. Let ⟨A, ≤⟩ be a partial order.
(a) A congruence ordering on A is a preorder ⊑ ⊆ A×Awith ≤ ⊆ ⊑.
(b)The kernel of a function f ∶ A→ B in Pos is the relation

ker f ∶= { ⟨a, a′⟩ ∈ A×A ∣ f (a) ≤ f (a′) } .
(c)The set of ⊑-classes is

A/⊑ ∶= { [a]⊑ ∣ a ∈ A} where [a]⊑ ∶= { b ∈ A ∣ b ⊑ a and a ⊑ b } .
We equip it with the ordering

[a]⊑ ≤ [b]⊑ : iff a ⊑ b .
(d)The quotient map q ∶ A→ A/⊑maps a ∈ A to [a]⊑. ⌟

123

II. Algebra

As above, we obtain the following correspondence.The proof is similar
to that for Set.

Proposition 4.8. Let A ∈ Pos be a partial order.Cong(A) is isomorphic to the
lattice of all congruence orderings on A ordered by inclusion. This isomorphism
maps a surjective monotone function ε ∶ A→ C to its kernel ker ε.

In this terminology, the diagonal fill-in property takes the following form.

Lemma 4.9 (Factorisation Lemma). Let f ∶ A → B and g ∶ A → C be
functions in Pos and assume that f is surjective. Then

ker f ⊆ ker g iff g = h ○ f , for some h ∶ B → C .

Moreover, the function h is unique, if it exists.

Proof. Theuniqueness of h follows from the surjectivity of f , since surjective
functions are epimorphisms: h ○ f = g = h′ ○ f implies h = h′. Hence, it
remains to consider existence.(⇒) If g = h ○ f , then

f (a) ≤ f (b) implies g(a) = h(f (a)) ≤ h(f (b)) = g(b) .
(⇐) Suppose that ker f ⊆ ker g. As f is surjective, it has a right inverse r

(in Set, r might not be monotone). We claim that h ∶= g ○ r is the desired
function.

For monotonicity, suppose that a ≤ b in B. Then

f (r(a)) = a ≤ b = f (r(b)) implies ⟨r(a), r(b)⟩ ∈ ker f ⊆ ker g .
Consequently,

h(a) = g(r(a)) ≤ g(r(b)) = h(b) .
To show that g = h ○ f , set e ∶= r ○ f . For a ∈ A, it follows that

f (e(a)) = (f ○ r ○ f)(a) = f (a) .
Hence, ⟨a, e(a)⟩, ⟨e(a), a⟩ ∈ ker f ⊆ ker g, which implies that g(a) =
g(e(a)). Thus g = g ○ e = g ○ r ○ f = h ○ f .

124

4. Congruences

Congruen$e+ of Algebra+

We have defined congruences for objects in D. But what we are really in-
terested in are congruences of M-algebras. Before presenting the general
definition let us first take a look at the case of Σ-algebras.

Example. Let Σ be a signature and A a Σ-algebra. A congruence of A is an
equivalence relation ∼ ⊆ A×A such that, for every function f ∈ Σ,

a i ∼ b i , for all i , implies f (ā) ∼ f (b̄) .
This is equivalent to ∼ inducing a subalgebra of A × A. ⌟

The definition of congruences forM-algebras is similar. We have already
seen in Lemma 1.11 how to lift a factorisation system from D to Alg(M).
This immediately gives us the notion of a congruence forM-algebras.

Definition 4.10. AnM-congruence is a congruence in the category Alg(M).⌟
Westart with a criterion for an congruence ε ∈ DΞ to be anM-congruence.

Lemma 4.11. Let ⟨E ,M⟩ be a factorisation system where E and M are closed
under the monadM. Let A be anM-algebra and f ∶ A→ B a morphism ofDΞ .
Then ker f is anM-algebra morphism if, and only if,

kerM f ≤ ker(f ○ π) .
Proof. (⇒) Let f = µ ○ ε be the EM-factorisation of f and suppose that
ε ∶ A→ C is anM-algebra morphism.Then

π ○Mε = ε ○ π implies Mε ≤ ε ○ π .

Note thatM f =Mµ ○Mε is the EM-factorisation ofM f . Furthermore,
by Lemma 1.7, π ○ sing = id implies that π ∈ E. Hence, f ○ π = µ ○ (ε ○ π)
is the EM-factorisation of f ○ π. Consequently, we have

kerM f =Mε ≤ ε ○ π = ker(f ○ π) .

125

II. Algebra

(⇐) Let ε ∶= ker f ∶ A→ C. SinceMε = kerM f ≤ ker(f ○ π) = ε ○ π,
there exists a morphism ρ ∶MC → Awith ρ ○Mε = ε ○ π. Note that

ρ ○Mρ ○MMε = ρ ○M(ε ○ π)= ε ○ π ○Mπ= ε ○ π ○ flat= ρ ○Mε ○ flat = ρ ○ flat ○MMε .

As MMε is an epimorphism, it therefore follows that ρ ○Mρ = ρ ○ flat.
Consequently, C ∶= ⟨C , ρ⟩ is an M-algebra and ε = ker f ∶ A → C a
morphism ofM-algebras.

Lemma 4.12. CongM(A) is closed (as a subset of Cong(A)) under all infima
that exists in Cong(A).
Proof. Let Θ ⊆ CongM(A) be a set with infimum θ ∶= inf Θ (in Cong(A)).
By Lemma 4.3, we have

θ = ⟨ε⟩ε∈Θ ∶ A→∏
ε∈Θ A/ε .

It remains to show that θ is a morphism of M-algebras. Let πε be the
product of A/ε, πΠ the one of ∏ε A/ε, and let pη ∶ ∏ε A/ε → A/η and
qη ∶ ∏ε MA/ε →MA/η be the projections. For every η ∈ Θ, we have

qη ○ ⟨Mpε⟩ε ○M⟨ε⟩ε =Mpη ○M⟨ε⟩ε=M(pη ○ ⟨ε⟩ε) =Mη = qη ○ ⟨Mε⟩ε .
Consequently, ⟨Mpε⟩ε ○M⟨ε⟩ε = ⟨Mε⟩ε , which implies that

θ ○ π = ⟨ε⟩ε ○ π= ⟨ε ○ π⟩ε= ⟨πε ○Mε⟩ε=∏
ε

πε ○ ⟨Mε⟩ε

126

5. Varieties

=∏
ε

πε ○ ⟨Mpε⟩ε ○M⟨ε⟩ε
= ⟨πε ○Mpε⟩ε ○M⟨ε⟩ε= ⟨pε ○ πΠ⟩ε ○Mθ= πΠ ○Mθ .

5. Varietie+

The topic of this section concerns classes of objects that are closed under
certain algebraic operations like subobjects, quotients, products, and the like.
The aim is to find a simple description of such a class. But before doing so,
we introduce the following technical property.

Proje$tive Obje$t+

One important property of sets of the form JX is that they satisfy the
following property.

Definition 5.1. Let C be a category. An object P ∈ C is projectivewith respect
to a morphism ε ∶ A→ B if, for every φ ∶ P → B, there exists a morphism
φ̂ ∶ P → A such that φ = ε ○ φ̂.

A B

P

ε

φ
φ̂

⌟
Let us check that the notion of projectivity in fact generalises freeness.

In order to define what a free object is, we need additional structure on the
category.Therefore, in the following statement we will work in a concrete
category (i.e., one equipped with a faithful functor to Set).

Lemma 5.2. Let J ⊣ V be an adjunction between Set and C. An object of
the form JX is projective with respect to a morphism ε ∶ A→ B if, and only if,
X = ∅ or Vε is surjective.

127

II. Algebra

Proof. (⇐) If X = ∅, then X is initial in Set. Since left adjoints preserve
colimits, it follows that JX is initial in C. Consequently, if f ∶ JX → B is
the unique morphism to B, then ε ○ g = f , where g ∶ JX → A is the unique
morphism to A.
Now suppose thatVε is surjective. Then it has a right inverse r ∶ VB →

VA. To show projectivity of JX, consider a morphism f ∶ JX → B. Let
f0 ∶ X → VB be its image under the adjunction and let g ∶ JX → A be the
image of g0 ∶= r ○ f0. As the image of ε ○ g under the adjunction is

Vε ○ g0 = Vε ○ r ○ f0 = f0 ,

it follows that ε ○ g = f .(⇒) Suppose that X ≠ ∅ and thatVε is not surjective. Then there exists
a function f0 ∶ X → VB with rng f0 ∩ rngVε = ∅. Let f ∶ JX → B be
the image of f0 under the adjunction. We claim that there is no morphism
g ∶ JX → A with ε ○ g = f . For a contradiction, suppose otherwise. Let
g0 ∶ X → VA be the image of g under the adjunction. Then Vε ○ g0 = f0,
which contradicts the fact that the ranges of these two functions are non-
empty and disjoint.

This situation is typical: very few objects are projective with respect to a
non-surjective morphism ε.

Exercise 5.1. An object A in a category C is called a generator if, for every
object B ∈ C, the set of all morphisms A→ B is jointly epimorphic. (For the
dual concept, see Definition III.1.9.)

(a) Show that, in the categories Set, Pos, or Top, every non-empty object
is a generator. (Hint. It is sufficient to prove that the terminal object is
a generator.)

(b) Show that, if a generator P is projective with respect to a morphism
ε ∶ A→ B, then ε is an epimorphism. ⌟

More generally, we can lift projectiveness along every adjunction, but only
in one direction.

128

5. Varieties

Lemma 5.3. Let J ⊣ V be an adjunction where V preserves epimorphisms and
let ε ∶ A → B, be an epimorphism. If X is projective with respect to Vε, then
JX is projective with respect to ε.

Proof. Suppose that ε ∶ A → B is an epimorphism and let ψ ∶ JX → B
Then ψ corresponds to a morphism ψ′ ∶ X → VB. As X is projective with
respect to Vε, we can find a morphism ρ′ ∶ X → VA with Vε ○ ρ = ψ′.
This morphism corresponds to a morphism ρ ∶ JX → A. We claim that
ε ○ ρ = ψ.
Note that ψ ∈ D(JX, B) corresponds to ψ′ ∈ Set(X,VB), and ρ ∈D(JX,A) corresponds to ρ′ ∈ Set(X,VA). As this correspondence is

natural in A, it follows that ε ○ ρ corresponds to Vε ○ ρ′ = ψ′. Hence,
ψ and ε ○ ρ both correspond to ψ′. As the correspondence is bijective, it
follows that ψ = ε ○ ρ.

Corollary 5.4. LetD be a discrete category.
(a) Every object of the form JX is projective with respect to all surjective morph-

isms.
(b) Every free M-algebra of the form MJX is projective with respect to all

surjective morphisms of M-algebras.

Proof. (a) In Set every set X ∈ Set is projective with respect to all surjective
functions.
(b) follows by applying the lemma to (a) and the adjunction betweenDΞ

and Alg(M) that is canonically associated with the monadM.

Definition 5.5. For a class P of objects, we set

EP ∶= { ε ∈ E ∣ every P ∈ P is projective w.r.t. ε } . ⌟
Many of the properties in Lemma 1.3 carry over to the set EP .

Lemma 5.6. Let A be a category with factorisation system ⟨E ,M⟩ and letP ⊆ A be a subcategory.
(a) EP contains all isomorphisms.

129

II. Algebra

(b) EP is closed under composition.
(c) p ∈ E and q ○ p ∈ EP implies q ∈ EP .
(d) If E is closed under products of a certain size, so is EP .
Proof. (a) By (fs1), E contains all isomorphisms. Since clearly every object
is projective with respect to an isomorphism, the claim follows.
(b) Let p, q ∈ EP be morphisms such that q ○ p is defined. As E is closed

under composition, we have q ○ p ∈ E. Consequently, the claim follows
from the straightforward fact that, if an object P is projective with respect to
p and q, it is also projective with respect to p ○ q.
(c) Suppose that p ∶ A → B and q ∶ B → C. By Lemma 1.3, we have

q ∈ E. Hence, it remains to show that every P ∈ P is projective with respect
to q. Let P ∈ P and φ ∶ P → C. Since q ○ p ∈ EP , we can find a morphism
ψ ∶ P → A such that q ○ p ○ ψ = φ. Consequently, the morphism φ̂ ∶= p ○ ψ
satisfies q ○ φ̂ = φ.
(d) Suppose that ε i ∶ A i → B i , for i < α, are EP -morphisms with∏i ε i ∈ E. We have to show that every P ∈ P is projective with respect to∏i ε i .
Fix P ∈ P and a morphism φ ∶ P →∏i B i . Let q i ∶ ∏k Bk → B i be the

projection. Then q i ○ φ ∶ P → B i and ε i ∈ EP implies that there is some
morphism ψ i ∶ P → A i with ε i ○ ψ i = q i ○ φ. It follows that

∏
i
ε i ○ ⟨ψ i⟩i = ⟨q i ○ φ⟩i = φ .

Example. LetD be a discrete category and P ∶= {JX ∣ X ∈ Set}. We have
shown in Corollary 5.4 that EP contains all surjective E-morphisms. ⌟
Varietie+

Let us start simply by considering classes closed under subobjects and quo-
tients.

Definition 5.7. Let C be a category, P ,K classes of objects, and E∗ ⊆ EP a
set containing all isomorphisms.

130

5. Varieties

(a) An object A ∈ C is P -generated if there exists an E-morphism P → A,
for some P ∈ P .

(b) We denote the closure ofK under P-generatedM-subobjects by

S(K) ∶= {A ∣ e ∶ A→ K , e ∈M , K ∈ K , A is P-generated} .
(c) We denote the closure ofK under all E∗-quotients by
H(K) ∶= {A ∣ q ∶ K → A , q ∈ E∗ , K ∈ K} . ⌟

Example. For C = Alg(M) with the standard factorisation system and forP = {MJX ∣ X finite}, an algebra A is P-generated if, and only if, it is
finitely generated. ⌟
To compute the closure of a classK under subobjects and quotients, we

can take alternating sequences of these two operations. It turns out that this
is not really necessary. Sequences of length two are sufficient.

Lemma 5.8. If E∗ = E, then
S ○H ⊆ H ○ S .

Proof. Suppose that A ∈ SH(K). Then there exist some E∗-morphism
q ∶ C → B, anM-morphism e ∶ A→ B, and an E-morphism ρ ∶ P → A, for
some C ∈ K and P ∈ P . Since P is projective with respect to q, we can find a
morphism f ∶ P → C such that q ○ f = e ○ ρ.

LetD be the pullback of e and q, and let e′ and q′ be the other morphisms
of the pullback square. As D is a limit, there exists a morphism g ∶ P → D
such that

q′ ○ g = ρ and e′ ○ g = f .

By Lemma 1.9, we have e′ ∈M. Let g = i○h be the EM-factorisation of g and
letK be the codomain of h.Then e′○ i ∶ K → C belongs toM and h ∶ P → K
to E. Furthermore, by Lemma 1.3, ρ, h ∈ E implies that q′ ○ i ∶ K → A also
belongs to E. Consequently, K ∈ S(K) and A ∈ HS(K).

131

II. Algebra

Proposition 5.9. Let C be a category, P ,K two classes of objects, and E∗ = E.
Then HS(K) is the closure of classK under E-quotients and P -generated M-
subobjects.

Proof. HS(K) is closed under both operations since HHS(K) = HS(K)
and SHS(K) ⊆ HSS(K) = HS(K).

Next let us add products to our closure operations.We are both interested
in finite products and in arbitrary ones.

Definition 5.10. Let C be a category, P ,K classes of objects, E∗ ⊆ EP , and
κ a cardinal or κ = ∞.
(a) We denote the closure ofK under products of size less than κ by

Pκ(K) ∶= {∏i∈I A i ∣ A i ∈ K , ∣I∣ < κ } .
(b) A variety is a classK that is closed under (i) E∗-quotients and (ii) P-

generatedM-subobjects of arbitrary products.
(c) A pseudo-variety is a classK that is closed under (i) E∗-quotients and

(ii) P-generatedM-subobjects of finite products. ⌟
Examples. (a) The classes of (i) all groups, (ii) all modules over a fixed
semiring, (iii) all aperiodic monoids, and (iv) all distributive lattices form
varieties.

(b)The subclasses of the classes in (a) consisting of all (i) finitely generated
algebras or (ii) all finite algebras form pseudo-varieties. ⌟
The reason we have combined the operations S and Pκ in the above

definition is the fact that a product of P-generated objects does not need to
be P-generated.
Lemma 5.11. If E∗ is closed under products of size less than κ, then

PκH ⊆ HPκ and SPκS ⊆ SPκ .
Proof. For the first inclusion, letA ∶= ∏i∈I B i be a product with B i ∈ H(K)
and fixE∗-morphisms ε i ∶ B i → C i withC i ∈ K. By Lemma 5.6, the product

132

5. Varieties

∏i ε i ∶ ∏i B i →∏i C i belongs to E∗. Consequently, A is an E∗-quotient
of∏i C i ∈ Pκ(K).

For the second inclusion, letAbe aP-generatedM-subobject of a product
B ∶= ∏i∈I C i with C i ∈ S(K). Fix an M-morphism µ ∶ A → B and M-
morphisms e i ∶ C i → D i with D i ∈ K. By Lemma 1.9, the product∏i e i ∶∏i C i →∏i D i belongs toM. Hence, so does∏i e i ○ µ. Consequently,A is
a P-generatedM-subobject of∏i D i ∈ Pκ(K).
Theorem 5.12. Suppose that E∗ = E and E is closed under products (arbitrary
ones for (a) and finite ones for (b)).
(a) A class V is a variety if, and only if, V = HSP∞(V).
(b) A class V is a pseudo-variety if, and only if, V = HSPℵ0(V).
Proof. Let κ be either ℵ0 or∞. The implication (⇐) is trivial. For (⇒), it
is sufficient to note that, by the above lemmas,

HSPκ ○HSPκ ⊆ HSHPκSPκ⊆ HHSPκSPκ= HSPκSPκ ⊆ HSPκPκ = HSPκ .
Note+

Again, most of the material in this chapter is standard and can be extracted
from the literature, although I know of no systematic account. The abstract
variety theorem in Section 5 is based on [16].

133

III. Language+

1. Weight+

Our main point of interest is to determine which languages are definable
in a given logic. As it does not make the presentation significantly more
complicated, we will state our results in the more general setting of weighted
languages. Thus, in the following we fix some set Ω ∈ D of weights. The
standard choice for Ω is of course the two element set {0, 1}. In this case,
we will speak of an unweighted language. As this is the case we are most
interested in, we will sometimes also present the unweighted version of
statements and definitions, in particular, if it is easier to understand than
the more general version. Other common choices for Ω include◆ the interval ⟨[0, 1], ≤⟩,◆ the tropical semiring ⟨N ∪ {∞}, min,+,∞, 0⟩,◆ the arctic semiring ⟨N ∪ {−∞}, max,+,−∞, 0⟩,◆ the fields ⟨Q,+, ⋅ , 0, 1⟩ and ⟨R,+, ⋅ , 0, 1⟩,◆ the language semiring ⟨℘(Σ∗),∪, ⋅ ,∅, {⟨⟩}⟩,◆ matrices ⟨Sn×n ,+, ⋅ , 0, I⟩ over some semiring S.
A language is then a functionMΣ → Ω for some alphabet Σ, or, more

generally, a function A → Ω for an arbitrary set A. The set of all such
functions can be canonically equipped with operations of the following form.

Definition 1.1. For functions ω ∶ Ωn → Ω and κ0 , . . . , κn−1 ∶ X → Ω, we
set

ω[κ̄] ∶= ω ○ ⟨κ0 , . . . , κn−1⟩ , for κ0 , . . . , κn−1 ∶ X → Ω .

abstract algebraic language theory 2022-12-11 — ©achim blumensath 135

III. Languages

An Ω-operation of arity n is a function of the form

ω̂ ∶ D(X,Ω)n → D(X,Ω) ∶ κ̄ ↦ ω[κ̄] , for some ω ∶ Ωn → Ω .

Usually, we will not distinguish notationally between the functions ω and ω̂.⌟
Remark. In the unweighted case, a {0, 1}-operation of the form

Pos(X, {0, 1})n → Pos(X, {0, 1})
is simply a positive Boolean combination of n elements. ⌟

For technical reasons, we frequently have to make one assumption on the
setΩ : that every partial functionA→ Ω can be extended to a total one.The
formal definition is as follows.

Definition 1.2. LetD be a category with a factorisation system ⟨E ,M⟩. An
object S ∈ D is injective if, for every M-morphism µ ∶ A → B and every
morphism φ ∶ A→ S, there exists amorphism φ̂ ∶ B → S with φ̂○µ = φ. ⌟
Examples. (a) In Set and G-Set every object is injective.
(b) In Pos a partial order ⟨A, ≤⟩ is injective if, and only if, it is complete,

that is, every subset ofA has an infimum and a supremum. Given a complete
order ⟨S , ≤⟩ and an arbitrary order ⟨B, ≤⟩, we can extend every monotone
function f ∶ A→ S with A ⊆ B to a function f̂ ∶ B → S by setting

f̂ (b) ∶= sup{ f (a) ∣ a ∈ A , a ≤ b } .
Conversely, if ⟨S , ≤⟩ is not complete, then the identity map id ∶ S → S has
no extension to C → S, where ⟨C , ≤⟩ is the completion of S. ⌟
Remark. For most applications, the requirement of injectivity is not a restric-
tion as we can replace Ω by some (possibly larger) injective set. Categories
where this is the case are said to have enough injectives. For instance, Pos has
enough injectives since every partial order can be embedded into its comple-
tion. ⌟

136

1. Weights

Finitenes+ Condition+

We also need a suitable notion of what it means for a set to be ‘finite’. There
are several possible definitions, depending on the set Ω of weights.

Definition 1.3. (a) A set A ∈ D is finite ifVA is finite.
(b)A setA ∈ D is strongly finite-dimensional if there exists anM-morphism

e ∶ A→ Ωd , for some d < ω.
(c) A set A ∈ D is weakly finite-dimensional if there exists a surjective

E-morphism ε ∶ Ã→ A and anM-morphism µ ∶ Ã→ Ωd with d < ω.
(d) For some property P, we say that A ∈ DΞ is sort-wise P if Aξ has

property P, for every ξ ∈ Ξ.
(e) An M-algebra A is finitary if it is finitely generated and sort-wise

finite. ⌟
Remark. (a) Clearly, the class of finite sets is closed under subsets, quotients,
and finite products. The class of finitary algebras is closed under quotients
and finitely generated subalgebras of finite products.
(b) It follows immediately from the definition that the class of strongly

finite-dimensional sets is closed under subsets and finite products.
(c) If Ω is finite, so are all weakly finite-dimensional sets. The converse

statement only holds under additional assumptions. We will prove one
version below forD = Pos. ⌟

While the class of sort-wise finite sets has the nicest closure properties,
it is too restrictive when working with weighted languages since syntactic
algebras are not always sort-wise finite. As a substitute, we can frequently
use the class of sort-wise weakly finite-dimensional sets.

Lemma 1.4. The class of weakly finite-dimensional sets is closed under surjective
E-quotients, M-subobjects, and finite products.

Proof. Set P ∶= {JX ∣ X ∈ Set} and E∗ ∶= { ε ∈ E ∣ ε surjective}. Then
every objectA isP-generated since themorphisms of the counit ι ∶ JV⇒ Id
belong to E. Consequently, it follows by Theorem II.5.12 that the closure
ofΩ under the above operations is given byHSPℵ0({Ω}), which is precisely
the class of weakly finite-dimensional sets.

137

III. Languages

Noetherian Set+

As a technical tool let us introduce the notion of a noetherian set, which is a
rather mild finiteness condition.

Definition 1.5. An object A ∈ D is noetherian if its congruence lattice
Cong(A) satisfies the descending chain condition, that is, if every strictly
descending sequence ε0 > ε1 > . . . of congruences of A is finite. ⌟
Examples. (a) In the categories Set, Pos, and Top an object A is noetherian
if, and only if, it is finite.
(b) In Met an object is noetherian if, and only if, it has at most one

element.
(c) In the category of modules over some fixed ring R, a module M is

noetherian if, and only if, every ideal I ⊆M is finitely generated. In particular,
if R is a field, the noetherian modules are precisely the finite-dimensional
(both in our sense for Ω = R, and in the sense of linear algebra) vector
spaces. ⌟
Exercise 1.1. We consider the following eight partial orders in Pos.◆ an infinite increasing chain of length ω, an increasing decreasing chain

of length ω, a countably infinite antichain,◆ the orders obtained from the three above ones by adding a new top
element,◆ the orders obtained from the three above ones by adding a new bottom
element,◆ the orders obtained from the three above ones by adding both a top and
bottom element.

(a) Prove that none of the eight above orders is noetherian.

(b) Prove that, for every infinite A ∈ Pos, there exists a surjective map
from A to at least one of the above orders.

(c) Prove that an order A ∈ Pos is noetherian if, and only if, it is finite. ⌟
The closure properties of noetherian sets are quite weak.

138

1. Weights

Lemma 1.6. If A is noetherian, so is every quotient of A.

Proof. Let q ∶ A→ B be an E-morphism. For a contradiction, suppose that
there exists an infinite strictly descending sequence ε0 > ε1 > . . . of quotients
of B.Then ε0○q ≥ ε1○q ≥ . . . forms a descending sequence of quotients ofA.
Since A is noetherian, we can find indices i < k with ε i ○ q ≤ εk ○ q. Thus,
there exists a morphism ρ with εk ○ q = ρ ○ ε i ○ q. As q is an epimorphism,
it follows that εk = ρ ○ ε i , that is, ε i ≤ εk . A contradiction.

Concerning the existence of noetherian sets, we have the following obser-
vation.

Lemma 1.7. LetD be a category such that, for every finite set X ∈ Set, there
are, up to isomorphism, only finitely many A ∈ D with VA = X. Then every
finite A ∈ D is noetherian.

Proof. Let A be finite and ε0 > ε1 > . . . an infinite strictly descending
sequence of quotients of A. For i < j, let ρ i j ∶ A/ε i → A/ε j be the function
with ε j = ρ i j ○ ε i . We obtain a descending sequence

kerVε0 ⊇ kerVε1 ⊇ . . .
of equivalence relations onVA. As A is finite, this sequence must stabilise
at some k. Consequently,

Vρ i j ∶ V(A/ε i) → V(A/ε j) is bijective , for all i , j ≥ k .
As V(A/ε i) is finite, it follows by assumption on D that there exists an
infinite set I such that

ρ i j ∶ A/ε i ≅ A/ε j is an isomorphism , for all i , j ∈ I .
Hence, ε j ≤ ε i . A contradiction.

139

III. Languages

Finite-Dimen@onal Set+

To prove weak or strong finite-dimensionality, we have to consider embed-
dings into powers of Ω. We start by showing how to replace infinite powers
by finite ones.

Lemma 1.8. Let e ∶ A→ Ωκ be an M-morphism where κ is some cardinal. If
A is noetherian, then A is strongly finite-dimensional.

Proof. For w ⊆ κ, let pw ∶ Ωκ → Ωw be the projection to the components
in w. Note that

u ⊆ w implies pu ≥ pv .
Since A is noetherian, we can therefore find some finite set w ⊆ κ such that
ker (pw ○ e) = ker e = id. Consequently, pw ○ e ∈M and pw ○ e ∶ A→ Ωw

is the desired embedding.

In light of the preceding lemma, it is of interest to know which sets can
be embedded into some power of Ω. The following general notion is useful.

Definition 1.9. A set C ∈ D is a cogenerator if, for every pair of functions
f , g ∶ A→ B,

k ○ f = k ○ g , for all k ∶ B → C , implies f = g .
Given a factorisation system ⟨E ,M⟩, we call C an EM-cogenerator if, for
every A ∈ D,

(inf
k∶A→C

ker k) ≤ idA ,

where the infimum in computed in Cong(A). ⌟
Lemma 1.10. LetD be a category with arbitrary products and let ⟨E ,M⟩ be a
factorisation system.
(a) Ω ∈ D is a cogenerator ofD if, and only if, for every set A ∈ D, there exists

a monomorphism A→ Ωκ , for some cardinal κ.

140

1. Weights

(b) If Ω is an EM-cogenerator, we can choose the monomorphism to belong
to M.

Proof. (a) follows from the fact that Ω is a cogenerator if, and only if, for
every set A ∈ D, the morphism

φ ∶= ⟨k⟩k∶A→Ω ∶ A→ ΩD(A,Ω)
is a monomorphism.
(b) Let φ be the morphism from (a). By Lemma II.4.3, we have kerφ =

inf k ker k. As Ω is an EM-cogenerator, it follows that kerφ = id. Hence,
φ ∈M.

Corollary 1.11. If Ω is an EM-cogenerator, every noetherian set A is strongly
finite-dimensional.

Proof. ByLemma 1.10, for every setA, we can find anM-morphismA→ Ωκ ,
for some κ. If A is noetherian, we can therefore use Lemma 1.8 to show that
it is finite-dimensional.

The existence of EM-cogenerators depends on the category in question.
We start with Pos.

Lemma 1.12. If Ω ∈ Pos is not an antichain, then every partial order A can be
embedded into Ωκ , for some κ.

Proof. Fix two values u, v ∈ Ω with u < v. For each c ∈ A, we define a
function µc ∶ A→ Ω by

µc(a) ∶= ⎧⎪⎪⎨⎪⎪⎩
v if a ≥ c ,
u otherwise .

Note that µc is monotone since

µc(a) ≰ µc(b) ⇒ µc(a) = u and µc(b) = v⇒ a ≥ c and b ≱ c⇒ a ≰ b .

141

III. Languages

To see that µ ∶= ⟨µc⟩c∈A is an embedding A→ ΩA, we have to check that

a ≤ b iff µc(a) ≤ µc(b) , for all c ∈ A .

(⇒) follows by monotonicity of µc . For (⇐), we have
a ≰ b ⇒ µa(a) = v and µa(b) = u⇒ µa(a) ≰ µa(b) .

Corollary 1.13. Suppose thatD = Pos and that Ω is not an antichain. Every
finite set A is strongly finite-dimensional.

Remark. Note that no antichain is injective in Pos. Hence, the assumptions
of the preceding two results are automatically satisfied in our setting. ⌟
Proposition 1.14. Let S = {0, 1} ∈ Top be Sierpiński space (where the closed
sets are∅, {0}, and {0, 1}). For a sober space Ω ∈ Top the following statements
are equivalent.
(1) Every sober space X ∈ Top can be embedded (via an injective continuous

map) into Ωκ , for some κ.
(2) There exists an injective continuous map S→ Ω.

Proof. (1) ⇒ (2) Since S is sober, we can use (1) to find an embedding
e ∶ S→ Ωκ , for some κ. Set x ∶= e(0) and y ∶= e(1), and let p i ∶ Ωκ → Ω
be the projection to the i-th component. Since x ≠ y, there is some i < κ
with p i(x) ≠ p i(y). Ω being sober, we can find a closed set C containing
one of p i(x) and p i(y), but not both. By symmetry, we may assume that
x ∈ C. We claim that the function f ∶ S→ Ω with f (0) ∶= x and f (1) ∶= y
is the desired embedding. For continuity, let D ⊆ Ω be closed. If f −1[D] is
one of ∅, {0}, or S, we are done. Hence, suppose that f −1[D] = {1}, i.e.,
p i(y) ∈ D and p i(x) ∉ D. ThenU ∶= p−1i [C] and V ∶= p−1i [D] are closed
sets in Ωκ with x ∈ U ∖V and y ∈ V ∖U. Since e is continuous, it follows
that e−1[V] = e−1(y) = {1} is closed in S. A contradiction.
(2) ⇒ (1) The embedding S → Ω induces an embedding Sκ → Ωκ .

Hence, it is sufficient to prove that every sober space X can be embedded

142

1. Weights

into Sκ , for some κ. Fix X. For a closed set C ⊆ X, let µC ∶ X → S be the
map defined by

µC(x) ∶= ⎧⎪⎪⎨⎪⎪⎩
0 if x ∈ C ,
1 otherwise.

Then µC is continuous since µ−1C [∅] = ∅, µ−1C [{0}] = C, and µ−1C [S] = X
are all closed. Setting e ∶= ⟨µC⟩C we obtain a continuous map X → ST ,
where T is the class of all closed sets in X.

It remains to see that e is injective. As X is sober we can find, for every pair
of distinct points x ≠ y, some closed setC containing one of them, but not the
other. Consequently, µC(x) ≠ µC(y), which implies that e(x) ≠ e(y).
Lemma 1.15. Let Ω = [0, 1] ∈Met with the metric d(x , y) ∶= ∣x − y∣. Every
metric space X can be embedded into ΩX .

Proof. Let X ∈ Met. For every z ∈ X, we define a function fz ∶ X → Ω via
fz(x) ∶= d(z, x). We claim that fz is non-expansive and that the function
e ∶= ⟨ fz⟩z∈X ∶ X → ΩX is the desired embedding. For the first claim, note
that

d(fz(x), fz(y)) = ∣d(z, x) − d(z, y)∣ ≤ d(x , y) ,
for all x , y, z ∈ X. Hence,

d(e(x), e(y)) ≤ sup
z
d(fz(x), fz(y)) ≤ d(x , y) , for all x , y ∈ X.

For the second one, we have to show that e is an isometry. For x , y ∈ X, we
have

d(x , y) ≤ ∣d(x , x) − d(x , y)∣
= ∣ fx(x) − fx(y)∣≤ d(fx(x), fx(y))≤ sup

z
d(fz(x), fz(y)) = d(e(x), e(y)) ≤ d(x , y) .

143

III. Languages

Qua@-Finite Set+

Finally, let us take a quick look at the following generalisation of the notion
of an orbit finite set from nominal set theory.

Definition 1.16. An object A ∈ D is quasi-finite if there exists a surjective
morphism q ∶ JX → A, for some finite set X. ⌟
Lemma 1.17. Every finite set A is quasi-finite. If the unit ε ∶ Id⇒ VJ of the
adjunction is an isomorphism, the converse also holds.

Proof. By Lemma I.2.3, the counit morphism ιA ∶ JVA→ A is surjective.
For the second statement, suppose that εX ∶ X → VJX is an isomorphism

and let f ∶ JX → A be a surjective function with finite X. ThenV f ○ εX ∶
X → VA is surjective and ∣VA∣ ≤ ∣X∣ is finite.
Remark. This lemma implies that in the categories Set, Pos, Top, andMet,
quasi-finiteness is the same notion as finiteness and therefore not that inter-
esting. In G-Set a set is quasi-finite if, and only if, it has only finitely many
orbits under G. Thus, quasi-finiteness is strictly weaker than finiteness and
it is frequently the more useful concept. ⌟
Lemma 1.18. The class of quasi-finite sets is closed under subsets, finite products,
and images of surjective morphisms.

Proof. For images under surjective morphisms note that, if q ∶ A→ B and
f ∶ JX → A are surjective, so is q ○ f ∶ JX → B.
For subsets, suppose that f ∶ JX → A is surjective and let i ∶ C → A be

a monomorphism.Then Vi ∶ VC → VA is injective and so is its pullback
j ∶ Z → VJX along the function f̂ ∶ X → VA corresponding to f via the
adjunction. Let q ∶ Z → VC be the other morphism of the pullback square
and let q̂ ∶ JZ → C be the morphism corresponding to it via the adjunction.
Note that q is surjective since, in Set, the pullback of an epimorphism is an
epimorphism. Furthermore, we have seen in Lemma I.2.3 (e) that the counit
ι ∶ JVC → C is surjective. Hence, so is q̂ = ι ○ Jq.

144

2. Languages

For the empty product, note thatV preserves products. Hence,V1D =
1Set and the unique map u ∶ 1Set → V1D corresponds to a morphism
û ∶ J1Set → 1D , which is clearly surjective.
For binary products, suppose that f ∶ JX → A and g ∶ JY → B are

surjective. Let p ∶ X × Y → X and q ∶ X × Y → Y be the two projections.
Note that p and q are surjetive sinceV preserves limits. Hence,V(X×Y) =
VX ×VY andVp andVq are the corresponding projections. Consequently,
f ○ p and g ○ q are surjective and, hence, so is ⟨ f ○ p, g ○ q⟩ ∶ J(X × Y) →
A× B.

Corollary 1.19. If Ω is quasi-finite, then so is every weakly finite-dimensional
set.

Proof. Suppose thatΩ is quasi-finite and letA be weakly finite-dimensional.
Fix anM-morphism µ ∶ Ã→ Ωd and a surjective E-morphism ε ∶ Ã→ A
with finite d. Then it follows by the preceding lemma that Ωd , Ã, and A are
also quasi-finite.

2. Language+

These preparations out of the way, we can finally start to develop formal
language theory. Our abstract setting is as follows.

Conventions.

(i) D is a discrete category with arbitrary limits and colimits.
(ii) Ω ∈ D is injective.
(iii) ⟨M, flat, sing⟩ is a polynomial monad onDΞ such thatM preserves epi-

morphisms.
(iv) ⟨E ,M⟩ is the standard factorisation system on D, which is well-defined

and M is closed under coproducts.

Definition 2.1. (a) An alphabet is an object Σ ∈ DΞ that is isomorphic to
one of the form JX, for some finite set X. We denote by Alph the category

145

III. Languages

of all alphabets whose morphisms are all functions of the form J f , for some
function f on finite sets.
(b) An Ω-language over the alphabet Σ is a function κ ∶MξΣ → Ω, for

some sort ξ.
(c) A family of Ω-languages is a functionK mapping each alphabet Σ to a

classK[Σ] of languages over Σ.
(d) A function f ∶ A→ B recognises a function κ ∶ Aξ → Ω if

κ = µ ○ f , for some function µ ∶ Bξ → Ω .

(e) Let f ∶ A→ B and κ ∶ Bξ → Ω be functions.The inverse image of κ is

f −1[κ] ∶= κ ○ f ∶ Aξ → Ω .

There are two common special cases. Functions of the form f =Mg, for
some morphism f ∶ Σ → Γ of Alph, are called relabellings. In this case, we
call we call f −1[κ] an inverse relabelling of κ. Similarly, if f ∶MΣ →MΓ is
a morphism ofM-algebras, we call f −1[κ] the image of κ under an inverse
morphism. ⌟
Remark. In the unweighted case forD = Pos, a language κ ∶MξΣ → {0, 1}
of course corresponds to a subset K ∶= κ−1(1) ⊆MξΣ. Such a language is
recognised by f ∶MΣ → A if there is an upwards closed set P ⊆ A such that
K = f −1[P].
The inverse image of K under a function g ∶ MΣ → C is simply the

preimage

g−1[K] ∶= { c ∈ C ∣ g(c) ∈ K } . ⌟
Note that we always assume alphabets to be of the form JX. This is

required for the variety theorem in the next section. But sometimes it is
useful to also work with languages over other ‘alphabets’ C. We do so by
simply replacing C by JVC. This leads to the following extension of the
notion of a family of languages.

146

2. Languages

Definition 2.2. LetK be a family of languages. For an arbitrary C ∈ DΞ , we
define

K[C] ∶= { κ ∶MξC → Ω ∣ ξ ∈ Ξ , κ ○Mι ∈ K[JVC] } ,
where ι ∶ JV⇒ Id is the counit of the adjunction J ⊣ V. ⌟
Example. Let Ω be a semiring and Σ an alphabet. A weighted automatonA = ⟨Q, Σ, δ, i , t⟩ (for words) over Ω consists of a finitely generated Ω-
module Q, an initial state i ∈ Q , a final form t ∶ Q → Ω, and a transition
function δ ∶ Σ∗ → End(Q), which is a monoid homomorphism into the
monoid End(Q) of all linear maps Q→ Q. Such an automaton recognises
the language κ ∶ Σ∗ → Ω defined by

κ(w) ∶= t(δ(w)(i)) .
Note that this language is recognised by the morphism δ ∶ Σ∗ → End(Q)

since

κ = µ ○ δ where µ(f) ∶= t(f (i)) . ⌟
Language Algebra+

While we are mostly interested in Ω-languages (and the special case of
unweighted languages), some of the results below will be developed in a
more abstract setting which hopefully simplifies the exposition. To this
end, let us introduce a (contravariant) functor L○ that maps each set A to a
language algebra L○A, whose elements are just the Ω-languages κ ∶ A→ Ω.

Definition 2.3. (a) Let A ∈ D. We denote by L○A ∶= D(A,Ω) the algebra
whose elements are all functions A → Ω and whose operations are all Ω-
operations.
(b) For a function f ∶ A→ B inD, we denote by L○ f ∶ L○B → L○A the

function L○ f (κ) ∶= κ ○ f . We call L○ f (κ) the inverse image of κ under f
and we usually use the more suggestive notation f −1[κ] ∶= L○ f (κ). ⌟

147

III. Languages

Remark. (a) For unweighted languages we can again simplify this definition.
If we work in an unordered setting, i.e., with algebras in Set, we can use
power-set algebras

L○A ∶= ⟨℘(A),∪,∩, ⟩ .
For unweighted languages in Pos, we use

L○A ∶= ⟨UA,∪,∩⟩
instead, whereUA denotes the set of upwards-closed subsets of A. In both
cases, f −1[K] is just the preimage of K ⊆ B under f ∶ A→ B.
To see that we only need the above operations, note that every function[2]n → [2] can be expressed using disjunction, conjunction, and negation.

Similarly, every monotone function [2]n → [2] can be expressed using
disjunction and conjunction only.

(b) Using the above notation, we can say that an Ω-language κ ∈ L○MξΣ
is recognised by a morphism φ ∶ MΣ → A if, and only if, κ = φ−1ξ [µ], for
some µ ∈ L○Aξ .

(c)Note that, for f ∶ A→ B, the functionL○ f is indeed a homomorphism
L○B → L○A since, for each Ω-operation ω ∶ Ωn → Ω,

ω[L○ f (κ0), . . . ,L○ f (κn−1)] = ω ○ ⟨κ0 ○ f , . . . , κn−1 ○ f ⟩= ω ○ ⟨κ0 , . . . , κn−1⟩ ○ f= L○ f (ω[κ0 , . . . , κn−1]) . ⌟
Lemma 2.4. If µ ∶ A → B is an M-morphism, then L○µ ∶ L○B → L○A is
surjective.

Proof. Let κ ∶ A→ Ω be long to L○A. Since Ω is injective, there exists some
function λ ∶ B → Ω with λ ○ µ = κ. Thus, κ = L○µ(λ).
Language algebras L○A over finite-dimensional sets A are particularly

simple. Let us mention two properties.

Lemma 2.5. A set A ∈ D is strongly finite-dimensional if, and only if, the
language algebra L○A is finitely generated.

148

2. Languages

Proof. (⇒) Fix an M-morphism µ ∶ A → Ωd and let κ ∶ A → Ω be an
element of L○A. Since Ω is injective, there exists a function ω ∶ Ωd → Ω
with κ = ω ○ µ. Set λ i ∶= p i ○ µ where p i ∶ Ωd → Ω is the projection to the
i-th component. Then

ω[λ̄] = ω ○ ⟨λ0 , . . . , λd−1⟩= ω ○ ⟨p0 ○ µ, . . . , pd−1 ○ µ⟩ = ω ○ µ = κ .
(⇐) Fix generators µ0 , . . . , µn−1 of L○A. By assumption, we can find

an Ω-operation ω with id = ω[µ̄′] for some subset µ̄′ of the generators.
Suppose that µ̄′ = µ0 , . . . , µd−1 and set

e ∶= ⟨µ0 , . . . , µd−1⟩ ∶ A→ Ωd .

Since ω ○ e = ω[µ̄′] = id, the function e has a left-inverse. This implies that
e ∈M.

Corollary 2.6. A set A ∈ D is weakly finite-dimensional if, and only if, the
language algebra L○A is a subalgebra of a finitely generated one.

Lemma 2.7. Let ε ∶ A→ B and η ∶ A→ C be E-morphisms inD where C is
strongly finite-dimensional. Then

ε ≤ η iff L○ε[L○B] ⊇ L○η[L○C] .
Proof. (⇒) Suppose that there exists a function ρ ∶ B → C with η = ρ ○ ε.
For κ ∈ L○C it follows that

L○η(κ) = κ ○ η = κ ○ ρ ○ ε = L○ε(κ ○ ρ) ∈ L○ε[L○B] .
(⇐) Since C is strongly finite-dimensional, there exists anM-morphism

e ∶ C → Ωd , for some d < ω. Let p i ∶ Ωd → Ω be the projection to
the i-th component. Note that p i ○ e ∶ C → Ω belongs to L○C. Hence,
L○η[L○C] ⊆ L○ε[L○B] implies that there exist κ i ∈ L○B with

κ i ○ ε = p i ○ e ○ η .

149

III. Languages

It follows that

⟨κ i⟩i ○ ε = ⟨p i ○ e ○ η⟩i = ⟨p i⟩i ○ e ○ η = e ○ η .
By the diagonal fill-in property, we can therefore find a function δ ∶ B → C
with δ ○ ε = η and e ○ δ = ⟨κ i⟩i . In particular, ε ≤ η.

For finite-dimensional sets, the language algebra of a finite product is
generated by languages over the various projections.

Lemma 2.8. Let A, B ∈ D be strongly finite-dimensional and let p ∶ A×B → A
and q ∶ A× B → B be the two projections. Then

L○(A× B) = ⟪p−1[L○A] ∪ q−1[L○B]⟫ ,
where ⟪X⟫ denotes the subalgebra of L○(A× B) generated by X.
Proof. (⊇) is trivial. For (⊆), fix κ ∈ L○(A × B). As A and B are finite-
dimensional, there existM-embeddings e ∶ A→ Ωm and f ∶ B → Ωn .Then
e × f ∈M and, since Ω is injective, we can find a function ω ∶ Ωm+n → Ω
with κ = ω ○ (e × f). Consequently,

κ = ω ○ (e × f)= ω[(u0 ○ e ○ p), . . . , (um−1 ○ e ○ p),(v0 ○ f ○ q), . . . , (vn−1 ○ f ○ q)] ,
where u i ∶ Ωm → Ω and v i ∶ Ωn → Ω are the projections. Since u i ○ e ∈
p−1[L○A] and v i ○ f ∈ q−1[L○B], it follows that

κ ∈ ⟪p−1[L○A] ∪ q−1[L○B]⟫ .
Corollary 2.9. If A, B ∈ D are strongly finite-dimensional, then

L○(A× B) ≅ L○A+L○B .

150

3. Minimal algebras

3. Minimal Algebra+

Let us start with the observation that the recognisability of a language κ ∶
Aξ → Ω over an algebra A depends on which M-congruences of A are
contained in ker κ. (Note that ker κ itself is usually not anM-congruence.)

Lemma 3.1. Let A be anM-algebra and κ ∶ Aξ → Ω a language.
(a) An E-morphism φ ∶ A → B of M-algebras recognises κ if, and only if,

kerφ ≤ ker κ.
(b) If ε ≤ ker κ is anM-congruence, then ε ∶ A→ A/ε recognises κ.
(c) κ is recognised by a morphism into anM-algebra with some property P

if, and only if, there exists anM-congruence ε ≤ ker κ such that the quo-
tient A/ε has property P.

Proof. Note that (b) follows by (a) and (c) by (b). Hence, we only need to
prove (a). If φ recognises κ, there exists some function µ ∶ Bξ → Ω such that
κ = µ ○φ.This implies that kerφ ≤ ker κ.The converse follows immediately
by definition of the order on quotients:

kerφ ≤ ker κ iff ρ ○ kerφ = ker κ , for some ρ .

Since φ ∈ E, we have kerφ = φ. Furthermore, κ = i ○ ker κ, for some i ∈M.
Hence, we have

ρ ○ kerφ = ker κ iff (i ○ ρ) ○ φ = κ ,
and the claim follows for µ ∶= i ○ ρ.

It follows that classifying the algebras recognising κ amounts to classifying
allM-congruences contained in ker κ. In particular, if there is a coarsest such
congruence, then there exists a smallest algebra recognising κ.

Definition 3.2. Let κ ∈ Aξ → Ω be a language and φ ∶ A → M an E-
morphism ofM-algebras recognising κ. We call φ the minimal morphism
of κ if, for every surjective morphism ψ ∶ A→ B recognising κ, there exists
a unique morphism ρ ∶ B → M such that φ = ρ ○ ψ. In this case we call
M the minimal algebra of κ. ⌟

151

III. Languages

Remark. (a) In category-theoretic language, the minimal morphism of κ is
the terminal object in the category of all surjective morphisms recognising κ.
In particular, it is unique up to isomorphism.

(b) In terms of congruences, it follows that, if φ is the minimal morphism
of κ, then kerφ is the maximalM-congruence with kerφ ≤ ker κ. ⌟
Let us start with an example showing that minimal morphisms do not

need to exist.

Example. Recall the monadC = Cℵ0 for countable chains from the example
on page 35. We consider the language

K ∶= {w ∈ C{a} ∣ for every n < ω, w has a factorisation w = uanv } .
Every morphism φ ∶ C{a} → B recognising K satisfies

φ(am) ≠ φ(an) , for m ≠ n .
To prove that K does not have a minimal morphism, consider the words

wn ∶= ηanη , for n < ω
where η denotes a dense order labelled with a, and let hn ∶ C{a} → C{a}
be the function with

hn(x) ∶= ⎧⎪⎪⎨⎪⎪⎩
wk if x = wk+1 for k ≥ n ,
x otherwise .

Note that there exists a function σn ∶ CC{a} → C{a} such that
hn ○ flat = σn ○Cσ .

As hn is surjective, it therefore follows by Lemma I.5.5 thatAn ∶= ⟨C{a}, σn⟩
forms anC-algebra and hn ∶ C{a} → An a morphism.

For a contradiction, suppose thatK has aminimalmorphism φ ∶ C{a} →
M. Then there are morphisms ρn ∶ An →M with ρn ○ hn = φ. Hence,

φ(wn+1) = ρn(hn(wn+1)) = ρn(wn) = ρn(hn(wn)) = φ(wn) ,

152

3. Minimal algebras

for all n < ω. This implies that

φ(w1w1w1 . . .) = φ(w1w2w3 . . .) .
But w1w1w1 . . . ∉ K while w1w2w3 . . . ∈ K. A contradiction. ⌟
Note that, by Lemma 3.1, the existence of a minimal algebra for a lan-

guage κ only depends on the kernel ker κ.

Lemma 3.3. Let A be anM-algebra. A language κ ∈ Aξ → Ω has a minimal
algebra if, and only if, there exists a greatestM-congruence ε ≤ ker κ.
Proof. (⇐) Let η ∶ A → M be the minimal morphism of κ. We claim
that ker η is the greatestM-congruence contained in ker κ. First, note that
Lemma 3.1 implies that ker η ≤ ker κ since η recognises κ.
For maximality, consider anM-congruence ε ≤ ker κ. By Lemma 3.1, ε ∶

A→ A/ε recognises κ. By minimality of η, we can therefore find amorphism
ρ ∶ A/ε →M with η = ρ ○ ε. This implies that ε ≤ ker(ρ ○ ε) = ker η.(⇒)We claim that ε ∶ A→ A/ε is the minimal morphism of κ. Hence,
suppose that ψ ∶ A → C is surjective and recognises κ. By Lemma 3.1, it
follows that kerψ ≤ ker κ. Asψ is amorphism ofM-algebras, its kernel kerψ
is anM-congruence. By choice of ε, it follows that kerψ ≤ ε. Consequently,
there exists a morphism ρ ∶ C → A/ε with ρ○ψ = ε. Uniqueness of ρ follows
from the fact that ψ is surjective.

Wewill prove the existence ofminimal algebras in the caseD = Poswhere
we can work with congruence orderings. (The exact same proofs work for
Set andG-Set.) To use the preceding lemma, we need to construct maximal
congruences.

Definition 3.4. We denote the transitive closure of a relation θ ⊆ A×A by
TC(θ). ⌟
Lemma 3.5. LetD = Pos and let A be anM-algebra.
(a) Cong(A) forms a complete lattice where

inf Θ = ⋂Θ and supΘ = TC(⋃Θ) , for Θ ⊆ Cong(A) .

153

III. Languages

(b) CongM(A) forms a complete lattice where
inf Θ = ⋂Θ , for Θ ⊆ CongM(A) .

Proof. Part (a) is obvious and (b) follows by Lemma II.4.12.

Unfortunately, joins of congruences are much harder to compute. Let us
collect a few lemmas to do so. We start with a technical result showing how
to compute transitive closures of relations onMA.

Lemma 3.6. Let Θ be a set of reflexive binary relations on some set A ∈ PosΞ ,
and let σ ⊆ TC(⋃Θ) be finite. Then

s σM t implies s = r0 θM
0 ⋯ θM

n−1 rn = t ,
for some θ0 , . . . , θn−1 ∈ Θ and r0 , . . . , rn ∈MA .

Proof. Suppose that s σM t. By definition, there exists some u ∈Mσ such
that s = Mp(u) and t = Mq(u), where p, q ∶ A × A → A are the two
projections. We fix an enumeration ⟨a0 , b0⟩, . . . , ⟨an−1 , bn−1⟩ of σ and we
define gk ∶ σ → A, for k ≤ n, by

gk(⟨a i , b i⟩) ∶= ⎧⎪⎪⎨⎪⎪⎩
a i if i ≥ k ,
b i if i < k .

Then s = Mg0(u) and t = Mgn(u). Consequently, it is sufficient to find,
for every k < n, relations θ0 , . . . , θn−1 ∈ Θ and elements r0 , . . . , rn ∈MA
such that

Mgk(u) = r0 θM
0 ⋯ θM

n−1 rn =Mgk+1(u) .
Thus, fix k < n. Since ak θ̂ bk , we can find elements c0 , . . . , cm ∈ A and
relations θ0 , . . . , θm−1 ∈ Θ with

ak = c0 θ0 . . . θm−1 cm = bk .

154

3. Minimal algebras

Define h l ∶ σ → A×A, for l < m by

h l(⟨a i , b i⟩) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⟨c l , c l+1⟩ if i = k ,⟨a i , a i⟩ if i > k .⟨b i , b i⟩ if i < k .

Then v l ∶=Mh l(u) ∈Mθ l implies that

Mgk(u) =Mp(v0) θ0 Mq(v0) =Mp(v1)
θ1 Mq(v1) = ⋯
θm−2 Mq(vm−2) =Mp(vm−1)
θm−1 Mq(vm−1) =Mgk+1(u) ,

as desired.

Note that the join of a set of congruences can be computed by first taking
their union and then the transitive closure of the resulting relation.

Proposition 3.7. Let M be a monad on PosΞ where Ξ is finite, let A be
an M-algebra, and let ⊑0 , ⊑1 ∈ CongM(A). If ⊑0 has finitary index, then
TC(⊑0 ∪ ⊑1) ∈ CongM(A).
Proof. Let ⊑ ∶= TC(⊑0 ∪ ⊑1). Clearly, ⊑ is reflexive, transitive, and it con-
tains ≤. Hence, we only need to prove the congruence property, that is, we
have to show that

s ∈M⊑ implies π(Mp(s)) ⊑ π(Mq(s)) ,
where p, q ∶ A×A→ A are the two projections.

First, consider the case where s ∈Mσ , for some finite σ ⊆ ⊑. Then we can
use Lemma 3.6 to find a sequence

Mp(s) = r0 ⊑Mi0 ⋯ ⊑Min−1 rn =Mq(s) ,

155

III. Languages

where i0 , . . . , in−1 ∈ {0, 1} and r0 , . . . , rn ∈MA. As ⊑0 and ⊑1 are congru-
ence orderings, it follows that

π(Mp(s)) = π(r0) ⊑i0 ⋯ ⊑in−1 π(rn) = π(Mq(s)) .
Consequently, π(Mp(s)) ⊑ π(Mq(s)).
For the general case, let s ∈ M⊑. Fix a function γ0 ∶ A/⊑0 → A (not

necessarily monotone) and let γ ∶ A→ A be the composition of the quotient
map A→ A/⊑0 with γ0. Then

Mp(s) ⊑M0 M(γ ○ p)(s) and M(γ ○ q)(s) ⊑M0 Mp(s) .
Furthermore, the set σ ∶= ⊑∩(rng γ×rng γ) is finite andM(γ×γ)(s) ∈Mσ .
By the special case we have proved above and the fact that ⊑0 is a congruence
ordering, it therefore follows that

π(Mp(s)) ⊑0 π(M(γ ○ p)(s)) ⊑ π(M(γ ○ q)(s)) ⊑0 π(Mq(s)) .
To obtain a stronger statement, we need to make additional assumptions

on the monadM.

