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I. Honads

1. 2n Overview

HERE ARE MANY DIFFERENT FORMALISMS to specify formal languages
based on automata, grammars, regular expressions, homomorphisms,
logics, and so on. The central topic of formal language theory is the study of
such formalisms. In particular, we are interested in their expressive power and
their algorithmic properties, i.e., which questions are decidable for them and
what the respective complexity is. Several frameworks exist for answering
such questions. Here we will adopt a very general category-theoretic point
of view that covers many of them. Our focus will be on algebraic and logical
approaches with a special emphasis on languages of infinite trees and their
monadic second-order theories.

Before starting to develop the general theory, let us shortly present some
of the specific examples it is supposed to subsume, We will be rather succinct
and intended mainly as a reminder to readers already familiar with the
material. The reader is encouraged to ignore and/or skip any parts that look
incomprehensible.

Sinite BHords

The prototypical example of a formal language theory is that of finite words.
A finite word over a given alphabet 2 is a finite sequence (possibly empty) of ele-
ments of 2. We denote the set of all finite words by 2*. (When not explicitly
mentioned otherwise, we will assume alphabets to be finite.) A (formal) lan-
guage is a set L € 2™ of such words. The main algebraic framework for such
languages is based on monoids (or semigroups). A monoid M = (M, -, e) is

ABSTRACT ALGEBRAIC LANGUAGE THEORY 2024-07-21 — ©ACHIM BLUMENSATH 3



I. Monads

a structure with universe M, a binary operation - : M x M - M, and a
constant e € M such that

¢ - isassociative: a-(b-c)=(a-b) c;
¢ eisaneutralelement: e-a=a=a-e.
Examples include
o the set {0, 1} with the usual multiplication and the neutral element 1;
o the natural numbers (N, +, o) with addition;
¢ the natural numbers (N, -, 1) with multiplication;

¢ the set 2 of all finite words with concatenation as the product and the
empty sequence () as the neutral element.

The monoid (X*, -, ()) is also called the free monoid since it has the following
universal property: for every monoid M and every function f : X — M, there
exists a unique homomorphism ¢ : X* — MM that agrees with f on the
elements of X.

A homomorphism @ : M — N of monoids is a function ¢ : M - N
between their universes that preserves products and the neutral element,
that is

p(a-b)=9¢(a)-¢(b) and ¢(e)=e.

We can use a homomorphism ¢ : £ — M from the free monoid to another
(usually finite) monoid M to represent languages of . We say that L ¢ X*
is recognised by ¢ if L = ¢*[P], for some P € M.

Examples. (a) The monoid ({0, 1}, max, o) recognises the language X*aX*
via the morphism mapping a to 1 and every other letter to o.

(b) The monoid Z/2Z recognises the language of all words with an even
number of letters a via the morphism mapping a to 1 and every other letter
to o.

a

Note that we can encode every language L = ¢~ "[P] recognised by some
finite monoid M by specifying

o the multiplication table of M,
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o the neutral element of M,
o theset P, and
o the values ¢(c), forc € X.

This is a finite amount of information. Hence, we can use this encoding for
algorithms that take languages as input.

Of course, not every language can be encoded this way: there are only
countably many encodings but uncountably many languages (if the alphabet
contains at least two letters). So, which languages can be recognised by a
homomorphism in this way? It turns out that these are exactly the well-
known regular languages.

Theorem 1.1. Let L € X%, The following statements are equivalent.
(1) L is recognised by a finite automaton.
(2) L is the value of a regular expression.
(3) L is denoted by a linear grammar.

)

)
(4) L is definable in monadic second-order logic.
(5) L is recognised by a homomorphism to a finite monoid.
)

(6) The syntactic congruence of L has only finitely many classes.

Let us briefly explain the last item in the above characterisation. The
syntactic congruence ~1, of alanguage L C 2 is a binary relation on X* which

is defined by
u~pv  iff (xuyeL < xvyel), forallx,yEZ*.

It turns out that ~1, forms a congruence on the free monoid (X, -, ())
and the quotient homomorphism X* — X*/~p recognises L. Hence, if
~r, has only finitely many classes, the quotient ¥/~ forms a finite monoid
recognising L

Jnfinite BYords

An w-word over an alphabet X is an infinite sequence w = (c,, ) y<o of letters
¢y €2, 1, afunctionw : w - X, We denote the set of all w-words by 2.
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To adapt the algebraic approach to infinite words, we need a suitable kind
of algebra to replace monoids. This replacement is called an w-semigroup. An
w-semigroup & = (SI, Seos *» 7'[) is a two-sorted structure where S, contains
the finite elements and So. the infinite ones. These two sets are equipped
with three kinds of multiplication:

¢ afinite product - : S; x S; = Sy,
& amixed product - : S; X Seoc = Soo, and
& an infinite product 7: (S;)* = Soo.

All products are assumed to the associative. That is,
a-(b-¢)=(a-b)-c,
a-(b-u)=(a-b) -u,
b-n(ao, ar,...)=m(b,ao,a1,...),
(G0, 01, d2,...) = n((ao---ako_,), (A, k=1 ) ),

foralla,b,c,a0,a.,--- € S;,u € Soo,and 0 < kg < k; < --- < w. In case
of a finite w-semigroup, we can replace the infinite product by an w-power
operation

a®:=mn(a,a,a,...).
The resulting kind of algebra is called a Wilke algebra. Using a straightforward
Ramsey argument one can show that every finite Wilke algebra is associated
with a unique w-semigroup.

Again, a free w-semigroup (X%, 2%, -, ) consists of all words over some
alphabet X. The finite elements are the finite, non-empty words w € 2%, the
infinite ones are the infinite words w € X¢.

A homomorphism ¢ : @ — ¥ of w-semigroups consists of a pair of maps
¢::S; = Tyand @ : Seo = T that commute with all three products.

Examples. Let 2 = {a, b}.
(a) The language of all words w € X°° containing the letter a is recognised
by the morphism ¢ : X*° — & where

Si={o}, Sw={o1}, ¢(a)=1, ¢(b):=o,
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and the product is just the maximum operation.
(b) The language of all words w € 2 containing infinitely many occut-
rences of the letter a is recognised by the morphism ¢ : 2°° — & where

S {o), Swi={on}, p(a)i=1, p(b)=o,
and the product is defined by

c-d:=max{c,d}, n(cos€rye..) i=limsupe,,
n<w
c-ui=u,
forc,d,co,cr,-- € S;and u € S ,

Again we obtain the following equivalent characterisations of the class of
regular languages.
Theorem 1.2. Let L € 2. The following statements are equivalent.
(1) L is recognised by a finite automaton.
(2) L is definable in monadic second-order logic.
(3)
)

(4

L is recognised by a homomorphism to a finite w-semigroup.

The syntactic congruence of L has only finitely many classes.

Sinite and Jnfinite Trees

Many results about words (finite or infinite) and their languages generalise
to trees. There are two main kinds of trees considered in language theory:
ranked ones and unranked ones. An unranked tree over an alphabet X is a
directed tree whose vertices are labelled by letters from X. To define ranked
trees we have to equip each symbol a € X with an arity ar(a) € w. A 2-
labelled directed tree is ranked if the arity of a vertex label coincides with
the number of outgoing edges. Both kinds of trees come in finite or infinite
versions. For instance, every term over a signature I can be seen as a ranked
tree.

Algebraic descriptions of tree languages turn out to be more complicated
than those for words. The simplest one uses so-called forest algebras to recog-
nise languages of finite trees (and forests). A forest algebra (H, V, -, +) is
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two-sorted: H is the domain for forests and V is the domain for contexts. It
is equipped with three horizontal products and two vertical ones

+:HxH—-H, -:VxH—->H,
+:HxV >V, - VxV->YV,
+: VxH-V

satisfying various associativity laws.

A more popular formalism is based on automata. A tree automaton is
device that labels each vertex of the given input tree with a state in a way
that is consistent with the transition relation. For infinite trees, there is an
additional condition for every branch concerning the states appearing on it
infinitely many times.

Vleighted Languages

Sometimes it is helpful to view a language not only as a set of words (or
trees, or ...), but as a function associating with every word some weight.
For instance, instead of just recording whether or not a word is accepted
by a given automaton, one could count how many different ways there are
for the automaton to accepting the word (if the automaton is nondetermin-
istic). Or if it is a more complicated automaton model, one could count
how many operations of a certain kind the automaton uses, or what the
maximal value of some counter is, and so on. This leads to the notion of a
weighted language, which is just a function  : ¥ — (, where Q is some set
of weights. Frequently, one assumes that (2 forms a semiring. In this case the
set of all weighted languages X* — (2 also forms a semiring, which is usually
denoted Q{Z*)) and called the semiring of formal power-series over Q. It is
then customary to write a function k : X* — (2 as a formal infinite sum

5 e

weX*

with coefficients a,, := k(w) € Q. We will not use this notation, since the
analogy with sums breaks down when considering weighted languages of
other objects than words.
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Again, we can set up some algebraic machinery to define weighted lan-
guages where homomorphisms into finite monoids are now replaced by
homomorphisms into finite-dimensional Q-modules.

Data Vbords

When considering infinite alphabets one can preserve many nice properties of
the finite-alphabet case if one uses formalisms that cannot check for specific
letters. Instead, we only allow checking whether two letters are equal or, more
generally, whether they satisfy any of a fixed set of predefined relations. Thus,
one works with alphabets with additional structure like (N, =) or (Q, <)
and one requires that every language is closed under automorphisms of the
alphabet. An example of such a language is the one of all words that contain
some letter at least twice.

Technically this means working with sets (X, a) equipped with a group
action o : & — Aut(X). Such sets are called &-set, where & is the group
in question. Since an action is just a homomorphism o : & — Aut(X), the
category 8-Set of all &-sets is just the comma category (& | Aut). In this
category the role of finite sets is played by the orbit-finite ones: sets with only
finitely many orbits under the associated action.

One can now define automata in 8-Set as follows. Let X be an orbit-finite
&-set serving as the alphabet. For the set of states, we take some 8-set Q.
Usually Q = Qo x X" consists of a finite part Q, together with several
registers holding letters of the alphabet. The transition relation then takes
the usual form A € Q x X x Q. Instead of requiring Q and A to be finite,
we now assume that they are orbit-finite. For instance, to check that some
letter appears at least twice, an automaton can non-deterministically guess
some position, store the letter at this position in memory, and then compare
it with each of the remaining letters until there is a match.

Jrerequifites and Yotation

Unfortunately, in a book like this some prior knowledge of category theory
has to be assumed. While I have tried to keep the prerequisites at a minimum,
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I assume that the reader has worked through some basic introductory text
covering, in particular, limits and adjunctions. More advanced concepts like
monads, distributive laws, etc. will be introduced below as needed.

Let us fix some basic notation. For n < w, we set [n] := {o0,...,n —1}.
In a partial order, we denote the upwards closure of a set X by X and its
downwards closure by || X. We denote the comma category for two functors
F and G by (F | G). For a family (A;);es of objects in a category, we
denote the product by [1;c; A; and the coproduct by Y. ;.; A;. The associated

canonical morphisms are

IERICER LIS WD RS »

iel iel iel iel iel iel
(gi)ier: A= ]Bi, @Dhi:> A~ B.
iel iel iel

Note that the notation for the last one is non-standard. We denote the
terminal object by 1.

9. Dilcrete Tategories

We start by introducing the kind of category we are working in. The most
important one is of course the category Set of sets. But sometimes it is useful
to equip the sets under consideration with some additional structure. For
instance, when characterising logics that are not closed under negation, it
will be necessary to use ordered sets. Similarly, when dealing with data words,
we need to equip the sets with a group action. We will therefore work more
generally in some a base category D that behaves sufhiciently like Set for
the proofs below to go through, but that is general enough to cover all the
cases we are interested in. Let us quickly introduce the main categories we
are interested in before presenting the generalisation we will use.

Definition 2.1. We denote by Set the category of all sets and functions,
and by Pos the category of all partial orders and monotone functions. Top
denotes the category of topological spaces and continuous maps, and Met is
the category of bounded metric spaces and non-expansive functions, that is,
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metric spaces (X, d) satisfying
d(x,y) <1, forallx,yeX,
and functions f : X — Y satisfying

d(f(x), f(y)) <d(x,y), forallx,yeX.

Finally, for a group &, we denote by 8-Set the category of all &-sets, i.e.,
sets S equipped with an action & x § — S and functions preserving this
action. R

Our base category D will be one of these categories or one similar to
them. One of the things these categories have in common is that there exists
an adjunction J 4 V between Set and D; that is, every object A € D
has an underlying set VA and we can equip every set X € Set with the
‘weakest possible’ D-structure J X. For instance, for D = Pos, VA is just the
underlying set of the partial order A, while JB is the set B equipped with
the trivial order =. Similarly for D = Top, V maps a topological space to its
underlying set while J equips a set with the discrete topology. Furthermore,
we will assume that the forgetful functor V : D — Set is faithful and that
the objects in D are discrete’ in the sense that V commutes with coproducts.
That means that the underlying set of a coproduct Y ; A; is just the disjoint
union of the sets VA ;. Note that this rules out most algebraic categories like
groups, modules, or term algebras.

Faithfulness of V ensures that every morphism of D is uniquely determ-
ined by the induced function on the undetlying sets. But note that not every
such function needs to correspond to a morphism of D. (Not every function
is monotone/continuous/etc.) Furthermore, V induces a partial order E on

the objects of D by
AcB iff thereexistsamorphism f: A > BwithVf =id.

Intuitively, A € B means that A and B have the same underlying set, but the
additional structure of A is more permissive/general/weaker than that of B.
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For instance, if D = Pos, we have
(A, <)e(A,<") if A=A" and <c<.
Similarly, for D = Top, we have
(X, H)e(x", 7y if X=X and T2T".
Let us formalise these assumptions on D.

Definition 2.2. (a) A category D is disjunctive if, for every morphism ¢ :
A — Y1 Bi, there exist unique objects A; and unique morphisms ¢; :
A; — B, for i € I, such that

A:ZAi and (PIZ(P,‘.

iel iel

Uniqueness here means that, if A'i and go; are other such objects and morph-
isms, there exist isomorphisms 0; : A}, > A; such that ¢; 0 0 = ¢, for
all .

(b) A category D is discrete’ if it is disjunctive, has arbitrary coproducts,
and there exists an adjunction J — V between Set and D such that V is
faithful and preserves coproducts, ,

We will develop our language theory for a base category D that is (1) dis-
crete, (11) has arbitrary colimits, and (111) all countable limits. In this chapter,
we will still be explicit about these assumptions; in later chapters, they will
be left implicit.

Examples. Let us check that the categories introduced above are discrete.
(a) For Set, we can take V := Id. To show that Set is disjunctive, let
f:C — A+ Bbea function. Then C = f"[A] + f'[B]and f = (f |
fTTA]D) + (f I f7Y[B]) and this decomposition is clearly unique.
(b) For Pos, we define the adjunction J 4 V by

V(A,<):=A and JA:=(A,=).

"Note that the term ‘discrete category’ is used differently in the literature.
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The unit € : A - A and the counit ¢ : (A, =) - (A, <) of this adjunction
are given by the identity maps. The proof that Pos is disjunctive is the same
as for Set.

A limit is computed as in Set with the ordering defined component-
wise, while coproducts );(A;, <) are simply disjoint unions. Note that the
forgetful functor V : Pos — Set does not preserve pushouts: consider the
two bijections f, g: ({a,b},=) = ({0, 1}, <). The pushout of f and ghasa
single element, while the one of V f and V¢ has two. To compute an arbitrary
colimit in Pos one first forms the corresponding colimit in Set. In general,
this results in a preorder. To obtain the colimit in Pos we have to take the
quotient of this preorder by the associated equivalence relation.

(c) For Top, we define the adjunction J 4 V by
V(X,C):=X and JX:=(X,P(X)).

The unit ¢ : X — X and the counit ¢ : (X, (X)) - (X,C) of this
adjunction are given by the identity maps. The proof that Top is disjunctive
is the same as for Set.

Note that the functor V also has a right adjoint: the functor R : Set —
Top mapping each set X to the space RX := (X, {@, X}) with the trivial
topology.

Alimitlim D ¢ []; D(i) is computed as in Set with the topology induced
by the product topology on [T; D(i), and coproducts };(X;, C;) are disjoint
unions.

(d) For 8-Set, we define the adjunction J 4 V by
V(X,a):=X and JX:=(GxX,y),
where
y(h)({g x)) :==(bg x), forg,heGandxeX.
The corresponding bijection maps f : X — Y in Set to

(GxX,y) > (Y, a): (g x) = a(g)(f(x))
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in 8-Set. The unit € : X - G x X and the counit 1 : (G x X, y) - (X, a)
of this adjunction are given by

e(x) = (e,x) and (g,x) = a(g)(x).

Limits are again computed as in Set with an action that is defined compon-
ent-wise. Coproducts Y; (X, ;) are disjoint unions and the proof of dis-
junctiveness is again similar to that of Set.

(e) For Met, we define the adjunction J 4 V by

V(X,d):=X and JX:=(X,d,),
where d, is the discrete metric

o ifx=y,
di(x,y) { g

1 ifx#y.
The unit ¢ : X - X and the counit 1 : (X, d,;) - (X, d) are given by the
identity maps.

A limit of metric spaces is computed as in Set where the metric is given

by
d(a,b) :=supd(pi(a), pi(b)),

where p; are the projections. The coproduct 3 ; (X, d;) is the disjoint union
with elements from different components at distance 1 from each other. The
proof of disjunctiveness is again similar to that of Set. |

For reference, let us collect a few useful standard facts about adjunctions.

Lemma 2.3. Let J < V be an adjunction between Set and D where V is
faithful, and let € : Id = V] and 1 : JV = 1d be the unit and counit of the

adjunction.

(a) The adjunction J 4V maps
f:A-VB to 1o0Jf:JA—B,
g:JA—-B to Vgoe:A—- VB,
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(b) Vioe=id and 1o Je =id.

(c) f:A — Bisamonomorphism if, and only if, V f : VA — VB is injective.
(d) IfVf: VA — VB is surjective, then f : A — B is an epimorphism.

(e) All morphisms of the counit 1 : JV = Id are surjective.

Proof. (a) follows by naturality of the bijection D(JX, A) = Set(X,VA).

(b) By definition, ¢ : JVA — A is the image of id : VA — V under the
adjunction. Hence, we must obtain id when mapping ¢ back. By (a), this
backwards translation is equal to Vi o ¢. The second equation follows in the
same way.

(¢) (<) Suppose that V f is injective and consider two morphisms g, b :
C— Awith fog=foh. ThenVfoVg=VfoVbhandinjectivity of V f
implies that Vg = Vh. As V is faithful, it follows that g = b.

(=) Suppose that Vf is not injective. Then there exist two functions
s;5t: 1 > VAwiths # tbut Vfos = Vfot Lete : Id = V] and
1 : JV = Id be the unit and counit of the adjunction, respectively, and let
§:=10Jsand f := 1o Jt be the morphisms J1 — A corresponding to s and ¢
under the adjunction. Then the morphism corresponding to f o § under the
adjunction is

V(fos)oe=VfoVioV]soe=VfoViogos=Vfos,
and similarly for f o f. Consequently,
Vfos=Vfot implies foi=fof.

But s # t implies § # £. Thus, f is not a monomorphism.

(d) Suppose that the function V f is sutjective and consider two morph-
isms g,h: B> Cwithgof =hof ThenVgoVf = VhoVfand
surjectivity of V f implies that Vg = Vh. As V is faithful, it follows that
g=h.

(e) By (b), V1 has a right inverse. O

Example. The converse of (e) does not hold. Let D be the category of all
Hausdorft spaces. Then D is discrete. We claim that a continuous map



I. Monads

e : £ - Qis an epimorphism if, and only if, rng e is dense in Q). In particular,
there exists non-surjective epimorphisms.

Let us prove the interesting direction. Suppose that rng e is dense in 9
and consider two different continuous maps g, b : 9 — 3. As Q) is Hausdorff,
the equaliser

E={yeY|g(y)=h(y)}

is closed in Q). Hence U := Y \ E is open and non-empty. This implies that
Unrnge # @. Consequently, go e # h o e and e is not an epimorphism.

Exercise 2.1. Prove that, in a discrete category D, JX = Y .xJ1 and
VIX = X x V]1, for every X € Set. ,

Sorts

Discrete categories will be our generalisation of sets. But actually, we will
frequently not work with ordinary sets, but with sorted ones. That is, we
fix a set £ of sorts and we consider sets where each element has some sort
& € E. Such a set can be formalised either (i) as a family A = (A) ¢z of
sets where A contains all the elements of sort &; or (ii) as a set A together
with a function ¢ : A - £ that maps each element of A to its sort. Both
definitions are equivalent. We will adopt the first one as it is usually simpler
to work with.

The reason for using several sorts is that, for certain kinds of languages K,
we need different sorts of elements to build up the objects in K. For instance,
for languages of infinite words, we need to distinguish between finite and
infinite word. Similarly, for languages of trees, we need both ordinary trees
and trees with one or several holes. Sorts help us to keep these types of
elements apart. In our setting, we will therefore be working in the category
D* whose objects are families A = (A¢) gz where each A is an object of D.
A morphism f : A — B between such families is then just a family f = (f;)
of morphisms f; : Ay = Bg. Similarly, a functor F : C — D= is given by
afamily F = (F¢)¢ of functors F : C — D. For a property P, we say that
A € DF is sort-wise P if each set Ag has property P. In particular, sort-wise
finite means that every A is finite.
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From this point on, we will use the terms ‘set’ and function’ as a short-
hand for ‘object of D’ and ‘morphism of D, or their many-sorted counterparts
in D%, If we mean any other kind of set or function, we will mention this
explicitly. Furthermore, to keep notation simple, we will frequently not
distinguish between an object A € D and its underlying set VA.

As mentioned above, we can identify a sorted object A = (A¢) gz € D*
with its coproduct A = Y ¢z Ag. Using this point of view, a morphism
f A — B corresponds to a sort-preserving morphism between the corres-
ponding coproducts. Let us prove that these two points of view are equi-
valent for the categories we are interested in. Formally, we have to show
that D is equivalent to the arrow category (D | Z - 1), where we have set

X A=Y, ,xA for X eSetand AeD.
Proposition 2.4. Let D be a discrete category. Then
D (DlE-1), for every set E.

Proof. We define a functor F : D= — (D | Z-1) as follows. Given an object
(Ag)ees € D=, we set

F(Ag)g=> ag:y Ag—>E-1,
EeE EeE
where az : Ay — 1is the unique morphism into the terminal object. For a
morphism (f¢)¢: (Ag)e = (Be)g we set

F(fe)e = Z{:f& : %:Af—’ %:Bf~

As 1is terminal, we have f8; o f; = &y (where az and ¢ are the components
of, respectively, F(A¢) ¢ and F(B¢) ), and it follows that

F(Bg)goF(fe)e = ;(ﬁs o fe) = %:“s =F(Ag)e.

Note that I is faithful since F(fz)s = F(g¢)¢ implies that, for every
(ek,

fe= (%:fs) oip=F(fe)soir=F(ge)goir= (%:gs) °ir=gr,
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where i : Ay = 3¢ Ay is the corresponding inclusion morphism.

To see that I is full, consider a morphism f : @ — f where ot := F(A¢)¢
and 8 := F(B¢)¢. As D is disjunctive, it follows that f = 3¢ f for (unique)
fe: Ag > B Hence, f = F(fe).

It remains to show that every objecta : A > Z-1of (D | £-1) s
isomorphic to one of the form F(A¢)¢. Hence, fixa : A > Z-1. As D is
disjunctive, we have A = 3z Ay and & = 3 &g, for suitable Ay and a; :
Ag - LIt follows that o = ¥ p oty = F(Ag)s. O

Let us introduce the following operations to work with families in D=, We
will only be using them in a few places where the notation would otherwise
become unmanageable.

Definition 2.5. Let C be a category and f : I - K a function in Set. We
define functors Of: X > ¢land NI ¢l K by

Of(Ak)kex = (Af(f))iej’
Ze(Ai)ier = (Zief—x(k) Ai)keK ,
My (Ad)ier = (Tiefr(0) At) g
and similarly for morphisms. |
We can also formulate these operations in the comma category (C | £-1).

Exercise 2.2. Using the correspondence in Proposition 2.4, the functor O ¢
induces a functor (C | K-1) - (C | I-1). Prove that this functor maps a
morphism « : C — JK to its pullback along J f : JI - JK. j

The relationship between the three functors is given via the following
adjunctions.

Proposition 2.6. Let C be a category with products and coproducts of size |1|
and let f : I — K be a function in Set.

Zf—iljf—inf.
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Proof. For the first adjunction, consider a morphism ¢ : XA — B. We map
it to the morphism ¥ : A — OB with components

1//;I:§00_ji, foriel.

where j; : A; —» Yiefr(fi)) Ajls the inclusion morphism. Conversely, we
map ¥ : A — O¢B to the morphism ¢ : £¢A — B defined by

o= P vyi, forkeK.
ief1 (k)

It is straightforward to check that these transformations are natural. Fur-
thermore, they are inverses of each other since

D (poji)=9re D ji=o¢r,
iefr(k) iefr(k)

D ll/i)OJ'i:l//i‘

ief~1(k)

For the second adjunction, consider a morphism ¢ : Oy A — B. We map
it to the morphism y : A — II¢B with components

Vi = (@i)iefr(r), forkeK.
Conversely, we map ¥ : A — I1¢B to the morphism ¢ : OfA — B defined
by

@i=pioVyy, foriel.

where p; : [Tje(fi)) Bj = Biis .the projection. It is again straightfor-
ward to check that these transformations are natural. Furthermore, they are
inverses of each other since

pio{@j)jes(r(i)) = i
(PioW)icsr(k) = (Pi)iefr (k) OV = Vi - O

Let us also mention the following commutation relation between them.
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Exercise 2.3. Let f : I - Kand g: J > K be functionsand u : L — I and
v: L — ] their pullbacks. Prove that

02, 22,0, and oflly =1, 0O, . .
Finally, we can rephrase the definition of a disjunctive category in terms
of the functor X ¢ as follows.
Lemma 2.7. A category D is disjunctive if, and only if, for every function
f+I— ] in Set, the following two conditions hold.
(1) For every morphism ¢ : A — Z¢B in D, there exist A, € D' and
@, A. = Bsuch that
A= ZfA* and Q= qu)* .

() ZfA=2¢B and Xpp=2Xpy implies A=B and ¢=vy.

‘The Power Operator

Having fixed a base category D and a set = of sorts, we also need to choose
a notion of an ‘A-labelled object with domain X, for a set X € Set and an
object A € D. This can be captured by the concept of a power operator,
which we introduce next. Many categories D have the property that, given
an object A € D and a set X, we can equip the set of all functions X - VA
with the structure of an D-object. For instance, if A is a partial order, then
so is AX by setting

f<g iff f(x)<g(x), forallx.

Similarly, if A is a topological space, we can equip AX with the product
topology. Or, if A is an abelian group, we can define an addition on AX by
setting

(f +&)(x) = f(x) + g(x).

It turns out that in the categories we are interested in, we can identify
the set of functions X - VA with a product [],.x A. Let us introduce the
corresponding notation.

20



2. Discrete categories

Definition 2.8. Let D be a category.
(a) For A € D and X € Set, we define the power operator

A*=T]AeD.
xeX

Similarly, for A € DZand X ¢ Sets, we set

A¥ =] A €D,
teE

(b) We extend this operation to a functor as follows. For f : A - B and
g:X = Y, we define

fX = H f : AX - BX and A% := <Pg(x)>x€X :AY - AX;
xeX

where p, : [1)ey A > A is the projection to the y-th component. |

Let us collect a few properties of this operation. We start by showing that
the functor B is left adjoint to the hom-functor D(—, B).

Lemma 2.9. Let D be a category with products of size less than k and let
Set, C Set be the full subcategory of all sets of size less than k. Then

D(A,B*) = Set, (X,D(A,B)),  for A,BeDand|X|<x,

and this isomorphism in natural in A, B, and X. In particular, the functor

B : Set® — D is a right adjoint to the hom-functor D(—, B) : D — Set?P.
Proof. We map a function f : X - D(A, B) to the morphism
9(f) = (f(x))xex : A BY,

and, conversely, we map g: A - B¥ to the function y(g) : X - D(A, B)
given by

y(g)(x) =pxog

21
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where py : [1,ex B = B is the projection to the x-th component. Then
9(¥(g)) = (pxog)x =g
v(e(f))(x) = px o (f(2))z = f(x).

Hence, ¢ and y are inverses of each other. It therefore remains to prove
naturality of ¢. For b : Y — X, we have

(D(A,B”) 0 9)(f) = (phy))yey © 9(f)
= {Pn(y)yey © (f(x))xex
{(f(ON), ey
¢(foh)
= (Set?(D(A, B), h) 0 9)(f) .

For h: C — A, we have

(D(h, B*) 0 9)(f) = D(h, BX) 0 9(f)
=D(h, BX) o (f(x))xex
= (f(x) 0 hhex
= 9(D(h, B)(f))
= (Set*(D(h, B), X) 0 9) ().
For b : B — C, we have

(D(A, D) 0 9)(f) = D(A, ) 0 o(f)
= D(A, ™) o (f(x))xex
={ho f(x))xex
= ¢(D(Ab)(f))
= (SetP(D(A, h), X) 0 9)(f). =

The following consequences of the category D being discrete simplify
working with power operators.
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Lemma 2.10. Let J 4V be an adjunction between Set and D and let * = J1
where 1 is an 1-element set.

(a) VeD(%,-).
(b) V(AX) = Set(X,VA).

Proof. (a) For A € D, we have
D(*,A) =D(J1,A) = Set(1,VA) 2 VA,

(b) Consider X € Set and A € D such that A% is defined. Setting x :=
|X|*, it follows by (a) and Lemma 2.9 that

V(AY) 2 D(x, A%) 2 Set, (X, D(*, A))
e Sety (X, VA) = Set(X, VA). .

3. Jolynomial Sunctors

In formal language theory one studies sets of labelled objects like words,
trees, traces, pictures, (hyper-)graphs, and so on. To capture all these various
settings we start by introducing an operation M mapping a given set A of
labels to the set MIA of all A-labelled objects. A language in this context is
then simply a subset K ¢ M. For instance, for languages of finite words
we can use MIA := A™. Similarly, for languages of infinite words we use two
sorts £ = {1, 00} where sort 1 represents the ‘finite’ elements and sort w the
‘infinite’ ones. The operation M then maps a Z-sorted set A = (A}, Ao ) to

MA = (M, A, M, A) where
M;A:= A7 and MeA:=ATA, UAY.

(So a finite word is a finite sequence of finite elements, while an infinite word
can either be a finite sequence of finite elements followed by a single infinite
one, or an infinite sequence of finite elements.)

Furthermore, every function f : A — B induces an operation Mf :
MA — MB which applies the function f to each label. This turns M into a
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functor. In this section, we introduce the kind of functors M : D= — D=

that can be interpreted as producing sets of labelled objects. The definition
is based on the power operators (—)* we have introduced above. Note that

we can interpret the elements in AX as labellings of X positions by elements

of A.

Definition 3.1. Let D be a category and let = be a set of sorts.
(a) A functor IF : D= — D= is polynomial if it is of the form

FX = (FeX)eez where FeX:=)" XD,
iely

for fixed sets I; € Set and Dé € Set®. Usually, we will use the notation

FX = ZXdom(i),

iel

where I = (I¢); and dom (i) := Dé.
(b) The arity of a polynomial functor F is the least infinite cardinal x such
that |D’£| <k forallée Zand i€l

(c) If F is a polynomial functor, we call the elements of FA terms. )

Example. (a) The word functor FX := X* is a polynomial functor on Pos
since we can write

FX =) X"

n<w

The ordering is defined componentwise:
u<v iff  Ju|=|v|and u(i) <v(i)foralli.
(b) Similarly, the functor for w-words
F(X, Y) = (X*, X*Y + X¢)

is a polynomial functor on Pos®. .
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3. Polynomial functors

Our first aim is to show that we can indeed interpret FA as a set of A-
labelled objects of some sort. First, note that we can recover the index set I
from a polynomial functor IF : D — D< with

FfX: ZXDE, forée &,
iely

as follows. Let 1 be the terminal object of DZ. Since right adjoints preserve
limits, its image V1 = 1 is terminal in Set”®. If D is discrete, it follows by
Lemma 2.10 (b) that

VFel= 3 V(1P%)

i€l
> SetE(Dé,Vl)
ielg
~ % Set®(Dj,1)= > 121,
ielg ielg
and generally

VF:A =Y V(A%mD) = 3 Set®(dom(i), VA).

ielg ielg

Therefore, we can regard elements of ¢ A as functions s : dom(i) —» VA
where i € I has sort &. (or, more precisely, as pairs (i, s), but we usually omit
the index i). We write dom(s) := dom(i) in this case. Thus, the elements
of FA are functions s : dom(s) — A, i.e., A-labelled objects.

Similatly, for a function f : A - B and an element s € VIFA, we obtain

VE£(s) = V(f4m))(s) = Set(dom(s), Vf)(s) = Vfos.
Hence, I f acts on IFA as a relabelling s = f os.

These remarks justify our intuition of FA as a set of labelled objects. Let
us summarise them in the following result.
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Lemma 3.2. Let D be a discrete category. For every polynomial functor F :
DF — D there exists a polynomial functor F° : Set® — Set” such that

FCoV=VoF.
Proof. Suppose that

FX = ZXdom(s)’

sel

If we use the same expression

F°X = ZXdom(s)

sel

in the category Set”, we obtain

VFX =V xdom()

sel
_ ZV(Xdom(s)) _ Z(VX)dom(s) -F°VX,
sel sel

where the second step follows from the assumption that V commutes with
coproducts and the third one from the fact that right adjoints preserve
limits. O

There exists a more elegant and concise way to describe polynomial func-
tors. We can encode F = 3 (—)dom() by the function f : ¥ ; dom(s) —
I mapping each v € dom(s) to s. But note that this function f does not
preserve sorts. Therefore, to fully specify F we need two additional functions
oY gdom(s) > Eand f: I — E telling us which sorts the elements of
the respective sets have. Conversely, given three functions

. f B

E«~—D—>I1—£&

in Set, we can define the polynomial functor F = ¥, ;(=)P* where D, :=
f7'(s) and we regard I and D; as sorted sets via & and 8. A straightfor-
ward direct calculation shows that, using the functors O 2 and IT f from
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Proposition 2.6, we can write IF as the composition
F= Z/; o Hf o0y .

We will mostly not use this formalism, since the more concrete description
of IF as coproduct of powers leads to more elementary proofs.

Lemma 3.3. Every polynomial functor preserves monomorphisms, injective
morphisms, and surjective morphisms.

Proof. Let FX = ¥,.; XP7 be a polynomial functor and f : A > Ba
morphism. First, suppose that f : A — B is injective. To show that so is F f,
consider two elements (i, s), (j, t) € FA with

Ff({i,s) =Ff((je))-

This implies that i = jand f(s(v)) = f(t(v)), for all v € dom(s). Since
f is injective, it follows that s(v) = t(v), for all v. Hence, s = .

Next, suppose that f : A — B is surjective. To show that so is F f, let
(i,t) e FB. As f is sutjective, V f has a right inverse g : VB — VA, Setting
s = got, it follows that

Ff({iss)) = (i, fos)=(i,fogot)={it).

Finally, preservation of monomorphisms follows from what we have
already proved since a morphism is 2 monomorphisms if, and only if, it
is injective. O
Remark. Every functor IF : Set — Set preserves epimorphisms since epi-

morphisms in Set have right inverses. |

Let us take a quick lock at how the composition of two polynomial functors
looks like with this notation.

Lemma3s.g. IfF =3}, (—)dom(i) and G = Y ek (—)dom(k) are polyno-

mial functors so is F o G and

IFGX = Z Z szsdom(i) d"m(g("))’
iel g:dom(i)—»K
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Proof. We have

FGX=) J] Gx

iel vedom(i)

=2 IT 2 I x

i€l vedom(i) teK wedom(t)

=2 > I 1T x

iel g:dom(i)—>K vedom(i) wedom(g(v))

— Z Z szedom(i) dom(g(v))‘
i€l g:dom(i)—>K 0

Remark. We obtain the following concrete descriptions of the elements of

FGX. The index set is
{(i,g)|iel, geKdm® Y,

and the domains are

dom({i,g))= > dom(g(v))

vedom(i)
= {{v,) | v e dom(i), u e dom(g(v)) }- J

Next, we turn to the study of natural transformations between polynomial
functors.

Definition 3.5. A morphism of polynomial functors is a natural transforma-
tion & : [ = G. For a category C, we denote the category of all polynomial
functors C — C and their morphisms by Poly(C). )

We would like to obtain a more concrete description of such morphisms.
To do so, we compare Poly(C) with the following category.

Definition 3.6, For a category C, we denote by II(C) the category whose
objects are families (A;);er of objects A; € C (for varying I). A morphism
(Ai)ier = (Bj)jejisapair (f, (@) je) consisting of a function f : | — I
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and a family of morphisms ¢; : A ¢(j) = Bj, for j € J. The composition of
two such morphisms is defined by

(& (i) o lf (9:)i) =(gof. (@iowsiy)i)- ,

There are obvious maps between I1(Set) and Poly(C) that associate a
family (A;)icr of sets with the functor ¥;.; X and vice versa. Let us show
that this correspondence also preserves morphisms.

Proposition 3.7. Let D be a discrete category. The above correspondence induces
a functor

I: II(Set)°? - Poly(D)
that is faithful and bijective on objects.

Proof. Let A = (A;)ie; and B = (B}) jej be objects of II(Set) and let
F, := A and [Fp := IB be the associated polynomial functors. We map a

morphism (f, (¢;);) : B~ A to the natural transformation 7: F4 = Fp
defined by

7({i,s)) :=(f(i),so@;), forielandse VXA = Set(A;, VX),

where we have written s o ¢; instead of the formally correct X#¢(s). To see
that 7 is natural, consider a function g : X — Y. For ( i,s) e F4X, it follows
that

(roFag)({irs)) = 7({i,gos))
=(f(i), goso9i)
=Fgg((f(i), so9i)) = (Frgo1)({i,s)),

as desired.
To see that I is functorial, consider two morphisms (f, (¢;);): B~ A
and (g, (¥j) ;) : C = B. Then

<g, (V’j)j) ° (f’ (‘Pi)i) = (gof: (¢ °Wf(i))i>«
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Leto :Fy = Fp,7:Fg = F¢,and p : Fy = [F¢ be the corresponding
natural transformations. Then

(To O')((i,s)) = T((f(i), so (p1>)
= (g(f(0), so i owsiy) = p({is)).

Clearly, the function A = F 4 induced by I on objects is bijective. Hence,
it remains to prove that I is faithful. Suppose that there are morphisms
(f,(¢:)i):B—> Aand (g, (y;);) : B~ A with the same image. That is,

(f(i); so@;) = (g(i), soy;), foralliands.

Equality in the first component implies that f = g, while equality in the
second one implies that ¢; = ¥; (by choosing suitable values for s). O

In general, the embedding functor I : I1(Set)°P — Poly(D) is not full.
Hence, there can be natural transformations that do not correspond to a
morphism of I1(Set). To get an idea of how these addional transformations
look like, we derive a translation in the other direction. We start with power
operators.

Lemma 3.8. Let D be a discrete category. Every natural transformation o :

(=)P = (=)E is of the form
a(s)=V(ioJs)oa,, fors:D—>VX,
for some &y : E = VID, where 1 : JVA — A is the counit of the adjunction.

Proof. By Lemma 2.10, we have V(AP) = Set(D, VA). Consequently, the
morphism

Vayp : V((ID)?) » V((ID)*)
induces a function

dyp : Set(D,VJD) — Set(E,V]D).
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We set
o, = ayp(e) € Set(E,VJD),

where € : Id = V] is the unit of the adjunction.

To show that « is of the required form, let A € D and s € Set(D, VA) =
VAP Then § := 10 Js: D(JD, A) is the morphism corresponding to s via
the adjunction. Consequently, s = V§ o £ and

ViP(e)(d) = Vi(e(d)) =s(d), foralldeD.

This implies that
Vau(s) = Vaa (ViP(¢))
= V&¥ (Vayp (e))
= V5P (a)
=Vioa,=V(1oJs)oa,. O

Examples. The reverse is not true in general. For categories that are sufhi-
ciently close to Set, we will provide a precise characterisation in Theorem 3.11
below. But other categories are more complicated. Here are two examples
showing that, in 8-Set, the behaviour depends on the group & in question.
(a) Let U be an abelian group and D, E two sets. The natural transforma-
tions 7: (=) = (-)F on U-Set are precisely the functions of the form

7(s)(v) = B(v) -s(a(v)), forse XPandveE,

where « : E > D and 8 : E — A are arbitrary functions. Consequently,
there exists a bijection between natural transformations (-)? = (-)F and
functions E -~ A x D = V]D.

(b) Let & be a non-abelian group, fix two elements g, h € G with gh # hg.
The function 7 : GP — GP defined by

7(s)(v) =h-s(v), forseXPandveD,
is not a morphism in &-Set since, for s(v) = e, we have

(g-7(s))(v) =gh-e+hg-e=1(g-s)(v). ,
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For arbitrary polynomial functors, we obtain the following description.

Proposition 3.9. Let D be a discrete category, and let F = ¥;.; X2 and G =

ey XEi be polynomial functors. For every natural transformation 7 : F = G,
there exists a morphism (f, (¢i)i) : (Ej)j = (VID;); of II(Set) such that

ta((i,s)) = (f(i), V(10Js) 0 9:),
where 1 : JVA — A is the counit of the adjunction.

Proof. Let 7:F = G be a natural transformation. We start by recovering
the function f : T — J. Let 1 be the terminal object of D=. As we have
shown above, we can identify the index sets I and J with the sets VF1 and
V@1, respectively. In particular, V1; : VF1 — VG1 induces a function
f:I— ].Given some object A, let u : A — 1 be the unique morphism. For
(i,s) € VF A it follows that

VGu(Vra((irs))) = Vrai(VFu((i,s)))
= Vri((i, ) = (f(D), *),

where * denotes the unique elements of V(1P7) and of V(155®). This
implies that

ta({i,s)) = (f(i),t), forsomet:Es;y — A.

It thus remains to construct the functions f; : Ef(;y = VJD;. We have just
shown that 7: F = G induces a natural transformation

0t ()P = ()0 e,
By Lemma 3.8, this transformation is of the form
s> V(ioJs)og;, forsomeg; :Efiy > VID;. O

Definition 3.10. Let 7 : F = G be a natural transformation between polyno-
mial functors and let (f, (¢;):) : (Ej)j = (VID;); be the corresponding
morphism of IT(Set). We call f the shape map of T and ¢; its origin maps. |
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Remark. The above proposition yields a function
Poly(C)(IA,1IB) — II(Set)°?(VJA, B).

This function is injective, but usually not surjective. In particular, this means

that the functor IA — VJ A does not form a left adjoint of 1.

a

Again, depending on the category, not all transformations of the above
form are natural. The following set of additional assumptions is sufficient to
show that they are.

Theorem 3.11. Suppose that D is discrete, that V] = 1d, and that the counit
1:Id = V] is the identity. Then I : IT(Set)°P = Poly(C) is an isomorphism.

Proof. It remains to prove that the functor L is full. Hence, let 7: IA — IB
be a natural transformation. By Proposition 3.9, 7 is of the form

({i,s)) = (f(i), V(1o Js) 0 91},

for some morphism (f, (¢;);) of II(Set). By our assumptions, it follows
that

1((i,5)) = (f(i), s0 9:) = I{f, (9:):)- O

Categories satisfying the conditions of this theorem include Set, Pos,
Top, and Met, but not &-Set.

It is easy to find examples showing that polynomial functors do not pre-
serve colimits or products. For instance, for the word functor X, we have

(X+Y) +#X +Y" and (XxY) X" xY*.

But one can show that, for discrete categories, polynomial functors do pre-
serve connected limits, i.e,, limits of diagrams whose index category is con-
nected (as a directed graph). We start with the operation Xy from Proposi-
tion 2.6.

Proposition 3.12. Let D be a disjunctive category and f : I — ] a function in
Set. The functor Xy : D! — DJ preserves connected limits.
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Proof. Let D : K — D! be a connected diagram with limit A, and let
(A& )1 be the corresponding limiting cone. To prove that (Z ¢ A ) is limiting
for X ¢ o D, we consider an arbitrary cone (i )i from B € DJ to £y o D.
For every n € K, we can use Lemma 2.7 to find objects Cj, € DT and

morphisms ¥y, : C, = D(k) such that

B= Zka and Ur = Zfl[/k .
For every morphism b : k — [ of DY, it follows that

Zp(Dhoyy) =ZgDhop = = Zsy;.
By Lemma 2.7 it follows that

C,=0C; and D”JOI//Z:W?.

Since K is connected, it follows that C, = C; for all k,[ € K. Let C be
this object. Then (¥4 ), is a cone from C to D and we can find a unique
morphism ¢ : C — A such that

Apoog =y, forallk.
Thus,

Zf/\k OZfO‘ = Zfl]/k .
To show that (¢ is the unique morphism with this property, suppose that

ZfAk °oT =Xy .

By Lemma 2.7, it follows that 7 = 2 T for some T,. As > ris faithful, this
implies that A, o7, = Y. Hence, we have 7, = 0, by uniqueness ofc. O

Corollary 3.13. Let D be a disjunctive category. Every polynomial functor
D?® — D= preserves connected limits.
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Proof. Every polynomial functor can be written as composition Xg o IT o004,
for functions «, 3, f. The functor IIf o0y is nothing but a product and,
therefore, commutes with all limits. Moreover, we have shown above that
X preserves connected limits. O

Remark. One can shovz that, for D = Set, the converse holds as well: a
functor I : Set™ — Set” is polynomial if, and only if, it preserves connected
limits. ,

Remark. We will prove in Corollary I.2.10 below that, under certain ad-
ditional assumptions on the category, every polynomial functor preserves
k-filtered colimits. |

Exercise 3.1. We consider limits and colimits in the category Poly of poly-
nomial functors and natural transformations.

(a) Given a family (T )es of polynomial functors, show that

(st)A: ZFSA, forallAeD.
seS se§

(b) Given adiagramIF : S — Poly(D, D) of polynomial functors, show
that

(limF(s))A =lim (F(s)A), forallAeD.

4. Wonads

To study languages of A-labelled objects we can now work with sets of the
form MIA for some polynomial functor M. Of course, just having a set is
not sufficient to build a meaningful theory. Usually, the objects in a formal
language are subject to various composition operations, like concatenation
of words, substitution for terms, etc. To capture such operations we will
therefore introduce two more ingredients. Firstly, the concatenation oper-
ation in question is often of the form flat : MIMIA — MA, that is, it takes
an M A-labelled object s € MIMIA and assembles the appearing labels into a
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single large object. We call flat(s) the flattening of s. Secondly, there is usually
a singleton operation sing : A — MA that takes a label a € A and produces
an object with a single position which is labelled by a. For instance, in the
case of words flat : (A*)* — A* is simply the concatenation operation and
sing : A - A” produces 1-letter words.

flac({wo, vy Wy—y)) == Wo v eWy_y, forwe,...,w,_; € A%,
sing(a) := (a), foraeA.
Usually, the flattening operation is associative, which makes the functor M
into a monad.

Definition 4.1. A monad on a category C consists of a functor M : C - C
that is equipped with two natural transformations: a multiplication flat :
M o Ml = M and a unit morphism sing : Id = M (where Id is the identity
functor), that satisfying the following equations.

flat o sing = id, flat o Mising = id, flat o flat = flat o Mflac.

sing Mising fat
MA > MMA < MA MMMA———MMA
flat
» d Mflat flat
MA MMAT’MA

Examples. (a) The word functor MX = X* forms a monad where mul-
tiplication is concatenation and the unit morphism is the singleton map
a (a).

(b) The covariant power-set functor on Set is defined by PX := £(X)
and Pf(X) := f[X]. It forms a monad where multiplication is the union
operation U : P(R(X)) — P(X) and the unit morphism is the singleton
map x — {x}.

(c) Similarly, we can define an upper-set functor on Pos by

UX := {Ic X |Iupwards closed},
Uf(X):={b|b>f(a), forsomeac X }.
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4. Monads

It also forms a monad with the union operation as multiplication and the
principle filter map a — { b | b > a } as unit morphism (see Section VIL1).

a

Examples. (a) Fixan infinite cardinal . The chain monad is defined as follows.
For A € Set, we denote by C, A the set of all A-labelled linear orders of size
less than x (up to isomorphism). The product flat : C,C,A — C,A maps a
chain (9;) ;s of linear orders to their ordered sum Y ;. U;. As k* = x, the
resulting order still has size less than . Let us check one of the monad laws.

flat o C, flat = flat o flat.

Note that the ordered sum Y;.; A; consists of all pairs (i, a) with i € I
and a € A;, ordered in the appropriate way. Consequently, the elements of

ﬂat((c,cﬂat(((glg)je]‘. )ier)) take the form
(i,(j,a)), withiel, je]J;, andaEAij,
while those ofﬂat(ﬂat(((glz)jeji )ier)) have the form

((i,j),a), withiel, jeJ;, andacA}.

The natural bijection between these two sets of elements forms an isomorph-
ism showing that

flac(Ccflac( () jeg )ier)) = Bac(fac(((¥]) jes, )ier)) -

(b) Every subclass of linear orders that is closed under flat induces a
corresponding submonad of C,. For instance, there are monads for (i) well-
founded linear orders and (ii) scattered linear orders. )

Example. For a semiring &, we consider the functor Ling mapping a set X
to the &-module &[ X ] generated by X. That is, Ling X consists of all finite

linear combinations

SoXo +trt Sy_1Xp_1, withsg,...,sy,_;€Sandxg,...,x,_,€X.
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The corresponding flattening operation maps a nested linear combination

s(roXo + oo tmorXm—1) + -+ t(PoYo + -+ Pn-1Yn-1)
to

$PoXo + e STy Xmey o H tPoYo + Py Ynr - R

Example. For A € Set, set MA := A”. We can turn M into a monad with
unit

sing(a) = (a,a,a,...)

and multiplication

flac((a¥)i ) = (a2, al, a2,...).

A subset K ¢ A” is recognised by a morphism into a finite M-algebra if,
and only if, it is clopen. ,

The prototypical example of a monad is the term monad for an algebraic
signature.

Definition 4.2. Let = be a set of sorts.

(a) A E-sorted algebraic signature X is a set of function symbols, each of
which has an associated type of the form #7 - &, where £ € Zand 7 € £, for
some cardinal k. We call « the arity of f. The arity of a signature is the least
infinite cardinal x such that every function symbol f € X has an arity less
than x. A signature of arity R, is also called finitary.

(b) Let X be a Z-sorted signature and X € Set” a set of variables. The set
Term[Z, X] € Set® of Z-terms is defined inductively as follows.

¢ Every variable x € X is a X-term of sort &,

e If f € X is a function symbol of type 7 — & and, for each index i,
ti € Term,,[2, X]is a Z-term of sort #7;, then f() is a Z-term of sort &,
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4. Monads

For a function f : X - Y, we denote by
Term[Z, f]: Term[Z, X] - Term[Z, Y]

the function replacing every variable x € X in a given term ¢ € Term[Z, X |
by the variable f(x) € Y. )

Remark. The above recursive definition of terms is equivalent to saying that
a term is a well-founded tree whose vertices are labelled by elements of X+ X
and such that the number of successors of a vertex match the arity of its

label. ]

Examples. (a) The (one-sorted) signature of semigroups is £ := { - }. Some
terms are

x, x-y, (x-y)-x, x-(y-x),

where x and y are variables. Note that the last two terms above are considered
to be different, as there is no built in assumption of associativity.

(b) The (one-sorted) signature of rings is X := {+, -, -, 0, 1}. Some terms
are

(x+1)+y, x+(G+y), (+1)-x, (o-x)-y.

(c) The {1, w}-sorted signature of w-semigroups is X := { -, x, 7} where
the finite product - has the type 11 — 1, the mixed one x has the type 10 - o,
and the infinite product 7 the type 111... = w. An example of a term is

xxa(x, x-% (x-x)% ...). )
The functor Term[X, —] is clearly polynomial. We can write

Term[Z, X] = > XP,
teT

where T := Term[2, {O}] and D; is the set of all positions of the term ¢
that are labelled by the variable O. We can turn Term[ X, —] into a monad as
follows.
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Definition 4.3. Let X be a signature.
(a) For t € Term[Z, Term[Z, X ], we denote by flat(t) the substitution
operation. Formally, we define flat(¢) by induction on ¢ as follows.

flac(x) := x, forx € X,
and flac(£(5)) = f'((fat(s;)):), for f € Term[Z, X],
where the function f’ is defined by induction on f as follows.
x'(3) = sy, forx e X,
(g(#)' (%) = g((wi(9))1),  forgeX.
(b) For x € X, we set
sing(x) := x € Term[Z, X].
Proposition 4.4. Let X be a Z-sorted algebraic signature. Then
(T[2, -], flat, sing)

forms a polynomial monad on Set®. The arity of Term[Z, -] as a polynomial
functor coincides with the arity of X.

Remark. Let (M, y, €) be a monad where Ml = };¢; (—)Di is polynomial.

‘We have seen in Lemma 3.4 that

MoM = Z (—)Ek,

keK

where

K:={(i,o)|iel,oeI®} and E;g:= Y. Dyu)-
veD;

Applying Proposition 3.9 to the natural transformations y : MIMl = M and
¢ : Id = M, we obtain morphisms

(f (9i)i) : (Di)ier = (VIEg ek »
(& (wi)i) 1 (Di)ier = (VI1)
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of I1(Set®) where

g:l-1 f:K->1I
W*:Dg(*) - VIJ1 (Pk:Df(k) %VJEk, forke K.

With our conventions regarding polynomial functors, we can write the latter
as

¢, dom(u(s)) - Z VIdom(s(v)), forse MMA.

vedom(s) .
Let us introduce some useful terminology and notation.

Definition 4.5. Let M be a polynomial monad. A factorisation of a term
t € MA, isaterm T € MMA such that t = flat(T). In this case, we call
each term T'(v), for v € dom(T'), a factor of the factorisation. )

Definition 4.6. Let [ : D¥ — D? be a functor.
(a) The lift of a relation 6 € A x B is the relation 6 € FA x FB defined
by

s ¢ iff Fp(u) =sandFq(u) =¢t, forsomeucFO,

where p: Ax B - Aand q: A x B — B are the two projections.
(b) Two terms s € FA and t € FB have the same shape if they are related
via the lift ~y, := (A x B)F, :

Examples. (a) For a polynomial functor FX = ¥,.; XP7 ands € FA, t € FB,
we have

st iff se€ AP and teBP, forthe sameindex i€ I.
(This implies that s and t have the same sort, namely that of i.) Then
s0t if segt oand s(v) O¢(v), forallvedom(s).

(b) Two words u, v € A* have the same shape if their length is the same.
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(c) Givens e FA and t € Ff(A), we have
st i sxgt and s(v)et(v), forallv e dom(s).
This relation will play an important role in Chapter VII. )

Proving that something is a monad is often tedious. The following charac-
terisation reduces the number of things we have to check.

Definition 4.7. Let C be a category. An extension system on C consisting of
¢ afunction F : C — C on objects,
¢ afamily of morphisms 774 : A - FA, for AeC,
¢ afamily of functions -F. C(A,FB) - C(FA,FB), for A,B€C,

that satisfy the following axioms.

11F:1d,
fFoq:f, forall f: A - FB,
gFofF:(gFof)F, forall f: A— FBandg: B — FC. .,

Proposition 4.8. Let C be a category. There exists a bijection between exten-
sion systems on C and monads on C. This bijection maps an extension system

(F, 5, =) to the monad (M, p, €) where

u=id",  MA:=FA, forAeC,
=1, Mf::(ﬂof)F, for f:A—>B.

Conversely, a monad (M, y, €) is mapped to the extension system (F, 1, =T)
where

FA:=MA, ni=¢, fF::on\\/[[f.
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Proof. Let (F, 1, —F) be an extension system and define (M, g, €) as above.

Then M is a functor since
Mid = (7 0id)" = 4F =id,
M(go f) = (nogo f)F
F
=((nog)fenof)
=(nog)fo(nof)f =MgoMjf.

Furthermore, ¢ and ¢ are natural since
Mfoe=(qof)ion=nof,

MFou= (5o f)f oid"
= (0 f)F 0id)”
=((noH)F)’
= (Mf)”
 (ido My)F
= (idf o po Mf)F
=idf o (o Mf)F = yo MMS.
Finally, the monad axioms hold since
poe=id"on=id,
woMe=id"o (non)"
= (id" onon)”
= (idon)”
= 1/]F
=id,
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oMy =idf o (5 0id")F
= (id" o g o idF)F
= (id 0 id™)F
= (id")F
= (idFoid)F
=id" o id"
=pou.
Let (M, , &) be a monad and define (F, 17, =) as above. Then
N =poMe=id,
ffon=poMfoe=poeof=f,
gFofF =puoMgopuoMf
= oo MMgoMf
= p o My o MMgo Mf
=puoM(puoMgo f)
=puoM(g" o f)
=(g" o) O
Corollary 4.9. A monad (M, y, €) is uniquely determined by
o the object function M : C°% — C°%,

o the family of morphisms € = (¢4) a, and
o the operation = given by f* = y o Mf, for f : A - MB.

5. Eilenberg~Hoore lgebras

We can use a monad M to specify what kinds of objects the languages
we study contain and in which way these compose. Next we need a way to
describe such a language in an algebraic way. This will be done by a morphism
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5. Eilenberg-Moore algebras

MY — A for some suitable algebra Q. The goal of this section is to define the
kind of algebras we use for this. As it turns out there is a canonical notion of
an algebra associated with every monad M. To motivate the definition, let
us first take a look at Z-algebras. To specify an algebra for a signature =, we
have to provide a set of elements and functions for each operation in .

Definition 5.1. Let 2 be an Z-sorted algebraic signature. A X-structure

A= <A’ (fg[)fez)

consists of
* auniverse A € Set” and

+ one function fQ[ 1Ay, = A for each function symbol f € X of type
f] - f‘ a

Examples. (a) For the signature ¥ = { - } of semigroups, a Z-algebra & =
(S, “©) consists of a set S together with a function - : § x § — S. Such an
algebra forms a semigroup, if .© is associative.

(b) For w-semigroups, we can use the signature ¥ = { -, ', 7} with sorts
E = {1, 00}, where the types of -, -, and 77 are, respectively, 11 — 1, 100 — 00,
and 111. .. — 0o, An w-semigroup is then a X-algebra where all operations

are associative. R

Thus, a Z-algebra U allows one to compute all operations in the signature.
Since terms are built up from these operations, it follows that we can also
evaluate every 2-term. But note that, if the term in question contains vari-
ables, we also need to know their values. In general we obtain an evaluation
map

Term[Z, X] x A* - A,

where the second argument 3 : X — A maps each variable to its value. We
can simplify this map if, instead of providing f3, we replace in the given term
each variable by its value. In that way, we obtain a map

Term[X, A] > A.
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Such an evaluation map contains sufficient information to completely de-
scribe the algebra & in question. For a general monad M, we can use a similar
description: we can use algebras consisting of a set A equipped with a product
operation of the form 7 : MLA — A, For instance, for words this product
takes the form 7 : A* — A, i.e,, it multiplies a sequence of elements into
a single element. Hence, 7 can be seen as a semigroup product of variable
arity. But note that not every operation 77 : A* — A is of the form

ﬂ((ao,‘”,am» =gy Ay

for some semigroup product - : A x A — A.If we want to exactly capture
the notion of a semigroup, we have to impose additional conditions on 7. It
turns out, there are two such conditions: associativity requires that

a(m(wo), ..., m(wy)) =m(wo...wy), forallwe,...,w, € A",

and the fact that the product of a single element should return that element
again requires that

n({a))=a, foracA.
These two conditions can be phrased more concisely as
moMm=moflat and mosing=id.

where flat and sing are the multiplication and the unit map of the monad.
This leads us to the following definition.

Definition 5.2. Let M : D — D be a monad.
(a) An Eilenberg-Moore algebra for M, or M-algebra for short, is a pair
A = (A, ) consisting of an object A € D= and a morphism 7 : MA — A

satisfying

fl.
oM =moflat, MMA———>MA
mosing =1id.
Mn T
The first of these equations is called

the associative law for 7, the second
; MA——F——A
one the unit law.
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5. Eilenberg-Moore algebras

(b) A morphism ¢ : A - B of M-

algebras, or Ml-morphism for short, isa MA %MB
function ¢ : A - B commuting with
the respective products in the sense ﬂl lﬂ
that
A——B
¢
pom=moMep.

(c) We denote the category of all Ml-algebras and their morphisms by
Alg(M).

(d) An algebra U is finitary if its universe A is sort-wise finite and U is
finitely generated, i.e., there exists a finite set C € A such that every element
a € A can be written as a = 71(s), for some s € MC. )

Examples. (a) As already explained above, M-algebras for the monad MX =
X are just semigroups. Similarly, algebras for the monad MX = X* corres-
pond to monoids. We obtain commutative monoids if we take the monad

MX = X*/~ where
u~xv :iff  uisapermutationof v,

Semilattices, i.e., idempotent commutative monoids, correspond to the finite
power-set monad MX = {w | w € X finite }.
(b) Let us take a look at the functor

M(AU Aoo) = <A:—; A-;Aoo ] A?)
for infinite words. In this case an M-algebra has two product functions
1, :A;r —-A; and 7. :A;’AmuA‘I" > Ao

The laws of an Ml-algebra ensure that 71, corresponds to a semigroup product
A, x A; — A, and 7o correspond to the additional products A; x A —
A and AY — A, of an w-semigroup. Hence, in this case M-algebras are
nothing but w-semigroups.
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(c) Let M = (M, - ) be a monoid. The functor MX := M x X forms a
monad with product

act: M x (M x X) - M x X :{a,(b,x)) = (ab, x)
and unit function
unit: X > M x X :x = (1, x).

An M-algebra then corresponds to a set X together with an action of M
on X. In particular, if M is a group, the category Alg(M) of M-algebras is
isomorphic to the category M-Set of M-sets.

(d) Given a semiring &, let L be the functor mapping a set X to the set
of all finite linear combinations of elements in X with coefficients from &.

Algebras for L are S-modules. |

There is a natural way to turn a set of the form MA into an M-algebra:
we can chose the function flat : MIMIA — MA as the product. It turns out
that algebras of this form are exactly the free algebras.

Proposition 5.3. For every A € D, there exists a free Ml-algebra over A. It
has the form (MA, flat).

Proof. Two of the three axioms of a monad precisely express that (M4, flat)
is an Ml-algebra. Hence, it remains to prove freeness. Consider a function

f+ A — B where B is the domain of an M-algebra 3. Then
p:=moMf:MA—> B
is a morphism of M-algebras since

@ oflat = mo Mf o flat
= o flat o MM f
=moMmoMMf =moMeg.

For uniqueness, suppose that y : MI[A - B is a morphism with yosing = f.
Then

¢ =moMf =moM(yosing) = yoflat o Msing = y. O
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Example. (a) The free monoid generated by X is X* where the product
is given by concatenation. This is also the free M-algebra for the monad
MX = X*.

(b) A free X-algebra is called a term algabra. of the from Term[X, X],
for some set X.. Its elements are all terms and a function f maps a tuple of
terms f to the term f(£). )

Corollary 5.4. For every monad Ml : C — C there exists an adjunction F 4 U
between C and Alg(M) such that M = U o F.

Proof. Let F be the functor sending A € C to the free M-algebra (MA, flat),

and let U be the functor mapping an M-algebra (A, 7r) to its universe A. By
the Proposition 5.3, there exists a bijection

Alg(M)(FA,®) 2C(A,UD).
It is straightforward to check that it is natural in A and B. O
We conclude this section with three technical results that sometimes
come in handy. First, checking the associative law is often tedious. In many

cases we can use the following result to avoid having to do these kind of
calculations.

Lemma 5.5. Let A be an M-algebra and f : A - Band p : MB — B
functions such that f and MIMLf are epimorphisms and

fom=poMf.
Then B := (B, p) is an M-algebra and f : A - B a morphism of M-algebras.

Proof. By assumption, f satisfies the equation for a morphism. Hence, we
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only need to check the axioms of an M-algebra. We have

posingo f =poMfosing
= fomosing
:f’
poMpoMMf = poM(poMf)
~poM(fom)
:fonoMT[
= fomoflat
= poMf oflat = p o flac o MM .

Since f and MIMf are epimorphisms, this implies that p o sing = id and
poMp = poflat 0

Another useful result is the following observation which allows us to
prove that a function is a morphism.

Lemmas.6. Let ¢ : % - B and e : A — € be M-morphisms where Me is an
epimorphism. If f : C — B is a function satisfying f o € = @, then f is also an
M-morphism.

Proof. Note that
noMfoMe=noMg=¢om=foeom=fomoMe.
Since M is an epimorphism, this implies that 7 o Mlf = f o 7. O

Pimits and Tolimits of Algebras

Finally, let us take a look at limits and colimits of M-algebras.

Proposition 5.7. The forgetful functor Alg(M) — D= reflects limits. Hence,
Alg(M) has all limits that exist in D.
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Proof. Suppose that D has limits with index category Z. Then so does D=.
(As limits in D= are computed componentwise.) Let D : Z — Alg(M) be a
diagram and let U : Alg(M) — D= be the forgetful functor. Then U o D
has a limit A. Let (1;); be the corresponding limiting cone. We claim that
there exists an M-algebra U with universe A such that & = lim D and each
A+ U = D(i) is an M-morphism. To define the product of &, we set

pi=moMA; : MA > D(i), forieZ,

where 71; : MID(i) — D(i) is the product of D(i). For every morphism
f:i— jofZ, it follows that
UDf o u; =UDf o m; o M,
=T OMUDfOMAi =T OM/L‘ :‘bl,‘.

Hence, (¢;); is a cone from MA to U o D. By universality, there exists a
unique morphism p : MA — A satisfying

/L‘Op:[/t,‘:ﬂiOM/li, foralli.

This implies that A; is an M-morphism from ¥ := (A, p) to D(i), where
the fact that ¥ forms an M-algebra follows since
Ai o posing = m; o MA; osing
= 7; o sing o \;
=Ai,
Ao poflat = m; o MA,; o flat
= 71; o flat o MIMIA;
= 71; o Mimr; o MIMIA;
=m; 0 MA; o Mp
=A;opoMp,

for all . Limiting cones being jointly monomorphic, we obtain p o sing = id

and p o flat = p o Mp. Consequently, (1;); forms a cone from (A, p) to D
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in Alg(M). This cone is limiting since, given any cone (v;); from some M-
algebra B = (B, 7r) to D, there exists a unique function ¢ : B — A (in D*)
such that

Aioo=v;, foralli.
This function is in fact a morphism of M-algebras since

Aiodom=v;om
:ﬂiOMVi
=m;oMA; oMo =A; 0m; oMo,

for all 7. O

The existence of colimits is less straightforward and requires additional
assumptions on Ml and C. We start with a technical lemma.

Lemma 5.8. Let M be a monad on C and let A = (A, ) be an M-algebra.
Then 71 : MLA — A is the coequaliser of flat and M in Alg(M).

Proof. First, note that m : MIA — U and flat, Miw : MIMA — MA are

M-morphisms since

moflat = mo M,
flat o flat = flat o Mflat,
M7 o flat = flat o MM .

The first of these equations also shows that 7 (together with 7 o Mirr) forms
a cocone of the diagram. Hence, we only have to prove that 7 is limiting.
Suppose ¢ : MIA — B is another Ml-morphism such that ¢ o flat = ¢ o Mim.

The function 0 := ¢ o sing satisfies

0o =¢@osingorn
= ¢ o Mz o sing
=goflatosing=¢.
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Furthermore, it is unique since T o 77 = @ implies
T=Tomosing=¢@osing=0gomwosing=0.
Hence, it remains to show that ¢ is an M-morphism.
go7m=¢@osingor
= ¢ o Mz o sing
= g oflat o sing
=¢
= ¢ o flat o Mising
= flat o Mlg o Mising
=flato Mo . O

The following criterion greatly simplyfies existence proofs.

Proposition 5.9. Let M be a monad on a cocomplete category C. Then Alg(M)
is cocomplete if, and only if, it has coequalisers.

Proof. (=) istrivial. For (<=), suppose that Alg(M) has coequalisers. Since
a category is cocomplete if, and only if, it has coproducts and coequalisers,
it is sufficient to show that Alg(M) has coproducts. As an example of the
construction let us take a look at how we can construct coproducts of groups.
We cannot simply take their disjoint union since then the product of elements
from different components would be undefined. What we can do instead
is to take the free group generated by this disjoint union and then quotient
it by all equalities that hold in each component. (This last step requires a
coequaliser.)

The general case is analogous. Consider M-algebras ; = (A, m;), for
i € I. To compute }_; U;, lets; : A; — ZjAj and t; : MA; — ZjMAj
be the inclusion morphisms (where the coproducts are computed in C).
Then Ms; forms a cocone from the coproduct diagram (MA;); to M Zj Aj.
Consequently, there exists a unique morphism w : 37, MA; -~ M}, A;
such that

wot; =Ms;, foralli.
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Let q: MY ; Aj — Ebe the coequaliser (in Alg(M)) of
MZ{ T[j, flat o Mlw MZ]MAJ %MZ"AJ.
To see that this is well-defined, note that Ml }"; 71;, flat, and Mlw are indeed

M-morphisms since

MY, m; oflat = latoc MM ¥, 7,
flat o flat = flat o Mflat
Mw o flat = flat o MMw .

For every i € I, as similar computation shows that Mls; : MIA; - M Y j A;
is an Ml-morphism. Since

g 0 Ms; o flat = g o flat o MIM;
=goflatoM(wot;)
:qOMZjnjOMti:qOM(siOHi),

we can use Lemma 5.8 to find unique M-morphisms A; : A; - € satisfying
Aiom;=qoMs;, foralli.

We claim that € = }°; U, and that (A;); is the corresponding limiting cocone.

Hence, suppose that (y;); is a cocone from (%;); to some algebra B.
Since (A4;); form a cocone in C, we obtain a unique morphism « : 2ijAj—~B
such that

wos;=y;, foralli.

Similarly, for the cocone (My; )i, we obtain a unique morphismv : 3 ; MA ; —
MB such that

vot; =My;, foralli.
We will show below that the morphism p := 7o Mu : M};A; > B

satisfies

po(flatcoMw)=poMy;7;.
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5. Eilenberg-Moore algebras

Since q is the coequaliser, we then obtain a unique morphism ¢ : € - B
satisfying

poq=p.
This implies that

poldi=¢@old;omosing
= @ oqoMs; osing
= p o Ms; osing
= 1 o Mu o Ms; o sing
= 1o My; o sing
= W; o 7; o sing

:/’ti'

Hence, the cocone (y4;); factorises through (A;); via ¢. To show that this
factorisation is unique, we consider some M-morphims ¥ satisfying o A; =

ui. Then
quowoti:WOqOMsi
=yold om;
=uiom;
=yos;om,;
:uozjn’joti, foralli.

Since limiting cocones are jointly epimorphic, it follows that

yoqow=uoY m;.
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Consequently,

yoq=yoqoMy;(n;osing)

=yoqoflato Mw oM} ;sing
= yomoMgoMwoMY,sing
:noMl//oMqonoMsting
=moM(uo}¥;m;) oMY sing
=710 Mu
=¢ogq.

Since g is an epimorphism, this implies that = ¢, as desired.

Hence, it remains to prove the above claim. First, p is indeed an M-
morphism since

71 0 My o flat = 7 o flat o MMy
= o MmoMMuy =70oM(moMu).

Furthermore, for all i € I, we have

moMuowot; =moMuoMs
:ﬂoM#i
=T ovot;
=mo My,
=Uiom;

:uosior[i:uozjr[joti,

where 77 is the product of B. Since the morphisms of a limiting cocone are
jointly epimorphic, it follows that

ﬂOMuOWZMOZjT[j‘
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5. Eilenberg-Moore algebras

Hence,

p o (flat o Miw) = 71 0o Mlu o flat o Mw
= 71 0 flat o MMy o Mw
=70 Mm o M(Mu o w)
=moM(uo};m;)
=moMuoM} ;mj=poM};mj,

as desired. O

Exercise 5.1. (a) Let M be a monad on a category C with coequalisers and
suppose that M preserves coequalisers. Show that Alg(M) is cocomplete.
(b) Show that every polynomial functor Set — Set preserves coequalisers.

a

Thus, we only have to show that the category Alg(M) has coequalisers,
We start with a lemma simplifying this task: it is sufficient to construct weak
coequalisers.

Definition 5.10. A weak coequaliser of two morphisms ¢,y : A - Bisa
morphism p : B — C such that pog = poy and every morphism o : B - D
with 0 0 ¢ = 0 o y factorises (not necessarily uniquely) through p. )

The idea behind the following construction comes from the theory of
partial orders: a supremum can be computed as the infimum of all upper
bounds. Since colimits can be regarded as generalisations of suprema, we
can try to compute a colimit as a limit of suitable ‘upper bounds. In our case,
we obtain a coequaliser as a limit of weak coequalisers. Before giving the
formal construction, let us mention the following technical result.

Lemma 5.11. Let C be a category and A € C. The comma category (A | C) has
all limits that exist in C.

Proof. Let U: (A | C) — C be the functor mapping an object f : A - B
to B and amorphism ¢ : f — g to the corresponding morphism between the
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codomains of f and g. It is sufficient to show that U creates limits. Hence,
lee D:Z - (A | C) be a diagram such that U o D has a limit B and let
(Ai): be the corresponding limiting cone. For i € Z, set y; := D(i). For
every morphism b : i - k of Z, the fact that Db is a morphism y; — py, in
(A} C) implies that

UDbho y; = uy .

Consequently, (4;); is a cone from A to U o D. As (A;); is limiting, there
exists a unique morphism ¢ : A — B such that

Aioo=uy;, foralli.
We can consider A; as a morphism A; : ¢ - y; of (A | C). Hence, (1;);

induces a cone from o0 to D. It is straightforward to check that it is limiting.

O

Lemma 5.12. Let C be a complete category. Every pair of morphisms with a
weak coequaliser has a coequaliser.

Proof. Fix two morphisms ¢, : A - B with a weak coequaliser g : B - C.
To construct their coequaliser, we consider the category € € (B | C) of
morphisms 0 with ¢ 0 ¢ = 0 o y and the subcategory W C £ of all weak
coequalisers 0 : B — C of ¢ and ¢ with codomain C. We have to show that £
has an initial element. We do so by proving that W has an initial element
and that the inclusion W — & is final (which means that the inclusions
W — (B} C)and & — (B | C) have the same limit).

Let D: W — (B | C) be the inclusion functor. Since W € C(B, C) is a
set, Dhasalimit 7: B - C.Let £ : p — 7 be the equaliser of all morphisms
in £(7, 7) (which exists by Lemma 5.11). We claim that its domain p is the
initial element of £.

We start by proving that p € W. Hence, fix some ¢ € £. To find a
morphism p — 0 we choose an arbitrary v € W. Let A : T — v be the
corresponding component of the limiting cone from 7 to D. Since v € W
there also exists a morphism f : v — 0. We therefore obtain a morphism

fo)Los:p—>T—>v—>0.
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5. Eilenberg-Moore algebras

Hence, p is a weak coequaliser of ¢ and y, which implies that p e W.

It remains to prove uniqueness. Suppose that, for some o € &, there are
two morphisms f, g: p = 0. Let e : v — p be their equaliser (which exists
by Lemma 5.11). Then v € € and p € W implies that there is some morphism
h:p — v.Since € 0 e 0 b and id are both morphisms 7 — 7 and ¢ is the
equaliser of all such morphisms, it follows that

goeohog=idoe=c¢coid.

Equalisers being monomorphisms this implies that e o (h o ¢) = id. Con-
sequently,

f=foeo(boe)=goeo(hoe)=g. 0

Theorem 5.13. Let M be a monad on a category C that is complete and cocom-
plete. If there exists a regular cardinal i such that Ml preserves x-filtered colimits,
then Alg(M) is complete and cocomplete.

Proof. Completeness follows by Proposition 5.7. For cocompleteness, we
only have to check the existence of coequalisers by Proposition 5.9. Hence,
fix two M-morphisms ¢, ¢ : & > B. By Lemma 5.12 and since Alg(M) is
complete, it is sufficient to find a weak coequaliser of ¢ and . We construct
it as the colimit of a chain Q(i), i < x + 1. In fact, we will construct

¢ two diagrams P, Q :k +1 - C,
¢ natural transformations 0 : P = Q and 7: P = Mo Q, and
¢ two cones (p;); and (g;); from B to, respectively, P and Q,

such that Q, = Q(K) will be the universe of the weak coequaliser, P, :=
P(x) will be equal to MQy, the morphism oy : P, - Q, will the product

morphism, and ¢, : B - Q. will be the coequaliser morphism.
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Mg Mg; MQ(i, k)
MA————3 MB » MO(i) > MQ (k)

IS T

P(i P(k
T s (i) W (k)
— (i) (k)
T w0 e e
Our construction proceeds by induction on i < k + 1. For i = o, let

pi : B— P(0) be the coequaliser (in C) of Ml¢ and My and let g; : B —
Q (o) the one of ¢ and . The product morphisms of & and B form a natural
transformations between the coequaliser diagrams for M¢, My and ¢, y.
This transformation induces a unique morphism g, : P(0) - Q (o) such
that

060 po=qooT.
Finally, M(g, © ¢) = M(qo o ¥) and universality of p, implies that that
there exists a unique morphism 7, : P(0) - MQ (o) such that
To 0 po = Mg, .
For the inductive step, suppose that P(i), Q(i), 0;, T;, pi, q; are defind

for all i < a. We distinguish two cases. If « is a limit ordinal, we choose
for P(«) the colimit of the diagram P|, : @ — C and for Q («) the colimit
of Qly : ¢ > C. Let (P(i, &) ) i<y and (Q(i, @) ) i<« be the corresponding

limiting cocones. Set

Pa 1=P(o,0¢)°Po and g4 ::Q(O,(X)Oqo~

‘The morphisms (0;)i<q form a natural transformation P|, = Q|, while
(7i) i<« form one P|, = M o Q4. Consequently, we obtain unique morph-

isms 0y : P(a) = Q(a) and 74 : P(ar) — MQ () satisfying
oxoP(i,a)=Q(i,a)c0;. and T4o0P(i,a) =MOQ(i,a)0T;.
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5. Eilenberg-Moore algebras

It remains to consider the case where & = i + 1 is a successor ordinal. Set

P(i+1):=MQ(i) and let 6;;; : MQ(i) - Q(i + 1) be the coequaliser of
Mo;, flat o Mz; : MP(i) - MQ(i).
We set

P(i,i+1) =T,

Q(i,i+1) = 044, 0 sing,
Tigty = MQ(i, i+1),
pivi=P(i,i+1)0p;,
givs = Q(i,i+1)0g;.

To check that these morphisms have the desired properties, note that

0110 P(i,i+1) = 014, 0 T
= 04, 0 flat o sing o T;
= 0;4; 0 flat o Ml7; o sing
= 0;4; © Mo; o sing
=0ij4+1 © sing 0 0;
=Q(i,i+1)o0;,

Tisy o P(i,i+1) =MQ(i,i+1)0 7).

This concludes the construction of P, Q, and the associated morphisms.

Set

P.:=P(x), 04:=0c:P—>Q,,
Qi:=0(x), q«=qc:B—>0Qx.
AsP(i+1) :MQ(i), we have

colim;<, P(i) = colim;,, M(Q(i) and 7y is anisomorphism.
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Furthermore, regularity of  implies that the diagrams P, Q| : & — C are
k-filtered. By assumption on M, it therefore follows that

P, =P(x)
= colim;<, P(i)
= colim;, MQ (i)
= M(colimiq Q(:)) =MQ(x) = MQ..
Hence, 0, 0 7;" : MQ, — Q.. We claim that ¢, : B - (Q., 0. © T,') is
the desired weak coequaliser of ¢ and y in Alg(M). First, note that g, is

an M-morphism since

geom=Q(o,k)ogo0m
:Q(O'K)OUOOPO
0. 0P(o,x) 0 p,

= 0.0 py
= (0.0 7;") o Mg, .

Next, we prove that Q := ( Qs 0. ) itis indeed an Me-algebra. For i < «,
let E; be the diagram consisting of the morphisms

MTf MO,‘ Oit1
MMQ(i)Q—MP(i)ﬁ{MQ(i) —»Q(i+1)
at o MiT;

We take the colimit of the diagram consisting of the diagrams E;, i < «, and
the morphisms

MT,‘ MO’,‘ Oit1
MMQ (i) «——MP(i) ——————3MQ(i) ——»Q(i +1)
flat o Mit;
MMQ(i, k) MP(i, k) MOQ(i, k) Q(i, k)
MTk Mak Ok+1
MMOQ (k) «——MP(k) ———————F MQ(k) —»Q(k +1)
flat o M7},
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5. Eilenberg-Moore algebras

This colimit is of the form

MMO () +—5 MP(x) :y:MQ(K)L»Q(K)

By definition of a colimit of functors, « is the unique morphism MP, —

MMQ, satisfying
a o MP(i, k) = MMQ(i,x) o M1z;, foralli<x.
Consequently, & = Mit,.. Similarly, it follows that
f=Mo,, y=flatoMr,, J=o0,071,".
Hence, we have

(ocot1,")oM(oxo01,")=080f0Mr,’

= (o, o1,") oflato M, o M1,"
=(oxo1,') oflat,
as desired.

Asq.o9=0Q(0,k)0g,0¢9=0(0,k) ©qo ¥ = g4 © Y, it remains to
prove weak universality. We will show below that, for every M-morphism
x: B — Esatisfying y o ¢ = y o ¥, there exist a cone (;); from Q to C
such that

piogi=x and p;joo;=moMupy;or;, forali<k.

Note that this immediately implies weak universality: for i = «, we obtain
X = U« © g+ and yy is an M-morphism since

pgo(oiot,)=moMyy,ot, 01, =m0 My,.

It therefore remains to prove the above claim. We construct y; by induc-
tion on i, For i = o, note that y 0 ¢ = y o y implies that y factorises through
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the coequaliser g, (in C). Hence, x = pio © qo, for some y, : Q(0) — C. It
follows that
Uo© 0o 0P =HUoCgoOTT
=yom
= 1o My
= noM‘uo oMIq0 = HOM/AO 0T O po-
Since p,, is an epimorphism, this implies that y, 0 0, = m 0 My, o 7,.
For the successor step, suppose that we have already defined y;. Since
moM(u;o00;)=moM(moMy;or1;)
= o flac o MIMy; o Mr;
=10 My; o flato M1,
the function 7 o My; : MQ(i) — C factorises through the coequaliser
of Mlo; and flat o Mi7;, which is 0;,. Hence, there exists a function y;, :
Q(i+1) > Csuch that
Pive © Oipy =70 My;.

It follows that

Yirr © Oiy = 1m0 My
= 70 M(7 o sing) o My;

7 o M(7 o My; o sing)

=mno M(/’liﬂ ©0i4; © Sing)
oMy o MQ(i,i+1)

=m oM © Tigy,

fisi 0 Qi i +1)

Wit © Oiy1 © Sing

=mo My, osing

mosing o p;

Hi-
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Finally, suppose that we have already defined y;, for every i < §, where
0 is some limit ordinal. Then (y;);<s forms a cocone from Q|s to C. Since
(Q(i,8)); is limiting, there exists a morphism pg5 : Q(8) — C such that
psoQ(i,8) =p;, foralli<d.
This implies that

psoqs=psoQ(i,8)0q;

=Uiogqj
=¥,
pso 05 =psoQ(i,8)00;
= Hi©0;
ZHOM(A;OT{
=moM(usoQ(i,8)) o1
=moMusorts. ]

6. Lifting PFlonads

In this section we present several ways to construct monads by transferring
a monad from one category to another one. We start with transfer a monad
along a natural transformation.

Definition 6.1. Let (M, y, €) and (P, v, ) be monads. A natural transform-
ation p : Ml = P is a morphism of monads if

n=poe and vo(poMp)=pou.
If there exists a morphism M = P, we say that Ml is a reduct of P j

The following lemma is frequently useful to prove that a functor forms a
monad.

65



I. Monads

Lemma 6.2. Let M and P be functors, g = (pa)a> v =(va)a> € = (€4)a
and 1 = (na) a families of morphisms
pa:MMA - MA, ea:A—>MA,
v4 : PPA - PA, na:A—-PA,
and let p : Ml = P be a natural transformation satisfying
n=poe and vopoMp=pou.
(a) Suppose that p consists of monomorphisms. If (B, v, n) is a monad, then
sois (M, y, €) and p : Ml = P is a morphism of monads.
(b) Suppose that p, Mp, and MMp consist of epimorphisms. If (M, y, €) is
a monad, then so is (P, v, 1) and p : Ml = P is a morphism of monads.

Proof. (a) We start by proving that v and # are natural transformations.
Given a morphism f : A — B we have
popoMMf=vopoMpoMMf
=vopoMPfoMp
=voPPfopoMp
=PfovopoMp
=Pfopou
=poMfou,
posof:qof:Pfoq:PfopOf::pOMfOS.
As p is a monomorphism, it follows that Mf oy = po MM f and M fo e =
go f.
It remains to check that (P, v, %) is a monad.
pouoe=vopoMpoe
=yopogop
=vonop
:p’
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pouoMe=vopoMpoMe
:VopoMq
:vo]P’r]op
=p,

pouopu=vopoMpou

=voPpopou
=voPpovopoMp
=vovoPPpoPpop
=voPvoPPpoPpop
=vopoM(voPpop)
=vopoM(vopoMp)
=vopoM(pou)
=pouoMy.

As p is a monomorphism, it follows that yo e =id = yoMeand po y =
uoMpu.

(b) We start by proving that v and # are natural transformations. Since
p and ¢ are natural transformations, so is #§ = p o €. Furthermore, given a
morphism f : A — B we have

PfovopoMp=Pfopouyu
:poMfoy
=pouoMMf
=poMpoMMf
=poMPfoMp
=PPfopoMp.

As p and Mlp are epimorphisms, it follows that Pf o v = v o PPf,
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It remains to check that (P, v, ) is a monad.

vonop=vopoeop

:vopoMpog
=pouoce
=p,

voProp=vopoMy
=vopoMpoMe
:poMoMs
=p.

As p is an epimorphism, it follows that v o 5 = id = v o Py, Furthermore,

vovopoMpoMMp=vopouoMMp
=VopoMpoy
:pO‘[,[O‘L{
=pouoMy
=yopoMpoMy
=vopoMvoMpoMMp
=voPvopoMpoMMp.

As p, Mp, and MIMp are all epimorphisms, so is their composition. Con-
sequently, it follows that vo v = v o Pv. O

Next, we consider a transfer along an adjunction.

Proposition 6.3. Let ' < G be an adjunction between the categories C and D,
let e : Id = GF be its unit, i : FG = Id the counit, and let (M, y, €) be a

monad on D.

(a) (P, v, ) forms a monad on D, where
P:=GMF, v:=G(poMi), and n:=Geoe.
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(b) The functor G : D — C can be lifted to a functor G : Alg(M) — Alg(P)
which maps A = (A, ) to (GA, G(m o Mi)).
(c) If Alg(M) has coequalisers, then G has a left adjoint F mapping an
algebra A = (A, 7r) to the coequaliser (in Alg(M)) of
MFr, (¢ o Mi): MFPA -~ MFA.

Proof. (a) Clearly, P is a functor C — C and v and # are natural transforma-
tions

v: GMFGMF = GMF and #:1d = GMF.
For the monad axioms, note that

von=GuoGMioGeoe
=G(pocoi)oe
=idoGioe
=id,
voPy=GuoGMioGMF(Geoe)
=G(poM(i o FGeoFe))
- G(yoM(eoioFe))
ZG(‘L{OME)
=id,
voPv=Gu o GMio GMF(Gu o GMi)
=G(poM(i o FGu o FGMi))
=G(poM(uoioFGMi))
=G(popoM(io FGMi))
=G(popoM(Mioi))
=G(p o Mi oy o Mi)
=Gy o GMi o Gy o GMi

=VovV.
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(b) Let & = (A, 1) be an M-algebra. To see that G is a P-algebra, note
that

G(noMi)on=G(noMiog)oe
=G(mogoi)oe
=Gioe
=id,

G(moMi) ov=G(moMiopuoMi)
= G(mo y o MMi o Mi)
= G(m o M o MM o Mii)
=G(moM((moMi)oi))
=G(moM(i o FG(mo Mi)))
= G(m o Mi) o PG(m o Mi).

If o : A - Bis a morphism of M-algebras, then Gg : A > Bisa morphism

of IP-algebras since

Gg o G(moMi) = G(mo Mg oMi)
=G(moM(i oFGg)) = G(m o Mi) o PGg.

(c) Theidea of the proof is as follows. When constructing Q := FA from A
we have to transfer the product 7 : PA — A to a function MIQ — Q. A first
try would be to set Q := FA and to use some correspondence between
elements of A and elements of Q to transfer the definition of 7 from
to 9. But this does not work since not every term s € MIFA corresponds to
some ¢t € PA. And for such elements we do not know how to choose the
value 77(s). Our solution is to simply leave such terms unevaluated. That
is, we set 7(s) := s. Of course, to do so we have to also add these terms
as elements to our algebra. This leads to an algebra with universe MIFA
where multiplication is just the monad multiplication y. But doing so is not
compatible with the original product 7. As a final step we therefore have to
take a quotient that identifies terms s, t € MIFA where the products of the
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corresponding terms in IPA coincide. Thus, we arrive at our final definiton,
we take for Q a suitable quotient of MIFA.

The formal definition is as follows. Let p : MFA — Q with Q = (Q, 0)
be the coequaliser (in Alg(M)) of

MFm, poMi: MFPA - MFA.

(To see that this is well-defined, note that Mif o y = p o MMf,’f\or every
function f. Therefore, MIF7 and Mii are M-morphisms.) We set FY := Q.

MF P
MFPA ————PMFA—» Q
uoMi
Mi T” T”
MMFA——— M
Mp L

To define the action of IF on morphisms, let ¢ : 9 - B be a P-morphism.
Then ¢ induces morphisms between the coequaliser diagrams assciated with

ol and F. (‘This is in fact the definition of F¢.)

M PA
MFPA ———— 3P MFA———» Q4
y o Mi
MFPqu lMF(p l’]}?q)
MFn
MFPB —— S MFB——————» O3
p o Mi PB

Note that this immediately implies that p : MF = Fis a natural trans-
formation since, by definition of F¢, we have

Fgop=poMFyp.
Furthermore, every component p, of p is an epimorphism (in Alg(M)):
given M-morphisms f,g: Q - € with f o p = go p, we can apply the

universality of p to the morphism y := f o p, to obtain a unique morphism

h:Q — €such that h o p = y. This implies that f =h = g.
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Having defined T, it remains to show that it is the left adjoint of G. We
define the unit 7 : Id :>§F of the adjunction by 7 := Gp o . Note that
7 is a P-morphism 2% - GO since

Tom=Gponon
=GpoGeoeonm
=G(poeoFm)oe
=G(poMFrnoeg)oe
=G(popuoMioe)oe
:Gpovoq
=Gp
= G(popoMe))
=G(ooMpoM(eoid))

- G{ooM((pos)oioFe)
=G(ocoM(ioFG(poe)oFe))
=G(0 o Mi) o GMF(Gp o 1)
=G(o oMi) o Pr.

Furthermore, 7 is natural in ¥ since, given an M-morphim ¢ : A - B,

Top=Gponogp
=GpoPgoy
_ G(poMFg) oy
=G(Fpop)oy
=GF¢por,

where the fourth step follows from the fact that p : MIF = T is a natural
transformation.

To define the counit, let ¥ = (A, 7) be an Ml-algebra and let p = pg4 :
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MFA — Qg , be the coequaliser used in the definition of F(G). Since

(moMi) o MIF(G (7o Mi)) = moM(i o FG(7 o Mi))
moM(moMioi)

= 7oy o MMioMi
=moMiopuoMi

= (moMi) o (uoMi)

and 7 o Mli is an M-morphism, we can use universality of p to find a unique

M-morphism v : FGA — A with

vop=moMi.

To prove that IF and G form an adjunction, it is now sufficient to show
that v o F7 = id and Gv o 7 = id. For the second equation, we have

Guor=GuoGpoy
=G(noMi)oGeoe
=G(mogoi)oe
=Gioe
=id.
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For the first one, we have

UoFTop:UopoMFT
=0 oMioMFr
=0 oM(i o FGp o Fr)
=goM(poioFy)
=popuoM{(ioFy)
=popuoM(ioFGeoTe)
=popoM(eoiole)
=pouoM(eoid)
=poid
=p.

Since p is an epimorphism in Alg(M) and v o Frisan M-morphism, the
claim follows. O

Diftributive Laws

Our final construction provides a way to combine two monads into a single
one. This is needed when we want to expand an M-algebra with operations
provided by a second monad IP. An equivalent way of looking at such an
expansion is by finding a lift of P from the base category to Alg(M). It turns
out that, in order for this to work, the two monads M and [P need to be
compatible: there needs to be what is called a distributive law between them.

Definition 6.4. Let (M, y, €) and (P, v, #) be monads.
(a) A natural transformation & : MIP = PM is a distributive law if

dou=PuodoMs§, doe=DPe,
doMv=voP§od, doMn=n.
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6. Lifting monads

M )

MMPA » MPMA » PMMA PA

MPA 5 » PMA MIP’A—(S»IP’MA
5 P&

MPPA » PMPA » PPMA MA

le lv Mnl !

MPA 5 » PMA MPA—(S»]PMA

(b) A natural transformation & : MIP = PM is half a distributive law if

-16opu=PuodoMs
doe=DPe.

a

Example. Let MIA := A" be the monad for finite words and AA := A* [~
its quotient by the relation

un~xv :iff  uisapermutationof v,

Then M-algebras are monoids and A-algebras commutative monoids. We
will write elements of AA as sums a + - - + b and those of MA as products.
A distributive law & : MIA = AM maps a product of sums

Z doi Z“Ii""' Z ki

i<ne i<ny i<np_y

to the sum
Z 90,0(0) " "Fk-1,0(k-1)
o

that ranges over all functions 0 € [n,] x -+ x [np_, . For instance,

0((a+b)(c+d))=ac+ad+bc+bd. )

We start with a simple version of the construction we are interested in.
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I. Monads

Theorem 6.5. Let § : MIP = PM be half a distributive law. Then there exists
a functor P : Alg(M) — Alg(M) mapping an M-algebra A = (A, ) to the
M-algebra P := (A, P o 8) and mapping an M-morphism ¢ : A - B to
the Ml-morphism Pg : PA - PB.

Proof. We start by checking that P is an M-algebra. Set 77 := Pm o §. Then

foge=Prnodoe
=ProPe
=id,
oM =PmodoM(Prod)
=ProPMrro oM
=P(mopu)odoMs
:]P’r[o(SoM

=fTou.

Finally, let ¢ : A — B be an M-morphism. To see that P is also an M-

morphism, note that

Ppot=PpoProd
=P(roMg)od
=PmodoMPg
=70 MPgy. 0

The downside of this simple version is that it does not imply that P’ forms
a monad on Alg(M). If we want a monad, we need a full distributive law.

The above axioms for a distributive law are not always the most convenient
to work with. In the following we will present several characterisations of
when a distributive law between two monads exists. One of them tells us
that a distributive law is precisely what is needed to life a monad P from the
base category to the category of M-algebras.
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6. Lifting monads

Definition 6.6. Let (M, y, ) and (P, v, 7) be monads on some category C
and let U : Alg(M) — C be the forgetful functor mapping an M-algebra to
its universe.

(a) We say that a monad (I, ¥, ) is a lift of P to the category of Ml-algebras
if

UoP=PoU, Ui=v, Uh=g.

(b) The Kleisli category Free(IP) of IP is the full subcategory of Alg(IP)
induced by all free P-algebras. The free functor Fp : C — Free(P) maps an
object C € C to the free P-algebra generated by C, that is,

FpC := (PC,v), for objects C €C,
Fpo =Py, for C-morphisms ¢ : A — B.

(c) An extension of Ml to Free(IP) is a monad (M, {1, &) on Free(P) satis-
fying

MoFp=FpoM, f=Fpu, &=TFpe.

a

Theorem 6.7 (Beck). Let (M, u, €) and (P, v, n1) be monads on the category C.
There exist bijections between the following objects:

(1) distributive laws & : MIP = PM;
(2) liftings P of P to the category of M-algebras;
(3) extensions M of M to the Kleisli category Free(IP);
(4) functions K such that
(m1) (PM, , o €) is a monad,

(M2) the functions Pe and 1 induce morphisms of monads P = PM and
M = PM,

(M3) « satisfies the middle unit law: k o P(e 0 1) = id;
(5) functions K such that
(c1) (PM, «, 7 0 €) is a monad,
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I. Monads

(c2) x o PMpy = My,
(c3) koPe=v,
(c4)

c5) Puok=xoPMPu.

voPk=xow,

—~

Proof. (1) = (3) Let § be a distributive law. We set

(PC,v) := (PMC, v), for an algebra (PC, v) € Free(P),
p:=voP§oPM(¢poyn), foramorphisme:d—>B.

2 2

We start by checking that Ml is a functor. Clearly, MQf € Free(), for every
9 € Free(PP). Consider a morphism ¢ : 9 - . Then Mg : Ml - M is

also a morphism since

M(pov=VOP5oPM((por/)ov
=vovoPP§oPPM(goz)
=voPvoPP§oPPM(go )
=voP(voP§oPM(gon))=voPMe.

Next, we show that M is an extension of M|, that is, that Ml o Fp = Fp o M.
For an object C € C, we have

MFpC = M(PC, v) = (PMC, v) = FsMC.
Similatly, for a morphism ¢ : A — B, we have

MFpg = v o P8 o PM(Pg o 1)
=voP(8 o MPg o My)
=v o PPMg o P(8 o My)
=PMg o voPy=PMg =FpMeg.
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6. Lifting monads

Hence, it remains to show that (M, Fpy, Fpe) is a monad.

Fpu o MFpu = Pu o vo P8 o PM(Pu o i)
=PuovoPPMuoP(8oMpy)
=PuoPMpuovolPy
=PuoPuoid
=FpuoFpu,

Fpy o Fpe =Py oPe =Pid =id,

Fpu o MFpe = Py o v o P§ o PM(Pe o )
=v o PPu o PPMe o P(6 o My)
=voPPido Py
=id.

(3) = (1) Given an extension Ml of M to Free(IP), we set
8:=UMvoy.
(Note that My : PMIP = PM, so this is well-typed.) To simplify notation
we will identify in the following morphisms of P-algebras with their images

under the forgetful functor U. That is, we will omit all occurrences of U and

we replace 'p by IP. Then the axioms for an extension M take the form
MoP=PoM, =Py, ¢&=Pe.

Since Mg is a P-algebra morphism between free algebras whose product
function is v, we also have the equation

vo PMq) = M(p ov, forevery morphism ¢ : FpA — FpB.

To see that § is a natural transformation, consider a morphism f : A — B.
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Then

8o MPf = Mv o 5y o MPf

= Mv o PMPf o 5

= Miv o MPPf o 5
M(voPPf)on
(Bfov)on
= MPfoMvon=PMfod.

I
2

Furthermore, § is a distributive law since

50;4:1@11/0;70#
ZMVOP‘uor]
=Mvojion
:ﬁoMMVorl
=PuoM(MvovoPy)oy
=PuoM(voPMvoPy)oy
=IPyoMVOMIP(Mvo;1)o;7
=Py o My o PM(Mvo5) oy
=PuoMvonoM(Mvorn)=PuodoMs
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8oMv=MvoyoMy
ZMVOPMVOY[
:MVOMPVOI’]
=M(voPv)oy
= Fi(vov)orn
=MvoMvoy
:MVOVOPnOMvon
:VOPMVOPrIOMVOn
=voP(Mvon)oMvon=voP8od,
doe=Mvoyoe
:MVO]P’Sor]
=Mvoéon=2ovon="Pe,
8oMpy=MvonoMy
:MVOPMnon
:MvoMPnon
=M(voPy)on=Midon=r.

6. Lifting monads

(1) = (2) Let § : MP = PM be a distributive law. Given an M-algebra
A = (A, ), we set P := (PA, #) with 7 := P o § : MPA — PA. Fora

morphism ¢ : A - B, we set Py := Po.

We start by showing that this defines a functor Alg(M) — Alg(M). If
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9 = (A, ) is an Ml-algebra, then so is P since
7to M =ProdoM(Prod) ffoe=Prodoe

=ProPMmodoMd =PmoPe
=ProPuodoMd =id.
=Prodoyu

=ftou,

Furthermore, for morphisma ¢ : A — B of M-algebras, we have
Pg o M = Pg o Prro 8
=P(noMg)od
=ProdoMPy =t o MPg.

It now follows that [P forms a monad with multiplication ¥ := v and unit
map 7 := P#: we have just shown that ¥ and 7 are morphisms of M-algebras
and the equations for the monad laws immediatly follow from those for
vand 7.

Finally, to show that 1P is a lift of P it is sufficient to note that, by definition,

UoP=PoU, Ui=v, Uj=7g.

(2) = (4) Given a set A, we lift the free algebra §4 = (MA, y) to PF4
and PI@’%A. The products of these algebras are morphisms

p: MPMA - PMA  and ‘1:4 : MPPMA — PPMA .
We claim that

k:=volPp

is the desired morphism.
First, note that, jI being the product of an M-algebra, we have

poMji=foy and poe=id.
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6. Lifting monads

The first of these two equations implies that I is a morphism of M-algebras.
Consequently, so is ]f”y =P and we have

Pito i = fro WP

Furthermore, by definition of a lift, the underlying morphisms of ¥ and 7}
are, respectively, v and . As v : PPMA — PMA and i1 MA - PMA are
morphisms of M-algebras, it follows that

floMv=voj and foMpy=nopu.

For (m1), we have to show that x is a natural transformation PMPM = PM

and that « and 7 o & satisfy the three monad laws. For the former, let ¢ : A —

B be amorphism. Then Mg is a morphism §4 — §p and, therefore, HADMgD =

PMg is one of P§4 — P§p. This implies that i c MPMg = PMg o .

Thus, i is a natrual transformation MIPM = PM. Since v : PP = Pis also

a natrual transformation it follows that so is the composition x = v o Pji.
It remains to check the monad laws.

kok=voPjovolPi
=vovoPPaoPh
:VOPVOP[,:{OPM]P‘[:[
voPj o PMy o PMPj
=k o PMxk,

konoe=volPjoPeon=voy=id,
koPM(noe)=voPioPM(yoc¢)
=voP(fioMpy)oPMe
voP(nou)oPMe
=id.
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I. Monads

For (m2), we have
koPeoPPe=voPloPeoPPe=voPPe=Peov,
konoMpy=voPionpoMpy=vonopgoMpy=pgoMy=nou.
For (m3), we have
koP(eon)=voPioP(eon)=voPy=id.

(4) = (5) Suppose that « satisfies (m1)—(m3). We claim that it also satisfies
(c1)—(c5). (c1) is the same as (m1). For (c3), we have
koPe=koP(ecxoP(con))
k o PMk o P(e o Pe o Py)
=k ok o Pe o PIPe 0 PPy
k oPeovo PPy
koP(eon)ow

:V,

where the first and last steps follow from (m3) and the fourth step from (m2).
(c4) nows follow by (c3).
voPk=xoPeoPx
=k o PMk o Pe
=xokolPe

=Kkov.
For (c2), we have
ko PMy =k ovolPrnolPMpy
= v oPx o Py o PMy

=volP(nou)
=voPyoPu
:]P"u,
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6. Lifting monads

where the second step follows by (c4) and the third one by (m2). Finally,
(c6) follows by (cs).

Puox =xoPMpnox
=k o k o PMPMpy
=k o PMk o PMPMpy
=k o PM(x o PM#)
=k o PMPu.

(5) = (1) Given « satisfying (c1)—(c5), we set

§:=xonoMPe.

Then § is a natural transformation since so are «, 7], and &. Furthermore,

Sopu=xonoMPeoy

x oo uoMMIPe

k o Py o 11 o MMPe

=k o (k o PMy) o 5 o MMPe
x o PMx o PMy# o 7 o MIMIPe
=k o 7 o Mk o My o MMPe
konoMP(uoe)oM§

= x o PMPu o 17 o MlPe o M§
=Py ok o5 oMPeoM§
=PuocdoMs
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I. Monads

doMv =« onoMPeoMv
=k o 7o MPe o M(k o Pe¢)
= x o PMPe o PMx o yMPe
= x o PMk o PMIPMPe o 7 o MPe,
=k o k o PMPMPe o § o MPe,
=k o PMPe o k o 57 o MPe,
=xovoPyoPMPeokonoMPe,
:voP(KoqoMPS)oKorloMpe,
=yoP§od,

doe=konoMPeoe

:Kor]oeo]P’s
=ko(olPe
= Pe,

oMy =xonoMPeoMy
:Kor]oM(ﬂog)
=koPM(op
=1.

It remains to prove that the above translations are bijective. We start by
showing that (1) = (3) and (3) = (1) are inverse to each other. We map a
given distributive law 6, to the functor M with

Mg =vodoPM(pon).
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6. Lifting monads

This functor is then mapped back to
8 =Mvoy
=voP§oPM(von)ony
=yvolP§op
=volP§odoMy
=8 oMvoMy
=0.
Conversely, given an extention M, we construct the distributive law
= MV oy,
which in turn produces the functor M’ with
M/'(PC,v) = (PMC, v) = M(PC, v),

Mg =voP8oPM(gon)
=voP(Mvon)oPM(pon)
=voPMvoPryoPM(gon)
:IVJIVOVOIP’nOPM((pon)
= Mv o PM(g o 1)
= My o MP(g o 1)
= M(voP(pon))

Ti(povoPy)
.
For the remaining translations (1) = (2) = (4) = (5) = (1), we prove
bijectivity by showing that, starting with one of the four kinds of objects and
applying all translations in order, we obtain the original object back.

Given a distributive law J, the first translation maps it to a monad [P with

i = Pp o 8. The second step, maps this to the morphism k = v o Pji. The
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third step is the identity, and the last step maps « to « o 17 o MIPe. Composing
these steps we obtain

konoMPe=voPponoMPe
=voP(Puod)onoMPe
=PuovolP§onoMPe
=PuovonodoMPe
- PuoPMeod
=9,

as desired.
Similarly, if we start with k as in (4) or (5), we translate it into § =
o f o MP¢ and then into the functor mapping (A, ) to (PA, P70 §).

Finally, we obtain the morphism

voPi=voP(Puod)

vo PPy o P(x o 17 o MIPe)
=Py ovolPkoPyoPMPe
=PuoxovolPnoPMPe
=Puox o PMPe

=k o PMPu o PMPe

=K.

Finally, consider the case where we start with a lifting 1. Then we obtain
k = voPi, § = k oy oMPe and finally the functor mapping (A, )
to (A, Prr o §). We have to prove that the resulting algebra is equal to
P(A, ) = (PA, 7). Note that the associative law

mou=mnoMn

implies that the morphism 77 : MI[A — A is a morphism of M-algebras
(MA, p) - (A, m). Consequently, its image under Pis also a morphism of
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6. Lifting monads

M-algebras and we have
Prro i = 7 o MPrr.
Since P = P it follows that
Prod=ProxonoMPe
=ProvolPjonoMPe
=PrnovonojioMPe
=Pmo fio MPe
= 71 o MP7r o MPe
=7,
as desired. O

Corollary 6.8. Let 6 : MIP = PM be a distributive law between the monads
(M, , €} and (P, v, n).

(a) The composition PM forms a monad where multiplication and singleton
operation are given by the morphisms

voPPuoP§:PMPM = PM and #noe:ld=PM.

(b) One can lift P to a functor on M-algebras that maps an M-algebra A =
(A, ) to the Ml-algebra PY with product

Prod: MPA — PA.

(c) Every lift P of an Ml-algebra A = (A, ) carries a canonical PM-algebra
structure with product

v o PPmr o P§ : PMPA — PA.

Remark. What do we do if we can to combine two monads M and IP but
there is no distributive law between them ? In this case we can use the free
monad construction and use the more complicated monad (PM)*. )
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We conclude this section with two simple observations of how to transfer
a distributive law from one setting to another one. The first one concerns
the transfer along a morphism of monads. A similar result holds for mono-

morphic p.

Lemma 6.9. Let (M, y, &), (M, ¢, €'), and (P, v, 1) be monads, p : Ml =
M’ a morphism of monads, 8 : MIP = PM a distributive law, and 8’ = (8’ ) a
a family of functions such that

8 op=Ppod.
If p and Mip are epimorphisms, then &' is a distributive law M'P = PM'.

Proof. We start by checking that 0" is natural. Given a morphism f:A—B,

we have

PM'fod' op=PM foPpod
=PpoPMfod
=Pp05OMPf:8'OM'IP’f.

It remains to prove the four equations for a distributive law. Note that

8o =8"0poce
=Ppodoe
=PpoPe
=P¢',

5'0M'qop:8’opoMq
=PpodoMy
:]P’por]
=nop,
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6. Lifting monads

5'oy'o(poMp):8'opoy
=Ppodopu
=PpolPuodoMsé
:]P’(‘u’opoMp)o(soM(S
=Py’ oPpodoMPpoMs
=Pu' 08 opoM(& 0p)
=Py’ 08 oM'8" o (poMp),

8" oM'vop=08"opoMv

=PpodoMv
=PpovoP§od
=voPPpoPdod
=voP(8'0p)od
=voP§ 08 op.

As p and p o Mp are epimorphisms, it follows that
8 oé =Pe, dou =Py’ 0 oM'§,
8 oM'n=n, 0 oMv=voP§ od. O
Our second result shows that faithful functors reflect distributive laws.
Lemma 6.10. Let F : C° — C” be a faithful functor, let (M, u', &) and

(P, v, ') be two monads on C', for i < 2, and let § = (84) a be a family of
morphisms 84 : MI°P° A — P°MP° A. Suppose that

e MoF=FoMP°andP'oF =FoP°,
oy =Fu° & =Fe°, v' =Fv°, and n* = Fy°.
If F6 is a distributive law, then so is 6.

Proof. Suppose that [F§ is a distributive law. Then IF§ is a natural transform-
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ation since
F(P°M°f o) =FP°M°f o Fé
=P'M'FfolF§
=Fd o M'P'Ff
=F§ o FM°P°f = F(8 o M°P°f).
Since [ is faithful, it follows that
P°M°fod=380M°P°f.
For the axioms, note that
F(8o0e®)=Fdoe" =P'e' =P°Fe® = FP°e°,

which implies by faithfulness of IF that § o €° = P°¢°, and similarly for the
other three axioms. O

Motes

Much of the material in this chapter is standard and can be found in various
accounts on category theory. The definition of discrete categories seems to be
new. They are a generalisation of the topological categories introduced in [1].
For a treatment of polynomial functors in a general category-theoretical
setting, see [23]. Our exposition is based on (39, 18]. The theorem of Beck
was originally proved in [4], with some of the conditions provided later on
by other authors.
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I1. 2llgebra

1. Sactorifations

O FURTHER DEVELOP OUR ALGEBRAIC machinery we need the notions
T of a subalgebra and a quotient. We start with the observation that,
in Set, every function can be uniquely factorised into a surjective function
followed by an injective one. To generalise this to other categories we have
to find analogues for the notion of a surjective/injective function.

Gqualifers and Toequalifers

We start with an attempt that will not quite work out, but that will provide
useful intuition. Our candidates for injective functions are equalisers and
those for surjective functions are coequalisers.

Example. In the category Pos, a function f : A — B is a coequaliser if, and
only if, it is a quotient map, i.e., surjective function such that the ordering
of B is the image of the ordering of A. To see this, suppose that f : A - Bisa
quotient map. Then f is the coequaliser of the two projections p, ¢ : X — A,
where

Xi={{a,a') e Ax Al f(a) = f(a) ).

Similarly, f : A — B is an equaliser if, and only if, it is an embedding, i.e.,
an injective function satisfying

a<a  iff  f(a)<f(a'), foralla,a’ €A.

To see this, suppose that f : A — B is an embedding. Then f is the equaliser
of the two inclusion maps i, j: B - Y, where Y is the partial order obtained
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II. Algebra

from B + B by identifying, for every a € A, the two copies of f(a) € B. For
the ordering C of Y we take the transitive closure of the relation <, U <;
where <, and <; are the orderings of the two copies of B.

Let us quickly check that the relation € is indeed a partial ordering. First,
note that

E=(<,0%)U(0%,)
since
4<ob<c<,d implies b,cerngf.

Hence, a <, b <, ¢ <, d, which implies that a <, d.
To see that E is antisymmetric, suppose that a € b £ a. We distinguish
two cases.
e Ifa<,c< bandb <, d < a, thena, b, c,d € rng f, which implies
that a <, b <, a. Hence, a = b.
e Ifa<,c<; bandb<,d <, a,thenwehavec,d erngf,d <, a <, ¢,
and ¢ <; b <; d. Hence, ¢ = d, which implies that a = cand b = ¢. In
particular, a = b, j

Definition.1. A kernel pair ofamorphism f : A - Bisapairu,u’: X - A
of morphisms such that u, 4’ form the pullback of f along itself. Analogously,
a cokernel pair of f consists of a pushout v,v’ : B > Y of f alongitself.

Examples. (a) In Set, the kernel pair of f : A — B consists of the two
projections X — A where

Xi={{a,a') e Ax Al f(a) = f(a)}.

The cokernel pair consists of the two embeddings v, v’ : B - Y where

Y= (B~ flA]) + f[A] + (B~ f[A]).

(b) In Pos, the kernel pair of a monotone function f : A — B is the same
as its kernel pair in Set (where X C A x A is equipped with the ordering of
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the product). To get the cokernel pair of f we start with its cokernel pair
vo, v ¢ B > Y, in Set. We equip Y, with the relation C, the transitive
closure of v,[<] U v, [<], where < is the ordering of B. In general, E is not
a partial order, but only a preorder. Let p : Y, — Y be the quotient map
merging the elements in every equivalence class of E. Then Y € Pos and
v:=povyand v’ := p ov! form the cokernel pair of f.

(c) In Top, kernel pairs and cokernel pairs are constructed as in Set, by
equipping the sets X and Y with a suitable topology. )

Lemma 2. Let f : A — B be a morphism.
(a) Every kernel pair of f consists of epimorphisms.
(b) The following statements are equivalent.
(1) f is a monomorphism.
(2) There is a function u : X — A such that u, u is a kernel pair of f.
(3) ida,id, is a kernel pair of f.

Proof. (a)Letu,u’: X — Abeakernel pair of f.Since foids = foid4 and
u, ' is the pullback, we can find a unique morphism & : A — X satisfying

u08:idA and ulO(S:idA.

In particular, 4 and «’ have a right-inverse, which implies that they are

epimorphisms.
(b) (2) = (1) Suppose that u = 4’ and consider two morphisms g, ¢’ :

C—Awithfog=fo g’. Since u, u’ is the pullback, there exists a unique
morphism § : C - X

uod=g and u'0d=yg".
Hence,
g=uod=uod=4¢".

(1) = (3) Clearly we have f oid = f oid. To see that id, id is the pullback,
consider two morphisms g, g' :Z - Awith fog = fo g'. If fisa
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monomorphism, it follows that ¢ = ¢’. Hence, g : Z — A is the unique
function satisfying

idpog=g¢g and idpog=g¢".

(3) = (2) Suppose thatid,ids : A — A is a kernel pair of f and let
u,u’ : X > A be another kernel pair. As limits are universal, we can find a
(unique) isomorphism 0 : A — X such that

id=uoo and id=d o0,

Hence,u = 07" = u'. O

If the category in question has kernel pairs and coequalisers, we obtain
a bijective correspondence between them. By duality, the same holds for
cokernel pairs and equalisers.
Lemma 1.3. Let C be a category with finite limits and colimits.

(a) Let f: A — B bea coequaliser and g : B — C an arbitrary morphism.
Then f is the coequaliser of the kernel pair of g o f.

(b) Every kernel pair is the kernel pair of its coequaliser.
Proof. (a) Let f : A — B be the coequaliser of u, 4’ : X — A and let

v,v" 1Y — Abe the kernel pair of go f. Since go fou = go fou’and
v,v" is the pullback, there exists a unique morphisms ¢ : X - Y satisfying

/ /
yu=vo@ and u =v og.

To see that f is the coequaliser of v, v’, consider a second morphism b : A —

Dwithhov=hov' Then
hou=hovop=hov'op=hou'.
As f is the coequaliser of u, ', it follows that there exists a unique morphism
y: B — Dsatisfyingy o f = h.
(b)Letv,v' : Y - Abethekernel pairof g: A - Candlet f : A — Bbe

the coequaliser of v, v, Since g o v = g o v/, there exists a unique morphism
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1. Factorisations

v : B — C satisfying y o f = g. To see that v, v’ is the kernel pair of f,
consider morphisms u, 4’ : X - A with fou = f ou’. Then

gou=yofou=yofou =gou'.

As v, v’ is the kernel pair of g, it follows that there exists a unique morphism

¢:X — Ysatisfyingu=vogandu =v' 0. O

Remark. Note that (a) implies in particular that f is the coequaliser of its
own kernel pair. It follows that the function mapping each coequaliser to its
kernel pair forms a bijection between coequalisers and kernel pairs. )

Every morphism can be factorised into equalisers and coequalisers, but
we need factorisations with three parts.

Theorem 1.4. Let C be a category with finite limits and colimits. Every morphism
f : A — Bhas a factorisation f = i o ¢ o q with the following properties.
(a) q is a coequaliser and i an equaliser.

(b) Given any other factorisation f = i’ o ¢’ o g’ with a coequaliser ¢’ and an
equaliser i', there exist unique isomorphisms 0 and T such that

i'or=i, ¢ oo=710¢, ¢ =00q.

SIS

X’ > Y’
/
¢
(c) For every factorisation f = m o e of f into a monomorphism m and an
epimorphism e, there exist unique morphisms 0 and T such that e = g 0 g
andm =@orT.

A

Proof. Fix f : A - B.Letuy, u' : X > A the pull-back of f along itself,
v,v" 1 B > Y the push-out of f along itself, let g : A — C be the coequaliser
of wand u’, and let i : D — B be the equaliser of v and v'.
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(a) We claim there exists a (unique) morphism ¢ : C - D such that
f=iogoq

Since u and u’ are the pull-back of f along itself, we have fou = f o u'.
Hence, f factorises through the coequaliser of u and u’. That is, there exists

afunction g: C > Bwith f = gogq.

u f v
X >y A— B »> Y
u’ v’

g
C—»D
¢
Similarly, we have v o f = v o f, which implies that

vOqu:vloqu‘
Since coequalisers are epimorphisms, it follows that v o g = v o g Con-
sequently, g factorises through the equaliser of v and v and there exists a
morphism ¢ : C = D such that g = i o ¢. It follows that

f=goq=icgogq.

(b) Let f =i’ 0 ¢" 0 ¢’ be another factorisation where i’ is an equaliser
and ¢’ a coequaliser. By Lemma 1.3 (a), g and g’ are the coequalisers of the
kernel pair of f. Dually, i and i’ are the equalisers of the cokernel pair of f.
As limits and colimits are unique, there exist unique isomorphisms 0 and 7
such that

i'or=i and ¢ =00q.
For the third equation, note that
i,O‘['O(qu:ioq)oq:f:i,O(P,Oq’:i,O(P,OO'Oq,

As i’ isa monomorphism and q an epimorphism, it follows that To¢p = @00
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1. Factorisations

(c) Suppose that f = m o e where m : E - B is a monomorphism and
e : A — E an epimorphism. Then

moeou:fou:fou’:moeou’.

X_ 3 A—>B I 4

IR
LN

C—bD

Since m is 2 monomorphism, it follows that e o u = e o u’. As g is the
coequaliser of u and u’, we can therefore find a unique morphism ¢ : C — E
such that e = ¢ o g. The existence of 7 now follows by duality. O

Sactorifation Syftems

The problem with using factorisations into equalisers and coequalisers is that
we usually want our notions of an injective function’ and ‘a surjective function’
to be closed under composition. But the composition of two equalisers is not
necessarily an equaliser (although in most of the categories we are interested
in, this is indeed the case). Before choosing suitable generalisations, let us
first take alook at the problem abstractly. We start by listing all the conditions
we would like our two classes of morphisms to exhibit.

Definition 1.5. Let C be a category and E and M two sets of morphisms.
(a) An EM-factorisation of a morphism ¢ : A — B consists of two
morphisms € € Eand g € M suchthatp = poe.
(b) A factorisation system for C is a pair (E, M) of classes of morphisms
satisfying the following conditions.

(es1) E consists of epimorphisms and it contains all isomorphisms.
(s2) M consists of monomorphisms and it contains all isomorphisms.

(es3) E and M are both closed under composition.
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(es4) Every morphism ¢ : A — B has an EM-factorisation.

(es5) For every choice of morphisms ¢, y, y, e with y € M, ¢ € E,
and ¥ o € = p o ¢, there exists a unique morphism & such that

pod=y, A—>5B

foe=g¢. fpl 8 lv/
‘/

C—ﬂbD

(Bss) is often referred to as the diagonal fill-in property.

(c)If ¢ = poewith y e M and € € E, we call y the image of ¢ and ¢ its
kernel. We denote them by im ¢ and ker @, respectively. (We will see below
that this factorisation is unique, up to isomorphism.) .

Remark. Axiom (rss5) might look a bit arbitrary at first. It tells us that,
if a morphism f factorises through an epimorphism e € E and through
a monomorphism m € M, then f is of the form m o § o e, for a unique
map 0. This property can be seen as the category-theoretical analogue of the
Factorisation Lemma from Universal Algebra. The following reformulation
makes it more apparent: given morphismse: A - B,¢: A - C,y: B - C
with € € E satisfying ¢ = ¥ o ¢, it follows that

kerg = (kery)oe and im¢=imy.

& &
A——* B

B \
lw ker ¢ x ker y
c ime = i%

Example. (a) The only factorisation system for Set is (E, M) where E con-

A

v

C

4

sists of all surjective functions and M of all injective ones. Most axioms
follow immediately, only (gss) requires a bit of thought.

Hence, suppose that y o € = g o ¢ where ¢ is surjective and y injective,
We define § as follows. Given an element b, we choose some a € e7*(b) and
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we set 8(b) := ¢(a). This definition immediately implies that
d(e(a)) =¢(a), foralla.

Hence, it remains to check that the definition of § does not depend on
the choice of a. Suppose that e(a) = e(a’). Then

u(p(a)) = y(e(a)) = y(e(a')) = ulo(a’)),

which by injectivity of ¢ implies that ¢(a) = ¢(a’), as desired.
(b) We obtain a factorisation system for Pos by taking for M all injective
functions and for E all surjective functions € : A — B satisfying

e(a)<e(b) < a'<b’, forsomea’ €& (a)andb’ € (b).

Again most of the axioms are trivial. For (Fs5) we can proceed as in the
case of sets above. It only remains to check that the function § is monotone.
Hence, suppose that b < b’. This implies that a < a’ for all a € ¢ (b) and
a’ € 77 (b"). Consequently, 8(b) = ¢(a) < ¢(a’) = 5(b").

(c) A second factorisation system for Pos consists of all surjective mono-
tone functions for E all and all embeddings for M, i.e., all functions y : A —
B satisfying

a<b iff p(a)<u(b), foralla,beA.

To check (s5), consider morphisms ¥ o € = p o ¢ where ¢ is surjective and

 is an embedding, Again, we define
8(b):=¢(a), forsomeace '(b).
To show that this is well-defined and that 8 is monotone, note that

e(a)<e(d) = y(e(a)) <y(e(a))
= u(p(a)) <u(p(a’))
= ¢(a)<o(a),
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where the last step follows since yt is an embedding.
(d) For Top there are again two canonical factorisation systems: we can
either take all surjective continuous maps and all embeddings, or all quotients
and all injective maps.
(e) In 8-Set, the only factorisation system consists of the surjective maps
and the injective ones.

a

Let us collect a few useful properties of factorisation systems. We start
with two simple remarks that save us some work. The first one tells us that it
is sufficient to prove certain properties only for one of the two sets E and M.
The corresponding statement for the other set then follows by duality. By the
second remark, it is sufficient to define a factorisation system for D. Then
we can lift it to D=, The proofs are straightforward.

Lemma 1.6. Let (E, M) be a factorisation system for C.
(a) (M, E) is a factorisation system for C°P.
(b) (E=, MZ) is a factorisation system for C=.
Let us collect a few basic consequences of the axioms.

Lemma 1.7. Let (E, M) be a factorisation system for C.

(a) Ifuoce=y' o& for morphisms p, u' € M and ¢, €' € E, then there
exists a unique isomorphism o such that €' = coeand p=p' oo.

T T

A 4 C

B/
(b) A morphism belongs to E 0 M if, and only if, it is an isomorphism.
(¢) qo f € E implies g € E.
(d) foee M impliese € M.

Proof. (a) Suppose that y o ¢ = p’ o ¢'. By (rs5), there exists a unique
morphism § such that

[,{'08:[4 and foe=¢.
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In the same way, p’ o0&’ = poe implies that there exists a unique morphism 8
with

pod =y and 8 oé =¢.

We claim that § and 8" are inverse to each other. Since y 0 € = y o ¢, there
exists a unique morphism y such that g oy = pand y o e = &, As both id
and 8’ o § satisfy these two equations it follows that 8’ o § = id. In the same
way, one can show that § o §’ = id.

(b) By (gs1) and (Es2), every isomorphism belongs to both E and M.
Conversely, let 0 € En M. Thenid 0 0 = ¢ o id and, by (¥ss), there exists a
unique morphism 6§ such that 0 0 § = id and § o 0 = id. Hence, 0 has the
inverse .

(c) Let g o f € E and fix EM -factorisations g = g oeand o f = y' o ¢’
of, respectively, g and € o f. Then we have

ido(qof)=pocof=(uop)oe
By (rss5), we obtain a unique morphism ¢ such that
dogof=¢ and pop od=id.

Hence, y is a monomorphism with a right inverse, which implies that y is
an isomorphism. In particular, y € E and it follows that g = g o e € E.

(d) follows from (c) by duality. O

It turns out that each class E and M in a factorisation system uniquely
determines the other one via the diagonal fill-in property. Let us start with
introducing notation for this property.

Definition 1.8. Let ¢ : A — Band py : C - D be morphisms. We write
e L pif, forallmorphisms ¢ : A - Candy : B —» D with yoe = pyog, there
exists a unique morphism § : B > Csuchthatfoe=¢@andpod=y.

Lemma1.9. Let (E, M) be a factorisation system.
(a) E="M:={¢e|eLpyforallpe M}
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(b) M=E':={yuleLuforallecE}

Proof. We only need to prove (a), since (b) then follows by duality. We have
E ¢ * M by (rs5). Conversely, suppose that # € * M and let § = p o € be
its EM -factorisation. Since #§ L pand id o 7 = y o ¢, there exists a unique
morphism & with

don=¢ and pod=id.

Furthermore, ¢ L y and p o € = p o ¢ implies that there exists a unique
morphism { with

(og=¢ and pol=uy.

Since { = id and { = & o u both satisfy these equations, it follows that
0 o y = id. Hence, p is an isomorphism with inverse §. This implies that
p € Eand, thus,y = poecE. O

It follows in particular from this lemma that each of the two sets of a
factorisation system is determined by the other one.

Exercise 1.1. Prove that (E, M) is a factorisation system if, and only if,
E=*Mand M = E*. |

Exercise 1.2. Prove thatid 1 y implies that y is 2 monomorphism, and
& 1 id implies that ¢ is an epimorphism. |

The following remark saves us some work when checking the diagonal
fill-in property.
Lemma r.10. Suppose that yoe = po @.

(a) If € is an epimorphism, there exists at most one morphism § satisfying
0 o & = @ and this morphism automatically satisfies y o & = y.

(b) If u is a monomorphism, there exists at most one morphism 0 satisfying
p o 8 = v and this morphism automatically satisfies 6 o € = ¢.
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1. Factorisations

Proof. (a) As € is an epimorphism,
podoe=pogp=yoe implies pod=y.
Furthermore, uniqueness of & follows since
doe=¢p=80¢c implies & =0.
(b) follows by (a) and duality. 0

Let us take a look at closure properties of E and M. Our first observation
concerns morphisms with inverses. The proof is based on the relation L.

Lemma .11, Let (E, M) be a factorisation system.
(a) Every coequaliser belongs to E.

(b

) Every equaliser belongs to M.
¢) Every morphism with a right inverse belongs to E.
y morp g 23
)

(d) Every morphism with a left inverse belongs to M.

Proof. By duality it is sufficient to prove (b) and (d).
(b) Let p be the equaliser of f and g. We claim y € E*, i.e,, that e 1 p,
for all € € E. Hence, let ¢ € E and suppose that p 0 ¢ = y o &, Then

Joyoe=fouop=gouop=goyoe
implies that f o ¥ = g o ¥ since ¢ € E is an epimorphism. By universality
of 4, we can therefore find a unique morphism § such that y = y o 8. Since
equalisers are monomorphisms, it therefore follows by Lemma 1.10 (b) that
p=0oe¢

(d) By (b) it is sufficient to prove that every morphism y : A — B with
aleft inverse € : B — A is an equaliser. We claim that y is the equaliser of

y o e and idp. Clearly,
‘uogo‘u:‘uoid:ido‘u‘

For universality, suppose that ¢ : C — Bis a morphism with yogog = idog.
Then ¢ = p o (€0 ¢) and this factorisation is unique since ¢ = p o y implies
thaty =eopoy=cog. O
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Next, we consider closure under limits.

Definition 1.12. Let F be a class of morphisms.

(a) We say that F is closed under limits (of a certain kind) if, for every
natural transformation 7 : D = E between two diagrams (of the given kind)
with 7; : D(i) = E(i) € F, for all i, the canonical map lim D — lim E also
belongs to F. Similarly, we say that F is closed under products if this is true for
all products. Finally, F is closed under colimits if, for every such 7: D = E,
the canonical map colim D — colim E belongs to F.

(b) We say that F is closed under pushouts or pullbacks if, for every f € F
and every morphism g, the pushout/pullback of f along g belongs to F.

Note that our terminology is not entirely consistent: closure under pull-
backs is not the same as closure under limits that are pullbacks.

Lemma 1.13. Let (E, M) be a factorisation system.

(a) E is closed under colimits.

(b)
(¢) E is closed under pushouts.
)

(d

Proof. Again we only prove (a) and (c), since the other two follow by duality.

a) Let (k;); be the limiting cocone for D and (;); the one for F. Suppose
that ¢; : D(i) — F(i) is an E-morphism, for each index i, and let € :
colim D — colim F be the corresponding morphism between the colimits.
Consider a commuting square Y 0 € = y o @ with ¢t : A — B in M. We have

M is closed under limits.

M is closed under pullbacks.

to find a diagonal morphism §:colimF — A. Applying (¥ss) to the square

(wod;)oe; = po(¢ok;), weobtain a diagonal morphism 8; : F(i) - A

Let 8 : colim F — A be the unique morphism with So A; = 8;. Then
SOéox,- :SOAiosi =d;0e=¢oK;,

and yOSO)Li =uod;=yol,.

Since this holds for all i and («;); and (A;); are limiting cocones, it follows

that §oé=gand yod =y.
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(c)Lete: A - B be an E-morphism, let g : C — D be the pushout of ¢
along f: A - C, and let f' : B — D be the other morphism of the pushout
square. We claim that g € * M. Consider a square o g = g 0 ¢ with y € M.
Applying (¥s5) to the square y o f' o e = yo ¢ o f, we obtain a unique
morphism { with

{oc=gof and wol=yof'.

The first equation shows that ¢ and ¢ form a cocone for the pushout diagram.
Consequently, there exists a unique morphism & with

(=80f and ¢=080g.

This implies that g o § 0 g = o ¢ = y o g. Since g is an epimorphism, we
obtain p 0 § = y. Furthermore, it follows by Lemma .10 (b) that § is unique
andthat o e = ¢. O

Corollary 1.14. Let (E, M) be a factorisation system where E is closed under
products and M is closed under coproducts. Then M and E are closed under all
polynomial functors.

Proof. 'This follows from the preceding lemma since every polynomial functor
is composed out of products and a coproduct. O

We have already seen above that a factorisation system (E, M) on D
induces one on D, Let us show next that this factorisation system in turn
induces one for M-algebras.

Lemma 1.15. Let (E, M) be a factorisation system on D where E= and M*
are closed under the monad M. Then the sets

EM = { e € E® | £ an Ml-morphism } ,
MM = { e MZ | y an M-morphism }

form a factorisation system (E™, MM) on Alg(M).
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Proof. (s1) If € is an epimorphism of D and an M-morphism, it is also an
epimorphism of Alg(M). Furthermore, every isomorphism of Alg(M) is
also an isomorphism of D=,

(ps2) analogous.

(rs3) E and MZ are closed under composition.

(esq) Let ¢ : A — B be an M-morphism and let ¢ = p o ¢ be its
factorisation with respect to (E, M*). Let C be the codomain of &. We
start by equipping C with the structure of an M-algebra such that e and p
become M-morphisms. Since Me € E= and

(moMpy)oMe=noMp=gom=po(eom),
it follows by (rss) that there exists a unique map o : MIC — C such that
poo=moMpy and coMe=ceom,

Hence, Lemma 1.5.5, implies that (C, o) forms an Me-algebraande: A - C
is a morphism of M-algebras.
For y, it now follows that

noMpuoMe=noMe=¢ponm=poeconm=pomoMe.

Since Me is an epimorphism, this implies that w o My = p o 7.
(s5) Suppose that Yo & = y o ¢ where y € MM and e € EM. Let 6 be

the unique function with
pod=y and Soe=¢.
Since & and ¢ are M-morphisms, it follows by Lemma 1.5.6 that sois §. [J

The Standard Sactorifation Syftem

The following factorisation system is the one we will use in the rest of this

book.