Definition 3.8. A functor M ∶ PosΞ → PosΞ is finitary if it preserves
directed colimits, that is, if

M(colimD) ≅ colim(M ○ D) ,
for every directed diagram D ∶ I → PosΞ . ⌟
Remark. (a) In particular, ifM is finitary thenMA is equal to the directed
colimit of the diagram consisting ofMC, for all finite C ⊆ A.

(b)The word functorMA ∶= A+ is finitary as every finite word uses only
finitely many labels. The functor

M⟨A1 ,A∞⟩ ∶= ⟨A+1 , A+1A∞ ∪Aω
1 ⟩

for infinite words, on the other hand, is not finitary as an infinite word can
contain infinitely many different labels. Thus, in general

Aω ≠ ⋃{Cω ∣ C ⊆ A finite} .

156

3. Minimal algebras

(c) More generally, a polynomial functor in PosΞ is finitary if, and only if,
its arity is at most ℵ0. (We have proved (⇐) in Corollary II.2.10.) ⌟
For finitary monads we can prove the following more general version of

Proposition 3.7. In this case, we can form joins of arbitrary many congruence
orderings and we can drop the restriction on the number of sorts.

Proposition 3.9. Let M be a finitary monad on PosΞ and let Θ be a set of
M-congruences on anM-algebra A. Then TC(⋃Θ) is also anM-congruence
on A.

Proof. Set ⊑ ∶= TC(⋃Θ). Clearly, ⊑ is a preorder containing ≤. Hence, we
only need to prove the congruence property, that is, we have to show that

s ∈M⊑ implies π(Mp(s)) ⊑ π(Mq(s)) ,
where p, q ∶ A×A→ A are the two projections. SinceM is finitary, there
exists a finite subset σ ⊆ ⊑ such that s ∈Mσ . Hence, we can use Lemma 3.6
to find a sequence

Mp(s) = r0 θM
0 ⋯ θM

n−1 rn =Mq(s) ,
where θ0 , . . . , θn−1 ∈ Θ and r0 , . . . , rn ∈ MA. As the θ i are congruence
orderings, it follows that

π(Mp(s)) = π(r0) θ0 ⋯ θn−1 π(rn) = π(Mq(s)) .
This implies that π(Mp(s)) ⊑ π(Mq(s)).

After these preparations, we can present the following two conditions on
the existence of minimal algebras.

Theorem 3.10. LetM be a monad on PosΞ where Ξ is finite. Every language
κ ∈MξA→ Ω that is recognised by a surjective morphism φ ∶MA→ B into
a finitaryM-algebra has a minimal morphism.

157

III. Languages

Proof. By Lemma 3.3, it is sufficient to prove that the set

Θ ∶= { θ ∈ CongM(A) ∣ θ ⊆ ker κ }
has a greatest element. First, note that Θ contains the congruence σ ∶= kerφ,
which has finitary index. Furthermore, the set

Θ0 ∶= { θ ∈ Θ ∣ σ ⊆ θ } .
is finite since every congruence in Θ0 can be obtained from σ by merging
some of the classes and making some of the other classes comparable.There-
fore, we can use Proposition 3.7 to find a greatest element ρ ∈ Θ0 (the
transitive closure of the union of all congruences in Θ0).
We claim that ρ is also the greatest element of Θ. Hence, let θ ∈ Θ.

Then Proposition 3.7 implies that θ̂ ∶= TC(θ ∪ σ) ∈ Θ0. Consequently,
θ ⊆ θ̂ ⊆ ρ.

Note that there are examples of (i) non-recognisable languages and of
(ii) recognisable languages over infinitely many sorts that do not have a
minimal algebra. For finitary monads on the other-hand, minimal algebras
always exist.

Theorem 3.11. Let M be a monad on PosΞ . The following statements are
equivalent.
(1) For everyM-algebra A, every set Ω, and every ξ ∈ Ξ, every Ω-language

κ ∶ Aξ → Ω has a minimal morphism.
(2) M is finitary.
(3) For everyM-algebra A, the set CongM(A) of allM-congruences is closed,

as a subset of Cong(A), under arbitrary joins.
Proof. (2) ⇒ (3) follows by Proposition 3.9.(3) ⇒ (1) Let θ be the supremum (in Cong(A)) of allM-congruences
below ker κ. By assumption, θ is anM-congruence. Consequently, the claim
follows by Lemma 3.3.

158

3. Minimal algebras

(1) ⇒ (2) Fix A ∈ Set and let A′ be a disjoint copy of A. For every finite
C ⊆ Awith copy C′ ⊆ A′, we consider the function σC ∶ A+A′ → A+A′
that acts as the identity on A+ (A′ ∖ C) and that maps elements c′ ∈ C′ to
their copy c ∈ C. For s, t ∈M(A+A′), define

s ⊑ t : iff MσC(s) ≤MσC(t) , for some finite C ⊆ A .

We start by showing that ⊑ is a congruence order onM(A+A′). Reflex-
ivity is obvious. For transitivity, note that

MσC(r) ≤MσC(s) and MσD(s) ≤MσD(t)
implies thatMσC∪D(r) ≤MσC∪D(t). Hence, ⊑ is a preorder. Furthermore,
monotonicity of σC implies that ≤ ⊆ ⊑. Hence, it remains to prove the con-
gruence property. Let q ∶M(A+A′) →M(A+A′)/⊑ be the quotient map.
We can regard q as an Ω-language for Ω ∶=M(A+A′)/⊑. By assumption,
it therefore follows that q has a minimal morphism η ∶M(A+ A′) →M.
As ker η is a congruence relation, it is sufficient to prove that ⊑ = ker η.(⊇)As η recognises q, there exists some function g ∶ M →M(A+A′)/⊑
such that q = g ○ η. This implies that ker η ⊆ ker q = ⊑.(⊆)Suppose that s ⊑ t, that is,MσC(s) ≤MσC(t), for some finiteC ⊆ A.
Since kerMσC ⊆ ⊑ = ker q, we know thatMσC recognises q. AsMσC is a
morphism ofM-algebras, it follows by the definition of a minimal morphism
that there exists some morphism ρ ∶ rngMσC → M with ρ ○MσC = η.
Consequently,

η(s) = ρ(MσC(s)) ≤ ρ(MσC(t)) = η(t) ,
that is, ⟨s, t⟩ ∈ ker η, as desired.
To conclude the proof, let ≡ be the equivalence relation associated with ⊑

and let ι ∶ A→ A′ be the functions mapping a ∈ A to a′ ∈ A′. For a ∈ A, it
follows that

Mσ{a}(sing(a)) = sing(a) =Mσ{a}(Mι(sing(a))) .

159

III. Languages

Consequently, sing(a) ≡Mι′(sing(a)). Since ⊑ is a congruence ordering
andMA is generated by rng sing, it follows that

s ≡Mι(s) , for all s ∈MA .

By definition of ⊑ it follows that, for every s ∈MA, there exists some finite
set Cs ⊆ A such that

MσCs(s) =MσCs(Mι(s)) .
To see thatM is finitary, let s ∈MA and fix a finite set C ⊆ Awith

MσC(s) =M(σC ○ ι)(s) .
Fix c ∈ C and let τ ∶ A+A′ → A be the function acting as the identity on A
while mapping every element of A′ to c. Then

s =Mτ(s) =M(τ ○ σC)(s) =M(τ ○ σC ○ ι)(s) .
The claim now follows since rng(τ ○ σC ○ ι) = C is finite.

Example. The word monadMX = X+ has arity ℵ0 and is therefore finitary.
Consequently, every Ω-language κ ∶ Σ+ → Ω has a minimal algebra. ⌟
This result seems to be bad news for languages over infinite objects like

ω-words or infinite trees. Fortunately, we do not need minimal algebras for
all languages. We are only interested in languages of the form κ ∶MξΣ → Ω
where Σ is a finite alphabet. Furthermore, there are usually only a few choices
for Ω that are of interest.

4. Syntati Algebra+

The definition of a minimal algebra is rather abstract. In many cases, we
can give a more concrete description, which is the subject of this section.
To motivate the general constructions that follow, let us take a look at the

160

4. Syntactic algebras

case of finite words. With a language K ⊆ Σ∗, we can associate its syntactic
congruence

u ≈K v : iff xuy ∈ K⇔ xvy ∈ K , for all x , y ∈ Σ∗ .
This relation is a congruence for monoid multiplication, which means we
can define a monoid

Syn(K) ∶= Σ∗/≈K ,

called the syntactic monoid of K. It turns out that this monoid is finite if, and
only if,K is a regular language. Furthermore, the quotientmap Σ∗ → Σ∗/≈K
is a monoid homomorphism recognising K.

In the general case the construction is analogous.We start by generalising
operations of the form u ↦ xuy.

Definition 4.1. Let A be anM-algebra.
(a) A context is an element ofM(A+◻ζ), where◻ζ is considered as some

special symbol of sort ζ ∈ Ξ called a hole. For a context p ∈Mξ(A+◻ζ) and
an element a ∈ Aζ , we define

p[a] ∶= σa(p) ∈ Aξ

where σa ∶ M(A + ◻ζ) → A is the unique morphism that extends the
function sa ∶ A+ ◻ζ → A given by

sa(◻ζ) ∶= a and sa(c) ∶= c , for c ∈ A .

In the case whereA =MΣ is a freeM-algebra, we will also consider elements
p ∈ M(Σ + ◻ζ) as contexts, by identifying them with their image under
M(sing + id).

(b) An internal operation of A is a function Aζ → Aξ of the form

a ↦ π(p[a]) , for some context p ∈Mξ(A+ ◻ζ) .
In the following, we will often identify a context with the associated internal
operation.

161

III. Languages

(c)The composition of two contexts p ∈Mξ(A+◻ζ) and q ∈Mζ(A+◻η)
is the context obtained from p by replacing every occurrence of ◻ζ by a copy
of q. Formally,

pq ∶= p̂[q] ∈Mξ(A+ ◻η) ,
where p̂ ∶= M(sing + id)(p) and the expression p̂[q] is evaluated in the
M-algebraM(A+ ◻η).

(d) A derivative of κ ∶ Aξ → Ω is a function of the form

p−1[κ] ∶= κ ○ p ∶ Aζ → Ω , where p ∈Mξ(A+ ◻ζ) is a context. ⌟
We can now lift the language functor L○ fromD to Alg(M) as follows.

Definition 4.2. (a) For anM-algebra A, we denote by LA the language al-
gebra with domains (L○Aξ)ξ∈Ξ ∈ SetΞ and the following operations. We
retain all operations of each algebra L○Aξ (that is, all Ω-operations onD(Aξ ,Ω)) and we add all internal operations L○p ∶ L○Aξ → L○Aζ , for
contexts p ∈Mξ(A+ ◻ζ), ξ, ζ ∈ Ξ.

(b) For a morphism φ ∶ A→ B ofM-algebras, we set

Lφ(κ) ∶= L○φξ(κ) , for κ ∈ L○Aξ .

(c) Amorphism of language algebras is a function φ ∶ LA→ LB such that,
for every internal operation p of LB, there is some operation q of LA with

q ○ φ = φ ○ p .
(d) For a subset C ⊆ LA, we denote by ⟪C⟫L the subalgebra of LA

generated by C. ⌟
Example. For unweighted languages in Pos, the language algebra LA con-
sists of all upwards-closed subsets of A. The operations are generated by
(i) intersection ∪ ; (ii) union ∩ ; (iii) the constants ∅ and A; and (iv) derivat-
ives a−1K and Ka−1, for a ∈ A. ⌟
Lemma4.3. Let φ ∶ A→ B be amorphism of M-algebras and p ∈Mξ(A+◻ζ)
a context.

162

4. Syntactic algebras

(a) The image q ∶=M(φ + id)(p) ∈Mξ(B + ◻ζ) is a context satisfying
φξ ○ p̂ = q̂ ○ φζ ,

where p̂ and q̂ are the associated internal operations.
(b) If φ is an E-morphism andM preserves E-morphisms, the induced map

M(φ + id) on contexts is also an E-morphism.
Proof. (a) Note that

(q̂ ○ φ)(s) = q̂(φ(s))
= π(M(φ + id)(p)[φ(s)])
= π(Mφ(p[s]))
= φ(flat(p[s]))
= (φ ○ p̂)(s) .

(b) follows by Lemma II.1.9 (a) and our assumption onM.

Lemma 4.4. In an algebraLA,Ω-operations commute with internal operations
in the sense that

p−1[ω[κ̄]] = ω[p−1[κ0], . . . , p−1[κn−1]] ,
for everyΩ-operationω ∶ Ωn → Ω, every context p, and all κ0 , . . . , κn−1 ∈ LA.
Proof. By definition,

p−1[ω[κ̄]] = ω ○ ⟨κ0 , . . . , κn−1⟩ ○ p= ω ○ ⟨κ0 ○ p, . . . , κn−1 ○ p⟩= ω[p−1[κ0], . . . , p−1[κn−1]] .
Definition 4.5. Let A be anM-algebra and κ ∶ Aξ → Ω.

(a)The syntactic morphism of κ is

synκ ∶= ker ρ ,

163

III. Languages

where ρ = (ρζ)ζ∈Ξ is the morphism with components

ρζ ∶= ⟨κ ○ p⟩p∈Mζ(A+◻) ∶ Aζ →∏
p
Ω .

(b) We call ker synκ the syntactic congruence of κ.
(c) The syntactic residue is the unique function resκ ∶ Synξ(κ) → Ω

satisfying κ = resκ ○ synκ ,ξ .
(d) We say that κ has a syntactic algebra if the syntactic congruence is an

M-congruence. In this case the quotient codom synκ has the structure of an
M-algebra. This algebra is called the syntactic algebra of κ. We denote it by
Syn(κ). ⌟
Remark. (a) Using the general definition of the kernel of a morphism, we
have ker synκ = synκ . Hence, having a separate notion of a syntactic congru-
ence is mainly useful in categoriesD where we have a more concrete notion
of a congruence.
(b) If Syn(κ) exists, the syntactic morphism synκ ∶ A → Syn(κ) is a

morphism ofM-algebras.
(c) Uniqueness of resκ follows from the fact that synκ is an epimorphism.⌟
In the category Pos the definitions simplify as follows.

Lemma 4.6. Suppose thatD = Pos and let ⪯κ be the syntactic congruence of
κ ∶ Aξ → Ω. Then

a ⪯κ b iff κ(p[a]) ≤ κ(p[b]) , for all p ∈Mξ(A+ ◻ζ) ,
iff µ(a) ≤ µ(b) , for all µ ∈ ⟪κ⟫L .

Proof. The first equivalence follows immediately by unravelling the defini-
tions. Since p−1[κ] ∈ ⟪κ⟫L, it therefore remains to prove that

κ(p[a]) ≤ κ(p[b]) , for all p ∈Mξ(A+ ◻ζ) ,
implies that

µ(a) ≤ µ(b) , for all µ ∈ ⟪κ⟫L .

164

4. Syntactic algebras

Hence, fix µ ∈ ⟪κ⟫L. Then µ = s(κ), where s is a composition of Ω-
operations and internal operations. By Lemma 4.4, we may assume that
s = ω ○ p−1 for an Ω-operation ω ∶ Ω → Ω and some context p. Since ω is
monotone,

κ(p[a]) ≤ κ(p[b]) implies ω[κ](p[a]) ≤ ω[κ](p[b]) .
Remark. In the unweighted case forD = Pos, we obtain for K ⊆ A

a ⪯K b iff p[a] ∈ K⇒ p[b] ∈ K , for all contexts p .

ForD = Set, we obtain the familiar definition

a ≈K b iff p[a] ∈ K⇔ p[b] ∈ K , for all contexts p . ⌟
Examples. LetMΣ ∶= Σ∗ be the word monad on Pos.

(a) We consider the language K ∶= a∗b∗ ⊆M{a, b}. Its syntactic congru-
ence ⪯K has the following 5 classes.

⟨⟩
a+ b+

a+b+
(a + b)∗ba(b + a)∗

(b) Let us consider theN-language κ ∶ Σ∗ → N defined by

κ(w) ∶= ∣w∣a .
That is, κ maps a word w ∈ {a, b}∗ to the number of letters a it contains.
Then ⪯κ is a linear order with

w ⪯κ w′ iff ∣w∣a ≤ ∣w′∣a . ⌟
Example. Syntactic congruences are also used in the theory of programming
languages. Let ΛX denote the set of all λ-expressions with basic operations

165

III. Languages

from the set X. Then Λ forms a monad on Set. Two expressions s, t ∈ ΛX
are called observational equivalent if

us terminates iff ut terminates , for every u ∈ ΛX .

This is just the syntactic congruence associated with the language

K ∶= { s ∈ ΛX ∣ s terminates} .
A model is a morphism φ ∶ ΛX → A of Λ-algebras. Such a model is fully

abstract if the kernel of φ coincides with observational equivalence, that is,
if φ factorises through the syntactic morphism as φ = i ○ synk , for some
embedding i ∶ Syn(K) → A. ⌟

Let us collect a few basic properties of the syntactic congruence. We start
by showing that our definitions make sense.

Lemma 4.7. Let κ ∶ Aξ → Ω.
(a) synκ ∶ A→ Syn(κ) recognises κ.
(b) resκ ∶ Synξ(κ) → Ω exists.
(c) ker synκ ≤ ker κ.
(d) ker synκ = inf p ker (κ ○ p)
Proof. (d) Let ρξ ∶= ⟨κ ○ p⟩p ∶ Aξ → ∏p Ω be the morphisms used to
define synκ . Then

ker synk = ker ρ = ker ⟨κ ○ p⟩p = infp ker (κ ○ p) .
This proves (d).
(c) We have κ ○ p0 = κ, for the trivial context p0 ∶= sing(◻). Hence,

(d) implies (c).
(a), (b) By (c) we can find some function µ with ker κ = µ ○ker synκ .This

implies that

κ = im κ ○ ker κ = im κ ○ µ ○ synκ .
Hence, synκ recognises κ and resk ∶= im κ ○ µ exists.

166

4. Syntactic algebras

The following lemma contains the key property of the syntactic congru-
ence.

Lemma 4.8. Let κ ∶ Aξ → Ω be a language such that synκ is anM-congruence,
and let φ ∶ A→ B be an E-morphism of M-algebras. The following statements
are equivalent.
(1) φ recognises κ.
(2) kerφ ≤ ker synκ
(3) kerφ ≤ ker κ
Proof. (1)⇔ (3) has already been proved in Lemma 3.1 (a).
(1)⇒ (2) If κ = µ ○ φ, for some µ ∶ Bξ → Ω, then

φ = kerφ ≤ ker (µ ○ φ) = ker κ = ker synκ .
(2)⇒ (1) Since φ = kerφ ≤ ker synκ = synκ , there exists a function

ρ ∶ B → Syn(κ) such that synκ = ρ ○ φ. Hence,

κ = resκ ○ synκ = resκ ○ ρ ○ φ .

which implies that φ recognises κ.

A noteworthy consequence of this lemma is the fact that, if it exists, the
syntactic algebra of a language κ is equal to its minimal algebra.

Theorem 4.9. Let A be an M-algebra and κ ∶ Aξ → Ω be a language that
has a syntactic algebra. For every E-morphism φ ∶ A→ B recognising κ, there
exists a unique morphism ρ ∶ B→ Syn(κ) such that synκ = ρ ○ φ.

Proof. Suppose that φ recognises κ. By Lemma 4.8 we have kerφ ≤ ker synκ .
Therefore, there exists some function ρ ∶ B → Syn(κ)with synκ = ρ○φ. It is
unique as φ is an epimorphism. Furthermore, ρ is a morphism ofM-algebras
by Lemma I.5.6.

Corollary 4.10. Let A be an M-algebra and κ ∶ Aξ → Ω a language with
a syntactic algebra. Then Syn(κ) is equal to the minimal algebra of κ and
synκ ∶ A→ Syn(κ) is equal to its minimal morphism.

167

III. Languages

Consequently, the syntactic congruence provides a concrete way to com-
pute the minimal algebra of a language. Note that there do exist languages
that have a minimal algebra, but not a syntactic one.The preceding corollary
justifies the following notation.

Definition 4.11. Let κ ∶ Aξ → Ω be a language with a minimal algebra.
Even if κ does not have a syntactic algebra, we denote the minimal algebra,
the minimal morphism, and its residue by, respectively, Syn(κ), synκ , and
resκ . ⌟
We are particularly interested in languages whose syntactic algebra is

finite-dimensional.

Lemma 4.12. If Syn(κ) is sort-wise noetherian, it is sort-wise strongly finite-
dimensional.

Proof. Let ρξ ∶MξA→ ΩX be the morphism used to define Syn(κ). Then
im ρξ ∶ Synξ(κ) → ΩX is anM-morphism. Since Synξ(κ) is noetherian, it
follows by Lemma 1.8 that it is strongly finite-dimensional.

Language+ Re$ognised by Synta$ti$ Algebra+

Let us take a look at what other languages are recognised by a syntactic
algebra, besides the language the algebra was originally constructed from.
We start with a technical lemma about closure properties of the syntactic
congruence.

Lemma 4.13. Let A be an M-algebra, κ ∶ Aξ → Ω a function, and p ∈
Mξ(A+ ◻ζ) a context.
(a) ker synκ ,ζ ≤ ker (synκ ,ξ ○ p) .
(b) ker synκ ≤ ker synp−1[κ] .
Proof. Let ρη ∶= ⟨κ ○ q⟩q ∶ Aη → ∏q Ω be the morphisms used to
define synκ , and let ur ∶ ∏q Ω → Ω be the projection to the r-th com-
ponent.

168

4. Syntactic algebras

(a) Note that ρ = µ ○ synκ , for some µ ∈M. Consequently, we have

ker synκ = ker ρ and ker (synκ ○ p) = ker (ρ ○ p) .
Setting g ∶= ⟨uqp⟩q , it follows that

ρξ ○ p = ⟨κ ○ q⟩q ○ p = ⟨κ ○ q ○ p⟩q = g ○ ⟨κ ○ q⟩q = g ○ ρζ .

This implies that

ker synκ ,ζ = ker ρζ ≤ ker (ρξ ○ p) = ker (synκ ,ξ ○ p) .
(b) Note that the morphism synp−1[κ] is defined via

ση ∶= ⟨κ ○ p ○ q⟩q ∶ Aη →∏
q
Ω .

Setting g ∶= ⟨upq⟩q , it follows that ση = g ○ ρη . Consequently, we have

ker synκ = ker ρ ≤ ker (g ○ ρ) = ker σ = ker synp−1[κ] .
The language algebras of a syntactic algebra are particularly simple: they

are generated by a single element.

Proposition 4.14. Let A be anM-algebra and κ ∶ Aξ → Ω a language with a
sort-wise noetherian syntactic algebra. Then

LSyn(κ) = ⟪resκ⟫L .
Proof. Let µ ∈ LζSyn(κ) and set λ ∶= µ ○ synκ . As Synζ(κ) is noetherian,
there exists a finite setH ⊆Mζ(A+ ◻ξ) of contexts such that

ker (qH ○ im ρ)∣Synζ(κ) = ker(im ρ)∣Synζ(κ) ,
where ρξ ∶= ⟨κ ○ p⟩p ∶ Aξ →∏p Ω are the morphisms used to define synκ
and qH ∶ ∏p Ω → ∏p∈H Ω is the projection to the components in H. It
follows that

ker (qH ○ ρ)∣Aζ = ker ρ∣Aζ = synκ ∣Aζ ≤ (µ ○ synκ)∣Aζ = ker λ .

169

III. Languages

As Ω is injective, there therefore exists a function ω ∶ ΩH → Ω such that

ω ○ (qH ○ ρ)∣Aζ = λ .
By definition of ρ, we have (qH ○ ρ)∣Aζ = ⟨κ ○ p⟩p∈H . Hence,

µ ○ synκ = λ = ω ○ ⟨κ ○ p⟩p∈H= ω ○ ⟨resκ ○ synκ ○ p⟩p∈H= ω ○ ⟨resκ ○M(synκ + id)(p) ○ synκ⟩p∈H= ω ○ ⟨resκ ○ p⟩p∈M(synκ+id)[H] ○ synκ ,
where the fourth step follows by Lemma 4.3. As synκ is an epimorphism, it
follows that

µ = ω[⟨p−1[resκ]⟩p∈M(synκ+id)[H]] ∈ ⟪resκ⟫L .
We obtain the following preliminary characterisation of which languages

are recognised by Syn(κ). A more general statement where κ and λ are
allowed to have different domains will be derived in Proposition 4.16 below.

Proposition 4.15. LetA be anM-algebra and let κ ∶ Aξ → Φ and λ ∶ Aζ → Ω
be languages such that κ has a syntactic algebra. The following statements are
equivalent.
(1) ker synκ ≤ ker synλ
(2) synκ ∶ A→ Syn(κ) recognises λ.
(3) Every morphism of M-algebras recognising κ also recognises λ.
If Syn(κ) is sort-wise noetherian, the following statement is also equivalent to
those ones.
(4) λ = ω[p−10 [κ], . . . , p−1n−1[κ]] , for some operation ω ∶ Φn → Ω and

finitely many contexts p0 , . . . , pn−1.
If in addition Φ = Ω, the following statement is also equivalent to (1)–(4).
(5) λ ∈ ⟪κ⟫L
170

4. Syntactic algebras

Proof. (1)⇔ (2) follows directly by Lemma 4.8.
(3)⇒ (2) is trivial as we have seen in Lemma 4.7 that synκ recognises κ.
(1)⇒ (3) Suppose that φ ∶ A→ B recognises κ. By Lemma 4.8, it follows

that kerφ ≤ ker synκ ≤ ker synλ , which, by the same lemma, implies that
φ recognises λ.
(2)⇒ (5) Suppose that λ = µ ○ synκ for some µ ∶ Synζ(κ) → Ω. By

Proposition 4.14, we have µ ∈ ⟪resκ⟫L. Hence, there is some operation ω of
LSyn(κ) with µ = ω ○ resκ . It follows that

λ = µ ○ synκ = ω ○ resκ ○ synκ = ω ○ κ .
This implies that λ ∈ ⟪κ⟫L.
(5)⇒ (4) Suppose that λ ∈ ⟪κ⟫L. Then λ = s[κ], for some term s. By

Lemma 4.4, it follows that we can replace s by a term consisting of derivatives
followed by Ω-operations. As derivatives and Ω-operations are both closed
under composition, it follows that

λ = ω[p−10 [κ], . . . , p−1n−1[κ]] ,
for some Ω-operation ω and contexts p0 , . . . , pn−1.
(4)⇒ (2) We have

λ = ω[p−10 [κ], . . . , pn−1[κ]]= ω ○ ⟨κ ○ p0 , . . . , κ ○ pn−1⟩= ω ○ ⟨resκ ○ synκ ○ p0 , . . . , resκ ○ synκ ○ pn−1⟩= ω ○ ⟨resκ ○M(synκ + id)(p0) ○ synκ , . . . ,
resκ ○M(synκ + id)(pn−1) ○ synκ⟩= ω ○ ⟨resκ ○M(synκ + id)(p0), . . . ,
resκ ○M(synκ + id)(pn−1)⟩○ synκ ,

where the fourth step follows by Lemma 4.3.Hence, λ = µ○synκ , for some µ,
and synκ recognises λ.

171

III. Languages

Remark. In the unweighted case, the condition in (4) reads

L = ⋃
i<m ⋂k<n i

p−1i k [K] .
To see this, note that we can express ω ∶ {0, 1}n → {0, 1} as a finite boolean
combination in disjunctive normal form. As ω is monotone, we can omit
every negated term from the resulting expression without changing the
result. ⌟

The next proposition describes languages recognised by syntactic algebras
via arbitrary morphisms.

Proposition 4.16. Let A and B be M-algebras and let κ ∶ Aξ → Φ be
a Φ-language with a sort-wise noetherian syntactic algebra. An Ω-language
λ ∶ Bζ → Ω is recognised by Syn(κ) if, and only if, it is of the form

λ = ω[φ−1[p−10 [κ]], . . . , φ−1[p−1n−1[κ]]] ,
for some a morphism φ ∶ B→ A, contexts p0 , . . . , pn−1 ∈M(A+ ◻), and an
operation ω ∶ Φn → Ω.

Proof. Note that we can write

ω[φ−1[p−10 [κ]], . . . , φ−1[p−1n−1[κ]]] = ω ○ ⟨p−1i [κ]⟩i<n ○ φ .

(⇐) By Proposition 4.15, the morphism synκ ∶ A→ Syn(κ) recognises
the language

λ′ ∶= ω ○ ⟨p−1i [κ]⟩i<n .
Consequently, synκ ○ φ ∶MΓ → Syn(κ) recognises λ′ ○ φ = λ.(⇒) Fix a morphism ψ ∶ B→ Syn(κ) and a language µ ∶ Synζ(κ) → Ω
such that λ = ψ−1[µ]. By Corollary II.5.4, there exists a morphism φ ∶ B→
A such that synκ ○φ = ψ.The language λ′ ∶= syn−1κ [µ] is recognised by synκ .
Consequently, we can use Proposition 4.15 to find contexts p0 , . . . , pn−1 and
a Φ-operation ω ∶ Φn → Φ such that

λ′ = ω[p−10 [κ], . . . , p−1n−1[κ]] .

172

4. Syntactic algebras

It follows that

λ = µ ○ ψ = µ ○ synκ ○ φ = ω ○ ⟨p−1i [κ]⟩i<n ○ φ .

Remark. In the unweighted case, the condition reads

L = φ−1[⋃
i<m ⋂k<n i

p−1i k [K]] . ⌟
Exi#en$e of Synta$ti$ Algebra+

In general, there is no reason why the syntactic congruence should be an
M-congruence. For finitary monads, we have already shown that minimal
algebras always exist. Let us check that the same is true for syntactic al-
gebras. It turns out that the following technical property is of fundamental
importance.

Lemma 4.17. Let ε ∶ A→ C be an E-morphism ofM-algebras. Then

ε ≤ ε ○ p , for all contexts p ∈M(A+ ◻) .
Proof. Given a context p, we can use Lemma 4.3 to find some context q with
q ○ ε = ε ○ p. This implies that ε ≤ ε ○ p.
For finitary monads on PosΞ , congruences have the following simple

description.

Lemma 4.18. Let M be a finitary monad on PosΞ and let A and C be M-
algebras. An E-morphism ε ∶ A→ C is a morphism ofM-algebras if, and only
if,

ε ≤ ε ○ p , for all contexts p ∈M(A+ ◻) .
Proof. (⇒) was already proved in Lemma 4.17.(⇐) It is sufficient to prove that ⊑ ∶= ker ε is anM-congruence. Hence,
consider a term u ∈M⊑. We have to show that

π(Mq(u)) ⊑ π(Mq′(u)) ,

173

III. Languages

where q, q′ ∶ A×A→ A are the two projections. SinceM is finitary, we have
u ∈Mσ for some finite subset σ ⊆ ⊑. Let ⟨a0 , b0⟩, . . . , ⟨am−1 , bm−1⟩ be an
enumeration of σ . For i < m, set

θ i ∶= ≤ ∪ {⟨a i , b i⟩} .
Then σ ⊆ TC(θ0∪⋅ ⋅ ⋅∪θm−1) andwe can use Lemma 3.6 to find r0 , . . . , rn ∈
MA and indices k0 , . . . , kn−1 < m such that

Mq(u) = r0 θM
k0 r1 θM

k1 ⋯ θM
km−1 rm =Mq′(u) .

By definition of θk i , we can find, for each index i < m, some context p i such
that

r i = p i[ak i] and r i+1 = p i[bk i] .
Hence,

ak i ⊑ bk i implies π(r i) = p i(ak i) ⊑ p i(bk i) = π(r i+1) .
Consequently, π(Mq(u)) ⊑ ⋯ ⊑ π(Mq′(u)).
Theorem 4.19. Let M be a finitary monad on PosΞ and A an M-algebra.
Every language κ ∶ Aξ → Ω has a syntactic algebra.

Proof. By Lemma 4.13 (a), we have

synκ ≤ synκ ○ p , for all contexts p .

Hence, it follows by Lemma 4.18 that synκ is anM-congruence.

Unfortunately, not all the monadsM used in applications are finitary. In
particular those needed for languages of infinite words or infinite trees are
not. Therefore, we have to extend the preceding proposition to a larger class
of functors. It turns out that, in all the known examples of a non-finitary
functors where syntactic algebras exists, the functor in question is ‘governed’
in a certain sense by a subfunctor which is finitary.The precise definitions
are as follows.

174

4. Syntactic algebras

Definition 4.20. (a) A morphism ρ ∶ M○ ⇒ M of monads is dense over
a class C ofM-algebras if, for all A ∈ C, C ⊆ A, and s ∈ MC, there exists
s○ ∈M○C with π(ρ(s○)) = π(s).
(b) We say that a monad M is essentially finitary over a class C if there

exists a morphism ρ ∶M○ ⇒M such thatM○ is finitary and ρ is dense over
the closure of C under binary products. ⌟
Example. Let us again consider the functor

M⟨A1 ,A∞⟩ ∶= ⟨A+1 , A+1A∞ ∪Aω
1 ⟩

for infinite words and let

M○⟨A1 ,A∞⟩ ∶= ⟨A+1 , A+1A∞ ∪Aup
1 ⟩ ,

where Aup
1 denotes the set of all ultimately periodic words in Aω

1 . One can
use a straightforward Ramsey argument to show that the infinite product
of a finite ω-semigroup is completely determined by its restriction to all
ultimately periodic words. This implies that the inclusion mapM○ ⇒M is
dense over the class of all finite ω-semigroups.The case of infinite trees is
similar and will be treated in detail in Section V.4. ⌟
Lemma 4.21. A morphism ρ ∶ M○ ⇒ M is dense over a class C if, and
only if, for every algebra A ∈ C and every set C ⊆ A, the subalgebra ⟪C⟫A

generated by C in A coincides with the subalgebra ⟪C⟫A∣ρ generated by C in the
ρ-reduct A∣ρ .
Proof. (⇒) If ρ is dense over C, we have

⟪C⟫A = { π(s) ∣ s ∈MC } = { π(ρ(s○)) ∣ s○ ∈M○C } = ⟪C⟫A∣ρ .
where the first and third step follows from Lemma II.2.2.(⇐) Given s ∈ MC, we have π(s) ∈ ⟪C⟫A = ⟪C⟫A∣ρ . Consequently,
there exists some s○ ∈M○C with π(ρ(s○)) = π(s).

IfM○ ⇒M is dense over C, everyM-algebra in C is uniquely determined
by itsM○-reduct. This will be used below to prove the existence of syntactic
algebras for essentially finitary monads.

175

III. Languages

Lemma 4.22. Let ρ ∶ M○ ⇒ M be dense over a class C that is closed under
binary products.
(a) Any two algebras in C with the sameM○-reduct are isomorphic.
(b) Let φ ∶ A○ → B○ be a morphism of M○-algebras and assume that

A○ and B○ are theM○-reducts of twoM-algebras A,B ∈ C. Then φ is
also a morphism A→ B of M-algebras.

(c) An E-morphism ε is a congruence of anM-algebra A ∈ C if, and only if, it
is a congruence of theM○-reduct A○ of A.

Proof. (a) Suppose that C contains twoM-algebras A = ⟨A, π⟩ and A′ =⟨A, π′⟩ with the sameM○-reduct A○ = ⟨A, π○⟩. To show that π = π′, fix
an element s ∈MA. Set t ∶=Md(s) ∈M∆ where ∆ ∶= { ⟨a, a⟩ ∣ a ∈ A} is
the diagonal of A×A and d ∶ A→ ∆ is the diagonal map. By assumption,
the product A × A′ belongs to C. As ρ is dense, we can find some t○ ∈M○∆
with π○(t○) = π(t). Note that t○ ∈M○∆ implies thatM○p(t○) =M○q(t○)
where p, q ∶ A×A→ A are the two projections. Consequently,

π(s) = π(Mp(t)) = p(π(t))= p(π○(t○))= π○(M○p(t○))= π○(M○q(t○))= q(π○(t○))= q(π(t)) = π′(Mq(t)) = π′(s) .
(b) Fix s ∈ MA. To show that π(Mφ(s)) = φ(π(s)), we consider the

graph

G ∶= { ⟨a, φ(a)⟩ ∣ a ∈ A}
of φ. Let i ∶= ⟨id, φ⟩ ∶ A→ G be the natural bijection and set t ∶=Mi(s) ∈
MG. Since A × B ∈ C and ρ is dense, we can find some t○ ∈ M○G with
π(t○) = π(t). Let p ∶ A× B → A and q ∶ A× B → B be the two projections.
Note that

φ = q ○ i and q(g) = φ(p(g)) , for g ∈ G ,

176

4. Syntactic algebras

which implies thatM○q(t○) =M○(φ ○ p)(t○). Therefore,

π(Mφ(s)) = π(Mq(t))= q(π(t))= q(π(t○))= π(M○q(t○))
= π(M○(φ ○ p)(t○))
= φ(p(π(t○)))= φ(p(π(t)))= φ(π(Mp(t))) = φ(π(s)) .

(c) Clearly, everyM-algebra morphism is also anM○-algebra morphism.
The converse follows from (b).

Let us also note the following property.

Proposition 4.23. Suppose thatM is essentially finitary over C and thatD has
canonical subobject diagrams. Every algebra in C is the colimit (in Alg(M)) of
its canonical ℵ0-subobject diagram.

Proof. Let A ∈ C, let D be the canonical ℵ0-subobject diagram of A, and
let ιX ∶ ⟪X⟫A → A be the inclusion map. SinceD has canonical subobject
diagrams, it follows that A is the limit of D in DΞ and that (ιX)X is the
corresponding limiting cone.
It remains to show that it is also limiting in Alg(M). Hence, consider a

cocone (µX)X fromD to someM-algebraB.We obtain a uniquemorphism
φ ∶ A→ B satisfying

φ ○ ιX = µX , for all X .

It remains to show that φ ∶ A → B is a M-morphism. By assumption,
there exists a morphism of monads ρ ∶M○ ⇒M such thatM○ is finitary
and ρ is dense over C. By Lemma 4.22, it is sufficient to prove that φ is a
M○-morphism A○ → B○ between the respective ρ-reducts. Let s ∈ M○A.

177

III. Languages

AsM○ is finitary, there is some finite set X ⊆ Awith s ∈M○X. It follows
that

π(M○φ(s)) = π(M○µX(s)) = µX(π(s)) = φ(π(s)) ,
where the first step and the last one follow from the fact that φ ↾ ⟪X⟫A =
φ ○ ιX = µX .
Using the existence result for the category Pos, we obtain the following

consequence.

Theorem 4.24. LetM be a monad on PosΞ that is essentially finitary over C
and let A be anM-algebra. If κ ∶ Aξ → Ω is recognised by some E-morphism
φ ∶ A→ C with C ∈ C, then ker synκ is anM-congruence.

Proof. Suppose that κ = φ−1[µ], for some µ ∈ L○Cξ . Let B ⊆ C be the
subalgebra induced by rng φ. ByTheorem 4.19, synµ is a morphism ofM○-
algebras.Hence, Lemma4.22 (c) implies that it is also aM-algebramorphism.
Consequently, so is its restriction to B. To prove that synκ is a morphism of
M-algebras it is therefore sufficient to show that

synκ = synµ ○ φ .

Let

ρ ∶= ⟨κ ○ p⟩p ∶ A→∏
p
Ω ,

σ ∶= ⟨µ ○ p⟩p ∶ C →∏
p
Ω

be the morphisms such that synκ ∶= ker ρ and synµ ∶= ker σ . Lemma 4.3
implies that

ρ = ⟨κ ○ p⟩p = ⟨µ ○ φ ○ p⟩p = ⟨µ ○ q ○ φ⟩q = σ ○ φ .

Since φ ∈ E it follows that

synκ = ker ρ = ker (σ ○ φ) = ker σ ○ φ = synµ ○ φ .

178

4. Syntactic algebras

The Algebrai$ Stru$ture on the Weight+

Usually, the setΩ of weights is not a plain set, but carries additional algebraic
structure (e.g., a field, a boolean algebra, or a semiring). In this section, we
explain how to make use of this additional structure. Assume that Ω is
equipped with an O-algebra product π ∶ OΩ → Ω, for some a monad⟨O, λ, ε⟩ onD. The three most common choices forO are as follows.

◆ If we do not need any algebraic structure on Ω, we can take the identity
monad IX = X.

◆ IfΩ is a semiring, we usually take the monad Lin mapping a setX to the
Ω-semimodule Lin(X) generated by X, i.e., the set of all finite linear
combinations of elements of X with coefficients in Ω.

◆ If Ω is a lattice, we can take the monad DL mapping a set X to the
free distributive lattice DL(X) generated by X, i.e., the set of all finite
positive boolean combinations of elements of X.

We denote the lift of O to DΞ by O† ∶ DΞ → DΞ . To make sure that
this additional algebraic structure plays well with the given monadM, we
additionally assume that there exists a distributive law δ ∶MO† → O†M.
This distributive law in particular induces a monad structure on the com-
positionO†M.
AsOMξΣ is the freeO-algebra overMξΣ, we can lift each Ω-language

κ ∶MξΣ → Ω to a unique morphism ofO-algebras κ̂ ∶ OMξΣ → Ω with
κ̂ ○ ε = κ. Furthermore, if φ ∶ O†MΣ → A is a surjective morphism of
O†M-algebras recognising κ̂, i.e., κ̂ = µ ○ φ, it follows by Lemma I.5.6 that
µ ∶ Aξ → Ω is a morphism ofO-algebras.
We can now apply the framework developed so far to the functorO†M

instead ofM. In particular, the results concerning the existence of syntactic
algebras still apply in this setting, as well as the Variety Theorem and the
Reiterman theorem which we will prove below.
What we have gained by this translation is that we may assume that

all languages κ ∶ OMξΣ → Ω are morphisms of O-algebras, that they
are recognised by morphisms ofO†M-algebras, and, in particular, that the
corresponding function µ ∶ Aξ → Ω is anO-algebra morphism.

179

III. Languages

Let us take a look at how the syntacticO†M-algebra of an Ω-language κ
relates to its syntacticM-algebra. It turns out that, asM-algebras, the latter
is a retract of the former.

Proposition 4.25. Let κ ∶MξΣ → Ω be an Ω-language and κ̂ ∶ OMξΣ → Ω
its lifting to O†MΣ. There exists an embedding e ∶ Syn(κ) → Syn(κ̂) of
M-algebras such that Syn(κ̂) is generated (as an O†-algebra) by rng e and
e satisfies

µ̂ ○ e = µ and e ○ synκ = synκ̂ ○ ε ,
where µ ∶ Synξ(κ) → Ω and µ̂ ∶ Synξ(κ̂) → Ω are the functions such that
κ = µ ○ synκ and κ̂ = µ̂ ○ synκ̂ .
Proof. Let π ∶ OΩ → Ω be theO-algebra product of Ω. Since

π ○Oµ ○O†synκ = π ○Oκ = π ○O(κ̂ ○ ε) = κ̂ ○ π ○Oε = κ̂ ,
the morphism O†synκ recognises κ̂. Consequently, there exists an O†M-
algebra morphism φ ∶ O†Syn(κ) → Syn(κ̂) with

φ ○O†synκ = synκ̂ .
Setting e ∶= φ ○ ε it follows that

e ○ synκ = φ ○ ε ○ synκ = φ ○Osynκ ○ ε = synκ̂ ○ ε .
As synκ is an epimorphism, this implies that

rng e = rng (φ ○ ε) = rng (φ ○ ε ○ synκ) = rng (synκ̂ ○ ε) .
Hence, e factorises through S and we obtain a morphism e0 ∶ Syn(κ) → S
with

i ○ e0 = e and e0 ○ synκ = η .
Furthermore, Syn(κ̂) is generated by rng e = rng (synκ̂ ○ ε) since themorph-
ism synκ̂ is an epimorphism and its domainO†MΣ is generated by rng ε.

180

4. Syntactic algebras

OSynξ(κ)

OMξΣ

S

Synξ(κ)

MξΣ

Synξ(κ̂)

OΩΩ

φ

Oµ

O†synκ

synκ̂

i

κ̂

εµε

η

synκ

κ

e0f

µ̂

π

To prove that e is an embedding ofM-algebras, we show that e0 is an iso-
morphism by finding an inverse. Note that O†MΣ is a M-algebra with
productO†flat ○ δ. Since

(O†flat ○ δ) ○Mε = O†flat ○ ε = ε ○ flat ,
it therefore follows that ε ∶ MΣ → OMΣ is a morphism of M-algebras.
Hence, so is η ∶= synκ̂ ○ ε. Let S ⊆ Syn(κ̂) be theM-subalgebra of Syn(κ̂)
induces by rng η and let i ∶ S → Syn(κ̂) be the corresponding inclusion
map. Since

µ̂ ○ synκ̂ ○ ε = κ̂ ○ ε = κ ,
the morphism η ∶ MΣ → S recognises κ. Therefore, there exists an M-
algebra morphism f ∶ S→ Syn(κ) with

f ○ η = synκ .
To see that f is the desired inverse of e0, note that

f ○ e0 ○ synκ = f ○ η = synκ and e0 ○ f ○ η = e0 ○ synκ = η .

181

III. Languages

By surjectivity of synκ and η, we obtain f ○ e0 = id and e0 ○ f = id. Con-
sequently, e0 ∶ Syn(κ) ≅ S is an isomorphism and e = i ○ e0 ∶ Syn(κ) →
Syn(κ̂) an embedding (ofM-algebras).

Finally, note that

µ̂ ○ e ○ synκ = µ̂ ○ synκ̂ ○ ε = κ̂ ○ ε = κ = µ ○ synκ .
By surjectivity of synκ , this implies that µ̂ ○ e = µ.
5. Varietie+

After these preparations, we come to the first of the central theorems of
algebraic language theory: the Variety Theorem. This theorem character-
ises which kind of language families are amenable to our algebraic tools by
establishing a correspondence between language families and the classes of
algebras recognising them.

We fix a classR that serves as recognisers for the languages we are inter-
ested in.

Convention. In this section, we adopt the following assumptions.◆ Wedenote byT the class of all freeM-algebras of the formMΣ, for Σ ∈ Alph.◆ We fix a classR ofM-algebras such that
– every A ∈ R is T -generated, sort-wise strongly finite-dimensional, and

sort-wise noetherian;
– R is closed under T -generated M-subalgebras of finite products.

We call the objects inR recognisers and those in T term algebras.

Remark. The requirement that the recognisers are T -generated is no re-
striction: if φ ∶ T → A recognises a language κ with A ∈ R, then so does
kerφ ∶ T → R, and R is T -generated. Hence, R ∈ R. ⌟
In Section II.5, we defined a variety to be a class V ⊆ Alg(M) closed

under E∗-quotients and P-generatedM-subobjects of arbitrary products,
while a pseudo-variety is a class V ⊆ Alg(M) closed under E∗-quotients

182

5. Varieties

and P-generatedM-subobjects of finite products. For our present purpose,
we need a slightly different definition: to support infinite sets of sorts Ξ we
have to add one more closure property to the classes in question.

Definition 5.1. AnM-algebra A is a sort-accumulation point of a class C of
M-algebras if, for every finite subset ∆ ⊆ Ξ, there is some C ∈ C and an
E-morphism ε ∶ C∣∆ → A∣∆ . ⌟
We will show below that there is a precise correspondence between the

following families of languages and classes of algebras.

Definition 5.2. (a) A variety of languages is a contravariant functorK map-
ping the full subcategory ofAlg(M) induced by all algebras of the formMΣ
with Σ ∈ Alph to the category of language algebras such that
(i) eachK[T] forms a subalgebra of LT,

(ii) for φ ∶ S → T, the morphism K[φ] ∶ K[T] → K[S] is the corres-
ponding restriction of Lφ ∶ LT → LS.

(b) A class V ⊆ R is anR-variety if it is closed under
(i) images under surjective E-morphisms that belong toR,
(ii) T -generatedM-subalgebras of finite products,

(iii) T -generated sort-accumulation points that belong toR. ⌟
Remark. (a) Note that every variety of languagesK is uniquely determined
by the domains of the algebrasK[T] the algebraic structure being induced
by that of LT. In the following we will not strictly distinguish between the
view of a variety as a functor or as a set of languages.

(b) We obtain the three usual closure properties of a variety of languages
as follows. (i) The fact thatK[Tξ] is a language algebra means thatK[Tξ]
is closed under language operations (Boolean operations, Ω-operations,
etc.) and under derivatives. (ii) The fact that K[φ] = Lφ is a morphismK[S] → K[T] implies thatK is closed under inverse morphisms.

(c) In the definition of anR-variety of algebras, closure under quotients
is superfluous as it is implied by closure under sort-accumulation points.

183

III. Languages

We have left it as a requirement in the definition to emphasise the analogy
to the usual definition in the setting with finitely many sorts.
(d) The reason why we combine the operations of taking subalgebras

and forming products into a single one is that, in general, the product of
two finitary algebras need not be finitely generated (see Section V.4 for a
counterexample).

(e) If the set of sorts Ξ is finite andR is the class of all finiteM-algebras,
anR-variety is just a pseudo-variety. ⌟

We start with a characterisation of varieties in terms of closure operations
like inTheorem II.5.12.

Definition 5.3. For a class C ofM-algebras we set

C(C) ∶= {A ∣ A a sort-accumulation point of some B ∈ C } ,
H0(C) ∶= {A ∣ A image of an E-morhpisms of some B ∈ C } ,
H(C) ∶= H0(C) ∩R ,

S(C) ∶= {A ∣ A a T -generatedM-subalgebra of some B ∈ C } ,
P(C) ∶= {A ∣ A a finite product of algebras in C } . ⌟

Proposition 5.4. Suppose that Alg(M) has coequalisers and let V ⊆ R be a
class of algebras.

(a) (HSP)2(V) = HSP(V) .
(b) The following conditions are equivalent.

(1) V is anR-variety.
(2) V = HSP(V) and V = C(V)
(3) V satisfies the following two statements.

◆ The reduct V∣∆ is anR∣∆-variety, for every finite ∆ ⊆ Ξ.◆ V is the closure of the reducts V∣∆ in the sense that

A ∈ V iff A∣∆ ∈ V∣∆ , for all finite ∆ ⊆ Ξ .

184

5. Varieties

Proof. (a) We have shown inTheorem II.5.12 that (in the notation of the
current section) (H0SP)2 = H0SP. SinceR is closed under SP, it follows
that

(HSP)2 = (H0SP ∩R)2 = (H0SP)2 ∩R = H0SP ∩R = HSP .

(b) (1)⇒ (2) immediately follows from the closure properties of anR-
variety and (2)⇒ (1) follows by (a).
(3)⇒ (2) It is sufficient to show that CHSP(V) = V . Hence, let A ∈

CHSP(V).ThenA∣∆ ∈ HSP(V∣∆) = V∣∆ , for all finite∆ ⊆ Ξ. Consequently,
A ∈ V .
(2)⇒ (3) If A is an algebra with A∣∆ ∈ V∣∆ , for all finite ∆ ⊆ Ξ. Then

C(V) = V implies that A ∈ V . For the other claim, note that

V = HSP(V) implies V∣∆ = HSP(V∣∆) ,
since the reduct operation ∣∆ commutes withH, S, and P. By (a), this means
that V∣∆ is anR∣∆-variety.
The aim of the rest of this section is to establish a one-to-one corres-

pondence between varieties of languages and R-varieties of M-algebras.
The arguments are mostly standard, except for some adjustments needed to
support infinitely many sorts. We start with the following observation.

Lemma 5.5. Let V be anR-variety and κ ∶ Tξ → Ω a language where T ∈ T
such that κ has a minimal algebra that belongs toR. Then κ is recognised by
some algebra A ∈ V if, and only if, Syn(κ) ∈ V .
Proof. (⇐) is trivial since synκ ∶ T → Syn(κ) recognises κ. For (⇒),
consider a morphism φ ∶ T → A recognising κ with A ∈ V . Set B ∶=
T/ kerφ. Since imφ ∶ B → A is an M-morphism and kerφ ∶ T → B
an E-morphism, it follows that B ∈ V . Furthermore, kerφ recognises κ.
As Syn(κ) is minimal, we can find a morphism ρ ∶ A → Syn(κ) with
synκ = ρ ○ kerφ. Since synκ and kerφ are E-morphisms, it follows by
Lemma II.1.3 (c) that ρ ∈ E. Hence, Syn(κ) ∈ H(V) = V .

185

III. Languages

The first step in correlating varieties of languages andR-varieties of al-
gebras consists in the following fact.

Proposition 5.6. Let V be anR-variety. The family of languagesK recognised
by the algebras in V forms a variety of languages.

Proof. We have to prove two closure properties.
(i) We start by proving thatK[T] forms a subalgebra of LT, that is, that

⟪K[T]⟫L = K[T] .
Since all operations of LT have finite arity, it is sufficient to show that

⟪C⟫L ⊆ K[T] , for all finite C ⊆ K[T] .
Hence, consider languages κ0 , . . . , κn−1 ∈ K[T] for T ∈ T . Then there are
morphisms φ i ∶ T → Ai with Ai ∈ R and languages µ i ∈ LAi such that
κ i = Lφ i(µ i). Fix λ ∈ ⟪κ0 , . . . , κn−1⟫L. We have to show that λ ∈ K[T].
Let T →e B →m ∏i<n Ai be the EM-factorisation of ⟨φ0 , . . . , φn−1⟩.

Then B is a T -generatedM-subalgebra of a finite product of algebras inR.
This implies that B ∈ R. To prove that λ ∈ K[T] it is therefore sufficient to
show that the morphism e ∶ T → B recognises λ. Note that, being a morph-
ism language algebras, Le commutes with all operations. Consequently, we
have

λ ∈ ⟪κ0 , . . . , κn−1⟫L = ⟪Lφ0(µ0), . . . ,Lφn−1(µn−1)⟫L= ⟪L(φ0 × ⋅ ⋅ ⋅ × φn−1)(µ̄)⟫L= ⟪L(m ○ e)(µ̄)⟫L= ⟪LeLm(µ̄)⟫L= Le⟪Lm(µ̄)⟫L ,
which implies that λ = Le(ν), for some ν ∈ LB.

(ii) It remains to prove that, for every morphism ψ ∶ S → T between
algebras in T , the morphism Lψ ∶ LT → LS restricts to a morphism

186

5. Varieties

K[T] → K[S]. Hence, fix κ ∈ Kξ[T]. By assumption, there is some algebra
A ∈ V recognising κ. Suppose that κ = Lφ(µ) where φ ∶ T → A and
µ ∈ LξA. Then

Lψ(κ) = LψLφ(µ) = L(φ ○ ψ)(µ) ,
which means that φ ○ ψ ∶ S → A recognises Lψ(κ). This implies that
Lψ(κ) ∈ Kξ[S].

It remains to prove the converse direction of the correspondence.We start
with two lemmas.

Lemma 5.7. Let q ∶ A→ B be an E-morphism and let T ∈ T . Every language
κ ∶ Tξ → Ω recognised by B is also recognised by A.

Proof. Suppose that κ = ψ−1[µ] where ψ ∶ T → B and µ ∶ Bξ → Ω.
Since T is projective with respect to E-morphisms, we can find a morphism
φ ∶ T → A such that q ○ φ = ψ. It follows that φ also recognises κ since
LφLq(µ) = Lψ(µ) = κ and Lq(µ) ∈ LξA.

Lemma 5.8. Let T ∈ T and suppose that κ ∶ Tξ → Ω is recognised by an
algebra C such that there exists an M-morphism σ ∶ C →∏i<n Ai with Ai ∈ R
and n < ω. Then

κ ∈ ⟪λ0 , . . . , λn−1⟫L ,
where each λ j ∶ Tξ → Ω is recognised by some factor Ak j .

Proof. Suppose that κ = Lφ(µ) for φ ∶ T → C and µ ∶ Cξ → Ω. By
Lemma 2.4, the function Lσ is surjective. Fix some ν ∈ Lξ∏i Ai with
Lσ(ν) = µ. Since Ai ∈ R, the sets Ai

ξ are strongly finite-dimensional.
Hence, it follows by Lemma 2.8 that there exists an ω-operation ω and
languages λ i ∈ LξAk i such that

ν = ω[Lp0(λ0), . . . ,Lpn−1(λn−1)] ,

187

III. Languages

where p i ∶ ∏ j A j → Ai are the projections. Consequently,

κ = Lφ(µ)= LφLσ(ν)
= L(σ ○ φ)(ω[Lp0(λ0), . . . ,Lpn−1(λn−1)])= ω[L(σ ○ φ ○ p0)(λ0), . . . ,L(σ ○ φ ○ pn−1)(λn−1)]) ,

where each languageL(σ○φ○p j)(λ j) is recognised by some factorAk j .