Definition 1.16. Let D be a category.
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(a) The standard factorisation system (E, M) for D consists of
E:={¢|Vesurjective} and M :=E*.

(b) We say that the standard factorisation system of D is well-defined if
the standard factorisation system is indeed a factorisation system. ,

In general, the standard factorisation system does not need to be a factor-
isation system, but in the examples we are interested in it is.

Remark. For each of the categories Set, Pos, Top, Met, and 8-Set, we have
already seen factorisation systems where E consists of all surjective morph-
isms. Consequently, in every of these categories the standard factorisation
system is well-defined. )

The reason why we are interested in the standard factorisation system is
that it has several special properties. Of particular importance will be the
closure of E under limits and pullbacks.

Lemma 117, Let (E, M) be the standard factorisation system on D.

(a) E is closed under limits.

(b) E is closed under pullbacks.

Proof. (a) Let 7 : C = D be a natural transformation between two dia-
grams where 7; € E, for all indices i. Let (A;); and (¢;); be the limiting
cones of, respectively, C and D, and let ¢ : lim C — lim D be the unique
morphism with 7; 0 A; = y; o &. Since V preserves limits, it follows that
(VA;); and (Vy;); are the limiting cones of V o C and V o D, and that
Ve :1lim (Vo C) - lim (V o D) satisfies

Vr;0VA; =Vyu;0Ve,

We claim that ¢ € E. By Lemma I.2.3, it is sufficient to prove that Ve is
surjective.

Hence, let b be an element of lim D. Set b; := p;(b) € D(i). By surjectiv-
ity of 7;, there is some a; € C(i) with 7;(a;) = b;. For every morphism
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f 11— jof the index category, it follows that

(Tj ° Cf)(“i) = (Df° 7;)(a;)
= Df(bi)
= (Dfoui)(b) = pj(b) =bj =7;(aj).
As 1 is sutjective, this implies that Cf(a;) = a;. Hence, there is some
a € lim C with A;(a) = a;, for all i. It follows that

ui(e(a)) = 1;(Ai(a)) = 7i(a;) = b;, foralli.

This implies that e(a) = b. Hence, b € rnge.

(b) Let € € E and let ¢’ be the pullback of € along some morphism f. Since
V preserves limits, it follows that Ve’ is the pullback of Ve along V. In
Set pullbacks of surjective functions are surjective. Hence, Ve is surjective,
which implies by Lemma L.2.3 that ¢’ is a surjective epimorphism. Hence,

¢ eE. O

2. Gubalgebras

Using a factorisation system we can now define subobjects and quotients.
We start with the former. In general, we can represent a subobject of A by
an M-morphism y : C - A. For discrete categories, we can be a bit more
concrete.

Definition 2.1. Let A € D, X € VA, and let j: JX — A be the morphism
corresponding to the inclusion map X — VA via the adjunction.

(a) The subobject of A generated by X is the domain of the image
(X)a :=dom (im ).

(b) Similarly, for an M-algebra % and X C A, we define the subalgebra
of U generated by X by

(XD :=(C,my) where C:=dom (im (7o Mj))

and the product 71, is chosen according to the following lemma. |
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Lemma 2.2, Let U be an M-algebra, X € A, and let C be the domain of { X ).
There exists a function 7, : MIC — C turning { X))o = (C, 75 ) into an M-
algebra and the inclusion map (X))o — U into a morphism of M-algebras.
Furthermore, VC = n[VX].

Proof. Let y o € be the EM-factorisation of 7 o Mj : MIX — A and let
C be the domain of p. Similarly, let y’ o ¢’ be the EM-factorisation of
7o My : MC — A and let C’ be the domain of y'.

M
m;
MX — > MC > MC’ > MA

Seti:= eosingand i’ := ¢ osing. Then
poi=poeosing =moMjosing =mosingoj = j,
poi'=p o osing=moMposing=mosingou=p.

We claim that i’ is an isomorphism. For the proof, note that the two EM-
factorisations

po(eoflat) = p' o (& o Me)

must be isomorphic. Hence, there exists a morphism k : C " — C such that
pok=y" and eoflat="ko (¢ o Me).

In particular, it follows that

pokoi'=p'oi'=py and poi'ok=pok=y'.
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Since y and p’ are monomorphisms this implies that k and i" are inverses of
each other. We define the product of { X))o by 7, := k0 €',

We start by checking that { X))o is an M-algebra. For the unit law, we
have

o osing=koe osing=koi' =id.
For the associative law, note that

pom,=pokoe =y oe =moMuy
implies that

p o7, oflat = o My o flat
= 77 0 flat o MMy
=1 o Mim o MMy
=moM(pom,)=pom,oMrn,.

Since y € M, it follows that 7, o flat = 7, o Mir,. Finally, to see that the
inclusion p : C — A is a morphism of M-algebras, note that

yonoz‘uokoe':y'og':ﬂoM‘u, |

The concept of a subobject generated by some set immediately provides
a notion of cardinality for objects: the minimal cardinality of a generating
set. The aim of the rest of this section is to link this cardinality to purely
category theoretical properties. The usual approach is in terms of so-called
accessible categories and k-presentable objects. Here, we will use a slightly non-
standard formalisation that better fits with the categories we are interested
in.

We start by studying how objects are built up from their subobjects. It
turns out that the axioms of a discrete category are not quite strong enough,
to make this notion as well-behaved as we would like.

Lemma 2.3. For every A € D and every regular cardinal k, there exists a
k-directed diagram D : L — D and a bijective morphism 0 : colim D — A.
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Proof. Let Z consist of all subsets X € VA of size | X| < x ordered by
inclusion and set D(X) := { X)) 4. Then T is k-directed because « is regular.
To find the desired morphism 0, let (Ax) x be the limiting cocone of D and
let jx : JX — A be the inclusion morphism. Then (jx ) x forms a cocone
from D to A. Since (1x)x is limiting, there exists a unique morphism
0 :colimD — A with

golx=jx, foralXeZ.

It remains to show that Vo is bijective. Surjectivity follows from the fact
that colim(V o D) € Ux X = VA. For injectivity, fix two elements 4, b €
V colim D with a # b. As 7 is k-filtered, we can find some index X € 7 with
a,b e rngVlx = VAx[V{ X)) a]. Consequently, there are a’, b’ € (X)) a
with a = Ax(a") and b = A1 x(b"). Hence,

a#b implies o(a)=4a"#b"=0(b). O

To continue, we have to assume that ¢ is actually an isomorphism. This
leads to the following definition.

Definition 2.4. Let D be a discrete category that has a standard factorisation
system (E, M) and let k a regular cardinal.

(a) The canonical k-subobject diagram D : Z — D of an object A € D
is defined as follows. The index category Z is the subcategory of (D | A)
consisting of all morphisms i : C - Awithi € M and C = (X))c, for
some set X of size |X| < x. The functor D maps an object i : C — A to its
domain C and a morphism y : i — j to itself (now regarded as a morphism
between the corresponding domains).

(b) We say that D has canonical subobject diagrams if, for every regular
cardinal  and every A € D with canonical x-subobject diagram D : Z — D,
the morphisms i € 7 form a limiting cocone from D to A. ,

Example. The categories Set, Pos, Met, and &-Set all have canonical su-
bobject diagrams. Top does not. A counterexample is the space X where
X =xand aset U € X is closed if, and only if, |C| < k. Every subspace of X
of size less than « is discrete. Hence, the colimit of the canonical k-subobject
diagram has the discrete topology. ,
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In categories with canonical subobject diagrams, we can characterise the
cardinality of an object in the following way.

Definition 2.5. Let k a regular cardinal and C a category with a factorisation
system (E, M).

(a) Let D : Z — C be a diagram and (y;); a cocone from D to some
object B. We say that a morphism ¢ : A — B factorises through (y;); if there

exists an index i € I such that
¢=u;oy, forsomemorphismy:A— D(i).

We say that such a factorisation is essentially unique if, given two morphisms
v, ¥ : A > D(i) with g; oy = ¢ = p; o ¢/, there exist a morphism
firi—>kofZsuchthat Df oy =Dfovy'.

(b) A diagram D : T — C is k-M-generating if it has a limiting cocone
(A;); such that

@Ai issurjective and A; € M, forallieZ.
i€l
(c) An object A € C is k-M-generated if, for every diagram D : Z — C
that is x-filtered and x-M-generating, every morphism f : A = colim D
factorises essentially uniquely through (1;);. j

Remark. Note that the canonical k-subobject diagram is k- M-generating
and «-directed.

a

Proposition 2.6. Let «k be a regular cardinal and let D be a discrete category
that bas canonical subobject diagrams. An object A € D is k-M-generated if,
and only if, it is of the form (X)) a, for some set X of size |X]| < k.

Proof. Suppose that A is k- M-generated. By assumption there exists a k-
filtered diagram D : Z — D such that colimD = A and D(i) = {X;)a
with |X;| < «, for all i. This diagram is x-M-generating. Let (1;); be the
corresponding limiting cocone. By assumption, the identity mapid : A - A
factorises through (A;);. Hence, there is some i € Z and some function
y: A - D(i) such that

id:Aioy.
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Thus, g has a left inverse, which means that Vg is injective. Fixaset X € A
of size |X| < x such that D(i) = {(X)a.Let j : X — VD(i) be the
inclusion map and j, : JX — D(i) the morphism associated with it via the
adjunction J 4 V. Since D(i) = (X)), we have j. € E. As A; has a right
inverse, it also belongs to E. Consequently, A; o j, € E, which implies that
A ={VA;[X])a. Since |VA1- [X]| < |X] < «, the claim follows.

(«=) Suppose that A = (X)) 4, for some set of size |X| < x. Let j :
X — VA be the corresponding inclusion morphism and j, : JX - Aits
associate via the adjunction J —+ V. By assumption, j« is an isomorphism.
To show that A is k-M-generated, we consider a diagram D : 7 — Set
that is x-filtered and x-M-generating. Let B be its colimit and (A;); the
corresponding limiting cocone. Given a morphism f : A — B, we set
fo :=Vfoj: X — VB. To show that f factorises through (1;); we
pick, for every x € X, some index iy € Z such that f,(x) € rng VA, . (This
is possible since surjectivity of @; A; implies that VB = |J; rng VA,.) Since
7 is k-filtered, we can find some index k € 7 and morphisms g, : ix — k.

Then
fo(x) erngVA,; =1rngV(A,0Dgy) CrngVA,, forallxeX.
Consequently, there exists a function ' : X - VD(k) such that
VAL(f (%)) = fo(x), forallxeX.

Via the adjunction J < V this function induces a morphism f, : JX —
D(k). It follows that

V/lkOf’:fonij is associated with  Ap o f, = fo j..

As j, is an isomorphism, we have j, € E. Since A, € M, we can therefore
use the diagonal fill-in property to find a morphism § : A — D(k) such that

80j.=f and Agod=f.

Hence, f factorises through (1;); and it remains to show that this factorisa-
tion is essentially unqiue.
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Suppose that f = Ay o g, for some g : A — D(k). For every x € X, we
have

(VAo V8o j)(x) = (VS o j)(x) = (VAx 0 Vgo j)(x).

As Ay € M, it follows that V§ o j = Vgo j, which, via the adjunction, implies
that § o j« = go j.. As j, is an isomorphism, we obtain § = g. O

This results applies to Set, Pos, Met, and &-Set, but not to Top. For
topological spaces, we obtain the following characterisation.

Example. In Top, a space X is k-presentable if, and only if, |X| < x and
X is discrete. The implication (<=) follows using the same proof as in the
preceding proposition. For (=), suppose that ¥ is x-presentable. We only
have to show that ¥ is discrete. Then it follows that |X| < & using the same
proof as for Set. Let X be a topological space of size that is not discrete and
fix a subset P € X that is not closed. Let D : ¥ — Top be the diagram with
D(i) := X + x where a set U is closed if, and only if,

UnXisclosedin¥ or [icU.

Fori < k < x, we choose for D(i, k) the identity map. Then colim D = X+«
where the closed sets are exactly those which are closed in every D(i). Hence,
the only closed sets are X + « and those which are closed in %. In particular,
the inclusion X — X + « is continuous, but it does not factorise through
any D(i) since the set P is closed in D(i) but not in ¥. )

Since we have used x-filtered colimits to characterise cardinality, it is of
interest to know whether a given functor preserves such colimits. Our aim
is to prove that this is the case for all polynomial functors. Unfortunately,
in the general case, we only obtain a slightly weaker statement involving a
bijective morphism instead of an isomorphism.

Definition 2.7. (a) We say that a functor IF : C — D preserves limits of a
certain kind if, whenever D : T — C is a diagram of this type and (4;); isa
limiting cocone of D, then (FA;); is a limiting cocone of F o D.
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(b) Similatly, we say that [F reflects limits of this kind if, whenever D :
T — C is a diagram of this type and (IFA;); is a limiting cocone of F o D,
then (1;); is a limiting cocone of D.

(c) We use the same terminology for preserving and reflecting colimits. |

Example. The forgetful functors from Pos, Top, Met, and &-Set to Set
preserve and reflect x-filtered colimits.

a

The case for arbitrary polynomial functors follows once we can prove the
statement for power operators. For a general discrete category, we have the
following statement.

Proposition 2.8. Let D be a discrete category, D : T — D= a x-filtered
diagram, and X a set of size |X| < k. There exists a unique bijective morphism

o : colim(D*) - (colim D)*
satisfying
coui =AY, forallieT,
where (A;); is the limiting cocone of D and (y;); the one of DX.

Proof. Set A := colimD and B := colim D*. Then (1{); is a cocone
from DX to AX. As (y;); is limiting, there exists a unique morphism
0: B > A% with

cou; =AY, forallieZ.

It remains to show that Vo is bijective.

For surjectivity, consider a sequence (ax)xex € A%, Since a, € A =
colim D, we can find, for every x € X, some index i € Z and an element
b e D(i) with ay = 1;(b). As |X| < x and Z is k-directed, there is therefore
some index k € Z with { a, | x € X } € A,[D(k)]. Consequently, we have
(ax)x = A (b) for some b € D(k)*. It follows that

(ax)x = A3 (b) = (0o i) (b) e g
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For injectivity, consider elements b, b’ € B with o(b) = o(b"). Since
b,b" € colim DX, we can find indices i,i’ € Z with b € p;[D(i)*] and
b e yir[D(i')X]. As T is k-directed, we may assume that i = i’. Fix
a,a’ € D(i)* withb = p;(a) and b’ = y;(a’). Then

A7 (a) = (g opi)(a) =a(b) = a(b) = (00 i) (a") = A (a).

For x € X, it follows that

Ai(px(a)) = px (A (a)) = px (A () = Xi((px(d)).

Consequently, we can find, for every x € X, some Z-morphism f; : i — ky
with

Dfx(Px(“)) = Dfx(px(al)) .

As T is k-filtered and | X| < «, we may assume that k, = ky and f, = f,, for
all x, y € X. Let use denote this morphism by f : i — k. Then DXf(a) =
DX f(a"), which implies that

b=pi(a) = p(D* f(a)) = u(D* f(a')) = pi(a") = ¥". O

As above, if our category has canonical subobject diagrams, we can im-
prove the result as follows.

Proposition 2.9. Let D be a discrete category with canonical subobject diagrams
and let X be a set of size |X| < k. The functor ()% : D= — D= preserves
Kk-filtered colimits.

Proof. LetD: T — DZ be a k-filtered diagram with colimit A := colim D
and limiting cocone (1;);. Set B := colim D* and let (y;); be the limiting
cocone from DX to B. We have to show that B ~ AX.

As (A); is a cocone from D* to AX, there exists a unique morphism
0 : B — A* such that

00 UY; :/lf(, forallie.
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We claim that ¢ is the desired isomorphism. We construct its inverse as
follows.

Note that Vo is bijective by Proposition 2.8. If we can find a right inverse
7: A¥ > Bof g, then

VooVr=V(oor1)=id
implies by bijectivity of Vo that V7 = (Va)™". Hence,
V(troo)=VzroVo=id.

As V is faithful, we obtain 7 0 ¢ = id. Hence, 0 is an isomorphism with
inverse T.

It remains to construct 7. Let E : L — D be the canonical x-subobject
diagram of AX. By assumption, we have colim E = AX. Let (k},);, be the
corresponding limiting cocone and let p, : A% — Abethe projection to the
x-th component. We obtain morphisms p, o xj, : E(k) > A, forallk e K
and x € X. By Proposition 2.6, each E(k)is k-M -generated. Hence, these
morphisms factorise essentially uniquely as p, o xj, = A

ik,x € Z and some morphism 1}, : E(k) = D(i,x)-

fex O Nis for some

DX (i(k)) B (k) ——% o D(i(k))

2
Hi(k) SR P Aicky

B > AX > A
[ A Px

Since KC is k-directed, there exists some index i(k) > iy, forall x € X. It
follows that, for every k € K, we find factorisations of the form

px oK =Airyony, forallxeX.
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Set 7, := (117 )xex : E(k) > D(i(k))X. Then
Afik) Ok = Ai}%k) o (1 )x
= Mfik) ° UZ)x
= (px 0 ki)
= (px)x o kp =id o kg = Ky, -

We obtain morphisms ;) © 7. : E(k) — B. To see that these form a
cocone form E to B, consider indices k < [ in IC. As 7 is k-filtered, we can

fix morphisms f : i(k) > mand g: i(I) > m in Z for some m. Then
Am o DgonyoE(k,1) = Ay onioE(k1)
and Am o Df o = Xigk) © 1M

are two factorisations of p, o k. By essential uniqueness, it follows that
there is some morphism b : m — n in 7 such that

DhoDgonf oE(k,1)=DhoDfon.
Hence,
piy oo E(k, 1) = gy 0o DX (hog)on o E(k,1)
=ty o D¥(ho f)on
= Hi(k) © Mk »

as desired.

Since AX is the colimit of E, we therefore obtain a unique morphism
7: A* > B with

TO Kl = Hi(k) © Nk » forallk.
It follows that
00T K =00 ik © i = Ai(y) © Mk = K

As limiting cocones are jointly epimorphic, it follows that 0 o 7 = id. Hence,
7 is indeed the right inverse of 0. O
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We obtain the following corollaries for polynomial functors.

Corollary 2.10. Let « be a regular cardinal and D a discrete category with
canonical K-subobject diagrams. Every polynomial functor F : D= — D= of
arity at most K preserves K-filtered colimits.

Proof. Let D : T — D= be k-filtered and suppose that FX = ¥ . X4om(k),
Then

COhml(FD(z)) = colim; Z D(i)dom(k)
keK
= Z colimiD(i)d°m(k)
keK
= Z (COlimD)dom(k) =TF(colim D),
keK

where the third step follows by Proposition 2.9. O

Without canonical subobject diagrams, we only obtain the following
statements.

Corollary 2.11. Let D be a discrete category, k a regular cardinal, and I :
D= — D= a polynomial functor of arity at most «. For every x-filtered diagram
D : T — D=, there exists a unique bijective morphism

0 : colim (F o D) — F(colim D).

Proof. LetD:Z — D= be k-filtered and suppose that FX = ¥, Xdom(k)
Then

colim; (FD(i)) = colim; Yy, D(i)**™™* = 3 colim; D(i)**"*)
keK keK
and F(colim D) = Z (ColimD)dOm(k),
keK

We can therefore obtain the desired morphism from the former to the latter
by Proposition 2.8. O
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A bijective morphism is sufficient to prove the following corollary about
the elements of FA.

Corollary 2.12. Let D be a discrete category, K a regular cardinal, and IF :
D= — D= a polynomial functor of arity at most «. Then

VFA=|J{FC|CcVA,|C|<x}.

3. Reducts

Besides adding or removing elements of an algebra we can also add or remove
operations or sorts. We start by taking a look at the former. Removing oper-
ations corresponds to replacing the product 7 : MIA — A by a restriction
| M°A:M°A — A where M°A ¢ MA.

Definition 3.1. Let p : M® = M be a morphism of monads and & = (A, )
an M-algebra.
(a) The p-reduct of A is the M°-algebra 9|, := (A, 7w 0 p). If p is under-
stood, we also speak of the M°-reduct of 9.
(b) For an M-morphism ¢ : & — B, we define ¢, : |, - B|, by
9lo=9. ’
Lemma3.2. Letp: (M°, u°, €°) — (M, p, &) be morphism of monads. Then
|p : Alg(M) — Alg(M?®) is a functor.
Proof. Let A be an M-algebra. Then |, is an M°-algebra since, by the
axioms of a morphism of monads,
(mop)oe®=moe=id,
(mop)ou”=mopopoMp
=moMmopoM’p=(mop)oM(mop).
Similarly, let ¢ : A — B be an M-morphism. Then ¢|, is an M°-

morphism since

go(mop)=moMgop=mo(poMygp).
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Finally, the fact that (¢ o y)|, = ¢, o |, follows immediately from the
definition. O

Instead of replacing a monad M by a submonad M°, we can also go the
other way.

Proposition 3.3. Let p : M® = M be a morphism of monads and suppose that
Alg(M) has coequalisers. Then the reduct functor |, : Alg(M) = Alg(M®)
has a left adjoint =" : Alg(M°) = Alg(M).

Proof. Theideais to define ot by taking the free algebra MIA and factorising
it by all identities holding in 2. Thus, let g : MIA - Qwith Q = (Q, o) be
the coequaliser (in Alg(M)) of

M, flato Mp : MM°A - MA.

(To see that this is well-defined, note that M f o flat = flat o MIML{, for every
function f. Therefore, Mrr and Mp are M-morphisms.) We set A := Q.

Mn q
MMPA ——3P MA———» Q

flat o Mp
Mp Tﬂat TU

MMA ——— M
Mg L

To define the action of —! on morphisms, let ¢ : A - B be an M°-
morphism. Then ¢ induces morphisms between the coequaliser diagrams
associated with A" and B'. We denote by ¢’ the corresponding morphism
between the quotients.

M qa
MMPA——————§ MA —— Q4
flat o Mlp
MM"(pl lM(p l(pT
M
MM°PB_—————3% MB ———— 03
flat o Mip 9B
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Note that this immediately implies that ¢ : M = (=)' is a natural
transformation since, by definition of (pT, we have

9log=goMg.

Furthermore, every component g4 of q is an epimorphism : given morphisms
f,g:9Q — Cwith f o g = goq, we can apply the universality of g to the
morphism ¥ = f o g, to obtain a unique morphism b : Q — € such that
h o q=vy. This implies that f =h = g.

Having defined —' it remains to show that it is the left adjoint of | p- We
define the unit 7 : Id = (—|,) o (=) of the adjunction by 7 := g o sing.
Note that 7 is an M°-morphism & — 9], since

Tom=gqosingom
= q oM osing
= g o flat o Mp o sing
=goflatosingop
:qu
= goflat o Msing o p
=0 o Mg o Misingo p
=coMrop
=(gop)oM’r.

Furthermore, 7 is natural in U since, given an M-morphim ¢ : % - B,
‘[‘O(P:qosingO(P
=qoMeg osing
=¢loqosing=¢' o7,

where the third step follows from the fact that g : Ml = (=)' is a natural
transformation.

To define the counit, let % = (A, 77, ) be an Ml-algebra with reduct 2|, =
(A, m),andletq = g4 : MA — Qg be the coequaliser used in the definition
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of (%|,)". Since
e oMm = oM(7my 0p) =7y oflatoMp,
there exists a unique morphism v : Qg — A with
vog=m,.
This morphism is a morphism v : (%], )' — o of M-algebras since

voooMg=vogoflat
=7, o flat
=moMpm, =moMuvoMg.

As Mg is an epimorphism, we obtain v 0 ¢ = 7, 0 M, as desired.
To prove that —" and |, form an adjunction, it is now sufficient to show
that

vor'=id and vfpor=id.

For the second equation, let & = (A, 71, ) be an M-algebra with reduct
A, = (A, m) where m = 7, o p. Note that we have shown above that
Tom=gqo p.Hence,

U|poTon:UOTon:quOp:ﬂOp.

Since 7 is the product of a M°-algebra, it is surjective. Consequently, it
follows that v|, o 7 = id.

For the first equation, let 9 be a M°-algebra with A" = Q = (Q, 0) as
above. Suppose that ((Q[T)|P)T =9 =(Q’,0'),andlet ¢ : MA - Q and
q' : MQ — Q' be the quotient morphisms used to define Q and Q’. By
definition, 7' is the unique morphism Q — o satisfying o q= q' o M.
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Hence,
UO‘[‘TOq:qu,OMT
=o0oMr
= ¢ o M(q o sing)
= g o flat o Mising
= q .
Since g is an epimorphism, we obtain v o 7' = ¢. O

Open Question. In which cases is the unit morphism 7 : A — A'|, injective?
Instead of operations, we can also add or remove sorts to an algebra.

Definition 3.4. Let A C = be sets of sorts.
(a) The expansion of A = (A¢)een € D? to DF isthe set A 1 5 € D
defined by

Ag iffEA,

0 otherwise,

where 0 denotes the initial object of D. Similarly, we define the expansion

f1E:AtE— Bt Eofamorphism f = (fr)gea: A > Bby

(fTE)gzz{ff iffea,

idg otherwise.
(b) The A-reduct of A = (A¢)gez € D7 is the set
Aly = (Ag)gea € D
Similarly, for a function f : A — B in D=, we denote the induced function

Ala = Bla by fla-
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(c) The A-reduct of a functor ML : D= — D= is defined by
MlsA:= (M(A1E))ls and Mlaf = (M(f1E))la-

(d) The A-reduct of an M-algebra A = (A, 7) is the M]|s-algebra |,
with universe A|4 and product 7z/4 | Ml|4(A]a). For a class C of M-algebras
wesetClp = {Us|AeC}.

a

Example. We can see an w-semigroup as an M-algebra on Set® where & :=

{1, 00} and M is the monad with
M(X,, Xoo) = (X1, X7 Xoo + X9).

The reduct M|(; X, = X is the monad for semigroups, while Ml| oo} X oo =
X oo is just the identity monad. Given an w-semigroup & = (S, Seo, ), the
corresponding reduct are the associated semigroup &, = (S, 71;) and the
set @|{oo} = (Soo, id).

Conversely, we can expand a given semigroup & = (S,,7) to an w-
semigroup as follows. We take the free w-semigroup (S, S}, ) generated
by S, and quotient by all equations holding in &. For instance, suppose that
& has two elements 4, b satisfying the relations

ab=0b, a*=a, b7 =03

In the quotient we then have to identify the sequences (ab)” = b®, for
example. Up to these identifications, only 8 infinite sequences remain:

b® and bkaw, foro<k<e6.

Hence, we can extend (S, 77) to an w-semigroup (S1, Soo, n) where Soo has

8 elements. ,

Let us check that these notions are well-behaved.

Lemma 3.5. Let A C & be sets of sorts and M a monad on DE.
(a) The reduct functor |5 : D= — D has the left adjoint — 1 Z: D4 — D=,
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(b) (M|A, (fat|a } M|aM|sA|4), sing\4> is a monad on D2,
(c) The reduct functor induces a functor |5 : Alg(M) = Alg(M],).

(d) If Alg(M) has coequalisers, the functor |s from (c) has a left adjoint
=T Alg(M],) = Alg(M).

(e) If Alg(M) has coequalisers and M preserves E-morphisms, the functor

from (d) preserves E-morphisms.

Proof. (a) It is straightforward to check that |4 and — 1 £ are functors: we
have to show that

o Aly € DA, for A e D%,
@la:Als = Bla,forp: A— B,and
(poy)la=0lacyla

¢ the corresponding statements for — 1 Z.

L

*

All of these statements follow immediately from the definition.
It remains to prove that — 1 Z and |4 form an adjunction. We define a
bijection
D*(A 1 E,B) = D*(A, Bls)
by mapping f : A1 E - Bto f|la : A > B|a. This function is indeed
bijective since its inverse is given by f = f 1 Z. To see that the bijection is
naturalin A and B note that,for f : A1 5 —> B, g: A~ A’ andbh:B - B/,

we have

(fogtE)a=flacg and (hof)la=gaofla-

Before proving the other statements, let us quickly derive the unit and
the counit of the adjunction. Since (A 1 £)|s = A, the identity morphisms
induce a natural isomorphism ¢ := id : Id = (= 1 £)|4 which forms the
unit. For the counit, we define morphisms i : A|y 1 £ — A by choosing
i = idAE, for &€ € A, while, for £ € 5\ A, ir + 0 — Ay is the unique
morphism from the initial object. Then i forms a natural transformation
i:—|s 1 & = Id, which is the counit of the adjunction.
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4. Bialgebras

(b), (c), (d) follow immediately by Proposition 1.6.3.

(e) Let € : A > B be an E-morphism. By Lemma 111, the coequalisers
pa:MA - A" and pp : MB — B belong to E. By assumption, we also
have Me € E. Hence, pg o Me € E and p4 € E. Since f' o ps = pg o Me,
it therefore follows by Lemma 1.7 that f T ¢ E. O

If the monad M is sufficiently well-behaved one would expect that A1 |, =

A

Open Question. Under which conditions on the monad M is the unit v : A —
A4 of the adjunction in () an isomorphism?

4. Bialgebras

The theory of distributive laws also provides a criterion on when two algebra
structures 77 : MIA — Aand p : PA — A on the same set A can be combined
into a single PM-algebra structure. The case where we are particularly inter-
ested in, consists in adding a meet operation inf : UA — A to an M-algebra
m:MA - A,

Definition 4.1. Let § : MP = PM be a distributive law between the
monads (M, g, €) and (P, v, ).

(a) A MLP-bialgebra A = (A, 7, p) consists of an object A and two morph-
isms 7: MIA > A and p : PA — A such that (A, 7) forms an M-algebra
and (A, p) a P-algebra.

(b) A M, P-bialgebra U is a §-bialgebra if

noMp=poPmol.

(c) A morphism of M, P-bialgebras is a morphism ¢ : & - B that is both
an M-morphism and a P-morphism. A morphism of §-bialgebras is the same
thing as a morphism of M[,P-bialgebras.

(d) We denote the category of all §-bialgebras and their morphisms by
Bialg(4). )
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Example. Let § : MA = AM be the distributive law from the example on
page 75. A 0-bialgebra is a structure (S, 7, p) where (S, 7) is an arbitrary
monoid and (S, p) a commutative one. If we write the former multiplicatively
and the latter additively, the bialgebra axiom

noMp=poProd
reduces to the familiar distributive law

(a+b)-(c+d)=ac+ad+bc+bd.

Hence, §-bialgebras are the same as semirings. ,

It turns out that a §-bialgebra is just another formalisation for a PM-

algebra.

Theorem 4.2. Let § : MIP = PM be a distributive law between the monads
(M, , ) and (P, v, 7).
(a) Every 6-bialgebra A = (A, m, p) induces an PM-algebra (A, o) with
product

o=polPm.

(b) Every PM-algebra U = (A, o) induces a S-bialgebra (A, 7, p) with
products

n=0on and p=colPe.

(¢) This correspondence between PM-algebras and §-bialgebras is bijective.
(d) A morphism ¢ : A - B is a PM-morphism if, and only if, it is a -

bialgebra morphism.

Proof. Remember form Theorem 1.6.7 that the monad PM has the unit map
1 o € and the product

k:=voPPuoP§.
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(a) Let A = (A, m, p) be a §-bialgebra. Then

go(noe)=poPronoe
=ponomoe
=idoid,

g oPMo = poProPM(poPrn)
=poP(moMp) o PMPrn
=poP(poProd) o PMPx
= poPp o PP1o PPMr o PS
:vaOIP]P)(ﬂO#)OIP(S
=(poPn)o (voPPuolP§)

=00K.

(b) Let A = (A, 0) be a PM-algebra. Then (A, 0 0 1) is the #-reduct of .
By Lemma 3.2, it is therefore also an M-algebra. Furthermore, (A, 0 0 Pe)
is a P-algebra since

pon=coPeon
=gonog
=id,
poPp=0oPeoP(0oPe)
=0 o PM(0 o Pe) o Pe
=goxoP(MPeo¢)
=govoPPuoP§oP(MPeoc¢)
=govoP(PuoPMeodocg)
=govolP(doe)
=oovolPPe
=ooPeovw

=pov.
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Finally, we have

poPrnod=(0oPe)oP(con)od
=goPMogoPeoPyod
=gokolPeoPyod
=govoPPuoPdoPeoPyod
govolPPuoPPeoPyod
=govolPyod

god

ooP(uoMe)od
goPuodoMPe
cgoPuo(von)odoMPe
govolPPuoP§onoMPe
=gokonoMPe

0 o PMo o 1 o MPe
(c701) o M(o o Pe)
=moMp.

(c) We have to show that the mappings from (a) and (b) are inverse to
each other. First, let (A, o) be a PM-algebra. The corresponding 6-bialgebra
has products m = ¢ o 17 and p = ¢ o [Pe. Mapping it back, we obtain the
product

o' =poPn

- (0oPe) oP(c0 1)
cgoP(Mooegon)
cgoxolP(eoy)

:U)

where the last step follows by Theorem 1.6.7 (4).
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Conversely, let (A, 71, p) bea § -bialgebra. The corresponding PM-algebra
has the product 0 = p o Pr. Mapping it back, we obtain the products
n=0oq
=polProy
=ponom
=7,
p'=coPe
=poPrmolPe
= p .

(d) Let (A, 0) and B = (B, 0') be PM-algebras, and let (A, 7, p) and
(B, 7', p) be the corresponding §-algebras. If ¢ : A - BisaPM-morphism,
we have

pom=@oacgon
=0 o PMgoy

' ono Mg
=1 o M¢ ,
pop=gooole
= 0" o PMg o Pe
=o' oPeoPg
= p’ oPeg.
Conversely, if ¢ : A - B is a §-bialgebra morphism, we have
goo=gopoln
= p' oPg o Prn
= p' o PmoPMg
=0’ o PMg. O

As a consequence the functor Alg(M) — Alg(PM) from Corollary 1.6.8
can be used to turn every Ml-algebra into a §-bialgebra.
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Theorem 4.3. Let § : MIP = PM be a distributive law. The forgetful functor
Bialg(8) — Alg(M) has a left adjoint, which maps an M-algebra A = (A, m)
to the §-bialgebra P := (PA,Pro 6, v). The unit of this adjunction is given
by the unit morphism 1 of the monad IP.

Proof. Let W : Bialg(8) — Alg(M) be the forgetful functor and let P:
Alg(M) — Bialg(8) be its supposed left adjoint.

First, note that P is the functor Alg(M) — Alg(PM) — Bialg(8) that
is induced by IP according to Corollary 1.6.8 (c) and Theorem 4.2 (b). To see
that, note that it maps an M-algebra & = (A, 7) first to the PM-algebra
(PA, o) with

o =voPProlP§,
and then to the §-bialgebra (PA, 7, p) where

=007
=yvoPProP§oy
=ProvoP§odoMpy
=PmodoMyvoMy
=Pnod,

p=00Pe
=voPProP§oPe
= v o PPm o PPe
=v.

To prove that P + W, we construct the unit and counit. Let & = (A, 7)
be an M-algebra and B = (B, 7', p’) a §-bialgebra. Then

WP = (PA, Pro 8) = PY,
PWS = (PB,Pn’ 08, v).

We claim that the unit of the adjunction is given by 7 : Id — WP and its
counit by 7: PW — Id where 7o := p’ is the P-product of B. Note that
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4. Bialgebras

they satisfy the identities
toPy=voPy=id and Wron=p'on=id

characterising the unit and counit. Hence, it remains to prove that #j and 7
are natural transformations of the correct form.
First, note that # is indeed an M-morphism since

(Prod)oMny=Prnon=yom,
while 7 is a morphism of §-bialgebras since
10 (Pr’08)=p'oPn’0d
:T[IOMP,
=71’ oMr,
Tov=pow
— pl OMP’
=p'oMr.

For naturality, we consider two morphisms ¢ : (Ao, 7o) — (A, 71,) and

¥ (Bo, 7o, ) = {By, 7y, p1)- Then
nog=Ppon and pioPy=yop,
follow from naturality of # and the fact that ¥ is a P-morphism. O

Corollary 4.4. Let A = (A, ) be an M-algebra, B = (B, 7', p’) a §-
bialgebra, and ¢ : A - B an M-morphism. Then

¢:=n"oPg
is the unique 8-bialgebra morphism ¢ : PU - B such that
PA

S

Ql—(p’%
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Let us make two remarks that are sometimes helpful. The first one can be
used to prove that a given bialgebra is a §-bialgebra.

Lemma 4.5. Let § : MIP = PM be a distributive law, suppose that Ml and P
preserve surjectivity, and let ¢ : A — B be a surjective M,IP-morphism between

two ML, P-bialgebras. If A is a &-bialgebra, so is B.
Proof. We have
moMpoMPg = 70 M(¢pop)

=gomo Mp
=gopoPmo )
~poB(gon)od
=poP(roMg)od
=poProdoMPy.

Since MPg is surjective, it follows that
noMp:pOPﬂO5. O

The second one can be used to show that a P-morphism is in fact an

M, P-morphism.

Lemma 4.6. Let 6 : MIP = PM be a distributive law, A and B §-bialgebras,
and C € A a set generating U via the P-product p. A P-morphism ¢ : A - B
is an MLP-morphism if, and only if,

o(n(t)) = n(Me(t)), forallteMC.
Proof. (=) is trivial. For (<=), fixa term ¢t € MA and let i : C — B be the
inclusion map. As C is a set of generators, there exists a term s € MIPC with

t = M(p o Pi)(s). Since

pomoMi=moM(goi),
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we have
¢(7(t)) = (9 o moM(p o Pi))(s)
=(popoProdoMPi)(s)
=(poPgpoProdoMPi)(s)
= (poPgoProPMiod)(s)

= (p oPmo PMg o PMi 0 §)(s)
=(poProdoMP(poi))(s)

= (moMp o MP(goi))(s)

= (moM(gpopoPi))(s)

= n(Mp(1)). -

For our second construction of §-bialgebras, we consider an embedding

of an Ml-algebras into a P-algebra.

Definition 4.7. Let § : MP = PM be a distributive law between the
monads (M, g, €) and (P, v, ).

A function j: ¥ > B from an M-bialgebra A = (A, 7r) to a P-algebra
B = (B, p) is O-distributive if there exists a function 0 : M{rng j)s — B
such that

5 oM(poBj) = poB(jon)os.
We call ¢ the product induced by j. )

A typical example of a §-distributive function is the unit 77 : Id = P of
the monad P.

Lemma 4.8. Let § : MIP = PM be a distributive law. The function 1 :
Alg(M) = Alg(P) induced by the unit Id = P of IP is §-distributive.

Proof. By Corollary 1.6.8 (c) and Theorem 4.2 (b), an M-algebra % = (A, )
is mapped by IP to the M, P-bialgebra P = (PA, 71, p) with products

A:=Prod and p:=v,

137



II. Algebra

where v : PP = P is the multiplication of P,
To see that 7 is §-distributive, we set ¢ := 7. Then

goM(poPy)=ProdoM(voPy)
=Pnod
=(voPy)oProd
=poP(nom)od.

(Note that this statement also follows immediately from Theorem 4.3, Lemma 4.9,
and Proposition 4.10 (2) below.) O

Let us also remark that §-distributive functions are closed under restric-
tions.

Lemma 4.9. Let j: A — B be §-distributive with induced product o and let
¢ : € - A be an M-morphism. Then jo ¢ : € — B is also §-distributive with

the same induced product 0.

Proof. We have
ooM(poP(jog))=poP(jom)edoMPe
:poP(joﬂ)oIP’Mg)o(S
=poP(jogom)od,
where the last step follows since ¢ is a M-morphism. O

Using the notion of §-distributivity we can characterise §-bialgebras as
follows.

Proposition 4.10. Let & : MIP = PM be a distributive law and A = (A, 7, p)
an M,IP-bialgebra. The following statements are equivalent.

(1) Uis a §-bialgebra.
(2) p is an M-morphism P — Q.
(3) U can be expanded to a PM-algebra with product 7 := p o Pr.
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4. Bialgebras

(4) The identity map id : A — U is §-distributive.

(5) There exists an M-morphism j: € — A such that j is §-distributive with
induced product 7 and the function p o Pj : PC — A belongs to some
set E of epimorphisms that is preserved by both M and P.

Proof. Suppose that the monads are (M, y, €) and (P, v, 7).
(1) = (3) follows by Theorem 4.2 (a).
(3) = (1) follows by Theorem 4.2 (b) since

on=poPmon=ponon=n,
oPe=poProPe=p.

(1) < (2) Recall from Corollary I.6.8 that P is an Ml-algebra with product
71 := Pmr o 8. Consequently,

p is an M-morphism P —
if noMp=pon
iff moMp=poProd
iff Uisa §-bialgebra.

(1) = (5) We take for j the identity morphismid : % — 2. Then poPid =
p is surjective since p o 1 = id. Furthermore, setting 0 := 7, we have
o oM(poPj) =moMpoMPj
=poProdoMPj
=poProPMjod
=poP(jom)od.

(5) = (4) Let j: € - Abe §-distributive with induced product 7. Then

moM(p oPid) o MP(p o Pj) = o M(p o P(p o Pj))
=moM(povoPPj)
- o M(poPjov)
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=poP(jom)odoMv
=poP(jom)ovoP§od
:povoPP(joﬂ)oP(So(S
=poP(poP(jom)od)od
=poP(moM(poPj))od
=poP(idom) o doMP(poPj).

Since p o Pj € E and M and P preserve E, it follows that

noM(poPid)=poP(idom)od. O

Corollary 4.11. Let A = (A, 7, p) be a 8-bialgebra. Then p : PA - A is a
morphism of M, P-bialgebras.

Proof. We have already shown in Proposition 4.10 that p is an M-morphism.
The fact that it is also a P-morphism follows from the associative law.

poPp=pov. -

Next let us show that, if we have a §-distributive function j : % - B
whose range rng j generates B (via the P-algebra product), we can lift the

M-algebra product from U to B.

Proposition 4.12. Let § : MIP = PM be a distributive law between the
monads (M, y, €) and (P, v, ) and suppose that E is a class of epimorphisms
preserved by both Ml and P. Let j: A — B be a §-distributive function from an
ML P-bialgebra A = (A, 7, p) to a P-algebra B = (B, p) such that p o Pj € E.

Then B has a unique expansion to a §-bialgebra such that j is a morphism of

O-bialgebras.

Proof. Let 0 : MIB — B be the product induced by j. We start by proving

140
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that (B, o) is an M-algebra. Note that

goco(poPj)=coM(pon)oeco(polPj)
ogoM(pon)oM(poPj)oe
OoMpoMP(pon)oMnos
goMpoM(voPPj)oMpoe
ogoMpoM(Pjov)oMpyoe
poP(jom)odoMvoMyoe
=poP(jom)odoe

=poP(jom)olPe

=poPj,
coMogoMM(poPj)=coM(jopoProd)
=0 oM(p o Pj) o MPx o M&
poP(jom)odoMProMs
:po]P’(joﬂ)oPMﬂo(SoM(S
=poP(jom)oPuocdoMs
:po]P’(jon’)o(SoM
=ocoMpoMPjou
=0 ouoMM(poPj).

As poPje Eand MM(p o Pj) € E are epimorphisms, it follows that
cgoe=id and ocoMo=0oy.
To see that j is an M-morphism, note that

GoszaoM(poqoj)
=goM(poPjoy)
polP(jom)odoMny
—paB(omen
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:por]ojor[
=jorm.

The fact that (B, 0, p) is a §-bialgebra now follows by Proposition 4.10 (5).
Hence, it remains to prove uniqueness. Suppose that 8’ := (B, ¢’, p) is an-
other expansion of B to a §-bialgebra. Since B and B areboth § -bialgebras,
it follows that

coM(poPj)=(poProd)oMPj=0"oM(polPj).

Hence, the fact that M(p o IPj) € E is an epimorphisms implies that ¢ =
o', O

5. (ongruences

Finally, we turn to quotients and congruences. For Z-algebras and partial
orders, there is a one-to-one correspondence between quotients and con-
gruences. Thus, a congruence is simply a concise encoding of a quotient. As
there there is no general definition of a congruence, we will use quotients
throughout but adapting the terminology of congruences. One of the most
important general facts about congruences is that they form a complete
partial order.

Definition 5.1. Let C be a category with a factorisation system (E, M).

(a) Let CPO, be the category of all partial orders where every set of size
less than x has an infimum. The morphisms of CPO, are all monotone
functions preserving such infima.

(b) Given an object A € C, we define a preorder < on the class of all
E-morphisms with domain A by setting

e<e :iff € =poe, forsomep.

The equivalence classes associated with < are called congruences of A. Usually,
we identify a congruence with its representatives. Given a congruence 0 :
A — Bon A, we denote the quotient by A/6 := B.
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(c) We define a contravariant functor Cong : C — Pos as follows. For
an object A € C, Cong(A) is the partial order of congruences of A. For a
morphism ¢ : A — B and a congruence 6 : B — C, we define

Cong(¢)(0) :=ker (00 ¢).

Since we will frequently be considering congruences of an M-algebra % and
of the underlying universe A at the same time, we will use the notation
Cong, (%) for the former and Cong(A) for the latter.

(d) A category C has congruences if the quotients of every object form a
partial order in CPO,. )

Let us quickly check that the functor Cong is well-defined.

Lemmas.2. Let 9 : A - B,q: B — C,and ¢’ : B — C' be morphisms.
Then

kerq <kerq' implies ker(qo¢) <ker(q o9).

Proof. Without loss of generality, we may assume that g and q" belong to E.
Suppose that q < q" and fix a morphism p such that g' = po g. Let p o ¢,
y' o &', and fi o & be the EM-factorisations of, respectively, g0 ¢, ¢’ o ¢, and
pou. Then jio(&oe)isasecond EM-factorisation of ¢’ o ¢. By uniqueness
of factorisations, we obtain an isomorphism ¢ such that

oco(éoe)=¢ and poo=4.
Consequently, ker (g0 @) = e < &' =ker (¢ 0 ¢). O

Computing infima and suprema of congruences is fortunately straightfor-
ward.

Lemma 5.3. Suppose that C has products of size k and let 0; : A — By, for
i < &, be a family of congruences of A. Then

inf@,- = ker(@i)KK .

1<K
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Proof. Let py : [1; Bi = By, be the projection. Then
pro(0;); =0, implies ker(6;); <0y.

Conversely, suppose that g : A - C is some epimorphism with
q<0;, forali<x.

Then there exist morphisms f; : C — B; such that f; o g = ;. Hence,

(fi)i forms a cone from C to (B;);. Since (p;); is limiting, there exists a

unique morphism g: C — []; B; with p; o g = f;, for all i. It follows that
piogoq=fiogi=0;.

Hence, g o q = (0;);, which implies that q < (6;);, as desired. O

Exercise 5.1. Show that sup, 0, = ker @; 0;, if the coproduct is defined.

a

Lemma 5.4. Let C be a category with products of size less than k. Then Cong :
C — CPOy is a contravariant functor.

Proof. Let f : A - B be a morphism and let H be a set of congruences of B
of size |H| < k. Then

inf { Cong(f) () | € H } = (Cong()(n)), 4

=ker(n70 f)yen

=ker((#)yer © f)

=ker((inf H) o f)

= Cong(f)(inf H). O

Tongruences in Set

The rather abstract definition of the congruence lattice of some object A
above is not very useful when one is trying to understand Cong(A) since it
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requires considering all possible morphisms from A to some other object of
the category. A definition that only depends on A itself would be much more
convenient. Of course, such a definition requires knowledge of the internal
structure of A, which is not accessible in an abstract category. Consequently,
we will have to work in concrete categories. We start with the category Set.

Definition 5.5. Let A be a set.
(a) For an equivalence relation ~ on A, we denote by [a]. the ~-class of

a€A.
(b) The kernel of a function f : A — B is the relation

ker f:={(a,b) e AxA| f(a)=f(b)}.

(We use the same notation as above. It should always be obvious from the
context which version we are referring to.) )

Proposition 5.6, Let A € Set be a set. Cong(A) is isomorpbhic to the lattice of
all equivalence relations on A ordered by inclusion. This isomorphism maps a
surjective function € : A — C to its kernel ker €.

Proof. Clearly, each kernel ker ¢ is an equivalence relation. Consequently,
the map 0 : € = ker ¢ is well-defined. To show that it is monotone, suppose
that ¢ < ¢’. Then ¢’ = p o ¢ for some function p. Consequently,

(a,b) ekere = &(a) =¢(b)
= ¢&(a)=¢€(b) = (ab)ekere .

Conversely, If ker € € ker €', then
e(a) =¢e(b) implies £'(a)=¢'(b).

As e s surjective, this implies that there exists some function p with ¢’ = poe.
‘We have shown that

e<e iff  a(e)<a(e).
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Hence, it remains to show that ¢ is bijective. Injectivity follows immedi-
ately from the fact that

e<e iff  o(e)<a(e).

For surjectivity, let ~ be an equivalence relation on A. Then ~ = ker p.., where
p~ i A —> A/~ is the projection mapping each a € A to its ~-class [a].. O

{Tongruences in Pos

Next, let us take a look at Pos. As seen above there are two natural factorisa-
tion system for this categories. We start with the one consisting of quotients
and injective functions. In that case, we can again use equivalence relations
for congruences. Given a partial order (A, <) and an equivalence relation ~
on A, we can define the quotient as the set A/~ equipped with the ordering

[a].<[b]. :iff 4’ <b’ forsomea’€[a].andb’ €[b]..

If we define the kernel of a function ¢ : A — B in the same way as for sets,
we again obtain an isomorphism between kernels and quotients.

For the standard factorisation system, which consists of surjective func-
tions and embeddings, a different approach is needed based on preorders
instead of equivalence relations.

Definition 5.7. Let (A, <) be a partial order.
(a) A congruence ordering on A is a preorder EC A x Awith< CE,
(b) The kernel of a function f : A — B in Pos is the relation

Kerf 1= {{a,a) € Ax A f(a) < f()}
(c) The set of E-classes is
Ale:={[alc|acA} where [a]c:={beA|bcaandach}.
We equip it with the ordering
[ale <[b]le :iff ach.

(d) The quotient map q: A — A/Emaps a € Ato [a]e. )
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As above, we obtain the following correspondence. The proof is similar
to that for Set.

Proposition 5.8, Let A € Pos be a partial order. Cong(A) is isomorpbhic to the
lattice of all congruence orderings on A ordered by inclusion. This isomorphism
maps a surjective monotone function € : A — C to its kernel ker €.

In this terminology, the diagonal fill-in property takes the following form.

Lemma 5.9 (Factorisation Lemma). Let f : A - Band g: A - C be
functions in Pos and assume that f is surjective. Then

ker fckerg iff g=hof, forsomeh:B—C.
Moreover, the function b is unique, if it exists.

Proof. 'The uniqueness of h follows from the surjectivity of f, since surjective
functions are epimorphisms: ho f = ¢ = b’ o f implies h = h'. Hence, it
remains to consider existence.

(=)Ifg=ho f, then
f(a) < f(b) implies g(a) =h(f(a)) <h(f(b)) = g(b).

(«=) Suppose that ker f C ker g. As f is surjective, it has a right inverse r
(in Set, r might not be monotone). We claim that b := g o r is the desired
function.

For monotonicity, suppose that 4 < b in B, Then

f(r(a))=a<b=f(r(b)) implies (r(a),r(b))ekerfCkerg.

Consequently,

h(a) = g(r(a)) < g(r(b)) = h(b).

To show that g=h o f, set e := r o f. For a € A, it follows that

f(e(a)) = (foref)(a)=f(a).
Hence, (a,¢e(a)),(e(a),a) € ker f € kerg, which implies that g(a) =
gle(a)). Thusg=goe=gorof=hof. O
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Tongruences of 2lgebras

We have defined congruences for objects in D. But what we are really in-
terested in are congruences of M-algebras. Before presenting the general
definition let us first take a look at the case of X-algebras.

Example. Let X be a signature and % a X-algebra. A congruence of U is an
equivalence relation ~ C A x A such that, for every function f € %,

a; ~b;, foralli, implies f(a)~ f(b).
This is equivalent to ~ inducing a subalgebra of & x 9. |

The definition of congruences for M-algebras is similar. We have already
seen in Lemma 1.15 how to lift a factorisation system from D to Alg(M).
This immediately gives us the notion of a congruence for M-algebras.

Definition 5.10. An M-congruence is a congruence in the category Alg(M).

J
We start with a criterion for an congruence & € D= to be an Ml-congruence.

Lemma s.a1. Let (E, M) be a factorisation system where E and M are closed
under the monad M. Let & be an M-algebra and f : A — B a morphism of D=.
Then ker f is an M-algebra morphism if, and only if,

ker Mf < ker(f om).

Proof. (=) Let f = p o € be the EM-factorisation of f and suppose that
&: U — €is an M-algebra morphism. Then

noMe=econm implies Me<eom,

Note that M f = My o Me is the EM-factorisation of M f. Furthermore,
by Lemma 111, 7 0 sing = id implies that 77 € E. Hence, f o m = po (g0 1)
is the E M-factorisation of f o 7. Consequently, we have

kerMf =Me< eom=ker(fom).

148



5. Congruences

(<) Lete:=ker f : A— C.Since Me = ker Mf < ker(fom)=¢eom,
there exists a morphism p : MIC — A with p o Me = € o 71, Note that

poMpoMMe = poM(eo )
=egomoMn
=¢gomoflat
= p o Me o flat = p o flat o MM
As MM is an epimorphism, it therefore follows that p o Mp = p o flat.

Consequently, € := (C, p) is an M-algebra and ¢ = ker f : ¥ - €a
morphism of M-algebras. O

Lemma 5.12. Congy, () is closed (as a subset of Cong(A)) under all infima
that exists in Cong(A).

Proof. Let O ¢ Cong,, () be a set with infimum 6 := inf © (in Cong(A)).

By Lemma 5.3, we have

0= (€)eco: A~ []Y/e.

€O

It remains to show that 0 is a morphism of M-algebras. Let 7, be the
product of A/e, myy the one of [T, A/e, and let p, : [T, A/e - A/n and
qy : [1e MA/e — MA/# be the projections. For every 11 € ©, we have

o (Mpe)e o Mi(e), = Mp, o Mi(e).
= M(Pn o (e)s) =My = 9y © (MS)S .

Consequently, (Mp, ). o M(¢), = (Me),, which implies that

)

||
-

)
O Ms)

I
=~ =
m:l
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= H e © (MP8>S o Mi(e).

= (7m; o Mipe)e o Mi(e).
= (pe o mp)e o MO
=npoM86. O

6. Darieties

The topic of this section concerns classes of objects that are closed under
certain algebraic operations like subobjects, quotients, products, and the like.
The aim is to find a simple description of such a class. But before doing so,
we introduce the following technical property.

Jrojective Objects

One important property of sets of the form JX is that they satisfy the
following property.

Definition 6.1. Let C be a category. An object P € C is projective with respect
to a morphism € : A — B if, for every ¢ : P — B, there exists a morphism

¢:P— Asuchthatp =¢e0¢@.

P

¥ ¢
v
A — B
&€ 4
Let us check that the notion of projectivity in fact generalises freeness.
In order to define what a free object is, we need additional structure on the

category. Therefore, in the following statement we will work in a concrete
category (i.e., one equipped with a faithful functor to Set).

Lemma 6.2. Let J <V be an adjunction between Set and C. An object of
the form JX is projective with respect to a morphism € : A — B if, and only if,
X = @ or Ve is surjective.
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Proof. («<=)If X = &, then X is initial in Set. Since left adjoints preserve
colimits, it follows that JX is initial in C. Consequently, if f : JX — B s
the unique morphism to B, then € o ¢ = f, where g : JX — A is the unique
morphism to A.

Now suppose that Ve is surjective. Then it has a right inverse r : VB —
VA. To show projectivity of JX, consider a morphism f : JX — B. Let
fo : X = VB be its image under the adjunction and let g : JX — A be the
image of g, :=r o f,. As the image of € o g under the adjunction is

Veog,=Veoro fo = f,,

it follows that e o g = f.

(=) Suppose that X # & and that Ve is not surjective. Then there exists
a function f, : X — VB with rng fo NtngVe = @. Let f : JX — Bbe
the image of f, under the adjunction. We claim that there is no morphism
g:JX — Awitheo g = f. For a contradiction, suppose otherwise. Let
8o : X = VA be the image of g under the adjunction. Then Ve o g, = f,
which contradicts the fact that the ranges of these two functions are non-
empty and disjoint. 0

This situation is typical: very few objects are projective with respect to a
non-surjective morphism E.

Exercise 6.1. An object A in a category C is called a generator if, for every
object B € C, the set of all morphisms A — B is jointly epimorphic. (For the
dual concept, see Definition IIL.1.9.)

(a) Show that, in the categories Set, Pos, or Top, every non-empty object
is a generator. (Hint. It is sufficient to prove that the terminal object is
a generator.)

(b) Show that, if a generator P is projective with respect to a morphism
€: A — B, then ¢ is an epimorphism. )

More generally, we can lift projectiveness along every adjunction, but only
in one direction.
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Lemma 6.3, Let ] 'V be an adjunction where V preserves epimorphisms and
let e : A — B, be an epimorphism. If X is projective with respect to Ve, then
JX is projective with respect to &.

Proof. Suppose that € : A — B is an epimorphism and let y : JX — B
Then ¥ corresponds to a morphism ¢ : X - VB. As X is projective with
respect to V¢, we can find a morphism p’ : X - VA with Veo p = ¢/,
This morphism corresponds to a morphism p : JX — A. We claim that
gop=vy.

Note that ¥ € D(JX, B) corresponds to ¢’ € Set(X,VB), and p €
D(JX, A) corresponds to p’ € Set(X, VA). As this correspondence is
natural in A, it follows that € o p corresponds to Ve o p’ = y'. Hence,
¥ and € o p both correspond to y'. As the correspondence is bijective, it

follows that = € o p. O

Corollary 6.4. Let D be a discrete category.

(a) Every object of the form J X is projective with respect to all surjective morph-
isms.

(b) Every free Ml-algebra of the form MJX is projective with respect to all

surjective morphisms of M-algebras.

Proof. (a) In Set every set X € Set is projective with respect to all surjective

functions.
(b) follows by applying the lemma to (a) and the adjunction between D=
and Alg(M) that is canonically associated with the monad M. O

Definition 6.5. For a class P of objects, we set
Ep :={e€E|every P € P is projective w.r.t. € | . )
Many of the properties in Lemma 1.7 carry over to the set Ep.

Lemma 6.6. Let A be a category with factorisation system (E, M) and let
P c A be a subcategory.

(a) Ep contains all isomorphisms.

152



6. Varieties

(b) Ep is closed under composition.
(c) peEand go pe Ep implies g € Ep.
(d) IfE is closed under products of a certain size, so is Ep.

Proof. (a) By (ks1), E contains all isomorphisms. Since clearly every object
is projective with respect to an isomorphism, the claim follows.

(b) Let p, q € Ep be morphisms such that g o p is defined. As E is closed
under composition, we have g o p € E. Consequently, the claim follows
from the straightforward fact that, if an object P is projective with respect to
p and g, it is also projective with respect to p o q.

(c) Suppose that p : A > Band q : B - C. By Lemma 1.7, we have
q € E. Hence, it remains to show that every P € P is projective with respect
tog.Let PePand ¢ : P - C. Since q o p € Ep, we can find a morphism
y: P — Asuch that g o p oy = ¢. Consequently, the morphism ¢ := poy
satisfies g o ¢ = ¢.

(d) Suppose that ¢; : A; - By, for i < a, are Ep-morphisms with
[1; &i € E. We have to show that every P € P is projective with respect to
Hi &

Fix P € P and a morphism ¢ : P — []; B;. Let q; : [, B = B; be the
projection. Then g; o ¢ : P — B; and ¢; € Ep implies that there is some
morphism y; : P - A; with &; o y; = ¢q; o ¢. It follows that

l?[fiC’(ll/i)i:(fiio(P)f:ﬁD‘ 0
Example. Let D be a discrete category and P := { JX | X € Set }. We have
shown in Corollary 6.4 that Ep contains all surjective E-morphisms. ,
Darieties

Let us start simply by considering classes closed under subobjects and quo-
tients.

Definition 6.7. Let C be a category, P, KC classes of objects, and E, € Ep a
set containing all isomorphisms.
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(a) An object A € C is P-generated if there exists an E-morphism P — A,
for some P € P.
(b) We denote the closure of K under P-generated M-subobjects by

S(K):={A|e:A> K, eec M, KeK, AisP-generated }.
(c) We denote the closure of }C under all E, -quotients by

H(IC)::{A|q:K—>A,qEE*,KGK}.

a

Example. For C = Alg(M) with the standard factorisation system and for
P = {MJX | X finite }, an algebra 9 is P-generated if, and only if, it is
finitely generated.

4

To compute the closure of a class K under subobjects and quotients, we
can take alternating sequences of these two operations. It turns out that this
is not really necessary. Sequences of length two are sufficient.

Lemma 6.8. IfE, = E, then
SoHcHoS.

Proof. Suppose that A € SH(K). Then there exist some E.-morphism
q:C — B,an M-morphism e : A - B, and an E-morphism p : P — A, for
some C € KC and P € P. Since P is projective with respect to g, we can find a
morphism f : P - C suchthatqo f =eop.

Let D be the pullback of e and ¢, and let ¢’ and q” be the other morphisms
of the pullback square. As D is a limit, there exists a morphism g : P - D
such that

gog=p and e'og=f.

By Lemma 1.13, we have e/ e M. Let g = ioh be the E M -factorisation of gand
let K be the codomain of h. Thene’oi : K - Cbelongsto Mand h : P - K
to E. Furthermore, by Lemma 1.7, p, b € E implies that ¢’ 0 i : K - A also
belongs to E. Consequently, K € S(XC) and A € HS(K). O
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Proposition 6.9. Let C be a category, P, K two classes of objects, and E,, = E.
Then HS(KC) is the closure of class IC under E-quotients and P-generated M-
subobjects.

Proof. HS(K) is closed under both operations since HHS(XC) = HS(K)
and SHS(K) € HSS(K) = HS(K). O

Next let us add products to our closure operations. We are both interested
in finite products and in arbitrary ones.

Definition 6.10. Let C be a category, P, K classes of objects, E« € Ep, and
K a cardinal or k = oco.
(a) We denote the closure of K under products of size less than « by

Pe(KC) = {TLicr Ai |Ai € K, [T <k }.

(b) A variety is a class K that is closed under (i) E,-quotients and (ii) P-
generated M-subobjects of arbitrary products.

(c) A pseudo-variety is a class KC that is closed under (i) E,-quotients and
(ii) P-generated M-subobjects of finite products. )

Examples. (a) The classes of (1) all groups, (11) all modules over a fixed
semiring, (111) all aperiodic monoids, and (1v) all distributive lattices form
varieties.

(b) The subclasses of the classes in (a) consisting of all (1) finitely generated
algebras or (11) all finite algebras form pseudo-varieties. )

The reason we have combined the operations S and Py in the above
definition is the fact that a product of P-generated objects does not need to
be P-generated.

Lemma 6.11. If E, is closed under products of size less than «, then
P.HcHP, and SP.,ScSP,.

Proof. For the first inclusion, let A := [;¢; B; be a product with B; € H(K)
and fix E,-morphisms ¢; : B; = C; with C; € K. By Lemma 6.6, the
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product []; & : [1; Bi = [I; Ci belongs to E,. Consequently, A is an
E.-quotient of []; C; € P,(K).

For the second inclusion, let A be a P-generated M-subobject of a product
B := [];; C; with C; € S(K). Fix an M-morphism y : A - B and M-
morphisms e; : C; = D; with D; € K. By Lemma 1.13, the product []; e; :
[1; Ci = I1; D; belongs to M. Hence, so does []; e; o yt. Consequently, A is
a P-generated M-subobject of [T; D; € P,(K). O

Theorem 6.12. Suppose that E = E and E is closed under products (arbitrary
ones for (a) and finite ones for (b)).

(a) A classV is a variety if, and only if, V = HSP. (V).

(b) A dassV is a pseudo-variety if, and only if, V = HSPy_ (V).

Proof. Let k be either R, or co. The implication (<=) is trivial. For (=), it
is sufficient to note that, by the above lemmas,

HSP, o HSP, < HSHP,SP,
< HHSP,SP,
= HSP,SP, € HSP,P, = HSP, . 0

Yotes

Again, most of the material in this chapter is standard and can be extracted
from the literature, although I know of no systematic account. Many results
can be found in [15, 16]. The section on bialgebras is based on [4], and the
abstract variety theorem in Section 6 on [32].
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[1I. Languages

1. VHeights

UR MAIN POINT OF INTEREST Is to determine which languages are
definable in a given logic. As it does not make the presentation sig-
nificantly more complicated, we will state our results in the more general
setting of weighted languages. Thus, in the following we fix some set Q € D of
weights. The standard choice for  is of course the two element set {o,1}.In
this case, we will speak of an unweighted language. As this is the case we are
most interested in, we will sometimes also present the unweighted version
of statements and definitions, in particular, if it is easier to understand than
the more general version. Other common choices for 2 include

the interval ([o, 1], <),

*

*

the tropical semiring (N U {00}, min, +, 00, 0),
the arctic semiring (N U {—o0}, max, +, —00, 0},
the fields (Q, +, -, 0,1) and (R, +, -, 0,1),

the language semiring ((Z*),u, -, @, {()}),

& matrices (S"*", +, -, 0, I) over some semiring S.

*

A language is then a function MY — ( for some alphabet %, or, more
generally, a function A —  for an arbitrary set A. The set of all such
functions can be canonically equipped with operations of the following form.

Definition 1.1, For functions w : Q" - Qand ks,...,K,—; : X = Q, we
set

w[k]=wo(koyoo,Knoy), forke,.e.,ky_r:X—>Q.
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III. Languages

An Q-operation of arity » is a function of the form
®:D(X,0)" >D(X,Q): &~ w[k], forsomew:N" > 0.

Usually, we will not distinguish notationally between the functions w and @.

a

Remark. In the unweighted case, a {o, 1}‘operation of the form
Pos(X, {o,1})" - Pos(X, {o,1})
is simply a positive Boolean combination of n elements. |

For technical reasons, we frequently have to make one assumption on the
set : that every partial function A — (2 can be extended to a total one. The
formal definition is as follows.

Definition 1.2, Let D be a category with a factorisation system (E, M ). An
object S € D is injective if, for every M-morphism y : A — B and every
morphism ¢ : A — §, there exists amorphism ¢ : B - Swith pou = ¢. |

Examples. (a) In Set and 8-Set every object is injective.

(b) In Pos a partial order (A, <) is injective if, and only if, it is complete,
that is, every subset of A has an infimum and a supremum. Given a complete
order (S, <) and an arbitrary order (B, <), we can extend every monotone
function f : A - S with A C B to a function f : B — S by setting

A

f(b):=sup{f(a)|acA,a<b}.

Conversely, if (S, <) is not complete, then the identity map id : S — S has
no extension to C — S, where {C, <) is the completion of S. )

Remark. For most applications, the requirement of injectivity is not a restric-
tion as we can replace 2 by some (possibly larger) injective set. Categories
where this is the case are said to have enough injectives. For instance, Pos has
enough injectives since every partial order can be embedded into its comple-

tion. .
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Sinitene[s Tonditions

We also need a suitable notion of what it means for a set to be ‘finite, There
are several possible definitions, depending on the set Q of weights.

Definition 1.3. (a) A set A € D is finite if VA is finite.

(b) Aset A € Dis strongly finite-dimensional if there exists an M-morphism
e:A— Q% for somed < w.

(c) A set A € D is weakly finite-dimensional if there exists a surjective
E-morphism & : A - A and an M-morphism y: A - Q¢ with d < .

(d) For some property P, we say that A € D is sort-wise P if A¢ has
property P, for every & € E.

(e) An M-algebra U is finitary if it is finitely generated and sort-wise
finite. |

Remark. (a) Cleatly, the class of finite sets is closed under subsets, quotients,
and finite products. The class of finitary algebras is closed under quotients
and finitely generated subalgebras of finite products.

(b) It follows immediately from the definition that the class of strongly
finite-dimensional sets is closed under subsets and finite products.

(c) If O is finite, so are all weakly finite-dimensional sets. The converse
statement only holds under additional assumptions. We will prove one
version below for D = Pos. ,

While the class of sort-wise finite sets has the nicest closure properties,
it is too restrictive when working with weighted languages since syntactic
algebras are not always sort-wise finite. As a substitute, we can frequently
use the class of sort-wise weakly finite-dimensional sets.

Lemma 1.4. The class of weakly finite-dimensional sets is closed under surjective
E-quotients, M-subobjects, and finite products.

Proof. Set P := {JX | X € Set} and E, := { € € E | ¢ surjective }. Then
every object A is P-generated since the morphisms of the counit: : JV = Id
belong to E. Consequently, it follows by Theorem I1.6.12 that the closure
of Q under the above operations is given by HSPy_ ({Q2}), which is precisely
the class of weakly finite-dimensional sets. O
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Toetherian Sets

As a technical tool let us introduce the notion of a noetherian set, which is a
rather mild finiteness condition.

Definition 1.5. An object A € D is noetherian if its congruence lattice
Cong(A) satisfies the descending chain condition, that is, if every strictly
descending sequence &, > &, > ... of congruences of A is finite, |

Examples. (a) In the categories Set, Pos, and Top an object A is noetherian
if, and only if, it is finite.

(b) In Met an object is noetherian if, and only if, it has at most one
element.

(c) In the category of modules over some fixed ring R, a module M is
noetherian if, and only if, every ideal I € M is finitely generated. In particular,
if R is a field, the noetherian modules are precisely the finite-dimensional
(both in our sense for Q = R, and in the sense of linear algebra) vector
spaces. ,

Exercise 1.1. We consider the following eight partial orders in Pos.

¢ an infinite increasing chain of length w, an increasing decreasing chain
of length w, a countably infinite antichain,

o the orders obtained from the three above ones by adding a new top
element,

¢ the orders obtained from the three above ones by adding a new bottom
element,

¢ the orders obtained from the three above ones by adding both a top and
bottom element.

(a) Prove that none of the eight above orders is noetherian.

(b) Prove that, for every infinite A € Pos, there exists a surjective map
from A to at least one of the above orders.

(c) Prove that an order A € Pos is noetherian if, and only if; it is finite.

The closure properties of noetherian sets are quite weak.
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Lemma 1.6. If A is noetherian, so is every quotient of A.

Proof. Let q: A — B be an E-morphism. For a contradiction, suppose that
there exists an infinite strictly descending sequence &, > &; > ... of quotients
of B. Theng,0q > ;09 > ... forms a descending sequence of quotients of A.
Since A is noetherian, we can find indices i < k with €; 0 ¢ < &, o q. Thus,
there exists a morphism p with &, 0 g = p o €; 0 . As g is an epimorphism,
it follows that €, = p o ¢;, thatis, €; < €. A contradiction. O

Concerning the existence of noetherian sets, we have the following obser-
vation.

Lemma 1.7. Let D be a category such that, for every finite set X € Set, there
are, up to isomorphism, only finitely many A € D with VA = X. Then every
finite A € D is noetherian.

Proof. Let A be finite and ¢, > & > ... an infinite strictly descending
sequence of quotients of A. For i < j,let p;; : A/e; - Afe; be the function
with &; = p;; o &;. We obtain a descending sequence

ker Ve, 2 ker Ve, 2...

of equivalence relations on VA. As A is finite, this sequence must stabilise
at some k. Consequently,

Vpij: V(A/ei) - V(A/e;) is bijective, forall i, j > k.

As V(A/e;) is finite, it follows by assumption on D that there exists an
infinite set I such that

pij:Afle; 2 Alejis anisomorphism, foralli,jeI.

Hence, €; < €;. A contradiction. ]

Sinite- Dimenfional Sets

To prove weak or strong finite-dimensionality, we have to consider embed-
dings into powers of 2. We start by showing how to replace infinite powers
by finite ones.
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Lemma1.8. Lete: A — QF be an M-morphism where  is some cardinal. If
A is noetherian, then A is strongly finite-dimensional.

Proof. Forw C «, let p,, : Q° — Q" be the projection to the components
in w. Note that

wCw implies py, > p,.

Since A is noetherian, we can therefore find some finite set w € x such that
ker (p, o e) = kere = id. Consequently, p,, ce € M and p, 0e: A —> Q¥
is the desired embedding. O

In light of the preceding lemma, it is of interest to know which sets can
be embedded into some power of Q. The following general notion is useful.

Definition 1.9. A set C € D is a cogenerator if, for every pair of functions
frg:A—B,

kof=kog, forallk:B—C, implies f=g.

Given a factorisation system (E, M), we call C an EM-cogenerator if, for
every A€ D,

(k:?jc ker k) <idy,

where the infimum in computed in Cong(A). )
Lemma r.10. Let D be a category with arbitrary products and let (E, M) be a
factorisation system.

(a) Q €D isacogenerator of D if, and only if, for every set A € D, there exists
a monomorphism A — QF, for some cardinal k.

(b) If Q is an E M-cogenerator, we can choose the monomorphism to belong
to M.

Proof. (a) follows from the fact that Q is a cogenerator if, and only if, for
every set A € D, the morphism

¢ = {k)pasn: A~ QP4
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is a monomorphism.,

(b) Let ¢ be the morphism from (a). By Lemma I1.5.3, we have ker ¢ =
infy, ker k. As Q is an EM-cogenerator, it follows that ker ¢ = id. Hence,
@ e M. O

Corollary r.a1. If Q is an EM-cogenerator, every noetherian set A is strongly
finite-dimensional.

Proof. By Lemma .10, for every set A, we can find an M-morphism A — QF,
for some «. If A is noetherian, we can therefore use Lemma 1.8 to show that
it is finite-dimensional. ]

The existence of E M-cogenerators depends on the category in question.
We start with Pos.

Lemma r.a2. If Q € Pos is not an antichain, then every partial order A can be
embedded into QF, for some K.

Proof. Fix two values u,v € Q with u < v. For each ¢ € A, we define a

function y. : A - Q by

v ifa>c,
phe(a) ::{

u otherwise.

Note that . is monotone since

pe(a) tpc(b) = pe(a)=u and pc(b)=v
= a>c and b¥c
= adgb.

To see that == (4, )cea is an embedding A — Q4, we have to check that
a<b iff pc(a)<p(b), forallceA.
(=) follows by monotonicity of y.. For (<=), we have

atb = ps(a)=v and p,(b)=u
= Ha(a) £ pa(b). -

165



III. Languages

Corollary 1.13. Suppose that D = Pos and that Q is not an antichain. Every
finite set A is strongly finite-dimensional.

Remark. Note that no antichain is injective in Pos. Hence, the assumptions
of the preceding two results are automatically satisfied in our setting. )

Proposition 1.14. Let & = {0, 1} € Top be Sierpiriski space (where the closed
sets are @, {0}, and {0, 1}). For a sober space Q € Top the following statements
are equivalent.

(1) Every sober space X € Top can be embedded (via an injective continuous
map) into Q, for some k.

(2) There exists an injective continuous map S — Q.

Proof. (1) = (2) Since & is sober, we can use (1) to find an embedding
e: & - O, for some k. Set x := e(0) and y := (1), and let p; : Q* - Q
be the projection to the i-th component. Since x # y, there is some i < «
with p;(x) # pi(y). Q being sober, we can find a closed set C containing
one of p;(x) and p;(y), but not both. By symmetry, we may assume that
x € C. We claim that the function f : & » Q with f(0) :=xand f(1) := y
is the desired embedding. For continuity, let D € Q be closed. If f"[D] is
one of @, {0}, or S, we are done. Hence, suppose that {'[D] = {1}, i.e,,
pi(y) €eDand p;(x) ¢ D. Then U := p;*[C] and V := p;*[D] are closed
setsin Q" withx € U\ V and y € V \ U. Since e is continuous, it follows
thate " [V] = e7*(y) = {1} is closed in &. A contradiction.

(2) = (1) The embedding & — ( induces an embedding &* - Q.
Hence, it is sufficient to prove that every sober space X can be embedded
into &, for some k. Fix X. For a closed set C € X, let yi¢c : X — S be the
map defined by

o ifxeC,
#C(x):{

1 otherwise,
Then ¢ is continuous since y' [F] = @, uc'[{o}] = C,and pu'[S] = X

are all closed. Setting e := (pic)c we obtain a continuous map X - &7,
where T is the class of all closed sets in X.
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It remains to see that e is injective. As X is sober we can find, for every pair
of distinct points x # y, some closed set C containing one of them, but not the

other. Consequently, yc(x) # pc(y), which implies thate(x) # e(y). O

Lemma 1.15. Let Q = [o,1] € Met with the metric d(x, y) := |x — y|. Every
metric space X can be embedded into QX.

Proof. Let X € Met. For every z € X, we define a function f, : £ - Q via
f2(x) := d(z,x). We claim that f, is non-expansive and that the function
e = (fz)zex : X > Q% is the desired embedding. For the first claim, note
that

d(fo(x), f:(5)) = [d(z. %) = d(z,y) < d(x,5),

for all x, y, z € X. Hence,

d(e(x),e(y)) <supd(fe(x), f2(y)) <d(x,y), forallx,yeX.

For the second one, we have to show that e is an isometry. For x, y € X, we
have

d(x,y) < |d(x,x) - d(x,y)|
=fe() = £ (9))
<d(fi(x), f:(3))
Ssipd(fz(x)’fz(y)) =d(e(x),e(y)) <d(x,y). 0

Quali~Sinite Sets

Finally, let us take a quick look at the following generalisation of the notion
of an orbit finite set from nominal set theory.

Definition 1.16. An object A € D is quasi-finite if there exists a surjective
morphism q : JX — A, for some finite set X ,
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Lemma 1.17. Every finite set A is quasi-finite. If the unit € : Id = VJ of the
adjunction is an isomorphism, the converse also holds.

Proof. By Lemma I.2.3, the counit morphism 14 : JVA — A is surjective.
For the second statement, suppose that ex : X - V] X is an isomorphism

and let f : JX — A be a surjective function with finite X. Then Vf o ex :

X — VA s surjective and [V A| < | X] is finite. O

Remark. This lemma implies that in the categories Set, Pos, Top, and Met,
quasi-finiteness is the same notion as finiteness and therefore not that inter-
esting. In 8-Set a set is quasi-finite if, and only if, it has only finitely many
orbits under &, Thus, quasi-finiteness is strictly weaker than finiteness and
it is frequently the more useful concept. ,

Lemma 1.18. The class of quasi-finite sets is closed under subsets, finite products,
and images of surjective morphisms.

Proof. For images under surjective morphisms note that, if g : A = B and
f:JX — Aare surjective, sois g o f : JX — B.

For subsets, suppose that f : JX — Ais surjective and let i : C -~ Abe
a monomorphism. Then Vi : VC — VA is injective and so is its pullback
j:Z - V]X along the function f : X = VA corresponding to f via the
adjunction. Let q : Z — VC be the other morphism of the pullback square
and let § : JZ — C be the morphism corresponding to it via the adjunction.
Note that q is surjective since, in Set, the pullback of an epimorphism is an
epimorphism. Furthermore, we have seen in Lemma I.2.3 (e) that the counit
1: JVC — C is sutjective. Hence, sois § = 1 0 Jq.

For the empty product, note that V preserves products. Hence, V1p =
1set and the unique map u : 1lset = Vlp corresponds to a morphism
i : Jlset = 1p, which is cleatly surjective.

For binary products, suppose that f : JX — Aand g : JY — Bare
surjective. Let p: X x Y - X and q: X x Y — Y be the two projections.
Note that p and q are surjetive since V preserves limits. Hence, V(X x Y) =
VX x VY and Vp and Vg are the corresponding projections. Consequently,
f o pand g o g are surjective and, hence, sois (f o p,goq) : J(X x Y) —
A x B, O
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Corollary 1.19. If Q is quasi-finite, then so is every weakly finite-dimensional
set.

Proof. Suppose that 2 is quasi-finite and let A be weakly finite-dimensional.
Fix an M-morphism g : A - Q% and a surjective E-morphism e : A - A
with finite d. Then it follows by the preceding lemma that Q¢, A, and A are
also quasi-finite, 0

9. Panguages

These preparations out of the way, we can finally start to develop formal
language theory. Our abstract setting is as follows.

Conventions.
(1) D is a discrete category with arbitrary limits and colimits.
(11) Q €D is injective.
(1) (M, flat, sing) is a polynomial monad on D= such that Ml preserves epi-
morphisms.

(1v) (E, M) is the standard factorisation system on D, which is well-defined
and M is closed under coproducts.

Definition 2.1. (a) An alphabet is an object X € D= that is isomorphic to
one of the form JX, for some finite set X. We denote by Alph the category
of all alphabets whose morphisms are all functions of the form J f, for some
function f on finite sets.

(b) An Q-language over the alphabet X is a function « : M2 — O, for
some sort &.

(c) A family of Q-languages is a function K mapping each alphabet X to a
class K[Z] of languages over X.

(d) A function f : A — B recognises a function k : Ay — Q if

k=uof, forsomefunctiony: By — Q.
(e) Let f: A— Band k : By - Q be functions. The inverse image of  is
fik] =Ko f: Ay - Q.
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There are two common special cases. Functions of the form f = Mg, for
some morphism f : ¥ — I" of Alph, are called relabellings. In this case, we
call we call f7"[«] an inverse relabelling of k. Similarly, if f : MY — MT is
a morphism of M-algebras, we call f™*[«] the image of k under an inverse
morphism. )

Remark. In the unweighted case for D = Pos, a language « : M;X - {o,1}
of course corresponds to a subset K := 7" (1) € M¢X. Such a language is
recognised by f : MlX — A if there is an upwards closed set P C A such that
K = f'[P].

The inverse image of K under a function ¢ : MX — C is simply the

preimage

g ' [K]l:=={ceC|g(c)eK}. j

Note that we always assume alphabets to be of the form JX. This is
required for the variety theorem in the next section. But sometimes it is
useful to also work with languages over other alphabets’ C. We do so by
simply replacing C by JVC. This leads to the following extension of the

notion of a family of languages.

Definition 2.2. Let K be a family of languages. For an arbitrary C € DE we
define

K[C]:={x:MC > Q|EeZ, koMieK[JVC]},
where 1 : JV = Id is the counit of the adjunction J 4 V. ,

Example. Let Q be a semiring and X an alphabet. A weighted automaton
A =(9,%,6,i,t) (for words) over Q consists of a finitely generated Q-
module Q, an initial state i € Q, a final form t : Q — 2, and a transition
function § : Z* — End(9Q), which is a monoid homomorphism into the
monoid End(Q) of all linear maps Q — Q. Such an automaton recognises

the language x : ¥ — 2 defined by
k(w) = t(d(w)(i)).
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Note that this language is recognised by the morphism ¢ : * — End(Q)

k=pod where u(f):=t(f(i)). )

Panguage 2llgebras

While we are mostly interested in (Q-languages (and the special case of
unweighted languages), some of the results below will be developed in a
more abstract setting which hopefully simplifies the exposition. To this
end, let us introduce a (contravariant) functor IL° that maps each set A to a
language algebra I° A, whose elements are just the Q-languages k : A - Q.

Definition 2.3. (a) Let A € D. We denote by L° A := D(A, Q) the algebra
whose elements are all functions A — (2 and whose operations are all Q-
operations.

(b) For a function f : A - Bin D, we denote by L’ f : L°B — L’ A the
function L f (k) := x o f. We call IL° f () the inverse image of x under f
and we usually use the more suggestive notation f'[x] := L° f (k). )

Remark. (a) For unweighted languages we can again simplify this definition.
If we work in an unordered setting, i.e., with algebras in Set, we can use
power-set algebras

L’A:=(fP(A),u,n,7).
For unweighted languages in Pos, we use
I°A:=(UA,u,n)

instead, where UA denotes the set of upwards-closed subsets of A. In both
cases, f'[K] is just the preimage of K € B under f : A — B.

To see that we only need the above operations, note that every function
[2]" = [2] can be expressed using disjunction, conjunction, and negation.
Similarly, every monotone function [2]" — [2] can be expressed using
disjunction and conjunction only.
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III. Languages

(b) Using the above notation, we can say that an Q-language x € L°’M ;X
is recognised by a morphism ¢ : Ml — % if, and only if, x = (pg1 [ﬂ], for
some pu € L’ Ay

(c) Note that, for f : A — B, the function I’ f is indeed a homomorphism
I°B — L° A since, for each Q-operation w : Q" - Q,

W[L’ f(%6)s .., L f(kp—y)] =wo (koo f,...,Kny 0 f)
=wo(Ko,eoesKng)Of
=L f(w[Kos+vvrKnt]) )

Lemma 2.4. If y : A — B is an M-morphism, then L’y : I°B — L°A is
surjective.

Proof. Letk : A - Q belong to L’ A. Since ( is injective, there exists some
function A : B > Q with A o y = . Thus, x = L°u(1). O

Language algebras L’ A over finite-dimensional sets A are particularly

simple. Let us mention two properties.

Lemma 2.5. A set A € D is strongly finite-dimensional if, and only if, the
language algebra IL° A is finitely generated.

Proof. (=) Fix an M-morphism g : A - Q% and let k : A - Q be an
element of L” A. Since (2 is injective, there exists a function w : 050
with & = w o y. Set A; := p; o y where p; : Q% — Q is the projection to the
i-th component. Then

w[A]=wo (Ao, .., dyey)
=Wo(Po Ol s pasOf) =WOU=K.

(<=) Fix generators [, ..., Uy—; of L’ A. By assumption, we can find
an Q-operation w with id = w[ '] for some subset i’ of the generators.
Suppose that i’ = yo, ..., pg-; and set

= (flo, v, as) A —> Q4.

Since w o e = w[ "] = id, the function e has a left-inverse. This implies that
ee M. O
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Corollary 2.6, A set A € D is weakly finite-dimensional if, and only if, the
language algebra IL° A is a subalgebra of a finitely generated one.

Lemma2.7. Lete: A — Band y: A — C be E-morphisms in D where C is
strongly finite-dimensional. Then

e<y iff  LPe[L°B] 2L°y[L°C].

Proof. (=) Suppose that there exists a function p: B> Cwithy = poe.
For k € L°C it follows that

L’n(x)=xon=xopoe=Le(xop)ecl’[L°B].
(«<=) Since C is strongly finite-dimensional, there exists an M-morphism
e: C - QF for some d < w. Let p; : Q% — Q be the projection to

the i-th component. Note that p; o e : C - ( belongs to L°C. Hence,
L°y[L°C] c L’¢[IL° B] implies that there exist x; € L°B with

Kiog=p;oeon.
It follows that

(ki)ioe=(pioeon)i=(pi)iceon=con.

By the diagonal fill-in property, we can therefore find a function § : B - C
with § o ¢ = pand e 0 & = (k;);. In particular, & < 7. O

For finite-dimensional sets, the language algebra of a finite product is
generated by languages over the various projections.

Lemma2.8. Let A, B € D be strongly finite-dimensional and let p : AxB — A
and q : A x B — B be the two projections. Then

L*(AxB) = (p ' [L°A]uq"[L°B]),

where (X)) denotes the subalgebra of L° (A x B) generated by X.
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Proof. (2) is trivial. For (S), fix k € L°(A x B). As A and B are finite-
dimensional, there exist M-embeddingse : A - Q™ and f : B - Q". Then
e x f € M and, since ( is injective, we can find a function w : Q"*" - Q
with ¥ = w o (e x f). Consequently,

k=wo(exf)
:w[(uooeop), cory (um—xoeop)’
(voofoq) ..., (vaaofoq)],

where u; : Q" — Qandv; : Q" — Q are the projections. Since u; 0 e €

p[L°A]and v; o f € g7 [L°B], it follows that
K€ <<p"[1L°A] ugt [IL"B]» . 0
Corollary 2.9. If A, B € D are strongly finite-dimensional, then

L°(AxB)=L°A+L°B.

3. Pinimal 2llgebras

Let us start with the observation that the recognisability of a language « :
Ag — Q over an algebra U depends on which M-congruences of U are
contained in ker . (Note that ker « itself is usually not an M-congruence.)

Lemma 3.1. Let A be an M-algebra and x : Ay — Q a language.

(a) An E-morphism ¢ : A — B of M-algebras recognises « if, and only if,
ker ¢ < kerx.

(b) If € < kerk is an M-congruence, then & : A — /e recognises k.

(¢) x is recognised by a morphism into an M-algebra with some property P
if, and only if, there exists an Ml-congruence € < ker « such that the quo-
tient U/ has property P.

Proof. Note that (b) follows by (a) and (c) by (b). Hence, we only need to

prove (a). If @ recognises &, there exists some function y : By = Q such that
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3. Minimal algebras

k = po ¢, This implies that ker ¢ < ker k. The converse follows immediately
by definition of the order on quotients:

kerp <kerx iff pokerp=kerx, forsomep.

Since ¢ € E, we have ker ¢ = ¢. Furthermore, x = i o ker k, for some i € M.
Hence, we have

pokerg=kerx iff (iop)og=x,
and the claim follows for y 1= i o p. O

It follows that classifying the algebras recognising x amounts to classifying
all Ml-congruences contained in ker «. In particular, if there is a coarsest such
congruence, then there exists a smallest algebra recognising .

Definition 3.2. Let k € Ay - Q be alanguageand ¢ : & - M an E-
morphism of M-algebras recognising k. We call ¢ the minimal morphism
of k if, for every surjective morphism y : & — B recognising «, there exists
a unique morphism p : B — M such that ¢ = p o y. In this case we call
M the minimal algebra of k. |

Remark. (a) In category-theoretic language, the minimal morphism of « is
the terminal object in the category of all surjective morphisms recognising .
In particular, it is unique up to isomorphism.

(b) In terms of congruences, it follows that, if ¢ is the minimal morphism
of «, then ker ¢ is the maximal M-congruence with ker ¢ < ker k. )

Let us start with an example showing that minimal morphisms do not
need to exist.

Example. Recall the monad C = Cy, for countable chains from the example
on page 37. We consider the language

K :={weC{a}|forevery n < w, w has a factorisation w = ua”v }.
Every morphism ¢ : C{a} — B recognising K satisfies
p(a")=¢(a"), form#n.
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To prove that K does not have a minimal morphism, consider the words
wyi=na’n, forn<w

where 7 denotes a dense order labelled with a, and let h,, : C{a} - C{a}
be the function with

b () = {wk ifx = wg fork>n,

x  otherwise.

Note that there exists a function 0, : CC{a} - C{a} such that
h,oflat=0,0Co.

As b, is surjective, it therefore follows by Lemma Ls.5 that Y, := (C{a}, 0,,)
forms an C-algebra and b, : C{a} — ¥, a morphism.
For a contradiction, suppose that K has a minimal morphism ¢ : C{a} —

M. Then there are morphisms p, : A, = M with p,, o b, = ¢. Hence,

¢(Wn+1) = Pn(kn(wnﬂ)) = Pn(wn) = Pn(kn(wn)) = ¢(Wﬂ) ’

for all n < w. This implies that

o(www;...) = @(ww,wy ... ).
But w,w,w; ... ¢ K while w,w,w; ... € K. A contradiction. ,

Note that, by Lemma 3.1, the existence of a minimal algebra for a lan-
guage K only depends on the kernel ker k.

Lemma 3.3. Let U be an M-algebra. A language x € Ay — Q bas a minimal
algebra if, and only if, there exists a greatest Ml-congruence € < ker k.

Proof. (<) Let 7 : & — M be the minimal morphism of x. We claim
that ker 77 is the greatest Ml-congruence contained in ker . First, note that
Lemma 3.1 implies that ker 77 < ker & since 7 recognises «.
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For maximality, consider an M-congruence € < ker k. By Lemma 3.1, € :
A — /e recognises k. By minimality of 7, we can therefore find a morphism
p:A/e > Mwith 17 = p o &. This implies that € < ker(p o €) = ker .

(=) We claim that ¢ : ¥ — /e is the minimal morphism of x. Hence,
suppose that ¢ : A — @ is surjective and recognises k. By Lemma 3.1, it
follows that ker y < ker «. As y is a morphism of M-algebras, its kernel ker y
is an M-congruence. By choice of ¢, it follows that ker y < &. Consequently,
there exists a morphism p : € — /e with poy = &. Uniqueness of p follows
from the fact that v is surjective. O

We will prove the existence of minimal algebras in the case D = Pos where
we can work with congruence orderings. (The exact same proofs work for
Set and 8-Set.) To use the preceding lemma, we need to construct maximal
congruences.

Definition 3.4. We denote the transitive closure of a relation 6 € A x A by
TC(0). p

Lemma 3.5. Let D = Pos and let A be an M-algebra.
(a) Cong(A) forms a complete lattice where
inf@=)0 and sup@=TC(UO), forOCc Cong(A).
(b) Congy, () forms a complete lattice where
inf =10, for ©c Congy, ().
Proof. Part (a) is obvious and (b) follows by Lemma IL5.12. O

Unfortunately, joins of congruences are much harder to compute. Let us
collect a few lemmas to do so. We start with a technical result showing how
to compute transitive closures of relations on MA.

Lemma 3.6. Let O be a set of reflexive binary relations on some set A € Pos®,
and let ¢ € TC(U ©) be finite. Then

so™t implies s=ro OM . OM r =t

for some Oq,...,0,_; € Oandr,,...,r, e MA,
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Proof. Suppose that s 0™ t. By definition, there exists some u € Mo such
that s = Mp(u) and t = Mq(u), where p,q : A x A - A are the two
projections. We fix an enumeration (ao, bo), - -+, {an_y, by—;) of 0 and we

define g, : 0 = A, for k < n, by

a; ifiZk,

i;bi =
gi({ai,bi)) {b,- ifi<k.

Then s = Mg, (#) and ¢t = Mg, (u). Consequently, it is sufficient to find,
for every k < n, relations 6, ...,0,_, € © and elements r,,...,r, € MA
such that

Mgp (u) =1, QIXH 9§/H_I rn = Mg (u).

Thus, fix k < n. Since aj, 0 by, we can find elements ¢o, ..., ¢, € Aand
relations 0, ..., 0,,_; € ® with

ar =¢o 0o .o 0y = bg .
Define h; : 0 > Ax A, forl <mby

(c1,c140) ifi=k,
k1(<a,‘,bi>)5: (di,ﬂi> ifi>k.
<bi,bi> ifi<k.

Then v; := Mb;(u) € M0, implies that

Mg (u) = Mp(vo) 6o Mq(vo) = Mp(v,)
6, Mgq(v,) = -
- M‘I(mez) =Mp(viu-1)
Om—r Mq(vin—r) = Mges: (),

as desired. O
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Note that the join of a set of congruences can be computed by first taking
their union and then the transitive closure of the resulting relation.

Proposition 3.7. Let M be a monad on Pos™ where 5 is finite, let 9 be
an M-algebra, and let S, 5, € Congy (U). If S, has finitary index, then
TC(5, UE,) € Congy, ().

Proof. Lett := TC(c, UL,). Clearly, E is reflexive, transitive, and it con-
tains <. Hence, we only need to prove the congruence property, that is, we
have to show that

seMc  implies 7(Mp(s)) € n(Mq(s)),

where p, g : A x A — A are the two projections.
First, consider the case where s € Mg, for some finite ¢ C E. Then we can
use Lemma 3.6 to find a sequence

Mp(s) =7, EI}:H N Mgq(s),

Tinoy

where io, ..., i,_; € {0,1} and ro,..., 7, € MA. As T, and T, are congru-
ence orderings, it follows that

n(Mp(s)) = 7(ro) Ei, -+ Ei,, 7(ra) = 1(Mq(s)) .

Consequently, m(Mp(s)) € m(Mq(s)).
For the general case, let s € ME. Fix a function y, : A/5, - A (not
necessarily monotone) and let y : A — A be the composition of the quotient

map A - A/E, with y,. Then

Mp(s) €5 M(yop)(s) and M(yoq)(s) € Mp(s).

Furthermore, the set 0 := £N(rngyxrngy) is finiteand M(yx y) (s) € Mo.
By the special case we have proved above and the fact that &, is a congruence
ordering, it therefore follows that

m(Mp(s)) Eo m(M(y 0 p)(s)) € 1(M(y 2 )(5)) Eo #(Mq(s))
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To obtain a stronger statement, we need to make additional assumptions
on the monad M.

Definition 3.8. A functor M : Pos® — Pos” is finitary if it preserves
directed colimits, that is, if

M(colim D) = colim(M o D),

for every directed diagram D : [ — Pos®. j

Remark. (a) In particular, if M is finitary then MA is equal to the directed
colimit of the diagram consisting of MIC, for all finite C C A.

(b) The word functor MIA := A* is finitary as every finite word uses only
finitely many labels. The functor

M(A;, A ) := (A}, ATAL, UAY)

for infinite words, on the other hand, is not finitary as an infinite word can
contain infinitely many different labels. Thus, in general

AY#J{CY|Cc Afnite}.
(c) More generally, a polynomial functor in Pos® is finitary if, and only if,
its arity is at most R,. (We have proved (<=) in Corollary IL.2.10.) )

For finitary monads we can prove the following more general version of
Proposition 3.7. In this case, we can form joins of arbitrary many congruence
orderings and we can drop the restriction on the number of sorts.

Proposition 3.9. Let M be a finitary monad on Pos” and let © be a set of
M-congruences on an M-algebra . Then TC(U ©) is also an M-congruence
on 2.

Proof. SetC := TC(U ®). Clearly, C is a preorder containing <. Hence, we
only need to prove the congruence property, that is, we have to show that

seMc  implies 7(Mp(s)) c n(Mq(s)),
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where p,q: A x A — A are the two projections. Since M is finitary, there
exists a finite subset 0 C C such that s € Mlo. Hence, we can use Lemma 3.6
to find a sequence

Mip(s) = 10 05 0,7, v = Mq(s),

where 0,,...,0,_; € © and r,,...,r, € MA. As the 0; are congruence
orderings, it follows that

ﬂ(MP(S)) = 77(7’0) 0o - 0, 7'[(1’”) = ﬂ(Mq(s)) .
This implies that 7(Mp(s)) = n(Mq(s)). O

After these preparations, we can present the following two conditions on
the existence of minimal algebras.

Theorem 3.10. Let Ml be a monad on Pos® where Z is finite. Every language
k € MgA — Q that is recognised by a surjective morphism ¢ : MIA — B into
a finitary M-algebra bas a minimal morphism.

Proof. By Lemma 3.3, it is sufficient to prove that the set
0 := {0 € Congy (U) | O Ckerx}

has a greatest element. First, note that © contains the congruence o := ker ¢,
which has finitary index. Furthermore, the set

@ :={0c@|och).

is finite since every congruence in @, can be obtained from o by merging
some of the classes and making some of the other classes comparable. There-
fore, we can use Proposition 3.7 to find a greatest element p € O, (the
transitive closure of the union of all congruences in ©,).

We claim that p is also the greatest element of ©. Hence, let § € O.
Then Proposition 3.7 implies that § := TC(6 U 0) € @,. Consequently,
6cbcp. O
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Note that there are examples of (i) non-recognisable languages and of
(ii) recognisable languages over infinitely many sorts that do not have a
minimal algebra. For finitary monads on the other-hand, minimal algebras
always exist.

Theorem 3.11. Let M be a monad on Pos®. The following statements are
equivalent.

(1) For every M-algebra &, every set 0, and every & € E, every Q-language

K+ Ag = Q has a minimal morphism.

(2) M is finitary.

(3) For every Ml-algebra 9, the set Congy,; () of all Ml-congruences is closed,
as a subset of Cong(A), under arbitrary joins.

Proof. (2) = (3) follows by Proposition 3.9.

(3) = (1) Let 0 be the supremum (in Cong(A)) of all M-congruences
below ker «. By assumption, 6 is an M-congruence. Consequently, the claim
follows by Lemma 3.3.

(1) = (2) Fix A € Set and let A’ be a disjoint copy of A. For every finite
C ¢ A with copy C’ ¢ A’, we consider the functionoc : A+ A" > A+ A’
that acts as the identity on A + (A’ \ C) and that maps elements ¢’ € C' to
their copy c € C. Fors, t e M(A + A”), define

sct :iff  Moc(s) <Moc(t), for some finite C C A.

We start by showing that £ is a congruence order on M[(A + A”). Reflex-
ivity is obvious. For transitivity, note that

Moc(r) <Moc(s) and Mop(s) < Mop(t)

implies that Mloc,p (r) < Mocyup(¢). Hence, T is a preorder. Furthermore,
monotonicity of 0¢ implies that < C £. Hence, it remains to prove the con-
gruence property. Let g : MI(A+ A’) - M(A + A’) /= be the quotient map.
We can regard q as an Q-language for 2 := M[(A + A")/c. By assumption,
it therefore follows that q has a minimal morphism # : M[(A + A") - M.
As ker 1 is a congruence relation, it is sufficient to prove that E = ker 7.
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(2) As 7 recognises g, there exists some function g : M - M(A+A")/c
such that g = g o . This implies that ker 7 C kerg = E.

(S) Suppose thats C t, thatis, Moc (s) < Moc(t), for some finite C € A.
Since ker Mlo € E = ker g, we know that Mo recognises q. As Mlog is a
morphism of M-algebras, it follows by the definition of a minimal morphism
that there exists some morphism p : rngMoc — M with p o Moc = #.
Consequently,

n(s) = p(Mac(s)) < p(Moc(t)) = n(t),

that s, (s, t) € ker#, as desired.

To conclude the proof, let = be the equivalence relation associated with &
andlet 1 : A — A’ be the functions mappinga € Atoa’ € A" Fora € A, it
follows that

Mo,y (sing(a)) = sing(a) = Mo,y (Mi(sing(a))) .

Consequently, sing(a) = M/ (sing(a)). Since E is a congruence ordering

and MIA is generated by rng sing, it follows that
s=Mi(s), forallseMA.

By definition of E it follows that, for every s € MIA, there exists some finite
set C; € A such that

Moc, (s) = Mo, (Mu(s)).
To see that M is finitary, let s € MIA and fix a finite set C € A with
Moc(s) = M(oco)(s).

Fixc € Candlet 7: A+ A" — A be the function acting as the identity on A
while mapping every element of A’ to c. Then

s=Mr(s) =M(ro0ac)(s) =M(r00cot)(s).

The claim now follows since rg(7 o o¢ o 1) = C is finite. O
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Example. The word monad MIX = X™ has arity R, and is therefore finitary.
Consequently, every Q-language « : Z* — Q has a minimal algebra. |

This result seems to be bad news for languages over infinite objects like
w-words or infinite trees. Fortunately, we do not need minimal algebras for
all languages. We are only interested in languages of the form x : Mz~ - Q
where X is a finite alphabet. Furthermore, there are usually only a few choices
for Q that are of interest.

4, Suyntactic 2lgebras

The definition of a minimal algebra is rather abstract. In many cases, we
can give a more concrete description, which is the subject of this section.
To motivate the general constructions that follow, let us take a look at the
case of finite words. With a language K C X¥, we can associate its syntactic
congruence

ungv ciff  xuye Ko xvyek, forallx,yEZ*.

This relation is a congruence for monoid multiplication, which means we
can define a monoid

Syn(K) := 2* [~k ,

called the syntactic monoid of K. It turns out that this monoid is finite if, and
only if, K is a regular language. Furthermore, the quotient map =* — X* [ny
is 2 monoid homomorphism recognising K.

In the general case the construction is analogous. We start by generalising
operations of the form u — xuy.

Definition 4.1. Let % be an M-algebra.

(a) A context is an element of MI(A +O;), where O; is considered as some
special symbol of sort { € = called a hole. For a context p € Mz (A +0O¢) and
an element g € A, we define

plal=04(p) € Ag
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4. Syntactic algebras

where 0, : M(A + O;) — U is the unique morphism that extends the
function s, : A+ 0Oy — A given by

sa(0¢)=a and s4(c):=c, forceA.

In the case where A = MY is a free Ml-algebra, we will also consider elements
p € M(Z + O¢) as contexts, by identifying them with their image under
M(sing + id).

(b) An internal operation of 9 is a function A; — A of the form

ar m(pla]), for some context p e Mz(A+DO;).

In the following, we will often identify a context with the associated internal
operation.

(c) The composition of two contexts p € Mz(A+0;) and g € M;(A+0O,)
is the context obtained from p by replacing every occurrence of O; by a copy
of g. Formally,

pq:=ple] e Mg(A+Dy),

where p := M(sing + id)(p) and the expression p[q] is evaluated in the
M-algebra M((A +O,).
(d) A derivative of x : Az — Q is a function of the form

pi[k]i=xop:Ar > Q, wherepeM;(A+0DO;)isacontext.
We can now lift the language functor L° from D to Alg(M) as follows.

Definition 4.2. (a) For an M-algebra , we denote by LY the language al-
gebra with domains (L°A¢) gz € Set® and the following operations. We
retain all operations of each algebra I’ A (that is, all Q-operations on
D(Ag, Q)) and we add all internal operations L°p : L°A; - L°Ay, for
contexts p € M (A+0y), &, (€ &

(b) For a morphism ¢ : & - B of M-algebras, we set

Lo(k) =L¢g(x), forxel’Ag.
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III. Languages

(c) A morphism of language algebras is a function ¢ : LY — LD such that,

for every internal operation p of LB, there is some operation g of LY with

gop=¢op.

or a subset C C , we denote L the subalgebra o
d) F bset C ¢ L2 d by (C)L the subalgebra of LY
generated by C.

a

Example. For unweighted languages in Pos, the language algebra LY con-
sists of all upwards-closed subsets of A. The operations are generated by
(i) intersection Uj; (ii) union N; (iii) the constants @& and A; and (iv) derivat-
ives a 'K and Ka ™', for a € A.

a

Lemma4.3. Let ¢ : A — B be a morphism of M-algebras and p € M¢(A+0;)

a context.

(a) Theimage q:= M(¢ +id)(p) € M¢(B + O¢) is a context satisfying
peop=4qo9,

where p and § are the associated internal operations.

(b) If ¢ is an E-morphism and M preserves E-morphisms, the induced map
M(¢ +id) on contexts is also an E-morphism.

Proof. (a) Note that
(do9)(s) = 4(9(s))
= 1(M(¢ +id)(p)[¢(s)])
= n(Mg(p[s]))
= ¢(fac(p[s]))
=(pop)(s).

(b) follows by Lemma IL.1.13 (a) and our assumption on M. O

186



4. Syntactic algebras

Lemma 4.4. In an algebra LY, Q-operations commute with internal operations
in the sense that

p w[k]] = wlp (Ko ) -+ p [Kn-x]],
for every Q-operation w : Q" — (, every context p, and all ko, ..., k,—; € LA,

Proof. By definition,

p w[k]]=wo(ko,..o,kny)op
=wo(Kkoop,...,Kpr0p)
= w[p Koo s p 7 [Knr]]- -

Definition 4.5. Let U be an M-algebraand x : Az — Q.
(a) The syntactic morphism of k is

syn, = kerp,
where p = (p¢) ez is the morphism with components

P¢= (ko P)pGM((A'FD) CAr—> H Q.
14

(b) We call ker syn__ the syntactic congruence of k.

(c) The syntactic residue is the unique function res, : Syng(x) — Q
satisfying k = res o syn,_ ..

(d) We say that « has a syntactic algebra if the syntactic congruence is an
M-congruence. In this case the quotient codom syn, has the structure of an

M-algebra. This algebra is called the syntactic algebra of k. We denote it by
Syn(x). )

Remark. (a) Using the general definition of the kernel of a morphism, we
have ker syn . = syn,. Hence, having a separate notion of a syntactic congru-
ence is mainly useful in categories D where we have a more concrete notion
of a congruence.

(b) If Syn(«k) exists, the syntactic morphism syn_: % — Syn(x) is a
morphism of M-algebras.
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() Uniqueness of res, follows from the fact that syn_ is an epimorphism.

In the category Pos the definitions simplify as follows,

Lemma 4.6. Suppose that D = Pos and let < be the syntactic congruence of
KAy~ Q. Then

a<cb iff  x(pla]) <x(p[b]), forallpeMs(A+0O;),
it u(a) < u(d), forall e (k).

Proof. The first equivalence follows immediately by unravelling the defini-
tions. Since p~'[«] € {(x))1, it therefore remains to prove that

k(pla]) <x(p[b]), forallpeM:(A+0Oy),

implies that

pla) <u(b), forallpe (x)L.

Hence, fix 4 € (k). Then p = s(k), where s is a composition of Q-
operations and internal operations. By Lemma 4.4, we may assume that
s=wo p ' for an Q-operation w : Q — Q and some context p. Since w is
monotone,

k(pla]) < x(plb]) implies w[x](pla]) < @[K](p[b)). O
Remark. In the unweighted case for D = Pos, we obtain for K ¢ A
a<xb iff pla]e K= p[b]eK, forallcontextsp.
For D = Set, we obtain the familiar definition
amgb iff  pla]e K< p[b]eK, forall contextsp. )

Examples. Let MY := £ be the word monad on Pos.
(a) We consider the language K := a*b* € M{a, b}. Its syntactic congru-
ence < has the following 5 classes.
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(0
+/ \b+

a*tb*
|
(a+b)*ba(b+a)*
(b) Let us consider the N-language « : 2* — N defined by

k(w) = |w|,.

That is, k maps a word w € {a,b}* to the number of letters a it contains.
Then <, is a linear order with

w=ew i wl, < |w],. )

Example. Syntactic congruences are also used in the theory of programming
languages. Let AX denote the set of all A-expressions with basic operations
from the set X. Then A forms a monad on Set. Two expressions s, t € AX
are called observational equivalent if

us terminates  iff  ut terminates, foreveryu € AX.
This is just the syntactic congruence associated with the language
K :={se AX|sterminates } .

A model is a morphism ¢ : AX — U of A-algebras. Such a model is fully
abstract if the kernel of ¢ coincides with observational equivalence, that is,
if ¢ factorises through the syntactic morphism as ¢ = i o syn,, for some

embedding i : Syn(K) — . 3

Let us collect a few basic properties of the syntactic congruence. We start
by showing that our definitions make sense.

Lemma 4.7. Letk: Az — Q.
(a) syn,_: A — Syn(k) recognises k.
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(b) resy : Syng(x) — Q exists.
(c) kersyn, <kerk.
(d) kersyn, = inf, ker (ko p)

Proof. (d) Let pg == (ko p), = Ag > [I, Q be the morphisms used to
define syn_. Then

kersyn, =ker p = ker (x o p), = infker (x o p).
r

This proves (d).

(c) We have k o p, = «, for the trivial context p, := sing(O). Hence,
(d) implies (c).

(a), (b) By (c) we can find some function y with ker & = y oker syn_. This
implies that

kK =imkokerkx =imx o yosyn, .
Hence, syn, recognises x and resy := imx o y exists. O

The following lemma contains the key property of the syntactic congru-
ence.

Lemma 4.8. Letx : Ay — Qbe alanguage such that syn,_is an M-congruence,
and let ¢ : A — B be an E-morphism of M-algebras. The following statements
are equivalent.

(1) @ recognises k.
(2) ker ¢ <kersyn,
(3) ker¢ <kerx

Proof. (1) < (3) has already been proved in Lemma 3.1 (a).
(1) = (2) Ifk = p o @, for some p : By - Q, then

¢ =ker ¢ <ker (¢ o) =kerk =kersyn_.
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4. Syntactic algebras

(2) = (1) Since ¢ = kerp < kersyn = syn, there exists a function
p : B — Syn(x) such that syn_ = p o ¢. Hence,

K = tes, osyn, =resc0po Q.
which implies that ¢ recognises k. O

A noteworthy consequence of this lemma is the fact that, if it exists, the
syntactic algebra of a language  is equal to its minimal algebra.

Theorem 4.9. Let U be an M-algebra and k : Ay — Q be a language that
has a syntactic algebra. For every E-morphism ¢ : 2 — B recognising «, there
exists a unique morphism p : B — Syn(«x) such that syn,_ = p o ¢.

Proof. Suppose that ¢ recognises k. By Lemma 4.8 we have ker ¢ < kersyn_.
Therefore, there exists some function p : B — Syn(x) withsyn,_ = po¢.Itis
unique as @ is an epimorphism. Furthermore, p is a morphism of M-algebras
by Lemma 1.5.6. O

Corollary 4.10. Let U be an M-algebra and x : Ay — Q a language with
a syntactic algebra. Then Syn(k) is equal to the minimal algebra of x and
syn, : % — Syn(k) is equal to its minimal morphism.

Consequently, the syntactic congruence provides a concrete way to com-
pute the minimal algebra of a language. Note that there do exist languages
that have a minimal algebra, but not a syntactic one. The preceding corollary
justifies the following notation.

Definition 4.11. Let k¥ : Ay — Q be a language with a minimal algebra.
Even if « does not have a syntactic algebra, we denote the minimal algebra,
the minimal morphism, and its residue by, respectively, Syn(K), syn,, and
res. j

We are particularly interested in languages whose syntactic algebra is
finite-dimensional.

Lemma 4.12. If Syn(x) is sort-wise noetherian, it is sort-wise strongly finite-
dimensional.
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Proof. Let pg : MzA - QX be the morphism used to define Syn(x). Then
impg: SynE(K) — Q% is an M-morphism. Since Synf(K) is noetherian, it
follows by Lemma 1.8 that it is strongly finite-dimensional. O
Languages Recognifed by Syntactic Algebras

Let us take a look at what other languages are recognised by a syntactic
algebra, besides the language the algebra was originally constructed from.
We start with a technical lemma about closure properties of the syntactic
congruence.

Lemma 4.13. Let U be an M-algebra, k : Az — Q a function, and p €
Mg (A +0O¢) a context.

(a) kersyn_, <ker (synK’E °p).
(b) kersyn < ker Sy ] -

Proof. Let py = (k0 q)y : Ay — II;Q be the morphisms used to
define syn,, and let u, : [T, 2 — O be the projection to the r-th com-
ponent.

(a) Note that p = y o syn_, for some y € M. Consequently, we have

kersyn =kerp and ker(syn, op) =ker(pop).
Setting ¢ = (uqy ) 4, it follows that

peop=(koqlgop=(xogop)y=go(roq)g=gop.
This implies that

kersyn, . =kerp; <ker (peop) = ker (synK'f °op).

(b) Note that the morphism SYN,-i[ ] I8 defined via
oy = <K0P°q>q :A,7 - HQ,
q

Setting ¢ := (upq) . it follows that 0, = g o p,,. Consequently, we have

kersyn_ =kerp <ker(gop) =kero = kersynp,l[x] . O
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4. Syntactic algebras

The language algebras of a syntactic algebra are particularly simple: they
are generated by a single element.

Proposition 4.14. Let A be an M-algebra and x : Ay — Q a language with a
sort-wise noetherian syntactic algebra. Then

LSyn(x) = (resy )L .

Proof. Let y € L¢Syn(x) and set A := posyn . As Syn((K) is noetherian,
there exists a finite set H € M[;(A + O¢) of contexts such that

ker (QH ° irnp)|5yn:(1c) = ker(imp)|5yn[(1c) s

where pg := (k0 p), : Ag = ], Q are the morphisms used to define syn,
and qy : [1, Q = Tl,ep Q is the projection to the components in H. It
follows that

ker (g o p)|a, =kerpla, =syn fa, < (posyn, )|a, =kerd.
As (Q is injective, there therefore exists a function w : QH - Q) such that
wo(quop)la, =A.

By definition of p, we have (qz © p)|a, = (k © p)pers. Hence,

resy o syn, © p)PEH
resy © M(SYDK +id)(p) o sYnK)peH
o SynK p)

° p)pEM(synK-#id) [H]

where the fourth step follows by Lemma 4.3. As syn, is an epimorphism, it
follows that

u= w[(f’ﬂ [resk]>pEM(SynK+id)[H]] € <<rest<>>IL . O

193



III. Languages

We obtain the following preliminary characterisation of which languages
are recognised by Syn(x). A more general statement where x and A are
allowed to have different domains will be derived in Proposition 4.16 below.

Proposition 4.15. Let % be an M-algebraandletk : Ay — QandA: Ay - Q
be languages such that k has a syntactic algebra. The following statements are
equivalent.

(1) kersyn,_ < kersyn,

(2) syn, : % — Syn(k) recognises A.

(3) Every morphism of M-algebras recognising k also recognises A.
If Syn(x) is sort-wise noetherian, the following statement is also equivalent to
those ones.

(4) A= w[p;I[K], . ‘,p;;[K]] ,  for some operation w : @" - Q and

finitely many contexts po, ..., Pp—1-

If in addition @ = Q, the following statement is also equivalent to (1)—(4).

(5) Ae(ro

Proof. (1) < (2) follows directly by Lemma 4.8.

(3) = (2) is trivial as we have seen in Lemma 4.7 that syn, recognises «.

(1) = (3) Suppose that ¢ : A — B recognises k. By Lemma 4.8, it follows
that ker ¢ < kersyn, < kersyn,, which, by the same lemma, implies that
@ recognises A.

(2) = (5) Suppose that A = y o syn _for some y : Syn((K) - 0. By
Proposition 4.14, we have y € {(res, ). Hence, there is some operation w of
LSyn(x) with 4 = w o res,. It follows that

A=posyn =wores,osyn =woK,

This implies that A € {x ).

(5) = (4) Suppose that A € (k). Then A = s[«], for some term s. By
Lemma 4.4, it follows that we can replace s by a term consisting of derivatives
followed by Q-operations. As derivatives and Q-operations are both closed
under composition, it follows that

A= olpslel o pali[xl]
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for some Q-operation w and contexts po, ..., Py—r1.
(4) = (2) We have

A

@[pg' K]+ s paa[x]]

w0<K0po,...,K0py,_,)

=wo (resx OSyn, O Po,...,res, Osyn o p,,,l)

wo (resK o M(syn, +id)(po) o syn,, ...,
res o M(syn, +id)(p,1) o syn, )

=wo (resK oM(syn, +id)(po), ...,

resy o Mi(syn, +id)(py 1))

osyn,,

where the fourth step follows by Lemma 4.3. Hence, A = posyn_, for some ,
and syn_ recognises A. O

Remark. In the unweighted case, the condition in (4) reads

L=U M pilK].

i<m k<n;

To see this, note that we can express w : {0,1}" — {0, 1} as a finite boolean
combination in disjunctive normal form. As w is monotone, we can omit
every negated term from the resulting expression without changing the
result. ,

The next proposition describes languages recognised by syntactic algebras
via arbitrary morphisms.

Proposition 4.16. Let A and B be M-algebras and let k : Ay — @ be
a D-language with a sort-wise noetherian syntactic algebra. An Q-language

At By = Q is recognised by Syn(«) if, and only if, it is of the form

A= w[e " [p'[K]] - 9 ' [puta[x]1]]

for some a morphism ¢ : B — Y, contexts po, ..., pu—y € M(A +0O), and an
operation w : " — Q.
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Proof. Note that we can write

wlo7 [ (K1) @7 [ [x]] = w o (p [K])icu 0 90

<) By Proposition 4.15, the mor; hlSm syn_: A — Syn(k) recognises
the Ianguage

A= wo (pi ' [K])icn -

Consequently, syn,_ o ¢ : MI' > Syn(x) recognises ' o ¢ = A.

(=) Fix a morphism y : B — Syn(x) and a language y : Syn((K) -0
such that A = y™'[u]. By Corollary I1.6.4, there exists a morphism ¢ : & —
A such that syn_ o ¢ = y. The language A" := syn_'[ 4] is recognised by syn_.
Consequently, we can use Proposition 4.15 to find contexts p, ..., pp—; and
a @-operation w : ®” - @ such that

N = wlpg'[x] o p i lx]]
It follows that
A=poy=posyn op=wo(p;[kl)icnog. 0

Remark. In the unweighted case, the condition reads

L=¢"[U N palK]]
Qriftence of Suntactic 2lgebras

In general, there is no reason why the syntactic congruence should be an
M-congruence. For finitary monads, we have already shown that minimal
algebras always exist. Let us check that the same is true for syntactic al-
gebras. It turns out that the following technical property is of fundamental
importance.

Lemma 4.17. Let € : A — C be an E-morphism of M-algebras. Then

e<eop, forallcontextspe M(A+DO).
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roof. Given a context p, we can use Lemma 4.3 to find some context g wi
P G text L to find text q with
go &= eo p. Thisimplies that e < g o p. O

For finitary monads on Pos”, congruences have the following simple
description,

Lemma 4.18. Let M be a finitary monad on Pos® and let A and € be M-
algebras. An E-morphism € : A — C is a morphism of M-algebras if, and only

if

e<eop, forallcontexts pe M(A+DO).

Proof. (=) was already proved in Lemma 4.17.
(«=) Itis sufficient to prove that & := ker € is an M-congruence. Hence,
consider a term u € ME. We have to show that

m(Mq(u)) & n(Mgq'()),

where ¢, q" : Ax A — A are the two projections. Since M is finitary, we have
u € Mo for some finite subset 0 C E. Let {ao, bo), ..., (am—1, byy—y) be an
enumeration of g. For i < m, set

0i:=<u {{a;,bi)} .

Then o € TC(0,U---UB,,_;) and we can use Lemma 3.6 to find ro, ..., 1, €
MA and indices ko, ..., k,_; < m such that

Mq(u) =1, GIXE - 62{1 012/]}”_1 T = Mq'(u)‘

By definition of 0y,, we can find, for each index i < m, some context p; such
that

ri=pilar,] and 1y = pilbe,].
Hence,

ar, € by, implies 7(r;) = pi(ar,) € pi(br,) = 7(riss) -
Consequently, m(Mg(«)) € -+ € m(Mgq'(u)). O
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Theorem 4.19. Let M be a finitary monad on Pos® and 9 an M-algebra.
Every language k : Ag — Q has a syntactic algebra.

Proof. By Lemma 4.13 (a), we have
syn_<syn,_op, forall contextsp.
Hence, it follows by Lemma 4.18 that syn . is an Ml-congruence. O

Unfortunately, not all the monads M used in applications are finitary. In
particular those needed for languages of infinite words or infinite trees are
not. Therefore, we have to extend the preceding proposition to a larger class
of functors. It turns out that, in all the known examples of a non-finitary
functors where syntactic algebras exists, the functor in question is ‘governed’
in a certain sense by a subfunctor which is finitary. The precise definitions
are as follows.

Definition 4.20. (a) A morphism p : M[® = M of monads is dense over
a class C of M-algebras if, for all A € C, C € A, and s € MIC, there exists
s® e M°C with (p(s°)) = 7(s).

(b) We say that a monad M is essentially finitary over a class C if there
exists a morphism p : M® = M such that M° is finitary and p is dense over
the closure of C under binary products. |

Example. Let us again consider the functor
M(A;, Aco) i= (AT, AT Ao U AY)
for infinite words and let
MP(A;, Ao) = (AT, AT Ao UA"),

where AY denotes the set of all ultimately periodic words in A%. One can
use a straightforward Ramsey argument to show that the infinite product
of a finite w-semigroup is completely determined by its restriction to all
ultimately periodic words. This implies that the inclusion map M°® = M s
dense over the class of all finite w-semigroups. The case of infinite trees is
similar and will be treated in detail in Section V.4. |
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Lemma 4.21. A morphism p : M° = M is dense over a class C if, and
only if, for every algebra A € C and every set C C A, the subalgebra {C)qy
generated by C in U coincides with the subalgebra <<C>>g[‘p generated by C in the
p-reduct A ,.

Proof. (=) If p is dense over C, we have

(Char={n(s)[s eMC} = {m(p(s")) | s* e M°C} = (C)ay, -

where the first and third step follows from Lemma I1.2.2.
(<) Given s € MC, we have 71(s) € (C)o = {C)qy,. Consequently,
there exists some s° € M°C with 7(p(s°)) = 7(s). O

If M® = M is dense over C, every Ml-algebra in C is uniquely determined
by its M°-reduct. This will be used below to prove the existence of syntactic
algebras for essentially finitary monads.

Lemma 4.22. Let p : M° = M be dense over a class C that is closed under
binary products.

(a) Any two algebras in C with the same M°-reduct are isomorphic.

(b) Let ¢ : U° — B° be a morphism of M°-algebras and assume that
A° and B° are the M°-reducts of two M-algebras U, B € C. Then ¢ is

also a morphism A — B of M-algebras.

(c) An E-morphism € is a congruence of an M-algebra A € C if, and only if, it
is a congruence of the M°-reduct A° of .

Proof. (a) Suppose that C contains two M-algebras A = (A, ) and A’ =
(A, 7"} with the same M°-reduct A° = (A, 7°). To show that 7 = 7/, fix
an element s € MA. Set t := Md(s) € MA where A := {{a,a) |a€ A} is
the diagonal of A x Aand d : A - A is the diagonal map. By assumption,
the product % x 9’ belongs to C. As p is dense, we can find some t° € M°A
with 77°(¢°) = 7(t). Note that t° € M°A implies that M°p(¢°) = M°q(t°)
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where p, q: A x A — A are the two projections. Consequently,

m(s) = n(Mp(¢)) = p(7(t))
=p(7°(¢"))
=7 (M"p(t%))
=" (M%q(¢))
=q(m°(¢%))
= q(n()) = 7' (Mg(t)) = 7' (s) .
(b) Fix s € MA. To show that 7(Mg(s)) = ¢(7(s)), we consider the
graph
G = {{arg(a)) |4 € 4)
of p. Leti:= (id, ¢) : A - G be the natural bijection and set ¢ := Mi(s) €
MG. Since ¥ x B € C and p is dense, we can find some t° € M°G with

n(t°) =n(t). Let p: AxB - Aand q: A x B — B be the two projections.
Note that

g=qoi and q(g) =9(p(g)), forgeG,
which implies that M°q(¢°) = M°(¢ o p)(¢t°). Therefore,

m(Mg(s)) = m(Mq())

=q(n(¢))

=q(n(¢%))

= (M°q(¢%))

=n(M°(p o p)(t"))

= 9(p(n(¢%)))

=¢(p(n(1)))

= ¢(n(Mp(¢))) = ¢(7(s)) -

(c) Clearly, every M-algebra morphism is also an M°-algebra morphism.
The converse follows from (b). O
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Let us also note the following property.

Proposition 4.23. Suppose that M is essentially finitary over C and that D bas
canonical subobject diagrams. Every algebra in C is the colimit (in Alg(M)) of

its canonical R, -subobject diagram.

Proof. Let U € C, let D be the canonical R,-subobject diagram of A, and
let tx : { X))o = A be the inclusion map. Since D has canonical subobject
diagrams, it follows that A is the limit of D in D= and that (1x)x is the
corresponding limiting cone.

It remains to show that it is also limiting in Alg(M). Hence, consider a
cocone (i x ) x from D to some M-algebra B. We obtain a unique morphism
¢ : A — B satisfying

poix =ux, foralX.

It remains to show that ¢ : % — B is a M-morphism. By assumption,
there exists a morphism of monads p : M® = M such that M° is finitary
and p is dense over C. By Lemma 4.22, it is sufficient to prove that ¢ is a
M°-morphism U° — B° between the respective p-reducts. Let s € M°A.
As M is finitary, there is some finite set X € A with s € M°X. It follows
that

(MCo(s)) = n(M°px(s)) = ux(7(s)) = ¢((5)),

where the first step and the last one follow from the fact that ¢ I { X))o =
Qoix =Ux. O

Using the existence result for the category Pos, we obtain the following
consequence.

Theorem 4.24. Let Ml be a monad on Pos® that is essentially finitary over C
and let A be an Ml-algebra. If k : Ay —  is recognised by some E-morphism
¢ : A~ Cwith € € C, then ker syn__ is an M-congruence.

Proof. Suppose that k = ¢~*[u], for some y € L°C;. Let B ¢ € be the
subalgebra induced by rng ¢. By Theorem 4.19, syn, isa morphism of M°-

algebras. Hence, Lemma 4.22 (c) implies that it is also a M-algebra morphism.
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III. Languages

Consequently, so is its restriction to B. To prove that syn_ is a morphism of
M-algebras it is therefore sufficient to show that

syn, =syn, o ¢.
Let

p=(Kkop), A—>HQ

:(‘uop C—>H,Q

be the morphisms such that syn,  := ker p and syn, := ker 0. Lemma 4.3
implies that

p=(koplp=(uogop)y=(ucqog)g=aecy.
Since ¢ € E it follows that

synK=kerp=ker(UO(p)=ker00(p=synMO(p. O

‘The lgebraic Structure on the BHeights

Usually, the set 2 of weights is not a plain set, but carries additional algebraic
structure (e.g., a field, a boolean algebra, or a semiring). In this section, we
explain how to make use of this additional structure. Assume that Q is
equipped with an Q-algebra product 7 : O — (, for some a monad
(0, A, €) on D. The three most common choices for Q are as follows.
+ Ifwe do not need any algebraic structure on (2, we can take the identity
monad IX = X.

¢ If Qisa semiring, we usually take the monad Lin mapping a set X to the
Q-semimodule Lin(X) generated by X, i.e., the set of all finite linear
combinations of elements of X with coefficients in Q.

¢ If Q is a lattice, we can take the monad DL mapping a set X to the
free distributive lattice DL(X) generated by X, i.e., the set of all finite
positive boolean combinations of elements of X.
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4. Syntactic algebras

We denote the lift of O to D* by OF : D= — D=. To make sure that
this additional algebraic structure plays well with the given monad M, we
additionally assume that there exists a distributive law § : MO" - OTM.
This distributive law in particular induces a monad structure on the com-
position OTML.

As OMZX is the free O-algebra over M¢ X, we can lift each Q-language
k : M¢Z - Q to a unique morphism of Q-algebras & : OM;X - Q with
K o ¢ = k. Furthermore, if ¢ : OtMX - YUisa sutjective morphism of
@TM—algebras recognising &, i.e., K = p o @, it follows by Lemma 1.5.6 that
y: Ay — Qis amorphism of (-algebras.

We can now apply the framework developed so far to the functor OTM
instead of M. In particular, the results concerning the existence of syntactic
algebras still apply in this setting, as well as the Variety Theorem and the
Reiterman theorem which we will prove below.

What we have gained by this translation is that we may assume that
all languages ¥ : OMX — Q are morphisms of (-algebras, that they
are recognised by morphisms of OTM-algebras, and, in particular, that the
corresponding function y : Az — Q is an Q-algebra morphism.

Let us take a look at how the syntactic O"M-algebra of an Q-language
relates to its syntactic Ml-algebra. It turns out that, as Ml-algebras, the latter
is a retract of the former.

Proposition 4.25. Let k : M;X — Q be an Q-language and & : OMZ - O
its lifting to QTMLX. There exists an embedding e : Syn(x) — Syn(%) of
M-algebras such that Syn(&) is generated (as an Q7 -algebra) by rge and

e satisfies
fioe=u and eosyn =syn o¢,

where Y SYnE(K) - Qand ji: Syng(k) — O are the functions such that
K = posyn and k = fI osyn,.

Proof. Let m: OQ — Q be the O-algebra product of Q. Since

moQuoQ'syn =moQk=no0(koe)=komoQe=k&,
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II1. Languages
the morphism O'syn_ recognises . Consequently, there exists an QM-
algebra morphism ¢ : OfSyn(x) — Syn(%) with

¢oQO'syn_=syn,.
Setting e := ¢ o ¢ it follows that

eosyn, =@oeosyn =@oQsyn oe=syn o¢.
As syn_ is an epimorphism, this implies that

mge =g (@oe)=rng(poeosyn ) =rng(syn;0¢).
Hence, e factorises through & and we obtain a morphism e, : Syn(x) - &
with

ioeg=e¢ and e,osyn_=1.

Furthermore, Syn(«) is generated by rng e = rng (syn, o ) since the morph-
ism syn, is an epimorphism and its domain OT MY is generated by rng .

syn,

OM;2 : » Syn (%)
A @TSYHK 2 ﬁ
© ¢
0 — ((])_(24—@1J (O)SYng(K)
s \ 8 i
’ SYng(K)
/ f ©
MEZ p > S

To prove that e is an embedding of M-algebras, we show that e, is an iso-
morphism by finding an inverse. Note that O'MZ is a M-algebra with
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product O flat o 8. Since
(O'flat 0 8) o Me = Qfflat o € = € o flat,

it therefore follows that ¢ : MX — OMLZ is a morphism of M-algebras.
Hence, so is 7] := syn; o €. Let & € Syn(«) be the Ml-subalgebra of Syn(«)
induces by rng# and let i : & — Syn(x) be the corresponding inclusion
map. Since

flosyn,oe=Kkoe=k,
the morphism # : MY — & recognises x. Therefore, there exists an M-
algebra morphism f : & - Syn(x) with
fon=syn,.
To see that f is the desired inverse of e,, note that
foesosyn = fon=syn  and e,ofon=e,0osyn, =1.

By surjectivity of syn_ and #, we obtain f o e, = id and e, o f = id. Con-
sequently, e, : Syn(x) = & is an isomorphism and e = i o ¢, : Syn(x) —
Syn(%) an embedding (of M-algebras).

Finally, note that

fioeosyn = fiosyn,0e=Ko€&=K=[osyn,.

By surjectivity of syn_, this implies that fi o e = p. O

5. Darieties

After these preparations, we come to the first of the central theorems of
algebraic language theory: the Variety Theorem. This theorem character-
ises which kind of language families are amenable to our algebraic tools by
establishing a correspondence between language families and the classes of
algebras recognising them.

We fix a class R that serves as recognisers for the languages we are inter-
ested in.
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Convention. In this section, we adopt the following assumptions.
o Wedenote by T the class of all free M-algebras of the form MLZ, for £ € Alph.
o We fix a class R of Ml-algebras such that

— every A € R is T -generated, sort-wise strongly finite-dimensional, and
sort-wise noetherian;

— R is closed under T -generated M-subalgebras of finite products.

We call the objects in R recognisers and those in T term algebras.

Remark. The requirement that the recognisers are 7 -generated is no re-
striction: if ¢ : £ — U recognises a language « with A € R, then so does
ker ¢ : ¥ > R, and R is T -generated. Hence, R € R.

a

In Section I1.6, we defined a variety to be a class V ¢ Alg(M) closed
under E,-quotients and /P-generated M-subobjects of arbitrary products,
while a pseudo-variety is a class V ¢ Alg(M) closed under E,-quotients
and P-generated M-subobjects of finite products. For our present purpose,
we need a slightly different definition: to support infinite sets of sorts = we
have to add one more closure property to the classes in question.