Theorem 5.9. Let K be a variety of languages such that every κ ∈ K has a
minimal algebra Syn(κ) ∈ R. A language κ belongs to K if, and only if, it
is recognised by some algebra from the R-variety V generated by the set S ∶={Syn(κ) ∣ κ ∈ K}.
Proof. (⇒) Every language κ ∈ K is recognised by Syn(κ), which belongs
to V .(⇐) Set V0 ∶= S and Vn+1 ∶= CHSP(Vn), for n < ω. It follows from
Proposition 5.4 that V = ⋃n<ω Vn . By induction on n, we show that every
language recognised by an algebra A ∈ Vn belongs toK. For n = 0, suppose
that λ ∈ LζS is recognised by Syn(κ) where κ ∈ Kξ[T] and S,T ∈ T .
Then we have λ = Lφ(µ) for some morphism φ ∶ S → Syn(κ) and a
lanuage µ ∈ LζSyn(κ). As Syn(κ) is sort-wise noetherian, it follows by
Proposition 4.14 that µ ∈ ⟪resκ⟫L. Thus,

λ = Lφ(µ) ∈ Lφ[(⟪resκ⟫L)ζ] ⊆ Lφ[Kζ[T]] ⊆ Kζ[S] .
For the inductive step, suppose that we have already proved the claim

algebras in Vn and consider an algebra B ∈ Vn+1. Let φ ∶ T → B be a
morphism recognising κ = Lφ(µ) with µ ∈ LξB. Suppose that T = MΣ
for Σ ∈ Alph and let ∆ ⊆ Ξ be the set consisting of ξ and all sorts appearing
in Σ. As B is a sort-accumulation point ofHSP(Vn), we can find an algebra
A ∈ HSP(S) and an E-morphism ε ∶ A∣∆ → B∣∆ . Since T∣∆ is projective
with respect to E-morphisms, there exists a unique morphism ψ0 ∶ T∣∆ →

188

5. Varieties

A∣∆ with ε ○ ψ0 = φ∣∆ . We turn ψ0 into a morphism ψ ∶ T → A as follows.
For c ∈ Σ, we set

ψ(sing(c)) ∶= ψ0(sing(c)) .
As T is freely generated by rng sing, this uniquely determines a morphism
ψ ∶ T → A ofM-algebras. For s ∈MξΣ, it follows that

ψ(s) = (π ○M(ψ0 ○ sing))(s) = (ψ0 ○ π ○Msing)(s) = ψ0(s) ,
where the second step follows from the fact that ψ0 is a morphism ofM∣∆-
algebras and ξ ∈ ∆. Consequently,
(µ ○ ε ○ ψ)(s) = (µ ○ ε ○ ψ0)(s) = (µ ○ φ)(s) = κ(s) .

Thus, κ is recognised by A ∈ HSP(Vn). Using Lemmas 5.7 and 5.8 and the
closure properties ofK, it follows that κ ∈ K.

As we have just seen, everyR-variety of algebras is associated with a vari-
ety of languages and every variety of languages is associatedwith anR-variety
of algebras. We conclude this section by proving that this correspondence is
bijective. As usual we start with a lemma.

Lemma 5.10. Let A ∈ R be an algebra such that every language recognised by A
has a minimal algebra inR. Then A belongs to anR-variety V if, and only if,
Syn(κ) ∈ V , for every language κ recognised by A.

Proof. (⇒) If κ is recognised by A ∈ V , it follows by Lemma 5.5 that
Syn(κ) ∈ V .(⇐) Suppose that Syn(κ) ∈ V , for every language κ recognised by A. As
A ∈ A is T -generated, there exists an E-morphism ε ∶ T → A with T ∈ T .
Since V is closed under sort-accumulation points, it is sufficient to show
that, for every finite ∆ ⊆ Ξ, there is some E-morphism B∣∆ → A∣∆ with
B ∈ V .
Hence, fix ∆ ⊆ Ξ. Since T is finitely generated, so is A. By enlarging ∆,

if necessary, we may therefore assume that A∣∆ generates A. Furthermore,

189

III. Languages

by Lemma 2.5 we can find finite sets Hξ generating LξA, for ξ ∈ Ξ. For
every h ∈ Hξ with ξ ∈ ∆, we consider the language κh ∶= Lε(h) and the
morphism

ρ ∶= ⟨synκh ⟩h ∶ T →∏
ξ∈∆ ∏h∈H ξ

Syn(κh) .
Let T →η B →µ ∏h Syn(κh) be the EM-factorisation of ρ. Since V is
closed under T -generatedM-subalgebras of finite products, we have B ∈ V .
For h ∈ Hξ with ξ ∈ ∆, let ph ∶ ∏i∈H ξ

Syn(κ i) → Syn(κh) be the
projection.Then we have

Lε(h) = κh = Lsynκh(resκh)= L(ph ○ µ ○ η)(resκh) = Lη(L(ph ○ µ)(resκh)) ,
where L(ph ○ µ)(resκh) ∈ LξB. Consequently,

Lε[LξA] = Lε[⟪Hξ⟫L] = ⟪Lε[Hξ]⟫L ⊆ Lη[LξB] .
Since Aξ is strongly finite-dimensional, we can therefore use Lemma 2.7 to
find a function qξ ∶ Bξ → Aξ with εξ = qξ○ηξ . Combining these into a single
function q ∶ B∣∆ → A∣∆ we obtain ε∣∆ = q○η∣∆ . By Lemma I.5.6, this implies
that q is in fact a morphism B∣∆ → A∣∆ ofM∣∆-algebras. Furthermore, it
follows by Lemma II.1.3 that q ∈ E.
Theorem 5.11 (VarietyTheorem). Let V be anR-variety of M-algebras such
that every language recognised by an algebra in V has a minimal algebra that
also belongs toR, and letK be a variety of Ω-languages such that every language
in K has a minimal algebra that belongs to R. The following statements are
equivalent.
(1) K consists of those languages that are recognised by some algebra in V .
(2) K consists of all languages κ with Syn(κ) ∈ V .
(3) V consists of those algebras that only recognise languages in K.
(4) V is theR-variety generated by the set {Syn(κ) ∣ κ ∈ K}.

190

6. The profinitary term monad

Proof. (1)⇔ (2) follows by Lemma 5.5, and (4)⇒ (1) byTheorem 5.9.
(2)⇒ (3) If A ∈ V and κ is recognised byA, it follows by Lemma 5.10 that

Syn(κ) ∈ V . By (2), this implies that κ ∈ K. Conversely, if A only recognises
languages inK, (2) implies that Syn(κ) ∈ V for all languages κ recognised
by A. By Lemma 5.10 it follows that A ∈ V .
(3)⇒ (4) Let V0 be theR-variety generated by {Syn(κ) ∣ κ ∈ K}. First,

suppose that A ∈ V . Then every language recognised by A belongs toK and
Lemma 5.10 implies that A ∈ V0. Hence, V ⊆ V0.

For the converse inclusion it is sufficient to prove that Syn(κ) ∈ V , for all
κ ∈ K. Hence, fix a language κ ∈ K[T]. It follows by Proposition 4.16 that
every language λ ∈ LS recognised by Syn(κ) is of the form

λ = Lφ(µ) , for some µ ∈ ⟪κ⟫L and φ ∶ S→ T .

SinceK[T] is a language algebra, we have ⟪κ⟫L ⊆ K[T]. Consequently,
λ ∈ Lφ[⟪κ⟫L] ⊆ Lφ[K[T]] ⊆ K[S] .

We have shown that all languages recognised by Syn(κ) belong to K. By
assumption, this implies that Syn(κ) ∈ V .
6. The Pro[nitary Term Monad

The goal of this section and the next one is to derive an axiomatisation of
pseudo-varieties in terms of systems of inequalities. We start by defining the
kind of terms allowed in our axioms. The actual axiomatisation will then
be presented in Section 7 below. A natural choice for the terms would be
to take the elements ofMX, for some set X of ‘variables’. But it turns out
that this does not work. To capture the restriction toM-algebras from the
classR, we have to use a more general notion of a term.The classic result by
Reiterman characterises the pseudo-varieties of finite semigroups as exactly
those axiomatisable by a set of profinite equations. Analogously, we have to
define pro-RM-terms for our version of this theorem. While the general
definition below works for an arbitrary categoryD, the subsequent devel-
opment is based on duality arguments which are specific to the underlying
category. We will therefore work mostly inD = Pos.

191

III. Languages

The Monad M̂AM̂AM̂A
In this section we will make the following additional assumptions.

Conventions.◆ T ∶= {MJX ∣ X finite}◆ R is a class of M-algebras that is closed under T -generated M-subalgebras
of finite products and such that, up to isomorphism,R forms a set.

To explain how we arrive at the definition below, let us collect our re-
quirements on this set of terms. We are looking for a functor M̂mapping
an (unordered) set X of ‘variables’ to some set M̂X of ‘terms’. These terms
should generalise the ordinary terms fromMX, i.e., we need an embedding
ι ∶MX → M̂X. Furthermore, we should be able to ‘evaluate’ a term t ∈ M̂X
in a given M-algebra A ∈ R with respect to a given ‘variable assignment’
β ∶ X → A. Let us denote the resulting value by val(t; β). For ordinary
terms t ∈MX, this value should of course correspond to the value of t in A.
Thus,

val(ι(t); β) = π(Mβ(t)) ,
where π(Mβ(t)) is the canonical extension of β ∶ X → A to MX → A.
Furthermore, val(t; β) should be compatible withmorphisms ofM-algebras.
That is,

val(t;φ ○ β) = φ(val(t; β)) , for every morphism φ ∶ A→ B .

This leads to the following construction. We work in the category of
all morphismsMX → A. In this category we consider the diagram of all
β ∶ MX → A where A belongs to a given class R of ‘recognisers’. Then
we take for ι ∶ MX → M̂X the limit. The morphisms M̂X → A of the
corresponding limiting cone can then be taken as our evaluation maps. The
formal construction is as follows.

Definition 6.1. LetR ⊆ Alg(M) be a subcategory ofM-algebras and X ∈D. We denote the comma category (MX ↓ Alg(M)) by C, the subcategory(MX ↓ R) by C0, and the inclusion diagram by D ∶ C0 → C.

192

6. The profinitary term monad

(a) We denote by ιR ∶ MX → M̂RX the limit ιR ∶= limD of D, and
the limiting cone by (valR(−; β))β∈C0 . If R is the category of all finitary
M-algebras, we drop the subscript and simply write M̂, ι, and val(−; β).
(b) We turn M̂R into a functor as follows. Given f ∶ X → Y, the family(val(−; β ○M f))β (where β ranges over all morphisms β ∶MY → A ∈ R)

forms a cone from M̂X to D. As the cone (val(−; β))β is limiting, there
exists a unique function f ′ ∶ M̂X → M̂Y such that

val(−; β ○M f) = val(−; β) ○ f ′ , for all β ∶MY → A ∈ R .

We set M̂ f ∶= f ′. ⌟
Remark. A more concise way to define M̂ is as the so-called ‘codensity
monad’ associated with the forgetful functorU ∶ R → DΞ mapping anM-
algebra to its universe. By definition, this monad is the right Kan extension
ofU along itself. Unravelling all the definitions leads to the explicit definition
above. ⌟

Let us start by checking that M̂R is well-defined and reasonably behaved.

Lemma 6.2. IfD is complete, the limit ιR ∶MX → M̂RX exists.

Proof. By assumption,D has arbitrary limits. It follows by Proposition I.5.7
that so has Alg(M). Now, let D ∶ C0 → C be the diagram defining ιR ∶
MX → M̂RX and letU ∶ C → Alg(M) be the forgetful functor mapping
β ∶MX → A to the codomain A. SinceR forms a set (up to isomorphism),
so does the index category C0. AsAlg(M) is complete,U ○D therefore has a
limit T. Let (λβ)β be the corresponding limiting cone. As (β)β forms a cone
fromMX toU ○ D, we obtain a unique morphism φ ∶MX → T such that
λβ ○ φ = β, for all β. It is now straightforward to check that φ ∶MX → T is
the limit of D and (λβ)β is the corresponding limiting cone.

We collect a few basic facts about the evaluation morphisms that will be
useful in the proofs below.

193

III. Languages

Lemma 6.3. Let R be a class of M-algebras such that ιR exists, A,B ∈ R
algebras, β ∶ MX → A, φ ∶ A → B, and f ∶ Y → X morphisms, and
s, t ∈ M̂RX.
(a) valR(−; β) ○ ιR = β
(b) φ ○ valR(−; β) = valR(−;φ ○ β)
(c) valR(−; β) ○ M̂R f = valR(−; β ○M f)
(d) ⟨valR(−; β)⟩β = id .
(e) If X is finite andR is closed under T -generated M-subalgebras then, for

every ŝ ∈ M̂RX, there is some s ∈MX with valR(ŝ; β) = β(s).
Proof. (a) By the definition of a cone, valR(−; β) is a morphism from ιR ∶
MX → M̂RX to β ∶MX → A. This is equivalent to (a).
(b) In the comma category, φ ∶ A→ B corresponds to a morphism from

β ∶MX → A to φ ○ β ∶MX → B. Hence, (b) holds again by definition of a
cone.
(c) holds be definition of M̂R f .
(d) One explicit way to define the limit M̂RX is to take all sequences(aβ)β indexed by morphisms β ∶MX → A satisfying

aγ = φ(aβ) , for all φ ∶ A→ B with γ = φ ○ β .
Then the function valR(−; β) is simply the projection to the component aβ .
Consequently,

⟨valR(−; β)⟩β = id .
(e) Let β = i ○ β0 be the EM-factorisation of β and let A0 be the codo-

main of β0. Note that A0 ∈ R since R is closed under T -generated M-
subalgebras. Fix ŝ ∈ M̂RX. By (a), we have rng valR(−; β0) ⊇ rng β0 which,
by surjectivity of β0, implies that the two ranges are in fact equal. Hence,
there is some s ∈MX with β0(s) = valR(ŝ; β0). By (b), it follows that

β(s) = i(β0(s)) = i(valR(ŝ; β0)) = valR(ŝ; i ○ β0) = valR(ŝ; β) .

194

6. The profinitary term monad

Corollary 6.4. Let X be a set and f , g ∶ C → M̂X functions.

f = g iff val(−; β) ○ f = val(−; β) ○ g , for all β ∶MX → A .

Proof. This statement holds generally for all limits. For our special case, we
can give a simple proof using Lemma 6.3 (d). By this lemma it follows that

f = g iff ⟨valR(−; β)⟩β ○ f = ⟨valR(−; β)⟩β ○ g
iff ⟨valR(−; β) ○ f ⟩β = ⟨valR(−; β) ○ g⟩β .

Proposition 6.5. LetR be a class such that ιR is defined. M̂R forms a monad
and ιR ∶ M ⇒ M̂R a natural transformation. The unit map of M̂R is ε ∶=
ιR ○ sing and the multiplication µ ∶ M̂R ○ M̂R ⇒ M̂R is uniquely determined
by the equations

val(−; β) ○ µ = val(−; π ○Mval(−; β)) , for all β .

Proof. To simplify notation, let us drop the subscriptR. To see that M̂ is a
functor, note that the uniqueness of the function f ′ in the definition of M̂ f
implies that M̂(f ○ g) = M̂ f ○ M̂g.
To show that ι is a natural transformation, consider a function f ∶ X → Y.

For every β ∶MY → A ∈ R, Lemma 6.3 (c) implies that

val(−; β) ○ M̂ f ○ ι = val(−; β ○M f) ○ ι= β ○M f = val(−; β) ○ ι ○M f .

Consequently, it follows by Corollary 6.4 that M̂ f ○ ι = ι ○M f
We define the multiplication µ ∶ M̂ ○ M̂ ⇒ M̂ as follows. For every

morphism β ∶MX → A with A ∈ R, we have
β = β ○ π ○ sing= π ○Mβ ○ sing= π ○Mval(−; β) ○Mι ○ sing
= val(−; π ○Mval(−; β)) ○ ι ○Mι ○ sing .

195

III. Languages

Furthermore, for two such morphisms α ∶MX → A and β ∶MX → B and
a morphism φ ∶ A→ B with β = φ ○ α, we have

φ ○ val(−; π ○Mval(−; α)) = val(−;φ ○ π ○Mval(−; α))
= val(−; π ○Mφ ○Mval(−; α))
= val(−; π ○Mval(−;φ ○ α))
= val(−; π ○Mval(−; β)) .

Consequently, the morphisms (val(−; π ○Mval(−; β)))β form a cone from

ι ○Mι ○ sing ∶MX → M̂M̂X

to the diagram (MX ↓ R). As ι ∶ MX → M̂X is the limit of this cone,
there exists a unique map µ ∶ M̂M̂X → M̂X such that

µ ○ ι ○Mι ○ sing = ι
and val(−; β) ○ µ = val(−; π ○Mval(−; β)) , for all β .

Note that the first of these equations follows from the second one since, for
every β,

val(−; β) ○ µ ○ ι ○Mι ○ sing
= val(−; π ○Mval(−; β)) ○ ι ○Mι ○ sing
= π ○Mval(−; β) ○Mι ○ sing= π ○Mβ ○ sing= β ○ π ○ sing= β= val(−; β) ○ ι ,

which, by Corollary 6.4, implies that µ ○ ι ○Mι ○ sing = ι.
Let us start by showing that these morphisms µ form a natural trans-

formation. Hence, fix a function f ∶ X → Y. For every β ∶ MY → A, we

196

6. The profinitary term monad

have

val(−; β) ○ µ ○ M̂M̂ f = val(−; π ○Mval(−; β)) ○ M̂M̂ f

= val(−; π ○Mval(−; β) ○MM̂ f)
= val(−; π ○Mval(−; β ○M f))
= val(−; β ○M f) ○ µ
= val(−; β) ○ M̂ f ○ µ .

By Corollary 6.4, this implies that µ ○ M̂M̂ f = M̂ f ○ µ.
The fact that ε ∶= ι ○ sing is a natural transformation follows immediately

from the facts that ι and sing are natural transformations. It therefore remains
to check the three axioms of a monad. For every β ∶MX → A, we have

val(−; β) ○ µ ○ ε = val(−; π ○Mval(−; β)) ○ ι ○ sing
= π ○Mval(−; β) ○ sing= val(−; β) ○ π ○ sing= val(−; β) ,

val(−; β) ○ µ ○ M̂ε = val(−; π ○Mval(−; β)) ○ M̂ε

= val(−; π ○Mval(−; β) ○Mε)
= val(−; π ○M(val(−; β) ○ ι ○ sing))
= val(−; π ○M(β ○ sing))
= val(−; β ○ π ○Msing)
= val(−; β) ,

197

III. Languages

and val(−; β) ○ µ ○ M̂µ = val(−; π ○Mval(−; β)) ○ M̂µ

= val(−; π ○Mval(−; β) ○Mµ)
= val(−; π ○M(val(−; β) ○ µ))
= val(−; π ○Mval(−; π ○Mval(−; β)))
= val(−; π ○Mval(−; β)) ○ µ
= val(−; β) ○ µ ○ µ .

By Corollary 6.4, this implies that

µ ○ ε = id , µ ○ M̂ε = id , and µ ○ M̂µ = µ ○ µ .
The next lemma states that, without loss of generality, we may assume

that the morphisms β ∶MX → A are all surjective. This will be convenient
in some situations.

Lemma 6.6. Let X be a finite set andR a class ofM-algebras that is closed
under T -generated M-subalgebras of finite products.
(a) C0 = (MX ↓ R) is cofiltered.
(b) In the definition of M̂RX, we can restrict the category C0 to the surjective

morphisms without changing the result.

Proof. (a) There are two axioms to check. First, let α ∶ MX → A and
β ∶MX → B be two objects of C0. We have to find some γ ∶MX → C and
morphisms φ ∶ γ → α and ψ ∶ γ → β. Set γ ∶= ⟨α, β⟩ ∶MX → A ×B and
let C be the codomain of ker γ. Then C is a T -generatedM-subalgebra of
A ×B. Hence, C ∈ R, im γ ∈ C0, and we have morphisms p ∶ im γ → α and
q ∶ im γ → β, where p ∶ C → A and q ∶ C → B are the two projections.
For the second axiom, consider two morphisms φ,ψ ∶ α → β with

α ∶MX → A and β ∶MX → B in C0. The set

C ∶= { a ∈ A ∣ φ(a) = ψ(a) }
induces a subalgebra of A since, for s ∈MC, we have

φ(π(s)) = π(Mφ(s)) = π(Mψ(s)) = ψ(π(s)) .

198

6. The profinitary term monad

For x ∈ X, we have
φ(α(x)) = β(x) = ψ(α(x)) ,

which implies that α[X] ⊆ C. Hence, rng α ⊆ C. Let α = i ○ α0 be the EM-
factorisation of α and letD be the codomain of α0.ThenD is a T -generated
M-subalgebra of A, which implies that D ∈ R. Furthermore, i ∶ α0 → α
satisfies φ ○ i = ψ ○ i.
(b) Let C00 be the full subcategory of C0 = (MX ↓ R) consisting of all

morphisms β ∶MX → A that are surjective. It is sufficient to show that the
inclusion C00 → C0 if final, which means, we have to establish the following
two properties.

(i) Every β ∈ C0 factorises through some β0 ∈ C00.
(ii) For all α, α′ ∈ C00, β ∈ C0, and all morphisms φ ∶ α → β and φ′ ∶ α′ →

β, there is some γ ∈ C00 with morphisms ψ ∶ γ → α and ψ′ ∶ γ → α′
such that φ ○ ψ = φ′ ○ ψ′.

(i) Given β ∶MX → A, let A0 be the subalgebra of A induced by rng β,
let i ∶ A0 → A be the inclusion function, and β0 ∶ MX → A0 be the
corestriction of β. Then β = i ○ β0. Since A0 is finitely generated by β0[X]
andR is closed under finitely generated subalgebras, we have A0 ∈ R and
β0 ∈ C0.
(ii) Consider α ∶MX → A, α′ ∶MX → A′ in C00, β ∶MX → B in C0,

and φ ∶ α → β and φ′ ∶ α′ → β. Let C be the subalgebra of A × A′ induced
by the range of γ ∶= ⟨α, α′⟩ ∶MX → A×A′. As above, it follows that C ∈ R
and γ ∈ C00.The two projections p ∶ C → A and p′ ∶ C → A′ are morphisms
of C00 satisfying φ ○ p = φ′ ○ p′.

Let us show that (in a certain sense) the transformation ιR ∶M⇒ M̂R is
the terminal object of the category of all morphisms of monads ρ ∶M⇒ N.

Proposition 6.7. Let ρ ∶ M ⇒ N be a morphism of monads, R a class of
N-algebras, andRρ the class of their ρ-reducts. There exists a unique morphism
φ ∶ N⇒ M̂Rρ of monads such that ιRρ = φ ○ ρ.

199

III. Languages

Proof. Fix a set X. For every morphism β ∶ MX → A∣ρ with A ∈ R, we
define µβ ∶ NX → A by

µβ ∶= π ○N(β ○ sing) .
To see that µβ is a morphism ofN-algebras, note that

π ○Nµβ = π ○N(π ○N(β ○ sing))= π ○Nπ ○NN(β ○ sing)= π ○ flat ○NN(β ○ sing)= π ○N(β ○ sing) ○ flat = µβ ○ flat .
We claim that (µβ)β is a cone from ρ ∶MX → NX to (MX ↓ Rρ). First,
we have

µβ ○ ρ = π ○N(β ○ sing) ○ ρ= (π ○ ρ) ○M(β ○ sing)= β ○ flat ○Msing= β
where the third step follows from the fact that π ○ ρ is the product of theM-
algebraA∣ρ , while flat ∶MMX →MX is the product ofMX. Consequently,
µβ is a morphism ρ → β of the comma category.
Furthermore, for a morphism ψ ∶ β → γ of the comma category, we have

ψ ○ µβ = ψ ○ π ○N(β ○ sing)= π ○N(ψ ○ β ○ sing)= π ○N(γ ○ sing)= µγ ,
where the second step follows since the morphism ψ ∶ β → γ is induced by a
morphism ψ ∶ codom(β) → codom(γ) ofN-algebras.
It follows that (µβ)β is a cone. As (val(−; β))β is the limiting cone, we

obtain a unique morphism φ ∶ NX → M̂RρX satisfying φ ○ ρ = ιRρ . We
claim that φ is a morphism of monads.

200

6. The profinitary term monad

We start by showing that φ is natural in X. Hence, consider a function
f ∶ X → Y. Note that, by definition, φ is the unique function such that

val(−; β) ○ φ = µβ .

Consequently, for each β ∶MX → A∣φ with A ∈ R, we have
val(−; β) ○ φ ○N f = µβ ○N f= π ○N(β ○ sing) ○N f= π ○N(β ○ sing ○ f)= π ○N(β ○M f ○ sing)= µβ○M f= val(−; β ○M f) ○ φ = val(−; β) ○ M̂Rρ f ○ φ .

By Corollary 6.4, it follows that φ ○N f = M̂Rρ f ○ φ. Hence, φ is a natural
transformationN⇒ M̂Rρ .
It remains to check the two axioms for a morphism of monads. For the

first equation, let ε = ιRρ ○ sing be the unit map of M̂Rρ . Then

ε = ιRρ ○ sing = φ ○ ρ ○ sing = φ ○ sing ,
where the last step follows from the fact that ρ is a morphism of monads.
For the second equation, consider a morphism β ∶MX → A∣ρ with A ∈ R.
Recall that the multiplication µ ∶ M̂Rρ ○ M̂Rρ ⇒ M̂Rρ satisfies

val(−; β) ○ µ = val(−; π ○Mval(−; β)) .
Hence,

val(−; β) ○ µ ○ φ ○Nφ = val(−; π ○Mval(−; β)) ○ φ ○Nφ

= µπ○Mval(−;β) ○Nφ

= π ○N(π ○Mval(−; β) ○ sing) ○Nφ= π ○N(π ○ sing ○ val(−; β) ○ φ)

201

III. Languages

= π ○Nµβ= π ○N(π ○N(β ○ sing))= π ○Nπ ○NN(β ○ sing)= π ○ flat ○NN(β ○ sing)= π ○N(β ○ sing) ○ flat= µβ ○ flat= val(−; β) ○ φ ○ flat .
By Corollary 6.4, it therefore follows that µ ○ φ ○Nφ = φ ○ flat.
Prie#ley Spa$e+

To continue our investigation of the monad M̂R, we require some tools
from topology. As these are specific to the underlying category, we will work
exclusively withD = Pos throughout this section. We start with a variant of
Stone duality for ordered topological spaces.

Definition 6.8. (a) A Priestley space consists of an ordered set A ∈ Pos
equipped with a topology that is compact and has the following separation
property: for every pair of elements a, b ∈ Awith a ≰ b, there exists a clopen
set C ⊆ Awhich is upwards-closed and contains a, but not b. Amorphism
of Priestley spaces is a function f ∶ A→ B that is monotone and continuous.
We denote the category of all Priestley spaces and their morphisms by PSp.

(b)We denote byDist the category of all distributive lattices (with top
and bottom elements) and all lattice homomorphisms (preserving top and
bottom). ⌟
Remark. Every Priestley space is a Stone space, i.e., compact, Hausdorff,
and totally disconnected. ⌟
Theorem 6.9 (Priestley). The category PSp is equivalent to Distop.

To translate between these two categories we canmap a Priestley space to the
lattices of its upwards-closed clopen subsets, and a distributive lattice to the

202

6. The profinitary term monad

set of its prime filters (with a suitable topology). We start our investigation
of Priestley spaces by showing how to compute limits in PSpΞ .

Definition 6.10. (a) Let (µ i)i∈I be a cone where µ i ∶ A→ B i and each B i is
a topological space. The cone topology induced by (µ i)i is the topology on A
which has a closed subbasis consisting of all sets of the form µ−1i [K] with
i ∈ I and K ⊆ B i closed. If A is the limit of a diagram D ∶ I → PosΞ and we
do not specify a cone explicitly, we will always consider the cone topology
induced by the corresponding limiting cone.

(b) For a functorM ∶ PosΞ → PosΞ for which we have defined a lifting to
PSpΞ → PSpΞ , we write PAlg(M) for the category ofM-algebras in PSpΞ .⌟
Remark. Let X be a finite set andR anR-variety. When we equip each A ∈R with the discrete topology, we can turnMX and M̂RX into topological
spaces where the topology is induced by the cones (β)β and (val(−; β))β ,
respectively. Then it follows by Lemma 6.3 (e) that the embedding ιR ∶
MX → M̂RX is dense with respect to these topologies. In fact, the space
M̂RX can be seen as the topological completion ofMX. In particular, every
element of M̂RX is the limit of a suitable sequence inMX. In the semigroup
case, for instance, M̂RX contains the idempotent power xπ which is the limit
of the sequence (xn!)n<ω . ⌟
Lemma 6.11. The forgetful functor U ∶ PSpΞ → PosΞ reflects limits. More
precisely, the limit limD of a diagram D ∶ I → PSpΞ is the space obtained by
equipping the set lim (U ○ D) with the cone topology.
Proof. Let A ∶= limD and B ∶= lim (U ○ D) and let (λ i)i and (µ i)i be
the corresponding limiting cones. We start by showing that the cone topo-
logy on B is sort-wise Priestley. Note that Bξ is the subset of∏i∈I Dξ(i)
consisting of all families (a i)i such that a l = D f (ak), for all I-morphisms
f ∶ k → l . Hence, Bξ = ⋂ f H f where

H f ∶= { (a i)i ∈ ∏i Dξ(i) ∣ D f (ak) = a l } , for f ∶ k → l .

203

III. Languages

Since, for distinct a, b ∈ Dξ(k), we can always find a clopen setC with a ∈ C
and b ∉ C, we can expressH f as the intersection of all sets of the from

(µ−1k [(D f)−1[C]] ∩ µ−1l [C]) ∪ (µ−1k [(D f)−1[C′]] ∩ µ−1l [C′]) ,
where C ,C′ range over all partitions of Dξ(k) into two clopen classes. It
follows that the sets H f are all closed. By the Theorem of Tychonoff, the
product∏i Dξ(i) is compact. Consequently, Bξ = ⋂ f H f is a closed subset
of a compact space and, therefore, also compact.
To show that the topology is Priestley, consider two distinct elements

a ≰ b in B. By the definition of the ordering of a limit in PosΞ , there exists
an index i ∈ I with µ i(a) ≰ µ i(b).Therefore we can find a clopen, upwards-
closed set C ⊆ D(i) such that µ i(a) ∈ C and µ i(b) ∉ C. The preimage
C′ ∶= µ−1i [C] is clopen in B and satisfies a ∈ C′ and b ∉ C′. Suppose that
C′ is not upwards-closed. Then there are elements c ≤ d with c ∈ C′ and
d ∉ C′. Consequently, µ i(c) ≤ µ i(d) and µ i(c) ∈ C and µ i(d) ∉ C. This
contradicts the fact that C is upwards-closed.
We have shown that B with the cone topology belongs to PSpΞ . Since

B is the limit in PosΞ , there exists a unique map f ∶ A → B (in PosΞ)
such that λ i = µ i ○ f , for all i. Similarly, there exists a unique morphism
g ∶ B → A of PSpΞ such that µ i = λ i ○ g. We can see that the function f is
continuous as follows. Let C = µ−1i [K] for a basic closed set K ⊆ B. Then
f −1[C] = (µ i ○ f)−1[K] = (λ i)−1[K]. Hence, continuity of λ i implies that
the preimage f −1[C] is closed.

Consequently, we can applying the same universality argument two more
times to obtain f ○ g = id and g ○ f = id. Therefore, B and Awith the cone
topology are isomorphic as topological space.

The following version of compactness and its corollary below contain our
key topology-based argument.

Proposition 6.12. Let E ∶ I → PSp be a cofiltered diagram. If all spaces E(i),
i ∈ I, are non-empty, so is the limit limE.

204

6. The profinitary term monad

Proof. Let µ i ∶ limE → E(i), i ∈ I, be the morphisms of the limiting cone.
Note that, by theTheorem of Tychonoff, the product∏i∈I Eξ(i) compact
and Hausdorff.

For each morphism f ∶ k → l of I, consider the set

H f ∶= { (a i)i ∈ ∏i E(i) ∣ E f (ak) = a l } .
In the proof of Lemma6.11, we have shown that the sets the setsH f are closed.
For a contradiction, suppose that limE = ⋂ f H f is empty. By compactness,
we can then find finitely many morphisms f0 , . . . , fn with

H f0 ∩ ⋅ ⋅ ⋅ ∩H fn = ∅ .

Suppose that f i ∶ k i → l i . Since I is cofiltered, there exists some m ∈ I and
morphisms g i ∶ m → k i such that

◆ l i = l j implies f i ○ g i = f j ○ g j ,◆ k i = k j implies g i = g j ,◆ k i = l j implies g i = f j ○ g j .
(It follows by induction on n that such morphisms exist.) Fixing some ele-
ment am ∈ E(m), we set

ak i ∶= Eg i(am) and a l i ∶= E(f i ○ g i)(am) .
By choice of the g i , this is well-defined. Let (b i)i ∈ ∏i E(i) be any family
with bk i = ak i and b l i = a l i . Then (b i)i ∈ H f0 ∩ ⋅ ⋅ ⋅ ∩H fn ≠ ∅. A contra-
diction.

The following consequence is what we will need below.

Lemma 6.13. Let D ∶ I → PSpΞ be a cofiltered diagram and (µ i)i a cone
from A ∈ PSpΞ to D where each µ i ∶ A → D(i) is surjective. The induced
morphism φ ∶ A→ limD is surjective.

205

III. Languages

Proof. Fix an element c ∈ limD and let (λ i)i be the limiting cone. To show
that φ−1(c) ≠ ∅, we define a diagram E ∶ I → PSp as follows. For i ∈ I, we
set

E(i) ∶= µ−1i (λ i(c)) .
As singleton sets are closed and µ i is continuous, E(i) is a closed subset
of Aξ , where ξ is the sort of c. Consequently, E(i) ∈ PSp. For a morphism
f ∶ i → j of I, we let E f ∶ E(i) → E(j) be the inclusion map. This is
well-defined, since

a ∈ E(i) ⇒ µ i(a) = λ i(c)⇒ µ j(a) = D f (µ i(a)) = D f (λ i(c)) = λ j(c)⇒ a ∈ E(j) .
By Proposition 6.12, the limit B ∶= limE ≠ ∅ is non-empty. Fix b ∈ B. Note
that the inclusion maps E(i) → Aξ constitute a natural transformation
σ ∶ E ⇒ AI

ξ , where A
I
ξ denotes the constant diagram I → PSp with

value Aξ and identity maps everywhere. Let ψ ∶ B → Aξ be the induced
map between the correpsoning limits. Since

λ i(φ(τ(b))) = µ i(τ(b)) = λ i(c) , for all i ∈ I ,
it follows that φ(τ(b)) = c, as desired.

Our main technical tool in the next section is the following natural trans-
formation relating the functors M̂V and M̂R, for different classes V andR.
The important case below will be where V is theR-variety under considera-
tion andR the class of all finitaryM-algebras.

Theorem 6.14. Let V ⊆ R ⊆ Alg(M).
(a) There exists a unique morphism ρ ∶ M̂R ⇒ M̂V of monads that makes

the following diagram commute, for all morphisms β ∶ MX → A where
A ∈ V and X ∈ DΞ .

206

6. The profinitary term monad

M̂RX M̂VX

MRX A

ρ

valR(−; β) valV(−; β)
ιR

β

(b) Suppose that X = JZ, for some finite set Z, that every algebra in R
is finitary, and that V and R are both closed under finitely generated
subalgebras of finite products. Then the induced morphism ρX ∶ M̂RX →
M̂VX is surjective.

Proof. (a) Fix a set X ∈ DΞ . The family (valR(−; β))β∈(MX↓V) forms a
cone from M̂RX to the diagram defining M̂VX. As (valV(−; β))β∈(MX↓V)
is limiting, there exists a unique map ρX ∶ M̂RX → M̂VX such that

valV(−; β) ○ ρX = valR(−; β) , for all β ∶MX → A .

As the equation valV(−; β)○ ιV = β was already proved in Lemma 6.3 (a),
it therefore remains to prove that the family ρ ∶= (ρX)X forms a morphism
of monads. To see that it is a natural transformation, consider a function
f ∶ X → Y. Then

valR(−; β) ○ M̂R f ○ ρ = valR(−; β ○M f) ○ ρ= valV(−; β ○M f)
= valV(−; β) ○ M̂V f= valR(−; β) ○ ρ ○ M̂V f .

By Corollary 6.4, it follows that M̂R f ○ ρ = ρ ○ M̂V f , as desired.
To check the two axioms of a morphism of monads, let µV and εV be the

multiplication and unit map of M̂V , and µR and εR those of M̂R. For every

207

III. Languages

β ∶MX → A with A ∈ V , we have
valV(−; β) ○ ρ ○ µR = valR(−; β) ○ µR= valR(−; π ○MvalR(−; β))= valV(−; π ○MvalR(−; β)) ○ ρ

= valV(−; π ○MvalV(−; β) ○Mρ) ○ ρ

= valV(−; π ○MvalV(−; β)) ○ M̂ρ ○ ρ

= valV(−; β) ○ µV ○ M̂ρ ○ ρ

and valV(−; β) ○ ρ ○ εR = valV(−; β) ○ ρ ○ ιR ○ sing= valR(−; β) ○ ιR ○ sing= β ○ sing= valV(−; β) ○ ιV ○ sing = valV(−; β) ○ εV .
By Corollary 6.4, it follows that ρ ○ µR = µV ○ M̂ρ ○ ρ and ρ ○ εR = εV .
(b)To apply the topologicalmachinerywe have just set up, we translate the

problem into the category of Priestley spaces. We equip each algebra A ∈ R
with the discrete topology, which is Priestley since A is finitary. According to
Lemma 6.6 (b), we can define the limits M̂VX and M̂RX in terms of only
the surjective morphisms β ∶MX → A with A in V orR. Furthermore, it
follows by Lemma 6.11 that M̂VX and M̂RX are also sort-wise Priestley
spaces when equipped with the cone topology. In addition, the limits in the
category PSpΞ coincide with M̂VX and M̂RX.

Let Ξ0 ⊆ Ξ be the set of all sorts ξ such thatMξX ≠ ∅. By Lemma 6.3 (e),
it follows that these are exactly the same sorts ξ with M̂V ,ξX ≠ ∅, M̂R,ξX ≠∅, and with Aξ ≠ ∅, for A ∈ V . Consequently, we can perform the rest of
the proof in the category PosΞ0 . By the definition of the cone topology, all
the maps valV(−; β) and valR(−; β) are continuous. Furthermore, since we
restricted the diagram to surjective maps β, valR(−; β) ○ ι = β implies that
the value maps valR(−; β) are also surjective. By Lemma 6.6 (a), M̂VX is
a cofiltered limit. Consequently, we can use Lemma 6.13, to show that ρ ∶
M̂RX → M̂VX is surjective.

208

6. The profinitary term monad

Finitely Copresentable Algebra+

In the remainder of this section we will prove that algebras of the form
M̂R∣∆X are what is called finitely copresentable (at least if X and ∆ are finite).
This is another result requiring us to work with Priestly spaces. Already the
next proposition fails in Set or Pos. Unfortunately, it also does only hold
for finitely many sorts.

Definition 6.15. An object A of a category C is finitely copresentable if, for
every cofiltered diagram D ∶ I → C with limit C and limiting cone (λ i)i∈I ,
and for every morphism f ∶ C → A, there exists an index k ∈ I and an
essentially unique morphism g ∶ D(k) → A such that f = g○ λk . Essentially
uniqueness here means that, if g′ ∶ D(k) → A is another morphism with
f = g′ ○ λk , then there exists an I-morphisms h ∶ l → k with g ○ Dh =
g′ ○ Dh. ⌟
Let us note the following standard fact from category theory.

Lemma 6.16. An object A ∈ C is finitely copresentable if, and only if, the
hom-functor C(−,A) preserves cofiltered surjective limits.

The following results makes essential use of duality. It is one of the main
reasons why we work with Priestly spaces.

Proposition 6.17. Let Ξ be a finite set of sorts. Every finite Priestley space is
finitely copresentable in PSpΞ .

Proof. First, note that the duality theorem implies that PSpΞ is equivalent
to (DistΞ)op. Furthermore, the corresponding translationmaps finite spaces
to finite lattices. Consequently it is sufficient to show that every finite lattice
is finitely presentable inDistΞ .
Hence, let L be a Ξ-sorted finite lattice, let D ∶ I → DistΞ be a directed

diagram with colimit N and limiting cocone (λ i)i∈I , and let φ ∶ L→ N be a
lattice homomorphism. Since L is finite there exists some index i ∈ I such
that rng φ ⊆ rng λ i . For every a ∈ L, fix an element f (a) ∈ λ−1i (φ(a)).This
defines a function f ∶ L → D(i) with λ i ○ f = φ. But note that, in general,

209

III. Languages

f is neither monotone nor a lattice homomorphism. For a, b ∈ L, it follows
that

λ i(f (a) ⊓ f (b)) = λ i(f (a)) ⊓ λ i(f (b))= φ(a) ⊓ φ(b)= φ(a ⊓ b)= λ i(f (a ⊓ b)) .
By the definition of a colimit, this implies that there is some index k ≥ i such
that

D(i , k)(f (a) ⊓ f (b)) = D(i , k)(f (a ⊓ b)) .
The same argument provides an index k ≥ i with

D(i , k)(f (a) ⊔ f (b)) = D(i , k)(f (a ⊔ b)) .
Since I is directed and there are only finitely many pairs a, b ∈ L, it follows
that we can find some index l ≥ i such that, for all a, b ∈ L,

D(i , l)(f (a) ⊓ f (b)) = D(i , l)(f (a ⊓ b))
and D(i , l)(f (a) ⊔ f (b)) = D(i , l)(f (a ⊔ b)) .
It follows that the function µ ∶= D(i , l) ○ f is a lattice homomorphism
satisfying

λ l ○ µ = λ l ○ D(i , l) ○ f = λ i ○ f = φ .

It remains to show that µ is essentially unique. Hence, suppose that there
is a second homomorphism µ′ ∶ L→ D(l ′) with λ l ′ ○ µ′ = φ. Fixing some
some index l ′′ ≥ l , l ′ and replacing µ and µ′ by, respectively,D(l , l ′′)○µ and
D(l ′ , l ′′) ○ µ′ we may assume that l = l ′. For every element a ∈ L, the fact
that λ l(µ(a)) = φ(a) = λ l(µ′(a)) implies that there is some index k ≥ l
with D(l , k)(µ(a)) = D(l , k)(µ′(a)). As I is directed and L is finite, it
follows that we can find an index k ≥ l such that

D(l , k)(µ(a)) = D(l , k)(µ′(a)) , for all a ∈ L .

Thus D(l , k) ○ µ = D(l , k) ○ µ′, as desired.

210

6. The profinitary term monad

It remains to transfer this result from PSpΞ to PAlg(M̂).
Proposition 6.18. Let Ξ be a finite set of sorts andR a class of finiteM-algebras.
The functor M̂R preserves cofiltered limits.

Proof. We obtain a very concise proof if we employ a bit of category-theor-
etical machinery. I have tried to present the proof in a way that it should be
intelligible without knowledge of the actual definitions of the terms involved.
As already noted above one can define M̂R as the codensity monad associ-

ated with the forgetful functor I ∶ R → PSpΞ maping anM-algebra A ∈ R
to its universe A (equipped with the discrete topology). By definition, this
means that

M̂R = RanI I
is the right Kan extension of I along itself. Furthermore, we can compute
such a Kan extension as

(RanI I)(X) = ∫
A∈R(IA)PSpΞ(X ,IA) = ∫

A∈RAPSpΞ(X ,A) ,
where the integral sign is a certain kind of limit for binary functors called
an end.Note that we have seen in Lemma I.2.9 that there exists a natural
isomorphism

PSpΞ(B,AX) ≅ SetΞ(X,PSpΞ(B,A)) ,
for sets X ∈ SetΞ and spaces A, B ∈ PSpΞ . For a fixed space A, it follows
that A(−) ∶ (SetΞ)op → PSpΞ is the right adjoint of the hom-functor
PSpΞ(−,A) ∶ PSpΞ → (SetΞ)op. This in particular implies that A(−) pre-
serves all limits. Furthermore we have seen in Lemma 6.16, that a space A ∈
PSpΞ is finitely copresentable if, and only if, the hom-functor PSpΞ(−,A)
preserves cofiltered surjective limits. As we have seen in Proposition 6.17
that the universe of a finiteM-algebra is finitely copresentable in PSpΞ , it
follows that the compositionAPSpΞ(−,A) preserves cofiltered limits, for every
A ∈ R.

211

III. Languages

Given a cofiltered diagram D ∶ J → PSpΞ , we therefore have

M̂R(limD) = (RanI I)(limD)
= ∫

A∈RAPSpΞ(lim j∈ J D(j),A)

= ∫
A∈R lim

j∈ J A
PSpΞ(D(j),A)

= lim
j∈ J ∫A∈RAPSpΞ(D(j),A) = lim

j∈ J M̂RD(j) ,
where the fourth step follows by the fact that an end is a limit and limits
commute.

Lemma 6.19. Let C be a category,M ∶ C → C a monad preserving cofiltered
limits, and A an M-algebra with finitely copresentable domain A. Then A is
finitely copresentable in Alg(M).
Proof. Fix a cofiltered diagram D ∶ I → Alg(M) with limit C and a limiting
cone (λ i)i∈I , and let φ ∶ C → A be a morphism of M-algebras. As the
domain A is finitely copresentable, there exists an index k ∈ I and a C-
morphism f ∶ D(k) → A such that φ = f ○ λk . Since φ and λk are
morphisms ofM-algebras, we have

f ○ π ○Mλk = f ○ λk ○ π = φ ○ π = π ○Mφ = π ○M f ○Mλk .

MC

C
D(k) MD(k) MD(m)

A

MA

π
Mλk Mλm

Mφ
λk

φ f
π

M f

MDh

f ′π

AsA is finitely copresentable andMC is the limit ofM○Dwith limiting cone(Mλ i)i , we can find an index m ∈ I and an essentially unique morphism

212

7. Axiomatisations

f ′ ∶MD(m) → A such that

π ○Mφ = f ′ ○Mλm .

Since I is cofiltered, there exists an index m′ ∈ I and I-morphisms g ∶ m′ →
m and h ∶ m′ → k. Replacing m by m′ and f ′ by f ′ ○ Dg, we may therefore
assume w.l.o.g. that there exists an I-morphism h ∶ m → k. By essential
uniqueness of f ′, we can find a morphism h′ ∶ m′ → m

f ○ π ○MDh ○MDh′ = f ′ ○MDh′ = π ○M f ○MDh ○MDh′ .
Consequently, ψ ∶= f ○ D(h ○ h′) satisfies

ψ ○ π = f ○ D(h ○ h′) ○ π= f ○ π ○MD(h ○ h′) = π ○M f ○MD(h ○ h′) = π ○Mψ ,

and φ = f ○ λk = f ○ Dh ○ λm = ψ ○ λm .

Hence, ψ is the desired morphism ofM-algebras. For essential uniqueness
of ψ, note thatA is finitely copresentable. Consequently, ψ is even essentially
unique as a C-morphism.

Corollary 6.20. Let ∆ ⊆ Ξ be a finite set of sorts andR a class of finitaryM-
algebras. For every finite set X ∈ PSp∆ , the M̂R∣∆-algebra M̂R∣∆X is finitely
copresentable in PAlg(M̂R∣∆).
Proof. By Proposition 6.17, the set X (with the discrete topology) is finitely
copresentable in PSp∆ . As we have shown in Propositon 6.18 that M̂∣∆ pre-
serves cofiltered limits, the claim therefore follows by Lemma 6.19.

7. Axiomatisation+

After the preparations in the previous section we are now able to define
the type of inequalities we use to axiomatiseR-varieties and to prove the
characterisation theorem. To apply the results of the preceding section, we
again work inD = Pos.

213

III. Languages

Convention. In this section, we denote byR the class of all finitaryM-algebras.

Definition 7.1. Let X ∈ SetΞ be finite and V ⊆ R.
(a) An M-inequality over X is a statement of the form s ≤ t with s, t ∈

M̂JX.
(b) An algebra A ∈ R satisfies anM-inequality s ≤ t over X if

valR(s; β) ≤ valR(t; β) , for all β ∶MJX → A .

We write A ⊧ s ≤ t to denote this fact.
(c)TheM-theoryTh(V) ofV is the set of allM-inequalities s ≤ t satisfied

by every algebra in V . (We do not fix the set X these inequalities are over.)
(d) A set Φ of M-inequalities (possibly over several different sets X)

axiomatises the following subclass of V .
ModV(Φ) ∶= {A ∈ V ∣ A ⊧ s ≤ t for all s ≤ t ∈ Φ } . ⌟

Let us start with the following important property connecting the theory
of a class V to the morphism ρV fromTheorem 6.14.

Lemma 7.2. Let V be a class of M-algebras, X a finite set, and s ≤ t an
M-inequality over X. Then

s ≤ t ∈Th(V) iff ρV(s) ≤ ρV(t) ,
where ρV ∶ M̂⇒ M̂V is the morphism fromTheorem 6.14.

Proof. By Lemma 6.3 (d), we have

A ⊧ s ≤ t , for all A ∈ V
iff valR(s; β) ≤ valR(t; β) , for all β ∶MJX → A ∈ V
iff valV(ρV(s); β) ≤ valV(ρV(t); β) , for all β ∶MJX → A ∈ V
iff ρV(s) ≤ ρV(t) .
The easier direction is to show that every axiomatisable class is an R-

variety.

214

7. Axiomatisations

Proposition 7.3. Let V be anR-variety and Φ a set of M-inequalities. Then
ModV(Φ) is anR-variety.
Proof. We have to check three closure properties. First, consider a finitary
subalgebra A of a product∏i∈I Bi with Bi ∈ModV(Φ). Let pk ∶ ∏i B i →
Bk be the projection. For s ≤ t ∈ Φ over X and β ∶MJX → A it follows that

pk(val(s; β)) = val(s; pk ○ β) ≤ val(t; pk ○ β) = pk(val(t; β)) ,
where the second step follows from the fact that Bk ⊧ s ≤ t. As the ordering
of the product is defined component-wise, this implies that val(s; β) ≤
val(t; β). Consequently, A ∈ModV(Φ).

Next, consider a quotient q ∶ B→ A with B ∈ModV(Φ). Fix s ≤ t ∈ Φ
over X and β ∶MJX → A. Since q is surjective, we can use Corollary II.5.4
to find some γ ∶MJX → A with β = q ○ γ. Then

val(s; β) = val(s; q ○ γ) = q(val(s; γ))≤ q(val(t; γ)) = val(t; q ○ γ) = val(t; β) ,
where the third step follows by monotonicity of q and the fact thatB ⊧ s ≤ t.
Consequently, A ∈ModV(Φ).
Finally, suppose that A is a sort-accumulation point of ModV(Φ). Fix

s ≤ t ∈ Φ over X and β ∶MJX → A. We have to show that

valV(s; β) ≤ valV(t; β) .
Suppose that s, t ∈ M̂ξJX and let ∆ ⊆ Ξ be a finite set of sorts containing ξ
and all sorts in X. By assumption, there is some algebra B ∈ ModV(Φ)
and a surjective morphism µ ∶ B∣∆ → A∣∆ . By Corollary II.5.4, we can find
a morphism γ ∶ M∣∆JX → B∣∆ with β∣∆ = µ ○ γ. Since B ⊧ s ≤ t and
s, t ∈ M̂∣∆JX, we have (working in the category Pos∆)

valV(s; β∣∆) = valV(s; µ ○ γ)= µ(valV(s; γ))≤ µ(valV(t; β))= valV(t; µ ○ γ) = valV(t; β∣∆) .

215

III. Languages

Since valV(−; β∣∆) = valV(−; β) ↾ M̂∣∆JX, it follows that A ⊧ s ≤ t.
For the converse statement – that everyR-variety is axiomatisable – we

start with a proposition.

Proposition 7.4. Let V be anR-variety. Then

V = {A ∣ A a finitary quotient of M̂VJX for some finite set X } .
Proof. (⊆) Let A ∈ V . As A is finitely generated, there exists a surjective
morphism β ∶ MJX → A, for some finite set X. The claim follows since
val(−; β) ○ ι = β implies that that val(−; β) ∶ M̂VJX → A is also surjective.(⊇) Let A be finitary and φ ∶ M̂VJX → A surjective. We have to show
that A ∈ V . As V is closed under sort-accumulation points, it is sufficient
to show that, for every finite set ∆ ⊆ Ξ there is some algebra B ∈ V and a
surjective morphism B∣∆ → A∣∆ . Hence, fix ∆ ⊆ Ξ. Note that, according to
Lemma 6.11 we can define the set M̂V ∣∆JX as the limit of a cofiltered diagram
inPSp∆ . Furthermore, we have seen inCorollary 6.20 that the M̂V ∣∆-algebra
M̂V ∣∆JX is finitely copresentable in PAlg(M̂V ∣∆). Therefore, there exists
an algebra B ∈ V and morphisms β ∶MJX → B and µ ∶ B∣∆ → A∣∆ such
that φ∣∆ = µ ○ val(−; β)∣∆ . Since φ∣∆ is surjective, so is µ. Consequently,
A∣∆ is a quotient of B∣∆ and B ∈ V .
Corollary 7.5. Let V andW beR-varieties.
(a) V ⊆ W iff Th(V) ⊇Th(W) .
(b) Mod(Th(V)) = V .
Proof. (a) (⇒) follows immediately by definition. For (⇐), let ρV ,X ∶
M̂JX → M̂VJX and ρW ,X ∶ M̂JX → M̂WJX be the morphisms from
Theorem 6.14. It follows by Lemma 7.2 that

Th(W) ⊆Th(V) implies ker ρW ,X ⊆ ker ρV ,X .

Hence, we can use the Factorisation Lemma to find a morphism qX ∶
M̂WJX → M̂VJX such that ρV ,X = qX ○ ρW ,X . By Theorem 6.14, the

216

7. Axiomatisations

morphism ρV ,X is surjective. Hence, so is qX . That means that M̂VJX is
a quotient of M̂WJX. Consequently, every quotient of M̂VJX is also a
quotient of M̂WJX and it follows by Proposition 7.4 that V ⊆ W .
(b) We have seen in Proposition 7.3 that the classW ∶=Mod(Th(V)) is

anR-variety. We have to show that V = W .(⊆) Let A ∈ V . Then we have A ⊧ s ≤ t, for every s ≤ t in Th(V). This
implies that A ∈Mod(Th(V)) = W .(⊇) By (a) it is sufficient to prove thatTh(W) ⊇Th(V). Hence, let s ≤ t
be inTh(V).ThenA ⊧ s ≤ t, for allA ∈Mod(Th(V)) = W , which implies
that s ≤ t belongs toTh(W).
We are finally able to state our Reiterman theorem for pseudo-varieties

ofM-algebras.

Theorem 7.6. Let R be the class of all finitary M-algebras. A class V is anR-variety if, and only if, it is of the form V = ModR(Φ), for some set Φ of
M-inequalities.

Proof. (⇐) was already proved in Proposition 7.3, and (⇒) follows by
Corollary 7.5 since V =ModR(Th(V)).
Note+

Monadic frameworks for formal language theory were initially put forward
by Bojańczyk [5]. Later on they have been generalised and fleshed out in
[21, 23, 16, 6, 4].
The material on minimal algebras in Section 3 is taken from lecture

notes by Bojańczyk [6]. Theorem 3.11 is unpublished work of Bojańczyk
and Plotkin.
The sections on pro-finitary terms and Reiterman’sTheorem are based

on [11, 23]. An introduction to Priestley spaces can be found, for instance, in
Chapter 11 of [12]. For a thorough introduction to profinite groups, see [20].

217

IV. Logi$

1. Ab#ra$t Logi$+

Amajor application of algebraic language theory consists in deriving criteria
for when a language is definable in a given logic. In this section we will
introduce an abstract framework covering a large number of the logics used
in practice. Our focus will be on isolating some abstract properties of a logic
ensuring that the corresponding language family forms a variety and, thus,
fits into our framework. In the next section we will then investigate what it
means for a language to be definable in a given logic.

Definition 1.1. LetΩ ∈ D be a set of weights and let Ω̃ ∈ DΞ be the set with
Ω̃ξ = Ω, for all ξ ∈ Ξ.