Definition 5.1. An M-algebra % is a sort-accumulation point of a class C of
M-algebras if, for every finite subset A C =, there is some € € C and an
E-morphism ¢ : €[, — |4.

4

We will show below that there is a precise correspondence between the
following families of languages and classes of algebras.

Definition 5.2. (a) A variety of languages is a contravariant functor X’ map-
ping the full subcategory of Alg(IM) induced by all algebras of the form M~
with 2 € Alph to the category of language algebras such that

(1) each K[¥] forms a subalgebra of Lg,

(1) for ¢ : & - g, the morphism K[¢] : K[T] - K[S] is the corres-
ponding restriction of Lg : LE - L&.

(b) A class V € R is an R-variety if it is closed under

(1) images under surjective E-morphisms that belong to R,
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5. Varieties

(11) T -generated M-subalgebras of finite products,

(111) T -generated sort-accumulation points that belong to R. )

Remark. (a) Note that every variety of languages K is uniquely determined
by the domains of the algebras [2] the algebraic structure being induced
by that of LZ. In the following we will not strictly distinguish between the
view of a variety as a functor or as a set of languages.

(b) We obtain the three usual closure properties of a variety of languages
as follows. (1) The fact that IC[ T¢] is a language algebra means that IC[ T¢]
is closed under language operations (Boolean operations, Q-operations,
etc.) and under derivatives. (11) The fact that K[¢] = L¢ is a morphism
K[S] — K[Z] implies that K is closed under inverse morphisms.

() In the definition of an R-variety of algebras, closure under quotients
is superfluous as it is implied by closure under sort-accumulation points.
We have left it as a requirement in the definition to emphasise the analogy
to the usual definition in the setting with finitely many sorts.

(d) The reason why we combine the operations of taking subalgebras
and forming products into a single one is that, in general, the product of
two finitary algebras need not be finitely generated (see Section V.4 for a
counterexample).

(e) If the set of sorts = is finite and R is the class of all finite M-algebras,

an R-variety is just a pseudo-variety. P

We start with a characterisation of varieties in terms of closure operations
like in Theorem IL6.12.

Definition 5.3. For a class C of M-algebras we set

C(C) := { ¥ | Aa sort-accumulation point of some B € C },

Ho(C) = { ¥ | ¥ image of an E-morhpisms of some B € C },
H(C):=H,(C)nR,
S(C) := { A | A aT-generated M-subalgebra of some B € C },
P(C) := { Y| U a finite product of algebrasin C } . )
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Proposition 5.4. Suppose that Alg(M) has coequalisers and let )V € R be a
class of algebras.

(a) (HSP)>(V) =HSP(V).
(b) The following conditions are equivalent.
(1) Vis an R-variety.
(2) V=HSP(V) and V=C(V)
(3) V satisfies the following two statements.
o The reduct V|5 is an R|a-variety, for every finite A € E.
o Vs the closure of the reducts V|, in the sense that

AeV iff AaeV|s, forallfinite ACE.

Proof. (a) We have shown in Theorem IL6.12 that (in the notation of the
current section) (HoSP)* = Hy,SP. Since R is closed under SP, it follows
that

(HSP)? = (H,SPnR)* = (H,SP)>nR = H,SPnR = HSP.

(b) (1) = (2) immediately follows from the closure properties of an R-
variety and (2) = (1) follows by (a).

(3) = (2) It is sufficient to show that CHSP(V) = V. Hence, let U €
CHSP(V). Then¥|s € HSP(V|4) = V|4, for all finite A € . Consequently,
AeV.

(2) = (3) If U is an algebra with U|s € V|,, for all finite A € Z. Then
C(V) =V implies that A € V. For the other claim, note that

V=HSP(V) implies V|4 = HSP(V|4),

since the reduct operation |, commutes with H, S, and P. By (a), this means
that V|, is an R|4-variety. O

The aim of the rest of this section is to establish a one-to-one corres-
pondence between varieties of languages and R-varieties of M-algebras.
The arguments are mostly standard, except for some adjustments needed to
support infinitely many sorts. We start with the following observation.
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Lemma 5.5, Let V be an R-variety and k : Tz — Q a language where T € T
such that K bas a minimal algebra that belongs to R. Then « is recognised by
some algebra A € V) if, and only if, Syn(x) € V.

Proof. (<=) is trivial since syn_ : § — Syn(k) recognises k. For (=),
consider a morphism ¢ : ¥ — U recognising x with A € V. Set B :=
Z/ker¢. Since im¢@ : B — Ais an M-morphism and kergp : T - B
an E-morphism, it follows that B € V. Furthermore, ker ¢ recognises «.
As Syn(x) is minimal, we can find a morphism p : ¥ — Syn(x) with
syn, = p o ker ¢. Since syn, and ker ¢ are E-morphisms, it follows by
Lemma IL.1.7 (c) that p € E. Hence, Syn(x) € H(V) = V. O

The first step in correlating varieties of languages and R-varieties of al-
gebras consists in the following fact.

Proposition 5.6. Let V be an R-variety. The family of languages K recognised
by the algebras in V forms a variety of languages.

Proof. We have to prove two closure properties.
P prop

(1) We start by proving that K[Z] forms a subalgebra of L%, that is, that

Since all operations of L have finite arity, it is sufficient to show that
(Chr. cK[Z], forall finite C € K[Z].

Hence, consider languages ko, ..., k,—; € KC[2] for £ € T. Then there are
morphisms ¢; : T — A’ with A’ € R and languages y; € LA’ such that
ki =Le;(u;). Fix A € {ko, ..., Ky_1))L. We have to show that 1 € £[Z].
Let —»°¢ B " [],., U’ be the EM-factorisation of (@o, ..., @p_y).
Then B is a T -generated M-subalgebra of a finite product of algebras in R.
This implies that & € R. To prove that A € K[2] it is therefore sufficient to
show that the morphism e : £ — B recognises A. Note that, being a morph-
ism language algebras, Le commutes with all operations. Consequently, we

209
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have

AE <<KowwﬁKn 1 L‘Po(.”o ]L(P”‘ 1(!’[” 1)>>

L={
= (Lo x -+ x ur) (@),
<<]L moe)(y »

f((Lm(#)»L:
which implies that A = Le(v), for some v € LB.

(11) It remains to prove that, for every morphism y : & — £ between
algebras in 7, the morphism Ly : L¥ — L& restricts to a morphism
K[2] = K[S]. Hence, fix € IC{[@]. By assumption, there is some algebra
A € V recognising k. Suppose that k = Lo(u) where ¢ : £ - A and
p € LzA. Then

Ly(x) = LyLo(u) =L(gow) (),

which means that ¢ o y : & - U recognises Ly(x). This implies that
LW(K) € ’Cg[@]. 0

It remains to prove the converse direction of the correspondence. We start
with two lemmas.

Lemma 5.7. Let q: U — B be an E-morphism and let T € T Every language
Kk Tg — Q recognised by B is also recognised by .

Proof. Suppose that k = y~*[u] wherey : T - Band y : B - Q.
Since ¥ is projective with respect to E-morphisms, we can find a morphism
¢ : T > Asuch that g o ¢ = y. It follows that ¢ also recognises « since

LoLq(p) = Ly(u) = xand Lq(u) € LA 0

Lemma 5.8. Let T € T and suppose that k = Ty — € is recognised by an
algebra € such that there exists an M-morphism 0 : € - T, A withA* e R
and n < w. Then

K € <<)lo; H«;)Ln—l»]Lr
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where each A j : T — ( is recognised by some factor AR,

Proof. Suppose that k = Lo(u) for ¢ : T - Cand p : C; — Q. By
Lemma 2.4, the function Lo is surjective, Fix some v € L []; A’ with
Lo(v) = p. Since A" € R, the sets Al«f are strongly finite-dimensional.
Hence, it follows by Lemma 2.8 that there exists an w-operation @ and

languages A; € LgAk" such that
y = w[]Lpo()to), .. .,]Lp,,_I(Ay,_,)] ,

where p; : [T; AJ — A are the projections. Consequently,

x=Lo(u)
=LeLo(v)

=L(009)(w[Lpo(Ao) -+, Lpn—i(As-s)])
= w[L(U °o¢ops)(Ao),....L(cog Opnﬂ)(/\nfl)])’

where each language L(gogop j )(A j) is recognised by some factor ki, [

Theorem 5.9. Let KC be a variety of languages such that every x € IC has a
minimal algebra Syn(x) € R. A language x belongs to IC if, and only if, it
is recognised by some algebra from the R-variety V) generated by the set S :=
{Syn(x) |k e K}.

Proof. (=) Every language x € KC is recognised by Syn(«), which belongs
to V.

(<) Set V, := S and V,,4, := CHSP(V,)), for n < w. It follows from
Proposition 5.4 that V = U, <, V,. By induction on #, we show that every
language recognised by an algebra & € V,, belongs to K. For n = o, suppose
that A € IL;S is recognised by Syn(x) where x € K¢[¥] and &,T € T.
Then we have A = Lo(y) for some morphism ¢ : & — Syn(k) and a
lanuage i € LSyn(x). As Syn(x) is sort-wise noetherian, it follows by
Proposition 4.14 that u € (res, ). Thus,

A =Lo(u) € Lo[({resc)r)c] € Lo[Ke[T]] € K([S].
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For the inductive step, suppose that we have already proved the claim
algebras in V, and consider an algebra ® € V,;;. Let ¢ : T — Bbea
morphism recognising ¥ = Lo () with y € L¢B. Suppose that T = MX
for X € Alph and let A C = be the set consisting of £ and all sorts appearing
in 2. As B is a sort-accumulation point of HSP(V, ), we can find an algebra
A € HSP(S) and an E-morphism ¢ : A|4 — B|a. Since |, is projective
with respect to E-morphisms, there exists a unique morphism v, : |4 >
U4 with € 0 o = ¢|4. We turn ¥, into a morphism y : T — A as follows.
For ¢ € 2, we set

Y(sing(c)) = o (sing(c)) -

As T is freely generated by rng sing, this uniquely determines a morphism
Y : T — A of M-algebras. For s € M, it follows that

y(s) = (7m0 M(y, o sing) ) (s) = (Yo 0 7 0 Mising) (s) = Yo (s),

where the second step follows from the fact that ¥, is a morphism of M| 5-
algebras and £ € A. Consequently,

(poeoy)(s) = (noeoyo)(s) = (Hog)(s) =«(s).

Thus, « is recognised by & € HSP(V,). Using Lemmas 5.7 and 5.8 and the
closure properties of KC, it follows that x € /C. O

As we have just seen, every R-variety of algebras is associated with a vari-
ety of languages and every variety of languages is associated with an R-variety
of algebras. We conclude this section by proving that this correspondence is
bijective. As usual we start with a lemma.

Lemma s.10. Let A € R be an algebra such that every language recognised by A
has a minimal algebra in R. Then U belongs to an R-variety V if, and only if,
Syn(x) €V, for every language « recognised by .

Proof. (=) If k is recognised by & € V), it follows by Lemma 5.5 that
Syn(x) € V.
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(«<=) Suppose that Syn(x) € V, for every language « recognised by . As
A e Ais T -generated, there exists an E-morphism e: 3 - A withT e 7.
Since V is closed under sort-accumulation points, it is sufficient to show
that, for every finite A C Z, there is some E-morphism 3|, — |, with
BeV.

Hence, fix A € Z. Since ¥ is finitely generated, so is 2. By enlarging 4,
if necessary, we may therefore assume that A|, generates 2. Furthermore,
by Lemma 2.5 we can find finite sets H ¢ generating IL{A, for & € 5. For
every h € Hy with & € A, we consider the language «j, := Le(h) and the
morphism

pi=(syng )p €~ ] ] Syn(xs)-
EeA heH;
Let ¥ -7 B —# [];, Syn(k},) be the EM-factorisation of p. Since V is
closed under 7 -generated M-subalgebras of finite products, we have B € V.
For h € H; with £ € A, let p), : ier, Syn(x;) — Syn(k},) be the

projection. Then we have
Le(h) = xp = Lsyn, (resy,)
= L(pp o pon)(resy,) = Lig(L(py o ) (resy,))
where IL(pj, o ) (res, ) € L¢B. Consequently,

Le[lL¢A] = Le[(He )] = (Le[He])), € Ly[L¢B].

Since Ay is strongly finite-dimensional, we can therefore use Lemma 2.7 to
find a function q¢ : By — A with &; = qzo#. Combining these into a single
function q : B|s = A|4 we obtain €|4 = go#|s. By Lemma L5.6, this implies
that q is in fact a morphism B|, — |4 of M|, -algebras. Furthermore, it
follows by Lemma IL.1.7 that q € E. O

Theorem s.11 (Variety Theorem). Let V be an R-variety of M-algebras such
that every language recognised by an algebra in V) has a minimal algebra that
also belongs to R, and let IC be a variety of Q-languages such that every language
in IC bas a minimal algebra that belongs to R. The following statements are
equivalent.
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(1) IC consists of those languages that are recognised by some algebra in V.

)
(2) K consists of all languages x with Syn(x) € V.
(3) V consists of those algebras that only recognise languages in IC.
)

(4) V is the R-variety generated by the set { Syn(x) | x € K }.

Proof. (1) <> (2) follows by Lemma 5.5, and (4) = (1) by Theorem 5.9.

(2) = (3) If A € V and « is recognised by ¥, it follows by Lemma 5.10 that
Syn(x) € V. By (2), this implies that x € IC. Conversely, if A only recognises
languages in /C, (2) implies that Syn(x) € V for all languages « recognised
by . By Lemma 5.10 it follows that & € V.

(3) = (4) Let V, be the R-variety generated by { Syn(x) | x € K }. First,
suppose that 2 € V. Then every language recognised by 2 belongs to K and
Lemma 5.10 implies that 2 € V,. Hence, V € V,,.

For the converse inclusion it is sufficient to prove that Syn(k) € V, for all
x € K. Hence, fix a language « € C[2]. It follows by Proposition 4.16 that
every language A € L& recognised by Syn(x) is of the form

A=Le(p), forsomepce(x)andep:S 2.
Since K[Z] is a language algebra, we have ()1 € K[Z]. Consequently,
AeLo[(x)] € Lo[K[2]] € K[S].

We have shown that all languages recognised by Syn(x) belong to K. By
assumption, this implies that Syn(x) € V. O

6. Ohe Profinitary Term Bronad

The goal of this section and the next one is to derive an axiomatisation of
pseudo-varieties in terms of systems of inequalities. We start by defining the
kind of terms allowed in our axioms. The actual axiomatisation will then
be presented in Section 7 below. A natural choice for the terms would be
to take the elements of MLX, for some set X of ‘variables. But it turns out
that this does not work. To capture the restriction to M-algebras from the
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class R, we have to use a more general notion of a term. The classic result by
Reiterman characterises the pseudo-varieties of finite semigroups as exactly
those axiomatisable by a set of profinite equations. Analogously, we have to
define pro-R M-terms for our version of this theorem. While the general
definition below works for an arbitrary category D, the subsequent devel-
opment is based on duality arguments which are specific to the underlying
category. We will therefore work mostly in D = Pos.

The Bronad M 4

In this section we will make the following additional assumptions.

Conventions.
o T :={MJX | X finite }
* R is a class of M-algebras that is closed under T -generated M-subalgebras
of finite products and such that, up to isomorphism, R forms a set.

To explain how we arrive at the definition below, let us collect our re-
quirements on this set of terms. We are looking for a functor M mapping
an (unordered) set X of ‘variables’ to some set MX of ‘terms. These terms
should generalise the ordinary terms from MX,, i.e., we need an embedding
[ MX — MX. Furthermore, we should be able to ‘evaluate’ a term t € Mx
in a given M-algebra A € R with respect to a given ‘variable assignment’
B : X — A. Let us denote the resulting value by val(t; §). For ordinary
terms ¢ € MLX, this value should of course correspond to the value of ¢t in .

Thus,

val(e(¢); B) = m(MB(¢)),
where 7(M[(¢t)) is the canonical extension of f : X — A to MX — A.
Furthermore, val(t; ) should be compatible with morphisms of M-algebras.
That is,

val(; 9 o B) = p(val(t; 8)), for every morphism ¢ : A - B.
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This leads to the following construction. We work in the category of
all morphisms MIX — 2 In this category we consider the diagram of all
B : MX — U where U belongs to a given class R of recognisers. Then
we take for 1 : MIX — MX the limit. The morphisms MXX — 9 of the
corresponding limiting cone can then be taken as our evaluation maps. The
formal construction is as follows.

Definition 6.1. Let R € Alg(M) be a subcategory of M-algebras and X €
D. We denote the comma category (MX | Alg(M)) by C, the subcategory
(MX | R) by C,, and the inclusion diagram by D : C, — C.

(a) We denote by 1z : MX — Mz X the limit i1 := lim D of D, and
the limiting cone by (valg (=; 8))gec, - If R is the category of all finitary
M-algebras, we drop the subscript and simply write M, 1, and val(—; B).

(b) We turn M into a functor as follows. Given f:X =Y, the family
(val(—; B o Mif))g (where B ranges over all morphisms § : MY — % € R)
forms a cone from MX to D. As the cone (val(—; B))p is limiting, there
exists a unique function f’ : MX — MY such that

val(—; o Mf) =val(—; ) o f', forallf:MY >AeR.

Weseth = f'. j

Remark. A more concise way to define M is as the so-called ‘codensity
monad’ associated with the forgetful functor U : R — D= mapping an M-
algebra to its universe. By definition, this monad is the right Kan extension
of U along itself. Unravelling all the definitions leads to the explicit definition
above. |

Let us start by checking that MR is well-defined and reasonably behaved.
Lemma 6.2, If D is complete, the limit 1z : MIX — Mg X exists.

Proof. By assumption, D has arbitrary limits. It follows by Proposition L5.7
that so has Alg(M). Now, let D : C, — C be the diagram defining 1% :
MX - Mgz X andlet U: C - Alg(M) be the forgetful functor mapping
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B+ MIX — U to the codomain . Since R forms a set (up to isomorphism),
so does the index category Co. As Alg(M) is complete, U o D therefore has a
limit . Let (Ag)g be the corresponding limiting cone. As (f3) g forms a cone
from MX to U o D, we obtain a unique morphism ¢ : MIX — ¥ such that
Ag o ¢ = B, for all B. It is now straightforward to check that ¢ : MX — T is
the limit of D and (Ag) is the corresponding limiting cone. O

We collect a few basic facts about the evaluation morphisms that will be
useful in the proofs below.

Lemma 6.3. Let R be a class of M-algebras such that 1 exists, 4, B € R
algebras, p : MX - A, ¢ : A - B, and f : Y - X morphisms, and
s, t € Mg X.

(a) valr(=;p)oir =B

(b) ¢ ovalr(=;p) = valr (=90 )

() valr(=;B) o Mz f = valr (=; B o Mf)

(d) <ValR(—;ﬁ)>ﬁ =id.

(e) If X is finite and R is closed under T -generated M-subalgebras then, for

every § € Mig X, there is some s € MIX with valg (5; ) = B(s).

Proof. (a) By the definition of a cone, valg (—; ) is a morphism from 1% :
MX - Mz X to B : MIX — QL This is equivalent to (a).

(b) In the comma category, ¢ : % - B corresponds to a morphism from
B:MX — Ato g o f: MX — B. Hence, (b) holds again by definition of a
cone.

(c) holds be definition of Mz f.

(d) One explicit way to define the limit Mz X is to take all sequences
(ag)p indexed by morphisms 8 : MIX —  satisfying

ay=9¢(ag), forallg:A—>Bwithy=gofp.

Then the function valg (—; f8) is simply the projection to the component ag.
Consequently,

<VaIR(—;ﬁ))/j =id.
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(e) Let 8 = i o 8, be the EM-factorisation of  and let ¥, be the codo-
main of f8,. Note that U, € R since R is closed under 7T -generated M-
subalgebras. Fix § € Mz X. By (a), we have rngvalg (—; o) 2 rng f, which,
by sutjectivity of 8, implies that the two ranges are in fact equal. Hence,

there is some s € MX with 8, (s) = valg (8; 85 ). By (b), it follows that

B(s) = i(Bo(s)) = i(valr (5 Bo)) = valr (5;i 0 fo) = valr (& f) .00
Corollary 6.4. Let X beasetand f,g: C — MXfunctions.

f=g iff val(—p)of=val(—B)og, forallf:MX > A.

Proof. This statement holds generally for all limits. For our special case, we
can give a simple proof using Lemma 6.3 (d). By this lemma it follows that

feg i (ake(5B)), o f - (=), o
iff (valR(—;ﬂ) Of> = (ValR(—;ﬂ) Og> . 0
Proposition 6.5. Let R be a class such that 1 is defined. MR forms a monad
and 1g : M = Mg a natural tmnsformatton The unit map of My is € :=

1 o sing and the multiplication y : Mg o Mgp = My is uniquely determined
by the equations

val(—; ) oy = val(—; T o Mval(—;ﬁ)) , forall B.

Proof. To simplify notation, let us drop the subscript R. To see that Misa
functor, note that the uniqueness of the function f " in the definition of M f
implies that M(f og)= I\Vﬂf o Mg.

To show that 1 is a natural transformation, consider a function f : X - Y.
For every f: MY — U € R, Lemma 6.3 (c) implies that

val(=; ) o Mif o1 = val(—; f o Mf) o1
=B oMf =val(—; ) o1 o Mf.

Consequently, it follows by Corollary 6.4 that M foir=10Mf
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We define the multiplication y : M o M = M as follows. For every
morphism § : MIX — A with A € R, we have

B=pomosing
=0 M o sing
= 71 0 Mival(—; 8) o Ml o sing
val(—; T o Mval(—;ﬁ)) o1 oMiosing.

Furthermore, for two such morphisms o : MIX — QA and f: MX — B and
amorphism ¢ : A > B with f = ¢ o &, we have

(poval(—;?‘[OMval(—;(x)) :val( ;QOHOMval(—;a))
val(—; 7 o Mg o Mval(—; )

val( ;nOMval(—;(pO(x))
= val(—; 7 o Mval(—; B)) .

Consequently, the morphisms (val(—; 70 Mval(—; /3))) P form a cone from
1 o M o sing : MX — MIMX

to the diagram (MX | R). As ¢ : MX — MX is the limit of this cone,
there exists a unique map p : MIMX — MX such that

potroMiosing =1
and val(—fB)op = val(—; o Mval(—;ﬁ)) , forall 8.

Note that the first of these equations follows from the second one since, for
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every f3,

val(—; 8) o po1oMiosing

= val(—; o Mval(—;ﬁ)) o1 0Miosing

= 71 0 Mval(—; ) o Ml o sing

=710 M o sing

= omosing

=B

=val(—;f) o1,

which, by Corollary 6.4, implies that y o 1 o Ml o sing = 1.
Let us start by showing that these morphisms y form a natural trans-

formation. Hence, fix a function f : X — Y. For every § : MY — U, we
have

val(=; ) o p o MIMLf = val(~; 7 0 Mval(—; B) ) o MM f
= val(~; 77 o Mival(~; B) o MIVLf)
= val(—; 7 o Mval(—; B o Mf))
=val(—;foMf)ou
=val(—;B) oMfou.
By Corollary 6.4, this implies that g o MM f = M f o p.
The fact that € := 1 o sing is a natural transformation follows immediately

from the facts that 1 and sing are natural transformations. It therefore remains
to check the three axioms of 2 monad. For every § : MX — U, we have

val(—; B) o p o & = val(—; m o Mval(—; ) ) o 1 o sing
= 7w o Mival(—; f8) o sing
= val(—; ) o m o sing
=val(—; ),
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val(—; B) o o Me = val(—; 7w o Mival(— ﬁ))OMs

al(—; 7 o Mval(—; B) o Me)
al(—; 7 o M(val(—; B) o1 o sing))
al(—; oM([Sosmg))

<

<

<

<

al(—;Bomo Msmg)

(-
(-
(-
(-
(=8
=val(— ),
(-
(-
(-
(-
val(-

m

<

and val(—;ﬁ)oyOMy— al(—; 7 o Mival(— ﬁ))OM[/l
al(—; 7 o Mval(—; ) o M)
= val(—; 7o M(val(—; B) o u))
val(—; 7 o Mval(—; 7 0 Mval(—; B)))
;7o Mval(—;B)) o

=val(=p)opop.

|
<

1l
<

|
<

By Corollary 6.4, this implies that
poe=id, poMe=id, and poMu=poupu. O

The next lemma states that, without loss of generality, we may assume
that the morphisms 8 : MIX — 2 are all surjective. This will be convenient
in some situations.

Lemma 6.6. Let X be a finite set and R a class of M-algebras that is closed
under T -generated M-subalgebras of finite products.
(a) Co = (MX | R) is cofiltered.
(b) In the definition of Mg X, we can restrict the category C, to the surjective
morphisms without changing the result.

Proof. (a) There are two axioms to check. First, let « : MX — U and
B : MX — B be two objects of C,. We have to find some y : MIX — € and
morphisms ¢ : y > aand y:y —> B.Sety = (a, ) : MX — A x B and
let € be the codomain of ker y. Then € is a T -generated M-subalgebra of
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A x B.Hence, € € R, im y € C,, and we have morphisms p : imy - « and
q:imy — B, where p: C - Aand q: C — B are the two projections.
For the second axiom, consider two morphisms ¢,y : & — S with

o :MX - Uand f: MX - Bin C,. The set

Ci={acA|g(a)=vy(a)}

induces a subalgebra of U since, for s € MIC, we have

¢(7(s)) = (Mg(s)) = n(My(s)) = y((s)) .

For x € X, we have

p(a(x)) = B(x) = y(a(x)),

which implies that «[ X ] € C. Hence, rnga € C. Let & = i 0 &, be the EM-

factorisation of & and let ® be the codomain of &,. Then ® is a T -generated

M-subalgebra of ¥, which implies that ® € R. Furthermore, i : ¢y — «

satisfles p o i = Yo 1,

(b) Let Co, be the full subcategory of C, = (MX | R) consisting of all
morphisms 8 : MIX — 2 that are sutjective. It is sufficient to show that the
inclusion Coo = C, if final, which means, we have to establish the following
two properties.

(1) Every B € C, factorises through some f3, € Co,.

(11) Foralla, &’ € Coo, 8 € Co, and all morphisms ¢ : @ > Sand ¢’ : ' —
B, there is some y € Co, with morphisms ¢ : y > aand ¢’ : y > o'
such that oy = @' o ¢/,

(1) Given § : MIX — 9, let U, be the subalgebra of % induced by rng f3,
let i : A, — A be the inclusion function, and B, : MX — 9, be the
corestriction of B. Then f8 = i o 8. Since U, is finitely generated by S,[X]
and R is closed under finitely generated subalgebras, we have A, € R and
Bo €Co.

(11) Consider o : MX — U, o’ : MX — A" in Co, f: MX - B in C,,
and ¢ :a » fand ¢ : &' - B. Let € be the subalgebra of A x A’ induced
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by the range of y := (&, ) : MIX — A x A, As above, it follows that € ¢ R
and y € Cyo. The two projections p : € » Y and p’ : € - A’ are morphisms
of Coo satisfying p o p = ¢’ 0 p’. 0

Let us show that (in a certain sense) the transformation 1 : Ml = Mg is
the terminal object of the category of all morphisms of monads p : M = N.

Proposition 6.7. Let p : Ml = N be a morphism of monads, R a class of
N-algebras, and R, the class of their p-reducts. There exists a unique morphism

¢:N= MRP of monads such that 1z, = ¢ o p.
Proof. Fix a set X. For every morphism f8 : MIX — |, with % € R, we
define pg : NX — A by

pp = moN(Bosing).
To see that pg is a morphism of N-algebras, note that

moNug=moN(moN(Bosing))
=71 o N o NN(f o sing)
= 1 o flat o NN( o sing)
= o N(p osing) o flat = g o flat.

We claim that (ug) is a cone from p : MX — NX to (MX | R,). First,

we have

ppop=moN(Bosing)op
= (mop)oM(posing)
= f o flat o Mising
=B
where the third step follows from the fact that 77 o p is the product of the M-

algebra Q| pr while flat : MIMIX — MX is the product of MIX. Consequently,

ypisa morphism p — f of the comma category.
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Furthermore, for a morphism ¢ : 8 — y of the comma category, we have

youg=yomoN(Bosing)
o N(y o fosing)
= o N(y o sing)
= M}’ B
where the second step follows since the morphism v : § — y is induced by a

morphism ¥ : codom() — codom(y) of N-algebras.

It follows that (pp)p is a cone. As (val(—; f8))g is the limiting cone, we
obtain a unique morphism ¢ : NX — MRPX satisfying g o p = 1. We
claim that ¢ is a morphism of monads.

We start by showing that ¢ is natural in X. Hence, consider a function
f:X — Y. Note that, by definition, ¢ is the unique function such that

wl(~;B) 0 ¢ = s

Consequently, for each 8 : MIX — |, with % € R, we have
val(=;8) o 9 oNf = g o Nf

o N(Bosing) o Nf

7o N(B osingo f)
7o N(B o Mf osing)

= ,uﬁoMf
al(~§ o M) 0 g = val(~3 §) o g, f o 9.

By Corollary 6.4, it follows that g o Nf = MRP f o ¢.Hence, ¢ is a natural
transformation N = Mz, .

It remains to check the two axioms for a morphism of monads. For the
first equation, let & = 1, o sing be the unit map of MRP‘ Then

€=1IRr, osing= ¢ o posing = ¢ osing,
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where the last step follows from the fact that p is a morphism of monads.
For the second equation, consider a morphism f3 : MX — |, with % € R.

Recall that the multiplication y : MRP ) MRp = MRP satisfies

val(=; B) oy = Val(—; 7o Mval(—;ﬂ)) .
Hence,

val(—; ) opopoNg = val(—; o Mval(—;ﬁ)) opoNg
= troMval(—;8) © N¢
= o N(7 o Mval(—; 8) o sing) o Ng
=mgoN(mo sing o val(—;ﬂ) o go)
= noNyﬁ

=moN(moN(Bosing))

7o Nmo NN(8 osing)

7 o flat o NN(f3 o sing)

o N(B osing) o flat

= up o flat

=val(—; f8) o ¢ o flat.

By Corollary 6.4, it therefore follows that y o ¢ o Ng = ¢ o flat. O

Jrieftley Spaces

To continue our investigation of the monad MR, we require some tools
from topology. As these are specific to the underlying category, we will work
exclusively with D = Pos throughout this section. We start with a variant of
Stone duality for ordered topological spaces.

Definition 6.8. (a) A Priestley space consists of an ordered set A € Pos
equipped with a topology that is compact and has the following separation
property: for every pair of elements a, b € A with a £ b, there exists a clopen
set C € A which is upwards-closed and contains 4, but not b. A morphism
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of Priestley spaces is a function f : A — B that is monotone and continuous.
We denote the category of all Priestley spaces and their morphisms by PSp.

(b) We denote by Dist the category of all distributive lattices (with top
and bottom elements) and all lattice homomorphisms (preserving top and
bottom).

a

Remark. Every Priestley space is a Stone space, i.e., compact, Hausdorff,

and totally disconnected. ,

Theorem 6.9 (Priestley). The category PSp is equivalent to Dist°P.

To translate between these two categories we can map a Priestley space to the
lattices of its upwards-closed clopen subsets, and a distributive lattice to the
set of its prime filters (with a suitable topology). We start our investigation

of Priestley spaces by showing how to compute limits in PSp~.

Definition 6.10. (a) Let (¢4;)ies be a cone where p; : A - B; and each B; is
a topological space. The cone topology induced by (y;); is the topology on A
which has a closed subbasis consisting of all sets of the form y;"[ K] with
i € I and K € B; closed. If A is the limit of a diagram D : I — Pos® and we
do not specify a cone explicitly, we will always consider the cone topology
induced by the corresponding limiting cone.

(b) For a functor Ml : Pos™ — Pos for which we have defined a lifting to
PSp® — PSp®, we write PAlg(M) for the category of M-algebras in PSp=.

a

Remark. Let X be a finite set and R an R-variety. When we equip each o €
‘R with the discrete topology, we can turn MIX and Mg X into topological
spaces where the topology is induced by the cones () and (val(—; 8))3,
respectively. Then it follows by Lemma 6.3 (e) that the embedding /% :
MX — Mz X is dense with respect to these topologies. In fact, the space
Mz X can be seen as the topological completion of MIX. In particular, every
element of Mig X is the limit of a suitable sequence in MIX. In the semigroup
case, for instance, Mz X contains the idempotent power x™ which is the limit

!
of the sequence (x") 1<o- 4
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Lemma 6.11. The forgetful functor U : PSp® — Pos” reflects limits. More
precisely, the limit lim D of a diagram D : I — PSp~ is the space obtained by
equipping the set lim (U o D) with the cone topology.

Proof. Let A := limD and B := lim (Uo D) and let (4;); and (p;); be
the corresponding limiting cones. We start by showing that the cone topo-
logy on B is sort-wise Priestley. Note that B; is the subset of [1;.; D¢(1)
consisting of all families (a;); such that a; = D f(ay,), for all I-morphisms
f 1tk — 1. Hence, By = ﬂfo where

Hy:={(a;); € IT; D¢(i) |Df(“k):al}r for f 1k —1.

Since, for distinct a, b € Dg(k), we can always find a clopen set C with a € C
and b ¢ C, we can express H fas the intersection of all sets of the from

(! [N C ' [Cl) v (w' [(DHTCTT N [C),

where C, C’ range over all partitions of D¢(k) into two clopen classes. It
follows that the sets H fare all closed. By the Theorem of Tychonoff, the
product [T; D¢(i) is compact. Consequently, B¢ = N H is a closed subset
of a compact space and, therefore, also compact.

To show that the topology is Priestley, consider two distinct elements
a £ b in B. By the definition of the ordering of a limit in Pos?, there exists
anindex i € I with yi;(a) £ p;(b). Therefore we can find a clopen, upwards-
closed set C € D(i) such that p;(a) € C and y;(b) ¢ C. The preimage
C’ := u;7'[C] is clopen in B and satisfies a € C' and b ¢ C’. Suppose that
C’ is not upwards-closed. Then there are elements ¢ < d with ¢ € C’ and
d ¢ C'. Consequently, y;(c) < p;(d) and y;(c) € Cand p;(d) ¢ C. This
contradicts the fact that C is upwards-closed.

We have shown that B with the cone topology belongs to PSp~. Since
B is the limit in Pos®, there exists a unique map f : A — B (in Pos®)
such that A; = y; o f, for all i. Similarly, there exists a unique morphism
g:B—>Aof PSpE such that y; = A; o g. We can see that the function f is
continuous as follows. Let C = y;'[K] for a basic closed set K € B. Then
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fC] = (pio f)7'[K] = (A;) 7" [K]. Hence, continuity of A; implies that
the preimage f*[C] is closed.

Consequently, we can applying the same universality argument two more
times to obtain f o ¢ =id and g o f = id. Therefore, B and A with the cone

topology are isomorphic as topological space. O

The following version of compactness and its corollary below contain our

key topology-based argument.

Proposition 6.12. Let E : I — PSp be a cofiltered diagram. If all spaces E(i),
i € I, are non-empty, so is the limit lim E.

Proof. Let p; :limE — E(i), i € I, be the morphisms of the limiting cone.
Note that, by the Theorem of Tychonoff, the product [T;c; E¢(i) compact
and Hausdorff.

For each morphism f : k — [ of I, consider the set

Hy 12{(ai)i € HiE(i)|Ef(“k) = "”}'

In the proof of Lemma 6.11, we have shown that the sets the sets H fare closed.
For a contradiction, suppose that im E = N f H f is empty. By compactness,
we can then find finitely many morphisms f,, ..., f, with

Hfo ﬂ“-ﬁHf” =d.
Suppose that f; : k; = [;. Since I is cofiltered, there exists some m € I and

morphisms g; : m — k; such that

¢ I; = ljimplies f; 0 g; = fj o g,

® ki =kjimplies g; = g;,

® ki =1ljimplies g; = fjo g;.
(It follows by induction on # that such morphisms exist.) Fixing some ele-
ment a,, € E(m), we set

ak; = Egi(am) and ay = E(fiogi)(am).
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By choice of the g, this is well-defined. Let (b;); € IT; E(i) be any family
with by, = ag, and by, = a;.. Then (b;); € Hy n---nHjy, # @. A contra-
diction. O

The following consequence is what we will need below.

Lemma 6.13. Let D : I — PSp® be a cofiltered diagram and (u;); a cone
from A € PSp® to D where each y; : A — D(i) is surjective. The induced
morphism ¢ : A — lim D is surjective.

Proof. Fix an element ¢ € lim D and let (A;); be the limiting cone. To show
that 7' (c) # &, we define a diagram E : I — PSp as follows. For i € I, we
set

E(i) =" (Ai(c)) -

As singleton sets are closed and y; is continuous, E(i) is a closed subset
of Ag, where £ is the sort of c. Consequently, E(i) € PSp. For a morphism
fii— jofI,welet Ef : E(i) - E(j) be the inclusion map. This is

well-defined, since

acE(i) = pia)=Ai(c)
= pj(a) =Df(ui(a)) = Df(Li(c)) = Aj(c)

= acE(j).

By Proposition 6.12, the limit B := lim E # & is non-empty. Fix b € B. Note
that the inclusion maps E(i) — Ay constitute a natural transformation
o : E = AL where AIE denotes the constant diagram I — PSp with
value A and identity maps everywhere. Let ¢ : B — A be the induced
map between the correpsoning limits. Since

Xi(p(r(h))) = wi(z(b)) = 4i(c), foralliel,

it follows that ¢(7(b)) = ¢, as desired. O
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Our main technical tool in the next section is the following natural trans-
formation relating the functors My, and Mig, for different classes } and R.
The important case below will be where V is the R-variety under considera-

tion and R the class of all finitary M-algebras.

Theorem 6.14. Let V € R c Alg(M).

(a) There exists a unique morphism p : Mig = My, of monads that makes
the following diagram commute, for all morphisms 3 : MIX — A where
AeVand X e D

MRX > va

%mx %( iB)

(b) Suppose that X = JZ, for some finite set Z, that every algebra in R
is finitary, and that V and R are both closed under finitely generated
subalgebras of finite products. Then the induced morphism px Mp X —
I\VI[VX is surjective.

Proof. (a) Fix a set X € D=. The family (valr (= B)) ge(nixyv) forms a
cone from Mz X to the diagram defining My X. As (valy (- i B))penixiv)
is limiting, there exists a unique map py : Mg X - My, X such that

valp(—; ) o px =valg(—B), forall f:MX — .

As the equation valy (—; 8) o1y, = f§ was already proved in Lemma 6.3 (a),
it therefore remains to prove that the family p := (px ) x forms a morphism
of monads. To see that it is a natural transformation, consider a function
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f:X - Y. Then

valg (= B) o Mir f o p = valg (= f o Mf) o p
valy (= B o Mf)
valy (=3 ) o My f
=valg (=3 B) o po My f.

By Corollary 6.4, it follows that MR fop=po Mv £, as desired.

To check the two axioms of a morphism of monads, let yty) and €y be the
multiplication and unit map of Mly, and pi and &% those of M. For every
B MX — Awith U € V, we have

valy(—;B) o pour =valr(— B) o ur

= valg (= m o Mvalg (= B))
= valy (=; 7 o Mvalg (= 8)) o p
= valy(—; 70 Mivaly, (—; 8) o I\\/Hp) op
= valy(—; To Mvaly(—;ﬂ)) o Mp op
= valy (=) oy o Mpop

and valy(—; ) opoeg =valy(—;f) o poig osing
=valg (—; ) o 1 o sing
= B osing
=valy(—;B) o1y osing = valy(—; ) c ey .

By Corollary 6.4, it follows that p o g = yy o Mpopand p o er = ey.
(b) To apply the topological machinery we have just set up, we translate the
problem into the category of Priestley spaces. We equip each algebra A € R
with the discrete topology, which is Priestley since 9 is finitary. According to
Lemma 6.6 (b), we can define the limits MVX and MRX in terms of only
the surjective morphisms 8 : MX — A with % in V or R. Furthermore, it
follows by Lemma 6.11 that MVX and IVJIRX are also sort-wise Priestley
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spaces when equipped with the cone topology. In addition, the limits in the
category PSp® coincide with My, X and Mz X.

Let 5, C & be the set of all sorts & such that M[; X # &. By Lemma 6.3 (e),
it follows that these are exactly the same sorts & with MV, X+ 0, MR'gX #
@, and with A # &, for U € V. Consequently, we can perform the rest of
the proof in the category Pos. By the definition of the cone topology, all
the maps valy (—; ) and valg (—; 8) are continuous. Furthermore, since we
restricted the diagram to surjective maps 8, valg (—; ) o t = f implies that
the value maps valg (—; ) are also surjective. By Lemma 6.6 (a), My X is

a cofiltered limit. Consequently, we can use Lemma 6.13, to show that p :
Mzr X — My X is surjective. O

Sinitely Toprefentable 2lgebras

In the remainder of this section we will prove that algebras of the form
Mg |4 X are what is called finitely copresentable (at least if X and A are finite).
This is another result requiring us to work with Priestly spaces. Already the
next proposition fails in Set or Pos. Unfortunately, it also does only hold
for finitely many sorts.

Definition 6.15. An object A of a category C is finitely copresentable if, for
every cofiltered diagram D : I — C with limit C and limiting cone (A;);er,
and for every morphism f : C — A, there exists an index k € I and an
essentially unique morphism g : D(k) — A such that f = go ;.. Essentially
uniqueness here means that, if ¢’ : D(k) — A is another morphism with
f = ¢’ o A, then there exists an I-morphisms b : | - k with go Dh =
g o Dh. |

Let us note the following standard fact from category theory.

Lemma 6.16. An object A € C is finitely copresentable if, and only if, the
hom-functor C(—, A) preserves cofiltered surjective limits.

The following results makes essential use of duality. It is one of the main
reasons why we work with Priestly spaces.
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Proposition 6.17. Let = be a finite set of sorts. Every finite Priestley space is
finitely copresentable in PSp~.

Proof. First, note that the duality theorem implies that PSp° is equivalent
to (Dist®)°P. Furthermore, the corresponding translation maps finite spaces
to finite lattices, Consequently it is sufficient to show that every finite lattice
is finitely presentable in Dist*.

Hence, let € be a 5-sorted finite lattice, let D : [ — Dist” be a directed
diagram with colimit N and limiting cocone (A;);er, and let ¢ : € > N be a
lattice homomorphism. Since L is finite there exists some index i € I such
thatrng ¢ C rng A;. For every a € L, fixan element f(a) € ;' (¢(a)). This
defines a function f : L — D(i) with A; o f = ¢. But note that, in general,
f is neither monotone nor a lattice homomorphism. For 4, b € L, it follows
that

Ai(f(a)n f(b)) = 2:(f(a)) M A:(f(b))
=¢(a) M o(b)
=¢(anb)
=X (f(amb)).

By the definition of a colimit, this implies that there is some index k > i such
that

D(i,k)(f(a) 1 f(b)) = D(i, k)(f(arb)).
The same argument provides an index k > i with
D(i,k)(f(a)u f(b)) = D(i, k)(f(aub)).

Since I is directed and there are only finitely many pairs a, b € L, it follows
that we can find some index [ > i such that, foralla,b e L,

D(i, D(f(a)n f(b)) = D(i, 1)(f(a b))
and D(i,[)(f(a) v f(b)) = D(i, )(f(awb)).
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It follows that the function g := D(i, 1) o f is a lattice homomorphism
satisfying

Aopu=2roD(i,l)of=Aiof=9.

It remains to show that y is essentially unique. Hence, suppose that there
is a second homomorphism ' : € > D(I") with 1;s o 4’ = ¢. Fixing some
someindex ["" > [, 1" and replacing p and pi’ by, respectively, D(1, I"") o pt and
D(I',1") o y’ we may assume that [ = I". For every element a € L, the fact
that A;(u(a)) = ¢(a) = 1;(¢'(a)) implies that there is some index k > |
with D(I,k)(u(a)) = D(L,k)(u'(a)). As I is directed and L is finite, it

follows that we can find an index k > [ such that
D(I,k)(u(a)) =D(l,k)(4'(a)), forallaelL.
Thus D(I, k) o = D(I, k) oy, as desired. O
It remains to transfer this result from PSp~ to PAlg(M).

Proposition 6.18. Let = be a finite set of sorts and R a class of finite M-algebras.
The functor Ml preserves cofiltered limits.

Proof. We obtain a very concise proof if we employ a bit of category-theor-
etical machinery. I have tried to present the proof in a way that it should be
intelligible without knowledge of the actual definitions of the terms involved.

As already noted above one can define Mi as the codensity monad associ-
ated with the forgetful functor I : R - PSp® maping an M-algebra &% € R
to its universe A (equipped with the discrete topology). By definition, this
means that

MR =Rany I

is the right Kan extension of I along itself. Furthermore, we can compute
such a Kan extension as

Ran: 1)(X :/ 90 PSpS(X,IQ[):[ APSPT(X,4)
( an )( ) QleR( ) AeR
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6. 'Ihe profinitary term monad

where the integral sign is a certain kind of limit for binary functors called
an end. Note that we have seen in Lemma 1.2.9 that there exists a natural
isomorphism

PSp®(B, AX) = Set®(X, PSp®(B, A)),

for sets X € Set® and spaces A, B € PSpE. For a fixed space 4, it follows
that AC) @ (Set®)°P — PSp” is the right adjoint of the hom-functor
PSp® (-, A) : PSp® — (Set®)°P. This in particular implies that A(™) pre-
serves all limits. Furthermore we have seen in Lemma 6.16, that a space A €
PSpE is finitely copresentable if, and only if, the hom-functor PS pE(—, A)
preserves cofiltered surjective limits. As we have seen in Proposition 6.17
that the universe of a finite M-algebra is finitely copresentable in PS ps, it

follows that the composition APSP*(=4) preserves cofiltered limits, for every
AeR. )
Given a cofiltered diagram D : ] - PSp~, we therefore have

Mz (lim D) = (Ran; I)(lim D)
- f APSP*(limje; D()),4)
AeR

- f lim APSP*(D()),4)
AeR je

= lim / APSPT(D()4) _ limMRD(j) )
jeJ JAR jeJ

where the fourth step follows by the fact that an end is a limit and limits
commute, O

Lemma 6.19. Let C be a category, Ml : C — C a monad preserving cofiltered
limits, and X an M-algebra with finitely copresentable domain A. Then A is
finitely copresentable in Alg(M).

Proof. Fixa cofiltered diagram D : I — Alg(M) with limit € and a limiting
cone (A;)ier, and let ¢ : € — A be a morphism of M-algebras. As the
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domain A is finitely copresentable, there exists an index k € I and a C-
morphism f : D(k) — A such that ¢ = f o A;. Since ¢ and Ay are

morphisms of M-algebras, we have

fomoMAp=fold,om=ponm=moMe=moMfoMA,.

\
M,

C A MM,
\k‘ x Dh
M D(k) «——MD(k) «——MD(m
‘ I (k) « 22— MD(m)

/ f,
Mf

As Ais finitely copresentable and MIC is the limit of Mo D with limiting cone
(MA;);, we can find an index m € I and an essentially unique morphism

f":MD(m) — A such that
moMeg = f o MA,,.

Since I is cofiltered, there exists an index m’ € I and I-morphisms g : m" —
mand b :m’ — k. Replacing m by m’ and f’ by f’ o Dy, we may therefore
assume w.l.o.g. that there exists an I-morphism b : m — k. By essential
uniqueness of f’, we can find a morphism b’ : m" — m

fomoMDhoMDb' = f' o MDh' = 7o Mf o MDh o MDh'.
Consequently, ¥ := f o D(h o b') satisfies
yon=foD(hoh')on
= fomoMD(hoh')=moMfoMD(hoh')=moMy,
and ¢=foldp,=foDhold, =yold,.

Hence, v is the desired morphism of M-algebras. For essential uniqueness
of ¥, note that A is finitely copresentable. Consequently, ¥ is even essentially
unique as a C-morphism. O
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Corollary 6.20. Let A C E be a finite set of sorts and R a class of finitary M-
algebras. For everyﬁnitiset Xe PSpA, the MR|A-algebm MR|AX is finitely
copresentable in PAlg(Mg|s).

Proof. By Proposmon 6.17, the set X (with the discrete topology) is ﬁnltely
copresentable in PSp”. As we have shown in Propositon 6.18 that M| A pre-
serves cofiltered limits, the claim therefore follows by Lemma 6.19. O

7. 2riomatifations

After the preparations in the previous section we are now able to define
the type of inequalities we use to axiomatise R-varieties and to prove the
characterisation theorem. To apply the results of the preceding section, we
again work in D = Pos.

Convention. In this section, we denote by R the class of all finitary M-algebras.

Definition 7.1. Let X € Set® be finite and V) € R.

(a) An M-inequality over X is a statement of the form s < t with s, t €
MIX.

(b) An algebra U € R satisfies an M-inequality s < t over X if

valg (s; B) < valg(t; ), forall f: MJX — .

We write U = s < t to denote this fact.
(c) The Mi-theory Th(V) of V is the set of all M-inequalities s < ¢ satisfied
by every algebra in V. (We do not fix the set X these inequalities are over.)
(d) A set @ of M-inequalities (possibly over several different sets X)
axiomatises the following subclass of V.

Mody, (@) :={QlEV|9II=sStforallsSt€(D}.

a

Let us start with the following important property connecting the theory
of a class V to the morphism py from Theorem 6.14.
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Lemma 7.2. Let V be a class of M-algebras, X a finite set, and s < t an
M-inequality over X. Then

s<teTh(V) iff  py(s) <py(t),

where py : M = My, is the morphism from Theorem 6.14.

Proof. By Lemma 6.3 (d), we have

Aes<t, foralldA eV
iff valg(s; ) <valr (), forall f: MJX - A eV
iff valy(py(s); B) <valy(py(t);B), forallf:MJX - AeV
iff  py(s) <pv(t). O

The easier direction is to show that every axiomatisable class is an R-
variety.

Proposition 7.3. Let V be an R-variety and @ a set of M-inequalities. Then
Mody (@) is an R-variety.

Proof. We have to check three closure properties. First, consider a finitary
subalgebra 9 of a product [T;c; B with B’ € Mody (®). Let py, : [1; B* -
B be the projection. For s < t € @ over X and  : MJX — it follows that

pr(val(s; B)) = val(s; pi o B) < val(t pi © B) = pi(val(t; ) ,

where the second step follows from the fact that B* & s < t. As the ordering
of the product is defined component-wise, this implies that val(s; ) <
val(t; B). Consequently, & € Mody, ().

Next, consider a quotient g : B — A with B € Mody (D). Fixs <t € @
over X and 8 : MIJX — Q. Since q is sutjective, we can use Corollary I1.6.4
to find some y : MJX — A with § = g o y. Then

val(s; B) = val(s; g o0 y) = q(val(s; y))
< q(val(t;9)) =val(t;qoy) = val(t; ),
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where the third step follows by monotonicity of g and the fact that B = s < t.
Consequently, & € Mody ().

Finally, suppose that U is a sort-accumulation point of Mody, (). Fix
s<te Dover X and f: MJX — . We have to show that

valy (s; B) < valy(t; ).

Suppose thats, t € MfJX and let A C Z be a finite set of sorts containing &
and all sorts in X. By assumption, there is some algebra B € Mody (®)
and a surjective morphism g : B[, — U|,. By Corollary I1.6.4, we can find
a morphism y : M|, JX — B4 with S|4 = poy.Since B E s < tand
s, t€ MMJX, we have (working in the category POSA)

valy (s; B|a) = valy(s; poy)
= u(valy(s; 7))
< u(valy(t; B))
=valy(t; poy) =valy(t;Bla)-

Since valy (= B]a) = valy (= B) I M|sJX, it follows that A = s < t. [

For the converse statement — that every R-variety is axiomatisable — we
start with a proposition.

Proposition 7.4. Let V be an R-variety. Then
V = { | A a finitary quotient of MyJX for some finite set X } .

Proof. () Let A € V. As U is finitely generated, there exists a surjective
morphism f : MIJX — U, for some finite set X. The claim follows since
val(=; B) o 1 = B implies tha that val(—; ) : Miy,JX — 2 is also surjective.

(2) Let A be finitary and ¢ : MyJX - o surjective. We have to show
that ¥ € V. As V is closed under sort-accumulation points, it is sufficient
to show that, for every finite set A C = there is some algebra B € V and a
surjective morphism B|4 — U|4. Hence, fix A € E. Note that, according to
Lemma 6.11 we can define the set My, |aJX as the limit of a cofiltered diagram

239
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in PSp”. Furthermore, we have seen in Corollary 6.20 that the M
My [, JX is finitely copresentable in PAI g(My|,). Therefore, there exists
an algebra B € V and morphisms § : MJX — B and p : B|4 - Y|4 such
that |4 = p o val(—; f8)|4. Since ¢|4 is surjective, so is . Consequently,
Q|4 is a quotient of B4 and B € V. O

Corollary 7.5. Let V and VW be R-varieties.
(@ Vew if Th(V)2Th(W).
(b) Mod(Th(V)) =V

Ijlfoof (:>) follows immediately by definition. For (<), let py x =
MJX — MVJX and pyy x : MIX - MW.,]]X be the morphisms from
Theorem 6.14. It follows by Lemma 7.2 that

Th(W) c Th(V) implies ker pyy x Ckerpy x -

Hence, we can use the Factorisation Lemma to find a morphism qx :
My JX — MyJX such that pv,x = qx © pw,x- By Theorem 6.14, the
morphism py, x is surjective. Hence, so is ¢x. That means that MyJX is
a quotient of My JX. Consequently, every quotient of My JX is also a
quotient of MlyyJX and it follows by Proposition 7.4 that V ¢ W.

(b) We have seen in Proposition 7.3 that the class W := Mod(Th(V)) is
an R-variety. We have to show that V = W.

(€) Let A € V. Then we have A = s < ¢, for every s < t in Th(V). This
implies that & € Mod(Th(V)) = W.

(2) By (a) it is sufficient to prove that Th(WW) 2 Th(V). Hence, lets < ¢
bein Th(V). Then ¥ = s < ¢, for all ¥ € Mod(Th(V)) = W, which implies
that s < t belongs to Th(W). O

We are finally able to state our Reiterman theorem for pseudo-varieties

of M-algebras.

Theorem 7.6. Let R be the class of all finitary Ml-algebras. A class V is an
R-variety if, and only if, it is of the form V = Modg (D), for some set O of
M-inequalities.
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Proof. (<«=) was already proved in Proposition 7.3, and (=) follows by
Corollary 7.5 since V = Modg (Th(V)). O

Ylotes

Monadic frameworks for formal language theory were initially put forward
by Bojariczyk [9]. Later on they have been generalised and fleshed out in
(38, 42, 32, 10, 7].

The material on minimal algebras in Section 3 is taken from lecture notes
by Bojaniczyk [10]. Theorem 3.11 is unpublished work of Bojaficzyk and
Plotkin.

"The sections on pro-finitary terms and Reiterman’s Theorem are based
on 20, 42]. An introduction to Priestley spaces can be found, for instance, in
Chapter 11 of [21]. For a thorough introduction to profinite groups, see [37].
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IV. Pogic

1. 2bftract Logics

MAJOR APPLICATION OF ALGEBRAIC LANGUAGE theory consists in
A deriving criteria for when a language is definable in a given logic. In
this section we will introduce an abstract framework covering a large number
of the logics used in practice. Our focus will be on isolating some abstract
properties of a logic ensuring that the corresponding language family forms
a variety and, thus, fits into our framework. In the next section we will then
investigate what it means for a language to be definable in a given logic.

Definition .1. Let Q € D be a set of weights and let Q € D? be the set with
f)g =0, forall £ E,

(a) An Q-valued logic s a triple (L, M, Mod) consisting of a set L € Set®
of formulae, a class M ¢ DE of models, and a model function

Mod: L - D*(M, Q).

We call Mod (@) : M¢ — Q the class of models of ¢ € L. To keep notation
light, we usually identify a logic with its set of formulae L.

(b) For a logic (L, M, Mod), we define the satisfaction function
() VMxL->VQ by (M;g):=Mod(p)(M),
and the theory function
Thy, = (Mod(p))ger : M — Q.

We call Thy, (M) the L-theory of M.
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IV. Logic

(c) The congruence
eq(L) = ker Thy : M — M/(ker Thy) € QF.
is called L-equivalence. ,

Remark. (a) If D is one of Pos or Set and Q = {o,1}, we usually replace the
satisfaction function {{ -; - )) : M x L — {o,1} by the relation = € M x L
which is defined by

MEeg :iff <<M;g0>>:1.
Then we have

Th(M)={¢ecL|MEg¢},
and Mod(¢)={MeM|MEg¢p}.

Note that Mod(¢) is a set, while Thy (M) € D. For D = Pos, the ordering
on Thr, (M) is given by

o<y if NEeE¢ = Nry, foralNeM,
iff ¢@impliesy.

(b) In Set, L-equivalence eq(L) reduces to the well-known relation =,

given by
M=, N :iff (M;¢)=(N;¢), forallpelL.
In the unweighted case, this reads
M=, N :iff Me¢p<=NEgp, forallpelL.
In Pos, we obtain a preorder £, instead, which is given by

Mcep N :iff (M;e) <{N;¢), forallpelL,
or MEL N :iff MEkE¢=>NEkg¢, forallpelL. j
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Examples. (a) Let L be the set of all finite (word) automata over a fixed
alphabet X and set M := 2*. For A € L and w € M, we define

weA :iff  Aaccepts the inputw.

(b) For a given signature X, a set X, of first-order variables, and a set
X, of set variables, we can define monadic second-order logic as

(MSO[Z, X,, X, ], Alg[2, X,, X, ], Mod)

where MSO[Z, X, X, ] is the set of all monadic second-order formulae over
the signature X with free first-order variables in X, and free monadic second-
order variables in X, ; and Alg[X, X;, X, ] is the set of all triples (2, 8, f3.)
where U is a X-structure and 8, : X — Aand f3, : X — £(A) are variable
assignments. We use Q = {0, 1} as truth values and the satisfaction function
maps a pair (M, ¢) to 1if M = ¢ and to o otherwise. )

For multi-valued logics we have to distinguish two different notions of
definability. Strong definability is the obvious generalisation from the 2-sorted
case, whereas weak definability may appear less natural at first sight, but turns
out to be much better behaved if the logic in question is not closed under all
Q-operations. For this reason, we will mainly used weak definability below.

Definition 1.2, Let £ = (L, M,Mod) and £" = (L', M’, Mod) be Q-
valued logics.

(a) The extension of L by Q-operations is the logic
L£[Q] = (L[Q], M, Mod),

where L[ Q] is the set of all pairs (w, ¢) such that w : Q" - Q is an Q-
operation of some arity n < w and ¢ € L” an n-tuple of formulae. We use
the syntax w[ @] for such a tuple. The satisfaction function is defined by

Mod(w[¢]) = w[Mod(goo), cee Mod(go,,_l)] .

(b) A class C : Mg — Qs strongly L-definable if C = Mod(¢), for some
¢ € L. Itis (weakly) L-definable if it is strongly L[Q]-definable.

245



IV. Logic

(c) A strong morphism (A, u) : L — L' consists of functions A : L — L'
and y : M’ — M such that

(M 52(p)) = (u(M"); 9), forallgp € Land M" e M'.

(d) A (weak) morphism (A, u) : L — L is a strong morphism £ —
L'[Q]. We denote the category of all logics and their (weak) morphisms by
wlog.

a

Note that, for logics L that are closed under all Q2-operations, the logics
L and L[ Q] are equi-expressive. Hence, there is no distinction between weak
and strong definability, and none between weak and strong morphisms. For
instance, for D = Pos and Q = {0, 1}, this is the case if the logic in question
is closed under finite meets and joins. Similarly, for D = Set and Q = {o,1},
we need closure under all finite boolean operations. Unfortunately, if the
set Q of truth values is infinite, strong definability and weak definability are
usually different, and the latter notion is often better behaved than the more
standard notion of strong definability. For this reason, we will focus on weak

definability below.

Example. Every MSO-interpretation T (from the signature X to I') gives rise
to a morphism MSO[ I, @, @] = MSO[ X, &, @] since we can construct, for
every formula ¢ € MSO[I, @, @], some formula ¢* € MSO[Z, &, @] with

(Mg iff Axg¢’, forall Z-structures N.

(Just replace in ¢ every atomic formula containing a relation symbol R € I'

by the formula from 7 defining R.)

a

Let us isolate a few simple conditions for when a class of models is defin-

able.

Lemma 1.3. Let (L, M, Mod) and (L', M’, Mod) be Q-valued logics.
(a) AclassC: Mg — Qis L-definable if, and only if,

eqg(4) <C,  forsome finite A C L.
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(b) For sort-wise finite sets A € L and A" € L', and a function f : M — M’
the following two statements are equivalent:

(1) qu(A) < ker (eqf(A') o f)
(2) IfC : ./\/lfE — Qis A'-definable, then f7*[C] : My - Qis A-
definable.

Proof. (a) (=) Suppose that
C = w[Mod(¢,),...,Mod(¢,—)]-
For A :={¢o, ..., Pn_1}, it follows that

C = wo (Mod(¢o),...,Mod(pny))

=wo ThA

= (woimThy) okerThy = (w 0imThy) 0 eqe(4).
Consequently, eq¢(4) < C.

(<) Set © := M/eq(A) and fix a morphism w, : @f - Q such that

C = wo0eqg(A). Since imThy ¢ : O > 0% is an M-morphism and Q is
injective, we can extend w, to a function w : 04 > O with w oim Thy¢ =
w,. Consequently,

C=w,0 eqs(A)
=woimThy s okerThy ¢
—woThy
= w[Mod(¢s), ..., Mod(¢,-1)],

where ¢, ..., ¢,_; is an enumeration of Ag.
(b) (1) = (2) Suppose that C : M,E — 2 is A'-definable. By (1) and (a),
it then follows that

eqg(4) < ker (qu(A’) of)<ker(Cof).

Hence, (a) (applied to the logic A instead of L) implies that f~'[C] is A-
definable.
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(2) = (1) Suppose that eq;(A) < ker (eq;(A") o f). Note that every
class Mod(¢) with ¢ € A’ is trivially A’-definable. By assumption, it there-
fore follows that f"[Mod(¢)] is A-definable. Hence, (a) implies that

eqg(4) <ker (Mod(g) o f), forallgpe Al

Consequently,

qu(A) < H ker (Mod(¢) o f)
q)eAg
= ker((Mod((p))q,eAé Of)
ke (Thy o f)
= ker (eqf(A') of). O

Remark. In the category Pos, the above conditions simplify to the following
ones.

() Mty N implies C(M)<C(N).
(b) Mcs N implies f(M)cu f(N).

For Set, we just have to replace £4 by =4, and < by =.

a

The next result provides a characterisation of when a map on models is
part of a morphism of logics.

Lemmarg4. Let £L = (L, M,Mod) and L' = (L', M’, Mod) be Q-valued
logics and p : M" — M a function. The following statements are equivalent.

(1) There exists a function A : L — L' such that (A, ) : L - L' isa
morphism of logics.

(2) IfC: Mg — Q is L-definable, then u™*[C] : M} - Q is L'-definable.

(3) For every sort-wise finite A C L, there exists a sort-wise finite A" C L' such
that

eq(4") < ker (eq(4) o ).
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Proof. (3) = (2) Suppose that C : M; — Q is L-definable. Then it is A-
definable, for some finite set A € L. By assumption, we can therefore find
some sort-wise finite set A’ € L’ such that

eq(4") < ker (eq(4) o p).

By Lemma 1.3 (b) this implies that C o g is A’-definable. In particular, it is
L'-definable.

(2) = (1) We define A : L — L' as follows. For each ¢ € L, the class
Mod(¢) is obviously L-definable. By assumption it follows that the preimage
Mod( @) o u is L'-definable, i.e, there are formulae y/,..., ¢! € L' and an
Q-operation w : Q" — Q such that

Mod(¢) o y = w[Mod(¥,), ..., Mod(y,_;)].

We can therefore set A(¢) := (@, Wo, -+, Wn—).
(1) = (3) Given A € L, we set

A, ::U{{WO;HHV,n—I} | (PEA’ A((P): <wy1//o;~~~;v/n—l>}'
Then

Mod(¢) o u = w[Mod(¥,),...,Mod(y,—;)], foreverypeA.
Consequently, there exists a function y : 0% - 0% such that

{(Mod(¢))gea o ¢t = x o (Mod(y))year -
Hence,

Thar = (Mod(y))yea < (Mod(¢))gea o pt = Tha o p,
which implies that

eq(A") = ker Thyr < ker (Thy o p) =eq(A)ou. O
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Here, we are mainly interested in logics whose class of models is of the
form M = MZ with X € Alph, as these can be used to define languages.
As with families of languages, we also need to consider families of logics

indexed by the alphabet used.

Definition 1.5. (a) A logic L is over an alphabet X if its class of models is
equal to M,
(b) A family of logics is a functor L : Alph — wlLog such that

o for every alphabet %, the image L[X] is a logic over X,

o for every function f : X — I, the image L[ f] is a morphism (A, y) :
L[Z] - L[I'] with p = M.

(c) Let L be a family of logics. A family of languages K is L-definable if,
for all alphabets X and all sorts &, every « € IC¢[ 2] is L[ X]-definable.

(d) Let L be a family of logics and A € D finite. We call a function
k : MA — Q L-definable, if the language x o M : MJVA — Qis L[JVA]-
definable.

(e) A family L of logics is varietal if the class of all L-definable languages
forms a variety of languages.

(f) We call a family of logics L (sort-wise) finite if, for every alphabet X,
the set of formulae L[X] is (sort-wise) finite.

(g) To keep notation light we will drop the signature in cases where it is
understood. Thus, we will usually write L instead of L[X]. )

Example. For the word monad MIA := A* and monadic second-order
logic, we can define a family MSO that maps an alphabet X to the logic
MSO[ 2, @, @] where

3:={E,<}u{P,|aecx}

is the signature consisting of the successor relation E, the ordering <, and
predicates P, for all letters in . |
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2. Tompol(itionality

As the notion is very general, there is not much one can prove for an arbitrary
logic. To get non-trivial statements we need some kind of restriction. As
languages come equipped with a monadic composition operation, it is natural
to require our logics to be well-behaved under this form of composition.

This leads to the following definition.

Definition 2.1. A family L of logics is M-compositional if, for every finite
subfamily @ C L, there exists some sort-wise finite subfamily ® c A c L
such that

eq(A[Z]) is an M-congruence on M¥,  for all alphabets . )
Example. For words to, ..., 4py_1, Vo, ..+, Vy—y € X* we have
u; =mso,, Vi, foralli, implies uo--4y_; =m0, Vo Vi1,

where MSO,,, denotes the set of MSO-formulae of quantifier rank at most m.
Consequently, MSO is Ml-compositional for the word monad MIA = A*. |

The importance of M-compositionality stems from the fact that the set
of theories of such a logic forms an M-algebra.