(a) AnΩ-valued logic is a triple ⟨L,M,Mod⟩ consisting of a set L ∈ SetΞ
of formulae, a classM ∈ DΞ of models, and a model function

Mod ∶ L → DΞ(M, Ω̃) .
We call Mod(φ) ∶ Mξ → Ω the class of models of φ ∈ Lξ . To keep notation
light, we usually identify a logic with its set of formulae L.

(b) For a logic ⟨L,M,Mod⟩, we define the satisfaction function
⟪ ⋅ ; ⋅ ⟫ ∶ VM× L → VΩ̃ by ⟪M;φ⟫ ∶=Mod(φ)(M) ,

and the theory function

ThL ∶= ⟨Mod(φ)⟩φ∈L ∶ M → Ω̃L .

We call ThL(M) the L-theory ofM.

abstract algebraic language theory 2022-12-11 — ©achim blumensath 219

IV. Logic

(c)The congruence

eq(L) ∶= kerThL ∶ M →M/(kerThL) ⊆ Ω̃L .

is called L-equivalence. ⌟
Remark. (a) IfD is one ofPos or Set andΩ = {0, 1}, we usually replace the
satisfaction function ⟪ ⋅ ; ⋅ ⟫ ∶ M× L → {0, 1} by the relation ⊧ ⊆M× L
which is defined by

M ⊧ φ : iff ⟪M;φ⟫ = 1 .
Then we have

ThL(M) = {φ ∈ L ∣M ⊧ φ } ,
and Mod(φ) = {M ∈ M ∣M ⊧ φ } .
Note that Mod(φ) is a set, whileThL(M) ∈ D. ForD = Pos, the ordering
onThL(M) is given by

φ ≤ ψ iff N ⊧ φ ⇒ N ⊧ ψ , for all N ∈ M ,

iff φ implies ψ .

(b) In Set, L-equivalence eq(L) reduces to the well-known relation ≡L
given by

M ≡L N : iff ⟪M;φ⟫ = ⟪N;φ⟫ , for all φ ∈ L .

In the unweighted case, this reads

M ≡L N : iff M ⊧ φ⇔ N ⊧ φ , for all φ ∈ L .

In Pos, we obtain a preorder ⊑L instead, which is given by

M ⊑L N : iff ⟪M;φ⟫ ≤ ⟪N;φ⟫ , for all φ ∈ L ,

or M ⊑L N : iff M ⊧ φ⇒ N ⊧ φ , for all φ ∈ L . ⌟

220

1. Abstract logics

Examples. (a) Let L be the set of all finite (word) automata over a fixed
alphabet Σ and setM ∶= Σ∗. ForA ∈ L and w ∈ M, we define

w ⊧ A : iff A accepts the input w .

(b) For a given signature Σ, a set X1 of first-order variables, and a set
X2 of set variables, we can define monadic second-order logic as

⟨MSO[Σ,X1 ,X2], Alg[Σ,X1 ,X2], Mod⟩
whereMSO[Σ,X1 ,X2] is the set of all monadic second-order formulae over
the signature Σ with free first-order variables inX1 and free monadic second-
order variables in X2 ; and Alg[Σ,X1 ,X2] is the set of all triples ⟨A, β1 , β2⟩
where A is a Σ-structure and β1 ∶ X → A and β2 ∶ X → ℘(A) are variable
assignments.We useΩ = {0, 1} as truth values and the satisfaction function
maps a pair ⟨M, φ⟩ to 1 ifM ⊧ φ and to 0 otherwise. ⌟
For multi-valued logics we have to distinguish two different notions of

definability. Strong definability is the obvious generalisation from the 2-sorted
case, whereasweak definabilitymay appear less natural at first sight, but turns
out to be much better behaved if the logic in question is not closed under all
Ω-operations. For this reason, we will mainly used weak definability below.

Definition 1.2. Let L = ⟨L,M,Mod⟩ and L′ = ⟨L′ ,M′ ,Mod⟩ be Ω-
valued logics.

(a)The extension of L by Ω-operations is the logic

L[Ω] ∶= ⟨L[Ω],M,Mod⟩ ,
where L[Ω] is the set of all pairs ⟨ω, φ̄⟩ such that ω ∶ Ωn → Ω is an Ω-
operation of some arity n < ω and φ̄ ∈ Ln an n-tuple of formulae. We use
the syntax ω[φ̄] for such a tuple. The satisfaction function is defined by

Mod(ω[φ̄]) ∶= ω[Mod(φ0), . . . , Mod(φn−1)] .
(b) A class C ∶ Mξ → Ω is strongly L-definable if C =Mod(φ), for some

φ ∈ Lξ . It is (weakly) L-definable if it is strongly L[Ω]-definable.

221

IV. Logic

(c) A strong morphism ⟨λ, µ⟩ ∶ L → L′ consists of functions λ ∶ L → L′
and µ ∶ M′ →M such that

⟪M′; λ(φ)⟫ = ⟪µ(M′);φ⟫ , for all φ ∈ L andM′ ∈ M′ .
(d) A (weak) morphism ⟨λ, µ⟩ ∶ L → L′ is a strong morphism L →L′[Ω]. We denote the category of all logics and their (weak) morphisms by

wLog. ⌟
Note that, for logics L that are closed under all Ω-operations, the logics

L and L[Ω] are equi-expressive.Hence, there is no distinction betweenweak
and strong definability, and none between weak and strong morphisms. For
instance, forD = Pos and Ω = {0, 1}, this is the case if the logic in question
is closed under finite meets and joins. Similarly, forD = Set and Ω = {0, 1},
we need closure under all finite boolean operations. Unfortunately, if the
set Ω of truth values is infinite, strong definability and weak definability are
usually different, and the latter notion is often better behaved than the more
standard notion of strong definability. For this reason, we will focus on weak
definability below.

Example. EveryMSO-interpretation τ (from the signature Σ to Γ) gives rise
to a morphismMSO[Γ ,∅,∅] → MSO[Σ,∅,∅] since we can construct, for
every formula φ ∈ MSO[Γ ,∅,∅], some formula φτ ∈ MSO[Σ,∅,∅] with

τ(A) ⊧ φ iff A ⊧ φτ , for all Σ-structures A .

(Just replace in φ every atomic formula containing a relation symbol R ∈ Γ
by the formula from τ defining R.) ⌟

Let us isolate a few simple conditions for when a class of models is defin-
able.

Lemma 1.3. Let ⟨L,M,Mod⟩ and ⟨L′ ,M′ ,Mod⟩ be Ω-valued logics.
(a) A class C ∶ Mξ → Ω is L-definable if, and only if,

eqξ(∆) ≤ C , for some finite ∆ ⊆ Lξ .

222

1. Abstract logics

(b) For sort-wise finite sets ∆ ⊆ L and ∆′ ⊆ L′, and a function f ∶ M →M′
the following two statements are equivalent:
(1) eqξ(∆) ≤ ker (eqξ(∆′) ○ f)
(2) If C ∶ M′

ξ → Ω is ∆′-definable, then f −1[C] ∶ Mξ → Ω is ∆-
definable.

Proof. (a) (⇒) Suppose that
C = ω[Mod(φ0), . . . , Mod(φn−1)] .

For ∆ ∶= {φ0 , . . . , φn−1}, it follows that
C = ω ○ ⟨Mod(φ0), . . . , Mod(φn−1)⟩= ω ○Th∆= (ω ○ imTh∆) ○ kerTh∆ = (ω ○ imTh∆) ○ eqξ(∆) .

Consequently, eqξ(∆) ≤ C.(⇐) Set Θ ∶= M/eq(∆) and fix a morphism ω0 ∶ Θξ → Ω such thatC = ω0 ○ eqξ(∆). Since imTh∆ ,ξ ∶ Θξ → Ω∆ is anM-morphism and Ω is
injective, we can extend ω0 to a function ω ∶ Ω∆ → Ω with ω ○ imTh∆ ,ξ =
ω0. Consequently,

C = ω0 ○ eqξ(∆)= ω ○ imTh∆ ,ξ ○ kerTh∆ ,ξ= ω ○Th∆ ,ξ= ω[Mod(φ0), . . . , Mod(φn−1)] ,
where φ0 , . . . , φn−1 is an enumeration of ∆ξ .

(b) (1) ⇒ (2) Suppose that C ∶ M′
ξ → Ω is ∆′-definable. By (1) and (a),

it then follows that

eqξ(∆) ≤ ker (eqξ(∆′) ○ f) ≤ ker (C ○ f) .
Hence, (a) (applied to the logic ∆ instead of L) implies that f −1[C] is ∆-
definable.

223

IV. Logic

(2) ⇒ (1) Suppose that eqξ(∆) ≤ ker (eqξ(∆′) ○ f). Note that every
class Mod(φ) with φ ∈ ∆′ is trivially ∆′-definable. By assumption, it there-
fore follows that f −1[Mod(φ)] is ∆-definable. Hence, (a) implies that

eqξ(∆) ≤ ker (Mod(φ) ○ f) , for all φ ∈ ∆′ξ .
Consequently,

eqξ(∆) ≤ ∏
φ∈∆′ξ

ker (Mod(φ) ○ f)
= ker (⟨Mod(φ)⟩φ∈∆′ξ ○ f)
= ker (Th∆′ ,ξ ○ f)= ker (eqξ(∆′) ○ f) .

Remark. In the category Pos, the above conditions simplify to the following
ones.

(a) M ⊑∆ N implies C(M) ≤ C(N) .
(b) M ⊑∆ N implies f (M) ⊑∆′ f (N) .
For Set, we just have to replace ⊑∆ by ≡∆ , and ≤ by =. ⌟
The next result provides a characterisation of when a map on models is

part of a morphism of logics.

Lemma 1.4. Let L = ⟨L,M,Mod⟩ and L′ = ⟨L′ ,M′ ,Mod⟩ be Ω-valued
logics and µ ∶ M′ →M a function. The following statements are equivalent.

(1) There exists a function λ ∶ L → L′ such that ⟨λ, µ⟩ ∶ L → L′ is a
morphism of logics.

(2) If C ∶ Mξ → Ω is L-definable, then µ−1[C] ∶ M′
ξ → Ω is L′-definable.

(3) For every sort-wise finite ∆ ⊆ L, there exists a sort-wise finite ∆′ ⊆ L′ such
that

eq(∆′) ≤ ker (eq(∆) ○ µ) .

224

1. Abstract logics

Proof. (3)⇒ (2) Suppose that C ∶ Mξ → Ω is L-definable. Then it is ∆-
definable, for some finite set ∆ ⊆ Lξ . By assumption, we can therefore find
some sort-wise finite set ∆′ ⊆ L′ such that

eq(∆′) ≤ ker (eq(∆) ○ µ) .
By Lemma 1.3 (b) this implies that C ○ µ is ∆′-definable. In particular, it is
L′-definable.
(2)⇒ (1) We define λ ∶ L → L′ as follows. For each φ ∈ L, the class

Mod(φ) is obviouslyL-definable. By assumption it follows that the preimage
Mod(φ) ○ µ is L′-definable, i.e, there are formulae ψ′0 , . . . ,ψ′n ∈ L′ and an
Ω-operation ω ∶ Ωn → Ω such that

Mod(φ) ○ µ = ω[Mod(ψ0), . . . , Mod(ψn−1)] .
We can therefore set λ(φ) ∶= ⟨ω,ψ0 , . . . ,ψn−1⟩.

(1)⇒ (3) Given ∆ ⊆ L, we set
∆′ ∶= ⋃{{ψ0 , . . . ,ψn−1} ∣ φ ∈ ∆ , λ(φ) = ⟨ω,ψ0 , . . . ,ψn−1⟩ } .

Then

Mod(φ) ○ µ = ω[Mod(ψ0), . . . , Mod(ψn−1)] , for every φ ∈ ∆ .

Consequently, there exists a function χ ∶ Ω∆′ → Ω∆ such that

⟨Mod(φ)⟩φ∈∆ ○ µ = χ ○ ⟨Mod(ψ)⟩ψ∈∆′ .
Hence,

Th∆′ = ⟨Mod(ψ)⟩ψ∈∆′ ≤ ⟨Mod(φ)⟩φ∈∆ ○ µ =Th∆ ○ µ ,
which implies that

eq(∆′) = kerTh∆′ ≤ ker (Th∆ ○ µ) = eq(∆) ○ µ .

225

IV. Logic

Here, we are mainly interested in logics whose class of models is of the
formM = MΣ with Σ ∈ Alph, as these can be used to define languages.
As with families of languages, we also need to consider families of logics
indexed by the alphabet used.

Definition 1.5. (a) A logic L is over an alphabet Σ if its class of models is
equal toMΣ.

(b) A family of logics is a functor L ∶ Alph→ wLog such that

◆ for every alphabet Σ, the image L[Σ] is a logic over Σ,

◆ for every function f ∶ Σ → Γ, the image L[f] is a morphism ⟨λ, µ⟩ ∶
L[Σ] → L[Γ] with µ =M f .

(c) Let L be a family of logics. A family of languagesK is L-definable if,
for all alphabets Σ and all sorts ξ, every κ ∈ Kξ[Σ] is L[Σ]-definable.
(d) Let L be a family of logics and A ∈ D finite. We call a function

κ ∶MA→ Ω L-definable, if the language κ ○Mι ∶MJVA→ Ω is L[JVA]-
definable.
(e) A family L of logics is varietal if the class of all L-definable languages

forms a variety of languages.
(f) We call a family of logics L (sort-wise) finite if, for every alphabet Σ,

the set of formulae L[Σ] is (sort-wise) finite.
(g) To keep notation light we will drop the signature in cases where it is

understood.Thus, we will usually write L instead of L[Σ]. ⌟
Example. For the word monad MA ∶= A∗ and monadic second-order
logic, we can define a family MSO that maps an alphabet Σ to the logic
MSO[Σ̂,∅,∅] where

Σ̂ ∶= {E , ≤} ∪ { Pa ∣ a ∈ Σ }
is the signature consisting of the successor relation E, the ordering ≤, and
predicates Pa for all letters in Σ. ⌟

226

2. Compositionality

2. Compo@tionality

As the notion is very general, there is not much one can prove for an arbitrary
logic. To get non-trivial statements we need some kind of restriction. As
languages come equippedwith amonadic composition operation, it is natural
to require our logics to be well-behaved under this form of composition.
This leads to the following definition.

Definition 2.1. A family L of logics isM-compositional if, for every finite
subfamily Φ ⊆ L, there exists some sort-wise finite subfamily Φ ⊆ ∆ ⊆ L
such that

eq(∆[Σ]) is anM-congruence onMΣ , for all alphabets Σ . ⌟
Example. For words u0 , . . . , un−1 , v0 , . . . , vn−1 ∈ Σ∗ we have

u i ≡MSOm v i , for all i , implies u0⋯un−1 ≡MSOm v0⋯vn−1 ,
whereMSOm denotes the set ofMSO-formulae of quantifier rank at mostm.
Consequently,MSO isM-compositional for the word monadMA = A∗. ⌟
The importance ofM-compositionality stems from the fact that the set

of theories of such a logic forms anM-algebra.

Proposition 2.2. A family of logics L is M-compositional if, and only if, for
every finite subfamily Φ ⊆ L, there exist◆ a sort-wise finite subfamily Φ ⊆ ∆ ⊆ L,◆ a functor Θ∆ ∶ Alph→ Alg(M), and◆ a epimorphic natural transformation θ∆ ∶ (M ↾ Alph) ⇒ Θ∆

such that

(θ∆)Σ = eq(∆[Σ]) , for every Σ .

Proof. (⇐) Given Φ ⊆ L, choose Φ ⊆ ∆ ⊆ L such that eq(∆[Σ]) = θ∆ .
Since θ∆ is a morphism ofM-algebras, it follows that eq(∆[Σ]) is anM-
congruence.

227

IV. Logic

(⇒) Given Φ ⊆ L, choose Φ ⊆ ∆ ⊆ L such that eq(∆[Σ]) is an M-
congruence, for all Σ. Set

Θ∆Σ ∶=MΣ/eq(∆[Σ]) and (θ∆)Σ ∶= eq(∆[Σ]) ∶MΣ → Θ∆Σ .

Given a function f ∶ Σ → Γ, we define the morphism Θ∆ f ∶ Θ∆Σ → Θ∆Γ
as follows. By definition of a family of logics, L[f] = ⟨λ,M f ⟩ is a morphism
of logics. Hence, Lemma 1.3 implies that

eq(∆[Σ]) ≤ ker (eq(∆[Γ]) ○M f) .
Consequently, there exists some function ψ ∶ Θ∆Σ → Θ∆Γ with

ψ ○ θ∆ = ψ ○ eq(∆[Σ]) = eq(∆[Γ]) = θ∆ ○M f .

We set Θ∆ f ∶= ψ.
From this definition it immediately follows that θ∆ is a natural transform-

ationM⇒ Θ∆ since

Θ∆ f ○ θ∆ = θ∆ ○M f .

Hence, it remains to show that Θ∆ is a functor. Consider two functions
f ∶ Σ → Γ and g ∶ Γ → Υ . By the equation we have just established, we have

Θ∆(g ○ f) ○ θ∆ = θ∆ ○M(g ○ f)= θ∆ ○Mg ○M f= Θ∆ g ○ θ∆ ○M f = Θ∆ g ○ Θ∆ f ○ θ∆ .

As θ∆ is an epimorphism, this implies that Θ∆(g ○ f) = Θ∆ g ○ Θ∆ f .

It follows immediately from the definition that the algebras Θ∆Σ are
sort-wise finite-dimensional.

Lemma 2.3. Let ∆ be a sort-wise finite set such that Θ∆Σ exists. Then Θ∆Σ is
sort-wise strongly finite-dimensional.

228

2. Compositionality

Proof. By definition we have

ker θ∆ = eq(∆) ≤ kerMod(φ) , for all φ ∈ ∆ .

For every φ ∈ ∆, we can therefore find a function µφ ∶ Θ∆Σ → Ω such that

µφ ○ θ∆ =Mod(φ) .
It is sufficient to prove that e ∶= ⟨µφ⟩φ∈∆ ∶ Θ∆Σ → Ω∆ belongs toM. Note
that

e ○ θ∆ = ⟨Mod(φ)⟩φ∈∆ =Th∆

implies that

ker (e ○ θ∆) = kerTh∆ = eq(∆) = θ∆ .

Consequently, e ∈M.

It follows immediately from the definition that the theory algebra Θ∆Σ
recognises every ∆-definable language.

Lemma 2.4. The morphism θ∆ ∶ MΣ → Θ∆Σ recognises every ∆-definable
language κ ∶MΣ → Ω.

Proof. Suppose that κ = ω[Mod(φ0), . . . , Mod(φn−1)] for some formulae
φ0 , . . . , φn−1 ∈ ∆ and an Ω-operation ω ∶ Ωn → Ω. Since

θ∆ = eq(∆[Σ]) ≤ eq({φ i}) , for all i < n ,
we have

θ∆ ≤ inf
i<n eq({φ i})
= inf

i<n kerMod(φ i)
= ker ⟨Mod(φ i)⟩i<n≤ ker (ω ○ ⟨Mod(φ i)⟩i<n) = ker κ .

Consequently, we can use Lemma III.3.1 (a) to show that θ∆ recognises κ.

229

IV. Logic

Corollary 2.5. Suppose the L isM-compositional, ∆ ⊆ L a sort-wise finite set
such that θ∆ exists, and let κ ∶MξΣ → Ω be a language with a syntactic algebra.
Then κ is ∆-definable if, and only if,

eq(∆) ≤ ker synκ .
Proof. (⇒) As θ∆ recognises κ, we can useTheorem III.4.9 to find a func-
tion ρ ∶ Θ∆Σ → Syn(κ) with ρ ○ θ∆ = synκ . It follows that

eq(∆) = ker θ∆ ≤ ker (ρ ○ θ∆) = ker synκ .
(⇐) By Lemma III.4.7, we have

eq(∆) ≤ ker synκ ≤ ker κ ≤ κ .
Therefore Lemma 1.3 implies that κ is ∆-definable.

Corollary 2.6. Suppose the L isM-compositional, ∆ ⊆ L a sort-wise finite set
such that θ∆ exists, and let κ ∶MξΣ → Ω be ∆-definable. If the minimal algebra
Syn(κ) exists, it is sort-wise weakly finite-dimensional.
Proof. As θ∆ recognises κ, we can useTheorem III.4.9 to find a function
ρ ∶ Θ∆Σ → Syn(κ)with ρ○θ∆ = synκ . Since synκ and θ∆ are E-morphisms,
so is ρ. Furthermore, we have shown in Lemma 2.3 that Θ∆Σ is strongly
finite-dimensional.

Next, let us take a look at the closure properties of definable languages.
Our first observation concerns closure under inverse relabellings, which
holds for every logic L. Then we show thatM-compositionality implies, but
is slightly stronger than, closure under derivatives.

Lemma 2.7. Let L be a family of logics. The class of L-definable languages is
closed under inverse relabellings.

Proof. If f ∶ Σ → Γ is a morphism of Alph, it follows by the definition of a
family of logics that there is some function λ such that L[f] = ⟨λ,M f ⟩ is a
morphism of logics. Consequently, it follows by Lemma 1.4 that (M f)−1[κ]
is L-definable, for every L-definable language κ ∶MξΓ → Ω.

230

2. Compositionality

Lemma 2.8. Let L be anM-compositional family of logics, and let ∆ ⊆ L be a
subfamily such that eq(∆) is anM-congruence. Then

eq(∆) ≤ eq(∆) ○ p , for all contexts p ∈M(Σ + ◻) .
Proof. By Lemma III.4.3, there exists some context q with

q ○ θ∆ = θ∆ ○ p .
Hence, θ∆ ≤ ker (θ∆ ○ p), and it follows that

eq(∆) = θ∆ ≤ ker (θ∆ ○ p) = ker (eq(∆) ○ p) .
Usually, the theory algebras Θ∆Σ from Proposition 2.2 are not very well

understood. (Otherwise, we would not need to introduce a special algebraic
framework to study definability questions.) To shed a bit more light on what
these algebras look like, we present an alternative construction for the theory
functor Θ.

Definition 2.9. Let L be a family of logics such that every L-definable
language has a syntactic algebra. The syntactic theory morphism (for an alpha-
bet Σ) is

θ̃L ∶= ⟨synMod(φ)⟩φ∈L[Σ] ∶MΣ → ∏
φ∈L[Σ]Syn(Mod(φ)) . ⌟

Lemma 2.10. Let L be a family of logics such that every L-definable language
has a syntactic algebra, and let ∆ ⊆ L be sort-wise finite.The following statements
are equivalent.
(1) The class of ∆-definable languages is closed under derivatives.
(2) eq(∆) = ker θ̃∆(t) .
(3) eq(∆) ≤ ker (eq(∆) ○ p) , for every context p .

Proof. (1) ⇔ (3)We have shown in Lemma 1.3 (b) that

eq(∆[Σ]) ≤ ker(∆[Σ] ○ p) ,

231

IV. Logic

if, and only if, p−1[κ] ∶ MζΣ → Ω is ∆-definable, for every ∆-definable
κ ∶MξΣ → Ω.(2) ⇔ (3) First, note that eq(∆) ○ p = eq(∆) for the empty context
p = sing(◻). Consequently, (3) is equivalent to

eq(∆) = inf { ker (eq(∆) ○ p) ∣ p a context} .
The equivalence of (2) and (3) therefore follows from the fact that

ker θ̃∆ = inf { ker synMod(φ) ∣ φ ∈ ∆ }= inf { ker (Mod(φ) ○ p) ∣ φ ∈ ∆ , p context}= inf { ker (⟨Mod(φ)⟩φ∈∆ ○ p) ∣ p context}= inf { ker (Th∆ ○ p) ∣ p context}= inf
p
ker (eq(∆) ○ p) ,

where the second step follows by Lemma III.4.7.

Theorem 2.11. Let L be a family of logics such that every L-definable language
has a syntactic algebra. The following statements are equivalent.
(1) L isM-compositional.
(2) For every finite Φ ⊆ L, there exists a sort-wise finite Φ ⊆ ∆ ⊆ L such that

the class of ∆-definable languages is closed under derivatives.

Proof. (1)⇒ (2)This follows immediately from Lemma 1.3 (b) together with
Lemma 2.8.
(2)⇒ (1) Given a subfamily ∆ ⊆ L with the above closure properties,

it follows by Lemma 2.10 that eq(∆) = ker θ̃∆ . In particular, eq(∆) is an
M-congruence.

Apart from a criterion forM-compositionality, this theorem also gives
us an explicit construction of the theory algebra Θ∆Σ in language-theoretic
terms. It therefore provides a more direct link between properties of a logic L
and properties of the class of L-definable languages.

232

3. Definable algebras

3. De[nable Algebra+

We have finally arrived at the central part of this chapter where we make
the connection between algebra and logic. It follows fromTheorem III.5.11
that, to every varietal logic L, there corresponds a uniqueR-variety V of
M-algebras recognising the family of L-definable languages. We would like
to use theseM-algebras to study the expressive power of our logic L. To do
so, we need to know as much as possible about how the algebras in V look
like. Unfortunately, Theorem III.5.11 does not tell us very much about that.
The following definition provides a slightly more concrete description.

Definition 3.1. Let A be anM-algebra and L a family of logics.
(a) A finite subset C ⊆ VA is L-definably embedded in A if, for every sort

ξ ∈ Ξ and every function µ ∶ Aξ → Ω, the composition µ ○ π ↾ MξJC is
L-definable.
(b) A is locally L-definable if every finite subset C ⊆ VA is L-definably

embedded in A.
(c) A is L-definable if it is finitely generated, sort-wise weakly finite-

dimensional, and locally L-definable. ⌟
Remark. Suppose that D = Pos and Ω = {0, 1}. A subset C of A is L-
definably embedded if, for every subset P ⊆ Aξ , the preimage

π−1[⇑P] ∩MC is L-definable.

Furthermore, being weakly finite-dimensional is the same as being finite. ⌟
Example. For the word functorMA = A+, every finite algebra (i.e., every
finite semigroup) isMSO-definable since we can evaluate products inMSO.
(Just guess a labelling that associates with every position the product of the
corresponding prefix.)
The same is true for the functorM⟨A1 ,A∞⟩ = ⟨A+1 , A+1A∞ ∪Aω

1 ⟩ for
infinite words, and for the functor for finite trees. (For the former, one can
use a reduction to the semigroup case via a simple application of theTheorem
of Ramsey; for the latter, one can compute the product of a tree bottom-up
similarly to the semigroup case.)

233

IV. Logic

For infinite trees the situation is more complicated: there exist finitary
algebras that are notMSO-definable. One such example will be presented in
Section V.4. ⌟

If our logic L is sufficiently well-behaved, it immediately follows from this
definition that L-definable algebras only recognise L-definable languages.
(The converse, that every L-definable language is recognised by some L-
definable algebra, is harder to prove.We will do so in the next section.) Note
that this correspondence – besides being trivial – is also not that useful for
understanding the expressive power of L as the definition makes essential
use of L-definability. But the above definition can serve as a starting point
for deriving more useful descriptions – that of course will be specific to the
logic in question.

Before proving that the L-definable algebras are exactly those that only re-
cognise L-definable languages, let us start by looking at definably embedded
sets.

Lemma 3.2. Let L be a family of Ω-valued logics and A a sort-wise weakly
finite-dimensional M-algebra. A finite set C ⊆ VA is L-definably embedded
in A if, and only if, there exists a sort-wise finite set ∆ ⊆ L[C] such that

eq(∆) ↾MJC ≤ ker (π ↾MJC) .
Proof. (⇐) Let ∆ be a sort-wise finite set such that

eq(∆) ↾MJC ≤ ker (π ↾MJC) .
For µ ∶ Aξ → Ω, it follows that

eq(∆) ↾MJC ≤ ker (π ↾MJC) ≤ ker (µ ○ π ↾MJC) .
By Lemma 1.3 (a) this means that µ ○ π ↾MξC is L-definable.(⇒) Since Aξ is weakly finite-dimensional, there exist morphisms qξ ∶
Ãξ → A and eξ ∶ Ãξ → Ωd ξ , for some dξ < ω, with qξ ∈ E and eξ ∈M. Set
q ∶= (qξ)ξ , e ∶= (eξ)ξ , let j ∶ C → VA be the inclusion, and set

π0 ∶= π ○M(q ○ ι ○ J j) ∶MJC → A

234

3. Definable algebras

be the restriction of the product. SinceMJC is projective with respect to
E-morphisms and q ∈ E, we can find morphisms π̃ξ ∶MξJC → Ãξ with

qξ ○ π̃ξ = π0 , for all ξ .

Let p i ∶ Ωd ξ → Ω be the projection to the i-th component. As C is L-
definably embedded in A, we can fix, for every i < dξ , a finite set ∆ξ, i ⊆ L of
formulae such that the composition p i ○ eξ ○ π̃ξ is ∆ξ, i -definable.The union
∆ ∶= ⋃ξ∈Ξ ⋃i<d ξ

∆ξ, i is sort-wise finite and satisfies

eqξ(∆) ≤ eqξ(∆ξ, i) ≤ ker (p i ○ eξ ○ π̃ξ) ,
where the second inequality follows by Lemma 1.3 (a). Hence,

eqξ(∆) ≤ infi ker (p i ○ eξ ○ π̃ξ)
= ker (eξ ○ π̃ξ)= ker π̃ξ≤ ker (qξ ○ π̃ξ) = ker(π0)ξ ,

where the third step follows since eξ ∈M.

In general, the closure properties of definably embedded sets are rather
weak. To make them better behaved we have to impose some restriction on
the logic L.

Lemma 3.3. Let A be anM-algebra, L a family of logics, and C ⊆ VA a finite
set that is L-definably embedded in A.
(a) Every subset of C is L-definably embedded in A.
(b) If the class of L-definable languages is closed under inverse morphisms,

every finite subset D ⊆ ⟪C⟫A is L-definably embedded in A.

Proof. (a) Fix D ⊆ C and let i ∶ D → C and j ∶ JC → A be the respective
inclusion maps. For µ ∶ Aξ → Ω it follows that

µ ○ π ↾MξD = µ ○ π ○M j ○MJi = (µ ○ π ○M j) ○MJi .

235

IV. Logic

By assumption, µ ○π ○M j is L-definable. Consequently, Lemma 2.7 implies
that so is µ ○ π ○M j ○MJi.
(b) By (a) it is sufficient to consider the case where D = V⟪C⟫A. Let

i ∶ C → D and j ∶ JD → A be the inclusion maps. For every d ∈ D, we can
find an element f (d) ∈MC such that π(f (d)) = d.This defines a function
f ∶ D → VMJC with

V(π ○M(j ○ Ji)) ○ f = idD .

Via the adjunction, we obtain a function f ∗ ∶ JD →MJC. Let φ ∶MJD →
MJC be the (unique) extension of f ∗ to a morphism ofM-algebras. Then

π ○M j ○MJi ○ φ ○ sing = π ○M j ○MJi ○ f= id= π ○M j ○ sing .
Since morphisms ofM-algebras are uniquely determined by their restriction
to rng sing, it follows that

π ○M j ○MJi ○ φ = π ○M j .

To show thatD isL-definably embedded, consider a function µ ∶ Aξ → Ω.
We have to show that µ ○ π ○M j ∶ MJD → Ω is L-definable. As C is L-
definably embedded, we know that µ ○ π ○M(j ○ Ji) ∶ MξJC → Ω is
L-definable. Furthermore, by assumption, L-definable languages are closed
under inverse morphisms. Hence,

µ ○ π ○M(j ○ Ji) ○ φ = µ ○ π ○M j

is also L-definable.

It follows immediately from the definition that an L-definable algebra
only recognises L-definable languages. We start with a slightly more precise
statement.

236

3. Definable algebras

Theorem 3.4. Let L be a family of logics such that the L-definable languages
are closed under inverse morphisms. AnM-algebra A is locally L-definable if,
and only if, every language recognised by A is L-definable.

Proof. (⇐) If some finite subset C ⊆ VA is not L-definably embedded,
we can find a partial function µ ∶ Aξ → Ω such that the composition κ ∶=
µ○π ↾MJC is not L-definable.Thus, the restriction π ↾MJC ∶MJC → A
of the product is a morphism recognising the non-L-definable language κ.(⇒) Let φ ∶ MΣ → A be a morphism and µ ∶ Aξ → Ω a function.
We have to show that κ ∶= µ ○ φ is L-definable. By assumption, the set
C ∶= rng (φ ○ sing) is L-definably embedded inA. By definition, this implies
that the function µ ○ π ↾MJC ∶MJC → Ω is L-definable. As Σ is of the
form JX, we can use Corollary II.5.4 to find a function φ̂ ∶ MΣ → MJC
satisfying φ = π ○ φ̂. Hence,

κ = µ ○ φ = µ ○ π ○ φ̂ .

Since µ ○ π ↾MJC is L-definable and since we have assumed above that the
class of L-definable languages is closed under inverse morphisms, it follows
that κ is also L-definable.

Next, let us take a look at the closure properties of L-definable algebras.

Proposition 3.5. The class of locally L-definable M-algebras is closed under
M-subalgebras and finite products.

Proof. For subalgebras, suppose that A ⊆ B where B is locally L-definable.
Let πA ∶MA→ A and πB ∶MB → B be the respective products. Given a
finite set C ⊆ VA and a function µ ∶ Aξ → Ω, consider the language κ ∶=
µ○πA ↾MJC. Since πA ↾MJC = πB ↾MJC, we have κ = µ○πB ↾MJC
and it follows by our assumption on B that κ is L-definable.
It remains to consider products. First, note that, according to Proposi-

tion I.5.7, the empty product A has exactly one element 1ξ of each sort ξ. For
a function µ ∶ Aξ → Ω, it follows that κ ∶= µ ○ π ↾ MξC is the constant
map with value µ(1ξ) ∈ Ω. Hence, we can write

κ = ω ,

237

IV. Logic

for the Ω-operation ω ∶ Ω0 → Ω ∶ ⟨⟩ ↦ µ(1ξ). Thus, κ is L-definable.
It remains to consider the case of a non-empty, finite productA = ∏i<n Bi

where each Bi is locally L-definable. Given a finite set C ⊆ VA, we choose
finite sets D i ⊆ VB i , for i < n, such that C ⊆ ∏i D i . Let pk ∶ ∏i B i → Bk

be the projections.
To show thatC is L-definably embedded inA, we use the characterisation

from Lemma 3.2. Since Dk is L-definably embedded inBk , there exist finite
sets ∆k ⊆ L such that

eq(∆k) ↾MJDk ≤ ker π ↾MJDk .

As the L-definable languages are closed under inverse relabellings, we can
use Lemma 1.3 (b) to find finite sets ∆′k ⊆ L such that

eq(∆′k) ≤ ker (eq(∆k) ○Mpk) .
Setting ∆ ∶= ∆′0 ∪ ⋅ ⋅ ⋅ ∪ ∆′n−1, it follows that

eq(∆) ↾MJC ≤ ker (eq(∆k) ○Mpk) ↾MJC≤ ker (π ○Mpk) ↾MJC= ker (pk ○ π) ↾MJC .

which implies that

eq(∆) ↾MJC ≤ inf
k
ker (pk ○ π) ↾MJC

= ker (⟨pk⟩k ○ π) ↾MJC = ker π ↾MJC

as desired.

Theorem 3.6. Let R be the class of all finitely generated, sort-wise weakly
finite-dimensional M-algebras. The class of L-definable M-algebras forms anR-variety.
Proof. We start by proving closure under finitely generated subalgebras of
finite products. Let A be a finitely generated subalgebra of∏i<n Bi where

238

4. Definable languages

eachBi is L-definable.ThenA is finitely generated and, according to Propos-
ition 3.5, it is locally L-definable. Finally, the fact that A is sort-wise weakly
finite-dimensional follows from Lemma III.1.4.

It therefore remains to prove closure under sort-accumulation points. Let
A be a finitely generated sort-accumulation point of the class of L-definable
algebras. We have to show that A is L-definable.
To check that A is sort-wise weakly finite-dimensional, we fix a sort ξ ∈ Ξ.

By assumption, there exists some L-definable algebraB and an E-morphism
q ∶ B∣{ξ} → A∣{ξ}. In particular, there exists an E-morphism Bξ → Aξ .
Since Bξ is weakly finite-dimensional, so is therefore Aξ .
It remains to show that A is locally L-definable. Consider a finite set

C ⊆ VA and a function µ ∶ Aξ → Ω. Let ∆ ⊆ Ξ be a finite set of sorts
such that ξ ∈ ∆ and C ⊆ A∣∆ . By assumption, we can find an L-definable
algebra B such that A∣∆ is a quotient of B∣∆ . Let q ∶ B∣∆ → A∣∆ be an E-
morphism.ThenVq is surjective and has a right-inverse. Via the adjunction
we obtain a function f ∶ JVA∣∆ → B∣∆ such that q○ f = ι, where ι ∶ JV⇒ Id
is the counit of the adjunction. Setting D ∶= f [JC], it follows that

µ ○ π ↾MJC = µ ○ π ○Mι ↾MJC= µ ○ π ○Mq ○M f ↾MJC= µ ○ q ○ π ○M f ↾MJC .

This language is L-definable since (µ ○ q) ○ π is L-definable and the class
of L-definable languages is closed under inverse relabellings. Consequently,
µ ○ π ↾MJC is also L-definable.

4. De[nable Language+

Finally, we are ready to make the connection between definable languages
and definable algebras.We start by proving that syntactic algebras and theory
algebras are (locally) L-definable.

Lemma 4.1. Let L be a varietal family of logics. If κ ∶ MξΣ → Ω is an
L-definable language with a syntactic algebra, then Syn(κ) is locally L-definable.

239

IV. Logic

Proof. LetC ⊆ VSyn(κ) be finite and fix µ ∶ Synξ(κ) → Ω. As λ ∶= µ○π ↾
MJC ∶ MJC → Ω is recognised by the restriction π ↾ MJC ∶ MJC →
Syn(κ), it follows by Proposition III.4.16 that λ is of the form

λ = φ−1[ω[p−10 [κ], . . . , p−1n−1[κ]]] ,
for some morphism φ ∶ MC → MΣ, contexts p0 , . . . , pn−1, and an Ω-
operation ω ∶ Ωn → Ω. By the assumed closure properties, languages of
this form are L-definable. Consequently, it follows byTheorem 3.4 that C is
L-definably embedded in Syn(κ).
Theorem 4.2. Let L be a family of logics such that every L-definable language
has a syntactic algebra. The following statements are equivalent.
(1) L is varietal.
(2) For every L-definable language κ ∶MΣ → Ω, the syntactic algebra Syn(κ)

is locally L-definable.

Proof. (1)⇒ (2) follows by Lemma 4.1. For (2)⇒ (1), fix an L-definable
language κ ∶ MξΓ → Ω. Then κ = µ ○ synκ , for some µ ∶ Synξ(κ) → Ω.
For closure under inverse morphisms, consider φ ∶MΣ →MΓ. Then

κ ○ φ = µ ○ synκ ○ φ ,

is recognised by synκ ○ φ ∶ MΣ → Syn(κ). Hence, it is L-definable by
Theorem 3.4.
For closure under derivatives, consider a context p ∈ M(Γ + ◻). By

Proposition III.4.15, p−1[κ] is recognised by synκ ∶MΓ → Syn(κ). Hence,
L-definability follows again byTheorem 3.4.

In general there is no reason why a syntactic algebra should be weakly
L-definable. Hence, we only obtain local definability. For theory algebras,
the situation better. Below we will characterise under which conditions these
are indeed L-definable. The proof rests on the following technical result.

Lemma 4.3. Let L be anM-compositional family of logics. For every sort-wise
finite set ∆ ⊆ L such that eq(∆) is anM-congruence, the set rngV(θ∆ ○ sing)
is L-definably embedded in Θ∆Σ.

240

4. Definable languages

Proof. Let ε ∶ Id⇒ VJ and ι ∶ JV⇒ Id be the unit and the counit of the
adjunction. Suppose that Σ = JX and let

f ∶= V(θ∆ ○ sing) ○ ε ∶ X → VΘ∆Σ

be the morphism corresponding to θ∆ ○ sing ∶ Σ → Θ∆Σ via the adjunction.
Let C ∶= rng f and choose a right-inverse g ∶ C → X of f ∶ X → C. Finally,
let i ∶ C → VΘ∆Σ be the inclusion and π0 ∶= π ○M(ι ○Ji) ∶MJC → Θ∆Σ
the restriction of the product toMJC. Then

θ∆ ○MJg = θ∆ ○ (flat ○Msing) ○MJg= π ○Mθ∆ ○Msing ○M(ι ○ Jε ○ Jg)= π ○M(ι ○ JV(θ∆ ○ sing) ○ J(ε ○ g))= π ○M(ι ○ J(f ○ g))= π ○M(ι ○ Ji)= π0 .

To show that C is L-definably embedded in Θ∆Σ, let µ ∶ Θ∆Σ → Ω. By
Lemma 1.3,

eq(∆) = ker θ∆ ≤ ker (µ ○ θ∆)
implies that the language κ ∶= µ ○ θ∆ is L-definable. Furthermore, we have
shown in Lemma 2.7 that the class of L-definable languages is closed under
inverse relabellings. Consequently, the language

µ ○ π0 = µ ○ θ∆ ○MJg = κ ○MJg .

is also L-definable.

Theorem 4.4. Let L be anM-compositional family of logics such that every
L-definable language has a syntactic algebra. The following statements are equi-
valent.
(1) L is varietal.

241

IV. Logic

(2) The class of L-definable languages is closed under inverse morphisms.
(3) Every algebra of the form Θ∆Σ is L-definable.
(4) For every L-definable language κ ∶ MξΣ → Ω, the syntactic algebra

Syn(κ) is L-definable.
(5) For every L-definable language κ ∶ MξΣ → Ω, the syntactic algebra

Syn(κ) is locally L-definable.
Proof. (1)⇒ (2) is trivial.
(2)⇒ (1) Closure under inverse morphisms holds by assumption; closure

underΩ-operations follows trivially from the definition of weak definability;
and closure under derivatives was proved inTheorem 2.11.
(1)⇔ (5) has already been established inTheorem 4.2.
(4)⇒ (5) is trivial.
(5)⇒ (4) It remains to show that Syn(κ) is finitely generated and weakly

finite-dimensional. For the former, note that Syn(κ) is generated by the finite
set rng (synκ ○ sing). For the latter, we fix a sort-wise finite set ∆ ⊆ L such
that κ is ∆-definable and Θ∆Σ is defined. Then we can useTheorem III.4.9
to find an E-morphism ρ ∶ Θ∆Σ → Syn(κ). Since Θ∆Σ is strongly finite-
dimensional, it follows that Syn(κ) is weakly finite-dimensional.
(2)⇒ (3) First, note that Θ∆Σ is generated by the finite set

C ∶= rngV(θ∆ ○ sing) .
Furthermore, we have shown in Lemma 2.3 that it is strongly finite-dimen-
sional. It therefore remains to prove L-definability. By Lemma 4.3, the set C
is L-definably embedded in Θ∆Σ. As every finite D ⊆ Θ∆Σ is contained in⟪C⟫Θ∆Σ = Θ∆Σ, we can therefore use Lemma 3.3 (b) to show that every
finite subset is L-definably embedded.
(3)⇒ (2) Fix a morphism φ ∶MΣ →MΓ and an L-definable language

κ ∶MξΓ → Ω. We will construct two sort-wise finite sets ∆, ∆′ ⊆ L such
that κ is ∆[Γ]-definable and

eq(∆′[Σ]) ≤ ker (eq(∆[Γ]) ○ φ) .
Then it follows by Lemma 1.3 (b) that φ−1[κ] is L-definable.

242

4. Definable languages

Hence, it remains to find the sets ∆ and ∆′. As L isM-compositional, we
can choose a sort-wise finite subset ∆ ⊆ L such that κ is ∆[Γ]-definable and
eq(∆) is anM-congruence. Set

f ∶= θ∆ ○ φ ○ sing ∶ Σ → Θ∆Γ and C ∶= rngV f .

Then we have

π ○M f = π ○M(θ∆ ○ φ ○ sing)= θ∆ ○ φ ○ flat ○Msing = θ∆ ○ φ .

By assumption, C is L-definably embedded in Θ∆Γ. We can therefore
use Lemma 3.2 to find a sort-wise finite subset Ψ ⊆ L such that

eq(Ψ) ↾MJC ≤ ker (π ↾MJC) .
Let∆0 ⊆ ∆ be the (finite) subset of all formulaewhose sort is equal to the sort
of some element of C. We have shown in Lemma 2.7 that L-definable lan-
guages are closed under inverse relabellings.Therefore, we can use Lemma 1.4
to find a sort-wise finite set Ψξ ∪ ∆0 ⊆ ∆′ ⊆ L such that

eq(∆′[Σ]) ≤ ker (eq(Ψ) ○M f) .
Consequently,

eqξ(∆′[Σ]) ≤ ker (eq(Ψ) ○M f)
≤ ker (π ○M f)= ker (θ∆ ○ φ) = ker (eq(∆[Γ]) ○ φ) .

As a consequence we obtain the following counterpart toTheorem 3.4.

Corollary 4.5. Let L be anM-compositional, varietal family of logics such that
every L-definable language has a syntactic algebra, and let κ ∶MξΣ → Ω be a
language. The following statements are equivalent.
(1) κ is L-definable

243

IV. Logic

(2) κ is recognised by an L-definable algebra.

(3) κ is recognised by a sort-wise strongly finite-dimensional L-definable algebra.

Proof. (3)⇒ (2) is trivial and (2)⇒ (1) has already been proved in The-
orem 3.4. For (1) ⇒ (3), we fix some sort-wise finite ∆ ⊆ L such that
κ is ∆-definable and Θ∆Σ exists. By the preceding theorem, the algebra
Θ∆Σ is L-definable. According to Lemma 2.3 it is even sort-wise strongly
finite-dimensional. Finally, we have seen in Lemma 2.4 that the morphism
θ∆ ∶MΣ → Θ∆Σ recognises κ.

Under some additional assumptions, the non-trivial implication in the
preceding corollary actually characterisesM-compositionality.

Theorem 4.6. Suppose that M is closed under products with arbitrary morph-
isms and let L be a family of logics such that every L-definable language has a
syntactic algebra and the class of L-definable algebras is closed under T -generated
M-subalgebras of finite products. A logic L isM-compositional if, and only if,
every L-definable language is recognised by a sort-wise strongly finite-dimensional
L-definable algebra.

Proof. (⇒) follows by Corollary 4.5.(⇐) Let Φ ⊆ L be finite. For every formula φ ∈ Φ, we fix a morphism
ηφ ∶ MΣ → Aφ to a sort-wise strongly finite-dimensional L-definable
algebra Aφ that recognises the language Mod(φ). Set η ∶= ker ⟨ηφ⟩φ∈Φ .
The codomain A of η is a finitely generated M-subalgebra of ∏φ Aφ . By
Theorem 3.6, A is L-definable. Clearly, it is also sort-wise strongly finite-
dimensional. Hence, there exist embeddings eξ ∶ Aξ → Ωd ξ with dξ < ω,
for every ξ ∈ Ξ. Furthermore, we can find formulae ψ′ξ, i , i < dξ , defining the
languages p i○eξ , where p i ∶ Ωd ξ → Ω is the projection to the i-th component.
Since L is closed under inverse relabellings, there exist formulae ψξ, i such
that

s ⊧ ψξ, i iff M(η ○ sing)(s) ⊧ ψ′ξ, i .

244

4. Definable languages

Set ∆ ∶= Φ ∪ {ψξ, i ∣ ξ ∈ Ξ , i < dξ }. Then ∆ is sort-wise finite. By choice
of η, there exist functions µφ ∶ Aξ → Ω, for φ ∈ Φ, such that

Mod(φ) = µφ ○ η .
Furthermore, set µψ ξ, i ∶= p i ○ eξ and ρ ∶= ⟨µφ⟩φ∈∆ . Note that, for ξ ∈ Ξ,

⟨µψ ξ, i ⟩i<d ξ = ⟨p i ○ eξ⟩i = ⟨p i⟩i ○ eξ = eξ ∈M .

By our assumption on M, it follows that ρ = ⟨⟨µφ⟩φ , ⟨µψ ξ, i ⟩ξ, i⟩ ∈ M.
Consequently,

eq(∆) = kerTh∆= ker ⟨Mod(φ)⟩φ∈∆= ker ⟨µφ ○ η⟩φ∈∆= ker (⟨µφ⟩φ∈∆ ○ η) = ker η ,
which implies that eq(∆) is anM-congruence.

Remark. The condition onM in the preceding theorem is satisfied in Set
(the product of an injective function and an arbitrary one is injective), but not
in Pos or Top, for example (where the product is injective, but not always
an embedding). ⌟
We have seen above that the class of L-definable algebras forms anR-

variety. The next theorem provides a more concrete description of thisR-
variety: it is generated by the theory algebras Θ∆Σ.

Theorem 4.7. Let L be a varietalM-compositional logic and letR be the class
of all finitely generated sort-wise weakly finite-dimensionalM-algebras.
A sort-wise strongly finite-dimensional M-algebra A is L-definable if, and

only if, it belongs to the R-variety V generated by all theory algebras of the
form Θ∆JX where X is some finite set and ∆ ⊆ L a sort-wise finite subfamily
such that eq(∆) is anM-congruence.

245

IV. Logic

Proof. (⇐)We have seen inTheorem 3.6 that the class of all L-definable
algebras forms anR-varietyW , and in Theorem 4.4 thatW contains all
theory algebras. Consequently, V ⊆ W .(⇒) Let A be L-definable and fix a finite set C ⊆ VA of generators. It
is sufficient to prove that A is a sort-accumulation point of theory algebras.
Hence, fix a finite setX ⊆ Ξ of sorts.W.l.o.g. wemay assume thatX contains
all the sorts in C. Since Aξ is sort-wise strongly finite-dimensional, there
exists anM-morphism eξ ∶ Aξ → Ωd ξ , for some dξ < ω. Let p i ∶ Ωd ξ → Ω
be the projection to the i-th component and let ∆ ⊆ L be a sort-wise finite
set such that Θ∆ is defined and every language p i ○ eξ ○π ↾MJC with ξ ∈ X
and i < dξ is ∆-definable. Then

ker θ∆ ↾MJC = eq(∆) ↾MJC ≤ ker (p i ○ eξ ○ π) ↾MJC

implies that

ker θ∆ ↾MJC ≤ inf
ξ, i

ker (p i ○ eξ ○ π) ↾MJC

= inf
ξ
ker (eξ ○ π) ↾MJC

= inf
ξ
ker π ↾MJC

= ker π ↾MJC ,

where the second step follows since ⟨p i⟩i = id and the third one since
eξ ∈ M. Consequently, ker θ∆ ∣X ≤ ker π∣X and there exist a morphism
q ∶ Θ∆JC∣X → A∣X such that π = q ○ θ∆ . In particular, A∣X is a quotient
of Θ∆JC∣X and Θ∆JC ∈ V .
Corollary 4.8. Suppose thatD = Set orD = Pos, and let Ω ∈ D be a finite
set. Let L be a varietal M-compositional logic, let S be the class of all theory
algebras Θ∆Σ, andR the class of all finitaryM-algebras. An algebra A ∈ R is
L-definable if, and only if, it satisfies everyM-inequality inTh(S).
Proof. We distinguish three cases. First assume thatD = Pos and Ω is not
an antichain. Then being weakly finite-dimensional is the same as being

246

4. Definable languages

finite. Let V be theR-variety of all L-definable algebras. ByTheorem 4.7,V is the smallestR-variety containing S . By Proposition III.7.3, the classW ∶= Mod(Th(S)) is also aR-variety containing S . Consequently, V ⊆W . Furthermore, S ⊆ V implies Th(S) ⊇ Th(V). Hence, it follows by
Corollary III.7.5 that

W =Mod(Th(S)) ⊆Mod(Th(V)) = V .
IfD = Set, we can use the same proof. It therefore remains to consider

the case where D = Pos and Ω is an antichain. SinceM is polynomial, it
follows that every set of the formMΣ, for Σ ∈ Alph, is also an antichain.
Furthermore, every algebra A recognising some language κ ∶ MξΣ → Ω
must be an antichain as, otherwise, there can be no functions A → Ω.
Consequently, the problem reduces to the case whereD = Set.

The following theorem summarises our various characterisations of when
a language is definable in a given logic. It can be considered the main result
of this article. Of these characterisations, (8) and (10) are the most useful;
(8) mainly when trying to prove that a language is L-definable and (10) when
devising a decision procedure for L-definability. Of course, for the latter one
has to first determine the set of inequalities in question. Depending on the
logic L this can be a highly non-trivial task.

Theorem 4.9. Let L be anM-compositional varietal family of logics such that
every L-definable language has a syntactic algebra, and let κ ∶MξΣ → Ω be an
Ω-language that has a syntactic algebra. The following statements are equivalent.
(1) κ is L-definable.
(2) κ is recognised by some L-definable algebra.
(3) Syn(κ) is L-definable.
(4) Syn(κ) is a quotient of Θ∆Γ, for some ∆ and Γ.
(5) synκ = ρ○θ∆ , for some ∆ and a surjective morphism ρ ∶ Θ∆Σ → Syn(κ).
(6) κ is recognised by Θ∆Γ, for some ∆ and Γ.
(7) θ∆ ∶MΣ → Θ∆Σ recognises κ, for some ∆.

247

IV. Logic

(8) eq(∆) ≤ ker κ , for some ∆.
(9) eq(∆) ≤ ker synκ , for some ∆.
If D = Set or D = Pos, and if Ω ∈ D is finite, the above statements are
equivalent to the following one.
(10) Syn(κ) satisfies allM-inequalities s ≤ t that hold in every theory algebra

Θ∆Γ.
(Here ∆ ranges over sort-wise finite subsets of L and Γ ranges over alphabets.)

Proof. (1)⇔ (2) has been proved in Corollary 4.5; (1)⇔ (8) in Lemma 1.3;
(3)⇔ (10) follows by Corollary 4.8.
(1)⇒ (7) was proved in Lemma 2.4.
(7)⇒ (8) Suppose that κ = µ ○ θ∆ for some function µ ∶ Θ∆Σ → Ω.

Then

eq(∆) = ker θ∆ ≤ ker (µ ○ θ∆) = ker κ .
(1)⇒ (9) follows by Corollary 2.5.
(9)⇔ (5) Note that eq(∆) = ker θ∆ . For a finite set ∆ ⊆ L, it therefore

follows that

eq(∆) ≤ ker synκ iff ker θ∆ ≤ ker synκ
iff synκ = ρ ○ θ∆ , for some morphism ρ ,

where the fact that ρ is a morphism ofM-algebras follows by Lemma I.5.6.
(5)⇒ (4) is trivial.
(4)⇒ (6) Since synκ ∶MΣ → Syn(κ) recognises κ, the claim follows by

Lemma III.5.7.
(6)⇒ (2) follows byTheorem 4.4 (3).
(1)⇒ (3) follows byTheorem 4.4 (4).
(3)⇒ (2) holds as synκ ∶MΣ → Syn(κ) recognises κ.
Our algebraic framework works for logics that are varietal andM-compos-

itional. In order to simplify proofs of these two properties, let us introduce a
strong form of compositionality that implies both of them.

248

4. Definable languages

Definition 4.10. A logic L is stronglyM-compositional if, for every finite set
Φ ⊆ L, there exists a sort-wise finite set Φ ⊆ ∆ ⊆ L with the following
property. For every φ ∈ ∆, there exists a finite subset ∆0 ⊆ ∆ and a formula
ψ ∈ L[Ω] satisfying

Mod(φ) ○ flat =Mod(ψ) ○MTh∆0 . ⌟
Remark. Note thatM-compositionality implies that

MTh∆(s) determines Th∆(flat(s)) .
StrongM-compositionality strenghens this implication by requiring that
the theory of flat(s) can be computed by an L-formmula. ⌟
Proposition 4.11. Every stronglyM-compositional logic L is varietal andM-
compositional.

Proof. We start by proving that L isM-compositional. Given a finite set
Φ ⊆ L, fix a sort-wise finite set ∆ ⊇ Φ as in the definition of strong M-
compositionality. We claim that eq(∆) is anM-congruence, i.e., that

kerMeq(∆) ≤ ker (eq(∆) ○ flat) .
By strongM-compositionality we can choose, for every formula φ ∈ ∆, a
formula ψφ and a finite set ∆φ ⊆ ∆ such that

Mod(φ) ○ flat =Mod(ψφ) ○MTh∆φ .

It follows that

eq(∆) ○ flat = ⟨Mod(φ)⟩φ∈∆ ○ flat = ⟨Mod(ψφ) ○MTh∆φ⟩φ∈∆ .
Since∆φ ⊆ ∆, there are functions pφ withTh∆φ = pφ○eq(∆). Consequently,

eq(∆) ○ flat = ⟨Mod(ψφ) ○M(pφ ○ eq(∆))⟩φ∈∆= ⟨Mod(ψφ) ○Mpφ⟩φ∈∆ ○Meq(∆) ,

249

IV. Logic

which implies that kerMeq(∆) ≤ ker (eq(∆) ○ flat).
It remains to prove that L is varietal. ByTheorem 4.4, it is sufficient to

show that every theory algebra Θ∆Σ is L-definable. First, note that Θ∆Σ
is finitely generated by C ∶= rng (θ∆ ○ sing). Let i ∶ C → Θ∆Σ be the
inclusion map and let q ∶ Σ → C be the function such that i ○ q = θ∆ ○ sing.
We have to show that, for every function µ ∶ Θ∆Σ → Ω, the composition
µ ○ π ○Mi ∶MC → Ω is L-definable.
Hence, fix µ ∶ Θ∆Σ → Ω.Then µ ○ θ∆ ∶MΣ → Ω is ∆-definable. Let φ ∈

∆[Ω] be a formula with Mod(φ) = µ ○ θ∆ . By strongM-compositionality,
there is some formula ψ and a set ∆0 ⊆ ∆ such that

Mod(φ) ○ flat =Mod(ψ) ○MTh∆0 .

Since ∆0 ⊆ ∆, we can find a function p withTh∆0 = p ○ θ∆ . It follows that

(µ ○ π ○Mi) ○Mq = µ ○ π ○M(θ∆ ○ sing)= µ ○ θ∆ ○ flat ○Msing=Mod(φ) ○ flat ○Msing=Mod(ψ) ○MTh∆0 ○Msing=Mod(ψ) ○M(p ○ θ∆) ○Msing=Mod(ψ) ○M(p ○ i ○ q) .
Since q (and henceMq) is surjective, it follows that

µ ○ π ○Mi =Mod(ψ) ○M(p ○ i) .
Thus µ ○ π ○Mi is an inverse relabelling of an L-definable language and,
therefore, also L-definable.

Note+

Over the years several abstract logical frameworks have been in use, most of
them not developed enough to be ever published. Among the major ones
are the framework for abstract model theory proposed by Barwise (see,

250

4. Definable languages

e.g., [2]), the notion of an abstract elementary class introduced by Shelah (see,
e.g., [1]), and the theory of institutions developed by Goguen and Burstall
(see, e.g., [13]). The framework presented here is somewhat similar to the
latter, the main difference being that we do not equip our class of models
with the structure of a category.

251

V. Tree+

1. Monad+ and Logi$+ for Tree+ and Fore#+

It is time to apply the abstract theory we have developed so far to a concrete
setting. Let us take an in-depth look at languages of infinite trees, which
exhibit many of the complications not arising in simpler settings.We start by
introducing the correspondingmonad. It turns out that in different situations
slightly different versions of this monad will be needed.Therefore, we define
several variants starting with the most general one and then deriving the
others from it.

Convention. In this chapter we will work exclusively in the categoryD = Pos.
Definition 1.1. Let X be a countably infinite set of variables.
(a) For sorts we will be using the set Ξ ∶= ℘ω(X) of all finite sets of

variables. Sometimes we also take the larger set Ξ+ ∶= ℘(X). The arity of an
element a of sort ξ is the cardinality ∣ξ∣.

(b) LetA ∈ DΞ . AnA-labelled (nondeterministic) rooted graph is a countable
directed graph g where the vertices are labelled by elements of A and the
edges by elements of X in such a way that, if a vertex v has a label a of
sort ξ, then the labels of all outgoing edges belong to ξ. We assume that all
outgoing edges with the same label are ordered from left-to-right, but there
is no ordering between edges whose label is different. In addition, some of
the vertices of g are marked as roots, which are also assumed to be ordered
left-to-right, and we require that every vertex can be reached by a path from
some root.
(c) We denote byG the polynomial functor whereGξA is the set of all(A+ ξ)-labelled rooted graphs where the labels in ξ are assumed to have

sort ∅ and every variable x ∈ ξ appears as the label of at least one vertex.

abstract algebraic language theory 2022-12-11 — ©achim blumensath 253

V. Trees

(d) We denote the set of vertices of a graph g ∈ GξA by dom+(g) and by
dom(g) the subset of vertices with a label in A. Vertices with a label in ξ are
called holes.An x-edge is an edge with label x. If there is an x-edge from v
to u, we call u an x-successor of v and v an x-predecessor of u. ⌟

In addition, we use the following functors derived fromG.

Definition 1.2. Let A ∈ DΞ .
(a) We denote by RA the subset of GA consisting of all graphs with a

single root such that the root is not labelled by a variable and such that, for
every vertex v of sort ξ and every x ∈ ξ, there is exactly one outgoing edge
with label x. We call such graphs deterministic.

(b) T×A ⊆ RA is the set of deterministic graphs that form trees, and
TξA ⊆ T×ξA is the set of trees where every variable x ∈ ξ appears exactly once.
We call the elements of TA linear ranked trees and those of T×A non-linear
ranked trees.

(c)F×A ⊆ GA is the set of nondeterministic graphs that form forests, and
FξA ⊆ F×ξA is the set of forests where every variable x ∈ ξ appears exactly
once. We call the elements of FA linear (unranked) forests and those of F×A
non-linear (unranked) forests. An unranked tree is an unranked forests with a
single connected component. ⌟
Remark. (a) To denote finite trees we will frequently use term notation. For
instance, a(x , b(y)) is the tree

a

x b

y

x0 x1

x0

(We assumed a fixed ordering on the variables, so that we can speak of
the first successor, the second one, etc.) Similarly, we write forests using an
addition operation + for disjoint union and a constant 0 for the empty forest.
For instance, a(x + c, 0, b(y)) + b(x) denotes the forest

254

1. Monads and logics for trees and forests

a

x c b

y

b

x

x0 x0
x2

x0

x0

(b) For unranked forests, the edge labellings are usually only necessary
when we consider forests in s ∈ FFA where the component forests s(v)
might contain several different variables. For forests s ∈ FΣ labelled by some
alphabet Σ on the other hand, we could do without labelled edges. For this
reason, we frequently work with alphabets where every letter has arity 1. In
particular, we will frequently write FΣ, for one-sorted sets Σ ∈ D, which
we implicitely regard as Ξ-sorted ones by assigning to each letter c ∈ Σ the
sort {x}, for some fixed variable x. ⌟
To turn the functors we have just introduced into monads we use the

following operations on graphs.

Definition 1.3. Let A ∈ DΞ .
(a)The unravelling of a graph g ∈ GA is the graph un(g) whose vertices

correspond to all finite paths in g that start at some root. The label of such a
path is the label of its end-point in g. A path q is the x-successor of a path p
if q can be obtained from p by appending a single x-edge.The roots of un(g)
are all the paths of length 0 (see Figure 1 for an example).
(b) For a ∈ Aξ , we denote by sing(a) the graph g with a single root r

labelled awhich has one x-successor ux , for every x ∈ ξ, with label g(ux) = x.
In term notation, sing(a) = a(x0 , . . . , xn−1) for ξ = {x0 , . . . , xn−1}.

a b c b

a

c b

a

c

x

y

z

x

y
z

x

y

Figure 1.: A graph and its unravelling.

255

V. Trees

(c) The flattening flat(g) of a graph g ∈ GGA is defined as follows (see
Figure 2 for an example). Let h be the disjoint union of all graphs g(v), for
v ∈ dom+(g), and let R be the binary relation on dom+(h) containing all
pairs ⟨u, v⟩ such that
◆ h(u) = x for some variable x,

◆ u is a leaf of some component g(w) with w ∈ dom(g),
◆ v is a root of some component g(w′) where w′ is the x-successor of v

in g.

Then flat(g) is the graph obtained from h by

◆ deleting every vertex corresponding to a hole in g(v) with v ∈ dom(g)
and

◆ for every x-predecessor u′ of a deleted vertex u, adding x-edges from u′
to all vertices v with ⟨u, v⟩ ∈ R.

(d) We denote the restrictions of flat ∶ GGA→ GA and sing ∶ A→ GA
to the subfunctorsR, T, and F also by flat and sing. In cases where we want
to distinguish between these versions, we add the functor as a superscript:
flatG, flatR, flatT, etc.

(e) Finally, for the functors T× and F× we set flat× ∶= un ○ flat (restricted
to T×T×A or F×F×A, respectively). ⌟

It is now straightforward (but a bit tedious) to check the monad laws.

Proposition 1.4. G, R, T, and F form monads on PosΞ with multiplication
flat and unit morphism sing.

Proof. It is sufficient to prove the claim forG.The other three cases then fol-
lows from Lemma ?? (a) by considering the corresponding inclusion morph-
isms. Clearly, we have flat ○ sing = id and flat ○Gsing = id. For associativity,
letG ∈ GGGA. By Proposition I.3.7 and the Remark on page 38, we obtain

256

1. Monads and logics for trees and forests

a b

x b y

x

u v u
u

u

b a b

a c y

x

yu

u u u

v
u

b

a a

x

uu
v

u

z

x x y

y

x

a b

b

b a b b

a c a a

z

v u

uu u u

u u

u
u u

u
u v

u

v
u

u u

Figure 2.: A graph g ∈ GG{a, b, c} and its flattening. The sorts of a, b, c are {u, v},{u}, and∅, respectively. The roots are marked by an incoming arrow.

257

V. Trees

labelling-preserving functions

µ ∶ dom(flat(G)) → ∑
v∈dom(G)dom(G(v)) ,

µ′ ∶ dom(flat(flat(G))) → ∑
w∈dom(flat(G))dom(flat(G)(w)) ,

µv ∶ dom(flat(G(v))) → ∑
u∈dom(G(v))dom(G(v)(u)) ,

µ′′ ∶ dom(flat(Gflat(G))) → ∑
v∈dom(Gflat(G))dom(flat(G(v))) ,

for v ∈ dom(G). As the flattening function for graphs does not erase or
duplicated vertices (this is different or T× and F×), these functions are all
bijective. Furthermore, it is straightforward to check that they preserve the
edge relation. Composing these we obtain a bijection

dom(flat(flat(G)) → ∑
w∈dom(flat(G))dom(flat(G)(w))→ ∑⟨v ,u⟩∈∑v∈dom(G) dom(G(v))

dom(G(v)(u))
→ ∑

v∈dom(G) ∑
u∈dom(G(u)dom(G(v)(u))→ ∑

v∈dom(Gflat(G)) ∑
u∈dom(G(u)dom(G(v)(u))→ ∑

v∈dom(Gflat(G))dom(flat(G(v)))→ dom(flat(Gflat(G)))
that preserves the labelling and the edge relation.This implies that the graphs
flat(flat(G)) and flat(Gflat(G)) are in fact equal.
The non-linear cases T× and F× have to be dealt with separately since,

in contrast to their linear counterparts, they do not form a submonad of
R andG, respectively. Instead they are quotients.

258

1. Monads and logics for trees and forests

Lemma 1.5. ⟨T× , flat× , sing⟩ and ⟨F× , flat× , sing⟩ form monads and the un-
ravelling maps un ∶ R⇒ T× and un ∶ G⇒ F× are morphisms of monads.
Proof. By Lemma ??, it is sufficient to check that

sing = un ○ sing and flat× ○ un ○Run = un ○ flat
(and similarly for F× andG.) The first equation immediately follows form
the fact that un(sing(a)) = sing(a). For the second one, note that the ver-
tices of un(flat(g)) correspond to the finite paths of flat(g), while those
of un(flat(un(Run(g)))) correspond to those of flat(un(Run(g))). Fur-
thermore, every path α in a graph of the form flat(h) corresponds to a path(vn)n of h and a family of paths βn of h(vn) such that α can be identified
with the concatenation β0β1 Finally, a path in un(h) is the same as a
path in h. Consequently, each path of flat(un(Run(g))) corresponds to (i) a
path of g together with (ii) a family of paths in some components g(v) as
above. This correspondence induces a bijection between

dom(un(flat(g))) and dom(un(flat(un(Run)))) .
As this bijection preserves the labelling it follows that

un(flat(g)) = un(flat(un(Run))) .
Logi$+ for Fore#+

The main logics we are interested in are first-order logic FO and monadic
second-order logicMSO. To define the satisfaction relation between formulae
of these logics and elements of GΣ, we encode a graph g ∈ GξΣ as the
structure

G = ⟨V , ≤pf , ≤so , (sucx)x∈X , (Pc)c∈Σ+ξ , R⟩
where◆ V ∶= dom+(g) is the set of vertices,◆ ≤pf the reflexive transitive closure of the edge relation,

259

V. Trees

◆ ≤so is the left-to-right ordering on the successors of each vertex (where
successors of distinct vertices are incomparable, and the same for x-
successors and y-successors with x ≠ y),

◆ sucx is the x-successor relation,◆ Pc ∶= g−1(c) the set of all vertices with label c ∈ Σ + ξ, and
◆ R is a unary relation that marks the roots.

Depending on which of the above relations we allow in a formula, we obtain
several variants of first-order or monadic second-order logic.

Definition 1.6. (a)MSO[≤so], monadic second-order logic with successor
ordering, isMSO over structures of the above form where every relation can
be used.

(b)MSO[≤pf], monadic second-order logic with forest ordering, or prefix
ordering, isMSO over the above structures, but without the relation ≤so.
(c)MSO[suc], monadic second-order logic with successor, isMSO over

the above structures, but without the relations ≤pf and ≤so.
(d) We define the same variants for first-order logic FO and counting

monadic second-order logic CMSO. The latter is the extension of MSO by
atomic formulae of the form

∣X∣ < ∞ and ∣X∣ ≡ k (mod m) ,
for set variables X and numbers 0 < k < m < ω. By definition, a formula of
the first form hold if the set X is finite, and a formula of the second form
holds if X is finite and its cardinality is congruent k modulo m.

(e) For a number m < ω, we denote byMSOm[≤so],MSOm[≤pf],. . . the
restrictions of the corresponding logics to formulae of quantifier-rank at
most m (counting both first-order and second-order quantifiers). ⌟
Let us give a quick overview over several well-known tools that help us

study the expressive power of these logics on forests. We use the following
notation.

260

1. Monads and logics for trees and forests

Definition 1.7. Let L be one of the above logics. For two structuresA andB
and tuples ā ∈ Ak , b̄ ∈ Bk , P̄ ∈ ℘(A)l , Q̄ ∈ ℘(B)l , we write

A, P̄ā ≡L B, Q̄ b̄ : iff [A ⊧ φ(P̄, ā) ⇔ B ⊧ φ(Q̄ , ā)] ,
for all φ ∈ L . ⌟

We can compute this relation by induction on m as follows.

Proposition 1.8. LetA andB be two structures over a finite, relational signature,
and let ā ∈ Ak and b̄ ∈ Bk be tuples of elements. Then

A, ā ≡FOm+1 B, b̄

if, and only if,◆ for every a′ ∈ A, there is some b′ ∈ B with A, āa′ ≡FOm B, b̄b′ ,◆ for every b′ ∈ B, there is some a′ ∈ Awith A, āa′ ≡FOm B, b̄b′ .
Proposition 1.9. Let L be one of the above variants of MSO or CMSO, and
let Lm be the corresponding fragment of restricted quantifier-rank. Let A and B
be two structures over a finite, relational signature, and let ā ∈ Ak , b̄ ∈ Bk ,
P̄ ∈ ℘(A)l , Q̄ ∈ ℘(B)l be tuples of elements and sets. Then

A, P̄ā ≡FOm+1 B, Q̄ b̄

if, and only if,◆ for every a′ ∈ A, there is some b′ ∈ B with A, P̄āa′ ≡FOm B, Q̄ b̄b′ ,◆ for every b′ ∈ B, there is some a′ ∈ Awith A, P̄āa′ ≡FOm B, Q̄ b̄b′ .◆ for every P′ ⊆ A, there is some Q ′ ⊆ B with A, P̄P′ ā ≡FOm B, Q̄Q ′b̄ ,◆ for every Q ′ ⊆ B, there is some P′ ⊆ Awith A, P̄P′ ā ≡FOm B, Q̄Q ′b̄ .
This method is called a back-and-forth argument. As the readers can verify

in the following sections for themselves, proofs containing such arguments
are often quite tedious. When applicable, so-called composition theorems
provide a much simpler way to compute the relation ≡L . Let us present two
such theorems.They are based on the following two operations.

261

V. Trees

Definition 1.10. Let L be one of the above logics and let Σ and Γ be finite
relational signatures.

(a) A simple L-interpretation is a unary operation that is defined by a tuple

τ = ⟨δ(x), (φR(x̄))R∈Γ⟩
of L-formulae as follows. Given a Σ-structure A it produces the Γ-structure

τ(A) ∶= ⟨δA , (φR)AR∈Γ⟩
with universe

δA ∶= { a ∈ A ∣ A ⊧ δ(a) }
and relations

φA
R ∶= { ā ∈ An ∣ A ⊧ φR(ā) } , for R ∈ Γ

(where n is the arity of R).
(b) Let I be a Γ-structure and (Ai)i∈I a family of Σ-structures indexed

by the elements of I. The generalised sum

∑
i∈I Ai

is the (Σ + Γ + {∼})-structure with universe
∑
i∈I A

i ∶= { ⟨i , a⟩ ∣ i ∈ I, a ∈ Ai }
and relations

R ∶= { ⟨⟨i , a0⟩, . . . , ⟨i , an−1⟩⟩ ∣ i ∈ I, , ⟨a0 , . . . , an−1⟩ ∈ RAi } ,
S ∶= { ⟨⟨i0 , a0⟩, . . . , ⟨in−1 , an−1⟩⟩ ∣ ⟨i0 , . . . , in−1⟩ ∈ SI , a j ∈ Ai j } ,
∼ ∶= { ⟨⟨i , a⟩, ⟨i , b⟩⟩ ∣ i ∈ I, , a, b ∈ Ai } ,

for R ∈ Σ and S ∈ Γ. ⌟

262

2. Finite forests

The corresponding composition results can both be proved by a (mostly)
straightforward induction on the quantifier-rank.

Proposition 1.11. Let L be one of the above logics, let Lm be the corresponding
fragment of restricted quantifier-rank, and let τ = ⟨δ(x), (φR(x̄))R∈Γ⟩ be
a simple Lk -interpretation. For every formula φ ∈ Lm , there exists a formula
φτ ∈ Lm+k such that

τ(A) ⊧ φ iff A ⊧ φτ , for all structures A .

Theorem 1.12. Let L be one of the above variants of MSO or CMSO, and
let Lm be the corresponding fragment of restricted quantifier-rank. For every
formula φ ∈ Lm , there exist finitely many formulae χ0 , . . . , χn−1 ∈ Lm and
ψ ∈ L such that

∑
i∈I Ai ⊧ φ iff ⟨I, ⟦χ0⟧, . . . , ⟦χn−1⟧⟩ ⊧ ψ ,

where ⟦χ⟧ ∶= { i ∈ I ∣ Ai ⊧ χ }.
2. Finite Fore#+

Before turning to the general case, let us take a brief look a languages of finite
forests.

Definition 2.1. We denote by FfinA the set of all finite forests in F×A. ⌟
Definition 2.2. Let A be an Ffin-algebra.
(a)The horizontal semigroup associated with A is the structure ⟨A∅ ,+⟩

where the horizontal product + is defined by

a + b ∶= π(s) , where s is the forest consisting of the two trees
sing(a) and sing(b) (in this order).

(b) The vertical semigroup associated with A is the structure ⟨A{x} , ⋅ ⟩
(for some fixed variable x ∈ X) where the vertical product + is defined by

a ⋅ b ∶= π(s) , where s is the tree consisting of a root labelled a and
a leaf labelled b. ⌟

263

V. Trees

Proposition 2.3.
(a) Every finitary Ffin-algebra isMSO[≤so]-definable.
(b) Every finitary Ffin-algebra with a commutative horizontal semigroup is

CMSO[≤pf]-definable.
(c) Every finitary Ffin-algebra whose horizontal semigroup is commutative and

aperiodic isMSO[≤pf]-definable.
Proof. (a) Let A be finitary, C ⊆ A a finite set of generators, and c ∈ Aξ . We
have to construct a formula φc such that

s ⊧ φc iff π(s) = c , for s ∈ Ffin
ξ C .

The formula φc guesses sets (Za)a such that
Za ∶= { v ∈ dom(s) ∣ η(s∣v) = a } , for a ∈ ⋃

ζ⊆ξAζ ,

and then it checks that these guesses are correct. For a finite forest s we can
do so bottom-up starting at the leaves. Let v be a vertex with successors
u0 , . . . , um−1 and label s(v) = a. Suppose that u i ∈ Zb i . Then we have to
check that v ∈ Za(b0+⋅⋅⋅+bm−1). To do so, we have to be able to evaluate the
sum b0 + ⋅ ⋅ ⋅ + bm−1. Since ⟨⋃ζ⊆ξ Aζ ,+⟩ is a finite semigroup, there exist
MSO-formula (ϑa)a such that

⟨{u0 , . . . , um−1}, ≤so , Z̄⟩ ⊧ ϑa iff b0 + ⋅ ⋅ ⋅ + bm−1 = a .
Consequently, we can set

φc ∶= ∃Z̄[Zc(root) ∧ ∀x[⋀
a
Zax ↔ ⋁

b ,d ∶b(d)=a(Pbx ∧ ϑ(x)d)]] ,
where ϑ(x) denotes the relativisation of ϑ to the set of successors of x.
(b)We can use the same construction as in (a), we only have to modify

the formulae ϑa . Since horizontal composition is commutative, there exist
constants k and p such that every sum

b0 + ⋅ ⋅ ⋅ + bm−1

264

3. Countable chains

is uniquely determined by the values

min{na , k} and na mod p , for every a ∈ ⋃
ζ⊆ξAξ ,

where na is the number of terms equal to a. Both of these values can be
computed in CMSO.
(c) To compute a sum in a horizontal semigroup that is commutative and

aperiodic, it is sufficient to know only the values min{na , k}, which can be
computed inMSO

Exercise 2.1. Anti-chain logic is the variant ofMSO where quantification is
restricted to anti-chains. Anti-chain logic with counting is the corresponding
restriction of CMSO.
(a) Let Σ be an alphabet where every symbol has arity 0 or 2. Prove that

every regular language K ⊆ TfinΣ can be defined in anti-chain logic.
(b) Let K ⊆ FfinΣ be a regular language of forests where no vertex has

exactly one successor. Prove that K can be defined in anti-chain logic with
counting. ⌟
3. Countable Chain+

Another simple example are countable linear orders, which can be seen as
forests of height 0, i.e., forests where all labels have arity 0.

Definition 3.1. (a) We denote byC ∶ D → D the functor mapping a set A
to the set CA of all countable A-labelled linear orders. Formally, C is the
polynomial functor

CX ∶= ∑
I
Xdom(I) ,

where I ranges over all countable linear orders.
(b)The flattening operation flat ∶ CC⇒ C is just the ordered sum, which

is defined as follows. The flattening of S ∈ CCA is the linear order with

265

V. Trees

domain

dom(flat(S)) ∶= ∑
i∈dom(S)dom(S(i))= { ⟨i , k⟩ ∣ i ∈ dom(S) , k ∈ dom(S(i)) }

and ordering

⟨i , k⟩ ≤ ⟨ j, l⟩ : iff i < j or i = j and k ≤ l .
(c)The singleton operation sing ∶ Id⇒ Cmaps an element a ∈ A to the

linear order sing(a) with a single element that is labelled a. ⌟
Remark. As already remarked above, we can regardC as a submonad of F
if we identify Set with Set{∅}. Then an alphabet Σ ∈ Set corresponds to a{∅}-sorted set Σ′ with Σ′∅ = Σ. Furthermore, every vertex of a forest s ∈ FΣ′
has sort ∅ and must therefore be a leaf. Consequently, s is just the linear
order formed by its countably many roots. Thus, we obtain an embedding
C ⇒ F∣{∅}. Furthermore, this embedding preserves the flattening and
singleton operations, that is, it is a morphism of monads.
In light of this correspondence, we regard the product of aC-algebra as

the horizontal sum of an F∣{∅}-algebra. Consequently, we will use additive
notation for this product and call it a sum. ⌟
Example. The set W ⊆ CA of all A-labelled well-orders is recognisable
by the finiteC-algebra with elements {0, 1} and the infimum operation as
multiplication. Then W = φ−1(1) where φ maps well-orders to 1 and all
other orders to 0. ⌟
Exercise 3.1. Prove that ⟨C, flat, sing⟩ forms a monad. ⌟
To show that monadic second-order logic over countable linear orders

fits into our algebraic framework, we have to check that it is varietal, C-
compositional, and that syntactic algebras exist.

Definition 3.2. For themonadC, we use the obvious variant ofMSO that en-
codes a linear order s ∈ CA as a structure of the form ⟨dom(s), ≤, (Pa)a∈A⟩

266

3. Countable chains

where the unary predicates Pa ∶= s−1(a) contain the positions labelled by
the elements of A. ⌟
Remark. Using the above identification ofCwith a submonad of F∣{∅}, this
version ofMSO corresponds to the variantMSO[≤so] defined above. ⌟

Compositionality is straightforward.

Theorem 3.3. MSO is strongly C-compositional.

Proof. First note that, for s ∈ CCΣ, we can write

flat(s) ≅ τ(∑
i∈dom(s) s(i))

as a generalised sum follows by a quantifier-free interpretation τ. By the
corresponding composition theorems (Proposition 1.11 andTheorem 1.12)
it therefore follows that, given anMSO-formula φ of quantifier-rank m, we
can compute anMSO-formula ψ such that

∑
i∈dom(s) s(i) ⊧ φ iff Cθ∆m(s) ⊧ ψ ,

where ∆m is the set ofMSO-formulae of quantifier-rank at most m.

Corollary 3.4. MSO is varietal and C-compositional.

Proof. By Proposition IV.4.11.

Next we turn to syntactic algebras. The proof utilises the submonadCreg

of all linear orders that are ‘regular’ in the following sense.

Definition 3.5. Let A be a set.
(a)The shuffle of A is the linear order s ∈ CAwith domainQ such that

for all x < y and all a ∈ A there is some x < z < y with s(z) = a .
For finite setsA = {a0 , . . . , an−1}, we denote the shuffle by a0 ∐∐ ⋅ ⋅ ⋅∐∐ an−1.
(b) A Läuchli-Leonard operation over the set A is an operation onCA of

one of the following forms:

267

V. Trees

◆ constants a, for a ∈ A.◆ a binary operation s + t, for s, t ∈ CA,◆ two unary operations s × ω and s × ωop, for s ∈ CA,◆ an n-ary operation s0 ∐∐ ⋅ ⋅ ⋅ ∐∐ sn−1, for s0 , . . . , sn−1 ∈ CA and n < ω.
a ∈ A denotes the singleton order sing(a) ; s+ t is the ordered sum of s and t ;
s × ω the ordered sum of ω copies of s arranged in an infinite increasing
chain; and s × ωop the ordered sum of ω copies of s arranged in an infinite
decreasing chain.
(c) A countable linear order s is regular if it is the value of a finite term

of Läuchli-Leonard operations. We denote the set of all such orders by
CregA. ⌟
Remark. The shuffle of a countable set A exists and it is unique up to iso-
morphism. Uniqueness follows by a straightforward back-and-forth argu-
ment. For existence, fix an enumeration (an)n<ω (possibly with duplicates)
of A and set

Q ∶= (0 + 1)∗1 .
Note thatQ equipped with the lexicographic ordering is a dense linear order.
We define a labelling s ∶ Q → A by

s(0n1) ∶= an and s(w10n1) ∶= an , for n < ω and w ∈ {0, 1}∗ .
Then s is the shuffle of A. ⌟
Lemma 3.6. Let S be a finite C-algebra, C ⊆ S, and let K ⊆ CC the least set
satisfying the following conditions.◆ C ⊆ K.◆ u, v ∈ K implies u + v ∈ K.◆ If w0 ,w1 , . . . ∈ K with π(w0) = π(w1) = . . . , then w0 + w1 + ⋯ ∈ K

and⋯+ w1 + w0 ∈ K.◆ If s ∈ CK such that Cπ(s) is the shuffle of a finite set, then flat(s) ∈ K.

268

3. Countable chains

Then CC ⊆ K.

Proof. Let us call a term s ∈ CC decomposable if every non-empty factor of s
belongs to K. We will show that every s ∈ CC is decomposable. Consider
the following relation on dom(s).

x ∼ y : iff x = y or the factor corresponding to the interval(x , y] or (y, x] is decomposable.
Clearly, ∼ is reflexive and symmetric. For transitivity, suppose that x ∼

y ∼ z where w.l.o.g. x < y < z. Every factor w in the interval (x , z] can be
factorised as w = uv where u lies in the interval (x , y] and v in (y, z]. By
assumption, u and v belong to K (if they are non-empty). This implies that
w = uv ∈ K, as desired.
Thus ∼ is an equivalence relation. Let H be a ∼-class and let w be the

corresponding factor of s. We claim that w is decomposable. IfH = ∅, this
is trivial. Otherwise, fix some index x ∈ H and set

H0 ∶= { y ∈ H ∣ y ≤ x } and H1 ∶= { y ∈ H ∣ y > x } .
Let w0 and w1 be the factors corresponding to these two sets. As we have
already proved above that decomposable factors are closed under binary
concatenation, it is sufficient to show that w0 and w1 are decomposable.

IfH1 has a greatest element z, then x ∼ z implies thatw1 is decomposable.
Otherwise, since H is countable, we can fix an increasing sequence x =
z0 < z1 < . . . of positions in H that is not bounded in H. Then z i ∼ z j
implies that every factor u i j corresponding to an interval (z i , z j] with i < j
is decomposable. By the Theorem of Ramsey, there exist an infinite set
I ⊆ ω such that π(u i j) = π(u i′ j′) for all indices i < j and i′ < j′ in I. It
follows that every non-empty factor v of w1 can be factorised as v′v′′ where
v′ corresponds to (y, z i] and v′′ to (z i , y′], for some index i ∈ I and for
some positions y and y′. By the closure properties of K, this implies that
v′ , v′′ ∈ K (if they are non-empty). Hence, v ∈ K as well.

The proof for w0 is analogous.

269

V. Trees

To conclude the proof, let ŝ be the order obtained from s by replacing
every ∼-class I with corresponding factor w by the single element π(w). If
ŝ is a singleton, it follows that s is decomposable and we are done.
Hence, suppose otherwise. If ŝ would contain two positions x < y with

no position in between, the concatenation of the corresponding ∼-classes
would correspond to a decomposable factor (since decomposable factors
are closed under binary concatenation). Consequently, ŝ is an infinite dense
linear order. To obtain the desired contradiction it is sufficient to show that
some interval of ŝ is a shuffle (since then the union of the corresponding∼-classes would be decomposable again).
We prove the claim by the number of elements a ∈ S appearing as a label

in ŝ. If there is such an element a that does not appear in some infinite
factor w of ŝ, the claim follows by applying the inductive hypothesis to w.
Hence, we may assume that every label that appears in ŝ appears in every
infinite factor of ŝ. Consequently, ŝ is the shuffle of these labels.

Theorem 3.7. The inclusion Creg ⇒ C is dense over the class of all finite
C-algebras.
Proof. Let s ∈ CC. Then s ∈ K, where K is the set from Lemma 3.6. By the
inductive definition of K, we can construct a Läuchli-Leonard term s○ with
π(s○) = π(s).
Corollary 3.8. Every language K ⊆ CΣ over a finite alphabet has a syntactic
algebra.

The goal of the remainder of this section is to prove that the MSO-
definable languages are exactly those whose syntactic algebra is finite. The
hard part of the proof consists in showing that the product of every finite
C-algebra isMSO-definable. To do so, we use a variant of regular expressions
for languages over C. These expressions are obtained by generalising the
Läuchli-Leonard operations from trees to sets of trees.

Definition 3.9. (a) For an n-ary Läuchli-Leonard operation σ and languages
K0 , . . . ,Kn−1 ⊆ CΣ we set

σ(K̄) ∶= { σ(s̄) ∣ s i ∈ K i } .

270

3. Countable chains

(b)The iteration of a language K ⊆ CΣ is the set

K+ ∶= { s0 + ⋅ ⋅ ⋅ + sn−1 ∣ 0 < n < ω, s0 , . . . , sn−1 ∈ K } .
(c) A regular expression is a finite term using◆ constants for all singleton languages {sing(a)} with a ∈ Σ,◆ boolean operations K ∪ L, K ∩ L,CΣ ∖K,◆ the Läuchli-Leonard operationsK+L,K×ω,K×ωop,K0∐∐⋅ ⋅ ⋅∐∐Kn−1,◆ iteration K+. ⌟
We start by noting that the above operations are allMSO-definable.

Lemma 3.10. The class ofMSO-definable languages is closed under all operations
from the preceding definition.

Proof. Closure under boolean operations is trivial and every language of the
form {sing(a)} is clearlyMSO-definable.

For concatenation, note that we can check whether a given chain s belongs
toK+L by guessing a partition of P∪Q = dom(s) such that P is downwards
closed, Q is upwards closed, and the restriction of s to P belongs toK, while
the restriction to Q belongs to L. Each of these properties can be expressed
inMSO, provided that K and L areMSO-definable.

For the remaining operations, we need to encode an arbitrary factorisation
of a chain s by a single set P ⊆ dom(s). We use the fact that every subset
P ⊆ dom(s) induces an equivalence relation on dom(s) by

x ∼P y : iff x ∈ P⇔ z ∈ P , for all x ≤ z ≤ y .
Hence, we can check whether s ∈ K+ by guessing a subset P ⊆ dom(s) such
that there are only finitely many ∼P-classes and every ∼P-class belongs to K.
Similarly, s ∈ K × ω, if the ∼P-classes form an infinite increasing chain of
length ω and each class belongs toK. Similarly, forK×ωop. Finally, we have
s ∈ K0 ∐∐ ⋅ ⋅ ⋅ ∐∐Kn−1 if there is a set P such that, for every pair of ∼P-classes
I < J and every i < n, there is some ∼P-classH with I < H < J that belongs
to K i .

271

V. Trees

Themain part of the proof relies on algebraic tools from semigroup theory.
The corresponding adaptation toC-algebras looks as follows.

Definition 3.11. Let S be aC-algebra. For a, b ∈ S, we define the following
Green’s relations.

a ≤L b : iff a = s + b , for some s ∈ S ,
a ≤R b : iff a = b + s , for some s ∈ S ,
a ≤J b : iff a = s + b + t , for some s, t ∈ S .

Let ≡L, ≡R, and ≡J be the corresponding equivalence relations and set
≡H ∶= ≡L ∩ ≡R .

We call the corresponding equivalence classes the L-class, R-class, J-class, and
H-class of the given element.
(b) A chain s ∈ CS is J-homogeneous if there exists a J-class J such that

s ∈ C J and π(s) ∈ J. ⌟
Below we need the following standard facts about these relations.

Lemma 3.12. Let S be a finite C-algebra.
(a) (≡L ○ ≡R) = ≡J = (≡R ○ ≡L)
(b) a ≡J ab ≡J b implies a ≡R ab and ab ≡L b.
(c) Every H-class H containing an idempotent element forms a group (with

respect to the semigroup-multiplication induced by the product of S).

We can use Green’s relations to compute products in aC-algebra as fol-
lows.

Lemma 3.13. Let S be a finite C-algebra, J ⊆ S a J-class containing an idem-
potent e ∈ J, and let s ∈ C J be a J-homogeneous chain of order type ω. Then

π(s) = a + e × ω ,

where the element a ∈ S can be computed given e and the R-class of the first
letter of s.

272

3. Countable chains

Proof. Let b ∶= s(0) be the first letter of s and let s′ be the suffix such that
s = b + s′. Since b ≡J e, we have b = a + e + c for some a, c ∈ J. We claim
that we can compute a from e and the R-class of b. Hence, suppose that
b ≡R b′, for some other element b′ ≡J e. Then b′ = b + x, for some x ∈ S,
and we have

b′ = b + x = a + e + c + x ,

as desired. To conclude the proof, it is therefore sufficient to show that
e + c + s′ = eω .
Set t ∶= c + s′. By the Theorem of Ramsey, there exists a factorisation

t = u0 + u1 +⋯ and an element f ∈ S such that
π(u i + ⋅ ⋅ ⋅ + u j) = f , for all 0 < i ≤ j < ω .

In particular, we have

f + f = π(u1) + π(u2) = π(u1 + u2) = f .

Hence, f is idempotent. Since f is the product of a factor of a J-homogeneous
chain, we furthermore have f ∈ J. Setting b ∶= π(u0), it follows that

π(t) = b + f + f +⋯ = b + f × ω .

As f ≡J e, we have f = x + e + y = x + e + e + y, for some x , y ∈ S.
Consequently,

π(e + t) = e + b + f × ω= e + b + (x + e + e + y) × ω= e + b + x + e + (e + y + x + e) × ω .

Setting g ∶= e + b + x + e and h ∶= e + y + x + e, we have g ≡H e ≡H h. In
particular, the H-classH of g and h contains an idempotent, which implies
by Lemma 3.12 (c) that H forms a group with neutral element e. Choose
m, n < ω such that g × m = e and h × n = e. Then

g × ω = (g × m) × ω = e × ω and h × ω = (h × m) × ω = e × ω .

273

V. Trees

Consequently,

π(e + t) = g + h × ω = g + g × ω = g × ω = e × ω .

Lemma 3.14. Let S be a finite C-algebra and let F ⊆ S be upwards closed with
respect to the order ≤J.
(a) The function mapping a chain s ∈ π−1[F] to the R-class of π(s) isMSO-

definable.
(b) The function mapping a chain s ∈ π−1[F] to π(s) isMSO-definable.
(c) The language π−1[F] isMSO-definable.

Proof. We prove all three claims by a simultaneous induction on the number
of J-classes contained in F. Fix a minimal J-class J ⊆ F, set

F0 ∶= F ∖ J , K ∶= π−1[F0] , and L ∶= π−1[J] .
Furthermore, we define

K+ ∶= K ∪K × ω ∪K × ωop ∪ ((K ∪ J) + (K ∪ J)) .
Note thatK,K+, andK∪L are all closed under factors. Furthermore, given
an increasing sequence (u i)i of prefixes of some chain s with u i ∈ K, the
union of all u i belongs to K × ω ⊆ K+.
We call a prefix u of s ∈ π−1[F] an ω-prefix if u is either empty or an

infinite sum of the form u0 + u1 + ⋯ with u i ∈ L. Similarly, an ωop-suffix
of s is a suffix of the form⋯+ v1 + v0 with v i ∈ L.
Our proof consists of a simultaneous induction establishing not only

(a), (b), and (c), but also the following three claims.

(i) The function mapping s ∈ K+ to π(s) isMSO-definable.

(ii) A union of ω-prefixes of some chain in π−1[F] is again an ω-prefix.
(iii) We can factorise every s ∈ π−1[F] as

s = u + s0 + ⋅ ⋅ ⋅ + sn−1 + v ,

where s0 , . . . , sn−1 ∈ K+, u is an ω-prefix of s, and v is an ωop-suffix.

274

3. Countable chains

(i) Given s ∈ K+, we can use part (c) of the inductive hypothesis to define
a factorisation of s belonging to one of the languages

K , K × ω , K × ωop , or ((K ∪ J) + (K ∪ J)) .
(Such a factorisation can be encoded as a single set variable consisting of
the union of every other interval in the decomposition.) By part (b) of the
inductive hypothesis, we can define the product of each factor. Consequently,
we can compute π(s) with the help of Lemma 3.10.

(ii) Let w be a union of ω-prefixes of s ∈ π−1[F]. For each position x ∈
dom(w), we can find an ω-prefix u0 + u1 +⋯ containing x. If x ∈ dom(u i),
then u i+1 is a chain in L that lies entirely to the right of x. Consequently,
we can find a cofinal sequence v0 , v1 , . . . of disjoint factors of w that all
belong to L and such that v i lies to the left of v i+1. Enlarging these factors,
if necessary, we obtain a decomposition w = v0 + v1 +⋯ ∈ L × ω.

(iii) Let s ∈ π−1[F]. By (ii), s has a longest ω-prefix u. Similarly, it has a
longest ωop-suffix v that is disjoint from u. Thus, we can write s = u+ t0 + v
and it remains to show that we can decompose t0 into a finite sum of chains
inK+. To do so, we construct a sequence s0 , s1 , . . . ∈ K+ and chains t1 , t2 , . . .
inductively as follows.

Suppose that we have ready defined t i . If t i has a prefix s i ∈ K+∖K, we fix
one such prefix and we choose for t i+1 the suffix of t i such that t i = s i + t i+1.
Otherwise, let s i be the union of all prefixes of t i that belong to K and let
t i+1 be the remainder of t i .
To prove that our construction terminates, we will show below that every

chain s i is non-empty. Then it follows that, after finitely many steps, we
must arrive at a situation where t i = 0 since, otherwise, t0 had a prefix(s0 + s1)+ (s2 + s3)+⋯ with s i + s i+1 ∈ L. Hence, s would have an ω-prefix
u + s0 + s1 +⋯ that is longer than u. A contradiction.

It remains to pove the claim. If s i ∈ K+∖K, we are done as the empty chain
belongs to K. Otherwise, t i+1 cannot have a least element since by adding
such an element to s i we would obtain a word inK+ ∖K. A contradiction to
our choice of s i . Hence, we can fix a factorisation t i+1 = ⋅ ⋅ ⋅ + w2 + w1 + w0
of order type ωop. Only finitely many of the factors w j belong to L since,

275

V. Trees

otherwise, t i+1 had anωop-suffix v′. Hence, v′+v would be anωop-suffix of s
disjoint from u. A contradiction to our choice of v. Consequently, t i+1 has
a prefix that belongs to K × ωop ⊆ K+. In particular, it follows that s i is
non-empty since, otherwise, we could have chosen s i = ⋅ ⋅ ⋅ + w2 + w1.
(a) Given s ∈ π−1[F], we can compute the R-class of π(s) as follows. If

s ∈ K, we can use the inductive hypothesis. Otherwise, let s0 be the union
of all prefixes p of s that belong to K, and let s1 be the suffix of s such that
s = s0 + s1. Then s0 ∈ K+. Set a0 ∶= π(s0) and a1 ∶= π(s1). If a0 ∈ J
then a0 + a1 ∈ J implies, by Lemma 3.12 (b), that the R-classes of a0 and
a0 + a1 = π(s) coincide. By (i), a0 is definable. Hence, so is its R-class.
It remains to consider the case where a0 ∈ F0. First, suppose that s1 has

a least element. Let c be its label. By maximality of s0, we have a0 + c ∈ J.
As above, this implies that the R-classes of a0 + c and π(s) coincide. Since
a0 + c is definable, the claim follows.
Hence, we may assume that s1 does not have a least element. By the

Theorem of Ramsey, we can factorise s1 as s1 = ⋅ ⋅ ⋅ + w2 + w1 + w0 where
π(w i) = π(w j), for i , j ≠ 0. Let c be the value of this product. It follows
that s1 has a prefix with product c × ωop. As above, this implies that the
R-class of π(s) is equal to that of a0 + c × ωop. It remains to define c. If
c ∈ F0, it isMSO-definable by inductive hypothesis. Otherwise, Lemma 3.13
implies that c × ωop = e × ωop, for any idempotent e ∈ J.
(b) Given s ∈ π−1[F], let s = u + s0 + ⋅ ⋅ ⋅ + sn−1 + v be the factorisa-

tion from (ii). Note that, by (a), we know the R-class of (the first factor
of) π(u) and we can use the dual statement to define the L-class of π(v). By
Lemma 3.13 (a), this is sufficient to compute π(u) and π(v). Furthermore,
we can compute the product π(s0) + ⋅ ⋅ ⋅ + π(sn−1) in MSO since we can
obtain π(s i) via (i) andMSO allows us to evaluate finite products in a finite
semigroup.

(c) Note that

π−1[F] = CS ∖ π−1[I] where I ∶= π−1[S ∖ F] .
Hence, it is sufficient to show that π−1[I] isMSO-definable. To do so we
introduce the following concept. Let N = (Na)a∈F be a family of sets

276

3. Countable chains

Na ⊆ CS.We call a chainw ∈ CS N-critical if it satisfies one of the following
conditions.◆ w = sing(a), for some a ∉ F.◆ w = u + v with u ∈ Na , v ∈ Nb with a + b ∉ F.◆ w = u0 + u1 +⋯ with u0 , u1 , ⋅ ⋅ ⋅ ∈ Na and a × ω ∉ F.◆ w = ⋯ + u1 + u0 with u0 , u1 , ⋅ ⋅ ⋅ ∈ Na and a × ωop ∉ F.◆ w ∈ Na0 ∐∐⋯ ∐∐Nan−1 with a0 ∐∐⋯ ∐∐ an−1 ∉ F.
Below we will prove the following claim: if N is a family of sets with

π−1(a) ⊆ Na ⊆ π−1[I ∪ {a}] , for all a ∈ F ,

then

s ∈ π−1[I] iff s has an N-critical factor.

Before doing so, let us show how this implies (c). For every a ∈ F, we
obtain from (b) anMSO-formula φa such that

s ⊧ φa iff π(s) = a , for s ∈ π−1[F] .
Let Na be the language defined by φa . Then we can use Lemma 3.10 to
construct anMSO-formula expressing the existence of an N-critical factor.
By the above claim, this is equivalent to s ∈ π−1[I] since we have

π−1(a) ⊆ Na ⊆ π−1[{a} ∪ I] .
It therefore remains to prove the claim.(⇐)Note that I is downwards closed with respect to ≤J. Hence, if s has
an N-critical factor w, then w ∈ π−1[I] implies s ∈ π−1[I].(⇒) It is sufficient to show that the language

M ∶= { s ∈ CS ∣ π(s) ∈ F or s has an N-critical factor}
coincides withCS. We will do so using Lemma 3.6. To apply the lemma, we
have to check several closure properties ofM. Since the arguments involved
are all identical, we will only prove closure under binary sums.

277

V. Trees

For a contradiction, suppose that s, t ∈ M but s + t ∉ M. Then s + t
does not have an N-critical factor. Hence, neither do s and t. It follows that
s, t ∈ π−1[F]. Hence, s ∈ Na and t ∈ Nb , for some a, b ∈ F. But s + t ∉ M
implies that a + b = π(s + t) ∈ S ∖ F = I. Hence, it follows by the second
condition above that s + t has an N-critical factor. A contradiction.

Theorem 3.15. A C-algebra S isMSO-definable if, and only if, it is finite.

Proof. (⇒) is trivial since, by definition, every MSO-definable algebra is
finitary. AsC-algebras have only one sort, this is the same as being finite.(⇐) Fix a ∈ S and let J ∶= [a]J be the J-class of a. By Lemma 3.14 (c),
there exists anMSO-formula ψ J defining the language K J ∶= π−1[J]. Fur-
thermore, by part (b) of that lemma, there exists anMSO-formula φa de-
fining π(s), for s ∈ K J . It follows that the conjunction ψ J ∧ φa defines
π−1(a).
Corollary 3.16. A language K ⊆ CΣ isMSO-definable if, and only if, it has a
finite syntactic algebra.

4. Counterexample+

Before continuing, let us give several counterexamples showing that, for
infinite trees,MSO-definable algebras are more complicated than one might
hope. We start with an example showing that not every finitary T×-algebra
isMSO-definable.

Definition 4.1. A tree t ∈ T×Σ is antiregular if it is infinite and no two
subtrees of t are isomorphic. We call t densely antiregular if every subtree of t
has an antiregular subtree. ⌟

First, note that antiregular trees do exist.

Lemma 4.2. Let Σ be an alphabet containing two elements a and b of arity 2.
There exists an antiregular tree in T∅Σ.

278

4. Counterexamples

Proof. Let P ⊆ {0, 1}∗ be the language (of finite words) of all palindromes.
We claim that the tree t ∈ T{a, b} defined by

dom(t) = {0, 1}∗ and t(v) ∶= ⎧⎪⎪⎨⎪⎪⎩
a if v ∈ P ,
b otherwise ,

is antiregular.

Let s and s′ be two subtrees of t rooted at u and u′, respectively. Let ũ be
themirror image of u.Then uũ ∈ L and u′ũ ∉ L, which implies that s(ũ) = a
and s′(ũ) = b. In particular, s and s′ are not isomorphic.

Theorem 4.3. Suppose thatD = Pos and let Σ ∶= {a, b} be an alphabet with
two elements, both of arity 2. The language L of all densely antiregular trees
over Σ is not regular, but it can be recognised by a finitary T×-algebra.

Proof. To show thatL is not regular, note thatL is non-empty by Lemma 4.2.
IfLwere regular, it would therefore also contain some regular tree. As regular
trees cannot be densely antiregular, this is not possible.

Hence, it remains to construct a finitary T×-algebra recognising L. For
ξ ∈ Ξ, let ∆ξ be the set of all finite trees in TξΣ. As Σ contains only binary
elements, every leaf of a tree t ∈ ∆ξ must be labelled by a variable. Hence,
t has at most ∣ξ∣ leaves and, therefore, at most ∣ξ∣ − 1 internal vertices. This
implies that ∆ξ is a finite set.

The domains of the desired algebra A are

Aξ ∶= ∆ξ ⊍ {�, ∗} , for ξ ∈ Ξ ,

which we order such that � is the least element and all other elements are
incomparable. To give a bit of intuition for the definition of the product,
let us first describe the morphism η ∶ T×Σ → A that will recognise L. For

279

V. Trees

t ∈ T×ξ Σ, we set

η(t) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t if t ∈ ∆ξ ,� if t has a subtree without variables that is not densely
antiregular ,

? every subtree of t has a variable and some variable
occurs at least twice ,∗ t has a subtree without variables and every such subtree
is densely antiregular .

Then L = η−1[∗]. Hence, it remains to equip Awith a product that makes
η into a morphism.
We define the product as follows. Let us call a tree s ∈ T×A good if every

subtree of s contains some vertex v such that t(v) = ∗, or such that t∣v ∈ T×∆
and flat(t∣v) is densely antiregular. For t ∈ T×ξA, we then set

π(t) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� if t contains the label �,� if t has a subtree without variables that is not
good,∗ if t has a subtree without variables and every such
subtree is good,∗ if t contains the label ∗ and every subtree of t has
a variable,

? if t ∈ T×(∆ + {?}), t contains the label ?, and
every subtree of t has a variable,

? if t ∈ T×∆, every subtree of t has a variable, and
some variable appears more than once in t,

flat(t) if t ∈ T×∆ is finite and every variable appears
exactly once.

280

4. Counterexamples

It is straightforward (but tedious) to check that these cases cover all possibil-
ities, that the function π is monotone, and that is satisfies

η ○ flat = π ○T×η .
Consequently, it follows by Lemma I.5.5 that A ∶= ⟨A, π⟩ is a T×-algebra
and η ∶ T×Σ → A an T×-morphism.

Definition 4.4. We call the algebra A from the above proof the Bojańczyk-
Klin algebra. ⌟
The next two examples concern closure properties ofMSO-definable al-

gebras. Our definition ofR-varieties was complicated by the fact that the
usual algebraic operations might produce algebras that are not finite gener-
ated. Here we present two examples showing that a subalgebra or a finite
product of anMSO-definable T×-algebra need not be finitely generated.
Let us start with subalgebras. We use a result about so-called clones. A

clone C is a set of functions (of various arities) over some fixed set X that
contains all projections and that is closed under composition, i.e., if C con-
tains f ∶ Xn → X and g0 , . . . , gn−1 ∶ Xm → X, it also contains the m-ary
function

x̄ ↦ f (g0(x̄), . . . , gn−1(x̄)) .
Note that this composition also makes sense if the functions g0 , . . . , gn−1
have different arities since we can make their arities equal by composing
them by suitable projections (which are in C by assumption).

Theorem 4.5 (Yanov, Muchnik). There are uncountably many clones on a
three element set.

As there are only countably many finitely generated clones, it follows in
particular that there exists some clone C that is not finitely generated. We
will use it to construct the desired T×-algebra.
Example. Let [3] = {0, 1, 2} be a three element set and let Aξ be the set of
all functions [3]ξ → [3] together with a special error value �. We turn

281

V. Trees

A ∶= (Aξ)ξ into a T×-algebra by defining the following multiplication
π ∶ T×A→ A. For a finite tree t ∈ T×A that does not contain the symbol �,
we compute the product π(t) by composing all the functions that label the
vertices of t. For all other trees, we set π(t) ∶= �. The resulting structure
A = ⟨A, π⟩ forms a T×-algebra which is finitely generated. (To see the latter,
one can, e.g., represent every 3-valued function in a similar way as boolean
functions can be written in disjunctive normal form.) Furthermore, A is
MSO-definable since, when evaluating a tree t an automaton is able to first
check that t is finite and does not contain �, and then evaluate t bottom up by
remembering where each (of the bounded number) of the input arguments
is mapped to.
To conclude the construction recall that we have seen above that there

exists a clone on [3] that is not finitely generated. LetC ⊆ A be the subalgebra
ofA consisting of the elements of that clone.Then C is not finitely generated.⌟
Example. Our counterexample for products looks as follows. For simplicity,
we will use T-algebras instead of T×-algebras. We start with a T-algebra B
where the elements of sort ξ are all finite sequences in ξ∗ that contain
every variable at most once. We define the product as follows. Suppose
we have sequences α ∈ Bξ and β̄ ∈ (Bζ)ξ where the βx are disjoint. If
α = ⟨x i0 , . . . , x ik−1⟩, we set

α(β̄) ∶= βx i0
. . . βx ik−1 ,

i.e., we substitute βx for x in α. For a finite tree t ∈ TBξ , we can now
inductively define

π(t) = α(π(s0), . . . , π(sm−1)) ,
where α ∶= t(⟨⟩) is the label at the root and s0 , . . . , sm−1 are the attached
subtrees. (With the convention that π(s i) = ⟨x⟩ in case that s i = x is a
single variable.)
We can extend this definition to infinite trees as follows. If t does not

contain variables, we set π(t) = ⟨⟩. Otherwise, we choose a finite prefix s of t

282

4. Counterexamples

that contains all the variables (here we need the fact that t ∈ TB), separately
compute the products of s and of the attached subtrees, and thenmultiply the
results as above. Note that this definition ensures that π(t) is the sequence
of all variables appearing in t, but not necessarily in the order they appear in.

Again it is straightforward to check that B is a T-algebra. Furthermore,
note that by suitably choosing the ordering of the variables of t we can write
every sequence α ∈ Bξ as the product of a tree t where all internal vertices are
labelled by ⟨x⟩ or ⟨x , y⟩, for fixed x , y ∈ X. Hence, B is finitely generated
by three elements ⟨⟩, ⟨x⟩, ⟨x , y⟩.
Furthermore, B is MSO-definable since, given an element α ∈ Bξ and

a finite set of generators, an automaton can determine whether an input
tree evaluates to α since all intermediate results are sequences of length at
most ∣ξ∣.
We claim that the product B × B is not finitely generated. For a con-

tradiction suppose otherwise and fix a finite set C of generators. Choose
a number m that is greater than the arity of all elements in C and set
ξ ∶= {x0 , . . . , x2m−1}. We consider the element ⟨α, β⟩ ∈ Bξ × Bξ where

α ∶= ⟨x0 , . . . , x2m−1⟩
β ∶= ⟨xm , x0 , xm+1 , x1 , . . . , xm+i , x i , . . . , x2m−1 , xm−1⟩ .

By assumption, there is a tree t ∈ TC with product ⟨α, β⟩. Let ⟨γ, δ⟩ be the
label at the root of t and let s0 , . . . , sn−1 be the subtrees attached to it. (For
simplicity, we assume that n > 1. Otherwise our proof needs to be slightly
modified.) By choice of m, there is some subtree s i that contains at least two
variables. Let σ , τ ∶ [n] → [n] be the permutations such that

γ = ⟨xσ(0) , . . . , xσ(n−1)⟩ and δ = ⟨xτ(0) , . . . , xτ(n−1)⟩ ,
and let p ∶ B ×B→ B be the projection to the first component. By looking

283

V. Trees

at the first components, we see that

π(Tp(sσ(0))) . . . π(Tp(sσ(n−1)))= γ(π(Tp(s0)), . . . , π(Tp(sn−1)))= α= ⟨x0 , . . . , x2m−1⟩ .
Consequently, there exist numbers k < l such that the term s i contains the
variables xk , xk+1 , . . . , x l−1. By choice of i, we have l ≥ k + 2.