Proposition 2.2. A family of logics L is M-compositional if, and only if, for
every finite subfamily @ C L, there exist

* a sort-wise finite subfamily @ C AC L,

& a functor ©4 : Alph — Alg(M), and

* a epimorphic natural transformation 6, : (M | Alph) = 6,4
such that

(04)s =eq(A[Z]), foreveryX.

Proof. (<) Given @ € L, choose @ € A € L such that eq(A[Z]) = 0,.
Since 0, is a morphism of M-algebras, it follows that eq(A[X]) is an M-

congruence.
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(=) Given @ € L, choose @ € A ¢ L such that eq(A[X]) is an M-
congruence, for all X, Set

O,% = MZ/eq(A[Z]) and (64)s:=eq(A[Z]) : MZ - ©,%.

Given a function f : ¥ — I, we define the morphism O, f : @y — @I
as follows. By definition of a family of logics, L[ f] = (A, M f) is a morphism

of logics. Hence, Lemma 1.3 implies that

eq(A[2]) < ker (eq(A[I']) o M).

Consequently, there exists some function  : @42 - @41 with

Yo 0a=yoeq(A[Z]) = eq(A[l]) = 04 o M.

We set O f =y
From this definition it immediately follows that 0, is a natural transform-
ation Ml = ©, since

@AfOHA :64 OMf.

Hence, it remains to show that ®, is a functor. Consider two functions

f:2—>Tand g: T - Y. By the equation we have just established, we have

©a(gof)o0s=0,0M(go f)
=0, 0o MgoMf
= @Ago GAOMf: @Ago @AfOHA.
As 0, is an epimorphism, this implies that @5 (go f) = Opgo O f. O

It follows immediately from the definition that the algebras ©®, % are
sort-wise finite-dimensional.

Lemma 2.3. Let A be a sort-wise finite set such that © o X exists. Then O, X is
sort-wise strongly finite-dimensional.
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Proof. By definition we have
ker 05 = eq(A) < kerMod(¢), forallgpeA.

For every ¢ € A, we can therefore find a function gy, : @42 — Q such that
tho © 04 = Mod(9).

It is sufficient to prove that e := (g ) gea : @2 - Q belongs to M. Note
that

e 0s = (Mod(¢))pea = Tha
implies that
ker(eo8,) =kerThy =eq(A) =0,4.
Consequently, e € M. O

It follows immediately from the definition that the theory algebra ©, %
recognises every A-definable language.

Lemma 2.4. The morphism 05 : M — ©4Z recognises every A-definable
language x : MY — Q.

Proof. Suppose that k = w[Mod(¢,), ..., Mod(¢,_,)] for some formulae
@os+++» Pn—y € A and an Q-operation w : Q" — . Since

04 =eq(A[Z]) <eq({9i}), foralli<mn,

we have

04 <infeq({g:})
= inf ker Mod(¢;)
1<n
= ker (Mod(¢;))i<n
<ker (wo (Mod(¢;))icn) = kerxk.

Consequently, we can use Lemma II1.3.1 (a) to show that 6, recognises .

O
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Corollary 2.5. Suppose the L is M-compositional, A C L a sort-wise finite set
such that 05 exists, and let k : M2 — Q be a language with a syntactic algebra.
Then « is A-definable if, and only if,

eq(A) < kersyn,_ .

Proof. (=) As 0, recognises k, we can use Theorem II1.4.9 to find a func-
tion p : @4 — Syn(k) with p 0 6, = syn_. It follows that

eq(A) =ker0, <ker(pof,) =kersyn_.
(«=) By Lemma I11.4.7, we have
eq(A) <kersyn, <kerx <.
Therefore Lemma 1.3 implies that « is A-definable. O

Corollary 2.6. Suppose the L is Ml-compositional, A C L a sort-wise finite set
such that 04 exists, and let k : Mg 2 — Q be A-definable. If the minimal algebra

Syn(x) exists, it is sort-wise weakly finite-dimensional.

Proof. As 0, recognises k, we can use Theorem II1.4.9 to find a function
p:0,% — Syn(x)with pofl, = syn,.Sincesyn, and 0, are E-morphisms,
so is p. Furthermore, we have shown in Lemma 2.3 that ©®, % is strongly
finite-dimensional. O

Next, let us take a look at the closure properties of definable languages.
Our first observation concerns closure under inverse relabellings, which
holds for every logic L. Then we show that Ml-compositionality implies, but
is slightly stronger than, closure under derivatives.

Lemma 2.7. Let L be a family of logics. The class of L-definable languages is

closed under inverse relabellings.

Proof. If f : ¥ — I'is a morphism of Alph, it follows by the definition of a
family of logics that there is some function A such that L[ f] = (A, Mf) isa
morphism of logics. Consequently, it follows by Lemma 1.4 that (MLf ) ™" [« ]
is L-definable, for every L-definable language x : Ml;I' — Q. O
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Lemma 2.8. Let L be an M-compositional family of logics, and let A € L be a
subfamily such that eq(A) is an M-congruence. Then

eq(A) <eq(A)op, forallcontexts pe M(Z+0).

Proof. By Lemma III.4.3, there exists some context q with
qoBp=00p.

Hence, 04 < ker (04 o p), and it follows that
eq(A) =0, <ker(640p) =ker(eq(A)op). O

Usually, the theory algebras ®, % from Proposition 2.2 are not very well
understood. (Otherwise, we would not need to introduce a special algebraic
framework to study definability questions.) To shed a bit more light on what
these algebras look like, we present an alternative construction for the theory
functor O.

Definition 2.9. Let L be a family of logics such that every L-definable
language has a syntactic algebra. The syntactic theory morphism (for an alpha-
bet X) is

éL = (SYnMod(¢)>¢EL[2] MY — H Syn(Mod(go)) .

peL[X] 1

Lemma 2.10. Let L be a family of logics such that every L-definable language
has a syntactic algebra, and let A € L be sort-wise finite. The following statements
are equivalent.

(1) The class of A-definable languages is closed under derivatives.
(2) eq(A) = ker 04(t).
(3) eq(A) <ker(eq(A)op), forevery contextp.

Proof. (1) <> (3) We have shown in Lemma 1.3 (b) that

eq(A[Z]) < ker(A[Z] o p),
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if, and only if, p™"[k] : M2 — Q is A-definable, for every A-definable
K: Mgz - 0.

(2) < (3) First, note that eq(A) o p = eq(4) for the empty context
p = sing(0). Consequently, (3) is equivalent to

eq(A) = inf { ker (eq(A) o p) | p a context } .
'The equivalence of (2) and (3) therefore follows from the fact that

ker @, = inf { ker YD Mod(g) |peA}
= inf { ker (Mod(¢) o p) | ¢ € A, p context }
= inf { ker ((Mod(¢))gea © p) | p context }
= inf { ker (Thy o p) | p context }
= ir;fker (eq(A) o p),

where the second step follows by Lemma II1.4.7. O

Theorem 2.11. Let L be a family of logics such that every L-definable language
has a syntactic algebra. The following statements are equivalent.

(1) L is M-compositional.

(2) For every finite @ C L, there exists a sort-wise finite @ C A C L such that
the class of A-definable languages is closed under derivatives.

Proof. (1) = (2) This follows immediately from Lemma 1.3 (b) together with
Lemma 2.8.

(2) = (1) Given a subfamily A € L with the above closure properties,
it follows by Lemma 2.10 that eq(A) = ker 0. 1In particular, eq(A) is an
M-congruence. O

Apart from a criterion for M-compositionality, this theorem also gives
us an explicit construction of the theory algebra @, % in language-theoretic
terms. It therefore provides a more direct link between properties of alogic L
and properties of the class of L-definable languages.
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3. Definable 2lgebras

We have finally arrived at the central part of this chapter where we make
the connection between algebra and logic. It follows from Theorem IIL.5.11
that, to every varietal logic L, there corresponds a unique R-variety ' of
M-algebras recognising the family of L-definable languages. We would like
to use these Ml-algebras to study the expressive power of our logic L. To do
so, we need to know as much as possible about how the algebras in V look
like. Unfortunately, Theorem IIL5.11 does not tell us very much about that.
The following definition provides a slightly more concrete description.

Definition 3.1. Let U be an M-algebra and L a family of logics.

(a) A finite subset C € VA is L-definably embedded in U if, for every sort
¢ € 5 and every function y : Ay - Q, the composition g o 7 | M JC is
L-definable.

(b) A is locally L-definable if every finite subset C € VA is L-definably
embedded in 9.

(c) U is L-definable if it is finitely generated, sort-wise weakly finite-
dimensional, and locally L-definable.

a

Remark. Suppose that D = Pos and Q = {o,1}. A subset C of U is L-
definably embedded if, for every subset P € A, the preimage

7' [fP] n MC is L-definable.

Furthermore, being weakly finite-dimensional is the same as being finite.

a

Example. For the word functor MIA = A¥, every finite algebra (i.e., every
finite semigroup) is MSO-definable since we can evaluate products in MSO.
(Just guess a labelling that associates with every position the product of the
corresponding prefix.)

The same is true for the functor M(A,, Ao} = (AT, AT A U A?) for
infinite words, and for the functor for finite trees. (For the former, one can
use a reduction to the semigroup case via a simple application of the Theorem
of Ramsey; for the latter, one can compute the product of a tree bottom-up
similarly to the semigroup case.)
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For infinite trees the situation is more complicated: there exist finitary
algebras that are not MSO-definable. One such example will be presented in
Section V.4. ,

If our logic L is sufficiently well-behaved, it immediately follows from this
definition that L-definable algebras only recognise L-definable languages.
(The converse, that every L-definable language is recognised by some L-
definable algebra, is harder to prove. We will do so in the next section.) Note
that this correspondence — besides being trivial — is also not that useful for
understanding the expressive power of L as the definition makes essential
use of L-definability. But the above definition can serve as a starting point
for deriving more useful descriptions — that of course will be specific to the
logic in question.

Before proving that the L-definable algebras are exactly those that only re-
cognise L-definable languages, let us start by looking at definably embedded
sets.

Lemma 3.2. Let L be a family of Q-valued logics and U a sort-wise weakly
finite-dimensional M-algebra. A finite set C € VA is L-definably embedded
in A if, and only if, there exists a sort-wise finite set A € L[ C] such that

eq(A) I MJC < ker (n } MIJC).
Proof. (<=) Let A be a sort-wise finite set such that
eq(A) I MIJC < ker (m } MJC).
For y: Ay — Q, it follows that
eq(A) I MIJC < ker (m | MJC) < ker (uom I MJC).

By Lemma 1.3 (a) this means that g o 7 | M;C is L-definable.

(=) Since A is weakly finite-dimensional, there exist morphisms g; :
Ag — Aand eyt Ag - 0%, for some dg < w, with q¢ € E and ez € M. Set
q:= (qg)g, e = (65)5, let j: C - VA be the inclusion, and set

o :=moM(qoroJj): MIC - A
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be the restriction of the product. Since MIJC is projective with respect to
E-morphisms and q € E, we can find morphisms g MEJC - Ay with

qe o g =T, forall &,

Let p; : Q% — Q be the projection to the i-th component. As C is L-
definably embedded in I, we can fix, for every i < d¢, a finite set Ag; € L of
formulae such that the composition p; o eg o 71¢ is Ag, ;-definable. The union
A = Ugez Ui<q, Ag,i is sort-wise finite and satisfies

eq(4) <eq(Ag,;) <ker(pioeso),
where the second inequality follows by Lemma 1.3 (a). Hence,
qu(A) <infker (p; o eg o 7¢)

= ker(eg o f[g)
= ker 71¢
< ker (qg o 71g) = ker(75) ¢,

where the third step follows since e; € M. O

In general, the closure properties of definably embedded sets are rather
weak. To make them better behaved we have to impose some restriction on

the logic L.

Lemma 3.3. Let U be an M-algebra, L a family of logics, and C € VA a finite
set that is L-definably embedded in .

(a) Every subset of C is L-definably embedded in Q.

(b) If the class of L-definable languages is closed under inverse morphisms,
every finite subset D € (C)o is L-definably embedded in .

Proof. (a) Fix DS Candleti: D — Cand j: JC — A be the respective
inclusion maps. For y : Ay — Q it follows that

pom | M¢D=pomoMjoMJi=(uomoM;j)oMJi.
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By assumption, y o m o M j is L-definable. Consequently, Lemma 2.7 implies
that sois p o 7w o M j o M.

(b) By (a) it is sufficient to consider the case where D = V{{C))q(. Let
i:C = Dand j:JD — Abe the inclusion maps. For every d € D, we can
find an element f(d) € MC such that 7(f(d)) = d. This defines a function
f:D — VMJC with

V(moM(joli))o f=idp.

Via the adjunction, we obtain a function f* : JD - MJC. Let ¢ : MIJD —
MUJC be the (unique) extension of {* to a morphism of M-algebras. Then

moMjoMlJiog@osing=moMjoMJio f
=id
=moMjosing.

Since morphisms of M-algebras are uniquely determined by their restriction
to rng sing, it follows that

moMjoMlJioe=moMj.

To show that D is L-definably embedded, consider a function ¢t : Ay — Q.
We have to show that g o 7o Mj : MJD — Q is L-definable. As C is L-
definably embedded, we know that y o m o M(jo Ji) : M JC - Qs
L-definable. Furthermore, by assumption, L-definable languages are closed
under inverse morphisms. Hence,

pomoM(joli)op=pomoM;j
is also L-definable. O

It follows immediately from the definition that an L-definable algebra
only recognises L-definable languages. We start with a slightly more precise
statement,

260



3. Definable algebras

Theorem 3.4. Let L be a family of logics such that the L-definable languages
are closed under inverse morphisms. An M-algebra U is locally L-definable if,
and only if, every language recognised by A is L-definable.

Proof. (<«=) If some finite subset C € VA is not L-definably embedded,
we can find a partial function g : A¢ — € such that the composition x :=
pom | MJC is not L-definable. Thus, the restriction 7 | MIJC : MIJC — ¥
of the product is a morphism recognising the non-L-definable language «.

(=) Let ¢ : MY — U be a morphism and y : Ay -  a function.
We have to show that x := g o ¢ is L-definable. By assumption, the set
C := rng (¢ o sing) is L-definably embedded in 9. By definition, this implies
that the function y o 1 | MIJC : MJC — Q is L-definable. As X is of the
form JX, we can use Corollary I1.6.4 to find a function ¢ : MX - MJC
satisfying ¢ = 7 o ¢. Hence,

K=pop=pomog.
Since p o | MIJC is L-definable and since we have assumed above that the
class of L-definable languages is closed under inverse morphisms, it follows

that « is also L-definable. O

Next, let us take a look at the closure properties of L-definable algebras.

Proposition 3.5. The class of locally L-definable M-algebras is closed under
M-subalgebras and finite products.

Proof. For subalgebras, suppose that % ¢ B where B is locally L-definable.
Let mp : MA — A and 71 : MIB — B be the respective products. Given a
finite set C € VA and a function y : Ay = consider the language « :=
poma I MJC. Sincempa I MJC = g | MJC, we have x = pomg | MIJC
and it follows by our assumption on B that « is L-definable.

It remains to consider products. First, note that, according to Proposi-
tion I.5.7, the empty product A has exactly one element 1¢ of each sort &. For
a function g : A = Q, it follows that k := pom | MgC is the constant
map with value y(1¢) € Q. Hence, we can write

K=w,
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for the Q-operation w : Q° — Q: () = u(1¢). Thus, k is L-definable.

It remains to consider the case of a non-empty, finite product A = [, ., B*
where each B is locally L-definable. Given a finite set C € VA, we choose
finite sets D' € VB, for i < n, such that C € IT; Di. Let pr - I Bi — Bk
be the projections.

To show that C is L-definably embedded in %, we use the characterisation
from Lemma 3.2. Since D* is L-definably embedded in P, there exist finite
sets Ay € L such that

eq(Ax) | MID* < ker 7w } MIJDF.

As the L-definable languages are closed under inverse relabellings, we can
use Lemma 1.3 (b) to find finite sets A} S L such that

eq(A},) < ker (eq(Ag) o Mpy) .
Setting A := AL U---U A7 _, it follows that

eq(A) I MJC < ker (eq(Ar) o Mpy)  MJC
<ker(moMp,) I MJC
=ker (prom) | MJC.

which implies that
eq(A) 1 MJC < ix;fker (prom) I MJC
=ker ({(pr)r om) | MJC =kern } MIJC
as desired. O

Theorem 3.6. Let R be the class of all finitely generated, sort-wise weakly
finite-dimensional M-algebras. The class of L-definable M-algebras forms an
R-variety.

Proof. We start by proving closure under finitely generated subalgebras of
finite products. Let A be a finitely generated subalgebra of [];.,, B' where

i<n
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each B’ is L-definable. Then A is finitely generated and, according to Propos-
ition 3.5, it is locally L-definable. Finally, the fact that % is sort-wise weakly
finite-dimensional follows from Lemma IIL.1.4.

It therefore remains to prove closure under sort-accumulation points. Let
A be a finitely generated sort-accumulation point of the class of L-definable
algebras. We have to show that U is L-definable.

To check that A is sort-wise weakly finite-dimensional, we fixa sort £ € Z.
By assumption, there exists some L-definable algebra B and an E-morphism
q : Blrey — Uy In particular, there exists an E-morphism By — Ag.
Since By is weakly finite-dimensional, so is therefore A;.

It remains to show that U is locally L-definable. Consider a finite set
C ¢ VAand a function y : A - Q. Let A € E be a finite set of sorts
suchthat é € Aand C ¢ A| A+ By assumption, we can find an L-definable
algebra & such that Y|, is a quotient of B|4. Let q : Bls — Y|4 be an E-
morphism. Then Vq is surjective and has a right-inverse. Via the adjunction
we obtain a function f : JVA|s — Bl suchthatqo f = 1, wheres : JV = Id
is the counit of the adjunction. Setting D := f[JC], it follows that

pom | MJC =pomoM: | MIJC
=pomoMgqgoMf | MJC
=pogomoMf I MJC.
This language is L-definable since (¢ © q) o 7 is L-definable and the class

of L-definable languages is closed under inverse relabellings. Consequently,

pom | MJC is also L-definable. O

4. Definable Languages

Finally, we are ready to make the connection between definable languages
and definable algebras. We start by proving that syntactic algebras and theory
algebras are (locally) L-definable.

Lemma 4.1, Let L be a varietal family of logics. If k : MZ — Q is an
L-definable language with a syntactic algebra, then Syn(x) is locally L-definable.
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Proof. Let C € VSyn(«) be finite and fix i : SynE(K) - 0. AsA:=pomn |
MJC : MIJC — Q is recognised by the restriction 7 | MJC : MJC —
Syn(x), it follows by Proposition I11.4.16 that A is of the form

M=o [w[p' k], py . [x]1],

for some morphism ¢ : MIC — MZ, contexts p,, ..., py—r, and an Q-
operation @ : 2" — (. By the assumed closure properties, languages of
this form are L-definable. Consequently, it follows by Theorem 3.4 that C is
L-definably embedded in Syn(x). O

Theorem 4.2. Let L be a family of logics such that every L-definable language
has a syntactic algebra. The following statements are equivalent.

(1) L is varietal.

(2) Forevery L-definable language k : MX — (, the syntactic algebra Syn(«x)
is locally L-definable.

Proof. (1) = (2) follows by Lemma 4.1. For (2) = (1), fix an L-definable
language « : M;I' > Q. Then k = y o syn,, for some g : Syng(x) — Q.
For closure under inverse morphisms, consider ¢ : M. — MI", Then

Kogp=Hosyn . o¢@,

is recognised by syn_ o ¢ : MIZ — Syn(x). Hence, it is L-definable by
Theorem 3.4.

For closure under derivatives, consider a context p € M(I' + 0O). By
Proposition I11.4.15, p~*[«] is recognised by syn,_ : MI' = Syn(). Hence,
L-definability follows again by Theorem 3.4. O

In general there is no reason why a syntactic algebra should be weakly
L-definable. Hence, we only obtain local definability. For theory algebras,
the situation better. Below we will characterise under which conditions these
are indeed L-definable. The proof rests on the following technical result.

Lemma 4.3. Let L be an Ml-compositional family of logics. For every sort-wise
finite set A C L such that eq(A) is an M-congruence, the set rng V(64 o sing)
is L-definably embedded in ©, 2.
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Proof. Lete:1d = V] and 1 : JV = Id be the unit and the counit of the
adjunction. Suppose that X = JX and let

f=V(fp0sing)oe: X > VO,Z

be the morphism corresponding to 84 o sing : ¥ - 04X via the adjunction.
Let C := rng f and choose a right-inverse g: C - X of f : X — C. Finally,
leti: C > VO, X be the inclusion and 7, := moM(10Ji) : MIJC - ©,%
the restriction of the product to MIJC. Then

04 0o MJg = 04 o (fat o Mising) o MJg

7o M6, o Msing o M(10Jeo Jg)
=moM(10JV(0, osing) oJ(eog))
moM(toJ(foyg))

o M(1oJi)

=T, .

To show that C is L-definably embedded in ©4%, let y: ©,% - Q. By

Lemma 1.3,
eq(A) =ker0p <ker(po0,)

implies that the language « := y 0 0, is L-definable. Furthermore, we have
shown in Lemma 2.7 that the class of L-definable languages is closed under
inverse relabellings. Consequently, the language

porm,=pobroMlg=xoMlyg.
is also L-definable. O

Theorem 4.4. Let L be an M-compositional family of logics such that every
L-definable language has a syntactic algebra. The following statements are equi-
valent,

(1) L is varietal.
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(2) The class of L-definable languages is closed under inverse morphisms.

(3) Every algebra of the form @, X is L-definable.

(4) For every L-definable language xc : MzX — Q, the syntactic algebra
Syn(k) is L-definable.

(5) For every L-definable language k : M2 — €, the syntactic algebra
Syn(«) is locally L-definable.

Proof. (1) = (2) is trivial.

(2) = (1) Closure under inverse morphisms holds by assumption; closure
under Q-operations follows trivially from the definition of weak definability;
and closure under derivatives was proved in Theorem 2.11.

(1) < (5) has already been established in Theorem 4.2.

(4) = (5) is trivial.

(5) = (4) It remains to show that Syn() is finitely generated and weakly
finite-dimensional. For the former, note that Syn(«) is generated by the finite
set rng (syn, o sing). For the latter, we fix a sort-wise finite set A € L such
that x is A-definable and ®, % is defined. Then we can use Theorem II1.4.9
to find an E-morphism p : ®,X — Syn(k). Since ©,2 is strongly finite-
dimensional, it follows that Syn() is weakly finite-dimensional.

(2) = (3) First, note that ©, X is generated by the finite set

C :=rngV (60, osing) .

Furthermore, we have shown in Lemma 2.3 that it is strongly finite-dimen-
sional. It therefore remains to prove L-definability. By Lemma 4.3, the set C
is L-definably embedded in @4 X. As every finite D € @42 is contained in
(Che,x = ©4Z, we can therefore use Lemma 3.3 (b) to show that every
finite subset is L-definably embedded.

(3) = (2) Fix a morphism ¢ : MY - MI and an L-definable language
K : M¢I' — Q. We will construct two sort-wise finite sets 4, A’ € L such
that x is A[I']-definable and

eq(A"[Z]) <ker (eq(A[T]) 0 9).
Then it follows by Lemma 1.3 (b) that ¢ " [« ] is L-definable.
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Hence, it remains to find the sets A and A", As L is M-compositional, we
can choose a sort-wise finite subset A € L such that « is A[I']-definable and
eq(A) is an M-congruence. Set

fi=0s0¢posing: X —> O and C:=mmgVf.
Then we have
moMf =moM(0, 0 ¢ osing)
=0p0¢poflatoMsing=0,00¢.

By assumption, C is L-definably embedded in ©,I'. We can therefore

use Lemma 3.2 to find a sort-wise finite subset ¥ € L such that
eq(¥) I MJC < ker (7 | MJC).

Let A, S A be the (finite) subset of all formulae whose sort is equal to the sort
of some element of C. We have shown in Lemma 2.7 that L-definable lan-
guages are closed under inverse relabellings. Therefore, we can use Lemma1.4
to find a sort-wise finite set ¥y U A, € A’ € L such that

eq(4'[2]) < ker (eq(¥) o D).

Consequently,
qu(A’[Z]) < ker (eq(¥) o Mf)
< ker (7 o MIf)
=ker (040 ¢) = ker (eq(A[I']) 0 ¢). O

As a consequence we obtain the following counterpart to Theorem 3.4.

Corollaty 4.5. Let L be an M-compositional, varietal family of logics such that
every L-definable language bas a syntactic algebra, and let & : Mg X — Q be a

language. The following statements are equivalent.

(1) xis L-definable
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(2) « is recognised by an L-definable algebra.

(3) « is recognised by a sort-wise strongly finite-dimensional L-definable algebra.

Proof. (3) = (2) is trivial and (2) = (1) has already been proved in The-
orem 3.4. For (1) = (3), we fix some sort-wise finite A S L such that
k is A-definable and ©®,2 exists. By the preceding theorem, the algebra
©,2 is L-definable. According to Lemma 2.3 it is even sort-wise strongly
finite-dimensional. Finally, we have seen in Lemma 2.4 that the morphism

04 : M2 — @42 recognises k. O

Under some additional assumptions, the non-trivial implication in the
preceding corollary actually characterises Ml-compositionality.

Theorem 4.6. Suppose that M is closed under products with arbitrary morph-
isms and let L be a family of logics such that every L-definable language has a
syntactic algebra and the class of L-definable algebras is closed under T -generated
M-subalgebras of finite products. A logic L is M-compositional if, and only if,
every L-definable language is recognised by a sort-wise strongly finite-dimensional

L-definable algebra.

Proof. (=) follows by Corollary 4.s.

(<) Let @ € L be finite. For every formula ¢ € @, we fix a morphism
He + MX — 9, to a sort-wise strongly finite-dimensional L-definable
algebra 9, that recognises the language Mod(¢). Set 1 := ker (17y)pco-
The codomain A of 7 is a finitely generated M-subalgebra of [, U,,. By
Theorem 3.6, U is L-definable. Cleatly, it is also sort-wise strongly finite-
dimensional. Hence, there exist embeddings et Ag —> 0% with df < w,
for every & € E. Furthermore, we can find formulae wlf,i’ i<d 3 defining the
languages p;oes, where p; : Q% — Qs the projection to the i-th component.
Since L is closed under inverse relabellings, there exist formulae ¢ ; such
that

seyg; iff  M(nosing)(s) E 1//'571» .
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Set A:=®uU{y,;|ecE, i <d;}. Then A is sort-wise finite. By choice
of 1, there exist functions po Ay > O, for ¢ € @, such that

Mod(¢) = ppo 1.

Furthermore, set iy, := p; 0 egand p := (o) pea- Note that, for & € 5,

(Hye i<, =(pioeg)i=(pi)icer=eze M.

By our assumption on M, it follows that p = <(‘u¢)(p, (wa’i)&» e M.
Consequently,

eq(A) = ker Thy
= ker (Mod(¢))gea
= ker (py 0 1) gea
=ker ({4g)gea o 17) = kery,

which implies that eq(A) is an M-congruence. O

Remark. The condition on M in the preceding theorem is satisfied in Set
(the product of an injective function and an arbitrary one is injective), but not
in Pos or Top, for example (where the product is injective, but not always

an embedding). |

We have seen above that the class of L-definable algebras forms an R-
variety. The next theorem provides a more concrete description of this R-
variety: it is generated by the theory algebras ©, 2.

Theorem 4.7. Let L be a varietal Ml-compositional logic and let R be the class
of all finitely generated sort-wise weakly finite-dimensional M-algebras.

A sort-wise strongly finite-dimensional M-algebra A is L-definable if, and
only if, it belongs to the R-variety V generated by all theory algebras of the
form ©JX where X is some finite set and A C L a sort-wise finite subfamily
such that eq(4) is an M-congruence.
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Proof. (<=) We have seen in Theorem 3.6 that the class of all L-definable
algebras forms an R-variety WV, and in Theorem 4.4 that WV contains all
theory algebras. Consequently, V € W.

(=) Let U be L-definable and fix a finite set C € VA of generators. It
is sufficient to prove that % is a sort-accumulation point of theory algebras.
Hence, fix a finite set X C 5 of sorts. W.l.o.g. we may assume that X contains
all the sorts in C. Since A is sort-wise strongly finite-dimensional, there
exists an M-morphism ey : Ay — 0%, for some de < w. Let p; : 0% 5 0
be the projection to the i-th component and let A C L be a sort-wise finite
set such that © is defined and every language p; oe;om | MJC with £ € X
and i < d; is A-definable. Then

ker6, [ MIJC = eq(A) I MIJC <ker (p;ioegom) | MIC
implies that
ker 6, t MIJC Sigfker(pi oegom) | MJC
:iréfker(eforr) P MJC
:iréfkerr[ I MJC
=kern | MJC,

where the second step follows since (p;); = id and the third one since
ey € M. Consequently, ker 04]x < ker7t|x and there exist a morphism
q: ©,JC|x — U|x such that 7 = q 0 0,4. In particular, U|x is a quotient
Of@AJC|X and@AJCEV. O

Corollary 4.8. Suppose that D = Set or D = Pos, and let Q € D be a finite
set. Let L be a varietal Ml-compositional logic, let S be the class of all theory
algebras ©p %, and R the dlass of all finitary M-algebras. An algebra A € R is
L-definable if, and only if, it satisfies every Ml-inequality in Th(S).

Proof. We distinguish three cases. First assume that D = Pos and  is not
an antichain. Then being weakly finite-dimensional is the same as being
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finite. Let )V be the R-variety of all L-definable algebras. By Theorem 4.7,
V is the smallest R-variety containing S. By Proposition IIL.7.3, the class
W := Mod(Th(S)) is also a R-variety containing S. Consequently, V C
W. Furthermore, S € V implies Th(S) 2 Th(V). Hence, it follows by
Corollary I11.7.5 that

W = Mod(Th(S)) € Mod(Th(V)) = V.

If D = Set, we can use the same proof. It therefore remains to consider
the case where D = Pos and Q is an antichain. Since M is polynomial, it
follows that every set of the form M, for X~ € Alph, is also an antichain.
Furthermore, every algebra U recognising some language « : M 2= 0
must be an antichain as, otherwise, there can be no functions A — Q.
Consequently, the problem reduces to the case where D = Set. O

The following theorem summarises our various characterisations of when
a language is definable in a given logic. It can be considered the main result
of this article. Of these characterisations, (8) and (10) are the most useful;
(8) mainly when trying to prove that a language is L-definable and (10) when
devising a decision procedure for L-definability. Of course, for the latter one
has to first determine the set of inequalities in question. Depending on the
logic L this can be a highly non-trivial task.

Theorem 4.9. Let L be an M-compositional varietal family of logics such that
every L-definable language has a syntactic algebra, and let  : Ml¢Z — Q be an
Q-language that has a syntactic algebra. The following statements are equivalent.

(1) xis L-definable.
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(8) eq(A) < kerk, for some A.
(9) eq(A) < kersyn, , for some A.

If D = Set or D = Pos, and if Q € D is finite, the above statements are
equivalent to the following one.

(10) Syn(x) satisfies all M-inequalities s < t that hold in every theory algebra
O4T.

(Here A ranges over sort-wise finite subsets of L and I ranges over alphabets.)

Proof. (1) < (2) has been proved in Corollary 4.5; (1) < (8) in Lemma 1.3;
(3) < (10) follows by Corollary 4.8.

(1) = (7) was proved in Lemma 2.4.

(7) = (8) Suppose that k¥ = y o 8, for some function y : O, 2 - Q.
Then

eq(A) =ker0p <ker(po0,) =kerk.

(1) = (9) follows by Corollary 2.5.
(9) < (5) Note that eq(A) = ker 0. For a finite set A € L, it therefore
follows that

eq(A) <kersyn, iff ker0, <kersyn,

ifft  syn ,=pof,, forsomemorphismp,

where the fact that p is a morphism of M-algebras follows by Lemma 1.5.6.
(5) = (4) is trivial.
(4) = (6) Since syn,_: MIZ — Syn() recognises «, the claim follows by
Lemma IILs5.7.
(6) = (2) follows by Theorem 4.4 (3).
(1) = (3) follows by Theorem 4.4 (4).
(3) = (2) holds as syn, : MIZ — Syn(k) recognises k. O

Our algebraic framework works for logics that are varietal and M-compos-
itional. In order to simplify proofs of these two properties, let us introduce a
strong form of compositionality that implies both of them.
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Definition 4.10. A logic L is strongly Ml-compositional if, for every finite set
@ C L, there exists a sort-wise finite set @ C A C L with the following
property. For every @ € A, there exists a finite subset A, C A and a formula

v € L[ Q] satisfying
Mod(¢) o flat = Mod(y) o MTh,, . )
Remark. Note that M-compositionality implies that

MThy(s) determines Thy(flac(s)).

Strong Ml-compositionality strenghens this implication by requiring that
the theory of flat(s) can be computed by an L-formmula. )

Proposition 4.11. Every strongly Ml-compositional logic L is varietal and M-
compositional.

Proof. 'We start by proving that L is M-compositional. Given a finite set
@ ¢ L, fix a sort-wise finite set A 2 @ as in the definition of strong M-
compositionality. We claim that eq(A) is an M-congruence, i.e., that

kerMeq(A) < ker (eq(A) o flat) .

By strong M-compositionality we can choose, for every formula ¢ € A, a
formula 1, and a finite set A, € A such that

Mod(¢) o flat = Mod(y,,) o MThy, .
It follows that

eq(4) o flat = (Mod(g)), ., © flac = (Mod(yp) o MThy, ) _, -

Since A, € A, there are functions p, with Thy, = p,0eq(A). Consequently,

eq(4) o flat = (Mod(yyy) o M(p, 0 eq(4))),,
= (Mod(l//q,) o MP‘/’)goeA o Meq(4),
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which implies that ker Mleq(A) < ker (eq(4) o flat).

It remains to prove that L is varietal. By Theorem 4.4, it is sufficient to
show that every theory algebra ©,% is L-definable. First, note that ©,%
is finitely generated by C := rng (6, osing). Let i : C — O, be the
inclusion map and let g : ¥ — C be the function such that i o g = 84 o sing.
We have to show that, for every function y : @42 — , the composition
pomoMi:MC — Qis L-definable.

Hence, fix i : 4% — Q. Then o0, : MX — Qis A-definable. Let ¢ €
A[Q2] be a formula with Mod(¢) = y o 0. By strong M-compositionality,

there is some formula y and a set A, € A such that
Mod(¢) o flat = Mod(y) o MThy, .
Since A, € A, we can find a function p with Th,, = p o 0,. It follows that

(pomoMi)oMq=pomoM(b, osing)
= po 0, oflat o Mising
= Mod(¢) o flat o Mising
= Mod(y) c MThy, o Msing
=Mod(y) e M(p o 0,) o Msing
- Mod() o M(poiog).

Since q (and hence Mg) is surjective, it follows that
pomoMi=Mod(y)oM(poi).

Thus y o o M is an inverse relabelling of an L-definable language and,
therefore, also L-definable. O

Yotes

Over the years several abstract logical frameworks have been in use, most of
them not developed enough to be ever published. Among the major ones
are the framework for abstract model theory proposed by Barwise (see,
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e.g. (3]), the notion of an abstract elementary class introduced by Shelah (see,
e.g., [2]), and the theory of institutions developed by Goguen and Burstall
(see, e.g.,, [22]). The framework presented here is somewhat similar to the
latter, the main difference being that we do not equip our class of models
with the structure of a category.
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V. drees

1. Bonads and Logics for Arees and Sore[ts

T IS TIME TO APPLY THE ABSTRACT theory we have developed so far to
I a concrete setting. Let us take an in-depth look at languages of infinite
trees, which exhibit many of the complications not arising in simpler settings.
We start by introducing the corresponding monad. It turns out that in
different situations slightly different versions of this monad will be needed.
Therefore, we define several variants starting with the most general one and
then deriving the others from it.

Convention. In this chapter we will work exclusively in the category D = Pos.

Definition 1.1. Let X be a countably infinite set of variables.

(a) For sorts we will be using the set £ := §£,(X) of all finite sets of
variables. Sometimes we also take the larger set Z, := £(X). The arity of an
element a of sort & is the cardinality |&|.

(b) Let A € D=. An A-labelled (nondeterministic) rooted graph is a countable
directed graph g where the vertices are labelled by elements of A and the
edges by elements of X in such a way that, if a vertex v has a label a of
sort &, then the labels of all outgoing edges belong to £. We assume that all
outgoing edges with the same label are ordered from left-to-right, but there
is no ordering between edges whose label is different. In addition, some of
the vertices of g are marked as roots, which are also assumed to be ordered
left-to-right, and we require that every vertex can be reached by a path from
some root.

(c) We denote by G the polynomial functor where G ;A is the set of all
(A + &)-labelled rooted graphs where the labels in £ are assumed to have
sort & and every variable x € & appears as the label of at least one vertex.
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V. Trees

(d) We denote the set of vertices of a graph ¢ € G¢A by dom, (g) and by
dom(g) the subset of vertices with a label in A. Vertices with a label in & are
called holes. An x-edge is an edge with label x. If there is an x-edge from v
to u, we call u an x-successor of v and v an x-predecessor of u. ,

In addition, we use the following functors derived from G.

Definition 1.2, Let A € D%,

(a) We denote by RA the subset of GA consisting of all graphs with a
single root such that the root is not labelled by a variable and such that, for
every vertex v of sort & and every x € £, there is exactly one outgoing edge
with label x. We call such graphs deterministic.

(b) T*A ¢ RA is the set of deterministic graphs that form trees, and
T¢A c T} Ais the set of trees where every variable x € § appears exactly once.
We call the elements of T A linear ranked trees and those of T* A non-linear
ranked trees.

(c) F*A ¢ GA s the set of nondeterministic graphs that form forests, and
F¢A © F§ A is the set of forests where every variable x € § appears exactly
once. We call the elements of F'A linear (unranked) forests and those of F* A
non-linear (unranked) forests. An unranked tree is an unranked forests with a
single connected component.

(d) Finally, we denote by Gfin g, Rfin 4 [fin g Fxfin g Tfin g xfin g
the set of all finite graphs, forests, or trees in GA, RA,.... j

Remark. (a) To denote finite trees we will frequently use term notation. For
instance, a(x, b(y)) is the tree

a

N
|

b

(We assumed a fixed ordering on the variables, so that we can speak of
the first successor, the second one, etc.) Similatly, we write forests using an
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1. Monads and logics for trees and forests

addition operation + for disjoint union and a constant o for the empty forest.
For instance, a(x + ¢,0,b(y)) + b(x) denotes the forest

(b) For unranked forests, the edge labellings are usually only necessary
when we consider forests in s € FFA where the component forests s(v)
might contain several different variables, For forests s € [FX labelled by some
alphabet X on the other hand, we could do without labelled edges. For this
reason, we frequently work with alphabets where every letter has arity 1. In
particular, we will frequently write FX, for one-sorted sets X € D, which
we implicitely regard as 5-sorted ones by assigning to each letter ¢ € X the
sort {x}, for some fixed variable x. )

To turn the functors we have just introduced into monads we use the
following operations on graphs.

Definition 1.3. Let A € D%,

(a) The unravelling of a graph g € GA is the graph gun(g) whose vertices
correspond to all finite paths in g that start at some root. The label of such a
path is the label of its end-point in g. A path g is the x-successor of a path p if
q can be obtained from p by appending a single x-edge. The roots of gun(g)
are all the paths of length o (see Figure 1 for an example).

(b) For a € A, we denote by sing(a) the graph g with a single root r
labelled a which has one x-successor uy, for every x € & withlabel g(u,) = x.
In term notation, sing(a) = a(x0, ..., x,—y) for &= {xg, ..., xy_1 }.

(c) The flattening flat(g) of a graph ¢ € GGA is defined as follows (see
Figure 2 for an example). Let b be the disjoint union of all graphs g(v), for
v € dom, (g), and let R be the binary relation on dom, (h) containing all
pairs (u, v) such that

¢ h(u) = x for some variable x,
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* uis aleaf of some component g(w) with w € dom(g),

¢ v isaroot of some component g(w’) where w' is the x-successor of v
ing.
Then flat(g) is the graph obtained from h by

¢ deleting every vertex corresponding to a hole in g(v) with v € dom(g)
and

¢ for every x-predecessor u’ of a deleted vertex u, adding x-edges from u’
to all vertices v with (u,v) € R.

(d) We denote the restrictions of flat : GGA - GA and sing: A - GA
to the subfunctors R, T, and IF also by flat and sing. In cases where we want
to distinguish between these versions, we add the functor as a superscript:

G R T
flac”, flac, flat, etc.

() Finally, for the functors T and F* we set flat™ := gun o flat (restricted
to T*T* A or F*F* A, respectively). ,

It is now straightforward (but a bit tedious) to check the monad laws.

Proposition 1.4. G, R, T, and F form monads on Pos with multiplication
flat and unit morphism sing.

Proof. It is sufficient to prove the claim for G. The other three cases then
follows from Lemma 1.6.2 (a) by considering the corresponding inclusion
morphisms. Clearly, we have flat o sing = id and flat o Gsing = id. For
associativity, let G € GGGA. By Proposition 1.3.7 and the Remark on

U S~ b2

c —» )

z y\A

a
C
Figure 1.: A graph and its unravelling,
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TR
SO
v i

Figure 2.: A graph ¢ € GG{a, b, ¢} and its flattening. The sorts of a, b, c are {u, v},

{u}, and &, respectively. The roots are marked by an incoming arrow.
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page 416, we obtain labelling-preserving functions

y : dom(flat(G)) — Z dom(G(v)),
vedom(G)
y' s dom(flac(fac(G))) — Z dom(fat(G)(w)),
wedom(flat(G))
o - dom(flat(G(v))) — > dom(G(v)(u)),
uedom(G(v))
p'" s dom(flat(Gflate(G))) — Z dom(flat(G(v))),
vedom(Gflat(G))

for v € dom(G). As the flattening function for graphs does not erase or
duplicated vertices (this is different or T™ and [F), these functions are all
bijective. Furthermore, it is straightforward to check that they preserve the
edge relation. Composing these we obtain a bijection

dom(flat(flat(G)) — > dom(flat(G)(w))
wedom(flat(G))
- > dom(G(v)(«))
(v, u)€X cdom(c) dom(G(v))

- >, dom(G(v)(w))

vedom(G) uedom(G (u)

ne > >, dom(G(v)(w))

vedom(Gflat(G)) uedom(G(u)

- > dom(flat(G(v)))
vedom(Gflat(G))

— dom(flat(Gflat(G)))

that preserves the labelling and the edge relation. This implies that the graphs
flac(flat(G)) and flat(GHat(G)) are in fact equal. O

The non-linear cases T™ and F* have to be dealt with separately since,

in contrast to their linear counterparts, they do not form a submonad of
R and G, respectively. Instead they are quotients.
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Lemma 1.5, (T*,flat”™, sing) and (F*, flat™, sing) form monads and the un-
ravelling maps gun : R = T and gun : G = F* are morphisms of monads.

Proof. By Lemma L.6.2, it is sufficient to check that
sing = gun o sing and flac™ o gun o Rgun = gun o flat

(and similarly for F* and G.) The first equation immediately follows form
the fact that gun(sing(a)) = sing(a). For the second one, note that the
vertices of gun(flat(g)) correspond to the finite paths of flat(g), while those
of gun(flat(gun(Rgun(g)))) correspond to those of flat(gun(Rgun(g))).
Furthermore, every path « in a graph of the form flat(h) corresponds to a
path (v,,),, of b and a family of paths 8, of h(v,,) such that « can be identi-
fied with the concatenation 8,3, .. .. Finally, a path in gun(h) is the same as
apath in h. Consequently, each path of flat(gun(Rgun(g))) corresponds to
(i) a path of g together with (ii) a family of paths in some components g(v)
as above. This correspondence induces a bijection between

dom, (gun(flat(g))) and dom.(gun(flac(gun(Rgun)))).

As this bijection preserves the labelling it follows that
gun(flat(g)) = gun(flat(gun(Rgun))). O

Pogics for Sorefts

The main logics we are interested in are first-order logic FO and monadic
second-order logic MSO. To define the satisfaction relation between formulae
of these logics and elements of GX, we encode a graph g € GZ as the
structure

8= <V’ Spf7 <sos (Sucx)xeX: (Pc)c62+§» R>

where
¢ V :=dom, (g) is the set of vertices,

¢ <,¢ the reflexive transitive closure of the edge relation,
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¢ <o is the left-to-right ordering on the successors of each vertex (where
successors of distinct vertices are incomparable, and the same for x-
successors and y-successors with x # y),

* suc, is the x-successor relation,
o P =gt (c) the set of all vertices with label ¢ € X + &, and
¢ Ris aunary relation that marks the roots.

Depending on which of the above relations we allow in a formula, we obtain
several variants of first-order or monadic second-order logic.

Definition 1.6. (a) MSO[ <, ], monadic second-order logic with successor
ordering, is MSO over structures of the above form where every relation can
be used.

(b) MSO[<p¢], monadic second-order logic with forest ordering, or prefix
ordering is MSO over the above structures, but without the relation <,.

(c) MSO[suc], monadic second-order logic with successor, is MSO over
the above structures, but without the relations <¢ and <.

(d) We define the same variants for first-order logic FO and counting
monadic second-order logic CMSO. The latter is the extension of MSO by
atomic formulae of the form

|X]<oco and |X|=k (mod m),

for set variables X and numbers 0 < k < m < w. By definition, a formula of
the first form hold if the set X is finite, and a formula of the second form
holds if X is finite and its cardinality is congruent k modulo m.

(e) For a number m < w, we denote by MSO,, [<s0 ], MSO,, [<p¢ ], the
restrictions of the corresponding logics to formulae of quantifier-rank at
most m (counting both first-order and second-order quantifiers). |

Let us give a quick overview over several well-known tools that help us
study the expressive power of these logics on forests. We use the following
notation.
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Definition 1.7. Let L be one of the above logics. For two structures A and B
and tuples a € A*, b e B, P e P(A)!, Q € P(B)', we write

A Pa=; B,0b :iff [AEg(P,a) = BEg(Q,a)],
forallp e L. )
We can compute this relation by induction on m as follows.

Proposition 1.8. Let A and B be two structures over a finite, relational signature,
and let & € A* and b € B be tuples of elements. Then

B, b

A, a4 =po

if, and only if,
* for every a’ € A, there is some b’ € Bwith ¥, da’ =0, B, b’ ,

m+1

o for every b’ € B, there is some a' € A with ¥, da’ =po,, B, bb’ .

Proposition 1.9. Let L be one of the above variants of MSO or CMSO, and
let L, be the corresponding fragment of restricted quantifier-rank. Let A and B
be two structures over a finite, relational signature, and let a € A*, b e BF,

PeR(A)!, Q e P(B) be tuples of elements and sets. Then
A, Pa =¢o

if, and only if,
o forevery a’ € A, there is some b’ € B with ¥, Paa’ =¢o, B, Qbb’,
* for every b’ € B, there is some a’ € A with , Paa’ =fro,, B, Ql;b’ .
* for every P’ C A, there is some Q' c BwithQl, PP’ =fro,, B, QQ'P_J B
o forevery Q' C B, there is some P’ € A with %, PP'a =¢o, B,00'b.

3, 0

m+1

This method is called a back-and-forth argument. As the readers can verify
in the following sections for themselves, proofs containing such arguments
are often quite tedious. When applicable, so-called composition theorems
provide a much simpler way to compute the relation =1. Let us present two
such theorems. They are based on the following two operations.
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Definition r.10. Let L be one of the above logics and let X and I' be finite
relational signatures.
(a) A simple L-interpretation is a unary operation that is defined by a tuple

T= (5(x), (q)R(J?))Rer)

of L-formulae as follows. Given a X-structure U it produces the I'-structure

()= 6% (gn)3er)
with universe
i={acA|AEd(a)}
and relations
go% ={aeA” |A=gpr(a)}, forRel

(where n is the arity of R).
(b) Let 3 be a I'-structure and (') 1 a family of Z-structures indexed
by the elements of 3. The generalised sum

2

i€
is the (X + I' + {~})-structure with universe

ZAi:={<i,a)|i€I,aEAi}

iel
and relations

R:= {((i,ao),...,(i,an_l» | i€l {ag, .., an_) ERQI; }’
S:={{{iora0)s-vs (in-rs an=s)) | (iorevriny) €SY, a; e AV },
~ = {((i,a),(i,b)) | iel, ,a,bEAi},

forReXandSel. p
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2. Finite forests

The corresponding composition results can both be proved by a (mostly)
straightforward induction on the quantifier-rank.

Proposition r.11. Let L be one of the above logics, let L, be the corresponding
fragment of restricted quantifier-rank, and let T = (S(x), (or (Sc))REr> be
a simple Ly, -interpretation. For every formula ¢ € L,,, there exists a formula
@" € Lyyir, such that

(M=o f AE=@", forall structures .

Theorem r.12. Let L be one of the above variants of MSO or CMSO, and
let L,, be the corresponding fragment of restricted quantifier-rank. For every
formula @ € L,,, there exist finitely many formulae Xo, ..., Xn-1 € Ly and
v € L such that

;9[" Fo  iff (3 [xeleos Dtnl) F W,

where [x]:={iel|A"E x}.

9. Sinite Sore[ts
Before turning to the general case, let us take a brief look a languages of finite

forests.

Definition 2.1. Let 2 be an Fﬁ"—algebra‘
(a) The horizontal semigroup associated with U is the structure (A g, +)
where the horizontal product + is defined by

a+b:=m(s), wheresisthe forest consisting of the two trees

sing(a) and sing(b) (in this order).

(b) The vertical semigroup associated with 9 is the structure (A3, - )
(for some fixed variable x € X)) where the vertical product + is defined by

a-b:=m(s), wheresisthe tree consisting of a root labelled a and

a leaf labelled b. .

289
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Proposition 2.2.
(a) Every finitary Ffi"-algebra is MSO[ <, |-definable.
(b) Every finitary T _algebra with a commutative horizontal semigroup is
CMSO[<p¢]-definable.
(c) Every finitary Ffiglgebra whose horizontal semigroup is commutative and
aperiodic is MSO[ <p¢ |-definable.

Proof. (a) Let U be finitary, C € A a finite set of generators, and c € A, We

have to construct a formula ¢, such that
s, iff  7w(s)=c, fOI‘SE]F?nC‘
The formula ¢, guesses sets (Z, ), such that

Z,={vedom(s) | n(s|,)=a}, forac|JA,,
(¢4

and then it checks that these guesses are correct. For a finite forest s we can
do so bottom-up starting at the leaves. Let v be a vertex with successors
Uoy ..., Um—; and label s(v) = a. Suppose that u; € Z;.. Then we have to
check thatv € Z, (..., ,)- To do so, we have to be able to evaluate the
sum bg + -+ + byy_;. Since (Urcg Ag, +) is a finite semigroup, there exist
MSO-formula (9,), such that

({toreisthmer b S50 Z) E 95 if bo+o+ by =a.

Consequently, we can set

Q= ElZ[ZC(root) A Vx[/\ Zixo /) (PyxnA ng))]] ,
a b,d:b(d)=a

where 9*) denotes the relativisation of 9 to the set of successors of x.

(b) We can use the same construction as in (a), we only have to modify
the formulae 9,. Since horizontal composition is commutative, there exist
constants k and p such that every sum

bo+ -+ by
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3. Countable chains

is uniquely determined by the values

min{n,, k} and n,modp, foreveryace U Ag,
{c&

where n, is the number of terms equal to a. Both of these values can be
computed in CMSO.

(¢) To compute a sum in a horizontal semigroup that is commutative and
aperiodic, it is sufficient to know only the values min {n,, k}, which can be
computed in MSO O

Exercise 2.1. Anti-chain logic is the variant of MSO where quantification is
restricted to anti-chains. Anti-chain logic with counting is the corresponding
restriction of CMSO.

(a) Let 2 be an alphabet where every symbol has arity o or 2. Prove that
every regular language K ¢ Tf" 3 can be defined in anti-chain logic.

(b) Let K € Ffi"S be a regular language of forests where no vertex has
exactly one successor. Prove that K can be defined in anti-chain logic with
counting. .

3. dountable Thains

Another simple example are countable linear orders, which can be seen as
forests of height o, i.e., forests where all labels have arity o.

Definition 3.1. (a) We denote by C : D — D the functor mapping a set A
to the set CA of all countable A-labelled linear orders. Formally, C is the

polynomial functor

CX := ZXdom(I) ,
I

where I ranges over all countable linear orders.
(b) The flattening operation flat : CC = C is just the ordered sum, which
is defined as follows. The flattening of S € CCA is the linear order with
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V. Trees

domain

dom(flat(S)) := Y. dom(S(i))

iedom(S)
= {(i,k) | i e dom(S), k € dom(S(i)) }

and ordering
(i,k) < (j1) :iff i<j or i=jandk<lI.

(c) The singleton operation sing : Id = C maps an element a € A to the
linear order sing(a) with a single element that is labelled a. )

Remark. As already remarked above, we can regard C as a submonad of F
if we identify Set with Set'?}. Then an alphabet X € Set corresponds to a
{@}-sorted set 2’ with X7, = X. Furthermore, every vertex of a forest s € 2’
has sort @ and must therefore be a leaf. Consequently, s is just the linear
order formed by its countably many roots. Thus, we obtain an embedding
C = F|{z). Furthermore, this embedding preserves the flattening and
singleton operations, that is, it is a morphism of monads.

In light of this correspondence, we regard the product of a C-algebra as
the horizontal sum of an |} -algebra. Consequently, we will use additive
notation for this product and call it a sum. )

Example. The set W € CA of all A-labelled well-orders is recognisable
by the finite C-algebra with elements {o, 1} and the infimum operation as
multiplication. Then W = ¢7*(1) where ¢ maps well-orders to 1 and all
other orders to o. j

Exercise 3.1. Prove that (C, flat, sing) forms a monad. ,

To show that monadic second-order logic over countable linear orders
fits into our algebraic framework, we have to check that it is varietal, C-
compositional, and that syntactic algebras exist.

Definition 3.2. For the monad C, we use the obvious variant of MSO that en-
codes a linear order s € CA as a structure of the form (dom(s), <, (P, ) gea)
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3. Countable chains

where the unary predicates P, := s™"(a) contain the positions labelled by
the elements of A. |

Remark. Using the above identification of C with a submonad of F| (o} this
version of MSO corresponds to the variant MSO[ <, | defined above. ,

Compositionality is straightforward.
Theorem 3.3. MSO is strongly C-compositional.
Proof. First note that, for s € CCX, we can write

flat(s) = T( > s(i))
iedom(s)

as a generalised sum follows by a quantifier-free interpretation 7. By the
corresponding composition theorems (Proposition 1.11 and Theorem 1.12)
it therefore follows that, given an MSO-formula ¢ of quantifier-rank m, we
can compute an MSO-formula y such that

Y s(i)ee iff  COs,(s)EY,
iedom(s)

where A,, is the set of MSO-formulae of quantifier-rank at most m. O
Corollary 3.4. MSO is varietal and C-compositional.
Proof. By Proposition IV.4.11. O

Next we turn to syntactic algebras. The proof utilises the submonad C™*8
of all linear orders that are regular’ in the following sense.

Definition 3.5. Let A be a set.
(a) The shuffle of A is the linear order s € CA with domain Q such that

for all x < y and all a € A there is some x < z < y with s(z) = a.

For finite sets A = {4, ..., ay—; }, we denote the shuffle by ao 111--- 111 a,,_;.
(b) A Léuchli-Leonard operation over the set A is an operation on CA of
one of the following forms:
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# constants g, for a € A,

& abinary operation s + ¢t, for s, t € CA,

¢ two unary operations s X w and s x w°P, for s € CA,

¢ an n-ary operation s L -+ 1 s,,_y, for so,...,5,—; € CAand n < w.

a € A denotes the singleton order sing( a); s+ tis the ordered sum of s and t;
s x w the ordered sum of w copies of s arranged in an infinite increasing
chain; and s x w°P the ordered sum of w copies of s arranged in an infinite
decreasing chain.

(c) A countable linear order s is regular if it is the value of a finite term
of Liuchli-Leonard operations. We denote the set of all such orders by

CresA. )

Remark. The shuffle of a countable set A exists and it is unique up to iso-
morphism. Uniqueness follows by a straightforward back-and-forth argu-
ment. For existence, fix an enumeration (a, )<, (possibly with duplicates)

of A and set

Q:=(o+1)"1.

Note that Q equipped with the lexicographic ordering is a dense linear order.
We define a labelling s : Q — A by

s(o”1) :==a, and s(wio"1):=a,, forn<wandw e {o,1}".
Then s is the shuffle of A. ,

Lemma 3.6. Let © be a finite C-algebra, C C S, and let K € CC the least set
satisfying the following conditions.

e CcK.
¢ u,veKimpliesu+vekK
* Ifwo,wy,... € Kwith m(wo) = m(w;) = ..., thenwo + w, + - € K

and -+ +w; + wo € K.
If s € CK such that Cri(s) is the shuffle of a finite set, then flat(s) € K.

*
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3. Countable chains

Then CC c K.

Proof. Let us call a term s € CC decomposable if every non-empty factor of s
belongs to K. We will show that every s € CC is decomposable. Consider
the following relation on dom(s).

x~y :iff  x =y or the factor corresponding to the interval

(x, y] or (y, x] is decomposable.

Clearly, ~ is reflexive and symmetric. For transitivity, suppose that x ~
y ~ z where w.l.o.g. x < y < z. Every factor w in the interval (x, z] can be
factorised as w = uv where u lies in the interval (x, y] and v in (y, z]. By
assumption, ¥ and v belong to K (if they are non-empty). This implies that
w = uv € K, as desired.

Thus ~ is an equivalence relation. Let H be a ~-class and let w be the
corresponding factor of s. We claim that w is decomposable. If H = &, this
is trivial. Otherwise, fix some index x € H and set

H,:={yeH|y<x} and H,:={yeH|y>x}.

Let w, and w; be the factors corresponding to these two sets. As we have
already proved above that decomposable factors are closed under binary
concatenation, it is sufficient to show that w, and w; are decomposable.

If H, has a greatest element z, then x ~ z implies that w, is decomposable.
Otherwise, since H is countable, we can fix an increasing sequence x =
Zo < z; < ... of positions in H that is not bounded in H. Then z; ~ z;
implies that every factor u; j corresponding to an interval (z;, z;] with i < j
is decomposable. By the Theorem of Ramsey, there exist an infinite set
I ¢ w such that 7(u;j) = m(ui jr) for all indices i < jand i’ < j"in L. It
follows that every non-empty factor v of w; can be factorised as v'v"” where
v’ corresponds to (y,z;] and v’ to (z;,y'], for some index i € I and for
some positions y and y'. By the closure properties of K, this implies that
v’,v"" € K (if they are non-empty). Hence, v € K as well.

The proof for wy, is analogous.
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To conclude the proof, let § be the order obtained from s by replacing
every ~-class I with corresponding factor w by the single element 7(w). If
$is a singleton, it follows that s is decomposable and we are done.

Hence, suppose otherwise. If § would contain two positions x < y with
no position in between, the concatenation of the corresponding ~-classes
would correspond to a decomposable factor (since decomposable factors
are closed under binary concatenation). Consequently, § is an infinite dense
linear order. To obtain the desired contradiction it is sufficient to show that
some interval of § is a shuffle (since then the union of the corresponding
~-classes would be decomposable again).

We prove the claim by induction on the number of elements @ € S appear-
ing as a label in $. If there is such an element g that does not appear in some
infinite factor w of s, the claim follows by applying the inductive hypothesis
to w. Hence, we may assume that every label that appears in § appears in
every infinite factor of §. Consequently, § is the shuffle of these labels. [

Theorem 3.7. The inclusion C*® = C is dense over the class of all finite
C-algebras.

Proof. Lets € CC. Then s € K, where K is the set from Lemma 3.6. By the
inductive definition of K, we can construct a Liuchli-Leonard term s° with

n(s®) = m(s). O

Corollary 3.8. Every language K € CX over a finite alphabet has a syntactic
algebra.

The goal of the remainder of this section is to prove that the MSO-
definable languages are exactly those whose syntactic algebra is finite. The
hard part of the proof consists in showing that the product of every finite
(C-algebra is MSO-definable. To do so, we use a variant of regular expressions
for languages over C. These expressions are obtained by generalising the
Liuchli-Leonard operations from trees to sets of trees.

Definition 3.9. (a) For an n-ary Liuchli-Leonard operation 0 and languages
Ko,..., K-, € CX we set

o(K):={c(3)|sieK;}.
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3. Countable chains

(b) The iteration of a language K € CX is the set
Kri={so++s,|0o<n<w, so,vv,sp1€K}.

() A regular expression is a finite term using

constants for all singleton languages {sing(a)} with a € %,

.

¢ boolean operations KUL, KN L, CZ\ K,

o the Liuchli-Leonard operations K+ L, Kx w, Kxw°P, Ko+ -1 K,,_,,
.

iteration K*. R
We start by noting that the above operations are all MSO-definable.

Lemma3.10. The class of MSO-definable languages is closed under all operations
from the preceding definition.

Proof. Closure under boolean operations is trivial and every language of the
form {sing(a)} is clearly MSO-definable.

For concatenation, note that we can check whether a given chain s belongs
to K+ L by guessing a partition of PUQ = dom(s) such that P is downwards
closed, Q is upwards closed, and the restriction of s to P belongs to K, while
the restriction to Q belongs to L. Each of these properties can be expressed
in MSO, provided that K and L are MSO-definable.

For the remaining operations, we need to encode an arbitrary factorisation
of a chain s by a single set P € dom(s). We use the fact that every subset
P ¢ dom(s) induces an equivalence relation on dom(s) by

x~py :ff xeP<zeP, forallx<z<y.

Hence, we can check whether s € K* by guessing a subset P € dom(s) such
that there are only finitely many ~p-classes and every ~p-class belongs to K.
Similarly, s € K x w, if the ~p-classes form an infinite increasing chain of
length w and each class belongs to K. Similatly, for K x w°P. Finally, we have
s€ Komi--- 11 K,,_, if there is a set P such that, for every pair of ~p-classes
I < Jandevery i < n, there is some ~p-class H with I < H < J that belongs
to K,‘. O
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The main part of the proof relies on algebraic tools from semigroup theory.
The corresponding adaptation to C-algebras looks as follows.

Definition 3.11. Let & be a C-algebra. For 4, b € S, we define the following
Green'’s relations.

a<stb iff a=s+0, for somes €S,
a<rb iff a=b+s, for somes € S,
a<yjb :iff a=s+b+t, forsomes,t€S.

Let =, =g, and = be the corresponding equivalence relations and set
=H = =L N=R.

We call the corresponding equivalence classes the L-class, R-class, J-class, and
H-class of the given element.
(b) A chain s € CS is J-homogeneous if there exists a J-class J such that

se€CJand n(s) € J. )
Below we need the following standard facts about these relations.

Lemma 3.12. Let & be a finite C-algebra.
(a) (EL OER) ==) = (ER OEL)
(b) a=jab=ybimpliesa =g ab and ab = b.
(c) Every H-class H containing an idempotent element forms a group (with

respect to the semigroup-multiplication induced by the product of ©).

We can use Green'’s relations to compute products in a C-algebra as fol-
lows.

Lemma 3.13. Let @ be a finite C-algebra, J € S a J-class containing an idem-
potent e € J, and let s € CJ be a J-homogeneous chain of order type w. Then

ﬂ(s):a+e><w,

where the element a € S can be computed given e and the R-class of the first
letter of s.
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3. Countable chains

Proof. Let b := s(0) be the first letter of s and let s’ be the suffix such that
s=b+s'.Sinceb =) e, wehave b = a + ¢ + ¢ for some a, ¢ € J. We claim
that we can compute a from e and the R-class of b. Hence, suppose that
b =g b’, for some other element b’ = e. Then b’ = b + x, for some x € S,
and we have

b =b+x=a+e+c+x,

as desired. To conclude the proof, it is therefore suflicient to show that
e+c+s =e?

Set t := ¢ + s". By the Theorem of Ramsey, there exists a factorisation
t = uo + u; + - and an element f € S such that

m(ui+--+uj)=f, foralo<i<j<w.
In particular, we have
f+f=n(u)+n(u,)=n(u+u,)=f.

Hence, f isidempotent. Since f is the product of a factor of a J-homogeneous
chain, we furthermore have f € J. Setting b := 7(u, ), it follows that

n(t)=b+f+f+=b+fxw.

As f =y e,wehave f =x+e+y=x+e+e+y forsomex,y €S
Consequently,

nle+t)=e+b+fxw

e+b+(x+et+te+y)xw
=e+b+x+te+(e+y+x+e)xw.

Settingg:=e+b+x+eandh:=e+y+x+e wehaveg=y e =y h.In

particular, the H-class H of g and h contains an idempotent, which implies

by Lemma 3.12 (c) that H forms a group with neutral element e. Choose
m, n < w such that g x m = eand h x n = e. Then

gxw=(gxm)xw=exw and hxw=(hxm)xw=exw.
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Consequently,
mle+t)=g+hxw=g+gxw=gxw=exw. O
Lemma 3.14. Let & be a finite C-algebra and let F C S be upwards closed with

respect to the order <.

(a) The function mapping a chain s € [ F] to the R-class of 71(s) is MSO-
definable.

(b) The function mapping a chain s € n " [F] to n(s) is MSO-definable.
(c) The language n~*[F] is MSO-definable.

Proof. We prove all three claims by a simultaneous induction on the number
of J-classes contained in F. Fix a minimal J-class J C F, set

Fo ::F\J! K:= 7_[—1[1:‘0]’ and L::T[_I[]]'
Furthermore, we define
K, =KUKxwUKxw®u((KuJ)+(Ku]J)).

Note that K, K, and KU L are all closed under factors. Furthermore, given
an increasing sequence (u;); of prefixes of some chain s with u; € K, the
union of all 4; belongs to K x w € K.

We call a prefix u of s € 77'[F] an w-prefix if u is either empty or an
infinite sum of the form u, + u; + --- with u; € L. Similarly, an w°P-suffix
of s is a suffix of the form -+ + v, + v, with v; € L.

Our proof consists of a simultaneous induction establishing not only
(a), (b), and (c), but also the following three claims.

(1) The function mapping s € K, to 71(s) is MSO-definable.
(11) A union of w-prefixes of some chain in 77" F] is again an w-prefix.

(111) We can factorise every s € 77 [F] as
S=utsot o H s, v,

where so,...,5,-; € K, uis an w-prefix of s, and v is an w°P-suffix.

300



3. Countable chains

(1) Given s € K., we can use part (c) of the inductive hypothesis to define
a factorisation of s belonging to one of the languages

K, Kxw, Kxo®, o ((KuJ)+(KuJ)).

(Such a factorisation can be encoded as a single set variable consisting of
the union of every other interval in the decomposition.) By part (b) of the
inductive hypothesis, we can define the product of each factor. Consequently,
we can compute 7(s) with the help of Lemma 3.10.