Looking at the second components, we see that βmust have some segment
of length l − k ≥ 2 which contains the variables xk , xk+1 , . . . , x l−1 (in any
order). But the only segments of β of this form are those of length 1 and the
one of length 2m. A contradiction. ⌟
5. MSOMSOMSO-De[nable Algebra+

The traditional tool to study the expressive power of monadic second-order
logic over forests are automata. As our algebraic theory is not quite developed
enough to replace all automata-based techniques, let us briefly recall some
material on automata that we will need below.

Definition 5.1. (a) A forest automaton is a tupleA = ⟨Q , Σ, ξ, σ , ∆, q0 ,Ω⟩
where

◆ ⟨Q , σ⟩ forms a finiteC-algebra whose elements are called states,◆ Σ is the input alphabet,◆ ξ ∈ Ξ the input sort,◆ q0 ∈ Q the initial state,◆ Ω ∶ Q → ω the priority function, and◆ ∆ = (∆ζ)ζ the transition relation where
∆ζ ⊆ Q × (Σ + ξ)ζ × Q ζ .

284

5. MSO-definable algebras

(b) A run of an automaton A on an input forest s ∈ F×ξ Σ is a function
ρ ∶ dom+(s) → Q such that, for every vertex v ∈ dom+(s),
⟨ρ(v), s(v), q̄⟩ ∈ ∆ ,

where, for each x ∈ ξ, qx ∶= σ(wx) andwx ∈ CQ is the linear order obtained
by restricting ρ to the set of x-successors of v.

(c) A run ρ is accepting if,◆ σ(w) = q0, where w ∈ CQ is the restriction of ρ to the roots of s, and◆ for every infinite branch β of s, the following parity condition is satisfied:

lim inf
n→∞ Ω(ρ(βn)) is even, where βn denotes the n-th vertex on β.

(d)The language recognised byA is the set

L(A) ∶= { s ∈ F×ξ Σ ∣ there is an accepting run ofA on s } . ⌟
Example. Let Σ = {a, b} where a and b both have arity 1, and let K ⊆ F×∅Σ
the set of all forests with at least one occurrence of the letter a.The following
automaton A = ⟨Q , Σ, ξ, σ , ∆, q0 ,Ω⟩ recognises K. We use two states
Q ∶= {0, 1} with initial state q0 ∶= 1. The input sort is ξ ∶= ∅ and the
priority function is the identity Ω(q) ∶= q. Finally, the transition relation is
defined by

∆ ∶= { ⟨1, a, q⟩ ∣ q ∈ Q }
∪ { ⟨q, c, q⟩ ∣ q ∈ Q , c ∈ {a, b}} .

To see that this automaton recognises K, consider a forest s ∈ K. We obtain
an accepting run ρ ofA on s by choosing some vertex v labelled a and setting
all states on the path from the corresponding root to v to 1, while all other
vertices get the state 0. Conversely, given an accepting run ρ on a forest s,
note that the set of vertices P ∶= ρ−1(1) is downwards closed (with respect to
the forest ordering ≤pf). Furthermore, since ρ is accepting, P is non-empty
and it does not contain an infinite branch. Consequently, P must have a
maximal element v, which implies that s(v) = a. ⌟

285

V. Trees

The behaviour of an automatonA = ⟨Q , Σ, ξ, σ , ∆, q0 ,Ω⟩ on an input
forest s ∈ F×ξ Σ can also be described by a game, called the Automaton-
Pathfinder Game. This game has two players, Automaton and Pathfinder,
where Automaton tries to prove that the given forest is accepted byA, while
Pathfinder tries to refute this claim.

The game positions for Automaton are of the form ⟨p, q⟩ or ⟨v , q⟩ where
q ∈ Q is a state, v ∈ dom(s) a vertex, and p ⊆ dom(s) is what we call a
place. By definition, a place is the set of roots of some subforest of s, that is,
p is either the set of roots of s, or the set of all x-successors of some vertex
u ∈ dom(s). The former is called the root place of s, while the latter is the
x-successor place of u. The positions for Pathfinder are either of the form⟨p, f ⟩ where p is a place and f ∶ p → Q a function, or of the form ⟨u, δ⟩
where u is a vertex and δ ∈ ∆ a transition. The starting position of the game
is ⟨r, q0⟩ where r is the root place of s and q0 the initial state.
Each round of the game proceeds in two phases. In the position ⟨p, q⟩,

Automaton first chooses a function f ∶ p → Q with σ(f) = q andPathfinder
selects a vertex u ∈ p. Then Automaton picks a transition ⟨ f (u), s(u), q̄′⟩ ∈
∆ and Pathfinder answers by choosing a variable x. The new position is⟨px , q′x⟩ where px is the set of x-successors of u and qx is the x-component
of q̄′.
The game continues until either a position is reached where the corres-

ponding player cannot make a move, in which case this player looses, or an
infinite number of rounds is played and Automaton wins if the sequence of
states occurring in the corresponding game positions satisfies the parity con-
dition. Using this game, we obtain the following description of the behaviour
of an automaton.

Lemma 5.2. LetA be an automaton and s an input forest. ThenA accepts s if,
and only if, Automaton has a winning strategy for the corresponding Automaton-
Pathfinder Game.

Below we will need the following two facts from automata theory. (There
are currently no purely algebraic proofs of these results.)

Theorem 5.3. A language K ⊆ F×ξ Σ isMSO-definable if, and only if, it can be
recognised by some automatonA.

286

5. MSO-definable algebras

Definition 5.4. A forest s ∈ F×ξ Σ is regular if, up to isomorphism, s has only
finitely many different subtrees. ⌟
Theorem 5.5. Two MSO-definable languages K, L ⊆ F×Σ are equal if, and
only if, they contain the same regular forests.

We will also have to deal with runs of automata on forests flat(s) that are
partitioned into several factors. We can decompose such a run into pieces,
one for each factor s(v). These pieces are not themselves runs since they
do not necessarily start at the starting state and at variables the transition
relation does not need to be satisfied.

Definition 5.6. LetA = ⟨Q , Σ, ξ, σ , ∆, q0 ,Ω⟩ be a forest automaton.
(a) A partial run ofA on some forest s ∈ F×ζ Σ (where ζ might be different

from ξ) is a function ρ ∶ dom+(s) → Q such that◆ ρ satisfies the transition relation

⟨ρ(v), s(v), q̄⟩ ∈ ∆
at every vertex v that is not labelled by a variable, and◆ ρ satisfies the parity condition for every infinite branch of s.

(b)The starting state of a partial run ρ is the state σ(w), where w ∈ CQ is
the restriction of ρ to the roots of the input forest s.

(c)The profile of a partial run ρ on a forest s ∈ F×ζ Σ is the tuple τ = ⟨p, Ū⟩
where p is the starting state of ρ and, for each z ∈ ζ ,Uz is the set of all pairs⟨k, q⟩ such that there exists some leaf v of s labelled z with state q ∶= ρ(v)
and such that the least priority seen along the path from the corresponding
root to v is equal to k. ⌟
It follows that, given a forest s ∈ F×F×Σ and a partial run ρ(v) on each

factor s(v) such that the states at the holes of s(v) are equal to the σ-product
of the results of the corresponding successors of u, we can compose the ρ(v)
into a single run ρ on flat(s). We will prove below that sets of profiles with
their natural composition form a F×-algebra and that the function mapping
a forest to the set of its profiles is a F×-morphism.This gives an alternative

287

V. Trees

proof that every language recognised by an automaton is recognised by a
finitary F×-algebra.

Syntati Algebra+

Once we have verified that the assumptions ofTheorem IV.4.9 are satisfied
(compositionality and the existence of syntactic algebras), it follows that the
family ofMSO-definable languages (for, say, the monad F×) corresponds to
the class ofMSO-definable F×-algebras. We start by proving the existence
of syntactic algebras.

Theorem 5.7. Let M be one of the monads T, T×, F, or F×. Then M is
essentially finitary over the class of allMSO[≤so]-definableM-algebras.

Proof. LetMregA ⊆M×A the set of all regular forests inM×A. Since every
regular forest has only finitely many different labels, this functor is finitary.
Hence, it remains to prove that the inclusion morphism Mreg ⇒ M× is
dense over the class of all finite products ofMSO-definableM×-algebras.

Let A0 , . . . ,An−1 beMSO-definable, B ⊆ A0 × ⋅ ⋅ ⋅ ×An−1, and t ∈M×B
a forest with π(t) = ā. We have to find a regular forest t○ ∈ MregB with
π(t○) = ā. Let C i ⊆ A i be a finite set of generators of Ai . Since Ai is
MSO-definable, there exists an automaton Ai recognising the preimage
π−1(a i)∩M×C i . Suppose thatQ i is the set of states ofAi ,Ω i ∶ Q i → ω its
priority function, andK i ∶= rngΩ i the set of priorities used byA. For every
b̄ ∈ B, we fix forests σi(b̄) ∈ M×C i with π(σi(b̄)) = b i , for i < n. This
defines a function σi ∶ VB →M×VC i , which we can extend to a morphism
σ̂i ∶M×VB →M×VC i .
We construct the desired forest t○ by the following variant of the usual

Automaton-Pathfinder game. In this game Automaton tries to construct
a forest s ∈M×B such that, for every i < n, σ̂i(s) is accepted byAi , while
Pathfinder tries to prove that such a forest does not exist. We will define
the game in such a way that there is a correspondence between winning
strategies for Automaton and such forests s. Note that these are exactly the

288

5. MSO-definable algebras

forests s with π(s) = ā, since
π(σ̂i(s)) = π(flat(M×σi(s)))= π(M×π(M×σi(s)))= π(M×p i(s))= p i(π(s)) ,

where p i ∶ A0×⋅ ⋅ ⋅×An−1 → A i is the projection to the i-th component. As
π(t) = ā, it follows that Automaton indeed has a winning strategy for the
game. Furthermore, the winning condition of our game is regular.Therefore,
it follows by the Büchi-Landweber Theorem that Automaton even has a
winning strategy that uses only a finite amount of memory. As the forests s
corresponding to finite-memory strategies via the above correspondence are
regular, the claim follows.
To conclude the proof, it therefore remains to define a regular game with

the above properties. In each round, Automaton picks the label b̄ ∈ B for the
next vertex v of s and Pathfinder responds by choosing one of the successors
of v. While doing so, we have to keep track of all the states of the various
automata from which we want to accept the remaining subforest.
The positions for Automaton are of the form Ū ∈ ∏i<n ℘(K i × Q i),

while those for Pathfinder are finite families of tuples (V̄x)x∈ξ where ξ ∈ Ξ
and each component V̄x is a position for Automaton.The initial position
belongs to Automaton and consists of the tuple ⟨{⟨0, q i0⟩}⟩i<n , where q i0 is
the initial state ofAi .

In a position Ū, Automaton chooses

◆ an element b̄ ∈ B and,

◆ for every i < n and every pair ⟨k, q⟩ ∈ U i , a partial run ρq ofAi on the
forest σi(b̄) such that the starting state of ρq is q.

(It will turn out that Automaton can choose ρq independently of k. So
we omit the index k to keep the notation light. We also assume that the
sets Q i are disjoint, so we do not need to specify the index i.) Suppose that
b̄ ∈ Bξ has sort ξ. For i < n and x ∈ ξ, let H ix be the set of all vertices

289

V. Trees

of σi(b̄) labelled by the variable x. We denote byWix(q) the set of all pairs⟨k′ , q′⟩ ∈ K i × Q i such that there is some v ∈ H ix with

ρq(v) = q′ and k′ ∶= min{Ω i(ρq(w)) ∣ w ⪯ v } .
The new position is (V̄ x)x∈ξ where

V x
i ∶= ⋃⟨k ,q⟩∈U i

Wix(q) .
Pathfinder responds by choosing some x ∈ ξ, after which the game proceeds
to position V̄ x .
Automaton wins a play of this game if either the play ends in the posi-

tion ⟨⟩ where Pathfinder cannot make a move, or if the play is infinite and
satisfies the following variant of the parity condition. Suppose that the play
is Ū0 , V̄0 , Ū1 , V̄2 , . . . and letW l

ix(q) be the sets used in the l-th turn by
Automaton to determine the next position V̄ l = (V̄ l

x)x . We call a sequence
k0 , q0 , k1 , q1 , k2 , q0 , . . . an i-trace of this play if ⟨k0 , q0⟩ ∈ U0

i and, for all
l < ω,
⟨k l+1 , q l+1⟩ ∈W l

ix(q l) , for some x with Ū l+1 = V l
x .

We say that the play satisfies the parity condition if, for all i < n,
lim inf

l<ω k l is even, for all i-traces k0 , q0 , k1 , q1 , k2 , q0 ,

Note that this is a regular winning condition. Furthermore, it is straightfor-
ward to check that Automaton wins this game if, and only if, there exists
some forest s ∈M×B such that, for every i < n, the forest σ̂i(s) is accepted
byAi .

Remark. The Bojańczyk-Klin algebra shows thatMreg is not densely em-
bedded inM× over the class of all finitaryM×-algebras. ⌟
As a consequence we can prove the existence of syntactic algebras (see

Theorem III.4.24).

Corollary 5.8. Let M be one of the monads T, T×, F, or F×. Every MSO-
definable language K ⊆MΣ has a syntactic algebra.

290

5. MSO-definable algebras

Compo@tionality

Our next goal is to show thatMSO is varietal and compositional. We start
with the latter.

Theorem 5.9. The logicMSO is F×-compositional and, therefore, also T×-com-
positional, F-compositional, and T-compositional.

Proof. Because of the translations between formulae and automata, there
exists, for every automatonA and each profile τ ofA, anMSO-formula φA,τ
stating that there is a partial run of A on the given forest with profile τ.
Furthermore, everyMSO-formula is equivalent to a disjunction of formulae
of this kind.

For m < ω, letMSO(m) denote the set of allMSO-formulae equivalent to
a formula of the form φA,τ whereA is an automaton with at most m states.
Since there are only finitely many such automata and each of them has only
finitely many profiles of partial runs, it follows thatMSO(m) is finite (up to
logical equivalence). Let ≡(m) be the equivalence relation which holds for
two forests if they satisfy the sameMSO(m)-formulae.We claim that ≡(m) is
a congruence relation. This means that, if S ,T ∈ F×F×Σ are forests with
the same shape, then

S(v) ≡(m) T(v) , for all v , implies flat(S) ≡(m) flat(T) .
For the proof, fix a formula φA,τ ∈ MSO(m) with flat(S) ⊧ φA,τ . We

have to show that flat(T) also satisfies φA,τ , i.e., that there is a partial run
ofA on flat(T) with profile τ. To do so, we introduce the following variant
of the Automaton-Pathfinder game. For a given forest T ∈ F×F×Σ, Player
Automaton tries to prove that there is a partial run ofA on flat(T) with
profile τ, while Pathfinder tries to disprove him.We call a set p of vertices
of T a place if p is the set of roots of some subforest of T. That is, p is
either the set of roots of T, or the set of all x-successors of some vertex
u ∈ dom(T). The former is called the root place of T, while the latter is the
x-successor place of u.The game starts in the position ⟨r, τ⟩where r is the root
place of T. In a position ⟨p, υ⟩ where p is a place and υ a profile, Automaton
tries to show that there exists a partial run ρ on the subforest rooted at p

291

V. Trees

with profile υ. He starts by choosing a family (κu)u∈p of profiles such that
the σ-product of the starting states of the κu evaluates to the starting state
of υ. Pathfinder answers by picking some vertex u ∈ p. Next, Automaton
picks a partial run ρ ofA on the forest T(u) whose starting state is the one
given by κu . Then he has to choose profiles λ̄ for all the subforests attached
to the copy of T(u) in flat(T) such that the ‘composition’ of the profile of ρ
and λ̄ is equal to κu . This is done as follows.
Let µ = ⟨p, Ū⟩ be the profile of ρ. For each componentUx , Automaton

chooses a setWx of triples ⟨k, q, λ⟩ where k is a priority, q a state, and λ a
profile. These sets must satisfy the following conditions.◆ Ux is the projection ofWx to the first two components.◆ For each ⟨k, q, λ⟩ ∈Wx , the state q is equal to the starting state of λ.◆ υ = ⟨p, V̄⟩ is the composition of µ and the profiles λ. Formally,

Vx = { ⟨l , q′⟩ ∣ ⟨k, q, λ⟩ ∈Wz , λ = ⟨q, L̄⟩ , ⟨k′ , q′⟩ ∈ Lx ,

l = min{k, k′}} .
Given W̄, Pathfinder responds by choosing a variable x, an x-successor vx
of u, and a triple ⟨k, q, λ⟩ ∈Wx . Then the game continues in the position⟨vx , λ⟩.
If the game reaches a leaf of T, it ends with a win for one of the players.

If the leaf is labelled by a variable x and the current position is ⟨v , υ⟩, then
Automaton wins if, and only if, υ is of the form ⟨q, Ū⟩ withUx = {q} and
Uz = ∅, for z ≠ x. Otherwise, Pathfinder wins. If the leaf is not labelled
by a variable, then Automaton wins if he can choose µ = ⟨p, Ū⟩ such that
Ux = ∅, for all x.

In the case where the game is infinite, Automaton wins if the sequence of
pairs ⟨k0 , q0 , λ0⟩, ⟨k1 , q1 , λ0⟩, . . . chosen by Pathfinder satisfies the parity
condition

lim inf
i<ω k i is even .

It is straightforward to check that Automaton wins the game on a given
forestT if, and only if, there exists a partial run ofA on flat(T)with profile τ.

292

5. MSO-definable algebras

(Every partial run ofA on flat(T) with this profile gives rise to a winning
strategy in the game and, conversely, every winning strategy can be used to
construct a partial run with the desired profile.)

To conclude the proofwe have to show that, ifT is a forest with S(v) ≡(m)
T(v), for all v, then Automaton has a winning strategy in the game on T.
By construction, Automaton has a winning strategy σ in the game on S. We
use it to define a winning strategy σ ′ in the game on T as follows. If σ tells
Automaton to choose a partial run ρ on S(v), σ ′ returns some partial run ρ′
onT(v)with the same profile as ρ. (This is possible since S(v) ≡(m) T(v).)
As only the profile of the chosen run is used by the game and σ is winning,
it follows that the resulting strategy σ ′ is also winning.
Remark. Note that in the above proof we have chosen a rather strange
stratification ofMSO. It might be nice if we could use the usual stratification
in terms of the quantifier-rank instead, but this does not seem to work for
F× andT×. For themonadsF andT on the other hand, there is an alternative
proof consisting of a simple inductive back-and-forth argument based on
the quantifier-rank. ⌟

According toTheorem IV.4.4, to prove thatMSO is varietal it suffices to
show that all theory algebras areMSO-definable,

Proposition 5.10. Let Σ be an alphabet and ∆m ∶= MSO(m) the fragment
of MSO used in the proof of Theorem 5.9. The theory algebra Θ∆m Σ isMSO-
definable.

Proof. The set C ∶= θ∆m [Σ] is a finite set of generators of Θ∆m Σ. Given a
∆m-theory σ ∈ Θ∆m Σ, we have to find anMSO-formula φ defining the set

π−1(σ) ∩MC .

Every formula in σ is of the form: ‘there exists a partial run of the auto-
matonA with profile τ’. Let us write χA,τ for such a statement. For t ∈MC,
it follows that π(t) = σ if, and only if, for every forest s ∈ MΣ with
Mθ∆m(s) = t and every χA,τ ∈ σ , there exists a partial run of A on s
with profile τ. Consequently, to define the above preimage it is sufficient to

293

V. Trees

express, for a given automatonA and a profile τ, that every preimage of the
given forest t underMθ∆m has a partial run ofA with profile τ. This can be
done by saying that, for every vertex v, the theory t(v) contains a formula
of the form χA,υv , for some profile υv , such that the ‘composition’ of the
profiles υv yields τ. For this composition, we have to check that the states at
the borders match and to compute the minimal priorities on each branch.
All of this can easily be expressed inMSO.

Corollary 5.11. MSO is varietal with respect to the functors F×, T×, F, and T.
By the above theorems it follows that the framework we have set up in

Chapters III and IV applies to the logicMSO : (i)MSO-definable languages
have syntactic algebras which, furthermore, areMSO-definable; (ii) the class
of all such languages forms a variety of languages; (iii) every subvariety can be
axiomatised by a set of inequalities. In particular, we can useTheorem IV.4.9
to study the expressive power of monadic second-order logic.

6. Fir#-Order Logi$

Let us turn to the logic FO next. Again, we start with compositionality.

Theorem 6.1. The logic FO is F×-compositional and, therefore, also T×-com-
positional, F-compositional, and T-compositional.

Proof. Let FOm denote the set of all first-order formulae of quantifier-rank
at most m and denote by ≡m equivalence with respect to such formulae. We
claim that ≡m is a congruence on F×Σ. For the proof, consider two forests
S ,T ∈ F×F×Σ with the same shape satisfying

S(v) ≡m T(v) , for all vertices v .

We have to show that flat(S) ≡m flat(T).
The proof is by induction on m. To make the inductive step go through

we have to prove a slightly stronger statement involving parameters. Given a

294

6. First-order logic

tuple ā of vertices of flat(S) and a copy s of S(v) in flat(S), we denote by ās
the tuple

asi ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a i if a i ∈ dom(s) ,
v if v is a hole of s and v ≤pf a i in flat(S) ,
v if v is the root of s and v ≰pf a i in flat(S) .

We use the same notation for parameters in flat(T). For a tuple ā of vertices
of some forest s, we write ⟨s, ā⟩ for the expansion of s by constants for the
vertices ā. The claim we prove is that, for forests S ,T ∈ F×F×Σ with the
same ‘shape’ and with parameters ā in flat(S) and b̄ in flat(T),

⟨s, ās⟩ ≡m ⟨t, b̄ t⟩ , for all v , copies s of S(v), and copies t of T(v),
implies that

⟨flat(S), ā⟩ ≡m ⟨flat(T), b̄⟩ .
For m = 0, the proof is straightforward: to see whether ⟨flat(T), b̄⟩

satisfies an atomic formula we only have to check atomic formulae in some
of the factors. For the inductive step, suppose that

⟨s, ās⟩ ≡m+1 ⟨t, b̄ t⟩ , for all v , s, and t .

We use a back-and-forth argument to show that

⟨flat(S), ā⟩ ≡m+1 ⟨flat(T), b̄⟩ .
Hence, let c ∈ dom(flat(S)) be a new parameter and suppose that c belongs
to a copy s of the forest S(v). When we want to apply the inductive hypo-
thesis, we now face the problem that, if flat(S) contains several copies of
S(v), only one of them contains the new parameter. To solve this issue, we
have to modify the forests S and T to make sure this does not happen.
Let v0 , . . . , vn be the path from the root v0 of S to v = vn and let s i be

the copy of S(v i) in flat(S) such that c is a descendant of the root of s i .

295

V. Trees

We construct new forests S0 , . . . , Sn and T0 , . . . ,Tn as follows. We start
with S0 ∶= S and T0 ∶= T. For the inductive step, suppose we have already
defined S i andTi for some i < n and that there is a unique copy t i ofTi(v i)
in flat(Ti). We choose a vertex d i of t i such that

⟨s i , ās i cs i ⟩ ≡m ⟨t i , b̄ t i d i⟩ .
Note that the vertex cs i is a leaf labelled by some variable x. Hence, so is d i .
If there is no other occurrence of x in s i , we set S i+1 ∶= S i . Otherwise,
we choose some variable y that does not appear in s i and we replace every
occurrence of x in s i by y, except for the one at cs i . Let S i+1 be the forest
obtained from S i by◆ changing S(v i) = s i in this way and◆ duplicating the subforest whose root are the x-successors of v i in such a

way that the roots of the new copy are y-successors.
This ensures that flat(S i+1) = flat(S i) and that S i+1 contains a unique copy
of S(v i+1). The forest Ti+1 is obtained from Ti in exactly the same way.
Having constructed the forests Sn and Tn , we now choose some vertex

dn ∈ dom(Tn(vn)) such that
⟨sn , āsn csn ⟩ ≡m ⟨tn , b̄ tndn⟩ .

Setting d ∶= dn , it follows that d t i = d i , for all i ≤ n, which implies that
⟨s i , ās i cs i ⟩ ≡m ⟨t i , b̄ t i d t i ⟩ , for all i ≤ n .

Note that, if u is a vertex different from v0 , . . . , vn , s a copy of Sn(u) and t a
copy of Tn(u), then cs is the root of s and d s is the root of t. Consequently,
we also have

⟨s, ās cs⟩ ≡m ⟨t, b̄ td t⟩ .
Hence, the forests Sn and Tn together with the parameters ā, c and b̄, d
satisfy our inductive hypothesis and it follows that

⟨flat(Sn), ā, c⟩ ≡m ⟨flat(Tn), b̄, d⟩ .

296

6. First-order logic

Since flat(Sn) = flat(S) and flat(Tn) = flat(T), the claim follows.
In the same way we can show that, for every choice of d in flat(T), we

find a matching vertex c in flat(S).
It remains to show that FO is varietal. It turns out that this is only the

case for the monads F and T, but not for F× or T×.
Proposition 6.2. FO is closed under inverse F-morphisms and inverse T-
morphisms.

Proof. Let φ ∶ FΣ → FΓ be amorphism ofF-algebras and let φ0 ∶= φ○sing ∶
Σ → FΓ be its restriction to Σ. For s, t ∈ FΣ, we will prove that

s ≡m t implies φ(s) ≡m φ(t) ,
where ≡m denotes equivalence with respect to FO-formulae of quantifier-
rank at mostm. For the induction step we again need to prove a more general
statement involving parameters. We start with setting up a bit of notation.
Note that a forest of the form φ(s) = flat(Fφ0(s)) is obtained from s

by replacing each vertex u by a forest φ0(s(u)). For s ∈ FΣ, we denote by
gs ∶ dom(φ(s)) → dom(s) the function mapping a vertex u of φ(s) to the
vertex v ∶= gs(u) such that the copy of the forest φ0(s(v)) replacing v in
φ(s) contains u. (Note that this copy of φ0(s(v)) is unique, since we are
dealing with the monad F.)

For an n-tuple ā of vertices of φ(s) and a vertex u of s, we set
Iu ∶= { i < n ∣ gs(a i) = u } and āu ∶= (a i)i∈Iu ,

where we consider āu as a tuple of vertices of φ0(s(u)).
The statement we will prove by induction on m is the following. Let

s, t ∈ FΣ be forests and ā and b̄ n-tuples of parameters of, respectively,
φ(s) and φ(t). Then

⟨s, gs(ā)⟩ ≡m ⟨t, gt(b̄)⟩
and ⟨φ0(s(u)), āu⟩ ≅ ⟨φ0(t(v)), b̄v⟩ , for all u, v with Iu = Iv ≠ ∅ ,

297

V. Trees

u

v

w

}āu

}āv

}āw

gs

Figure 3.: Definition of gs , Iu , and āu

implies

⟨φ(s), ā⟩ ≡m ⟨φ(t), b̄⟩ .
For m = 0, this is immediate. Hence, suppose that m > 0. We have

to check the back-and-forth properties. Thus, let c ∈ dom(φ(s)) and set
u ∶= gs(c). Then there is some v ∈ dom(t) such that

⟨s, gs(ā), gs(c)⟩ ≡m−1 ⟨t, gt(b̄), v⟩ .
Note that

Iu = { i ∣ gs(a i) = u } = { i ∣ gt(b i) = v } = Iv .
We distinguish two cases. If Iu = Iv ≠ ∅, then there exists an isomorphism

σ ∶ ⟨φ0(s(u)), āu⟩ → ⟨φ0(t(v)), b̄v⟩
and we can set d ∶= σ(c).
Otherwise, Iu = Iv = ∅ and s(u) = t(v) implies that φ0(s(u)) ≅

φ0(t(v)). Hence, can choose some element d of φ0(t(v)) such that
⟨φ0(s(u)), c⟩ ≅ ⟨φ0(t(v)), d⟩ .

In both cases, it now follows that

⟨s, gs(ā), gs(c)⟩ ≡m ⟨t, gt(b̄), gt(d)⟩

298

6. First-order logic

and ⟨φ0(s(u)), āu cu⟩ ≅ ⟨φ0(t(v)), b̄vdv⟩ , if Iu = Iv ≠ ∅ ,

which, by inductive hypothesis, implies that

⟨φ(s), āc⟩ ≡m−1 ⟨φ(t), b̄d⟩ .
The other direction follows by symmetry.

Let us give a counterexample showing that FO is not closed under inverse
morphisms of F×-algebras. (The same example works for T×-algebras.) It
rests on the following lemma. Recall that a tree is complete binary if every
non-leaf has exactly two successors.

Lemma 6.3. There exists a first-order formula φ such that a finite complete
binary tree T = ⟨T , suc0 , suc1 , ≤pf ⟩ satisfies φ if, and only if, every leaf of T
has an even distance from the root.

Proof. The basic idea is as follows. If every leaf is at an even distance from
the root, we can determine whether a vertex x belongs to an even level of the
tree by walking a zig-zag path from x downwards until we hit a leaf. For such
a path it is trivial to check that its length is even. Hence, our formula only
needs to express that the level parities computed in this way are consistent
and that the root is on an even level.
To express all this in first-order logic, we first define a few auxiliary for-

mulae.

suc(x , y) ∶= suc0(x , y) ∨ suc1(x , y)
zigzag(x , y; u, v) ∶= [suc0(x , y) ∧ suc1(u, v)]∨ [suc1(x , y) ∧ suc0(u, v)]

probe(x , y) ∶= x ≤pf y ∧ ¬∃z[suc(y, z)]∧ ∀u∀v∀w[x ≤pf u ∧ suc(u, v) ∧ suc(v ,w)∧ w ≤pf y → zigzag(u, v; v ,w)] .
The first one just states that y is a successor of x ; the second one says that⟨x , y⟩ and ⟨u, v⟩ are two edges that go into different directions, one to the

299

V. Trees

left and one to the right; and the last one states that y is one of the two leaves
below x that are reached by a zig-zag path consisting of alternatingly taking
left and right successors.

Using these formulae we can express that a vertex x has an even distance
from some leaf by

even(x) ∶= ∃y[probe(x , y) ∧∃u∃v[x = y ∨ [suc(x , u) ∧ u ≤pf v ∧ suc(v , y)∧ zigzag(x , u; v , y)]]] .
Consequently, the desired formula is

∀x∀y[suc(x , y) → [even(x) ↔ ¬even(y)]]∧ ∃x∀y[x ≤pf y ∧ even(x)] .
Corollary 6.4. FO is not closed under inverse F×-morphisms or inverse T×-
morphisms.

Proof. Let Σ ∶= {a, c} and Γ ∶= {b, c} where a is unary, b binary, and c a
constant, and let φ ∶= F×Σ → F×Γ be the morphism mapping a(x0) to
b(x0 , x0) and c to c. Let K ⊆ F×Γ be the set of all complete binary trees
defined by the formula even from Lemma 6.3. Then φ−1[K] contains a tree
of the from an(c) if, and only if, n is even.This is not FO-definable.

To summarise, we have obtained the following result.

Corollary 6.5. FO is varietal with respect to the functors F and T. but not with
respect to F× or T×.

Note+

The results about countable chains are originally due to [10]. Our presenta-
tion is based on [6]. For an introduction to Green’s relations see, e.g., [18, 3].
The Bojańczyk-Klin algebra is from [7] andTheorem 4.5 from [25]. Intro-
ductions to automata on infinite trees can be found in [22, 15]. Our model of

300

6. First-order logic

a forest automaton is a simplified version of theMSO-automata introduced
in [24]. Lemma 6.3 is by Potthoff [19] and its corollary by Bojańczyk and
Michalewski [8].

301

VI. Temporal Logi$+

1. Temporal Logi$+

Temporal logics are modal logics talking about transition systems, i.e., la-
belled directed graphs, and frequently used in verification. Here, we will
consider them only over forests instead of arbitrary transition systems. This
is not a restriction since each of these logics is closed under a suitable form
of bisimulation. In particular, they cannot distinguish between a transition
system and its unravelling.

Convention. In this chapter we will work exclusively in the categoryD = Set.
Well-known temporal logics for forests include basic modal logic ML,

computation tree logic CTL and CTL∗, and propositional dynamic logic PDL.
We also consider the following variants. We denote by EF the fragment
of CTL where we only allow the modal operator EF.Weak computation tree
logic wCTL∗ is the variant of CTL∗ where the path quantifiers range over
finite paths only. Finally, we consider several fragments of monadic second-
order logic:Monadic path logicMPL and monadic chain logicMCL are the
variants ofMSO[≤pf] where quantification is restricted to sets that form,
respectively, paths and chains (i.e., subsets of paths). There are also the weak
variants of these two logics,WMPL andWMCL, where we can only quantify
over finite paths and chains.

These logics also have counting variants where, instead of the usual modal
operators which only check the existence of certain successors or paths, we
use counting operators which express, for some constant k, that there are at
least k such successors or paths.We call these variants cEF, cCTL∗, cwCTL∗,
cPDL, etc.. (Note that the ordinary temporal logics are the bisimulation-
invariant fragments of their counting counterparts.)

abstract algebraic language theory 2022-12-11 — ©achim blumensath 303

VI. Temporal Logics

All of these logics above have the common property that formulae only
speak about what happens on a path of the given tree. Consequently, if we
introduce a quantifier that labels all vertices of a given forest by definable
properties of their attached subtrees and then counts the number of certain
paths in the resulting forest, we can unify them into a single logic. The
definition is as follows.

Definition 1.1. (a) We call a finite set Φ = {φ0 , . . . , φn} of formulae a
syntactic partition if there are formulae ϑ0 , . . . , ϑn−1 such that

φ i = ϑ i ∧ ⋀
k<i ¬ϑk , for i < n , and φn = ⋀

k<n¬ϑk .

(b) Let Φ be a syntactic partition and let ⊧t be the relation defined in (c).
The Φ-labelling of a path (v i)i in a forest s, is the sequence (φ i)i where φ i is
the unique formula in Φ with s∣v i ⊧t φ i .
(c) Let K be a family of∞-word languages. Counting K-temporal logic

cTL[K] (over a fixed alphabet Σ) has two kinds of formulae: tree formulae
and forest formulae.The set of forest formulae is inductively defined as follows.

◆ Forest formulae are closed under finite boolean combinations.

◆ For every syntactic partition Φ of tree formulae, every∞-word language
K ∈ K[Φ], and every positive integer n, EnK is a forest formula.

The set of tree formulae is defined as follows.

◆ Pa is a tree formula, for every label a ∈ Σ.
◆ Tree formulae are closed under finite boolean combinations.

◆ Every forest formula is a tree formula.

To define the semantics we introduce a satisfaction relation ⊧f for forest
formulae and one ⊧t for tree formulae. In both cases boolean combinations
are defined in the usual way. For a tree t, we define

t ⊧t Pa : iff the root of t has label a ,
t ⊧t φ : iff t′ ⊧f φ , for forest formulae φ ,

304

1. Temporal logics

where t′ denotes the forest obtained by removing the root from t. For a
forest s we define

s ⊧f EnK : iff there exist at least n paths each of which has
a Φ-labelling in K .

We do not require the paths above to be disjoint. They can even be prefixes
of each other.
(d) K-temporal logic TL[K] is the fragment of cTL[K] consisting of all

formulae that do not contain En-operators with n > 1.
(e) Let S be a pseudo-variety of ω-semigroups and let K∞, K+, andKω be the classes of, respectively, all ∞-word languages, all finite word

languages, and all ω-word languages recognised by some ω-semigroup in S .
For x ∈ {∞,+,ω}, we introduce the short hands cTL[Sx] ∶= cTL[Kx]
and TL[Sx] ∶= TL[Kx].
(f)Themodal rank of a formula φ ∈ cTL[K] is the nesting depth of the

modal operators En in φ. ⌟
The aim of this chapter is to derive algebraic characterisations of various

instances of TL[K] and cTL[K]. In may cases we will only consider lan-
guages of finitely branching forests to avoid technicalities and to make our
task a bit easier.

Definition 1.2. For a set A, we denote by FfbA the set of finitely branching
forests in F×A that have only finitely many roots and finitely many holes. ⌟

We start by showing how the logics mentioned above fit into this frame-
work.

Proposition 1.3. Each of the logics listed in Figure 1 is equivalent to TL[K] or
cTL[K] for the family K given in the table.

Most of the equivalences follow by a simple induction on the structure of
formulae. The non-trivial cases follow from the equivalencesMPL = cCTL∗,
FO =WMPL = cwCTL∗, and cPDL =WMCL, which can be proved using
composition arguments.

305

VI. Temporal Logics

TL[K] cTL[K]
logic K logic K
EF Σ∗a cEF Σ∗a
wCTL C∗a cwCTL C∗a
CTL C∗a and Cω cCTL C∗a and Cω

wCTL∗ FO-definable K ⊆ Σ∗ cwCTL∗ FO-definable K ⊆ Σ∗
CTL∗ FO-definable K ⊆ Σ∞ cCTL∗ FO-definable K ⊆ Σ∞
PDL regular K ⊆ Σ∗ cPDL regular K ⊆ Σ∗

FO FO-definable K ⊆ Σ∗
WMPL FO-definable K ⊆ Σ∗
MPL FO-definable K ⊆ Σ∞
WMCL regular K ⊆ Σ∗
MCL regular K ⊆ Σ∞

Figure 1.: Instances ofK-temporal logic (a ∈ Σ and C ⊆ Σ)

The rest of this chapter is devoted to the study of logics of the form
TL[K] and cTL[K]. We start with a language-theoretic characterisation.
The general idea is as follows. Suppose we want to construct a recogniser for
a given language, say, an automaton, morphism, or a formula in some logic.
One way to make our task easier is to do the recognition in several steps. For
instance, we can run a first automaton on the input forest, label the input by
the resulting run, and then use a second automaton on the forest expanded
in this way. Similarly, we can apply a first morphism to the input forest, label
each subtree by its value under this morphism, and then feed the resulting
forest to a second morphism.This is the idea behind the following cascading
operation.

Definition 1.4. Let K0 , . . . ,Kn−1 ⊆ F∅Σ be forest languages that form a
partition of F∅Σ.
(a) For t ∈ F∅Σ, we denote by t[K̄] the forest where each vertex gets an

additional label encoding to which languageK i the attached subtree belongs.

306

1. Temporal logics

Formally, we define t[K̄] ∈ F∅(Σ × [n]) by
t[K̄](v) ∶= ⟨t(v), i⟩ where i is the unique index with t∣v ∈ K i .

(b) For L ⊆ F∅(Σ × [n]), we set
L[K̄] ∶= { t ∈ F∅Σ ∣ t[K̄] ∈ L } .

(c) For a familyK of languages, we denote byCasc(K) the smallest family
of languages that containsK, is closed under finite boolean operations, and
satisfies

L, K̄ ∈ Casc(K) ⇒ L[K̄] ∈ Casc(K) . ⌟
Proposition 1.5. Let K be a family of∞-word languages andM the family
consisting of all forest languages of the form

{ s ∈ F∅Σ ∣ s has at least n paths with labelling in K }
and { s ∈ F∅Σ ∣ the roof of s has label a } ,
for K ∈ K[Σ], a ∈ Σ, and n < ω.
(a) A language L ⊆ F∅Σ is cTL[K]-definable if, and only if, L ∈ Casc(M).
(b) If we modify the definition ofM to only allow n = 1, we obtain an analogous

characterisation of TL[K]-definable languages.
Proof. We only prove the claim for cTL[K]. The second statement follows
in exactly the same way.(⇐)Clearly, every language inM is cTL[K]-definable. Hence, the claim
follows by induction if we can show that, if L and K̄ are cTL[K]-definable
languages, then so is L[K̄]. Suppose that L is defined by the formula φ and
K i by ψ i . Then we can define L[K̄] by the formula obtained from φ by
replacing every atom of the form P⟨a , i⟩ by the formula Pa ∧ ψ i .(⇒) Given a formula φ ∈ cTL[K] we prove by induction on φ that it
defines a language in Casc(M). For φ = Pa , the defined language is

{ s ∈ F∅Σ ∣ the roof of s has label a } ,

307

VI. Temporal Logics

which belongs toM⊆ Casc(M) by assumption. As Casc(M) is closed
under finite boolean operations, it remains to consider formulae of the form
φ = EnK with K ∈ K[Φ], for some syntactic partition Φ. For every ψ ∈ Φ,
we know by inductive hypothesis that the language Lψ it defines belongs to
Casc(M). By assumption, so does the language

M ∶= { s ∈ F∅Σ ∣ s has at least n paths with labelling in K } .
Consequently,M[L̄] ∈ Casc(M), which is the language defined by EnK.

2. Bi@mulation

Before approaching characterisations of various temporal logics, let us start
with the simpler case of bisimulation invariance. This example also explains
why we have chosen to use algebras with elements of higher arities. As a
warm-up, we start with a very simple example: that of sibling-commutative
languages.

Definition 2.1. (a) A forest s is a permutation of t ∈ FA if s is obtained
from t by simultaneously rearranging the roots and the successors of every
vertex. Formally, we call a function σ ∶ dom(s) → dom(t) a permutation if
it is bijective and it preserves the successor and sibling relations. Then s is a
permutation of t if there exists some permutation dom(s) → dom(t).
(a) A language K ⊆ TΣ is sibling-commutative if it is closed under per-

mutations. ⌟
Note that being sibling-commutative is not the same as being closed under

rearranging the successors of a single vertex (or finitely many of them).

Theorem 2.2. A regular language K ⊆ Ffb∅ Σ is sibling-commutative if, and
only if, its syntactic algebra Syn(K) satisfies the equations

c + d = d + c and a(x0 , . . . , xm−1) = a(xσ(0) , . . . , xσ(m−1)) ,
for all sorts ξ = {x0 , . . . , xm−1} ∈ Ξ, elements a ∈ Aξ and c, d ∈ A∅, and
permutations σ ∶ [m] → [m].

308

2. Bisimulation

Proof. (⇐) If s is a permutation of t, we have synK(s) = synK(t). Since
synK recognises K it follows that s ∈ K ⇔ t ∈ K and that K is sibling-
commutative.(⇒) Fix an element a ∈ Aξ and a permutation σ ∶ [m] → [m]. We have
to show that

a(x0 , . . . , xm−1) ∼K a(xσ(0) , . . . , xσ(m−1))
(where ∼K is the syntactic congruence ofK). Hence, let p be a context. Note
that the two forests obtained from p by replacing the hole ◻ by, respectively,
a(x0 , . . . , xm−1) and a(xσ(0) , . . . , xσ(m−1)) are permutations of each other.
As K is sibling-commutative we therefore have

p[a(x0 , . . . , xm−1)] ∈ K⇔ p[a(xσ(0) , . . . , xσ(m−1))] ∈ K .

The equation c + d = d + c follows analogously.

Remark. It follows in particular that sibling-commutativity is decidable.
Given a regular language K, we can compute its syntactic algebra and check
whether it satisfies the above equations. (We only need to check them for
elements a in a finite set of generators.) ⌟
The characterisation of bisimulation is similar. We just have to account

for the duplication of successors. Let us recall the definition.

Definition 2.3. (a) A bisimulation between two forests s and t is a binary
relation Z ⊆ dom(s) × dom(t) such that ⟨u, v⟩ ∈ Z implies that◆ s(u) = t(v) and,◆ for every x-successor u′ of u, there is some x-successor v′ of v with⟨u′ , v′⟩ ∈ Z and vice versa.

(b) Two trees are bisimilar if there exists a bisimulation between them
that relates their roots. More generally, two forests are bisimilar if every
component of one is bisimilar to some component of the other.

(c) A language K of forests is bisimulation-invariant if s ∈ K implies t ∈ K,
for every forest t bisimilar to s. ⌟

309

VI. Temporal Logics

Theorem 2.4. Let Σ be an alphabet where every symbol has arity 1, and let
K ⊆ F∅Σ be a forest language with a syntactic algebra. Then K is bisimulation-
invariant if, and only if, Syn(K) satisfies the following equations:

c + c = c , a(x + x) = a(x) ,
c + d = d + c , a(x0 + x1 + x2 + x3) = a(x0 + x2 + x1 + x3) ,

for all a ∈ Syn{x}(K) and c, d ∈ Syn∅(K).
Proof. We denote the syntactic congruence of K by ∼K .(⇒) Given elements c, d ∈ Syn∅(K), we fix forests s ∈ syn−1K (c) and
t ∈ syn−1K (d). If K is bisimulation-invariant, we have

p[s] ∈ K iff p[s + s]∈ K ,

p[s + t] ∈ K iff p[t + s]∈ K ,

for every context p. Consequently, s ∼K s+ s and s+ t ∼K t+ s, which implies
that c = c + c and c + d = d + c.
The remaining two equations are proved similarly. Fix a ∈ Syn{x}(K)

and s ∈ syn−1K (a). Setting s′ ∶= s(x0 + x0), bisimulation-invariance of K
implies that

p[s] ∈ K iff p[s′] ∈ K , for every context p .

Consequently s ∼K s′ and a(x0) = synK(s) = synK(s′) = a(x0 + x0).
Similarly, for t ∶= s(x0 + x1 + x2 + x3) and t′ ∶= s(x0 + x2 + x1 + x3), we

have

p[t] ∈ K iff p[t′] ∈ K , for every context p .

Hence, t ∼K t′ and a(x0 + x1 + x2 + x3) = a(x0 + x2 + x1 + x3).(⇐) Suppose that Syn(K) satisfies the four equations above and let
s and s′ be bisimilar forests. We claim that synK(s) = synK(s′), which
implies that s ∈ K⇔ s′ ∈ K.
Fix a bisimulation relation Z ⊆ dom(s) × dom(s′). W.l.o.g. we may as-

sume that Z only relates vertices on the same level of the respective forests

310

2. Bisimulation

t0 a

a a c

c c c

x0 x1 x2

x0 x0 x1

t′0 a

a c c

c

x0 x1 x2

x0

t1 a(x0 + x1 + x2 + x2)
a(x0 + x0) a(x0 + x1) c

c c c

x0 x1 x2

x0 x0 x1

t′1 a(x0 + x0 + x1 + x2)
a(x0 + x0) c c

c

x0 x1 x2

x0

t2 a

a c c

c c

a

c c

x0 x2 x3

x0 x0

x1

x1 x1

t′2 a

a c c

c c

a

c c

x0 x2 x3

x0 x0

x1

x1 x1

Figure 2.: Transforming bisimilar forests

and that it only relates vertices whose predecessors are also related. (If not,
we can always remove the pairs not satisfying this condition without des-
troying the fact that Z is a bisimulation.) Let ≈ be the equivalence relation
on dom(s) ∪ dom(s′) generated by Z.
We will transform the forests s and s′ in several steps while preserving

their value under synK until both forests are equal. (Note that each of these
steps necessarily modifies the given forest at every vertex.) An example of
this process can be found in Figure 2.The first step consists in translating
the problem into the algebra Syn(K). We define two new forests t0 , t′0 ∈
F∅Syn(K)with the same domains as, respectively, s and s′ and the following
labelling. If v ∈ dom(s) has the successors u0 , . . . , un−1, we set

t0(v) ∶= synK(s(v))(x0 + ⋅ ⋅ ⋅ + xn−1)

311

VI. Temporal Logics

and we make u i an x i -successor of v in t0. We obtain t′0 from s′ in the same
way. By associativity it follows that π(t0) = synK(s) and π(t′0) = synK(s′).

Next we make the shapes of the forests t0 and t′0 the same. Let t1 and t′1
be the forests with the same domains as t0 and t′0 and the following labelling.
For every vertex v of t0 with successors u0 , . . . , un−1 and labelling

t0(v) = a(x0 + ⋅ ⋅ ⋅ + xn−1) ,
we set

t1(v) ∶= a(x0 + ⋅ ⋅ ⋅ + x0 + ⋅ ⋅ ⋅ + xn−1 + ⋅ ⋅ ⋅ + xn−1) ,
where each variable x i is repeated m i times and the numbers m i are determ-
ined as follows. LetM be some number such that, for every i < n, no vertex
v′ ≈ v has at more thanM successors u′ with u′ ≈ u i . (Note that there are
only finitely many such vertices.) We choose the constants m i such that

∑
k∈U i

mk =M , where U i ∶= { k < n ∣ uk ≈ u i } .
We obtain the forest t′1 in the same way from t′0. By the top right equation
in the statement of the theorem, the value of the product is not affected by
this modification. Hence, π(t1) = π(t0) and π(t′1) = π(t′0).
Finally, let t2 and t′2 be the unravelling of, respectively, t1 and t′1, i.e., the

forest where for every vertex v with successors u0 , . . . , un−1 and label
t1(v) = a(x0 + ⋅ ⋅ ⋅ + x0 + ⋅ ⋅ ⋅ + xn−1 + ⋅ ⋅ ⋅ + xn−1) ,

we set

t2(v) ∶= a(x0 + ⋅ ⋅ ⋅ + xk + ⋅ ⋅ ⋅ + x l + ⋅ ⋅ ⋅ + xm) ,
wherewe number the variables from left-to-right, e.g., a(x0+x0+x1+x2+x2)
becomes a(x0 + x1 + x2 + x3 + x4), and we duplicate each attached subforest
a corresponding number of times such that the value of the product does
not change. We do the same for t′2.

312

2. Bisimulation

Wehave arrived at a situationwhere, for each component r of the forests t2,
there is some component r′ of t′2 that differs only in the ordering of successors,
but not in their number. Consequently, there exists a bijection σ ∶ dom(t) →
dom(r′) such that, for a vertex v of r with successors u0 , . . . , un−1,

r′(v) = r(v)(xσv(0) + ⋅ ⋅ ⋅ + xσv(n−1)) ,
where the function σv ∶ [n] → [n] is chosen such that σ(u i) is the xσv(i)-
successor of σ(v).

Let r̂ be the tree obtained from r as follows. For a vertex v with successors
u0 , . . . , un−1 and labelling

r(v) = a(x0 + ⋅ ⋅ ⋅ + xn−1) ,
we set

r̂(v) ∶= a(xσv(0) + ⋅ ⋅ ⋅ + xσv(n−1)) ,
and we reorder the attached subtrees accordingly. By associativity and the
bottom right equation, this does not change the value of the product. It
follows that r̂ = r′. Consequently, π(r) = π(r′).
We have shown that, for every component of t0 there is some component

of t′0 with the same product. Therefore, we can write

π(t0) = a0 + ⋅ ⋅ ⋅ + am−1 and π(t′0) = b0 + ⋅ ⋅ ⋅ + bn−1
where the sets {a0 , . . . , am−1} and {b0 , . . . , bm−1} coincide. Using the equa-
tions c+ c = c and c+d = d+ c we can therefore transform π(t0) into π(t′0).
Consequently,

synK(s) = π(t0) = π(t′0) = synK(s′) .
As synK recognises K it follows that s ∈ K⇔ s′ ∈ K, as desired.

Note that we immediately obtain a decision procedure for bisimulation-
invariance from this theorem, since we can compute the syntactic algebra
and check whether it satisfies the given set of equations.

Corollary 2.5. It is decidable whether a given regular language K is bisimulation-
invariant.

313

VI. Temporal Logics

3. The Logi$ EF

One of the simplest temporal logics is the logic EF a fragment of CTL where
we only allow the modal operator EF. As remarked in Proposition 1.3, we
have EF = TL[K] and cEF = cTL[K] whereK is the family of all languages
of the form Σ∗a, for some a ∈ Σ.

Definition 3.1. For n,m < ω, we denote by cEFn the fragment of cEF that
uses only operators El where l ≤ n, and cEFmn is the fragment of cEFn where
the nesting depth of the operators El is restricted to m. For n = 1, we set
EF ∶= cEF1 and EFm ∶= cEFm1 . ⌟

The following is our main theorem. Before giving the statement a few
technical remarks are in order. In the equations below we make use of the
ω-power aω of an element a ∈ A{x} (which is the infinite vertical product
aaa . . .), and the idempotent power aπ (which is the defined as aπ = an for
the minimal number n with anan = an). For the horizontal semigroup we
use multiplicative notation instead: n × a for a + ⋅ ⋅ ⋅ + a and π × a for n × a
with n as above.

When writing an ω-power of an element of arity greater than one, we
need to specify with respect to which variable we take the power. We use
the notation aωx to indicate that the variable x should be used. Note that,
when using several ω-powers like in (a(x , (b(x , y))ωy))ωx , the intermedi-
ate term after resolving the inner power can be a forest with infinitely many
occurrences of the variable x. But after resolving the outer ω-power, we ob-
tain a forest without variables, i.e., a proper element of Ffb∅A. Consequently,
the equations below are all well-defined.

Theorem 3.2. A language K ⊆ Ffb∅ Σ is definable in the logic cEFn if, and only

314

3. The logic EF

if, its syntactic algebra Syn(K) satisfies the following equations:
c + d = d + c (a(x) + b(x))ω = (ab(x))ω(ab)π = b(ab)π (a(x) + c)ω = (a(x + c))ω

aω + aω = aω (a(x + c + c))ω = (a(x + c))ω
(abb′)ω = (ab′b)ω [a(b(x , y))ωy]ωx = [ab(x , x)]ωx
(aab)ω = (ab)ω [a(x + bc + c)]ω = [a(x + bc)]ω

aξ(c, . . . , c) + (n − ∣ξ∣) × c = aξ(c, . . . , c) + (n − ∣ξ∣ + 1) × c ,[a(x + (a(n × x))π(c))]ω = n × (a(n × x))π(c)
for all a, b, b′ ∈ Syn{x}(K), c, d ∈ Syn∅(K), aξ ∈ Synξ(K) with ∣ξ∣ ≤ n.
Before giving the proof of the theorem, let us present some of the con-

sequences.

Corollary 3.3. For fixed n, it is decidable whether a given regular language K is
cEFn -definable.

For the logic cEF, where the value of n is not bounded, a similar result
can now be derived as a simple corollary. The basic argument is contained in
the following lemma.

Lemma 3.4. Given a finitary Ffb-algebra A that is generated by A∅ ∪A{x},
we can compute a number N such that, if A satisfies the equations ofTheorem 3.2
for some value of n, it satisfies them for n = N.

Proof. Set N ∶= m2m1
0 + m0 where m0 ∶= ∣A∅∣ and m1 ∶= ∣A{x}∣. By as-

sumption there is some number n for which A satisfies the equations of
Theorem 3.2. W.l.o.g. we may assume that n ≥ N. The only two equations
depending on n are

(1)n aξ(c, . . . , c) + (n − ∣ξ∣) × c = aξ(c, . . . , c) + (n − ∣ξ∣ + 1) × c
(2)n [a(x + (a(n × x))π(c))]ω = n × (a(n × x))π(c)

315

VI. Temporal Logics

We have to show that A also satisfies (1)N and (2)N .
For (2)N , note that n ≥ N ≥ ∣A∅∣ implies that N × c = π × c = n × c, for

all c ∈ A∅. Consequently,
a(N × x)(c) = a(n × x)(c)

and, therefore,

(a(N × x))π(c) = (a(n × x))π(c) .
This implies the claim.

For (1)N , fix a ∈ Aξ and c ∈ A∅. If ∣ξ∣ ≤ N−m0, thenN−∣ξ∣ ≥ m0 = ∣A∅∣
implies that (N − ∣ξ∣) × c = π × c. Consequently,

a(c, . . . , c) + (N − ∣ξ∣) × c = a(c, . . . , c) + π × c= a(c, . . . , c) + π × c + c

and we are done.Thus, we may assume that ∣ξ∣ > N − m0 = m2m1
0 . As A is

generated by A∅ ∪A{x}, there exists some forest s ∈ Fξ(A∅ ∪A{x}) with
π(s) = a. We distinguish several cases.
If some variable x ∈ ξ does not appear in s, we can use (1)n to show that

a(c, . . . , c, . . . , c) + (N − ∣ξ∣) × c= a(c, . . . , c + ⋅ ⋅ ⋅ + c, . . . c) + (N − ∣ξ∣) × c= a(c, . . . , n × c, . . . , c) + (N − ∣ξ∣) × c= a(c, . . . , n × c, . . . , c) + (N − ∣ξ∣) × c + c .

Next, suppose that s is highly branching in the sense that it has the form

s = r(t0 + ⋅ ⋅ ⋅ + tm2
0−1)

where each subtree t i contains some variable. Then we can find indices
i0 < ⋅ ⋅ ⋅ < im0−1 such that π(t i0(c̄)) = ⋅ ⋅ ⋅ = π(t im0−1(c̄)) (where c̄ denotes
as many copies of c as appear in the respective term). Hence, (1)n again

316

3. The logic EF

implies that

a(c̄) + (N − ∣ξ∣) × c= π(s(c̄)) + (N − ∣ξ∣) × c

= π(r(t0(c̄) + ⋅ ⋅ ⋅ + tm2
0−1(c̄))) + (N − ∣ξ∣) × c

= π(r(t0(c̄) + ⋅ ⋅ ⋅ + tm2
0−1(c̄) + n × t i0(c̄))) + (N − ∣ξ∣) × c

= a(c̄) + (N − ∣ξ∣) × c + c .