(11) Let w be a union of w-prefixes of s € 77" F]. For each position x €
dom(w), we can find an w-prefix u, + u, + --- containing x. If x € dom(;),
then u;,, is a chain in L that lies entirely to the right of x. Consequently,
we can find a cofinal sequence v,, vy, ... of disjoint factors of w that all
belong to L and such that v; lies to the left of v;,. Enlarging these factors,
if necessary, we obtain a decomposition w = v, +v; + - € L X w.

(111) Let s € 77" [F]. By (11), s has a longest w-prefix u. Similarly, it has a
longest w°P-suffix v that is disjoint from u. Thus, we can write s = 4 + t, +v
and it remains to show that we can decompose ¢, into a finite sum of chains
in K. To do so, we construct a sequence s, sy, . . . € Ky and chains t, t,, ...
inductively as follows.

Suppose that we have ready defined ¢;. If t; has a prefix s; € K, \ K, we fix
one such prefix and we choose for t;, the suffix of t; such that t; = s; + t;1;.
Otherwise, let s; be the union of all prefixes of ¢; that belong to K and let
ti+: be the remainder of ¢;.

To prove that our construction terminates, we will show below that every
chain s; is non-empty. Then it follows that, after finitely many steps, we
must arrive at a situation where t; = o since, otherwise, t, had a prefix
(S0 +51) + (55 +55) + - with s; + 54, € L. Hence, s would have an w-prefix
4 + 5o + sy + -+~ that is longer than . A contradiction.

It remains to pove the claim. If s; € K, \ K, we are done as the empty chain
belongs to K. Otherwise, t;4, cannot have a least element since by adding
such an element to s; we would obtain a word in K, \ K. A contradiction to
our choice of s;. Hence, we can fix a factorisation t;.; = -+ + w, + w; + w,
of order type w°F. Only finitely many of the factors w belong to L since,
otherwise, t;,; had an w°P-suffix v'. Hence, v’ +v would be an w°P-suffix of s
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disjoint from u. A contradiction to our choice of v. Consequently, t;, has
a prefix that belongs to K x w®? ¢ K. In particular, it follows that s; is
non-empty since, otherwise, we could have chosen s; = -+ + w, + w,.

(a) Given s € 77'[F], we can compute the R-class of 7z(s) as follows. If
s € K, we can use the inductive hypothesis. Otherwise, let s, be the union
of all prefixes p of s that belong to K, and let s; be the suffix of s such that
s = s, + s;. Then so € Ky. Set ap = 71(so) and a; := 7(s;). Ifao € J
then a, + a, € J implies, by Lemma 3.12 (b), that the R-classes of 4, and
ao + a; = 71(s) coincide. By (1), a, is definable. Hence, so is its R-class.

It remains to consider the case where a, € F,. First, suppose that s; has
a least element. Let ¢ be its label. By maximality of s, we have a, + ¢ € J.
As above, this implies that the R-classes of a, + ¢ and 71(s) coincide. Since
a + c is definable, the claim follows.

Hence, we may assume that s; does not have a least element. By the
Theorem of Ramsey, we can factorise s; as s; = -+ + w, + w; + w, where
n(w;) = m(w;), for i, j # 0. Let ¢ be the value of this product. It follows
that s; has a prefix with product ¢ x w°P. As above, this implies that the
R-class of 71(s) is equal to that of a, + ¢ x w°P. It remains to define c. If
¢ € F,, it is MSO-definable by inductive hypothesis. Otherwise, Lemma 3.13
implies that ¢ x w°F = e x w°P, for any idempotent e € J.

(b) Given's € 7 '[F], lets = u + so + ++ + s,y + v be the factorisa-
tion from (11). Note that, by (a), we know the R-class of (the first factor
of ) m(u) and we can use the dual statement to define the L-class of 77(v). By
Lemma 3.13 (a), this is sufficient to compute 77(«) and 77(v). Furthermore,
we can compute the product 71(s,) + - -+ + 7(s,-;) in MSO since we can
obtain 7(s;) via (1) and MSO allows us to evaluate finite products in a finite
semigroup.

(c) Note that
n [F]=CS~n'[I] where I:=n"'[S\F].

Hence, it is sufficient to show that 77" [I] is MSO-definable. To do so we
introduce the following concept. Let N = (N, )4er be a family of sets
N, € CS. We call a chain w € CS N-critical if it satisfies one of the following

conditions.
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*

w = sing(a), for some a ¢ F.
e w=uy+vwithue N,,ve N,witha+b¢F.

® w=u,+u +-withug,u;, € N;anda x w ¢ F.

*

w=-+u; +u,withug,uy, -€N,yand a x w°P ¢ F.
¢ weN, w--wN, witha,m--1a,,¢F.

Below we will prove the following claim: if N is a family of sets with
n'(a)cN,cn'[Tuf{a}], forallacF,

then
sem '[I] iff shasan N-critical factor.

Before doing so, let us show how this implies (c). For every a € F, we
obtain from (b) an MSO-formula ¢, such that

seg, iff n(s)=a, forsen '[F].

Let N, be the language defined by ¢,. Then we can use Lemma 3.10 to
construct an MSO-formula expressing the existence of an N-critical factor.
By the above claim, this is equivalent to s € 77" [I] since we have

77 (a) €N, € ' [{a} UI].

It therefore remains to prove the claim.

(«=) Note that I is downwards closed with respect to <. Hence, if s has
an N-critical factor w, then w € 77'[I] implies s € 7" [I].

(=) It is sufficient to show that the language

M :={s€CS | n(s) € F or s has an N-critical factor }
coincides with CS. We will do so using Lemma 3.6. To apply the lemma, we

have to check several closure properties of M. Since the arguments involved
are all identical, we will only prove closure under binary sums.
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For a contradiction, suppose thats,t € M buts + ¢t ¢ M. Thens + ¢
does not have an N-critical factor. Hence, neither do s and ¢. It follows that
s, t€ ﬂfI[F]. Hence, s € N, and t € N}, for some a,b € F.Buts +t ¢ M
implies that a + b = (s + t) € S \ F = I. Hence, it follows by the second
condition above that s + ¢ has an N-critical factor. A contradiction. O

Theorem 3.15. A C-algebra © is MSO-definable if, and only if, it is finite.

Proof. (=) is trivial since, by definition, every MSO-definable algebra is
finitary. As C-algebras have only one sort, this is the same as being finite.
(<) Fix a € S and let J := [a]; be the J-class of . By Lemma 3.14 (c),
there exists an MSO-formula y/; defining the language K ; := n7'[ J]. Fur-
thermore, by part (b) of that lemma, there exists an MSO-formula ¢, de-
fining 71(s), for s € K. It follows that the conjunction y; A ¢, defines

77 (a). O

Corollary 3.16. A language K € CX is MSO-definable if, and only if, it bas a
finite syntactic algebra.

4. Jountereramples

Before continuing, let us give several counterexamples showing that, for
infinite trees, MSO-definable algebras are more complicated than one might
hope. We start with an example showing that not every finitary T*-algebra
is MSO-definable.

Definition 4.1. A tree t € T*X is antiregular if it is infinite and no two
subtrees of t are isomorphic. We call ¢ densely antiregular if every subtree of ¢
has an antiregular subtree. ,

First, note that antiregular trees do exist.

Lemma 4.2. Let X be an alphabet containing two elements a and b of arity 2.
There exists an antiregular tree in Ty 2.
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Proof. Let P € {o,1}* be the language (of finite words) of all palindromes.
We claim that the tree t € T{a, b} defined by

a ifveP,

b otherwise,

dom(t) = {o,1}* and t(v):= {

is antiregular.

Let s and s’ be two subtrees of t rooted at u and u’, respectively. Let  be
the mirror image of . Then uét € Land u’4 ¢ L, which implies thats(#) = a
and s'(4) = b. In particular, s and s are not isomorphic. O

Theorem 4.3. Suppose that D = Pos and let X := {a, b} be an alphabet with
two elements, both of arity 2. The language L of all densely antiregular trees
over X is not regular, but it can be recognised by a finitary T -algebra.

Proof. To show that L is not regular, note that L is non-empty by Lemma 4.2.
If L were regular, it would therefore also contain some regular tree. As regular
trees cannot be densely antiregular, this is not possible.

Hence, it remains to construct a finitary T -algebra recognising L. For
Ee B let Ag be the set of all finite trees in TgZ‘ As X contains only binary
elements, every leaf of a tree t € Ay must be labelled by a variable. Hence,
t has at most |&| leaves and, therefore, at most || — 1 internal vertices. This
implies that A is a finite set.

The domains of the desired algebra U are

AE::AEU{J"*}’ forée &,

which we order such that 1 is the least element and all other elements are
incomparable. To give a bit of intuition for the definition of the product,
let us first describe the morphism # : T*X — A that will recognise L. For
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te T?Z, we set

n(e) =

t iftedg,

L if t has a subtree without variables that is not densely

antiregular,

2 every subtree of ¢ has a variable and some variable

occurs at least twice,

*  t has a subtree without variables and every such subtree

is densely antiregular .

Then L = 7" [*]. Hence, it remains to equip A with a product that makes
# into a morphism.

We define the product as follows. Let us call a tree s € T A good if every
subtree of s contains some vertex v such that t(v) = *, or such that |, € T*A
and flat(¢|, ) is densely antiregular. For t € T} A, we then set

n(t) =
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1 if t contains the label 1,
if t has a subtree without variables that is not

good,

* if t has a subtree without variables and every such
subtree is good,

* if t contains the label * and every subtree of ¢t has
a variable,

? if t € T*(A + {?}), t contains the label ?, and
every subtree of t has a variable,

? if t € T*A, every subtree of t has a variable, and

some variable appears more than once in ¢,
flac(t) if t € T*A is finite and every variable appears

exactly once.



4. Counterexamples

It is straightforward (but tedious) to check that these cases cover all possibil-
ities, that the function 7 is monotone, and that is satisfies

noflat=moT*y.

Consequently, it follows by Lemma L.s.5 that U := (A, 7r) is a T -algebra
and 7 : T*2 - YA an T*-morphism. 0

Definition 4.4. We call the algebra U from the above proof the Bojasiczyk-
Klin algebra. ,

The next two examples concern closure properties of MSO-definable al-
gebras. Our definition of R-varieties was complicated by the fact that the
usual algebraic operations might produce algebras that are not finite gener-
ated. Here we present two examples showing that a subalgebra or a finite
product of an MSO-definable T* -algebra need not be finitely generated.

Let us start with subalgebras. We use a result about so-called clones. A
clone € is a set of functions (of various arities) over some fixed set X that
contains all projections and that is closed under composition, i.e., if € con-
tains f : X” - X and go,..., gn-r : X" — X, it also contains the m-ary
function

X f(go (%), gna (X)) -

Note that this composition also makes sense if the functions go, ..., gn—1
have different arities since we can make their arities equal by composing
them by suitable projections (which are in € by assumption).

Theorem 4.5 (Yanov, Muchnik). There are uncountably many clones on a
three element set.

As there are only countably many finitely generated clones, it follows in
particular that there exists some clone € that is not finitely generated. We
will use it to construct the desired T*-algebra.

Example. Let [3] = {0,1,2} be a three element set and let A be the set of
all functions [3]° — [3] together with a special error value L. We turn
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A = (Ag)¢ into a T*-algebra by defining the following multiplication
7:T*A — A.For a finite tree t € T* A that does not contain the symbol 1,
we compute the product 77(¢) by composing all the functions that label the
vertices of t. For all other trees, we set 71(t) := L. The resulting structure
A= (A, ) formsa T* -algebra which is finitely generated. (To see the latter,
one can, e.g,, represent every 3-valued function in a similar way as boolean
functions can be written in disjunctive normal form.) Furthermore, U is
MSO-definable since, when evaluating a tree t an automaton is able to first
check that t is finite and does not contain 1, and then evaluate ¢ bottom up by
remembering where each (of the bounded number) of the input arguments
is mapped to.

To conclude the construction recall that we have seen above that there
exists a clone on [3] that s not finitely generated. Let € U be the subalgebra
of A consisting of the elements of that clone. Then € is not finitely generated.

4

Example. Our counterexample for products looks as follows. For simplicity,
we will use T-algebras instead of T* -algebras. We start with a T-algebra B
where the elements of sort & are all finite sequences in &* that contain
every variable at most once. We define the product as follows. Suppose
we have sequences o € B and B e (B()'S where the 8, are disjoint. If
o= (Xi .00, Xi,_, )y We set

“(ﬁ_) = ﬁxio “‘ﬁxik,l ’

ie., we substitute B, for x in a. For a finite tree t € TB, we can now
inductively define

Tl(t) = 06(7'[(50),.”, n(sm_,)) ,

where a := t(()) is the label at the root and s, ..., s;,—; are the attached
subtrees. (With the convention that 7(s;) = (x) in case thats; = x isa
single variable.)

We can extend this definition to infinite trees as follows. If t does not
contain variables, we set 77(t) = (). Otherwise, we choose a finite prefix s of ¢
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that contains all the variables (here we need the fact that t € TB), separately
compute the products of s and of the attached subtrees, and then multiply the
results as above. Note that this definition ensures that 77(t) is the sequence
of all variables appearing in t, but not necessarily in the order they appear in.

Again it is straightforward to check that B is a T-algebra. Furthermore,
note that by suitably choosing the ordering of the variables of t we can write
every sequence & € B as the product of a tree t where all internal vertices are
labelled by (x) or (x, y), for fixed x, y € X. Hence, B is finitely generated
by three elements (), (x), (x, y).

Furthermore, B is MSO-definable since, given an element & € B¢ and
a finite set of generators, an automaton can determine whether an input
tree evaluates to « since all intermediate results are sequences of length at
most | €.

We claim that the product B x B is not finitely generated. For a con-
tradiction suppose otherwise and fix a finite set C of generators. Choose
a number m that is greater than the arity of all elements in C and set
&= {x0,.. ., Xam—1 }. We consider the element (a, 8) € B¢ x B; where

<X0; IRy xzm—l)

o=
ﬁ = (xm; Xos Xm+1s X1sevos Xmtir Xiy o ooy Xam—1s xm—l) .

By assumption, there is a tree t € TC with product («, 8). Let (y, §) be the
label at the root of t and let s,, .. ., s,,_; be the subtrees attached to it. (For
simplicity, we assume that # > 1. Otherwise our proof needs to be slightly
modified.) By choice of m, there is some subtree s; that contains at least two
variables. Let 0, 7 : [n] — [n] be the permutations such that

Y= (xg(o), .o ‘,xa(y,_l)> and 6= (Xr(o)’ .o "‘x’l’(ﬂ—l)) ,

and let p : B x B — B be the projection to the first component. By looking
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at the first components, we see that

(Tp(se(0))) -+ 1(Tp(o(n-r)))
= Y(T[(TP(SO))’ sy ”(TP(Sn—I)))

= <-x0yﬂu-x2m—l)’

Consequently, there exist numbers k < [ such that the term s; contains the
variables xp, Xg 4y, + + -, X1—;. By choice of i, we have | > k + 2.

Looking at the second components, we see that § must have some segment
of length | — k > 2 which contains the variables xj, x4, ..., x;; (in any
order). But the only segments of 5 of this form are those of length 1 and the
one of length 2m. A contradiction. .

5. MSO~Definable 2lgebras

The traditional tool to study the expressive power of monadic second-order
logic over forests are automata. As our algebraic theory is not quite developed
enough to replace all automata-based techniques, let us briefly recall some
material on automata that we will need below.

Definition 5.1. (a) A forest automaton isatuple A= (Q,%, &, 0,4, q,, Q)

where

¢ (Q, 0) forms a finite C-algebra whose elements are called states,

*

2 is the input alphabet,

*

& € E the input sort,

*

qgo € Q the initial state,

* Q:0Q — w the priority function, and

*

A = (A¢)¢ the transition relation where

A(EQX(Z+5)(><Q(.
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(b) A run of an automaton A on an input forest s € 72 is a function
p : dom, (s) = Q such that, for every vertex v € dom, (s),

(p(v),s(v),q) €A,

where, for each x € &, g := 0(wy) and w, € CQ is the linear order obtained
by restricting p to the set of x-successors of v.
(c) A run p is accepting if,
¢ d(w) = qo, where w € CQ is the restriction of p to the roots of s, and

¢ for every infinite branch f of s, the following parity condition is satisfied:

liminf Q(p(B,)) is even, where f3,, denotes the n-th vertex on .

(d) The language recognised by A is the set

L(A):={seF;Z| thereisan accepting run of Aons }. |
Example. Let 2 = {a, b} where a and b both have arity 1, and let K ¢ Fj; >
the set of all forests with at least one occurrence of the letter a. The following
automaton A = (Q, 2, ¢ 0,4, Go> Q) recognises K. We use two states
Q := {o,1} with initial state q, := 1. The input sort is £ := & and the
priority function is the identity Q(q) := q. Finally, the transition relation is

defined by

A={(1aq)|qeQ}u{{gcq)|[qeQ ce{ab}}.

To see that this automaton recognises K, consider a forest s € K. We obtain
an accepting run p of A on s by choosing some vertex v labelled @ and setting
all states on the path from the corresponding root to v to 1, while all other
vertices get the state 0. Conversely, given an accepting run p on a forest s,
note that the set of vertices P := p~*(1) is downwards closed (with respect to
the forest ordering <,¢). Furthermore, since p is accepting, P is non-empty
and it does not contain an infinite branch. Consequently, P must have a
maximal element v, which implies that s(v) = a. )
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The behaviour of an automaton A = (Q, %, &, 0, A, 4o, Q) on an input
forest s € F}X can also be described by a game, called the Automaton-
Pathfinder Game. This game has two players, Automaton and Pathfinder,
where Automaton tries to prove that the given forest is accepted by A, while
Pathfinder tries to refute this claim.

The game positions for Automaton are of the form (p, q) or (v, q) where
g € Q is a state, v € dom, (s) a vertex, and p € dom, (s) is what we call a
place. By definition, a place is the set of roots of some subforest of s, that is,
p is either the set of roots of s, or the set of all x-successors of some vertex
u € dom (s). The former is called the root place of s, while the latter is the
x-successor place of u. The positions for Pathfinder are either of the form
(p, f) where pisaplace and f : p > Q a function, or of the form (u, §)
where u is a vertex and § € A a transition. The starting position of the game
is (r, go) where r is the root place of s and g, the initial state.

Each round of the game proceeds in two phases. In the position (p, q),
Automaton first chooses a function f : p - Q with 0(f) = q and Pathfinder
selects a vertex u € p. Then Automaton picks a transition { f(u),s(u),q’) €
A and Pathfinder answers by choosing a variable x. The new position is
(px- 4’ ) where p is the set of x-successors of u and gy is the x-component
of §'.

The game continues until either a position is reached where the corres-
ponding player cannot make a move, in which case this player looses, or an
infinite number of rounds is played and Automaton wins if the sequence of
states occurring in the corresponding game positions satisfies the parity con-
dition. Using this game, we obtain the following description of the behaviour
of an automaton.

Lemma 5.2. Let A be an automaton and s an input forest. Then A accepts s if,

and only if, Automaton has a winning strategy for the corresponding Automaton-
Pathfinder Game.

Below we will need the following two facts from automata theory. (There
are currently no purely algebraic proofs of these results.)

Theorem 5.3. A language K ¢ F; X is MSO-definable if, and only if, it can be
recognised by some automaton A.
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Definition 5.4. A forests € IFEZ is regular if, up to isomorphism, s has only

finitely many different subtrees. ,

Theorem 5.5. Two MSO-definable languages K, L € F*X are equal if, and
only if, they contain the same regular forests.

We will also have to deal with runs of automata on forests flat(s) that are
partitioned into several factors. We can decompose such a run into pieces,
one for each factor s(v). These pieces are not themselves runs since they
do not necessarily start at the starting state and at variables the transition
relation does not need to be satisfied.

Definition 5.6. Let A=(0Q,%, &, 0,4, qo, Q) be a forest automaton.
(a) A partial run of A on some forest s € Iy X (where { might be different
from &) is a function p : dom, (s) — Q such that

& p satisfies the transition relation

{p(v)s(v),q) €A

at every vertex v that is not labelled by a variable, and
¢ p satisfies the parity condition for every infinite branch of s.

(b) The starting state of a partial run p is the state 0 (w), where w € CQ is
the restriction of p to the roots of the input forest s.

(c) The profile of a partial run p on a forest s € F X is the tuple 7 = (p, U)
where p is the starting state of p and, for each z € {, U, is the set of all pairs
(k, q) such that there exists some leaf v of s labelled z with state q := p(v)
and such that the least priority seen along the path from the corresponding
root to v is equal to k. |

It follows that, given a forest s € F*F*X and a partial run p(v) on each
factor s(v) such that the states at the holes of s (v) are equal to the o-product
of the results of the corresponding successors of #, we can compose the p(v)
into a single run p on flat(s). We will prove below that sets of profiles with
their natural composition form a F*-algebra and that the function mapping
a forest to the set of its profiles is a F* -morphism. This gives an alternative
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proof that every language recognised by an automaton is recognised by a
finitary F* -algebra.

Suyntactic 2lgebras

Once we have verified that the assumptions of Theorem IV.4.9 are satisfied
(compositionality and the existence of syntactic algebras), it follows that the
family of MSO-definable languages (for, say, the monad ) corresponds to
the class of MSO-definable F*-algebras. We start by proving the existence
of syntactic algebras.

Theorem 5.7. Let M be one of the monads T, T*, I, or F*. Then M is
essentially finitary over the class of all MSO([ <, |-definable M-algebras.

Proof. Let M"*8 A € M A the set of all regular forests in M A. Since every
regular forest has only finitely many different labels, this functor is finitary.
Hence, it remains to prove that the inclusion morphism M™® = M* is
dense over the class of all finite products of MSO-definable M -algebras.

Let,,...,YU,_; be MSO-definable, BEC Ay x---x A, _;,and t € M*B
a forest with 77(t) = 4. We have to find a regular forest t° € M"8B with
n(t°) = 4. Let C; € A; be a finite set of generators of ;. Since ¥; is
MSO-definable, there exists an automaton A; recognising the preimage
" (a;) "M*C;. Suppose that Q; is the set of states of A;, Q; : Q; — wits
priority function, and K; := rng (2; the set of priorities used by .A. For every
b € B, we fix forests 0;(b) € M*C; with 7(g;(b)) = b;, for i < n. This
defines a function 0; : VB - M*VC;, which we can extend to a morphism
6; : M*VB - M*VC;.

We construct the desired forest t° by the following variant of the usual
Automaton-Pathfinder game. In this game Automaton tries to construct
a forest s € M B such that, for every i < n, 6; (s) is accepted by A;, while
Pathfinder tries to prove that such a forest does not exist. We will define
the game in such a way that there is a correspondence between winning
strategies for Automaton and such forests s. Note that these are exactly the
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forests s with 71(s) = a, since

7(6:(s)) = n(Aac(M*0;(s)))
= g(M*n(M*0;(s)))
= m(M*pi(s))
= pi(n(s)),

where p; 1 Ay x---xA,_; = A; is the projection to the i-th component. As
7(t) = 4, it follows that Automaton indeed has a winning strategy for the
game. Furthermore, the winning condition of our game is regular. Therefore,
it follows by the Biichi-Landweber Theorem that Automaton even has a
winning strategy that uses only a finite amount of memory. As the forests s
corresponding to finite-memory strategies via the above correspondence are
regular, the claim follows.

To conclude the proof, it therefore remains to define a regular game with
the above properties. In each round, Automaton picks the label b € B for the
next vertex v of s and Pathfinder responds by choosing one of the successors
of v. While doing so, we have to keep track of all the states of the various
automata from which we want to accept the remaining subforest.

The positions for Automaton are of the form U € [];., P(K; x Q;),
while those for Pathfinder are finite families of tuples (V) ¢ where e &
and each component V is a position for Automaton. The initial position
belongs to Automaton and consists of the tuple ({(o, qé)})kn, where ¢’ is
the initial state of A;.

In a position U, Automaton chooses

& anelement b € B and,

o for every i < n and every pair (k, q) € Uj, a partial run p, of A; on the

forest 0;(b) such that the starting state of p, is q.

(It will turn out that Automaton can choose p, independently of k. So
we omit the index k to keep the notation light. We also assume that the
sets Q; are disjoint, so we do not need to specify the index i.) Suppose that
be B has sort & Fori < nand x € & let H;, be the set of all vertices
of 0; (b) labelled by the variable x. We denote by Wi, (q) the set of all pairs
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(k',q') € K; x Q; such that there is some v € H;, with

pa(w)=q" and k' :=min{Q;(ps(w)) |w=v}.

The new position is (V*) ¢ where

vie= U Wiklg).
(k,q)eU;

Pathfinder responds by choosing some x € &, after which the game proceeds
to position V.

Automaton wins a play of this game if either the play ends in the posi-
tion () where Pathfinder cannot make a move, or if the play is infinite and
satisfies the following variant of the parity condition. Suppose that the play
is U°, Ve, U', V2,... and let VVilx (g) be the sets used in the I-th turn by
Automaton to determine the next position V! = (V}),.. We call a sequence
kosqos ki g1 Ras qos - - - an i-trace of this play if (ko, qo) € U? and, for all
I <o,

(kiss, qied) € Wi (q1), for some x with U = V|,
We say that the play satisfies the parity condition if, for all i < n,

liminf k; is even, for all i-traces ko, o, k1s g1, kas Gos++ o+
I<w

Note that this is a regular winning condition. Furthermore, it is straightfor-
ward to check that Automaton wins this game if, and only if, there exists
some forest s € M* B such that, for every i < n, the forest 6;(s) is accepted

by A;.

Remark. The Bojaticzyk-Klin algebra shows that M8 is not densely em-
bedded in M* over the class of all finitary M* -algebras. |

As a consequence we can prove the existence of syntactic algebras (see
Theorem 111.4.24).

Corollary 5.8. Let M be one of the monads T, T*, IF, or F*. Every MSO-
definable language K € MY has a syntactic algebra.
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Tompofitionality

Our next goal is to show that MSO is varietal and compositional. We start
with the latter.

Theorem 5.9. The logic MSO is [ -compositional and, therefore, also T™ -com-
positional, F-compositional, and T-compositional.

Proof. Because of the translations between formulae and automata, there
exists, for every automaton A and each profile 7 of A, an MSO-formula ¢ 4, ;
stating that there is a partial run of A on the given forest with profile 7.
Furthermore, every MSO-formula is equivalent to a disjunction of formulae
of this kind.

For m < w, let MSO(,) denote the set of all MSO-formulae equivalent to
a formula of the form ¢ 4,; where A is an automaton with at most m states.
Since there are only finitely many such automata and each of them has only
finitely many profiles of partial runs, it follows that MSOy,) is finite (up to
logical equivalence). Let =(,,) be the equivalence relation which holds for
two forests if they satisfy the same MSO(,,,)-formulae. We claim that =(,,,y is
a congruence relation. This means that, if S, T € F*F*X are forests with
the same shape, then

S(v) =(m) T(v), forallv, implies flat(S) =(,, flac(T).

For the proof, fix a formula ¢ 4, € MSO(,,) with flat(S) = @ .4,,. We
have to show that flat( T') also satisfies ¢ 4,;, i.e., that there is a partial run
of A on flat(T) with profile 7. To do so, we introduce the following variant
of the Automaton-Pathfinder game. For a given forest T € F*[F* %, Player
Automaton tries to prove that there is a partial run of A on flat(T) with
profile 7, while Pathfinder tries to disprove him. We call a set p of vertices
of T a place if p is the set of roots of some subforest of T That is, p is
either the set of roots of T, or the set of all x-successors of some vertex
u € dom, (T). The former is called the root place of T, while the latter is the
x-successor place of u. The game starts in the position (r, T) where r is the root
place of T In a position (p, v) where p is a place and v a profile, Automaton
tries to show that there exists a partial run p on the subforest rooted at p
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with profile v. He starts by choosing a family () yep of profiles such that
the o-product of the starting states of the «, evaluates to the starting state
of v. Pathfinder answers by picking some vertex u € p. Next, Automaton
picks a partial run p of A on the forest T'(#) whose starting state is the one
given by . Then he has to choose profiles A for all the subforests attached
to the copy of T'(u) in flat(T) such that the ‘composition’ of the profile of p
and A is equal to x,. This is done as follows.

Let 4 = (p, U) be the profile of p. For each component U,, Automaton
chooses a set W, of triples (k, g, A) where k is a priority, q a state, and A a
profile. These sets must satisfy the following conditions.

¢ U, is the projection of Wy to the first two components.
o For each (k, g, A) € W,, the state q is equal to the starting state of 1.
e v =(p, V) is the composition of 4 and the profiles A. Formally,

Vi={(Lq) (kg A) e W,, A=(q, L), (K',q') e Ly,
I =min{k,k'}}.

Given W, Pathfinder responds by choosing a variable x, an x-successor v,
of u, and a triple (k, g, 1) € W,. Then the game continues in the position
(vx, A).

If the game reaches a leaf of T, it ends with a win for one of the players.
If the leaf is labelled by a variable x and the current position is (v, v), then
Automaton wins if, and only if, v is of the form (g, U) with U, = {q} and
U, = &, for z # x. Otherwise, Pathfinder wins. If the leaf is not labelled
by a variable, then Automaton wins if he can choose y = (p, U) such that
U, = &, for all x.

In the case where the game is infinite, Automaton wins if the sequence of
pairs (ko, Gor Ao )s (1, g1, Ao}, - - - chosen by Pathfinder satisfies the parity

condition

liminf k; iseven.
i<w

It is straightforward to check that Automaton wins the game on a given
forest T if, and only if, there exists a partial run of A on flac( T') with profile 7.
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5. MSO-definable algebras

(Every partial run of A on flat(T') with this profile gives rise to a winning
strategy in the game and, conversely, every winning strategy can be used to
construct a partial run with the desired profile.)

To conclude the proof we have to show that, if T'is a forest with S(v) =(,,)
T(v), for all v, then Automaton has a winning strategy in the game on T..
By construction, Automaton has a winning strategy ¢ in the game on S. We
use it to define a winning strategy ¢’ in the game on T as follows. If ¢ tells
Automaton to choose a partial run p on S(v), 0’ returns some partial run p’
on T'(v) with the same profile as p. (‘This is possible since S(v) =(,,y T(v).)
As only the profile of the chosen run is used by the game and ¢ is winning,
it follows that the resulting strategy ¢ is also winning, O

Remark. Note that in the above proof we have chosen a rather strange
stratification of MSO. It might be nice if we could use the usual stratification
in terms of the quantifier-rank instead, but this does not seem to work for
F>* and T*. For the monads IF and T on the other hand, there is an alternative
proof consisting of a simple inductive back-and-forth argument based on
the quantifier-rank. )

According to Theorem IV.4.4, to prove that MSO is varietal it suffices to
show that all theory algebras are MSO-definable,

Proposition 5.10. Let X be an alphabet and A,, := MSO(,, the fragment
of MSO used in the proof of Theorem 5.9. The theory algebra ©,,, X is MSO-
definable.

Proof. The set C := 0,,[2] is a finite set of generators of @, 2. Given a
A,,-theory 0 € ©,,, %, we have to find an MSO-formula ¢ defining the set

(o) nMC.

Every formula in o is of the form: ‘there exists a partial run of the auto-
maton A with profile 7\ Let us write y 4, for such a statement. For t € MIC,
it follows that 77(t) = o if, and only if, for every forest s € MZX with
M6,,, (s) = tand every xa,, € 0, there exists a partial run of A on s
with profile 7. Consequently, to define the above preimage it is sufficient to
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express, for a given automaton A and a profile 7, that every preimage of the
given forest t under M8, has a partial run of A with profile 7. This can be
done by saying that, for every vertex v, the theory t(v) contains a formula
of the form y 4,,,, for some profile v,, such that the composition’ of the
profiles v, yields 7. For this composition, we have to check that the states at
the borders match and to compute the minimal priorities on each branch.
All of this can easily be expressed in MSO. O

Corollary 5.11. MSO is varietal with respect to the functors F*, T*, F, and T.

By the above theorems it follows that the framework we have set up in
Chapters ITI and IV applies to the logic MSO: (1) MSO-definable languages
have syntactic algebras which, furthermore, are MSO-definable; (11) the class
of all such languages forms a variety of languages; (111) every subvariety can be
axiomatised by a set of inequalities. In particular, we can use Theorem IV.4.9
to study the expressive power of monadic second-order logic.

The following observation can sometimes be used to simplify proofs of
MSO-definability: we only need to check elements of arity at most one.

Proposition 5.12. Let L be either MSO or FO. A finitary T-algebra U is
MSO-definable if, and only if, it has a finite set C C A of generators such that

7" (a) N TC is regular, for every a € A of arity at most 1.
Remark. Note that this statement fails for T -algebras. j

Before giving the proof, we need to collect a few results about factorisa-
tions. We denote by F(t) the set of all factorisations T of t such that the
trees T (v) are singletons for all vertices v of T with more than one successor.
The height of a factorisation T is the height of the tree T'.

We call a tree t € TA reduced if it has no non-trivial factor of arity at most
one, that is, for every factorisation T of t and every vertex v € dom(T') of
arity at most one, we have T'(v) = sing(a), for some a € A. The important
fact about reduced trees is that they are small.

Lemma 5.13. Let U be a T-algebra and & € E. Every reduced tree t € T¢A has
height at most 2|€|.
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5. MSO-definable algebras

Proof. We prove the claim by induction on m := |&|. For £ = &, note that
every reduced tree of sort £ is of the form sing(a), for some a € Ag. Hence,
the height is o. For the inductive step, suppose that £ # & and consider a
reduced tree t € Tz A. We distinguish two cases.

First, suppose that the root has an arity greater than 1. As ¢ is reduced,
every subtree attached to the root must have fewer variables than t. By
inductive hypothesis, their height is at most 2(m — 1). Hence, the height of
tisatmost2(m —1) + 1.

It remains to consider the case where the root has arity 1. As t is reduced,
the successor must then have arity greater than 1. Hence, the attached subtree
satisfies the above case, which means that its height is bounded by 2(m—1) +1.
Consequently, the height of ¢ is at most 2(m — 1) + 2 = 2m. O

Next we will show that the set F () of factorisations of t contains reduced
trees. For the proof we will employ the following ordering on F(t). For

S, T € F(t), we set
SeT :iff thereissome U e TTTA such that S = flac(U) and
U(v) is a factorisation of T'(v), for v € dom(U).

Lemma 5.14. The set F(t) is inductively ordered by S, i.e., every chain as an
upper bound.

Proof. Let (T;)ier be an increasing sequence in F(t). We have to find an
upper bound. Note that every factorisation T of ¢ induces an equivalence
relation ~1 on dom(¢) by

u~rv :iff  wandv are vertices belonging to the same

factor T(w).
It follows that
T;cT; implies w7, C AT, fori<jinI.

Thus the sequence (%7, )jer is increasing and the limit

o= )N
1

i€l
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is an equivalence relation on dom(¢) that corresponds to some factorisa-
tion T of t. We will show that T € F(t). Thus T is the desired upper bound
for ( T,‘ ) iel+

To prove the claim, note that every ~-class E is the union of an increas-
ing sequence (E;);er of »T,-classes. Since each T belongs to F(t), every
relation E; is of one of the following two types.

(1) The class is a singleton.
(11) The class corresponds to a factor of arity at most one.

If there are arbitrarily large i such that E; is of type (1), the sequence is
constant and the limit E is also of type (1). Otherwise, the limit E is a union
of classes of type (11) and, hence, is also of type (11). As this holds for all
classes of w, it follows that T € F(t). O

Lemma 5.15. Let A be a T-algebra and C C A a set such that Az U Ay € C,
for some variable z. Every tree t € T¢C has a factorisation T € F(t) such that

(1) T is reduced,
(11) the beight of T is at most 2m, and
() Tn(T) e TC.

Proof. By Lemma 5.14, we can use Zorn's Lemma to find a maximal element
T € F(t). We claim that T is the desired factorisation.

(1) For a contradiction, suppose otherwise. Then there exists a factor-
isation U of T and a vertex 4 € dom(U) of arity at most one such that
U(u) is not a singleton. Let T” be the tree obtained from T by replacing
the factor U(u) by its product. Then, T = T” and T is not maximal.

(11) follows from (1) by Lemma 5.13.

(111) Note that every factor T'(v) is either a singleton with label in C or a
tree of arity at most one. Renaming the edge labels of T', we may assume that
every factor T'(v) of the latter kind belongs to T, C. Since Az UA ) € C,
it therefore follows that 77(T(v)) € C. Consequently, Tn(T) e TC. O

Proof of Proposition 5.12. For the nontrivial direction, suppose that 2 is an
algebra as in the proposition and let C € A be the corresponding set of
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5. MSO-definable algebras

generators. To prove that % is L-definable, we fix an element a € Ay, for
an arbitray & € Z. We have to show that 77" (a) N TC is regular. Set C’ :=
C U Ag U Ay, for some variable 2, and fix t € TC. By Lemma 5.15, t has a

factorisation T € F(¢t) such that T is reduced, its height is at most 2m, and
Tr(T) € TC'. It follows that Ta(T) € H(a) where

H(a) := {s € TC' | s has height at most 2m and 71(s) = a }.
Consequently, we have
n(t)=a iff m(fac(T))=a
if #(Trn(T))=a if Tnr(T)eH(a).
For every finite tree s, we will construct an L-formula 9; such that
t=9, iff thasafactorisation T € F(t) such that Tn(T) =s.
Then it follows that

n(t)y=a iff Tn(T)eH(a) iff t= \/ 9,
seH(a)

as desired. Hence, it remains to construct the formulae J;.

First, note that we can encode a factorisation T of ¢ by a set Z that
contains the root of each factor T'(v). As T has bounded height, the set Z
has bounded size. Hence, we can quantify over an enumeration z of Z. We
can therefore set

Y = Elé[‘i encodes a factorisation T in F(t)’

A /\ ‘'thefactor T(v) evaluates to 5(1/)'] .

vedom(s)

The first part of this formula is clearly expressible in L. For the second part,
note that s is finite and each factor T'(v) is either a singleton or a term of
arity at most one. In the first case it is trivial to compute the product. In
the second case, we can use the formulae defining the sets 77" (a) N TC, for
a€AzU A{z}. O
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8. Sic[t~Order Logic
Let us turn to the logic FO next. Again, we start with compositionality.

Theorem 6.1. The logic FO is F* -compositional and, therefore, also T™ -com-
positional, F-compositional, and T-compositional.

Proof. Let FO,, denote the set of all first-order formulae of quantifier-rank
at most m and denote by =,, equivalence with respect to such formulae. We
claim that =,, is a congruence on [F* X, For the proof, consider two forests

S, T € F*F* X with the same shape satisfying
S(v) =, T(v), forallverticesv.

We have to show that flat(S) =, flac(T).

The proof is by induction on m. To make the inductive step go through
we have to prove a slightly stronger statement involving parameters. Given a
tuple a of vertices of flat(S) and a copy s of S(v) in flat(S), we denote by a°
the tuple

a; ifa; € dom,(s),
s

a;:={v ifvisaholeofsandv <y a; in flac(S),

v ifvisthe root of sand v £,¢ a; in flac(S) .

We use the same notation for parameters in flat( T'). For a tuple 4 of vertices
of some forest s, we write (s, d) for the expansion of s by constants for the
vertices d. The claim we prove is that, for forests S, T € F*IF*X with the
same ‘shape and with parameters a in flac(S) and b in flac(T),

(s,8°) =, (t,b'), forallv, copiessof S(v), and copies t of T(v),

implies that

(fat(S), a) =, (Aac(T),b).
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6. First-order logic

For m = o, the proof is straightforward: to see whether (flat(T), b)
satisfies an atomic formula we only have to check atomic formulae in some
of the factors. For the inductive step, suppose that

(s,d°) =pmes (t l-)t) , forallv,s, and ¢t.
We use a back-and-forth argument to show that
(Aat(S), ) Zpss (Aat(T),b).

Hence, let ¢ € dom, (flat(S)) be a new parameter and suppose that ¢ be-
longs to a copy s of the forest S(v). When we want to apply the inductive
hypothesis, we now face the problem that, if flat(S) contains several copies
of S(v), only one of them contains the new parameter. To solve this issue,
we have to modify the forests S and T to make sure this does not happen.

Letvo,...,v, be the path from the root v, of S to v = v,, and let 5; be
the copy of S(v;) in flat(S) such that ¢ is a descendant of the root of s;.
We construct new forests So,...,S, and Ty, ..., T}, as follows. We start
with S, := S and T, := T. For the inductive step, suppose we have already
defined S; and T; for some i < n and that there is a unique copy ¢; of T;(v;)
in flat(T;). We choose a vertex d; of ¢; such that

(Si, ds;cs,»> =m <ti, btid,'> .

Note that the vertex ¢’ is a leaf labelled by some variable x. Hence, so is d;.
If there is no other occurrence of x in s;, we set S;;; = S;. Otherwise,
we choose some variable y that does not appear in s; and we replace every
occurrence of x in s; by y, except for the one at ¢*’. Let S;.; be the forest
obtained from S; by

¢ changing S(v;) = s; in this way and
¢ duplicating the subforest whose root are the x-successors of v; in such a
way that the roots of the new copy are y-successors.

This ensures that flat(S;,) = flat(S;) and that S;., contains a unique copy
of S(visy). The forest T}, is obtained from T; in exactly the same way.
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Having constructed the forests S,, and T),, we now choose some vertex

d, € dom, (T, (v,)) such that
{snr @) = (8,07 d,).

Setting d := d,,, it follows that d* = d;, for all i < n, which implies that
(sia®ic%) =, (t;,b%d"%), foralli<n.

Note that, if 4 is a vertex different from v,, ..., vy, s a copy of S,, (u)and ta
copy of T, (u), then ¢’ is the root of s and d° is the root of t. Consequently,
we also have

(s,8°¢*) =, (t,b°d").

Hence, the forests S,, and T), together with the parameters 4,c and b, d
satisfy our inductive hypothesis and it follows that

(fat(S,), a, ¢) =, (fac(T,), b, d).
Since flat(S,,) = flat(S) and flac( T, ) = flat(T'), the claim follows.

In the same way we can show that, for every choice of d in flac(T), we
find a matching vertex c in flac(S). O

It remains to show that FO is varietal. It turns out that this is only the
case for the monads I and T, but not for F* or T*.

Proposition 6.2. FO is closed under inverse F-morphisms and inverse T-
morphisms.

Proof. Let ¢ : FX — [FI'be amorphism of F-algebras and let ¢, := @osing :
2 — FI be its restriction to Z. For s, t € FX, we will prove that

s=p, t implies @(s) =, ¢(t),

where =, denotes equivalence with respect to FO-formulae of quantifier-
rank at most m. For the induction step we again need to prove a more general
statement involving parameters. We start with setting up a bit of notation.
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Figure 3.: Definition of g;, I, and 4"

Note that a forest of the form ¢(s) = flat(Fg,(s)) is obtained from s
by replacing each vertex u by a forest ¢, (s(«)). For s € FX, we denote by
gs : dom, (¢(s)) - dom, (s) the function mapping a vertex u of ¢(s) to
the vertex v := g, () such that the copy of the forest ¢, (s(v)) replacing v
in ¢(s) contains u. (Note that this copy of ¢, (s(v)) is unique, since we are
dealing with the monad IF.)

For an n-tuple g of vertices of ¢(s) and a vertex u of s, we set
I,:={i<n|g(a;)=u} and a":=(a:)ier,,

where we consider a* as a tuple of vertices of ¢, (s(u)).
The statement we will prove by induction on m is the following. Let
s,t € FX be forests and 4 and b n-tuples of parameters of, respectively,

¢(s) and ¢(t). Then

(s g:(a)) = (1, g:(0))
and <(po(s(u)),d“> = (q)o(t(v)),l_a"), forallu,v withI, =1, + &,
implies

(9(s), @) =m (9(t),b).

For m = o, this is immediate. Hence, suppose that m > 0. We have to

check the back-and-forth properties. Thus, let ¢ € dom, (¢(s)) and set
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u := g;(c). Then there is some v € dom., (t) such that

(5,8:(8), g:()) =mr (£, g (B),v).
Note that

Lo={ilg(a)=u}={ilg(b)=v}=1.

We distinguish two cases. If I, = I, # &, then there exists an isomorphism

0 (ga(s()), ) = {go(e(+))., B°)

and we can set d := o (¢).
Otherwise, I, = I, = @ and s(u) = t(v) implies that ¢,(s(u)) =
¢o(t(v)). Hence, can choose some element d of ¢, (¢t(v)) such that

(po(s(u)),c) = (o (t(v)).d).

In both cases, it now follows that

(5,:(a), g:(0)) =m (£ ge(B), g:(d))
and (go(s(u)),a"c") = (9o(t(v)),6°d"), ifI, =1, #2,

which, by inductive hypothesis, implies that

((P(S)’ ﬁc) Sm-1 <(P(f), [Jd) .
The other direction follows by symmetry. O

Let us give a counterexample showing that FO is not closed under inverse
morphisms of F*-algebras. (The same example works for T*-algebras.) It
rests on the following lemma. Recall that a tree is complete binary if every
non-leaf has exactly two successors.

Lemma 6.3. There exists a first-order formula @ such that a finite complete
binary tree T = (T, suc,, suc,, <pf) satisfies @ if, and only if, every leaf of T
has an even distance from the root.
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Proof. The basic idea is as follows. If every leaf is at an even distance from
the root, we can determine whether a vertex x belongs to an even level of the
tree by walking a zig-zag path from x downwards until we hit a leaf. For such
a path it is trivial to check that its length is even. Hence, our formula only
needs to express that the level parities computed in this way are consistent
and that the root is on an even level.

To express all this in first-order logic, we first define a few auxiliary for-
mulae.

suc(x, y) := suco(x, y) V suc, (x, y)
zigzag(x, y; u,v) := [suco(x, y) Asuc,(u,v)]
V [suc;(x, y) Asuco (u,v)]
probe(x, y) := x <p¢ y A =3z[suc(y, z)]
AVuVvVw[x <pf 4 A suc(u,v) Asuc(v, w)

Aw <pf y = zigzag(u, v;v,w)].

The first one just states that y is a successor of x; the second one says that
(x, y) and (u, v} are two edges that go into different directions, one to the
left and one to the right; and the last one states that y is one of the two leaves
below x that are reached by a zig-zag path consisting of alternatingly taking
left and right successors.

Using these formulae we can express that a vertex x has an even distance
from some leaf by

even(x) := Jy[probe(x, y) A
JuTv[x = y v [suc(x,u) Au <pp v Asuc(v, y)

A zigzag(x, u; v, y)]]].

Consequently, the desired formula is

VxVy[suc(x, y) — [even(x) <> —even(y)]]
A 3xVy[x <p¢ y Aeven(x)]. O
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Corollary 6.4. FO is not closed under inverse B -morphisms or inverse T*-
morphisms.

Proof. Let 2 := {a,c} and I := {b, c} where a is unary, b binary, and c a
constant, and let ¢ := F*X¥ — F*T be the morphism mapping a(x,) to
b(xo,%5) and ¢ to c. Let K € F*T be the set of all complete binary trees
defined by the formula even from Lemma 6.3. Then ¢ " [ K] contains a tree
of the from a” (¢) if, and only if, n is even. This is not FO-definable. [

To summarise, we have obtained the following result.

Corollary 6.5. FO is varietal with respect to the functors F and T. but not with
respect to ™ or T™.

Yotes

The results about countable chains are originally due to [19]. Our presenta-
tion is based on [10]. For an introduction to Green’s relations see, e.g., [34, 5].
The Bojariczyk-Klin algebra is from [11] and Theorem 4.5 from [44]. Intro-
ductions to automata on infinite trees can be found in [41, 28]. Our model
of a forest automaton is a simplified version of the MSO-automata intro-
duced in [43]. Proposition 6.2 and Lemma 6.3 are by Potthoff [35, 36] and
its corollary by Bojariczyk and Michalewski [13].
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1. demporal Logics

EMPORAL LOGICS ARE MODAL LoGICS talking about transition systems,
T i.e, labelled directed graphs, and frequently used in verification. Here,
we will consider them only over forests instead of arbitrary transition sys-
tems. This is not a restriction since each of these logics is closed under a
suitable form of bisimulation. In particular, they cannot distinguish between
a transition system and its unravelling,

Convention. In this chapter we will work exclusively in the category D = Set.

Well-known temporal logics for forests include basic modal logic ML,
computation tree logic CTL and CTL”*, and propositional dynamic logic PDL.
We also consider the following variants. We denote by EF the fragment
of CTL where we only allow the modal operator EF. Weak computation tree
logic wCTL" is the variant of CTL" where the path quantifiers range over
finite paths only. Finally, we consider several fragments of monadic second-
order logic: Monadic path logic MPL and monadic chain logic MCL are the
variants of MSO[ <] where quantification is restricted to sets that form,
respectively, paths and chains (i.e., subsets of paths). There are also the weak
variants of these two logics, WMPL and WMCL, where we can only quantify
over finite paths and chains.

These logics also have counting variants where, instead of the usual modal
operators which only check the existence of certain successors or paths, we
use counting operators which express, for some constant k, that there are at
least k such successors or paths, We call these variants cEF, cCTL”, cwCTL",
cPDL, etc. (Note that the ordinary temporal logics are the bisimulation-
invariant fragments of their counting counterparts.)
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VI. Temporal Logics

All of these logics above have the common property that formulae only
speak about what happens on a path of the given tree. Consequently, if we
introduce a quantifier that labels all vertices of a given forest by definable
properties of their attached subtrees and then counts the number of certain
paths in the resulting forest, we can unify them into a single logic. The
definition is as follows.

Definition r.1. (a) We call a finite set @ = {¢o,..., ¢, } of formulae a

syntactic partition if there are formulae 9, ..., 9,_, such that

q)i:Si/\/\_‘Sk’ fori<n, and (Pn:/\_'sk’

k<i k<n

(b) Let @ be a syntactic partition and let k=, be the relation defined in (c).
'The @-labelling of a path (v;); in a forest s, is the sequence (¢;); where ¢; is
the unique formula in @ with s|,, =¢ @;.

(c) Let K be a family of co-word languages. Counting K-temporal logic
cTL[K] (over a fixed alphabet X) has two kinds of formulae: tree formulae
and forest formulae. The set of forest formulae is inductively defined as follows.

o Forest formulae are closed under finite boolean combinations.

¢ For every syntactic partition @ of tree formulae, every co-word language
K € K[ @], and every positive integer n, E,, K is a forest formula.

The set of tree formulae is defined as follows.
o P, is a tree formula, for every label g € X,
¢ Tree formulae are closed under finite boolean combinations.
o Every forest formula is a tree formula.

To define the semantics we introduce a satisfaction relation ¢ for forest
formulae and one . for tree formulae. In both cases boolean combinations
are defined in the usual way. For a tree t, we define

t=. P, :iff  theroot of t has label 4,
tEe @ :;iff ¢ Ef @, for forest formulae ¢,
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where t' denotes the forest obtained by removing the root from ¢t. For a
forest s we define

skEr E,K  :iff  there exist at least n paths each of which has
a @-labelling in K.

We do not require the paths above to be disjoint. They can even be prefixes
of each other.

(d) KC-temporal logic TL[K] is the fragment of ¢cTL[ K] consisting of all
formulae that do not contain E,-operators with n > 1.

(e) Let S be a pseudo-variety of w-semigroups and let X*°, K*, and
K® be the classes of, respectively, all co-word languages, all finite word
languages, and all w-word languages recognised by some w-semigroup in S.
For x € {00, +, w}, we introduce the short hands ¢TL[S*] := ¢TL[K*]
and TL[S*] := TL[K*].

(f) The modal rank of a formula ¢ € cTL[K] is the nesting depth of the

modal operators E, in ¢@. )

The aim of this chapter is to derive algebraic characterisations of various
instances of TL[K] and ¢TL[K]. In may cases we will only consider lan-
guages of finitely branching forests to avoid technicalities and to make our
task a bit easier.

Definition .2, For a set A, we denote by F® A the set of finitely branching
forests in F* A that have only finitely many roots and finitely many holes. |

We start by showing how the logics mentioned above fit into this frame-
work.

Proposition 1.3. Each of the logics listed in Figure 1 is equivalent to TL[K] or
cTL[K] for the family IC given in the table.

Most of the equivalences follow by a simple induction on the structure of
formulae. The non-trivial cases follow from the equivalences MPL = cCTL",
FO = WMPL = cwCTL", and ¢PDL = WMCL, which can be proved using
composition arguments.
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TL[K] ¢TL[K]
logic K logic K
EF >*a cEF >*a
wCTL C*a cwCTL C*a
CTL C*aand C® cCTL C*aand C®

wCTL* FO-definable K € ¥*  ¢wCTL* FO-definable K ¢ X*
CTL* FO-definable K € ¥*°  c¢CTL* FO-definable K ¢ X*°

PDL regular K ¢ X* cPDL regular K ¢ X*
FO FO-definable K ¢ X*
WMPL FO-definable K ¢ >*
MPL FO-definable K ¢ X*°
WMCL  regular K ¢ X*
MCL regular K € X*°

Figure 1.: Instances of KC-temporal logic (4 € Zand C ¢ X)

The rest of this chapter is devoted to the study of logics of the form
TL[K] and ¢TL[K]. We start with a language-theoretic characterisation.
The general idea is as follows. Suppose we want to construct a recogniser for
a given language, say, an automaton, morphism, or a formula in some logic.
One way to make our task easier is to do the recognition in several steps. For
instance, we can run a first automaton on the input forest, label the input by
the resulting run, and then use a second automaton on the forest expanded
in this way. Similarly, we can apply a first morphism to the input forest, label
each subtree by its value under this morphism, and then feed the resulting
forest to a second morphism. This is the idea behind the following cascading
operation.

Definition 1.4. Let K, ..., K,_; € FzZX be forest languages that form a
partition of Fy X, i

(a) For t € F%, we denote by t[ K] the forest where each vertex gets an
additional label encoding to which language K; the attached subtree belongs.
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1. Temporal logics

Formally, we define t[K] € F(Z x [1]) by
t[K](v) == (t(v), i) where iisthe uniqueindex with t|, € K;.
(b) For L € Fy (2 x [n]), we set
L[K]:={teFyzX|t[K]eL}.

(c) For a family K of languages, we denote by Casc(K) the smallest family
of languages that contains /C, is closed under finite boolean operations, and
satisfies

L,KeCasc(K) = L[K]eCasc(K). )
Proposition 1.5. Let K be a family of co-word languages and M the family
consisting of all forest languages of the form

{s € FyX | s has at least n paths with labelling in K }
and {s € FyX | the roof of s has label a },

for KeK[Z],aeZ andn < w.
(a) Alanguage L € FyX is cTL[K]-definable if, and only if, L € Casc(M).

(b) If we modify the definition of M to only allow n = 1, we obtain an analogous
characterisation of TL[ K ]-definable languages.

Proof. We only prove the claim for cTL[K]. The second statement follows
in exactly the same way.

(<=) Clearly, every language in M is cTL[K]-definable. Hence, the claim
follows by induction if we can show that, if L and K are ¢TL[K]-definable

languages, then so is L[ K]. Suppose that L is defined by the formula ¢ and
K; by y;. Then we can define L[K] by the formula obtained from ¢ by
replacing every atom of the form P, ;) by the formula P, A y;.

(=) Given a formula ¢ € ¢cTL[K] we prove by induction on ¢ that it

defines a language in Casc(M). For ¢ = P,, the defined language is
{s e F3X | the roof of s has label a },
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which belongs to M ¢ Casc(M) by assumption. As Casc(M) is closed
under finite boolean operations, it remains to consider formulae of the form
¢ = E, K with K € K[ @], for some syntactic partition Q. For every y € ®,
we know by inductive hypothesis that the language Ly, it defines belongs to
Casc(M). By assumption, so does the language

M := {s e FzX | s has at least n paths with labelling in K } .

Consequently, M[L] € Casc(M), which is the language defined by E,, K.
O

2. Difimulation

Before approaching characterisations of various temporal logics, let us start
with the simpler case of bisimulation invariance. This example also explains
why we have chosen to use algebras with elements of higher arities. As a
warm-up, we start with a very simple example: that of sibling-commutative
languages.

Definition 2.1. (a) A forest s is a permutation of t € FA if s is obtained
from t by simultaneously rearranging the roots and the successors of every
vertex. Formally, we call a function 0 : dom(s) — dom(t) a permutation if
it is bijective and it preserves the successor and sibling relations. Then s is a
permutation of t if there exists some permutation dom(s) — dom(t).

(a) A language K ¢ TZ is sibling-commutative if it is closed under per-
mutations.

a

Note that being sibling-commutative is not the same as being closed under
rearranging the successors of a single vertex (or finitely many of them).

Theorem 2.2. A regular language K € IFg’Z is sibling-commutative if, and
only if, its syntactic algebra Syn(K) satisfies the equations

c+d=d+c and a(x+y)=a(y+x).

forallae Ag, yandc,d e Ag.
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2. Bisimulation

Proof. (<=) If s is a permutation of t, we have syn, (s) = syn,(t). Since
syn recognises K it follows that s € K <> t € K and that K is sibling-
commutative.

(=) Given an element a € Ay ,3, we have to show that

a(x+y) ~xa(y+x)

(where ~ is the syntactic congruence of K). Hence, let p be a context. Note
that the two forests obtained from p by replacing the hole O by, respectively,
a(x + y) and a(y + x) are permutations of each other. As K is sibling-
commutative we therefore have

pla(x+y)] e K< pla(y+x)] € K.

The equation ¢ + d = d + ¢ follows analogously. O

Remark. It follows in particular that sibling-commutativity is decidable.
Given a regular language K, we can compute its syntactic algebra and check
whether it satisfies the above equations. (We only need to check them for
elements a in a finite set of generators.) )

The characterisation of bisimulation is similar. We just have to account
for the duplication of successors. Let us recall the definition.

Definition 2.3. (a) A bisimulation between two forests s and ¢t is a binary
relation Z € dom(s) x dom(¢t) such that (u,v) € Z implies that

¢ s(u) =t(v) and,
o for every x-successor u’ of u, there is some x-successor v’ of v with
(4',v") € Z and vice versa.

(b) Two trees are bisimilar if there exists a bisimulation between them
that relates their roots. More generally, two forests are bisimilar if every
component of one is bisimilar to some component of the other.

(¢) A language K of forests is bisimulation-invariant if s € K implies t € K,
for every forest ¢ bisimilar to s. |
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Theorem 2.4. Let X be an alphabet where every symbol has arity 1, and let
K c P2 be a forest language with a syntactic algebra. Then K is bisimulation-
invariant if, and only if, Syn(K) satisfies the following equations:

ctc=c, a(x+x)=a(x),

c+d=d+e¢, a(xo +x + %, +x3) = a(x0 + %, + X1 +%3),
foralla € Syn ,(K) and ¢,d € Syng,(K).

Proof. We denote the syntactic congruence of K by ~.
(=) Given elements ¢, d € Syn(K), we fix forests s € syny'(c) and
t € syn’ (d). If K is bisimulation-invariant, we have

pls]e K iff p[s+s]eK,
pls+t]e K iff p[t+s]eK,

for every context p. Consequently, s ~x s+sand s+t ~k t+s, which implies
thatc=c+candc+d=d+c.

The remaining two equations are proved similarly. Fix 4 € Syn (x} (K)
and s € syni!(a). Setting s’ := s(x, + x, ), bisimulation-invariance of K
implies that

p[s]e K iff p[s'] €K, foreverycontextp.

Consequently s ~x s" and a(x,) = syng (s) = syny (s) = a(xo + x5 ).
Similarly, for ¢ := s(x + x; + x, + x;3) and t' 1= s(xo + x, + %, + x3), we
have

p[t]e K iff p[t'] €K, forevery context p.

Hence, t ~x t' and a(x + x; + %, + x3) = a(x + X, + X, + x3).

(«=) Suppose that Syn(K) satisfies the four equations above and let
s and s’ be bisimilar forests. We claim that syn, (s) = syny(s"), which
implies that s € K < s’ € K.

Fix a bisimulation relation Z € dom(s) x dom(s"). W.l.o.g. we may as-
sume that Z only relates vertices on the same level of the respective forests
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a a
oA e o e
a a c a c c
Xo xo/ \x. Xo

[ c

t; a(xo + X1 + X + X5) t! a(xo + X0 +2x1 +%5)
Xg X | X, Xo X1 | X
a(xo +%x0)  a(xo +x1) c a(xo + Xo0)
Xo xo/ \x, Xo
c c c c
t, !

a t2 a

a a c c a a c c
xo/ \xx xo/ \xx xo/ \xx xo/ \xx
c c c c c c c c

Figure 2.: Transforming bisimilar forests

and that it only relates vertices whose predecessors are also related. (If not,
we can always remove the pairs not satisfying this condition without des-
troying the fact that Z is a bisimulation.) Let ~ be the equivalence relation
on dom(s) U dom(s") generated by Z.

We will transform the forests s and s’ in several steps while preserving
their value under syn until both forests are equal. (Note that each of these
steps necessarily modifies the given forest at every vertex.) An example of
this process can be found in Figure 2. The first step consists in translating
the problem into the algebra Syn(K). We define two new forests t,, t, €
FgSyn(K) with the same domains as, respectively, s and s” and the following
labelling. If v € dom(s) has the successors ug, . .., u,_;, we set

to(v) = synp(s(v)) (X0 + -+ +x41)
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and we make u; an x;-successor of v in t,. We obtain ¢, from s’ in the same
way. By associativity it follows that 77(t,) = syn,(s) and 7(t) = syn,(s").

Next we make the shapes of the forests t, and ¢/, the same. Let t, and ¢
be the forests with the same domains as ¢, and ¢/, and the following labelling.
For every vertex v of t, with successors 4o, ..., u,_; and labelling

to(v) :a(x0+-~~+xn_,),
we set
ti(v)=a(xo+ - +Xo+  F X+t X 1),

where each variable x; is repeated m; times and the numbers m; are determ-
ined as follows. Let M be some number such that, for every i < n, no vertex
v' ~ v has at more than M successors u’ with u’ ~ u;. (Note that there are
only finitely many such vertices.) We choose the constants m; such that

Y mp=M, where Uj:={k<n|ugnu;}.
kEU;

We obtain the forest ¢} in the same way from t.. By the top right equation
in the statement of the theorem, the value of the product is not affected by
this modification. Hence, 7(t,) = 7(t,) and 7(¢)) = n(t]).

Finally, let ¢, and t. be the unravelling of, respectively, t; and t!, i.e., the
forest where for every vertex v with successors o, ..., #,_; and label

ti(v)=a(xo+ - +x0+ Xyt +X021),
we set
ta(v)=a(xo+ - F+xp+-tx++xp),

where we number the variables from left-to-right, e.g., a(xo+x0+X;+X,+x, )
becomes a(x, + x; +x, + x5 + x, ), and we duplicate each attached subforest
a corresponding number of times such that the value of the product does
not change. We do the same for ¢.
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2. Bisimulation

We have arrived at a situation where, for each component r of the forests ¢,,
there is some component ' of ¢, that differs only in the ordering of successors,
but not in their number. Consequently, there exists a bijection ¢ : dom(t) —
dom(r") such that, for a vertex v of r with successors uo, ..., t,_1,

”’(V) = "(V)(xcru(o) teeet xov(nfl)) ’

where the function 0, : [n] — [#] is chosen such that o'(u;) is the x, (;)-
successor of d(v).

Let 7 be the tree obtained from r as follows. For a vertex v with successors
4o, ..., ty—y and labelling

r(v) =a(xe+-+x,),
we set
#(v) = a(Xg,(0) + "+ Xa, (n-1)) »

and we reorder the attached subtrees accordingly. By associativity and the
bottom right equation, this does not change the value of the product. It
follows that # = 1’. Consequently, 7(r) = n(+").

We have shown that, for every component of ¢, there is some component
of t! with the same product. Therefore, we can write

n(to)=ao+ - +apy and 7w(th)=bo+ - +b,,

where the sets {ao, ..., am—y } and {bo, ..., by_; } coincide. Using the equa-
tions ¢ +¢ = c and ¢ +d = d + ¢ we can therefore transform 7(t, ) into 7 (¢ ).
Consequently,

syn (s) = 7(to) = m(t5) = syng (s”) -
As syn, recognises K it follows that s € K < s" € K, as desired. O

Note that we immediately obtain a decision procedure for bisimulation-
invariance from this theorem, since we can compute the syntactic algebra
and check whether it satisfies the given set of equations.

Corollary 2.5. Itis decidable whether a given regular language K is bisimulation-
invariant.
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3. The Logic EF

One of the simplest temporal logics is the logic EF a fragment of CTL where
we only allow the modal operator EF. As remarked in Proposition 1.3, we
have EF = TL[K] and cEF = ¢TL[K] where K is the family of all languages
of the form X*a, for some a € X.

Definition 3.1. For n, m < w, we denote by cEF,, the fragment of cEF that
uses only operators E; where | < 1, and cEF}} is the fragment of cEF,, where
the nesting depth of the operators E; is restricted to m. For n = 1, we set
EF := cEF, and EF"” := cEF/". )

The following is our main theorem. Before giving the statement a few
technical remarks are in order. In the equations below we make use of the
w-power a* of an element a € A,y (which is the infinite vertical product
aaa...),and the idempotent power a”™ (which is the defined as 4™ = a” for
the minimal number »n with a”4” = a”). For the horizontal semigroup we
use multiplicative notation instead: n x afora +---+aand w x aforn x a
with # as above.

When writing an w-power of an element of arity greater than one, we
need to specify with respect to which variable we take the power. We use
the notation a®* to indicate that the variable x should be used. Note that,
when using several w-powers like in (a(x, (b(x, y))*?))“*, the intermedi-
ate term after resolving the inner power can be a forest with infinitely many
occurrences of the variable x. But after resolving the outer w-power, we ob-
tain a forest without variables, i.e., a proper element of F A. Consequently,
the equations below are all well-defined.

Theorem 3.2. A language K € T3 is definable in the logic cEE,, if, and only
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3. The logic EF

if, its syntactic algebra Syn(K) satisfies the following equations:

c+d=d+c (a(x)+b(x))“ = (ab(x))®

(ab)™ =b(ab)" (a(x)+¢)? =(a(x+¢))”
a®+a"=a" (a(x+c+¢))?=(a(x+¢))”
(abb")® = (ab'b)® [a(b(x,y))“’y]wx = [ab(x,x)]“*
(aab)® = (ab)® [a(x+bc+¢)]Y =[a(x+bc)]

ae(eree )+ (n—|E) x e = a(c,.nn )+ (n— & +1) xc,

[a(x + (a(nxx))"(c))]* = nx (a(nxx))"(c)
foralla,b,b’ € Syn{x}(K), ¢,d € Syn(K), ag € Syng(K) with [§] < .

Before giving the proof of the theorem, let us present some of the con-
sequences.

Corollary 3.3. For fixed n, it is decidable whether a given regular language K is
CEF,,-definable.

For the logic cEF, where the value of # is not bounded, a similar result
can now be derived as a simple corollary. The basic argument is contained in
the following lemma.