Note that a tree of height h ∶= m1 where every vertex has at most d ∶= m2
0

successors has at most dh = m2m1
0 leaves. Hence, if s is not highly branching

in the sense above, the fact that it contains ∣ξ∣ > m2m1
0 variables implies that

there must be a chain v0 ≺ ⋅ ⋅ ⋅ ≺ vm1 of vertices such that, for every i < m1,
there is some leaf u labelled by a variable with v i−1 ≺ u and v i ⪯̸ u. (For
i = 0, we omit the first condition.) Hence, we can decompose s as

s(c̄) = r0(c̄, r1(c̄, . . . rm1(c̄))) .
For i < j, set

r i j ∶= r i(c̄, r i+1(c̄, . . . r j−1(c̄, x))) .
Then there are two indices i < j such that

π(r0i) = π(r0 j) .
Consequently, we can use pumping to obtain a term

π(s(c̄)) = π(r0i(r i j)nr jm1)
which contains at least n occurrences of c, and the claim follows again by (1)n .

According to this lemma, we can check for cEF-definability of a lan-
guage K, by computing its syntactic algebra Syn(K), the associated con-
stant N, and then checking the equations for n = N.

317

VI. Temporal Logics

Corollary 3.5. It is decidable whether a given regular language K is cEF-
definable.

When taking the special case of n = 1 in Theorem 3.2, we obtain the
following characterisation of EF-definability.

Theorem 3.6. A language K ⊆ Ffb∅ Σ is definable in the logic EF if, and only if,
the syntactic algebra Syn(K) satisfies the following equations:

c + d = d + c (a(x) + b(x))ω = (ab(x))ω(ab)π = b(ab)π (a(x) + c)ω = (a(x + c))ω(abb′)ω = (ab′b)ω (a(x + c + c))ω = (a(x + c))ω
(aab)ω = (ab)ω [a(b(x , y))ωy]ωx = [ab(x , x)]ωx

ac = ac + c c = c + c [a(x + aπ c)]ω = aπ c ,

for all a, b, b′ ∈ Syn{x}(K) and c, d ∈ Syn∅(K).
Corollary 3.7. It is decidable whether a given regular language K ⊆ Ffb∅ Σ is
EF-definable.

The Proof

For the proof ofTheorem 3.2, we need to set up a bit of machinery. We start
by defining the suitable notion of bisimulation for cEFn . The difference to
the standard notion is that we use reachability instead of the edge relation
and that we also have to preserve the number of reachable positions.

Definition 3.8. Let m, n < ω.
(a) For trees s, t ∈ FfbΣ, we define

s ≈0n t : iff the roots of s and t have the same label,

and, inductively, we set s ≈m+1n t if,◆ the roots of s and t have the same label,

318

3. The logic EF

◆ for every n-tuple x̄ in dom(s) not containing the root, there is some
n-tuple ȳ in dom(t) not containing the root such that

s∣x i ≈mn t∣y i and x i = x j⇔ y i = y j , for all i , j < n ,
◆ for every n-tuple ȳ in dom(t) not containing the root, there is some

n-tuple x̄ in dom(s) not containing the root such that
s∣x i ≈mn t∣y i and x i = x j⇔ y i = y j , for all i , j < n .

To simplify notation, we will frequently write x ≈mn y for vertices x and y
instead of the more cumbersome s∣x ≈mn t∣y .
(b) For two forests s, t ∈ FfbΣ with possibly several components, we set

s ∼m+1n t if◆ for every n-tuple x̄ in s there is some n-tuple ȳ in t such that

s∣x i ≈mn t∣y i and x i = x j⇔ y i = y j , for all i , j < n ,
◆ for every n-tuple ȳ in t there is some n-tuple x̄ in s such that

s∣x i ≈mn t∣y i and x i = x j⇔ y i = y j , for all i , j < n . ⌟
Let us show that this notion of bisimulation captures the expressive power

of cEF. The proof is mostly standard. We start by introducing the following
notion of a type.

Definition 3.9. (a) We define the type tpmn (s) of a tree s ∈ FΣ by

tp0n(s) ∶= a and tpm+1n (s) ∶= ⟨a, θs⟩ ,
where a is the label at the root of s and

θs ∶= { ⟨l , σ⟩ ∣ l ≤ n , x0 , . . . , x l−1 ∈ dom(s) distinct, not equal to
the root, σ = tpmn (s∣x0) = ⋅ ⋅ ⋅ = tpmn (s∣x l−1) } .

(b) For an arbitrary forest s ∈ FΣ, we set

Tpm+1n (s) ∶= θs ,

319

VI. Temporal Logics

where

θs ∶= { ⟨l , σ⟩ ∣ l ≤ n , x0 , . . . , x l−1 ∈ dom(s) distinct ,
σ = tpmn (s∣x0) = ⋅ ⋅ ⋅ = tpmn (s∣x l−1) } . ⌟

A standard proof establishes the following equivalences.

Lemma 3.10. Let n,m < ω.
(a) For trees s, t ∈ F∅Σ, the following statements are equivalent.

(1) s ≈mn t
(2) tpmn (s) = tpmn (t)
(3) s ⊧ φ⇔ t ⊧ φ , for all φ ∈ cEFmn .

(b) For arbitrary forests s, t ∈ F∅Σ, the following statements are equivalent.
(1) s ∼mn t
(2) Tpmn (s) = Tpmn (t)
(3) s ⊧ φ⇔ t ⊧ φ , for all φ ∈ cEFmn .

Proof. (a) (2)⇒ (1) follows by a straightforward induction onm and (1)⇒ (3)
by induction on φ. For (3)⇒ (2) it is sufficient to show that, for every type τ,
there exists a formula χτ ∈ EFmn such that

s ⊧ χτ iff tpmn (s) = τ , for every tree s .

We proceed by induction on m. If m = 0, the type τ is of the form a ∈ Σ.
Hence, we can set χτ ∶= Pa . If m > 0, then τ = ⟨a, θ⟩ for some a ∈ Σ and
some set θ of types of lower rank. We can set

χτ ∶= Pa ∧ ⋀⟨l ,σ⟩∈θ El χσ ∧ ⋀⟨l ,σ⟩∉θ ¬El χσ .

(b) is proved in the same way.

Corollary 3.11. A language L ⊆ FΣ is cEFmn -definable if, and only if, it is
regular and satisfies

s ∼mn t implies s ∈ L⇔ t ∈ L , for all regular forests s, t ∈ F∅Σ .

320

3. The logic EF

Proof. (⇒) follows by the implication (1) ⇒ (3) of Lemma 3.10.(⇐) Set
φ ∶= ⋁{ χτ ∣ τ = Tpmn (s) for some regular forest s ∈ L } ,

where χτ are the formulae from the proof of Lemma 3.10. For a regular forest
t ∈ F∅Σ, it follows that

t ⊧ φ iff Tpmn (t) = Tpmn (s) , for some regular forest s ∈ L ,

iff t ∼mn s , for some regular forest s ∈ L ,

iff t ∈ L .

LetK be the language defined by φ. SinceL andK are both regular languages
that contain the same regular forests, it follows that L = K.Thus, L is cEFmn -
definable.

We want to show that an algebra recognises cEFn-definable languages if,
and only if, it satisfies the following equations.

Definition 3.12. (a) An F-algebra A is an algebra for cEFn if it is finitary,
generated by A∅ ∪A{x}, and satisfies the following equations.
(g1)n aξ(c, . . . , c) + (n − ∣ξ∣) × c = aξ(c, . . . , c) + (n − ∣ξ∣ + 1) × c
(g2) (ab)π = b(ab)π

(g3) aω + aω = aω
(g4) c + d = d + c
(g5) (a(x) + b(x))ω = (ab(x))ω
(g6) (a(x) + c)ω = (a(x + c))ω
(g7) (a(x + c + c))ω = (a(x + c))ω
(g8) [a(b(x , y))ωy]ωx = [ab(x , x)]ωx
(g9) (abb′)ω = (ab′b)ω
(g10) (aab)ω = (ab)ω
(g11) [a(x + bc + c)]ω = [a(x + bc)]ω

321

VI. Temporal Logics

(g12)n [a(x + (a(n × x))π(c))]ω = n × (a(n × x))π(c)
where a, b, b′ ∈ A{x}, c, d ∈ A∅, aξ ∈ Aξ , and ∣ξ∣ ≤ n.

(b) An F-algebra A is an algebra for cEF if it is an algebra for cEFn , for
some n ≥ 1. ⌟
In the proof that algebras for cEF recognise exactly the cEF-definable

languages, we use one of the Green’s relations (suitably modified for F-
algebras).

Definition 3.13. Let A be an F-algebra. For a, b ∈ A∅, we define
a ≤L b : iff a = c(b) or a = b + d ,

for some c ∈ A{x} , d ∈ A∅ . ⌟
Lemma 3.14. Let A be an algebra for cEFk .
(a) The relation ≤L is antisymmetric.
(b) For a ∈ A{x} , c ∈ A∅, we have

c = c + c implies ac = ac + c ,
c = a(c, c) implies c = c + c .

Proof. (a) For a contradiction, suppose that there are elements a ≠ b with
a ≤L b ≤L a. By definition, we can find elements c and d such that

(1) a = c(b) or (2) a = b + c , and (i) b = d(a) or (ii) b = a + d .

We have thus to consider four cases. In each of them we obtain a contradic-
tion via (g1)k or (g2).

(1,i) a = cb = cda = (cd)π(a) = d(cd)π(a) = da = b .
(1,ii) a = cb = c(a + d) = (c(x + d))π(a)= (c(x + d))π(a) + d = a + d = b .
(2,i) b = da = d(b + c) = (d(x + c))π(b)= (d(x + c))π(b) + c = b + c = a .
(2,ii) a = b + c = a + d + c = a + k × (d + c)= a + k × (d + c) + d = a + d = b .

322

3. The logic EF

Figure 3.: A forest s with a convex set U (in bold) that has three close U-ends (on
the left) and five far ones (on the right). The height is h(s,U) = 2.

(b) By (g1)k we have

c = c + c implies ac = a(c + c) = a(k × c)= a(k × c) + c = ac + c ,
c = a(c, c) implies c = a(c, c) = (a(x , c))π(c)= (a(x , c))π(c) + c = c + c .

Let us take a look at the following situation (see Figure 3). Let s be a
forest andU a set of vertices. We assume thatU is convex in the sense that
u ≤pf v ≤pf w and u,w ∈ U implies v ∈ U (where ≤pf denotes the forest
order). We call the maximal elements (w.r.t. ≤pf) of U the U-ends. An U-
end u is close if u′ ∈ U, for all u′ ≤pf u. Otherwise, it is far.We would like to
know how many of theU-ends are close.

Lemma 3.15. Let m ≥ 0 and n ≥ 1, let s ∼m+n+2n t be two forests, U ⊆ dom(s)
a convex set that is closed under ≈mn , and set

V ∶= { v ∈ dom(t) ∣ u ≈mn v for some u ∈ U } .
(a) V is convex and closed under ≈mn .
(b) The numbers of ends of U and V are the same, or both numbers are at

least n.

323

VI. Temporal Logics

(c) If U has less than n ends, then U is finite if, and only if, V is finite.

(d) If U is finite and has less than n ends, thenU and V have the same numbers
of close ends and the same number of far ones.

Proof. (a) If V is not convex, there are vertices v <pf v′ <pf v′′ of t with
v , v′′ ∈ V and v′ ∉ V . Fix vertices u <pf u′ <pf u′′ with u ≈m+2n v, u′ ≈m+1n
v′, and u′′ ≈mn v′′. By definition of V , we have u, u′′ ∈ U and u′ ∉ U. This
contradicts the fact thatU is convex.

To see that V is closed under ≈mn , suppose that v ∈ V and v ≈mn v′. By
definition of V , there is some u ∈ U with u ≈mn v. Hence, u ≈mn v ≈mn v′. As≈mn is transitive, this implies that v′ ∈ V .

(b) For a contradiction, suppose thatU has k < n ends while V has more
than k ends. (By (a), the other case follows by symmetry.) Choose k + 1
ends v0 , . . . , vk ∈ V . Since s ≈m+2n t, there are vertices u0 , . . . , uk in s with
u i ≈m+1n v i . By definition ofV , we have u i ∈ U. By assumption, there is some
index j such that u j is not an end. Hence, we can find a vertex u′ >pf u j
with u′ ∈ U. Fix a vertex v′ >pf v j of t with u′ ≈mn v′. Then v′ ∈ V and v j is
not an end. A contradiction.

(c) For a contradiction, suppose thatU is finite, but V is not. (The other
case follows again by symmetry.) By (b), V has only finitely many ends.
Hence, there is some element v ∈ V such that v ≰pf v′ for every end v′ of V .
Since s ≈m+3n t, we can find a vertex u of s with u ≈m+2n v. This implies that
u ∈ U. AsU is finite, we can find some end u′ ofU with u ≤pf u′. Fix some
v′ ≥pf v with u′ ≈m+1n v′. Then u′ ∈ U implies v′ ∈ V . By choice of v, there
is some v′′ >pf v′ with v′′ ∈ V . Choose u′′ >pf u′ with u′′ ≈mn v′′. By choice
of u′, we have u′′ ∉ U. This contradicts the fact that v′′ ∈ V .

(d) By (b), we only need to prove that the number of close ends is the same.
Let Û and V̂ be the sets ofU-ends and V-ends, respectively. We denote by
N(s,U) the number of close U-ends and by F(s,U) the set of all proper
subforests s′ of s that are attached to some vertex v that does not belong toU
but where at least one root belongs to U. (A forest s′ is a proper subforest
of s attached at v if s′ can be obtained from the subtree s∣v by removing the

324

3. The logic EF

root v.) We define the following equivalence relation.

⟨s,U⟩ ≍0 ⟨t,V⟩ : iff N(s,U) = N(t,V) ,
⟨s,U⟩ ≍i+1 ⟨t,V⟩ : iff N(s,U) = N(t,V) and

#τ(s,U) = #τ(t,V) ,
for every ≍i -class τ,

where #τ(s,U) denotes the number of subforests s′ ∈ F(s,U) that belong
to the class τ.
We define theU-height of s by

h(s,U) ∶= ⎧⎪⎪⎨⎪⎪⎩
0 if F(s;U) = ∅
1 +max{ h(s′ ,U) ∣ s′ ∈ F(s,U) } otherwise.

By induction on l , we will prove the following claim:

(∗) s ∼m+l+2n t and h(s,U) ≤ l implies
h(s,U) = h(t,V) and ⟨s,U⟩ ≍l ⟨t,V⟩ .

As h(s,U) ≤ ∣Û∣ < n, it then follows that ⟨s,U⟩ ≍n ⟨t,V⟩. In particular,
N(s,U) = N(t,V), as desired.
It thus remains to prove (∗). First, consider the case where l = 0. If

h(t,V) > 0, there is someV-end v that is not close. Fix some vertex v′ <pf v
with v′ ∉ V . Since s ∼m+2n t, we can find vertices u′ <pf u of swith u′ ≈m+1n v′
and u ≈mn v. By definition of V , it follows that u′ ∉ U and u ∈ U. As U is
finite, we can find some U-end w ≥pf u. But u′ <pf u ≤pf w implies that
w is not close. Hence, h(s,U) > 0. A contradiction.
For the second part, suppose that ⟨s,U⟩ ≭0 ⟨t,V⟩, that is, N(s,U) ≠

N(t,V). By symmetry, we may assume that m ∶= N(s,U) < N(t, v). Pick
m + 1 distinct close V-ends v0 , . . . , vm . Since m + 1 ≤ n and s ∼m+2n t,
there are elements u0 , . . . , um ∈ dom(s) with u i ≈m+1n v i . There must be
some index j such that u j is not a close U-end. As U is closed under ≈mn
and u j ≈mn v j ≈mn u, for some u ∈ U, it follows that u j ∈ U. Furthermore,

325

VI. Temporal Logics

u j ≈m+1n v j and the fact that v j is a V-end implies that u′ ∉ U, for all
u′ >pf u j . Thus, u j is aU-end. But h(s,U) = 0 implies that allU-ends of s
are close. A contradiction.
For the inductive step, suppose that s ∼m+(l+1)+2n t holds but we have

h(s,U) ≠ h(t,V) or ⟨s,U⟩ ≭l+1 ⟨t,V⟩. We distinguish several cases.
(i) Suppose that h(s,U) > h(t,V). By definition of h, there is a subforest

s′ ∈ F(s,U) with h(s′ ,U) = h(s,U) − 1. Then there is some subforest t′
of t with s′ ∼m+l+2n t′. By inductive hypothesis it follows that

h(s,U) = h(s′ ,U) + 1 = h(t′ ,V) + 1 < h(t,V) + 1 ≤ h(s,U) .
A contradiction.

(ii) Suppose that h(s,U) < h(t,V). By definition of h, there is a sub-
forest t′ ∈ F(t,V) with h(t′ ,V) = h(t,V) − 1. Fix a subforest s′ of s with
s′ ∼m+l+2n t′. By inductive hypothesis, it follows that

h(s,U) > h(s′ ,U) = h(t′ ,V) = h(t,V) − 1 ≥ h(s,U) .
A contradiction.

(iii) Suppose that N(s,U) ≠ N(t, v) and there is no ≍l -class τ with
#τ(s,U) ≠ #τ(t,V). Then we have ∣Û∣ −N(s,U) = ∣V̂ ∣ −N(t,V). Since∣Û∣ = ∣V̂ ∣ it follows that N(s,U) = N(t,V). A contradiction.
(iv) Finally, suppose that #τ(s,U) ≠ #τ(t,V), for some ≍l -class τ. By

symmetry, we may assume that m ∶= #τ(s,U) < #τ(t,V). We choose m + 1
vertices v0 , . . . , vm of t such that the attached subforests have class τ. Since
s ∼m+(l+1)+2n t and m + 1 ≤ n, there are vertices u0 , . . . , um of s such that
u i ∼m+l+2n v i , for all i ≤ m. Let s i be the subforest of s attached to u i , and
t i the subforest of t attached to v i . By inductive hypothesis, it follows that
s i ≍l t i , for i ≤ m. Thus, s has at least m + 1 different subforest in the class τ.
A contradiction.

Corollary 3.16. Let s ∼m+n+2n t be forests such that, for every c ∈ A∅, the sets
Uc ∶= { x ∈ dom(s) ∣ π(s∣x) = c }
Vc ∶= { y ∈ dom(t) ∣ π(t∣y) = c }

are convex and closed under ≈mn . Then π(s) = π(t).

326

3. The logic EF

Proof. Suppose that s = s0 + ⋅ ⋅ ⋅ + s l−1 and t = t0 + ⋅ ⋅ ⋅ + tk−1, for trees
s i and t i . It is sufficient to show that, for every c ∈ A∅ such that the number
of components s i with π(s i) = c is different from the number of t i with
π(t i) = c, we have

π(s) = π(s) + π × c and π(t) = π(t) + π × c .

Adding enough terms c to π(s) = π(s0) + ⋅ ⋅ ⋅ + π(s l−1) and π(t) =
π(t0) + ⋅ ⋅ ⋅ + π(tk−1) it then follows that π(s) = π(t).

Hence, fix such an element c. By Lemma 3.15, we obtain one of the follow-
ing cases.
(i) U and V both have at least n ends. Then they contain an antichain

of size n. and we can write s as r(s′0 , . . . , s′n−1) with π(s′i) = c. Hence, it
follows by (g1)n that

π(s) = π(r)(c, . . . , c) = π(r)(c, . . . , c) + π × c = π(s) + π × c .

For t it follows in the same way that

π(t) = π(t) + π × c .

(ii) BothU and V are infinite, but each has less than n ends. Then they
contain an infinite chain and we can use Ramsey’s Theorem (or the fact that
s is regular) to write π(s) as a′eω where ec = c = eω . By (g3) and (g1)n it
follows that

π(s) = a′eω = a′(eω + ⋅ ⋅ ⋅ + eω) = a′(c + ⋅ ⋅ ⋅ + c)= a′(c + ⋅ ⋅ ⋅ + c) + π × c= π(s) + π × c .

For t, we similarly obtain

π(t) = π(t) + π × c .

(iii)The last remaining case is where bothU andV are finite and they have
the same number of close ends.Then the number of indices i with π(s i) = c
would be the same as the number of i with π(t i) = c, in contradiction to
our choice of c.

327

VI. Temporal Logics

Before presenting the main proof, let us quickly recall how to solve a
system of equations using a fixed-point operator. Suppose we are given a
system of the form

x0 = r0(x0 , . . . , xn−1) ,⋮
xn−1 = rn−1(x0 , . . . , xn−1) ,

where r0 , . . . , rn−1 ∈ FξA and ξ = {x0 , . . . , xn−1}. Inductively defining
s i(x0 , . . . , x i−1) ∶= (r i(x0 , . . . , x i , s i+1 , . . . , sn−1))ω i ,

we obtain the new system

x0 = s0 ,
x1 = s1(x0) ,⋮

xn−1 = sn−1(x0 , . . . , xn−2) ,
which can now be solved by substitution.

Proposition 3.17. Let A be an algebra for cEFn . Then

s ≈(n+3)(∣A∅∣+1)n t implies π(s) = π(t) ,
for all regular trees s, t ∈ F∅(A∅ ∪A{x}).
Proof. Let m be the number of L-classes above b ∶= π(s) (including that
of b itself). We will prove by induction on m that

s ≈ f (m)n t implies π(t) = b ,
where f (m) ∶= (n + 3)(m + 1). Set

S ∶= { x ∈ dom(s) ∣ π(s∣x) = b } ,
T ∶= { y ∈ dom(t) ∣ x ≈ f (m−1) y for some x ∈ S } .

328

3. The logic EF

As t is regular it is the unravelling of some finite graph G. For every
y ∈ T, we will prove that π(t∣y) = b by induction on the number of strongly
connected components of G that are contained in T and that are reachable
from y. Hence, fix y ∈ T, let C be the strongly connected component ofG
containing y, and choose some x ∈ S with x ≈ f (m)−1n y. We distinguish two
cases.
(a) Let us begin our induction with the case where C is trivial, i.e., it

consists of the single vertex y without self-loop.Then

t∣y = a(t0 + ⋅ ⋅ ⋅ + tk−1 + t′0 + ⋅ ⋅ ⋅ + t′q−1)
where a ∶= t(y) and the subtrees t i lie outside of T while the t′i contain
vertices in T. Set d i ∶= π(t i). By our two inductive hypotheses, we already
know that π(t′i) = b and that b <L d i . Hence,

π(t∣y) = a(d0 + ⋅ ⋅ ⋅ + dk−1 + q × b) .
We have to show that this value is equal to b. Suppose that

s∣x = a(s0 + ⋅ ⋅ ⋅ + s l−1 + s′0 + ⋅ ⋅ ⋅ + s′p−1) ,
where again the trees s i lie outside of S, while the s′i contain vertices of S.
Setting c i ∶= π(s i) it follows that

π(s∣x) = a(c0 + ⋅ ⋅ ⋅ + c l−1 + p × b) .
Since x ∈ S, we already know that this value is equal to b. Hence, it remains
to show that

a(c0 + ⋅ ⋅ ⋅ + c l−1 + p × b) = a(d0 + ⋅ ⋅ ⋅ + dk−1 + q × b) .
For c ∈ A∅, letUc be the set of all vertices u >pf x such that π(s∣u) = c

and let Vc be the set of vertices v >pf y with π(t∣v) = c. As ≤L is antisym-
metric, these sets are convex. Furthermore, by inductive hypothesis on m,
they are also closed under ≈ f (m−1)n . Since f (m) − 1 = f (m − 1) + n + 2, it
therefore follows by Corollary 3.16 that

c0 + ⋅ ⋅ ⋅ + c l−1 = d0 + ⋅ ⋅ ⋅ + dk−1 .

329

VI. Temporal Logics

If p = q, we are done. Hence, we may assume that p ≠ q. To conclude the
proof, we set

U ∶= { u ∈ S ∣ x <pf u } and V ∶= { v ∈ T ∣ y <pf v } .
If p > 0, then x ≈ f (m)−1n y andU ≠ ∅ implies V ≠ ∅. Hence, q > 0. In the
same way, q > 0 implies p > 0. Consequently, we have p, q > 0. We consider
several cases.

(i) If b + b = b, then
a(d0 + ⋅ ⋅ ⋅ + dk−1 + q × b) = a(c0 + ⋅ ⋅ ⋅ + c l−1 + q × b)= a(c0 + ⋅ ⋅ ⋅ + c l−1 + p × b) = b ,

as desired.
(ii) If U is not a chain, we obtain b = a′(b, b), for some a′. Hence

Lemma 3.14 implies that we are in case (i).
(iii) If U contains an infinite chain, we can use Ramsey’s Theorem (or

the fact that s is regular), to obtain a factorisation b = eω , which implies that
b + b = b by (g3). Hence, we are in case (i) again.
(iv) IfU is a finite chain, then so is V , by Lemma 3.15. Hence, p = 1 = q

and we are done.
(b) It remains to consider the case where the component C is not trivial.

Then we can factorise

t∣y = r(t0 , . . . , tk−1 , t′0 , . . . , t′q−1) ,
where r ∈ FA is the unravelling of C, the subtrees t i lie outside of T, while
the subtrees t′i contain vertices in T. Setting d i ∶= π(t i), it follows by the
two inductive hypotheses that d i >L b and π(t′i) = b. Consequently,

π(t∣y) = π(r)(d0 , . . . , dk−1 , b, . . . , b) .
Let us simplify the term r. Introducing one variable xv , for every vertex v ∈ C,
we can write r as a system of equations

xv = av(xu0 + ⋅ ⋅ ⋅ + xu l−1 + c0 + ⋅ ⋅ ⋅ + cq−1) , for v ∈ C ,

330

3. The logic EF

where u0 , . . . , u l−1 are the successors of v that belong to C and c0 , . . . , cq−1
are constants from {d0 , . . . , dk−1 , b} that correspond to successors outside
of C. Solving this system of equations in the way we explained above, we ob-
tain a finite term r0 built up from elements ofA∅∪A{x} using as operations
the horizontal product, the vertical product, and the ω-power operation,
such that

π(t∣y) = π(r0)(d0 , . . . , dk−1 , b) .
With the help of the equations (g5)–(g10), we can transform r0 in several
steps (while preserving its product) until it assumes the form

[a0⋯a j−1(x + d0 + ⋅ ⋅ ⋅ + dk−1 + b)]ω
or [a0⋯a j−1(x + d0 + ⋅ ⋅ ⋅ + dk−1)]ω
where a0 , . . . , a j−1 are the labels of the vertices in C.

We distinguish two cases. First suppose that there is no term with value b
in the above sum.This means that every subtree attached to C lies entirely
outside of the set T. Then x ≈ f (m)−1n y implies that we can factorise s∣x as

s∣x = r′(s0 , . . . , s l−1)
where◆ {π(s0), . . . , π(s l−1)} = {d0 , . . . , dk−1} ,◆ all labels of r′ are among a0 , . . . , a j−1,◆ every vertex of r′ has, for every i < n, some descendant labelled a i .
As above we can transform s∣x into

[a0⋯a j−1(x + c0 + ⋅ ⋅ ⋅ + c l−1)]ω
where c i ∶= π(s i). Since {c0 , . . . , c l−1} = {d0 , . . . , dk−1} it follows that

π(t∣y) = (a0⋯a j−1(x + d0 + ⋅ ⋅ ⋅ + dk−1))ω= (a0⋯a j−1(x + c0 + ⋅ ⋅ ⋅ + c l−1))ω = π(s∣x) = b .

331

VI. Temporal Logics

It thus remains to consider the case where some term has value b. Using
(g7) and (g11) and the fact that b <L d i , it then follows that

π(t∣y) = [a0⋯a j−1(x + d0 + ⋅ ⋅ ⋅ + dk−1 + b)]ω
= [a0⋯a j−1(x + b)]ω .

For every i < j, we fix some z i ∈ S with label a i such that x <pf z i and some
successor of z i also belongs to S. Then

π(s∣z i) = a i(c i0 + ⋅ ⋅ ⋅ + c il i−1 + b + ⋅ ⋅ ⋅ + b) ,
for some c i0 , . . . , c

i
l i−1 >L b. Since

b = π(s∣z i) = a i(c i0 + ⋅ ⋅ ⋅ + c il i−1 + b + ⋅ ⋅ ⋅ + b)
≤L c i0 + ⋅ ⋅ ⋅ + c il i+1 + b + ⋅ ⋅ ⋅ + b ≤L b

it follows by asymmetry of ≤L that
c i0 + ⋅ ⋅ ⋅ + c il i+1 + b + ⋅ ⋅ ⋅ + b = b

and a i(b) = a i(c i0 + ⋅ ⋅ ⋅ + c il i+1 + b + ⋅ ⋅ ⋅ + b) = b .
Consequently, a0⋯a j−1b = b, which implies that aπb = b where a ∶=
a0⋯a j−1. We claim that b + b = b. It then follows that

b = a(b) = a(n × x)(b) = (a(n × x))π(b) ,
which, by (g12)n , implies that

π(t∣y) = [a(x + b)]ω = [a(x + a(n × x)π(b))]ω= n × a(n × x)π(b) = n × b = b ,
as desired.
Hence, it remains to prove our claim that b + b = b. By our assumption

on y and C, there is some vertex u ∈ C that has some successor v ∉ C with

332

3. The logic EF

v ∈ T. Since s∣x ≈ f (m)−1n t∣y and f (m) ≥ f (m− 1)+ n+ 1, there are vertices
x ≤pf u0 <pf ⋅ ⋅ ⋅ <pf un−1 each of which has some successor v i ∈ S with
v i ≰pf u i+1. Consequently, we can write

π(s∣x) = a′a′′(b, . . . , b) and π(s∣u0) = a′′(b, . . . , b) ,
where a′ ∈ A{x} and a′′ ∈ An . Hence, it follows by (g1)n that

b + b = π(s∣u0) + b = a′′(b, . . . , b) + b= a′′(b, . . . , b) = π(s∣u0) = b .
Theorem 3.18. A regular F-algebra A is an algebra for cEFn if, and only if,
there exists a number m < ω such that

s ∼mn t implies π(s) = π(t) ,
for all regular forests s, t ∈ F(A∅ ∪A{x}).
Proof. (⇐) In each of the equations (g1)n–(g12)n , the two terms on both
sides are ∼mn -equivalent.(⇒) By Proposition 3.17, there is some number m such that

s ≈mn t implies π(s) = π(t) ,
for all regular trees s, t ∈ F(A∅ ∪A{x}).

Suppose that s, t ∈ F(A∅ ∪A{x}) are regular forests. We claim that

s ∼m+n+2n t implies π(s) = π(t) .
Suppose that s = s0 + ⋅ ⋅ ⋅ + s l−1 and t = t0 + ⋅ ⋅ ⋅ + tk−1, for trees s i and t i , and
set c i ∶= π(s i) and d i ∶= π(t i). As in Part (a) of the proof of Proposition 3.17,
we can use Corollary 3.16 to show that π(s) = π(t).

We complete the proof ofTheorem 3.2 as follows.

Theorem 3.19. A regular language K ⊆ F∅Σ is cEFn -definable if, and only if,
its syntactic algebra Syn(K) is an algebra for cEFn .

333

VI. Temporal Logics

Proof. (⇐) Suppose that Syn(K) is an algebra for cEFn . ByTheorem 3.18,
every language recognised by Syn(K) is invariant under ∼mn , for some m
(when considering regular forests only). Consequently, the claim follows by
Corollary 3.11.(⇒) Suppose that the language K is cEFn-definable. By Corollary 3.11 it
is then ∼mn -invariant, for some m. Thus ∼mn is contained in the syntactic con-
gruence of K, which means that synK ∶ FΣ → Syn(K)maps ∼mn -equivalent
forests to the same value. Given forests s, t ∈ F(Syn0(K) ∪ Syn1(K)) with
s ∼mn t, we can choose forests s′ , t′ ∈ FΣ with s′ ∼mn t′ and s = FsynK(s′)
and t = FsynK(t′). Then

s ∼mn t implies π(s) = synK(s′) = synK(t′) = π(t) .
ByTheorem 3.18, it follows that Syn(K) is an algebra for cEFn .
4. Wreath Produ$t+

In this section we provide an algebraic analogue to the cascading operation
on languages. We start with a bit of useful notation concerning ranked sets
and forests.

Definition 4.1. (a) For a set A ∈ D, we denote by A∆ ∈ DΞ the Ξ-sorted
set with (A∆)ξ ∶= Aξ .

(b) For two sets A, B ∈ DΞ , we set BA ∶= DΞ(A, B).
(c) For a forest t ∈ FξA, a vertex v ∈ dom(t) of sort ξ, and a variable

x ∈ ξ, we denote by t↓xv the subforest of t attached to the x-successors of v,
i.e.,

t∣v = (t(v))((t↓xv)x∈ξ) .
(d) For a forest t ∈ FξA and a tuple ā ∈ (A∅)ξ , we denote by t ⇐

ā ∈ F∅A the forest obtained from t by replacing each variable x by the
corresponding value ax , for x ∈ ξ. ⌟

334

4. Wreath products

First, let us give a simplified algebraic account that does not quite yield
an F-morphism, but that illustrates the main idea of the more complicated
construction below.

Definition 4.2. (a) For a forest t ∈ F∅Σ and a morphism φ ∶ FΣ → A, we
define the φ-annotation t ◁ φ ∈ F∅(Σ × A∆∅) of t as the forest that adds
to each vertex v the φ-images of the subtrees attached to successors of v.
Formally,

(t◁ φ)(v) ∶= ⟨t(v), (φ(t↓xv))x∈ξ⟩ , for v ∈ dom(t) of arity ξ .
(b) The cascade composition of two morphisms α ∶ FΣ → A and β ∶

F(Σ ×A∆∅) → B is the function α◁ β ∶ F∅Σ → B∅ defined by

(β◁ α)(t) ∶= β(t◁ α) , for t ∈ F∅Σ . ⌟
Thus, to simulate the cascading operation on languages, we can first trans-

form a given input forest t ∈ F∅Σ to the forest t◁ α and then compute its
image under β. In other words, we can use the cascade composition β◁ α
to ‘recognise’ a language. But note that these notions are only defined for
forests of sort ∅. In particular, β ◁ α is no morphism. To handle higher
arities, we need to set up a bit of algebraic machinery.

The problem with generalising the labelling operation t◁ α is that, when
computing the images α(s i) of subforests s i , we have to deal with the vari-
ables appearing in s i . Each variable indicates a ‘missing’ part of the forest
which we have to fill in some way. In order to compute the α-image of the
complete subforest we have to know the α-images of these missing parts.
For this reason, we will replace in t◁ α every label from A∅ by a function
A∆ → A∅ that maps the missing α-images to the value we are interested in.
This is the main idea behind the following definition.

Definition 4.3. The wreath product A ○B of two F-algebras A and B is the
F-algebra with universe

C ∶= A× BA∆∅

335

VI. Temporal Logics

and the following product. Let p ∶ C → A and q ∶ C → BA∆∅ be the respective
projections. Given a forest t ∈ FξC, we introduce two functions λ and ρ
where λ(ā) computes the product of the (first components of the) subtrees
whenwe substitute the values ā for the variables, and ρ applies these products
to the function stored in the second component of a vertex. Formally, we
define λ ∶ Aξ∅ → F∅(A∆∅) and ρ ∶ Aξ∅ → FB by

ρ(ā)(v) ∶= q(t(v))(λ(ā)(v)) ,
λ(ā)(v) ∶= (π(sx))x∈ξ , where sx ∶= (Fp(t) ⇐ ā) ↓xv .

Then we set

π(t) ∶= ⟨π(Fp(t)), π ○ ρ⟩ . ⌟
Remark. Note that λ is the unique function such that

((Fp(t) ⇐ ā) ◁ π)(v) = ⟨p(t(v)), λ(ā)(v)⟩ . ⌟
Before proving that A○B really is an F-algebra, let us see how the wreath

product solves our initial problem regarding cascades of morphisms.

Lemma 4.4. Let Σ be a finite alphabet and A and B two F-algebras. There
exists a bijection between pairs of morphisms

α ∶ FΣ → A and β ∶ F(Σ ×A∆∅) → B

and morphisms φ ∶ FΣ → A ○B. This bijection respects the equation

p ○ φ = α
where p ∶ A ○B→ A is the projection to the first component.

Proof. Given α and β, we define φ by

φ(sing(c)) ∶= ⟨α(sing(c)), ā ↦ β(sing(⟨c, ā⟩)) , for c ∈ Σ .

336

4. Wreath products

Since FΣ is freely generated by the elements of the form sing(c) this defines
a unique morphism. Conversely, given φ we set

α(sing(c)) ∶= p(φ(sing(c)))
β(sing(⟨c, ā⟩)) ∶= q(φ(sing(c)))(ā) .

We claim that these two constructions are inverse to each other. To keep
the notation simple, we identify sing(c) with c and drop the sing. For the
first direction, suppose that α′ and β′ are obtained from φ which in turn is
obtained from α and β. Then

α′(c) = p(φ(c)) = α(c) ,
β′(c, ā) = q(φ(c))(ā) = β(c, ā) .

Conversely, suppose that φ′ is obtained from α and β which in turn are
obtained from φ. Then

φ′(c) = ⟨α(c), ā ↦ β(c, ā)⟩
= ⟨p(φ(c)), ā ↦ q(φ(c))(ā)⟩
= ⟨p(φ(c)), q(φ(c))⟩
= φ(c) .

Proposition 4.5. If A and B are F-algebras, so is A ○B.

Proof. Set C ∶= A ○B. For the unit law, let ⟨c, f ⟩ ∈ Cξ . Then

π(sing(⟨c, f ⟩)) = ⟨c, π ○ ρ⟩
where

Fp(t)⇐ ā = c(ā) ,
λ(ā)(⟨⟩) = ā ,

ρ(ā) = sing(f (ā)) .

337

VI. Temporal Logics

Hence, π(ρ(ā)) = π(sing(f (ā))) = f (ā) and π ○ ρ = f , as desired.
It remains to prove that π(flat(T)) = π(Fπ(T)), for T ∈ FξFC. Since

A satisfies the associative law, this equation holds for the first components
of the above products and it is sufficient to check the equality of the second
components. Let λv and ρv be the functions used to define π(T(v)), λ̂ and ρ̂
those defining π(flat(T)), and λ∗ and ρ∗ those for the outer product of
π(Fπ(T)). Let R ∶ Aξ∅ → FξFB be the function defined by

R(ā) ≃sh T and R(ā)(v) ∶= ρv(λ∗(ā)(v)) , for ā ∈ Aξ∅ .
We claim that

ρ̂ = flat ○ R and Fπ ○ R = ρ∗ .
It then follows that

q(π(flat(T))) = π ○ ρ̂ = π ○ flat ○ R= π ○ Fπ ○ R = π ○ ρ∗ = q(π(Fπ(T))) ,
as desired.
Hence, it remains to prove the claim. First, note that, for a vertex v ∈

dom(T) and a tuple ā ∈ Aξ∅, we have
ρ∗(ā)(v) = q(π(T(v)))(λ∗(ā)(v))= π(ρv(λ∗(ā)(v))) = π(R(ā)(v)) ,

which proves the second equation. For the other one, consider two vertices
v ∈ dom(T) and x ∈ dom(T(v)), and let x′ be the corresponding vertex
of flat(T). Then

flat(R(ā))(x′) = R(ā)(v)(x)= ρv(λ∗(ā)(v))(x)= q(T(v)(x))(λv(λ∗(ā)(v)))= q(flat(T)(x′))(λv(λ∗(ā)(v)))

338

4. Wreath products

and

ρ̂(ā)(x′) = q(flat(T)(x′))(λ̂(ā)(x′)) .
Thus, it is sufficient to prove that

λv(λ∗(ā)(v))(x) = λ̂(ā)(x′) .
Note that

λv(λ∗(ā)(v))(x) = (π(szv))z ,
λ∗(ā)(v) = (π(Sz∗))z ,
λ̂(ā)(x′) = (π(ŝz))z ,

where

szv ∶= (Fp(T(v)) ⇐ λ∗(ā)(v)) ↓zx = Fp(rzv) ⇐ λ∗(ā)(v) ,
Sz∗ ∶= (Fp(Fπ(T)) ⇐ ā) ↓zv = Fp(Fπ(Rz∗)) ⇐ ā ,
ŝz ∶= (Fp(π(flat(T))) ⇐ ā) ↓zx′ = Fp(r̂z) ⇐ ā ,

and

rzv ∶= T(v)↓zx , Rz∗ ∶= T↓zv , r̂z ∶= flat(T)↓zx′ ,
Note that

r̂z = rzv((flat(Rz∗))z) .
Furthermore, it follows that

π(Sz∗) = π(Fp(Fπ(Rz∗)) ⇐ ā)
= π(Fπ(FFp(Rz∗) ⇐ sing(ā)))
= π(flat(FFp(Rz∗) ⇐ sing(ā)))
= π(flat(FFp(Rz∗)) ⇐ ā) ,
= π(Fp(flat(Rz∗)) ⇐ ā) .

339

VI. Temporal Logics

Consequently,

π(szv) = π(Fp(rzv) ⇐ λ∗(ā)(v))= π(Fp(rzv) ⇐ (π(Fp(flat(Ry∗)) ⇐ ā))y)= π((Fp(rzv))((Fp(flat(Ry∗)) ⇐ ā)y))= π((Fp(rzv))((Fp(flat(Ry∗))y)) ⇐ ā)
= π(Fp(rzv((flat(Ry∗))y) ⇐ ā))
= π(Fp(r̂z) ⇐ ā)
= π(ŝz) ,

as desired.

Unfortunately, in general wreath products do not preserveMSO-definable
as, similar to cartesian products, a wreath product of finitely generated
algebras is not necessarily finitely generated. But we can show that every
finitely generated subalgebra of a wreath product ofMSO-definable algebras
is againMSO-definable. For our purposes, this weaker property is sufficient
since the images of recognising morphisms are always finitely generated.

Proposition 4.6. If A andB are locallyMSO-definable F-algebras, so isA○B.

Proof. Let C ⊆ A ○ B be finite and set

D ∶= { b(c̄) ∣ ⟨a, b⟩ ∈ C , c̄ ∈ A∆∅ } .
Then D is also finite. By assumption, there existMSO-formulae φa and ψb ,
for a ∈ A and b ∈ B, such that

π(t) = a iff t ⊧ φa for t ∈ Fp[C] ,
π(t) = b iff t ⊧ ψb for t ∈ FD .

We have to construct a formula checking that a forest t ∈ FC evaluates to a
given value.

340

4. Wreath products

Let φ′a be the formula obtained from φa by replacing every atomic formula
of the form Pcx (where Pc is the predicate checking for the letter c) by the
disjunction⋁d P⟨c ,d⟩x (which checks that the first component of the letter
is equal to c). Since p(π(t)) = π(Fp(t)) it follows that

t ⊧ φ′a iff p(π(t)) = a .
For the second component, we proceed as follows. Given an input forest

t ∈ FξC, our formula will guess two families (R ā)ā∈Aξ∅ and (L ā)ā∈Aξ∅ of

labellings of t where R ā encodes the forest ρ(ā) and L ā the forest λ(ā).
Since ρ(ā) ∈ FD, we can then use the formula ψb to check whether the
labelling R ā evaluates to b. But first, we have to check that R ā and L ā are
correct. For L ā , which contains products in A, we can use the formulae φa .
For R ā , note that ρ(ā)(v) is obtained by a local computation from λ(ā)(v).
Hence, we can check R ā once we have verified L ā .

Let us collect a fewmore useful algebraic properties of the wreath product.
The proofs are straightforward, but rather tedious.

Lemma 4.7. Let A and B be F-algebras.
(a) There exists a canonical embedding A ×B→ A ○B.
(b) The projection p ∶ A ○B→ A to the first component is an F-morphism.

Proof. (a) Let φ be the function mapping a pair ⟨a, b⟩ to ⟨a, fb⟩ where fb is
the constant function with value b. It is easy to check that φ is a morphism.
(b) follows immediately from the definition of the product of A ○B.

Lemma 4.8. The wreath product is associative.

Proof. Let A, B, and C be F-algebras and set

D ∶= (A ○B) ○ C and E ∶= A ○ (B ○ C) .
We claim that D and E are isomorphic. Note that the domains are

Dξ = (Aξ × B(A∅)ξξ) × C(A∅×B∅)ξξ

341

VI. Temporal Logics

and Eξ = Aξ × (Bξ × C(B∅)ξξ)(A∅)ξ .
There exists a canonical bijection φ between these two sets which maps

⟨⟨a, f ⟩, g⟩ to ⟨a, h⟩ where h(c̄) ∶= ⟨ f (c̄), d̄ ↦ g(c̄, d̄)⟩ .
We claim that this function is an isomorphism. Hence, given a forest t ∈ FD,
we have to show that

φ(π(t)) = π(Fφ(t)) .
First, using the projections

p ∶ D → A× BA∆∅ p̂ ∶ E → A

q ∶ D → C(A∅×B∅)∆ q̂ ∶ E → (B × CB∆∅)A∆∅

p′ ∶ A× BA∆∅ → A p̂′ ∶ B × CB∆∅ → B

q′ ∶ A× BA∆∅ → BA∆∅ q̂′ ∶ B × CB∆∅ → CB∆∅

we can recast the definition of φ into the form of three equations:

p′(p(d)) = p̂(φ(d)) ,
q′(p(d))(ā) = p̂′[q̂(φ(d))(ā)] ,
q(d)(ā, b̄) = q̂′[q̂(φ(d))(ā)](b̄) ,

for d ∈ D, ā ∈ (A∅)ξ , and b̄ ∈ (B∅)ξ .
We will prove the above equation separately for each of the three compon-

ents. By Lemma 4.7 (b), we have

p̂ ○ φ ○ π = p′ ○ p ○ π= π ○ F(p′ ○ p)= π ○ F(p̂ ○ φ) = p̂ ○ π ○ Fφ .

342

4. Wreath products

Thus, it remains to prove that

q̂ ○ φ ○ π = q̂ ○ π ○ Fφ .

Again we will prove this equation separately for the two components.
Let ρ, λ, ρ̂, λ̂, and ρ′ , λ′ be the functions used to define the products of,

respectively, Fp(t), Fφ(t), and t. Then

q′(π(Fp(t))) = π ○ ρ ,
q̂(π(Fφ(t))) = π ○ ρ̂ ,

q(π(t)) = π ○ ρ′ .
Further, note that we have

Fp̂(Fφ(t)) ⇐ ā = Fp′(Fp(t)) ⇐ ā ,
Fp′(Fp(t)) ⇐ ā = Fp̂(Fφ(t)) ⇐ ā ,

which implies that

λ̂(ā) = λ(ā) and p′(λ′(āb̄)) = λ̂(ā) .
Consequently, we have

(∗1) ρ(ā)(v) = q′(p(t(v)))(λ(ā)(v))
= q′(p(t(v)))(λ̂(ā)(v))
= p̂′[q̂(φ(t(v)))(λ̂(ā)(v))] = p̂′(ρ̂(ā)(v)) ,(∗2) ρ′(āb̄)(v) = q(t(v))(λ′(āb̄)(v))
= q̂′[q̂(φ(t(v)))(p′(λ′(āb̄)(v)))](q′(λ′(āb̄)(v)))
= q̂′[q̂(φ(t(v)))(λ̂(ā)(v))](q′(λ′(āb̄)(v)))
= q̂′[ρ̂(ā)(v)](q′(λ′(āb̄)(v))) .

We further claim that

343

VI. Temporal Logics

(∗3) π(ρ′(āb̄)) = q̂′(π(ρ̂(ā)))(b̄) .
It then follows by (∗1) and (∗3) that

p̂′[q̂(φ(π(t)))(ā)] = q′(p(π(t)))(ā)
= q′(π(Fp(t)))(ā)
= π(ρ(ā))
= π(Fp̂′(ρ̂(ā)))
= p̂′(π(ρ̂(ā)))
= p̂′[q̂(π(Fφ(t)))(ā)] ,

q̂′[q̂(φ(π(t)))(ā)](b̄) = q(π(t))(ā, b̄)
= π(ρ′(āb̄))
= q̂′(π(ρ̂(ā)))(b̄)
= q̂′[q̂(π(Fφ(t)))(ā)](b̄) ,

which concludes the proof.
Thus, it remains to prove the above claim. Suppose that

λ′(āb̄)(v) = (π(s′x))x and λ̂(ā)(v) = (π(ŝx))x ,
and let ρ̂∗ , λ̂∗ and ρ̃x

v , λ̃xv be the functions used to define the products
π(ρ̂(ā)) and π((Fp(t) ⇐ āb̄) ↓xv), respectively. By definition, we have

π(ρ̂∗(b̄)) = q̂′(π(ρ̂(ā)))(b̄) ,
π(ρ̃x

v (⟨⟩)) = q′(π((Fp(t) ⇐ āb̄) ↓xv))(⟨⟩) .
Furthermore, p′ ○ p = p̂ ○ φ implies that

λ̃xv (⟨⟩)(u) = (π((Fp′((Fp(t) ⇐ āb̄) ↓xv) ⇐ ⟨⟩) ↓yu))y= (π((Fp′Fp(t) ⇐ ā) ↓xv ↓yu))y= (π((Fp̂Fφ(t) ⇐ ā) ↓yvxu))y
= λ̂(ā)↓xv (u) .

344

4. Wreath products

Below we will show that

ρ̃x
v (⟨⟩)(u) = p̂′[(ρ̂(ā) ⇐ ⟨b̄(⟨⟩), c̄⟩) ↓xv (u)] .

Then it follows that

q′(λ′(āb̄)(v)) = (q′(π((Fp(t) ⇐ āb̄) ↓xv))(⟨⟩))x= (π(ρ̃x
v (⟨⟩)))x= (π(Fp̂′(ρ̂(ā)) ↓xv))x= λ̂∗(b̄)(v) ,

which implies that

ρ′(āb̄)(v) = q̂′[ρ̂(ā)(v)](q′(λ′(āb̄)(v)))
= q̂′[ρ̂(ā)(v)](λ̂∗(b̄)(v))= ρ̂∗(b̄)(v) .

Consequently, we have

q̂′(π(ρ̂(ā)))(b̄) = π(ρ̂∗(b̄)) = π(ρ′(āb̄)) ,
as desired.
Hence, it remains to prove the above equation. Note that it is sufficient

to show that

q̂(φ((t⇐ ⟨āb̄, c̄′⟩) ↓xv (u)))(λ̂(ā) ↓xv (u))= (ρ̂(ā) ⇐ ⟨b̄(⟨⟩), c̄⟩) ↓xv (u) ,
provided that φ(⟨āb̄, c̄′⟩) = ⟨ā, ⟨⟩ ↦ ⟨b̄(⟨⟩), c̄⟩⟩, since it then follows that

ρ̃x
v (⟨⟩)(u) = q((Fp(t) ⇐ āb̄) ↓xv (u))(λ̃xv (⟨⟩)(u))= q(p((t⇐ ⟨āb̄⟩c̄) ↓xv (u)))(λ̂xv (ā) ↓xv (u))= p̂′[q̂(φ((t⇐ ⟨āb̄⟩c̄) ↓xv (u)))(λ̂xv (ā) ↓xv (u))]= p̂′[(ρ̂(ā) ⇐ ⟨b̄(⟨⟩), c̄⟩) ↓xv (u)] ,

345

VI. Temporal Logics

as desired. First, consider a vertex u such that t(vxu) = z is a variable. Then

q̂(φ((t⇐ ⟨āb̄, c̄′⟩) ↓xv (u)))(λ̂(ā) ↓xv (u))= q̂(φ(⟨azbz , c′z⟩))(⟨⟩)= ⟨bz(⟨⟩), cz⟩= (ρ̂(ā) ⇐ ⟨b̄(⟨⟩), c̄⟩) ↓xv (u) .
If vxu is not lablled by a variable, we have

q̂(φ((t⇐ ⟨āb̄, c̄′⟩) ↓xv (u)))(λ̂(ā) ↓xv (u))= q̂(φ(t(vxu)))(λ̂(ā)(vxu))
= ρ̂(ā)(vxu)
= (ρ̂(ā) ⇐ ⟨b̄(⟨⟩), c̄⟩) ↓xv (u) .

Finally, let us show that wreath products provide the desired algebraic
analogue to the cascading operation.

Proposition 4.9. Let K be a family of forest languages and C a class of F-
algebras such that a language L belongs to K if, and only if, it is recognised by a
morphism into some algebra in C. Then

L ∈ Casc(K) iff L is recognised by an iterated wreath product of
algebras in C .

Proof. (⇒)We prove the claim by induction on the construction of a lan-
guage inCasc(K). By assumption, every language inK is recognised by such
an algebra. As the recognisable languages are closed under finite boolean
operations, it therefore remains to consider closure under the cascading
operation. Hence, suppose that L, K̄ ∈ Casc(K). By inductive hypothesis,
we can find iterated wreath products A and B̄ such that L is recognised by a
morphism to A and K i by one to Bi . It follows that L[K̄] is recognised by
a morphism

φ ∶ FΣ → (B0 × ⋅ ⋅ ⋅ ×Bn−1) ○ A .

346

4. Wreath products

We can combine φ with the canonical embedding of B0 × ⋅ ⋅ ⋅ ×Bn−1 into
B0 ○ ⋅ ⋅ ⋅ ○Bn−1 to obtain a morphism

FΣ → B0 ○ ⋅ ⋅ ⋅ ○Bn−1 ○ A

recognising L[K̄].(⇐)We prove the claim by induction on the length of the iteration.
Hence, suppose that L = φ−1[P] where φ ∶ FΣ → A ○ B, P ⊆ A∅ × B∅,
B ∈ C, andA is an iteratedwreath product. Let p and q be the twoprojections
and set

Ka ∶= { s ∣ p(φ(s)) = a } , for a ∈ A .

By inductive hypothesis, we know that Ka ∈ Casc(K). By Lemma 4.4,
there exists a morphism ζ ∶ F(Σ ×A∅) → B such that

q(φ(s)) = b iff ζ(s◁ (p ○ φ)) = b , for s ∈ F∅Σ and b ∈ B∅ .
Each languageMb ∶= ζ−1(b) is recognised by B and, hence, belongs toK.
Furthermore, for s ∈ F∅Σ, we have

s ∈ L iff φ(s) ∈ P
iff there is some ⟨a, b⟩ ∈ P such that

p(φ(s)) = a and q(φ(s)) = b
iff there is some ⟨a, b⟩ ∈ P such that

s ∈ Ka and ζ(s◁ (p ○ φ)) = b
iff there is some ⟨a, b⟩ ∈ P such that

s ∈ Ka and s◁ (p ○ φ) ∈Mb

iff s ∈ ⋃⟨a ,b⟩∈P[Ka ∩Mb[K̄]] .
As Casc(K) is closed under boolean operations, it follows that the latter
language belongs to Casc(K).
Open Question. Does there exist an analogue to the Krohn-Rhodes Theorem
for F-algebras?

347

VI. Temporal Logics

5. Di#ributive Algebra+

In this and the next section article we will use Proposition 4.9 to derive
characterisations of the various logics defined in Section 1. We start with the
bisimulation-invariant logics TL[K].
Definition 5.1. Let A be an F-algebra.

(a) For a path w (starting at some root) of a forest s ∈ F∅A{x}, we denote
by prw ∈ FA{x} the following path-like forest. If w is infinite, prw is simply
the restriction of s to the domain

dom(prw) ∶= { v ∈ dom(s) ∣ v lies on w } .
If w is finite, we take the above restriction and add an additional vertex at
the end that is labelled by the variable x. We will not strictly distinguish
between the forest prw ∈ FA{x} and the corresponding word in A∞{x}.

(b) A is distributive if, for all forests s, t ∈ FA,
{ π(prw) ∣ w a path of s } = { π(prw) ∣ w a path of t }

implies π(s) = π(t).
(b) A is +-distributive if, for all forests s, t ∈ FA,
{ π(prw) ∣ w a finite path of s } = { π(prw) ∣ w a finite path of t }

implies π(s) = π(t). ⌟
Remark. Note that the set { π(prw) ∣ w a path of s } may contain both
elements of arity 0 and of arity 1. ⌟
Before using distributive algebras to characterise temporal logics, let us

mention two properties that are essential for applications.

Proposition 5.2. Every distributive F-algebra is locallyMSO-definable.

Proof. Whendecidingwhether a product π(s) evaluates to a given element a,
we only have to see which branches are realised in s. As automata can evalu-
ates products in ω-semigroups, there exists an automaton performing this
check.

348

5. Distributive algebras

Proposition 5.3. Distributivity of anMSO-definable F-algebra A is decidable.

Proof. By definition, an F-algebra A is not distributive if, and only if, there
exist forests s, t ∈ FA such that π(s) ≠ π(t), but

{ π(prw) ∣ w a path of s } = { π(prw) ∣ w a path of t } .
This is the case if, and only if, there exists a forest r with two roots u and v
such that the subforests s and t attached to u and v, respectively, satisfy the
above condition. As the product of A isMSO-definable, we can construct an
MSO-formula that checks whether or not a given a forest r is of this form.
Since satisfiability ofMSO over forests is decidable, the result follows.

Theorem 5.4. Let S be a pseudo-variety of finite ω-semigroups and K the
family of∞-word languages recognised by them.
(a) A language L ⊆ FΣ can be defined by a finite boolean combination of

formulae of the form EK with K ∈ K if, and only if, it is recognised by an
MSO-definable F-algebra A that is distributive and whose vertical ω-semigroup⟨A{x} ,A∅ , ⋅ ⟩ belongs to S .
(b) A language L ⊆ FΣ can be defined by a finite boolean combination of

formulae of the form EK with K ∈ K and K ⊆ Σ∗ if, and only if, it is recognised
by an MSO-definable F-algebra A that is +-distributive and whose vertical
ω-semigroup ⟨A{x} ,A∅ , ⋅ ⟩ belongs to S .
Proof. (a) (⇒) Let φ ∶ FΣ → A recognise L where A is as above. For every
a ∈ A∅ ∪A{x}, we set

Ha ∶= { { π(prw) ∣ w path in t } ∣ t ∈ π−1(a) } ,
Ka ∶= {w ∈ Σ∞ ∣ π(Fφ(w)) = a }

(where we identify words w ∈ Σ∞ with forest that have a single branch). It
follows that

π(t) = a iff { π(prw) ∣ w path in t } ∈ Ha

iff t ⊧ ⋁
I∈Ha

[⋀
c∈IEKc ∧⋀

c∉I¬EKc] .

349

VI. Temporal Logics

(⇐) Suppose that L is definable by a formula of this form. Then L is
regular and recognised by a morphism synL ∶ FΣ → Syn(L) to its syntactic
algebra. It is sufficient to prove that Syn(L) is distributive and that its vertical
ω-semigroup belongs to S .
For distributivity, consider two forests s, t ∈ FSL with

{ π(prw) ∣ w a path of s } = { π(prw) ∣ w a path of t } .
As synL ∶ FΣ → Syn(L) is surjective, it has a right inverse ι ∶ Syn(L) → FΣ.
We set

s′ ∶= flat(Fι(s)) and t′ ∶= flat(Fι(t)) .
Note that, for every context p, the forest p[s′] and p[t′] cannot be distin-
guished by a formula of the above form.This implies that

p[s′] ∈ L ⇔ p[t′] ∈ L .

Thus s′ ∼L t′, which implies that synL(s′) = synL(t′). Therefore, we have

π(s) = π(synL(ι(s)))= synL(Fflat(ι(s)))= synL(s′)= synL(t′)= synL(Fflat(ι(t)))= π(synL(ι(t)))= π(t) .
To show that the vertical ω-semigroup belongs to S consider two∞-

words u, v of elements of ⟨A{x} ,A∅ , ⋅ ⟩ that should be equal according to
the equations for S . Analogously to above, we can show that the words

u′ ∶= flat(Fι(u)) and v′ ∶= flat(Fι(v))

350

5. Distributive algebras

are syntactically equivalent and, thus, π(u) = π(u′) = π(v′) = π(v).
(b)The above proof goes through with minor modifications. For (⇒), we

change the definition ofHa to only consider finite paths, and the definition
of Ka to only contain finite words. For (⇐), note that the assumption that
s and t have the same set of finite paths is sufficient to show that ⟨s′ , t′⟩ ∈
ker synL .

With this theorem we are able to give characterisations for various logics
of the formTL[S∞] andTL[S+]. To do sowewill make use of the following
types of F-algebras.
We denote by U(1) the F-algebra with two elements 0ξ and 1ξ , for each

sort ξ, where the product is simply the maximum function (using the order
0ξ < 1ξ):

π(s) ∶= max{ s(v) ∣ v ∈ dom(s) } .
U∗(2) is the F-algebra with domains

(U∗(2))ξ ∶= {⊺ξ} ∪ ℘(ξ) , for ξ ∈ Ξ .

To define the product of a forest s ∈ FU∗(2), let us call a vertex v ∈ dom(s)
reachable if, for each u ≺ v and every variable x with ux ⪯ v, we have x ∈ s(u)
(which in particular implies that s(u) ≠ ⊺). If some vertex v with label ⊺ is
reachable, we set π(s) ∶= ⊺. Otherwise,

π(s) ∶= { x ∈ ξ ∣ a vertex with label x is reachable} .
We also define a variant of this algebra calledUω(2). It has the samedomains,

but the product is slightly modified. We set π(s) ∶= ⊺ if some vertex with
label ⊺ is reachable, or if there exists an infinite branch all vertices of which
are reachable. Otherwise, we define π(s) as above as the set of reachable
variables.

Finally, we call an algebra aperiodic if its vertical ω-semigroup is aperiodic.

351

VI. Temporal Logics

Theorem 5.5. A forest language is definable in one of the logics below if, and
only if, it is recognised by an iterated wreath product of algebras from the following
table.

logic algebras

EF U(1)
wCTL U∗(2)
CTL U∗(2) , Uω(2)
wCTL∗ +-distributive aperiodic algebras
CTL∗ distributive aperiodic algebras
PDL +-distributive algebras

Proof. Note that the only forest languages recognised by a morphism φ ∶
FΣ → U(1) are the empty language ∅, the full language FΣ, the language

{ s ∈ F∅Σ ∣ there is some v ∈ dom(s) with s(v) ∈ φ−1(1∅) } ,
and its complement. These languages are exactly the languages of the form

{ s ∈ F∅Σ ∣ there is some path with labelling in Σ∗C } , for C ⊆ Σ ,

which, by Propositions 1.3 and 1.5, coincide with the EF-definable ones.

Similarly, amorphism φ ∶ FΣ → U∗(2) recognises the language of all forests
with some path labelled in C∗B where

B ∶= Σ ∩ φ−1(⊺) and C ∶= Σ ∩ φ−1({x})
(where we consider {x} ∈ (U(2)){x} to be an element of arity 1), and the
complements of such languages. To see this, note that (U(2)){x} contains
three elements ∅, {x}, and ⊺. A path s evaluates to ⊺ if it is of the form{x}∗⊺∅∗, and it evaluates to {x} if it is of the form {x}+. In all other cases,
the product is ∅. For higher arities, we need to keep track which variables
are reachable by a path labelled {x}+ (or more precisely, labelled ξ0 . . . ξn
where each ξ i contains the variable leading to the successor on the path).

352

6. Path algebras

For morphisms φ ∶ FΣ → Uω(2), we can also recognise the language of all
forests with an infinite path labelled in Cω . Now the claim for wCTL and
CTL follow as above.

Finally, the last three statements follow byTheorem 5.4.

6. Path Algebra+

Next, we turn to the logics cTL[K], which we can characterise in terms of
cascade products of the following class of languages.

Definition 6.1. Let S be a pseudo-variety of finite ω-semigroups andK the
family of∞-word languages recognised by them. A forest language L ⊆ F∅Σ
is an S-path language if it is a finite boolean combination of languages of the
form

Bk ,K ∶= { t ∈ F∅Σ ∣ t has at least k paths whose label belongs to K } ,
where k < ω and K ∈ K. We call languages of the form Bk ,K a basic S-path
language.
If we allow only languages K ∈ K with K ⊆ Σ∗, we speak of an S+-path

language. ⌟
To introduce the corresponding family of F-algebras, we need a bit of

notation. Recall that a semigroup is aperiodic if it does not contain a group.
This is equivalent to the condition that aπ ⋅ a = aπ for all a. Finally, for a
semigroup S we denote by S1 the extension of S by a new element 1 which
acts as neutral element, i.e., a ⋅ 1 = a = 1 ⋅ a, for all a ∈ S. In case S is the
vertical semigroup of an F-algebra, we denote this element by x.

The following is an analogue of one of the Green’s relations for F-algebras.

Definition 6.2. Let A be an F-algebra.
(a) For elements a, b ∈ (A{x})1, we define

a ⊑R a′ iff a = a′b , for some b ∈ (A{x})1 .

353

VI. Temporal Logics

(b) Let Ψ̃ ⊆ A∗{x} be the set of all finite words ⟨a0 , . . . , an−1⟩ satisfying
a0 ⊐R a0a1 ⊐R ⋅ ⋅ ⋅ ⊐R a0a1⋯an−1 ,

and set Ψξ ∶= Ψ̃ ×Aξ , for ξ ∈ Ξ.. The character χ(w) of a word w ∈ A∞{x} is
the word

χ(w) = ⟨a0 , . . . , an−1⟩ ∈ Ψ

obtained from a certain factorisation w = w0 . . .wn−1 of w by setting a i ∶=
π(w i). The factorisation w0 , . . . ,wn−1 is constructed inductively. If we have
already found w0 , . . . ,w i−1, we choose the shortest factor w i of w such that
the product a i = π(w i) satisfies

a0⋯a i−1a i ⊏R a0⋯a i−1 .
If no such factor exists, we take for w i the rest of the word.
The relative character χ(w/σ) of w ∈ A∞{x} with respect to σ ∈ Ψ is

defined as follows. Suppose that

χ(σw) = ⟨a0 , . . . , an−1 , c⟩ .
Then σ = ⟨a0 , . . . , ak−1 , b⟩ and ak = bb′, for some b, b′ ∈ A{x}, where b′ is
the product of a prefix of w. We set

χ(w/σ) = ⟨b′ , ak+1 , . . . , an−1 , c⟩ . ⌟
Definition 6.3. Let A be an F-algebra and s ∈ F∅A{x} a forest.

(a)Wewrite sf v for the subforest of s rooted at the successors of a vertex v,
i.e., the forest obtained from the subtree rooted at v by removing the vertex v
itself.
(b) Recall the definition of the path prw , for paths w in s. For σ ∈ Ψ , we

define the reduced path to w as the forest

p̃rw ,σ ∶= χ(prw/σ) ∈ F{x}A{x} .

354

6. Path algebras

(c) For a given constant N < ω, we denote by
ΠN(s) ∶ X → [N + 1]

the function mapping a character σ ∈ Ψ to the number of paths w of s such
that χ(prw) = σ , provided this number is at most N. Otherwise, we set
ΠN(s)(σ) ∶= N. We denote by Π+N(s) the variant that only counts the
number of finite paths. For a subsetH ⊆ dom(s), we write ΠN(s/H) and
Π+N(s/H) for the corresponding functions that only count paths containing
some vertex inH. ⌟
After these preparations we can introduce the class of algebras corres-

ponding to path languages.

Definition 6.4. (a) An F-algebra A is an ω-path algebra if it is finitary, its
horizontal semigroup ⟨A∅ ,+⟩ is commutative and aperiodic, and there exists
a constant N < ω such that

ΠN(s) = ΠN(t) implies π(s) = π(t) , for s, t ∈ F∅A{x} .
(b) A is a +-path algebra if it is an ω-path algebra satisfying the stronger

condition that

Π+N(s) = Π+N(t) implies π(s) = π(t) , for s, t ∈ F∅A{x} . ⌟
Let us highlight two particular consequences of the axioms which, in the

context of finite forests, are in fact equivalent to the axioms above.

Lemma 6.5. Let A be an ω-path algebra, a ∈ A{x}, and b, c, d ∈ A∅.◆ a(b) + a(c + d) = a(b + c) + a(d) ,◆ aa = a implies a(a(b + c)) = a(a(b) + c) .
Proof. Both statements follow from the fact that both forests have the same
value under ΠN . For (a), this is immediate since the two forests have the
same set of paths with the same multiplicities. For (b), there is exactly one
path where the two forests differ: on the left-hand side we have a path with
label aac, while on the right-hand side we have ac. But aa = a implies that
a ⊏R aa. Hence, χ(aac) = ⟨a, c⟩ = χ(ac).

355

VI. Temporal Logics

It is straightforward to show that every ω-path algebra is locally regular.

Proposition 6.6. Every ω-path algebra is locallyMSO-definable.

Proof. Whendecidingwhether a product π(s) evaluates to a given element a,
we only have to count how often each (character of some) branch is realised
in s, up to a given constant N. As automata can evaluate products in ω-
semigroups, there exists an automaton performing this check.

One direction of the characterisation is straightforward.

Proposition 6.7. Let S be a pseudo-variety of finite ω-semigroups and L ⊆ FΣ
an S-path language.
(a) The vertical ω-semigroup ⟨Syn{x}(L), Syn∅(L), ⋅ ⟩ of Syn(L) belongs

to S .
(b) Syn(L) is an ω-path algebra.
(c) If L is an S+-path language, Syn(L) is even a +-path algebra.
Proof. We use the notation ∼K ∶= ker synK for the syntactic congruence of
a language K. Suppose that L is a boolean combination of the basic S-path
languages Bk i ,K i , i < n.
(a) Fix ω-semigroups S0 , . . . ,Sn−1 ∈ S recognising K0 , . . . ,Kn−1, re-

spectively. For words w ,w′ ∈ Σ∞, we will show that

w ∼K i w
′ , for all i < n , implies w ∼L w′ ,

where in the last equation we can regard w and w′ either as forests in F∅Σ
or in F{x}Σ. Then it follows that ⟨Syn{x}(L), Syn∅(L), ⋅ ⟩ is a quotient of
the product∏i<n Si and, thus, belongs to S .
For the proof note that, for every context p, w ∼K i w′ implies that

p[w] and p[w′] have the same number of paths with labelling in K i . Con-
sequently,

p[w] ∈ L iff p[w′] ∈ L .

This implies that w ∼L w′ when we regard w and w′ as elements of F∅Σ.

356

6. Path algebras

(b)We start with the horizontal monoid. Consider two elements a, b ∈
Syn∅(L) and choose trees s ∈ syn−1L (a) and t ∈ syn−1L (b). For commutativ-
ity, we have

p[s + t] ∈ L⇔ p[t + s] ∈ L , for all contexts p ,

which implies that s + t ∼L t + s. Consequently, a + b = b + a.
For aperiodicity, set N ∶= maxi k i . Then we have

p[N × s] ∈ L⇔ p[(N + 1) × s] ∈ L , for all contexts p .

Thus N × s ∼L (N + 1) × s, which implies that N × a = (N + 1) × a.
For the remaining axiom, suppose that the forests s, t ∈ F∅Syn{x}(L)

satisfy ΠN(s) = ΠN(t) where N ∶= maxi k i . As synL is surjective, there
exists a function φ ∶ Syn(L) → F∅Σ such that synL ○ φ = id. We set

S ∶= Fφ(s) and T ∶= Fφ(t) .
Then ΠN(flat(S)) = ΠN(flat(T)). Consequently, flat(S) and flat(T)
have the same number of paths in K i , for i < n, (up to the number N)
and we have

p[flat(S)] ∈ L⇔ p[flat(T)] ∈ L , for all contexts p .

Thus flat(S) ∼L flat(T) and it follows that
π(s) = π(FsynL(S))= synL(flat(S))= synL(flat(T))= π(FsynL(T)) = π(t) .

(c)The proof of the stronger condition is analogous to the one above.With
s, t, S ,T as before, we now only know that Π+N(flat(S)) = Π+N(flat(T)).
But since the languages K i contains only finite words, this is sufficient to
imply that

p[flat(S)] ∈ L⇔ p[flat(T)] ∈ L , for all contexts p .

357

VI. Temporal Logics

To show the converse of this statement we start by simplifying the input
forest t. Since its value in a given ω-path algebra only depends on the number
of paths of each given kind, we can try to write t as a sum of paths. For
instance, a(b + c) would become a(b)+ a(c). The problem with this is that
this changes the number of paths since we have added one copy of the path
a(x). To make this idea work we therefore have to be a bit more careful
and only allow this operation if this additional path does not change the
value of the product.The main technical tool which will enable us to do so is
Lemma 6.11 below. But before proving it, let us collect a few technical results
about path algebras.

Lemma 6.8. Let ⟨S ,+⟩ be a finite semigroup that is commutative and aperiodic.
There exists an element u ∈ S such that u + a = u, for all a ∈ S.
Proof. Suppose that S = {c0 , . . . , cn−1} and set u ∶= c0 + ⋅ ⋅ ⋅ + cn−1. For
every a ∈ S, there is some index i < n such that π × a = c i . Hence,

c i + a = π × a + a = π × a = c i ,
which, by commutativity, implies that u + a = u.
Lemma 6.9. Let A be a finitary F-algebra where the horizontal semigroup⟨A∅ ,+⟩ is commutative and aperiodic and let a ∈ (A{x})1 be ⊑R-minimal.
Then

ac = ac′ , for all c, c′ ∈ A∅ .
Proof. By Lemma 6.8, there exists an element u ∈ A∅ such that u + c = u,
for all c ∈ A∅. The element â ∶= a(x + u) satisfies â ⊑R a and

âc = a(c + u) = au , for all c ∈ A∅ .
By⊑R-minimality of a, there are elements b and d such that a(x) = â(b(x)+d).
Consequently,

ac = â(bc + d) = âu = â(bc′ + d) = ac′ , for all c, c′ ∈ A∅ .

358

6. Path algebras

Lemma 6.10. Let A be a finitary ω-path algebra and a ∈ A{x} an element.
aa = a implies a(x) = a(x + π × a(0)) .

Proof. Lemma 6.5 (b) implies that a(x) = aa(x) = a(x + a(0)). Iterating
this equation, we obtain a(x) = a(x + π × a(0)).
Lemma 6.11. Let A be a finitary ω-path algebra and a, b, b′ ∈ (A{x})1. Then

a = abb′ implies a(x) = a(x + b(0)) .
Proof. Below we will prove that the element b̂ ∶= (bb′)π satisfies the follow-
ing equations.

(1) π × b̂(0) = π × b̂(0) + b(0)
(2) a(x) = a(x + π × b̂(0))
Then it follows that

a(x) = a(x + π × b̂(0))
= a(x + π × b̂(0) + b(0))
= a((x + b(0)) + π × b̂(0))
= a(x + b(0)) ,

where the first and last step follow by (2), the second step by (1), and the
third one by commutativity. Hence, it remains to prove the two equations.

(1) We have

π × b̂(0) = π × b̂(0) + π × b̂(0)
= π × (b̂(0) + b̂(0))
= π × (bb′b̂(0) + bb′b̂(0))
= π × (b(b′b̂(0) + b′b̂(0)) + b(0))
= π × b(b′b̂(0) + b′b̂(0)) + π × b(0) ,

359

VI. Temporal Logics

where the fifth step follows by Lemma 6.5 (b). Consequently,

π × b̂(0) + b(0) = π × b(b′b̂(0) + b′b̂(0)) + π × b(0) + b(0)
= π × b(b′b̂(0) + b′b̂(0)) + π × b(0)
= π × b̂(0) .

(2) Set d ∶= b̂(x) + π × b̂(0). Then

d = b̂(x) + π × b̂(0)
= b̂(x) + π × b̂(0) + π × b̂(0)
= d(x) + π × b̂(0)

and it follows that

dπ = ddπ = ddπ(x) + π × b̂(0) = dπ(x) + π × b̂(0) .
Consequently, we have

a = abb′ = ab̂ = ab̂b̂
= ab̂(b̂(x) + π × b̂(0))
= a(b̂(x) + π × b̂(0))= ad= adπdπ

= a(dπdπ(x) + π × b̂(0))
= adπdπ(x + π × b̂(0))
= a(x + π × b̂(0)) ,

where the forth step holds by Lemma 6.10, the fifth one follows from the
equation a = ab̂, and the last step from a = adπdπ .

Lemma 6.12. Let A be a finitary ω-path algebra. Then

a = a(b(x) + c) implies a = ab = a(x + c) .

360

6. Path algebras

Proof. Note that it is sufficient to prove that a = a(x + c), since it then
follows that

ab = a(b(x) + c) = a .
Let b̂ ∈ A{x} be the element such that

b̂(x) + c = (b(x) + c)π ,

and set

d(x) ∶= b̂(x) + π × b̂(0) + π × c .

Note that d = d(x)+ c, which implies that dπ = dπ(x)+ c. Hence, we have

dπ = dπdπ = dπ(dπ(x) + c) = dπdπ(x + c) = dπ(x + c) ,
where the third step follows by Lemma 6.5 (b). Consequently,

a = a(b(x) + c)
= a(b̂(b̂(x) + c) + c)
= a(b̂(b̂(x) + c + π × (b̂(0) + c)) + c)
= a(b̂(x) + c + π × b̂(0) + π × c)
= a(b̂(x) + π × b̂(0) + π × c)= ad= adπ

= adπ(x + c) = a(x + c) ,
where the third step follows by Lemma 6.10.

After these preparations let us proceed to simplifying forests. Since the
main argument below is inductive, we have to phrase everything relative to
some character σ . What we are aiming for are forests that are σ -separated in
the following sense.

361

VI. Temporal Logics

Definition 6.13. Let A be a ω-path algebra and σ ∈ Ψ .
(a) An element a ∈ A{x} is σ -insignificant if σ ⊑R σa. Otherwise, a is

called σ -significant.
(b) For forests s, t ∈ F{x}A{x}, we set s ∼σ t if there are finite paths

p i , q i ∈ F{x}A{x} such that
ΠN(σ(s +∑i<m p i(0))) = ΠN(σ(t +∑i<n q i(0))) ,

and the products π(p i) and π(q i) are σ-insignificant.
(c) A forest s ∈ F∅A is σ -separated if it is a finite horizontal sum of paths

and of forests of the form p(r), where r is an arbitrary forest and p is a path
whose product π(p) is σ-significant. ⌟
Lemma 6.14. Let A be a finitary ω-path algebra and σ ∈ Ψ a character.
(a) s ∼σ t implies π(σ(s)) = π(σ(t)) .
(b) If a ∈ A{x} is σ -significant, then so is a(x) + c.

Proof. (a) Suppose that

ΠN(σ(s +∑i<m p i(0))) = ΠN(σ(t +∑i<n q i(0))) ,
with c i ∶= π(p i) and d i ∶= π(q i) σ-insignificant. Setting a ∶= π(s) and
b ∶= π(t), it follows by Lemma 6.11 that

σa(x) = σ(a(x) + c0(0))= σ(a(x) + c0(0) + c1(0))= . . .= σ(a(x) + c0(0) + ⋅ ⋅ ⋅ + cm−1(0))= σ(b(x) + d0(0) + ⋅ ⋅ ⋅ + dn−1(0))= . . .= σ(b(x)) .
(b) Suppose that a(x)+c is σ-insignificant.Then there exists an element b

such that σ(x) = σ(ab(x) + c). By Lemma 6.12, it follows that σ(x) =
σ(ab(x)), which means that a is σ-insignificant.

362

6. Path algebras

We introduce the following operation on forests.

Definition 6.15. Given a forest s ∈ F{x}A{x} and two sets of verticesH0 ⊆
H ⊆ dom(s) whereH0 is finite, we set

s[H/H0] ∶= s′ + ∑
v∈H0

p̃rv ,σ(sf v) ,
where s′ is the forest obtained from s by removing all subtrees attached to
some vertex inH. ⌟
Lemma 6.16. Let s ∈ F{x}A{x} be a forest and σ ∈ Ψ a character. Then

ΠN(σ s/H0) = ΠN(σ s/H)
implies that

ΠN(σ s[H/H0]) = ΠN(σ(s +∑v∈H0
p̃rv ,σ(0))) .

Proof. Set t ∶= σ(s + ∑v p̃rv ,σ(0)) and t′ ∶= σ(s[H/H0]). Note that for
every path of t′ there is a corresponding path of t with the same image
under χ. Consequently,

ΠN(t′)(τ) ≤ ΠN(t)(τ) , for all τ ∈ Ψ .

For the other direction, suppose that there is some sequence τ ∈ Ψ with

ΠN(t′)(τ) < ΠN(t)(τ) .
By definition of s[H/H0], it follows that there are vertices v ⪯ u of s with
v ∈ H ∖ H0 and τ = χ(σ s∣u). If ΠN(H0) < N, this would mean that
ΠN(H) > ΠN(H0), which contradicts our assumption on H0. Hence,
ΠN(H0) = N and we have

N ≥ ΠN(t)(τ) > ΠN(t′)(τ) ≥ ΠN(H0)(τ) = N .

A contradiction.

363

VI. Temporal Logics

Proposition 6.17. Let A be a finitary ω-path algebra and σ ∈ Ψ . For every
forest s ∈ F∅A{x}, there exists a σ -separated forest t ∈ F∅A{x} such that
s ∼σ t.

Proof. Let us call a vertex v ∈ dom(s) insignificant if the product π(prv) is
σ-insignificant. The set I of all insignificant vertices forms an initial subset
of dom(s).The frontier H of s consists of theminimal (in the forest ordering)
vertices of dom(s) ∖ I. We choose a finite subsetH0 ⊆ H such that

ΠN(σ s/H0) = ΠN(σ s/H) .
Set

t′ ∶= s[H/H0] and s′ ∶= s +∑v∈H0
p̃rv ,σ(0) .

Then it follows by Lemma 6.16 that ΠN(σ s′) = ΠN(σ t′), which implies
that s ∼σ t′.
Hence, it is sufficient to find a σ-separated forest t ∼σ t′. By definition,

we have

t′ = s[H/H0] = r′ + ∑
v∈H0

p̃rv ,σ(sf v) ,
where r′ is the forest obtained from s by removing all subtrees attached to a
vertex inH. If we can find a σ-separated forest r ∼σ r′, we can take

t ∶= r + ∑
v∈H0

p̃rv ,σ(sf v)
as the desired σ-separated forest with t ∼σ s. Set µ ∶= ΠN(σ r′). Let B be
a set containing, for every infinite character τ ∈ A∗{x}A∅, exactly µ(τ)
infinite branches of r′ with character τ. Furthermore, fix a finite initial subset
I ⊆ dom(r′) containing, for every finite character τ ∈ A∗{x}, at least µ(τ)
vertices v such that χ(σprv) = τ. Let r′′ be the forest obtained from r′ by
deleting every vertex that does not belong to I ∪⋃B. Then

ΠN(σ r′′) = µ = ΠN(σ r′) .

364

6. Path algebras

Finally, set

r ∶= ∑
β∈B r

′′∣β +∑
v∈I prv(0) .

By construction, we have

ΠN(σ r)(τ) ≥ µ(τ) = ΠN(σ r′′)(τ) .
Set σ ∶= ΠN(σ r). Then

ΠN(σ(r′′ +∑τ(σ(η) − µ(η)) × π(η)(0)))(τ)
= µ(τ) + σ(τ) − µ(τ)= σ(τ)= ΠN(σ r) .

Hence, r ∼σ r′′ ∼σ r′, as desired.
This proposition provides our simplification operation for forests. The

next step is to show that the product of σ-separated forests can be defined
using path languages. Our main tool will be what we call the profile of such a
forest.

Definition 6.18. Let A be a ω-path algebra and σ ∈ Ψ .
(a) For c, c′ ∈ A∅, we set

c ≈σ c′ : iff σac = σac′ , for all σ-significant a ∈ A{x} .
We denote the ≈σ -class of c by [c]σ .

(b) We denote by Ψ(σ){x} the subset of Ψ{x} consisting of all characters τ
whose product π(τ) is σ-significant.

(c)The σ -profile pf(s) of a σ-separated forest s = ∑i<m q i +∑i<n p i(r i)
consists of two functions

pf 0(s) ∶ Ψ∅ → [N + 1] and pf 1(s) ∶ Ψ(σ){x} → [N + 1] ×A∅/≈σ ,

365

VI. Temporal Logics

where the first one maps a character τ ∈ Ψ∅ to the number

∣{ i < m ∣ χ(q i) = τ }∣
and the second one maps a character τ ∈ Ψ(σ){x} to the pair ⟨k, [c]σ⟩ where

k ∶= ∣{ i < n ∣ χ(p i) = τ }∣ and c ∶= ∑{ π(r i) ∣ χ(p i) = τ } . ⌟
Lemma 6.19. If s and s′ are σ -separated forests, then

pf(s) = pf(s′) implies π(σ s) = π(σ s′) .
Proof. Suppose that

pf 0(s)(τ) = lτ and pf 1(s)(τ) = ⟨kτ , [cτ]τ⟩ .
Then

π(s) = b + ∑
τ∈Ψ0

lτ × τ + ∑
τ∈Ψ(σ)

1

∑
i<kτ

τd i
τ

= b + ∑
τ∈Ψ0

lτ × τ + ∑
τ∈Ψ(σ)

1

(τd̂τ + (kτ − 1) × τ(0)) ,
π(s′) = b′ + ∑

τ∈Ψ0

lτ × τ + ∑
τ∈Ψ(σ)

1

∑
i<kτ

τe iτ

= b′ + ∑
τ∈Ψ0

lτ × τ + ∑
τ∈Ψ(σ)

1

(τ êτ + (kτ − 1) × τ(0)) ,
where b and b′ are sums of σ-insignificant elements, d̂τ ∶= ∑i d i

τ , êτ ∶= ∑i e iτ ,
and d̂τ ≈σ cτ ≈σ êτ . Note that, according to Lemma 6.14 (b), the element
a(x) + b is σ-significant, for every b. By the definition of ≈σ , it therefore
follows that

d̂τ ≈σ êτ implies σ(τd̂τ + a) = σ(τ êτ + a) , for all a ∈ A∅ .

366

6. Path algebras

In particular for

a ∶= ∑
τ∈Ψ0

lτ × τ + ∑
τ∈Ψ1

(kτ − 1) × τ(0) ,
we have

π(σ(s)) = σ(a + b + ∑
τ∈Ψ1

τd̂τ)
= σ(a + ∑

τ∈Ψ1

τd̂τ)
= σ(a + ∑

τ∈Ψ1

τ êτ)
= σ(a + b′ + ∑

τ∈Ψ1

τ êτ) = π(σ(s′)) ,
where the second and forth step follow by Lemma 6.11.

We are finally at the point where we can prove the other part of our
characterisation.The main step of the proof is the following propositon.

Proposition 6.20. Let A be an ω-path algebra, S a pseudo-variety of finite ω-
semigroups, and K the corresponding family of∞-word languages. Suppose thatK is closed under concatenation and that the vertical ω-semigroup ⟨A{x} ,A∅ , ⋅⟩
belongs to S . Let φ ∶ TΣ → A be a morphism of F-algebras, σ ∈ Ψ{x} a
character, and c ∈ A∅ an element. Then

Lσ ,c ∶= { s ∈ FΣ ∣ σ(φ(s)) = c }
is an S-path language. If A is a +-path algebra, Lσ ,c is even an S+-path
language.

Proof. We prove the claim by induction on the ⊑R-class of σ . If σ is ⊑R-
minimal, Lemma 6.9 tells us that Lσ ,c is either empty or it contains all
forests. It particular, it is an S+-path language for every pseudo-varitety S .

367

VI. Temporal Logics

For the inductive step, suppose that σ is not ⊑R-minimal. Below we will
construct S-path languages Mτ ,k ,Mτ ,⟨k ,[c]σ ⟩ ⊆ FA such that, for every
σ-separated forest s ∈ FA,

s ∈Mτ ,k iff pf 0(s)(τ) = k ,
s ∈Mτ ,⟨k ,[c]σ ⟩ iff pf 1(s)(τ) = ⟨k, [c]σ⟩ .

and, for arbitrary forests s, s′ ∈ F∅A{x}, s ∼σ s′ implies that
s ∈Mτ ,k ⇔ s′ ∈Mτ ,k and s ∈Mτ ,⟨k ,[c]σ ⟩⇔ s′ ∈Mτ ,⟨k ,[c]σ ⟩ .

We claim that

Lσ ,c = ⋃{(Fφ0)−1[Mµ] ∣ µ a profile such that

pf(s) = µ ⇒ π(σ s) = c } ,
where φ0 ∶= φ ○ sing is the restriction of φ to the alphabet Σ and

Mµ ∶= ⋂
τ∈Ψ0

Mτ ,µ0(τ) ∩ ⋂
τ∈Ψ(σ){x}

Mτ ,µ1(τ) .

To prove this equality, we start by noting that, for a σ-separated forest s ∈ FA,
s ∈Mµ iff s ∈Mτ ,µ0(τ) and s ∈Mτ ,µ1(τ) , for all suitable τ ,

iff pf 0(s)(τ) = µ0(τ) and pf 1(s)(τ) = µ1(τ) ,
for all suitable τ ,

iff pf(s) = µ .
Now consider a forest t ∈ FΣ and set s ∶= Fφ0(t). By Proposition 6.17, there
exists a σ-separated forest s′ ∼σ s. Furthermore, Lemma 6.14 implies that

π(σ s′) = π(σ s) = σ(φ(t)) .

368

6. Path algebras

Consequently, we have

t ∈ Lσ ,c iff s ∈Mµ , for some µ such that

pf(r) = µ ⇒ π(σ r) = c
iff s′ ∈Mµ , for some µ such that

pf(r) = µ ⇒ π(σ r) = c
iff pf(r) = pf(s′) ⇒ π(σ r) = c
iff π(σ s′) = c
iff σ(φ(t)) = c ,

where the fourth equivalence follows by Lemma 6.19.

It remains to construct the languagesMσ ,k andMσ ,⟨k ,[c]σ ⟩. First, note
that, since ⟨A{x} ,A∅ , ⋅ ⟩ ∈ S and K is closed under concatenation, the
classK contains all word languages of the form

Kτ ∶= χ−1(τ) , for τ ∈ Ψ .

Consequently,

Mτ ,k = Bk ,Kτ ∖ Bk+1,Kτ

is an S-path language. (Recall that Bk ,K refers to one of the basic S-path
languages.) Furthermore, τ being σ-significant we clearly have

s ∼σ s′ implies s ∈Mτ ,k ⇔ s′ ∈Mτ ,k ,

for all forests s, s′ ∈ F∅A{x}. Before definingMτ ,⟨k ,[c]σ ⟩, we show that the
languages

N[c]σ ∶= { s ∈ F∅A ∣ π(s) ≈σ c }

369

VI. Temporal Logics

are S-path languages. LetH be the set of all σ-significant elements in A{x}.
Note that

s ∈ N[c]σ iff π(s) ≈σ c
iff σa(π(s)) = σa(c) , for all a ∈ H ,

iff s ∈ Lσa ,σa(c) , for all a ∈ H ,

iff s ∈ ⋂
a∈H Lσa ,σa(c) .

Using the inductive hypothesis, we see thatN[c]σ is an intersection ofS-path
languages and, thus, an S-path language itself.

Let N′τ ,[c]σ
be the language obtained from N[c]σ by replacing each basicS-path language B l ,K appearing in the corresponding boolean combination

by the language B l ,KτK where

Kτ ∶= χ−1(τ) , for τ ∈ Ψ(σ){x} .
For a path p with χ(p) = τ ∈ Ψ(σ){x} it then follows

ps ∈ N′τ ,[c]σ
iff π(s) ≈σ c ,

Hence, we can set

Mτ ,⟨k ,[c]σ ⟩ ∶= (Bk ,Kτ ∖ Bk+1,Kτ) ∩N′τ ,[c]σ
.

Before showing that Mτ ,⟨k ,[c]σ ⟩ has the desired property, let us note that,
since π(τ) is σ-significant, we have

s ∼σ s′ implies s ∈Mτ ,⟨k ,[c]σ ⟩⇔ s′ ∈Mτ ,⟨k ,[c]σ ⟩ ,
for arbitrary forests s, s′ ∈ F∅A{x}.
Given a σ-separated forest s, the first term of the above intersection ex-

presses that pf(s)(τ) = ⟨k, [d]σ⟩, for some d. We claim that the second
term ensures that d ≈σ c. Hence, consider a σ-separated forest s. By the first
term of the intersection, we may assume that s has exactly k components of

370

6. Path algebras

the form p(r) with χ(p) = τ. Hence, s = s0 +∑i<k p i(r i) with χ(p i) = τ.
Set

r ∶= ∑
i
r i and s′ ∶= s0 + p0(r) + ∑

0<i<k p i(0) .
Then ΠN(s) = ΠN(s′), which implies that

s ∈ N′τ ,[c]σ
iff s′ ∈ N′τ ,[c]σ

iff p0(r) ∈ N′τ ,[c]σ

iff π(r) ≈σ c
iff pf 1(s)(τ) = ⟨k, [c]σ⟩ .

To conclude the proof, suppose that A is a +-path algebra. We want to
show that Lσ ,c is a S+-path language.The above proof goes through with
minor modifications: we have to change the definitions of pf 0(s)(τ) and
Mτ ,k to only count finite paths.

Combining Proposition 6.7 and 6.20 we obtain the following character-
isation result.

Theorem 6.21. Let S be a pseudo-variety of finite ω-semigroups such that the
corresponding family of∞-word languages is closed under concatenation.
(a) A forest language L is an S-path language if, and only if, it is recognised

by an ω-path algebra A whose vertical semigroup ⟨A{x} ,A∅ , ⋅ ⟩ belongs to S .
(b) A forest language L is an S+-path language if, and only if, it is recognised

by a +-path algebra A whose vertical semigroup ⟨A{x} ,A∅ , ⋅ ⟩ belongs to S .
Let us see what this theorem entails for the graded logics we introduced

above. We start by defining the needed algebras.
For n < ω, let Nn(1) be the F-algebra with domains

(Nn(1))ξ ∶= [n + 1] , for ξ ∈ Ξ .

The product of a forest s is simply the sum (up to n) of all labels s(v),
v ∈ dom(s).

371

VI. Temporal Logics

For n < ω, let N∗,n(2) be the F-algebra with domains

(N∗,n(2))ξ ∶= [n + 1] × ℘(ξ) , for ξ ∈ Ξ .

To define the product of a forest s, let us call a vertex v ∈ dom(s) reachable if,
for each u ≺ v and every variable x with ux ⪯ v, we have s(u) = ⟨i , I⟩ with
x ∈ I. We set

π(s) ∶= ⟨ j, J⟩ ,
where j is the sum of all first components of labels of reachable vertices (up
to n), and J is the set of all reachable variables.

We also define a variant Nω ,n(2) with the domains

(Nω ,n(2))ξ ∶= [n + 1] × [n + 1] × ℘(ξ) ,
where the product is given by

π(s) ∶= ⟨ j, k, J⟩ ,
such that j is the sum of all first components of labels of reachable vertices
(up to n), k is the sum of all second compontents of reachable vertices plus
the number of infinite branches all vertices of which are reachable, and J is
the set of all reachable variables.

The proof of the following theorem is similar to that ofTheorem 5.5.

Theorem 6.22. A forest language is definable in one of the logics below if, and
only if, it is recognised by an iterated wreath product of algebras from the following
table.

372

6. Path algebras

logic algebras

cEF Nn(1), n < ω
cwCTL N∗,n(2) , n < ω
cCTL N∗,n(2) , Nω ,n(2) , n < ω
cPDL path algebras
cwCTL∗ aperiodic path algebras
cCTL∗ aperiodic ω-path algebras
FO aperiodic path algebras
WMPL aperiodic path algebras
MPL aperiodic ω-path algebras
WMCL path algebras
MCL ω-path algebras

Note+

Much of this chapter is based on [9], where the corresponding material was
developed for finite forests. The equivalence between MPL = cCTL∗ has
been proven by Moller and Rabinovitch [17].

373

Re$ommended Literature

M. Bojańczyck, Languages Recognises by Finite Semigroups and their generalisations to
objects such as Trees and Graphs with an emphasis on definability in Monadic
Second-Order Logic, lecture notes.

G. Rozenberg, A. Salomaa,Handbook of Formal Languages, Springer 1997.
J.-É. Pin,Handbook of Automata Theory, EMS Press 2021.
D. Perrin, J.-É. Pin, Infinite Words, Birkhäuser 2004.
J.-É. Pin,Mathematical Foundations of Automata Theory, lecture notes.
J. Berstel, C. Reutenauer,Noncommutative Rational Series with Applications,

Cambridge Universal Press 2011.
J. Sakarovitch, Elements of Automata Theory, Cambridge Universal Press 2009.

abstract algebraic language theory 2022-12-11 — ©achim blumensath 375

Bibliography

[1] J. T. Baldwin, Categoricity, American Mathematical Society, 2009.

[2] J. Barwise and S. Feferman,Model-Theoretic Logics, Springer, 1985.

[3] A. Blumensath,Monadic Second-Order Model Theory. unpublished lecture
notes, https://www.fi.muni.cz/~blumens/MSO.pdf.

[4] , Algebraic Language Theory for Eilenberg–Moore Algebras, Logical
Methods in Computer Science, 17 (2021), pp. 6:1–6:60.

[5] M. Bojańczyk, Recognisable languages over monads. unpublished note,
arXiv:1502.04898v1.

[6] , Languages Recognises by Finite Semigroups and their generalisations to
objects such as Trees and Graphs with an emphasis on definability in Monadic
Second-Order Logic. lecture notes, arXiv:2008.11635, 2020.

[7] M. Bojańczyk and B. Klin, A non-regular language of infinite trees that is
recognizable by a finite algebra, Logical Methods in Computer Science, 15 (2019).

[8] M. Bojańczyk and H. Michalewski, Some connections between universal
algebra and logics for trees. arXiv:1703.04736, unpublished.

[9] M. Bojańczyk, H. Straubing, and I. Walukiewicz,Wreath products of
forest algebras, with applications to tree logics, Logical Methods in Computer
Science, 8 (2012).

[10] O. Carton, T. Colcombet, and G. Puppis, An Algebraic Approach to
MSO-Definability on Countable linear Orderings, J. Symb. Log., 83 (2018),
pp. 1147–1189.

[11] L.-T. Chen, J. Adámek, S. Milius, and H. Urbat, Profinite monads,
profinite equations and reiterman’s theorem, in Proc. 19th Int. Conference on
Foundations of Software Science and Computation Structures, FoSSaCS,
2016, pp. 531–547. (preprint with proofs: arXiv:1511.02147).

abstract algebraic language theory 2022-12-11 — ©achim blumensath 377

Bibliography

[12] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order,
Cambridge University Press, 2002.

[13] R. Diaconescu, Institution-independent Model Theory, Birkhäuser, 2008.

[14] N. Gambino and J. Kock, Polynomial Functors and Polynomial Monads,
Math. Proc. Cambridge Phil. Soc., 154 (2013), pp. 153–192.

[15] C. Löding, Automata on infinite trees, in Handbook of AutomataTheory, J.-É.
Pin, ed., European Mathematical Society, 2021, pp. 265–302.

[16] S. Milius and H. Urbat, Equational Axiomatization of Algebras with
Structure, in Proc. 22nd International Conference on Foundations of Software
Science and Computation Structures, FOSSACS 2019, 2019, pp. 400–417.

[17] F. Moller and A. Rabinovitch, Counting on CTL*: on the expressive power
of monadic path logic, Information and Computation, 184 (2003), pp. 147–159.

[18] J.-É. Pin,Mathematical Foundations of Automata Theory. unpublished lecture
notes, http://www.liafa.jussieu.fr/~jep/PDF/MPRI/MPRI.pdf.

[19] A. Potthoff, Logische Klassifizierung regulärer Baumsprachen, Ph. D.Thesis,
Universität Kiel, Kiel, 1994.

[20] L. Ribes and P. Zalesskii, Profinite Groups, Springer-Verlag, 2010.

[21] J. Salamanca,Unveiling eilenberg-type correspondences: Birkhoff ’s theorem for
(finite) algebras + duality. unpublished note, arXiv:1702.02822v1.

[22] W. Thomas, Languages, Automata, and Logic, in Handbook of Formal
Languages, G. Rozenberg and A. Salomaa, eds., vol. 3, Springer, New York,
1997, pp. 389–455.

[23] H. Urbat, J. Adámek, L.-T. Chen, and S. Milius, Eilenberg theorems for free,
in 42nd International Symposium on Mathematical Foundations of Computer
Science, MFCS 2017, August 21–25, 2017 – Aalborg, Denmark, vol. 83, Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2017, pp. 43:1–43:15.

[24] I. Walukiewicz,Monadic second-order logic on tree-like structures, Theoretical
Computer Science, 275 (2002), pp. 311–346.

[25] Y. I. Yanov and A. A. Muchnik, Existence of k-valued closed classes without a
finite basis, Dokl. Akad. Nauk., 127 (1959), pp. 44–46.

378

Symbol Index

Chapter I

[n] {0, . . . , n − 1}, 8⇑X upwards closure, 8⇓X downwards closure, 8
Set category of sets, 8
Pos category of posets, 8
Top category of topological

spaces, 8
Met category of bounded metric

spaces, 8
G-Set category of G-sets, 9
JX discrete object, 10
VA underlying set, 10
AX power of A, 19
dom(s) domain of s, 23
Π(C) free product completion, 27

Chapter II

imφ image, 94
kerφ kernel, 94
ε ⊥ µ orthogonal morphisms, 97⟪X⟫A generated subobject, 104⟪X⟫A generated subalgebra, 104
Aρ ρ-reduct of A, 116

A ↑ Ξ expansions to sorts in Ξ, 117
A∆ reduct to sorts in ∆, 117
A/θ quotient, 119
Cong(A) congruences of A, 120
CongM(A) M-congruences of A, 120[a]∼ equivalence class, 122
A/⊑ quotient, 123[a]⊑ ⊑-class, 123
EP epimorphisms making every

P ∈ P projective, 129
S(K) closure under subobjects, 131
H(K) closure under quotients, 131
Pκ(K) closure under products, 132

Chapter III

f −1[κ] inverse image of κ, 146
TC(θ) transitive closure, 153
LA language algebra, 162⟪C⟫L subalgebra generated by C,

162
synκ syntactic morphism, 163
Syn(κ) syntactic algebra, 164T term algebras, 182R recognisers, 182
A ⊧ s ≤ t satisfaction, 214

abstract algebraic language theory 2022-12-11 — ©achim blumensath 379

Symbol Index

Th(V) theory of V , 214

Chapter IV

Mod(φ) models of φ, 219⟪M; φ⟫ truth value of φ in the
modelM, 219

ThL(M) L-theory, 219
eq(L) L-equivalence, 220L[Ω] Ω-extension, 221

Chapter V

Ξ sorts, 253
Ξ+ extended sorts, 253
G nondeterministic rooted

graphs, 253
dom+(g) extended domain, 254
dom(g) domain, 254
R deterministic rooted graphs,

254
un(g) unravelling, 255
sing singleton graph, 255
flat flattening for graphs and

trees, 256
MSO[≤so]MSO with successor

ordering, 260
MSO[≤pf]MSO with forest ordering,

260
MSO[suc]MSO with successor

relations, 260
CMSO countingMSO, 260≡L logical equivalence, 261
Ffin finite forests, 263

a + b horizontal product, 263
a ⋅ b vertical product, 263
s0 ∐∐ ⋅ ⋅ ⋅ ∐∐ sn−1 shuffle, 267
Creg regular linear orders, 268
a ≤L b L-order, 272
a ≤R b R-order, 272
a ≤J b J-order, 272
a ≡L b L-relation, 272
a ≡R b R-relation, 272
a ≡J b J-relation, 272

Chapter VI

ML modal logic, 303
CTL computation tree logic, 303
PDL propositional dynamic logic,

303
EF reachability fragment of

CTL, 303
MPL monadic path logic, 303
MCL monadic chain logic, 303
cEF counting variant of EF, 303
cCTL∗ counting variant of CTL∗,

303
cwCTL∗ counting variant of wCTL∗,

303
cPDL counting variant of PDL, 303
cTL[K] countingK-temporal logic,

304⊧f satisfiability for forests, 304⊧t satisfiability for trees, 304
TL[K] K-temporal logic, 305
Ffb finitely branching forests, 305
t[K̄] labelling of t, 307
L[K̄] cascade operation, 307

380

Symbol Index

Casc(K) cascade languages, 307
aω ω-power, 314
aπ idempotent power, 314
π × a idempotent multiple, 314
a ≈mn t cEFn-bisimulation, 318
tpmn (s) EFn-type of s, 319
A∆ ξ-tuples, 334
BA set of functions, 334
t↓xv subforest of x-successors,

334
t⇔ ā substituting values for

variables, 334
t◁ φ φ-labelling of t, 335
α◁ β cascade composition, 335
A ○B wreath product, 335
prw prefix corresponding to w,

348

S1 adjoining a unit to a
semigroup, 353

Ψ set of characters, 354
χ(w) character of w, 354
χ(w/σ) relative character, 354
sf v subforest attached to v, 354
ΠN(s) number of paths, 355
Π+N(s) number of finite paths, 355
ΠN(s/H) number of paths throughH,

355
Π+N(s/H) number of finite paths

throughH, 355
s ∼σ t equivalent w.r.t. a character,

362
c ≈σ d equivalent w.r.t. σ , 365[c]σ ≈σ -class, 365
Ψ(σ){x} σ-significant characters, 365
pf(s) profile of s, 365

381

Index

accepting run, 285
algebraic signature, 36
alphabet, 145
φ-annotation, 335
anti-chain logic, 265
antiregular tree, 278
aperiodic semigroup, 353
arctic semiring, 135
aritiy of a polynomial functor, 22
arity, 253
arity of a function symbol, 36
arity of a signature, 36
automaton, 284
Automaton-Pathfinder Game, 286
axiomatising a class of algebras, 214

back-and-forth argument, 261
δ-bialgebra, 81
bisimilar forests, 309
bisimulation, 309
bisimulation-invariance, 309
Bojańczyk-Klin algebra, 281

canonical subobject diagram, 107
cascade composition, 335
category with congruences, 120
character of a word, 354
close end, 323

closure of morphisms pullback, 99
closure of morphisms pushouts, 99
closure of morphisms under (co-)limits,

99
cogenerator, 140
comma category, 8
complete binary tree, 299
M-compositional logic, 227
composition of contexts, 162
computation tree logic, 303
congruence, 119
M-congruence, 125
congruence ordering, 123
context, 161
convex set, 323
counting monadic second-order logic,

260
countingK-temporal logic, 304
counting temporal logics, 303

definable algebra, 233
definable class, 221
definable language, 226
definably embedded subset, 233
dense morphism of monads, 175
densely antiregular tree, 278
derivative of a language, 162

abstract algebraic language theory 2022-12-11 — ©achim blumensath 383

Index

descending chain condition, 138
deterministic rooted graphs, 254
diagonal fill-in property, 94
discrete category, 10
disjunctive category, 10
distributive F-algebra, 348
δ-distributive function, 88
distributive law, 66

E-morphism, 93
x-edge, 254
EF-bisimulation, 318
embedding, 93
U-end, 323
enough injectives, 136
L-equivalence, 220
essentially finitary, 288
essentially finitary monad, 175
essentially unique factorisation, 108
existence of syntactic algebras, 164
expansion, 117
Ω-extension of a logic, 221
extension of a monad, 67

EM-factorisation, 93
factorisation system, 93
factorising through a cocone, 108
family of languages, 146
family of logics, 226
far end, 323
finitary algebra, 137
finitary functor, 156
finitary signature, 36
finite-dimensional, 137
finitely branching forest, 305
first-order logic, 259
flattening, 34

flattening of a graph, 256
forest, 254
forest automaton, 284
forest formula, 304
formula, 219
free algebra, 43
free functor, 67
function symbol, 36

G-set, 7
generalised sum, 262P-generated object, 131
κ-M-generated object, 108
κ-M-generating diagram, 108
generator, 128
graph structures, 259
Green’s relations, 272

H-class, 272
hole, 161, 254
horizontal product, 263
horizontal semigroup of a forest algebra,

263

idempotent power, 314
image of a morphism, 94
M-inequality, 214
injective object, 136
σ-insignificant element, 362
internal operation, 161
interpretation, 262
inverse image, 146, 147
inverse morphism, 146
inverse relabelling, 146
iteration of a language, 271

J-class, 272

384

Index

J-homogeneous word, 272

kernel of a function in Pos, 123
kernel of a function in Set, 122
kernel of a morphism, 94
Kleisli category, 67

L-class, 272
Φ-labelling, 304
Ω-language, 146
language algebra, 162
language recognised by an automaton,

285
Läuchli-Leonard operation, 267
lift of a mond, 67
linear forest, 254
linear tree, 254
locally definable algebra, 233
logic, 219
logic over an alphabet, 226

M-morphism, 93
minimal algebra of a language, 151
minimal morphism of a language, 151
modal logic, 303
modal rank, 305
model, 219
models of a formula, 219
monadic chain logic, 303
monadic path logic, 303
monadic second-order logic, 259
monadic second-order logic for linear

orders, 266
monadic second-order logic with forest

ordering, 260
monadic second-order logic with

successor, 260

monadic second-order logic with
successor ordering, 260

morphism of δ-bialgebras, 82
morphism of language algebras, 162
morphism of logics, 222
morphism of polynomial functors, 26

neutral element, 353
noetherian, 138
non-linear forest, 254
non-linear tree, 254
nondeterministic rooted graph, 253

Ω-operation, 136
orbit finite set, 144
orbit-finite, 7
origin map, 31

parity condition, 285
partial run of an automaton, 287+-path algebra, 355S-path language, 353
ω-path algebra, 355
permutation of a forest, 308
place in a forest, 286
polynomial functor, 22
power operator, 19
x-predecessor, 254
preserving a limit/colimit, 110
priority function, 284
σ-profile of a forest, 365
profile of a partial run, 287
projection, 93
projective object, 127
propositional dynamic logic, 303
pseudo-variety, 132

385

Index

quasi-finite set, 144
quotient, 119

R-class, 272
ranked tree, 254
recognising a language, 146
recognising a language by an automaton,

285
reduced path, 354
∆-reduct, 117
reduct of anM-algebra, 116
reflecting a limit/colimit, 111
regular expression for languages of

countable chains, 271
regular forest, 287
regular linear order, 268
relabelling, 146
relative character, 354
root, 253
rooted graph, 253
run of an automaton, 285

satisfaction function, 219
satisfying anM-inequality, 214
σ-separated forest, 362
shape map, 31
shuffle, 267
sibling-commutative forest language, 308
Sierpiński space, 142
signature, 36
σ-significant element, 362
simple interpretation, 262
singleton operation, 34
sort, 36
sort-accumulation point, 183
sort-wise finite family of logics, 226
sort-wise properties, 137

standard factorisation system, 102
starting state of a partial run, 287
state of an automaton, 284
strong morphism of logics, 222
stronglyM-compositional logic, 249
strongly definable class, 221
strongly finite-dimensional, 137
Σ-structure, 39
subalgebra, 104
subobject, 104
x-successor, 254
syntactic algebra, 164
syntactic congruence, 164
syntactic morphism, 163
syntactic partition, 304
syntactic residue, 164

K-temporal logic, 305
term algebra, 43
theory, 219
M-theory of a class, 214
theory function, 219
transition relation, 284
transitive closure, 153
tree, 254
tree formula, 304
tropical semiring, 135
type of a function symbol, 36

universe, 39
unranked tree, 254
unravelling, 255

Ω-valued logic, 219
variable, 253
varietal logic, 226
variety, 132

386

Index

R-variety, 183
variety of languages, 183

vertical product, 263

vertical semigroup of a forest algebra,
263

weak coequaliser, 52
weak morphism of logics, 222
weakly definable class, 221
weakly finite-dimensional set, 137
well-defined factorisation system, 102
wreath product, 335

387

The Roman and Fraktur alphabets

A a A a N n N n
B b B b O o O o
C c C $ P p P p
D d D d Q q Q q
E e E e R r R r
F f F f S s S s +
G g G g T t T t
H h H h U u U u
I i I i V v V v
J j J j W w W w
K k K k X x X x
L l L l Y y Y y
M m M m Z z Z z

TheGreek alphabet

A α alpha N ν nu
B β beta Ξ ξ xi
Γ γ gamma O o omicron
∆ δ delta Π π pi
E ε epsilon P ρ rho
Z ζ zeta Σ σ sigma
H η eta T τ tau
Θ ϑ theta Υ υ upsilon
I ι iota Φ ϕ phi
K κ kappa X χ chi
Λ λ lambda Ψ ψ psi
M µ mu Ω ω omega

388