Lemma 3.4. Given a finitary F®-algebra U that is generated by Ag U Ay
we can compute a number N such that, if U satisfies the equations of Theorem 3.2
for some value of n, it satisfies them for n = N.

Proof. Set N := m2™ + m, where mo 1= |Ag| and m; = [A(,y]. By as-
sumption there is some number n for which U satisfies the equations of
Theorem 3.2. W.l.o.g. we may assume that n > N. The only two equations
depending on # are

(D ag(c,vsc)+(n—=[&) xc=ag(c,...,c)+(n—[&+1) xc
@) [a(x+(a(nxx))"(c))]* = nx (a(nxx))"(c)

We have to show that & also satisfies (1) and (2) N
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For (2) N, note that n > N > |Ay| implies that N x ¢ = w x ¢ = n x ¢, for
all ¢ € Ag. Consequently,

a(Nxx)(c) = a(n xx)(c)

and, therefore,

(a(Nxx))"(c) = (a(n xx))"(c).

This implies the claim.
For (1)n,fixa € Agandc € Ay . If|€] < N-m,, then N=|¢| > m, = |Ag|
implies that (N — [€]) x ¢ = 7 x c. Consequently,

a(e,c.., )+ (N=[&) xc=alc,...,c)+mxc

=a(c,...,c)+mxc+e

and we are done. Thus, we may assume that || > N — m, = m2™. As U is
generated by Ag U Ay, there exists some forest s € Fz(Ag U A(4y) with
71(s) = a. We distinguish several cases.

If some variable x € £ does not appear in s, we can use (1), to show that

a(e,eeo,cee, )+ (N =) xc
a(e,eect-rtec)+(N=&) xc
a(e,ooo,nxc,n, )+ (N-|E) xe
a(c,u.,n><c,‘”,c)+(N—|f|)><c+c.

Next, suppose that s is highly branching in the sense that it has the form
s=r(to+ + tmay)
where each subtree t; contains some variable. Then we can find indices

io <+ < iy, such that 7(t;, (¢)) = -+ = n(t;, _,(¢)) (where ¢ denotes
as many copies of ¢ as appear in the respective term). Hence, (1), again

344



3. The logic EF

implies that
a(é)+ (N - |&)) x ¢
=m(s(é)) + (N [§]) x ¢
=(r(to(8) + -+ + tyz—s(8))) + (N = |€]) x ¢
= 1(r(t0 (&) + otz () + 0 x £, () + (N = [€]) x ¢
=a()+(N-[§) xc+ec.

Note that a tree of height b := m, where every vertex has at most d := m}
successors has at most d” = m?2"™" leaves. Hence, if s is not highly branching
in the sense above, the fact that it contains || > m2™ variables implies that
there must be a chain v, < -+ < v, of vertices such that, for every i < m,,
there is some leaf u labelled by a variable with v;_; < 4 and v; # u. (For
i = 0, we omit the first condition.) Hence, we can decompose s as

s(€) =ro(Eri(Eenrm, (€)))-
For i < j, set
rij=ri(6rin (6 i (6,x))).
Then there are two indices i < j such that
n(roi) = m(roj) -
Consequently, we can use pumping to obtain a term
7(s()) = (roi(riy)"rjm,)

which contains at least n occurrences of ¢, and the claim follows again by (1) ,.

O

According to this lemma, we can check for cEF-definability of a lan-
guage K, by computing its syntactic algebra Syn(K), the associated con-
stant N, and then checking the equations for n = N.
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Corollary 3.5. It is decidable whether a given regular language K is cEF-
definable.

When taking the special case of n = 1 in Theorem 3.2, we obtain the
following characterisation of EF-definability.

Theorem 3.6. A language K € F2 3 is definable in the logic EF if, and only if,
the syntactic algebra Syn(K) satisfies the following equations:

c+d=d+c (a(x) +b(x))° = (ab(x))*
(ab)™ =b(ab)" (a(x)+¢)?=(a(x+¢))”
(abb")® = (ab'b)® (a(x+c+¢))”=(alx+¢))”
(aab)® = (ab)” [a(b(x,9))7]" = [ab(x, %))
ac=ac+c c=c+ec [a(x+a"c)]” =d"c,

foralla,b, b € Syn{x}(K) and ¢, d € Syn(K).

Corollary 3.7. It is decidable whether a given regular language K € F X is
EF-definable.

‘The Proof

For the proof of Theorem 3.2, we need to set up a bit of machinery. We start
by defining the suitable notion of bisimulation for cEF,,. The difference to
the standard notion is that we use reachability instead of the edge relation
and that we also have to preserve the number of reachable positions.

Definition 3.8. Let m, n < w.
(a) For trees s, t € FP X, we define

°t :iff  theroots of s and t have the same label,

SN

and, inductively, we set s ¥7**" ¢t if,

o the roots of s and ¢t have the same label,
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¢ for every n-tuple % in dom(s) not containing the root, there is some
n-tuple  in dom(t) not containing the root such that

S

x My tly, and x;j=x;e y;=y;, forali,j<n,

o for every n-tuple y in dom(t) not containing the root, there is some
n-tuple % in dom(s) not containing the root such that

S

x~ytly, and xj=x;e y;=y;, forali,j<n.

To simplify notation, we will frequently write x ~" y for vertices x and y
instead of the more cumbersome s|,, ~] t|,.

(b) For two forests s, t € F > with possibly several components, we set
m+1 ‘f
s~y Ll

¢ for every n-tuple X in s there is some n-tuple j in ¢ such that

S

x My tly, and x;=x;e y;=y;, forali,j<n,
¢ for every n-tuple j in t there is some n-tuple % in s such that

S

oy tly, and x;=x; <y =y, forali,j<n. .,

Let us show that this notion of bisimulation captures the expressive power
of cEF. The proof is mostly standard. We start by introducing the following
notion of a type.

Definition 3.9. (a) We define the type tp”(s) of a tree s € FX by
tpo(s):=a and " (s) = (a,0;),
where a is the label at the root of s and

0, := { (l,0) | l<n, x0,...,x1_; € dom(s) distinct, not equal to
) ==y (sle) -

(b) For an arbitrary forest s € FX, we set

Tan+I(5) =0,

the root, 0 = tp;" (s
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where

0, = {(l,o) | l<n, x0,...,x1_; € dom(s) distinct,
XQ):...:tp:ln($|xl—x)}‘ 1

A standard proof establishes the following equivalences.

o=t (s

Lemma 3.10. Let n, m < w.

(a) For trees s, t € FzZ, the following statements are equivalent.
(1) s~”¢
(2) tpy(s) =tp)(¢)
(3) sEp=tE@, foral @ecEF).

(b) For arbitrary forests s, t € F X, the following statements are equivalent.
(1) s~"t
(2) Tpy'(s) = Tp;' (1)
(3) sEp=tE@, foral@ecEF).

Proof. (a) (2) = (1) follows by a straightforward induction on m and (1) = (3)

by induction on ¢. For (3) = (2) it is sufficient to show that, for every type T,
there exists a formula y, € EF} such that

sExe if tpl(s) =1, foreverytrees.

We proceed by induction on m. If m = o, the type 7 is of the form a € X,
Hence, we can set x; := P,. If m > o, then 7 = (g, 0) for some a € ¥ and
some set 8 of types of lower rank. We can set

xe=Parn AN Eixer N -Eixo.
(1,0)e6 (1,0)¢0

(b) is proved in the same way. O

Corollary 3.1, A language L C FX is cEF}’-definable if, and only if, it is
regular and satisfies

s~ t implies seL < teL, forallregular forestss, t € FyX.
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Proof. (=) follows by the implication (1) = (3) of Lemma 3.10.
(<=) Set

@ = \/ { Xz | T= Tp::1 (s) for some regular forests € L } s

where y; are the formulae from the proof of Lemma 3.10. For a regular forest
t € Fu2, it follows that

teo if  Tp)'(t)=Tp)(s), forsome regularforestseL,
iff t~)s, forsome regularforestse L,
ifft telL.

Let K be the language defined by ¢. Since L and K are both regular languages
that contain the same regular forests, it follows that L = K. Thus, L is cEF}’-

definable. O

We want to show that an algebra recognises cEF,,-definable languages if,
and only if, it satisfies the following equations.

Definition 3.12. (a) An F-algebra U is an algebra for cEF,, if it is finitary,
generated by Ag U Ay, and satisfies the following equations.

(61)p ag(co )+ (n—[E) xc=ag(c,...,c)+(n—|&+1) xc

(c2) (ab)" =b(ab)"

(63) a“+a"=a"

(G4) c+d=d+c

(65) (a(x)+b(x))* = (ab(x))*
(66) (a(x)+¢c)=(a(x+c))"

(67) (a(x+c+¢))?=(a(x+c))®
(68) [a(b(x))*7]" = [ab(x )]
(c9) (abb")® = (ab'b)”
(¢10) (aab)® = (ab)*

)

[a(x+bc+¢)]Y =[a(x +bc)]
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(612), [a(x+ (a(nxx))"(c))]* = nx (a(nxx))"(c)
where a,b, b’ € Ay 6 deAg a;€Agand |€] < n.

(b) An F-algebra U is an algebra for cEF if it is an algebra for cEF,, for
some #n > 1. .

In the proof that algebras for cEF recognise exactly the cEF-definable
languages, we use one of the Green’s relations (suitably modified for F-
algebras).

Definition 3.13. Let U be an F-algebra. For a,b € Ay, we define
a<i b :iff a=c(b) or a=b+d,
forsomece Ay, deAg. )
Lemma 3.14. Let A be an algebra for cEF.
(a) The relation < is antisymmetric.
(b) Forae Ayyy, c € Ag, we have
c=c+c  implies ac=ac+c,
c=a(c,c) implies c=c+c.

Proof. (a) For a contradiction, suppose that there are elements a # b with
a < b < a. By definition, we can find elements ¢ and d such that

(a=c¢(b) or (2)a=b+c, and (i)b=d(a) or (ii)b=a+d.
We have thus to consider four cases. In each of them we obtain a contradic-
tion via (G1)y, or (G2).

(Li) a=cb=cda=(cd)"(a)=d(cd)"(a)=da=b.

(i) a=cb=cla+d)=(c(x+d))"(a)
=(c(x+d))"(a)+d=a+d=b.

(21) b=da=d(b+c)=(d(x+¢))"(b)
=(d(x+c))"(b)+c=b+c=a.

(2ii) a=b+c=a+d+c=a+kx(d+c)

=a+kx(d+c)+d=a+d=b.
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ANAA

Figure 3.: A forest s with a convex set U (in bold) that has three close U-ends (on

the left) and five far ones (on the right). The heightis h(s, U) = 2.

(b) By (G1)g we have

c=c+c implies ac=a(c+c)=a(kxc)

a(kxc)+c=ac+c,

c=a(c,c) implies c=al(c,c)=(a(x,¢))"(c)
=(a(x,¢))"(c)+c=c+c. O

Let us take a look at the following situation (see Figure 3). Let s be a
forest and U a set of vertices. We assume that U is convex in the sense that
u Spf v Spr wand u,w € U implies v € U (where <,¢ denotes the forest
order). We call the maximal elements (w.r.t. <,¢) of U the U-ends. An U-
end u is close if u’ € U, for all v’ Spf e Otherwise, it is far. We would like to
know how many of the U-ends are close.

Lemma3.s. Letm > oandn > 1, let s ~777"*> ¢t be two forests, U € dom(s)
a convex set that is closed under ~1', and set

V:={vedom(t)|u=~]

" v for someu € U }.

(a) V is convex and closed under ~I7'.

(b) The numbers of ends of U and V are the same, or both numbers are at
least n.
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(¢) If U has less than n ends, then U is finite if, and only if, V is finite.

(d) IfU is finite and has less than n ends, then U and V have the same numbers
of close ends and the same number of far ones.

Proof (afVv is not convex, there are vertices v <pf v/ <pg v" of t with

"e V and v’ ¢ V. Fix vertices u <p¢ u' <pf u' w1th u 2y A
v/, and u &y By definition of V, we have u, u” ¢ U and u' ¢ U. Thls
contradicts the fact that U is convex.

To see that V is closed under ~?, suppose that v € V and v = v'. By
definition of V, there is some u € U with u ~ v. Hence, u !’ v 7 v'. As
~" is transitive, this implies that v’ € V.

(b) For a contradiction, suppose that U has k < n ends while V has more
than k ends. (By (a), the other case follows by symmetry.) Choose k + 1
ends v, ..., v € V. Since s ¥7** ¢, there are vertices u,, ..., 4 in s with
u; 8"+ ;. By definition of V, we have u; € U. By assumption, there is some
index j such that u; is not an end. Hence, we can find a vertex u’ >, u;
with 4’ € U. Fix a vertex v’ >¢ v; of t with u’ %)’ v’. Thenv' € Vand v; is
not an end. A contradiction.

(c) For a contradiction, suppose that U is finite, but V is not. (The other
case follows again by symmetry.) By (b), V has only finitely many ends.
Hence, there is some element v € V such thatv ,{_Pf v' for every end v’ of V.
Since s #"*3 t, we can find a vertex u of s with u ~** v, This implies that
ueU. As U is finite, we can find some end 4’ of U w1th # <pf u’. Fix some
v’ 2p¢ v with u’ """ v’ Then 4’ € U implies v’ € V. By choice of v, there
is some v"’ >,¢ v withv” € V. Choose u” >p¢ o’ with u”’ =" v". By choice
of u', we have 4" ¢ U. This contradicts the fact that v’ € V.

(d ) By (b) we only need to prove that the number of close ends is the same.
Let U and V be the sets of U-ends and V-ends, respectively. We denote by
N(s, U) the number of close U-ends and by F(s, U) the set of all proper
subforests s of s that are attached to some vertex v that does not belong to U
but where at least one root belongs to U. (A forest s’ is a proper subforest

of s attached at v if s” can be obtained from the subtree s|, by removing the
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root v.) We define the following equivalence relation.
(s, U) %0 (t, V) :iff  N(s5,U)=N(t, V),

(s, U) 2440 (t, V) :iff N(s5,U)=N(t,V)and
#1(5’ U) = #T(t’ V) ’

for every X;-class T,

where #.(s, U) denotes the number of subforests s’ € F(s, U) that belong

to the class 7.
We define the U-height of s by

o if F(;U) =@
1+max{h(s’,U)|s"€F(s,U)} otherwise.

h(s,U) := {

By induction on [, we will prove the following claim:

%) s~ t an S, < [ implies

(+) 5 =21 tand b(s, U) < L impl
h(s,U)=h(t,V) and (s,U)x;(t, V).

Ash(s,U) < |U| < n, it then follows that (s, U) =, (¢, V). In particular,
N(s,U) = N(t, V), as desired.

It thus remains to prove (*). First, consider the case where | = o. If
h(t, V) > o, thereis some V-end v that is not close. Fix some vertex v <,¢ v
withv’ ¢ V. Sinces ~/"** t, we can find vertices 4’ <,¢ u of s withu’ ~)'** v’
and u ~] v. By definition of V, it follows that ' ¢UanducU.AsU s
finite, we can find some U-end w >.¢ u. But 4’ <,¢ u <p¢ w implies that
w is not close. Hence, h(s, U) > o. A contradiction.

For the second part, suppose that (s, U) %, (t, V), thatis, N(s, U) #
N(t, V). By symmetry, we may assume that m := N(s, U) < N(¢,v). Pick
m + 1 distinct close V-ends vo,...,vy. Since m +1 < nand s ~7** ¢,
there are elements u,, ..., u,, € dom(s) with u; ~”** v;. There must be
some index j such that u; is not a close U-end. As U is closed under ~
u, for some u € U, it follows that u jeU. Furthermore,

,Nm ANm
and uj ~) v; =~}
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M+

uj ~p* v; and the fact that v; is a V-end implies that 4’ ¢ U, for all
u’ >pf uj. Thus, uj is a U-end. But h(s, U) = o implies that all U-ends of s
are close. A contradiction.

For the inductive step, suppose that s ~nm+(l+l)+2 t holds but we have
h(s, U) #h(t, V) or (s, U) %14 (t, V). We distinguish several cases.

(1) Suppose that h(s, U) > h(¢, V). By definition of h, there is a subforest
s € F(s,U) with h(s’, U) = h(s, U) — 1. Then there is some subforest ¢’

of t with s’ ~"¥1¥2 ¢/

h(s,U)=h(s", U)+1=h(t, V) +1<h(t, V) +1< h(s,U).

. By inductive hypothesis it follows that

A contradiction.
(11) Suppose that h(s, U) < h(t, V). By definition of h, there is a sub-
forest t' € F(t, V) with h(t', V') = h(t, V) — 1. Fix a subforest s’ of s with

I _m+l+2
~
n

s t. By inductive hypothesis, it follows that

h(s,U) > b(s,U)=h(t', V) =h(t,V)—1>h(s,U).

A contradiction.

(111) Suppose that N(s, U) # N(t,v) and there is no x;-class 7 with
#:(s,U) # #.(t, V). Then we have |U| - N(s, U) = |V| - N(t, V). Since
|U| = |V| it follows that N(s, U) = N(t, V). A contradiction.

(1v) Finally, suppose that #.(s, U) # #,(t, V), for some =;-class 7. By
symmetry, we may assume that m := #,(s, U) < #,(t, V). We choose m + 1
vertices Vg, . . ., Uy, of t such that the attached subforests have class 7. Since

m+(l+1)+2 .
5~y (1+1) t and m + 1 < n, there are vertices uo, . .., t,, of s such that

up ~MH2 0 forall i < m. Let s; be the subforest of s attached to ;, and

t; the subforest of t attached to v;. By inductive hypothesis, it follows that
s; X1 t;, for i < m. Thus, s has at least m + 1 different subforest in the class 7.
A contradiction. O

Corollary 3.16. Let s ~7*"*> ¢ be forests such that, for every c € Ag, the sets
U, :={x edom(s) | n(s|x) =c}
Vo= {y e dom(e) | n(cly) =¢)

are convex and closed under ~1'. Then 7(s) = n(t).
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Proof. Suppose thats = s + -+ +s;_;and t = to + -+- + t_,, for trees
s; and ¢t;. It is sufficient to show that, for every ¢ € Ag such that the number
of components s; with 71(s;) = ¢ is different from the number of t; with
7(t;) = ¢, we have
n(s)=n(s)+nxc and 7m(t)=n(t)+mxc.

Adding enough terms ¢ to 71(s) = 7n(so) + --- + 7(s;—;) and 7(t) =
7(to) + -+ + 7(tr—,) it then follows that 7(s) = 7(t).

Hence, fix such an element c. By Lemma 3.15, we obtain one of the follow-
ing cases.

(1) U and V both have at least # ends. Then they contain an antichain

of size n. and we can write s as r(s},...,s,_,) with 7(s}) = c. Hence, it

follows by (G1),, that
w(s)=n(r)(c,...,c)=n(r)(c,...,c)+mxc=mn(s)+mxc.
For ¢ it follows in the same way that
m(t)=n(t)+mxc.

(11) Both U and V are infinite, but each has less than # ends. Then they
contain an infinite chain and we can use Ramsey’s Theorem (or the fact that
s is regular) to write 77(s) as a’e® where ec = ¢ = ¢“. By (63) and (G1), it
follows that

7(s)

ae’=a"(e"+-+e)=a (c++0)

a(c++c)+mxe

=n(s)+mxc.
For t, we similarly obtain
n(t)=n(t)+mxc.

(iii) The last remaining case is where both U and V' are finite and they have
the same number of close ends. Then the number of indices i with 7(s;) = ¢
would be the same as the number of i with 7(t;) = ¢, in contradiction to
our choice of c. 0
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Before presenting the main proof, let us quickly recall how to solve a
system of equations using a ﬁxed‘point operator. Suppose we are given a
system of the form

Xo = To(Xoreves Xnor),

Xn—1 = Tp—1 (Xor e Xn—1) ’

where ro, ...,y € FgAand & = {x,,..., x,_, }. Inductively defining
$i(XoyeeerXig) 1= (ri(Xoy ooy Xis Sivrs e verSnm1 )%

we obtain the new system

Xo = S0

% = 51(%0),

Xn—1 = Spn—1 (xo: ey -xn—2) ’
which can now be solved by substitution.

Proposition 3.17. Let U be an algebra for cEE,,. Then
s wASHD ¢ plies 7(s) = 7(t),
for all regular trees s, t € Fg(Ag U Agyy).

Proof. Let m be the number of L-classes above b := 7(s) (including that
of b itself ). We will prove by induction on m that

s %ﬁ(m) t implies m(t)=b,
where f(m) := (n+3)(m+1). Set

S:={xedom(s) | n(s]x)=b},
T :={yedom(t) |x~f(m_l) y for some x € S }.
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As t is regular it is the unravelling of some finite graph G. For every
y € T, we will prove that 71(t|, ) = b by induction on the number of strongly
connected components of G that are contained in T and that are reachable
from y. Hence, fix y € T, let C be the strongly connected component of G
containing y, and choose some x € S with x Nﬁi ()1 y. We distinguish two
cases.

(a) Let us begin our induction with the case where C is trivial, i.e., it

consists of the single vertex y without self-loop. Then
tly =ato+-+ by + b+ 1ty )

where a := t(y) and the subtrees t; lie outside of T while the ¢! contain
vertices in T. Set d; := 71(¢t;). By our two inductive hypotheses, we already
know that 77(¢]) = b and that b < d;. Hence,

ﬂ(t|y) =a(do+ - +dp+qxb).
We have to show that this value is equal to b. Suppose that
sle = a(so+ -t sy +sg+ots, ),

where again the trees s; lie outside of S, while the sg contain vertices of S.
Setting ¢; := 71(s;) it follows that

n(slx)=alco+--+c+pxb).

Since x € S, we already know that this value is equal to b. Hence, it remains
to show that

alco+ - +ey+pxb)=a(do+ - +dp+qxb).

For ¢ € Ag, let U, be the set of all vertices u >,¢ x such that 77(s|,) = ¢
and let V. be the set of vertices v >,¢ y with 7(t],) = c. As <| is antisym-
metric, these sets are convex. Furthermore, by inductive hypothesis on m,

they are also closed under Nf,[(m_l). Since f(m) —1= f(m—1) +n+2,it
therefore follows by Corollary 3.16 that

ot tay = do bt diy
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If p = g, we are done. Hence, we may assume that p # q. To conclude the
proof, we set

U={ueS|x<ypu} and Vi={veT|[y<,v}.
If p > o, then x Nﬁ(m)ﬂ yand U # @ implies V # &. Hence, ¢ > 0. In the

same way, q > o implies p > 0. Consequently, we have p, g > 0. We consider
several cases.

(1) Ifb+b=b, then

a(do+-+dpy+qxb)=al(co+--+c_;+qxb)

=a(co+ - +c +pxb)=b,

as desired.

(11) If U is not a chain, we obtain b = a’(b,b), for some a’. Hence
Lemma 3.14 implies that we are in case (1).

(111) If U contains an infinite chain, we can use Ramsey’s Theorem (or
the fact that s is regular), to obtain a factorisation b = e, which implies that
b+ b = b by (c3). Hence, we are in case (1) again.

(1v) If U is a finite chain, then so is V, by Lemma 3.15. Hence, p =1 = ¢q
and we are done.

(b) It remains to consider the case where the component C is not trivial.
Then we can factorise

t|y = V(toyuwtk—ll t:y"" t,q—y)’

where r € FA is the unravelling of C, the subtrees ¢; lie outside of T, while
the subtrees ¢! contain vertices in T'. Setting d; := 71(t;), it follows by the
two inductive hypotheses that d; > b and 7(¢}) = b. Consequently,

7(tly) = 7(r)(doy .., disy by, b) .

Let us simplify the term r. Introducing one variable x,, for every vertex v € C,
we can write r as a system of equations

Xy = ay(Xyy o+ Xy F ot Heg), forveC,
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where u,, ..., u]_; are the successors of v that belong to C and ¢, ..., ¢q—;
are constants from {do, ..., dp_;, b} that correspond to successors outside
of C. Solving this system of equations in the way we explained above, we ob-
tain a finite term r,, built up from elements of A U A} usingas operations
the horizontal product, the vertical product, and the w-power operation,
such that

7(ty) = (o) (dos ., diss b) .

With the help of the equations (65)—(G10), we can transform r,, in several
steps (while preserving its product) until it assumes the form

[ao~~-aj,l(x +do+- +dp + b)]w
or [aomaj_l(x +dg e+ dk,,)]w
where ag, ..., aj_y are the labels of the vertices in C.

We distinguish two cases. First suppose that there is no term with value b

in the above sum. This means that every subtree attached to C lies entirely

. -1 . . .
outside of the set T'. Then x Ni,((m) y implies that we can factorise s| as

sle =1 (50 8121)

where

* {7‘[(50), veey 7[(51_1)} = {do, very dk—l} y
¢ alllabels of v are among a, ..., a1,
* every vertex of ' has, for every i < n, some descendant labelled 4;.

As above we can transform s|, into
(g o bt )]
where ¢; := 7(s;). Since {co, ..., ¢1_1} = {do, ..., dr_, } it follows that

m(tly) = (aorajr(x +do +- - +diy))

= (aoaj(x+co+-+¢)) =n(s|x) =b.
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It thus remains to consider the case where some term has value b. Using
(67) and (G11) and the fact that b <|_d;, it then follows that

ﬂ(t|y) = [aowaj_l(x +do+- - +dp_ + b)]w
= [ao~~~aj,x(x+b)]w.

For every i < j, we fix some z; € S with label a; such that x <,¢ z; and some
successor of z; also belongs to S. Then

n(szi):ai(cé+...+c;'l__l+b+...+b),

for some c,...,¢;_, > b. Since
i

b=mn(sly,) =ai(ch+-+cj_ +b+--+b)
SLchtte)tbrt b b
it follows by asymmetry of < that
ol tbt et b=b
and a;(b) =a;(ci+-+cf  +b++b)=b.

Consequently, ao-+-aj;b = b, which implies that a”b = b where a :=
o+ j_r. We claim that b + b = b. It then follows that

b=a(b) =a(nxx)(b) = (a(nxx))"(b),

which, by (G12),,, implies that

m(tly) = [a(x +b)]° = [a(x +a(n xx)"(b))]*
=nxa(nxx)"(b)=nxb=b,

as desired.

Hence, it remains to prove our claim that b + b = b. By our assumption
on y and C, there is some vertex « € C that has some successor v ¢ C with
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v € T. Since s, %i,[(m)_l tlyand f(m) > f(m —1) +n +1, there are vertices

X Spf o <pf ** <pf Up—; each of which has some successor v; € S with
vi £pf i1 Consequently, we can write

n(sly)=a'a"(b,...,b) and n(s|,,)=4a"(b,...,b),
where a’ € Af,y and " € A,,. Hence, it follows by (G1),, that
b+b=n(sl,,)+b=a"(b,...,b)+b
=a"(b,...,b) =n(s,,)=b. O

Theorem 3.18. A regular F-algebra U is an algebra for cEF,, if, and only if,

there exists a number m < w such that
s~ t implies 7(s) =7n(t),
for all regular forests s, t € F(Ag U A(xy).

Proof. (<) In each of the equations (G1),—(612),, the two terms on both
sides are ~)” -equivalent.
(=) By Proposition 3.17, there is some number m such that

m
SR

n

t implies 7(s) =7n(t),
for all regular trees s, t € F(Ag U Agyy).
Suppose that s, t € F(Ag U A,y ) are regular forests. We claim that

m+n+2
~
n

t implies 7(s)=7(¢).

Suppose thats = sq +---+s;_yand t = to + -+ t}_y, for trees s; and ¢;, and
set¢; := 7(s;) and d; := 7(t;). Asin Part (a) of the proof of Proposition 3.17,
we can use Corollary 3.16 to show that 77(s) = 7(t). O

We complete the proof of Theorem 3.2 as follows.

Theorem 3.19. A regular language K C F X is cEF,-definable if, and only if,
its syntactic algebra Syn(K) is an algebra for cEF,,.
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Proof. (<) Suppose that Syn(K) is an algebra for cEF,,. By Theorem 3.18,
every language recognised by Syn(K) is invariant under ~!7, for some m
(when considering regular forests only). Consequently, the claim follows by
Corollary 3.11.

(=) Suppose that the language K is cEF, -definable. By Corollary 3.11 it
is then ~!-invariant, for some m. Thus ~}” is contained in the syntactic con-
gruence of K, which means that syn : FX — Syn(K) maps ~/’-equivalent
forests to the same value. Given forests s, t € F(Syn_(K) U Syn (K)) with
s ~7 t, we can choose forests s', t' € FX with s" ~” ' and s = Fsyn,(s)

and t = Fsyn, (t'). Then

s~y t implies 7(s) =syng(s") = syng () = 7(¢).
By Theorem 3.18, it follows that Syn(K) is an algebra for cEF,,. O

4. NBreath Products

In this section we provide an algebraic analogue to the cascading operation
on languages. We start with a bit of useful notation concerning ranked sets
and forests.

Definition 4.1. (a) For aset A € D, we denote by A% € D= the 5-sorted
set with (A%) ¢ := Al

(b) For two sets A, B € DE, we set BA := ’DE(A, B).

(c) For a forest t € FzA, a vertex v € dom(t) of sort &, and a variable
x € &, we denote by t|7 the subforest of ¢ attached to the x-successors of v,
ie.,

tly = (e)) ((83)xet) -

(d) For a forest t € FzA and a tuple a ¢ (Ag)®, we denote by t <
a € FyA the forest obtained from ¢ by replacing each variable x by the
corresponding value a, for x € &.

a

First, let us give a simplified algebraic account that does not quite yield
an F-morphism, but that illustrates the main idea of the more complicated
construction below.
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Definition 4.2. (a) For a forest t € F; X and a morphism ¢ : FX — 2, we
define the g-annotation t < ¢ € Fy(Z x A%) of t as the forest that adds
to each vertex v the @-images of the subtrees attached to successors of v.

Formally,

(t< @) (v):= (t(v), ((p(tlf))xef) , forvedom(t) ofarity &.

(b) The cascade composition of two morphisms & : F¥ — A and 8 :
F(Z x A%) - B is the function & < f: FyX — By defined by

(B<a)(t)=p(t< &), forteFyX. )

Thus, to simulate the cascading operation on languages, we can first trans-
form a given input forest t € F3 X to the forest t < & and then compute its
image under f. In other words, we can use the cascade composition ff < «
to ‘recognise’ a language. But note that these notions are only defined for
forests of sort @. In particular, < « is no morphism. To handle higher
arities, we need to set up a bit of algebraic machinery.

The problem with generalising the labelling operation ¢ < « is that, when
computing the images «(s;) of subforests s;, we have to deal with the vari-
ables appearing in s;. Each variable indicates a ‘missing’ part of the forest
which we have to fill in some way. In order to compute the a-image of the
complete subforest we have to know the a-images of these missing parts.
For this reason, we will replace in t < « every label from A4 by a function
A? - Ag that maps the missing a-images to the value we are interested in.
This is the main idea behind the following definition.

Definition 4.3. The wreath product Y o B of two F-algebras A and B is the

F-algebra with universe
Ci= Ax B4
and the following product. Let p : C - Aandq: C — B45 be the respective

projections. Given a forest t € IF¢C, we introduce two functions A and p
where 1(a) computes the product of the (first components of the) subtrees
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when we substitute the values 4 for the variables, and p applies these products
to the function stored in the second component of a vertex. Formally, we

define A : A‘EQ - ]FQ(AAQ) and p: A; - [FB by

p(a)(v) = q(t(»)) (M(&)(v)),

A(@) () = (2(sx))peg, where s, 1= (Fp(t) = a) 45 .
Then we set

7(e) = {2(Fp(0)), 7 p). J
Remark. Note that A is the unique function such that

((Fp(6) < ) 9 7)(0) = (p(:0)), M@ W) J

Before proving that % o B really is an F-algebra, let us see how the wreath
product solves our initial problem regarding cascades of morphisms.

Lemma 4.4. Let X be a finite alphabet and A and B two F-algebras. There
exists a bijection between pairs of morphisms

a:FE>A and B:F(ZxAY)->B

and morphisms @ : FX — A o B, This bijection respects the equation
peog=a

where p : Ao B — WA is the projection to the first component.

Proof. Given  and 3, we define ¢ by

¢(sing(c)) := (a(sing(c)), a — B(sing({c,a))), forceX.

Since FX is freely generated by the elements of the form sing(¢) this defines
a unique morphism. Conversely, given ¢ we set

a(sing(c)) = p((sing(c)))
Bsing({c, a))) = q(9(sing(c))) () -
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We claim that these two constructions are inverse to each other. To keep
the notation simple, we identify sing(c) with ¢ and drop the sing. For the
first direction, suppose that &’ and f” are obtained from ¢ which in turn is

obtained from « and f3. Then
o«'(c) = p(p(c))  =a(o),
B'(c,d) = q(9(c))(a) = B(c, a).

Conversely, suppose that ¢’ is obtained from « and f which in turn are

obtained from ¢. Then

¢'(c) = (a(c), a~ B(c,a))
= {p(9(c)), = q(9(c))(a))
= (p(9(c)), a(9(c)))
=¢(c). O

Proposition 4.5. If A and B are F-algebras, so is A o B.

Proof. Set € := A o B. For the unit law, let (c, f} € C¢. Then

n(sing((c, f))) = (¢, o p)

where

Fp(t)<=a
A(@)(()
p(a) = sing(f(4)).
Hence, m(p(a)) = n(sing(f(a))) = f(a) and mo p = f, as desired.
It remains to prove that 7(flat(T)) = n(Fn(T)), for T € F¢FC. Since

U satisfies the associative law, this equation holds for the first components
of the above products and it is suflicient to check the equality of the second

c(d),

a,

components. Let A, and p,, be the functions used to define (T (v)), A and p
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those defining (flat(T)), and A, and p. those for the outer product of
w(F(T)). Let R : A%, — FFB be the function defined by

R(@) = T and R(a)(v) = p,(A(a)(v)), foraeAs.
We claim that

p=flatoR and FroR=p,.
It then follows that

q(n(fat(T))) =mop=moflatoR
=noFnoR=mop, =q(n(Fr(T))),

as desired.
Hence, it remains to prove the claim. First, note that, for a vertex v €

dom(T) and atuple g € A;, we have

px(a)(v) = q(m(T(+v)))(2+(a) (v))
=1(py(1:(a)(v))) = m(R(3)(v))

which proves the second equation. For the other one, consider two vertices
v € dom(T) and x € dom(T(v)), and let x’ be the corresponding vertex
of flat(T). Then

flac(R(4))(x") = R(a)(v)(x)
= (A (8)(v)) (%)
= q(T()(x)) (A (A (8)(+)))
= q(face(T) (x") ) (e (A (2) (v)))

and

p(a)(x") = q(Bac(T)(x"))(M(a) ().
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4. Wreath products

Thus, it is sufficient to prove that

L (e (@) (1)) (x) = M) ().

Note that

Ay (A (8)(0))(x) = (7(57))=
Ac(@)(v) = (7(S3))=
Ma)(x") = (7(%))-,

where

= (Fp(T(r) = Aa(8)(0)) 42 = Fp(r3) < A ()(v),
$2 = (Fp(Fa(T)) = a) )i = Fp(Fn(R3)) <4,
¢ = (Fp(n(fae(T))) <= d) )3 = Fp() <

and

r2i= T()E, RE:=TI%, #:=flac(T)|%,
Note that

* = ri((far(R3)).).

Furthermore, it follows that

n(53) = n(Fp(Fr(R3)) < a)

n(Fn(FFp(R?) < sing(4)))
7 (fac(FFp(RS )csmg(a)))
(
(

n(flac(FFp(RZ)) < ),
= n(Fp(fat(RY)) < a)
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Consequently,
n(sy) = n(Fp(r}) < A.(a)(v))
= n(Fp(r;) < (n(Fp(fat(RY)) <= a)), )
((Fp(ri))((Fp(flac(RY)) < a),))
7((Fp(r;))((Fp(fac(RY)),)) < a)
(
(
(8

.:|

T
3

F ( ((ﬂat(Ry )y )ca))

Fp(#*) < a)

z)’

as desired. O

4

Unfortunately, in general wreath products do not preserve MSO-definable
as, similar to cartesian products, a wreath product of finitely generated
algebras is not necessarily finitely generated. But we can show that every
finitely generated subalgebra of a wreath product of MSO-definable algebras
is again MSO-definable. For our purposes, this weaker property is sufficient
since the images of recognising morphisms are always finitely generated.

Proposition 4.6. If A and B are locally MSO-definable F-algebras, so is Ao B,

Proof. Let C € A o B be finite and set
D= {(b(2) | (a,b) € C, e AL}

Then D is also finite. By assumption, there exist MSO-formulae ¢, and v,
for a € A and b € B, such that

n(t)y=a if teg¢, forteFp[C],
n(t)=b iff tey, forteFD.

We have to construct a formula checking that a forest ¢ € FC evaluates to a
given value,
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4. Wreath products

Let ¢!, be the formula obtained from ¢, by replacing every atomic formula
of the form P, x (where P, is the predicate checking for the letter ¢) by the
disjunction V4 P, 4yx (which checks that the first component of the letter
is equal to ¢). Since p(7(t)) = m(Fp(t)) it follows that

teg, iff  p(n(t)=a.
For the second component, we proceed as follows. Given an input forest
t € F¢C, our formula will guess two families (R‘i)deAfa and (L‘i)ﬁeA% of

labellings of t where R; encodes the forest p(d) and L; the forest A(4).
Since p(a) € FD, we can then use the formula y;, to check whether the
labelling R; evaluates to b. But first, we have to check that R; and L; are
correct, For L, which contains products in 9, we can use the formulae ¢,,.
For R;, note that p(4) (v) is obtained by a local computation from A(a) (v).
Hence, we can check R; once we have verified L;. O

Let us collect a few more useful algebraic properties of the wreath product.
The proofs are straightforward, but rather tedious.

Lemma 4.7. Let A and B be F-algebras.
(a) There exists a canonical embedding A x B — Ao B.
(b) The projection p : Ao B — A to the first component is an F-morphism.

Proof. (a) Let ¢ be the function mapping a pair (a, b) to (a, fb) where fj, is
the constant function with value b. It is easy to check that ¢ is a morphism.

(b) follows immediately from the definition of the product of A0 B. [

Lemma 4.8. The wreath product is associative.

Proof. Let A, B, and € be F-algebras and set
D:=(UoB)o€ and E:=Uo(BoQ).

We claim that © and € are isomorphic. Note that the domains are

Dg _ (Ag < BgAz)f) % CgAszz)E
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and Eg= Ay x (Bg x CéBg)E)(A“)s.
There exists a canonical bijection ¢ between these two sets which maps
(arflg) o {ah) where b(&):= (£()dr g(ed)).

We claim that this function is an isomorphism. Hence, given a forest ¢ € FD,
we have to show that

o(n(t)) = n(Fo(t)).

First, using the projections

p:D > Ax B4 piE—>A
q:DﬁC(AZXBZ)A é:E%(BxCB%)A%
P AxBAS > A 5 :BxCP > B
q':A><BAA@—>BAAg c}':BxCB%%CBé

we can recast the definition of ¢ into the form of three equations:

p'(p(d)) = b(p(d)),
q'(p(d))(a) = §'[d(9(d))(a)],
q(d)(a,b) = §'[4(e(d))(8)](b),
fordeD,ae(Ay)% and b € (By)®.

We will prove the above equation separately for each of the three compon-
ents. By Lemma 4.7 (b), we have

130(por[:p'opor[

=moF(p'op)
=nolf(pog)=pomnoly.
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4. Wreath products

Thus, it remains to prove that
q”ogoor[:(jonolﬁ'go‘

Again we will prove this equation separately for the two components.

Letp, A, p, i, and p’, A’ be the functions used to define the products of,
respectively, Fp(t), Fo(t), and t. Then

q (n(Fp(r))) =mop,
q(m(Fo(t))) =mop,
a(n()) = mop'.
Further, note that we have
Fp(Fo(t)) < a = Fp'(Fp(t)) < 4,
Fp'(Fp(t)) = a = Fp(Fo(t)) < a,

which implies that

A(a)=Ma) and p'(N(ab)) =A®a).
Consequently, we have

(+) p(@)() =4 (p(t(v))) (A(@) (»))
= ' (p(t(+)))(M(a@)(»))
= 5'[a(o () (M@ ()] = ' (p(a) (v))
(+:) p(ab)(v) = q(+(v)) (N (ab) (v))
= §'[a((t(w))) (¢’ (X' (ab)(»)))](4' (V' (ab) (v)))
= ¢'[a(o((v))) (M@ ())](q' V' (ab) (v)))
=4 1@ ()1 (N (@B)(v))) .

We further claim that
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(*3) 7(p'(ab)) = §'(n(p(4)))(b).
It then follows by (*,) and (*,) that
#'la(e(m())(a)] = 4’ (p(n(6))) (3)

q'(n(Fp(t)))(a)
m(p(4))
n(Fp'(p(4)))
#'(n(p(a)))

= §'[a((Fe(6)))(8)].
§'[4(p((6))) ()] () = q((¢)) (4, b)

= n(p’(ab))

=§'(n(p(a)))(b)

= §'[d(n(Fo(£)))(a)](b),

which concludes the proof.
Thus, it remains to prove the above claim. Suppose that

N(ab)(v) = (n(sy)), and A(d)(v) = (n()))_,

and let p., A, and px, Az be the functions used to define the products
7'[(,5((3)) and ﬂ((Fp(t) < ab) 13 ), respectively. By definition, we have

m(p+ (b)) = ' (2(p(a)) ) (b),
n(py () =4 (2((Fp(e) = ab) 45))({)) -

Furthermore, p’ o p = p o ¢ implies that
B (D) = (=((Fp'((Fp(e) = ab) 17) = () 12)),
= (((Fp'Fp(t) =) 1142)),
m((FEFp(6) <= 3) ),
OO

X

(
(
i
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4. Wreath products

Below we will show that

o () () = [(p(a) = (b(()), ) 13 (w)].

Then it follows that

q'(V(ab)(v)) = (q'(ﬂ((FP (£) < ab) 13))(()),
= (n(p5 (1)),
= (n(Fp’ (P(a) ),
=L (b)(v),

which implies that
P (D)) = { 1A )](d V(@) ()
=4 (@A @)
= pe(B)(v).
Consequently, we have
§(e(p(a)) () = n(p. (5)) = n(p'(ab))

as desired.
Hence, it remains to prove the above equation. Note that it is sufficient
to show that

a(p((e = (ab,&)) 13 ()))(Aa) 13 (w))
= (p(a) <= (b(()), ) ¥ (w),
prov1ded that p({ab, ') = (a, () = (b(()), &), since it then follows that
() () = a((Fp(e) < ab) 13 () (A2 ({))(w))
= q(p((t = (ab)2) 17 (u)))(AZ (@) 13 (w))
= 5'[d(o((t = (ab)e) ¥ (w)))(Ax (@) ¥ (w))]
= 5'[(p(a) = (B(()), ) b ()],
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as desired. First, consider a vertex u such that t(vxu) = z is a variable. Then

d(p((t = z‘»e N4 ) (A@) & ()
= 4(p({azb, L)) ()

(b(()), c2)

= (p(a) = (b({)), &) ¥ ().

If vxu is not lablled by a variable, we have

§(p((t = (ab,&)) 12 () (A() 1 (w))
= 4(g(t(vxu))) (M(@) (vxu))
= () (vxu)
= (p(a) = (B(()), &) ¥ (u). O

Finally, let us show that wreath products provide the desired algebraic

analogue to the cascading operation.

Proposition 4.9. Let IC be a family of forest languages and C a class of F-
algebras such that a language L belongs to K if, and only if, it is recognised by a

morphism into some algebra in C. Then

LeCasc(K) iff L isrecognised by an iterated wreath product of
algebras in C .

Proof. (=) We prove the claim by induction on the construction of a lan-
guage in Casc(K). By assumption, every language in K is recognised by such
an algebra. As the recognisable languages are closed under finite boolean
operations, it therefore remains to consider closure under the cascading
operation. Hence, suppose that L, K € Casc(K). By inductive hypothesis,
we can find iterated wreath products 2 and 3 such that L is recognised by a
morphism to & and K; by one to B;. It follows that L[K] is recognised by
a morphism

9:F2 - (Box--xB,;)o.
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4. Wreath products

We can combine ¢ with the canonical embedding of B, x --- x B,,_, into
B, 0:--0B,_, to obtain a morphism

FX—>B,0--0B, 0%

recognising L[ K].

(«=) We prove the claim by induction on the length of the iteration.
Hence, suppose that L = ¢7*[P] where ¢ : FX - A0 B, P C Ay x By,
B € C,and Uis an iterated wreath product. Let p and g be the two projections
and set

Ky:={s|ple(s))=a}, foracA.

By inductive hypothesis, we know that K, € Casc(K). By Lemma 4.4,
there exists a morphism { : F(Z x Ag) = B such that

q9(e(s))=b iff {(s<Q(pogp))=b, forseFyZandbeBy.

Each language M, := (™ (b) is recognised by B and, hence, belongs to K.
Furthermore, for s € F X, we have
selL iff ¢@(s)eP
iff  thereis some (a,b) € P such that
p(p()) =a and q(p(s)) =b
iff  thereis some (a, b) € P such that
seK, and {(s<(pog))=b
iff  there is some (a, b) € P such that
seK, and s (pog)eM,
iff se |J [KanM,[K]].

(a,b)eP

As Casc(K) is closed under boolean operations, it follows that the latter
language belongs to Casc(K). O

Open Question. Does there exist an analogue to the Krohn-Rhodes Theorem
for F-algebras?
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5. Diftributive 2lgebras

In this and the next section article we will use Proposition 4.9 to derive
characterisations of the various logics defined in Section 1. We start with the
bisimulation-invariant logics TL[K].

Definition 5.1. Let A be an F-algebra.
(a) For a path w (starting at some root) of a forest s € Fz A (., we denote
by pr,, € FA,y the following path-like forest. If w is infinite, pr,, is simply

the restriction of s to the domain
dom(pr,) = {v edom(s)|vliesonw}.

If w is finite, we take the above restriction and add an additional vertex at
the end that is labelled by the variable x. We will not strictly distinguish
between the forest pr,, € FA(y and the corresponding word in A?x}.

(b) A is distributive if, for all forests s, t € F A,

{n(pr,)|wapathofs} ={m(pr,)|wapathoft}

implies 71(s) = 7(¢t).
(b) U is +-distributive if, for all forests s, t € F A,

{n(pr,) | wahnite path of s } = { 7(pr,,) | w a finite path of ¢ }
implies 77(s) = 7(¢t). |

Remark. Note that the set { 7(pr, ) | w apath of s } may contain both
elements of arity o and of arity 1. |

Before using distributive algebras to characterise temporal logics, let us
mention two properties that are essential for applications.

Proposition 5.2. Every distributive [F-algebra is locally MSO-definable.

Proof. When deciding whether a product 77(s) evaluates to a given element a,
we only have to see which branches are realised in s. As automata can evalu-
ates products in w-semigroups, there exists an automaton performing this

check. O
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5. Distributive algebras

Proposition 5.3, Distributivity of an MSO-definable F-algebra U is decidable.

Proof. By definition, an F-algebra % is not distributive if, and only if, there
exist forests s, t € FA such that 71(s) # 7(¢t), but

{n(pr,)|wapathofs}={m(pr,)|wapathoft}.

This is the case if, and only if, there exists a forest r with two roots u and v
such that the subforests s and t attached to » and v, respectively, satisfy the
above condition. As the product of ¥ is MSO-definable, we can construct an
MSO-formula that checks whether or not a given a forest r is of this form.
Since satisfiability of MSO over forests is decidable, the result follows. [

Theorem 5.4. Let S be a pseudo-variety of finite w-semigroups and IC the
family of co-word languages recognised by them.

(a) A language L € FX can be defined by a finite boolean combination of
formulae of the form EK with K € IC if, and only if, it is recognised by an
MSO-definable F-algebra U that is distributive and whose vertical w-semigroup
(Agxy, Ag, - ) belongs to S.

(b) A language L € FX can be defined by a finite boolean combination of
formulae of the form EK with K € IC and K € 2% if, and only if, it is recognised
by an MSO-definable F-algebra A that is +-distributive and whose vertical
w-semigroup (A}, Ag, - ) belongs to S.

Proof. (a) (=) Let ¢ : FX — U recognise L where  is as above. For every
a€AgU Ay, weset

H, = {{n(prw) | wpathint } ’ te rrfl(a)},
K, := {w €x®” | n(Fo(w)) = a}

(where we identify words w € X°° with forest that have a single branch). It
follows that

n(t)y=a iff {n(pr,)|wpathint}eH,

i o= \/ [AEK A A-EK].

IeH, ~cel c¢l
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(«=) Suppose that L is definable by a formula of this form. Then L is
regular and recognised by a morphism syn; : FX — Syn(L) to its syntactic
algebra. It is sufficient to prove that Syn(L ) is distributive and that its vertical
w-semigroup belongs to S.

For distributivity, consider two forests s, t € 'Sy with

{n(pr,)|wapathofs} ={m(pr,)|wapathoft}.

Assyn; : FX — Syn(L) is surjective, it has a right inverse ¢ : Syn(L) — FX.
We set

s' = flac(Fi(s)) and ¢ :=flac(Fu(t)).

Note that, for every context p, the forest p[s’] and p[¢'] cannot be distin-
guished by a formula of the above form. This implies that

p[s'leL < p[t']eL.
Thus s’ ~ t', which implies that syn; (s") = syn; (¢). Therefore, we have

n(s) = n(synL(l(s)))
synL(]Fﬂat(t(s)))
syng (s”)

synL(t')

syn; (]Fﬂat(l(t)))
ﬂ(synL(t(t)))
=n(t).

To show that the vertical w-semigroup belongs to S consider two co-

words u, v of elements of (A{ <} Ag, - ) that should be equal according to
the equations for S. Analogously to above, we can show that the words

' :=flac(Fi(u)) and v':=flac(Fi(v))
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are syntactically equivalent and, thus, 7(«) = n(u") = n(v') = n(v).

(b) The above proof goes through with minor modifications. For (=), we
change the definition of H,, to only consider finite paths, and the definition
of K, to only contain finite words. For (<=), note that the assumption that
s and ¢ have the same set of finite paths is sufficient to show that (s’, ¢') €
kersyn; . O

With this theorem we are able to give characterisations for various logics
of the form TL[S* ] and TL[S™]. To do so we will make use of the following
types of F-algebras.

We denote by 11( 0 the F-algebra with two elements o and 1, for each
sort &, where the product is simply the maximum function (using the order
o¢< Ig) :

7i(s) :== max {s(v) | v € dom(s) }.

112‘2) is the [F-algebra with domains

(UL))e = {TehUR(E), forEes,

To define the product of a forest s € FU&), let us call a vertex v € dom(s)
reachable if, for each u < v and every variable x with ux < v, we have x € s(u)
(which in particular implies that s(4) # T). If some vertex v with label T is
reachable, we set 77(s) := T. Otherwise,

7i(s) := { x € &| a vertex with label x is reachable } .

We also define a variant of this algebra called U‘("Z) . It has the same domains,
but the product is slightly modified. We set 7(s) := T if some vertex with
label T is reachable, or if there exists an infinite branch all vertices of which
are reachable. Otherwise, we define 71(s) as above as the set of reachable
variables.

Finally, we call an algebra aperiodic if its vertical w-semigroup is aperiodic.
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Theorem 5.5. A forest language is definable in one of the logics below if, and
only if, it is recognised by an iterated wreath product of algebras from the following
table.

logic algebras
EF U(I)
wCTL 1122)

* w
CTL ug, ), ug,)

wCTL*  +-distributive aperiodic algebras
CTL* distributive aperiodic algebras
PDL +-distributive algebras

Proof. Note that the only forest languages recognised by a morphism ¢ :
FX — LI(I) are the empty language @&, the full language FX, the language

{s e FZX | there is some v € dom(s) with s(v) € ¢ " (15) },
and its complement. These languages are exactly the languages of the form
{'s € F3ZX | there is some path with labellingin 2*C }, forCc X,

which, by Propositions 1.3 and 1.5, coincide with the EF-definable ones.

Similarly, amorphism ¢ : FX — 1122) recognises the language of all forests
with some path labelled in C* B where

B:=2n¢ ' (T) and C:=Zn¢'({x})

(where we consider {x} € (U(,)){x} to be an element of arity 1), and the
complements of such languages. To see this, note that (U(,) ) (x} contains
three elements &, {x}, and T. A path s evaluates to T if it is of the form
{x}*7@", and it evaluates to {x} if it is of the form {x }*. In all other cases,
the product is @. For higher arities, we need to keep track which variables
are reachable by a path labelled {x}* (or more precisely, labelled &, ... &,

where each &; contains the variable leading to the successor on the path).
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6. Path algebras

For morphisms ¢ : FX — U |, we can also recognise the language of all
forests with an infinite path labelled in C®. Now the claim for wCTL and
CTL follow as above.

Finally, the last three statements follow by Theorem 5.4. O

6. Jath llgebras

Next, we turn to the logics ¢TL[K], which we can characterise in terms of
cascade products of the following class of languages.

Definition 6.1. Let S be a pseudo-variety of finite w-semigroups and K the
family of co-word languages recognised by them. A forest language L € F >
is an S-path language if it is a finite boolean combination of languages of the
form

Bk = { teFgpZ | t has at least k paths whose label belongs to K } ,

where k < w and K € K. We call languages of the form By, x a basic S-path

language.
If we allow only languages K € K with K € X*, we speak of an S*-path
language. j

To introduce the corresponding family of F-algebras, we need a bit of
notation. Recall that a semigroup is aperiodic if it does not contain a group.
This is equivalent to the condition that a” - ¢ = 4” for all 4. Finally, for a
semigroup & we denote by &! the extension of S by a new element 1 which
acts as neutral element, ie., a-1=a =1-a, forall a € S. In case S is the
vertical semigroup of an F-algebra, we denote this element by x.

The following is an analogue of one of the Green’s relations for [F-algebras.

Definition 6.2. Let U be an [F-algebra.
(a) For elements a, b € (A{x})l, we define

actra’ iff a=d'b, forsomebe (Ary)t
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(b) Let ¥ ¢ A7, be the set of all finite words (30, 44+, an_y) satisfying
4o IR G041 IR " TR G041 " dn-1,

and set ¥ := ¥ x Ay, for & € 5.. The character y(w) of a word w € AT, is
the word

X(W) = (ao,”‘,an,l) ey

obtained from a certain factorisation w = w, ... w,_; of w by setting a; :=
7t(w;). The factorisation wo, . .., w,_, is constructed inductively. If we have
already found w,, . .., w;_;, we choose the shortest factor w; of w such that
the product a; = m(w;) satisfies

Ao *di—13{ ER do " dj—1 .

If no such factor exists, we take for w; the rest of the word.
The relative character y(w/c) of w € AT,y with respect to 0 € ¥ is
defined as follows. Suppose that

x(ow) ={ag,...,ay_y,c).

Then 0 = {(a,, ..., ar_s, b) and a; = bb’, for some b, b’ e A{x}, where b’ is
the product of a prefix of w. We set

X(w/a) = (b',akﬂ,‘”,an,l,c)‘ ,

Definition 6.3. Let A be an [F-algebra and s € FzA 1,y a forest.

(a) We write sf,, for the subforest of s rooted at the successors of a vertex v,
i.e., the forest obtained from the subtree rooted at v by removing the vertex v
itself.

(b) Recall the definition of the path pr , for paths w in s. For 0 € ¥, we
define the reduced path to w as the forest

Pt = X(pr,/0) €Frg A .
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(c) For a given constant N < w, we denote by
In(s): X > [N +1]

the function mapping a character 0 € ¥ to the number of paths w of s such
that X(prw) = 0, provided this number is at most N. Otherwise, we set
IIN(s)(0) := N. We denote by IT%(s) the variant that only counts the
number of finite paths. For a subset H € dom(s), we write [T (s/H) and
IT{,(s/H) for the corresponding functions that only count paths containing

some vertex in H. .

After these preparations we can introduce the class of algebras corres-
ponding to path languages.

Definition 6.4. (a) An F-algebra U is an w-path algebra if it is finitary, its
horizontal semigroup (Ag, +) is commutative and aperiodic, and there exists
a constant N < w such that

Iy (s) = In(t) implies 7(s) =n(t), fors,teFgzAi,.

(b) Ais a +-path algebra if it is an w-path algebra satisfying the stronger
condition that

IIN(s) = I (¢t) implies 7(s) =m(t), fors,teFgzAry. |

Let us highlight two particular consequences of the axioms which, in the
context of finite forests, are in fact equivalent to the axioms above.

Lemma 6.5. Let A be an w-path algebra, a € Ay, and b, c,d € Ag.
e a(b)+a(c+d)=a(b+c)+a(d),
e aa=a implies a(a(b+c))=a(a(b)+c).

Proof. Both statements follow from the fact that both forests have the same
value under IIy. For (a), this is immediate since the two forests have the
same set of paths with the same multiplicities. For (b), there is exactly one
path where the two forests differ: on the left-hand side we have a path with
label aac, while on the right-hand side we have ac. But aa = a implies that
a cr aa. Hence, y(aac) = (a,c) = x(ac). O
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It is straightforward to show that every w-path algebra is locally regular.
Proposition 6.6, Every w-path algebra is locally MSO-definable.

Proof. When deciding whether a product 71(s) evaluates to a given element 4,
we only have to count how often each (character of some) branch is realised
in s, up to a given constant N. As automata can evaluate products in w-
semigroups, there exists an automaton performing this check. O

One direction of the characterisation is straightforward.

Proposition 6.7. Let S be a pseudo-variety of finite w-semigroups and L € FX
an S-path language.
(a) The vertical w-semigroup (Syn{x}(L), Syng(L), - ) of Syn(L) belongs
to S.
(b) Syn(L) is an w-path algebra.
(¢) If L is an S*-path language, Syn(L) is even a +-path algebra.

Proof. We use the notation ~k := ker syny for the syntactic congruence of
a language K. Suppose that L is a boolean combination of the basic S-path
languages By, k,, i < n.

(a) Fix w-semigroups &,, ..., &,_; € S recognising Ko, ..., K,_;, re-
spectively. For words w, w’ € £, we will show that

, . . . ’
w~g, w, foralli <n, implies w~pw',

where in the last equation we can regard w and w’ either as forests in Fz%
or in F(,y X. Then it follows that (Syn{x} (L), Syng(L), - ) is a quotient of
the product [];., ©; and, thus, belongs to S.

For the proof note that, for every context p, w ~;, w’ implies that
p[w] and p[w’] have the same number of paths with labelling in K;. Con-
sequently,

plwleL iff p[w']eL.

This implies that w ~, w’ when we regard w and w’ as elements of F 2.
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(b) We start with the horizontal monoid. Consider two elements a, b €
Syn, (L) and choose trees s € syn; " (a) and ¢ € syn;*(b). For commutativ-
ity, we have

pls+t]e L < p[t+s]eL, forallcontextsp,

which implies that s + ¢t ~, t + s, Consequently, a + b = b + a.
For aperiodicity, set N := max; k;. Then we have

p[Nxs]eL < p[(N+1)xs]eL, forallcontextsp.

Thus N x s ~, (N +1) x s, which implies that N x a = (N +1) x a.

For the remaining axiom, suppose that the forests s, t € FgSyny (L)
satisfy IIx(s) = IIn(t) where N := max; k;. As syn; is surjective, there
exists a function ¢ : Syn(L) — FyX such that syn; o ¢ = id. We set

S:=Fep(s) and T :=Fo(t).
Then IIn(flat(S)) = IIn(flat(T)). Consequently, flac(S) and flac(T)

have the same number of paths in K;, for i < n, (up to the number N)
and we have

p[flat(S)] € L <> p[flat(T)] € L, for all contexts p.
Thus flat(S) ~p flat(T) and it follows that

7(s) = n(Fyn, (5))
= syn; (flac(S))
= syn; (flat(T))
=n(Fsyn, (T)) = n(t).
(c) The proof of the stronger condition is analogous to the one above. With
s,t,S, T as before, we now only know that IT};(flac(S)) = II3;(fac(T)).

But since the languages K; contains only finite words, this is sufficient to
imply that

plflat(S)] € L < p[flac(T)] € L, forall contexts p. O
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To show the converse of this statement we start by simplifying the input
forest ¢. Since its value in a given w-path algebra only depends on the number
of paths of each given kind, we can try to write t as a sum of paths. For
instance, a(b + ¢) would become a(b) + a(c). The problem with this is that
this changes the number of paths since we have added one copy of the path
a(x). To make this idea work we therefore have to be a bit more careful
and only allow this operation if this additional path does not change the
value of the product. The main technical tool which will enable us to do so is
Lemma 6.11 below. But before proving it, let us collect a few technical results

about path algebras.

Lemma 6.8. Let (S, +) be a finite semigroup that is commutative and aperiodic.
There exists an element u € S such that u + a = u, for all a € S.

Proof. Suppose that S = {co,...,cn_y} and set u := ¢, + -+ + ;. For
every a € S, there is some index i < # such that 7 x a = ¢;. Hence,

cita=mTXa+ta=mTXa=c;,
which, by commutativity, implies that 4 + a = u. O

Lemma 6.9. Let U be a finitary F-algebra where the horizontal semigroup
(Ag, +) is commutative and aperiodic and let a € (A{x})l be Cr-minimal.
Then

ac =ac, forallc, deAy.

Proof. By Lemma 6.8, there exists an element u € Ay such that u + ¢ = 4,
for all ¢ € Agy. The element @ := a(x + u) satisfies 4 Cr a and

dc=a(c+u)=au, forallceAy.

By Cr-minimality of 4, there are elements b and d such thata(x) = 4(b(x)+d).
Consequently,

ac=d(bc+d)=du=a(bd’ +d)=ac’, forallc,c’eAgy. O
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6. Path algebras

Lemma 6.10. Let 9 be a finitary w-path algebra and a € Ay an element.
aa=a implies a(x)=a(x+mxa(0)).
Proof. Lemma 6.5 (b) implies that a(x) = aa(x) = a(x + a(0)). Iterating
this equation, we obtain a(x) = a(x + 7 x a(0)). O
Lemma 6.11. Let % be a finitary w-path algebra and a,b,b" € (A ). Then
a=abb implies a(x)=a(x+b(0)).
Proof. Below we will prove that the element b= (bb")™ satisfies the follow-
ing equations.
(1) mxb(o) =mxb(o)+b(o)
(2) a(x) = a(x + mx b(o))
Then it follows that
a(x) = a(x + 7 x b(0))
=a(x+mx b(o) + b(0))
=a((x+b(0)) +mx @(o))
=a(x+b(0)),
where the first and last step follow by (2), the second step by (1), and the

third one by commutativity. Hence, it remains to prove the two equations.
(1) We have
mxb(0) =7 x b(o)+mxb(o)
=% (b(0) +b(0))
=7 x (bb'b(0) + bb'b(0))
= x (b(b'b(0) +b'b(0)) +b(0))
= xb(b'b(0) +b'b(0)) + 7 x b(0),
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where the fifth step follows by Lemma 6.5 (b). Consequently,
% b(o) +b(o) = mx b(b'b(0) +b'b(0)) + 7 x b(o) +b(o)
=7 X b(b'l;(o) +b'b(0)) + 7 x b(o)
= xb(o).

(2) Setd := b(x) + 7T % i;(o).Then
d=b(x)+mxb(o)
=b(x)+mxb(o)+mxb(o)
=d(x) +mxb(o)
and it follows that
d"=dd" =dd"(x) + mx b(o) = d"(x) + m x b(0).
Consequently, we have
a = abb’ = ab = abb
= ab(b(x) + mx b(0))
= a(b(x) + 7 x b(0))
=ad
= ad™d"
= a(d"d™(x) + 7 x b(0))
= ad™d" (x + 7 x b(0))
= a(x+mxb(0)),

where the forth step holds by Lemma 6.10, the fifth one follows from the

equation a = ab, and the last step from a = ad"d". O
Lemma 6.12. Let U be a finitary w-path algebra. Then

a=a(b(x)+c) implies a=ab=a(x+c).
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Proof. Note that it is sufficient to prove that a = a(x + ¢), since it then
follows that

ab=a(b(x)+c)=a.
Let b € Ay, be the element such that
b(x)+c=(b(x)+c)7,
and set
d(x) = b(x)+mxb(o) +mxc.
Note that d = d(x) + ¢, which implies that d” = d"(x) + c. Hence, we have
d"=d"d"=d"(d"(x) +c)=d"d"(x+c)=d"(x +¢),
where the third step follows by Lemma 6.5 (b). Consequently,
a=a(b(x)+c)
= a(b(b(x) +¢) +c)
= a(b(b(x) +c+mx(b(o)+¢))+c)
= a(b(x) +c+mxb(o)+mxc)
=a(b(x) +mxb(o) +mxc)
=ad
=ad”
=ad"(x+c)=a(x+c¢),
where the third step follows by Lemma 6.10. O

After these preparations let us proceed to simplifying forests. Since the
main argument below is inductive, we have to phrase everything relative to
some character 0. What we are aiming for are forests that are g-separated in
the following sense.
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Definition 6.13. Let % be a w-path algebraand o € ¥.

(a) An element a € A,y is o-insignificant if 0 Er 0a. Otherwise, a is
called o-significant.

(b) For forests s, t € F{x}A{x}, we set s ~, t if there are finite paths
pirqi € Fyiy Ay such that

In(0(s+ Zicpm pi(0))) = In(0(t+ e,y 4:(0)))

and the products 77(p;) and 77(q;) are o-insignificant.

(c) A forest s € Fz A is 0-separated if it is a finite horizontal sum of paths
and of forests of the form p(r), where r is an arbitrary forest and p is a path
whose product 71(p) is o-significant. )

Lemma 6.14. Let U be a finitary w-path algebra and 0 € ¥ a character.

(@) s~gt implies m(o(s))=mn(a(t)).
(b) Ifa € Ay is o-significant, then so is a(x) + c.

Proof. (a) Suppose that

Hn(0(s + Tiam pi(0))) = In(0(t+ Ticy 9i(0))),
with ¢; := 7(p;) and d; := 71(q;) o-insignificant. Setting a := 7(s) and
b := 7n(t), it follows by Lemma 6.11 that

oa(x) =0(a(x) +co(0))
=0(a(x) +co(0) + 1 (0))

o(a(x) +co(0) + -+ (o))
o(b(x) +do(0) +++++d,—s(0))

=0(b(x)).
(b) Suppose that a(x) +c is 0-insignificant. Then there exists an element b

such that 0(x) = o(ab(x) + ¢). By Lemma 6.12, it follows that o(x) =
o (ab(x)), which means that a is o-insignificant. O
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We introduce the following operation on forests.

Definition 6.15. Given a forest s € ', A,y and two sets of vertices H, S
H ¢ dom(s) where H, is finite, we set

s[H/Ho]=s"+ ). pr, ,(sf,),

veH,

where s’ is the forest obtained from s by removing all subtrees attached to
some vertex in H. j

Lemma 6.16. Lets € Fy,y A,y be a forest and o € ¥ a character. Then
IIn(os/H,) = IIn(0s/H)

implies that
My (os[H/H,]) = I (0 (s + Ty, P, ,(0))) -

Proof. Sett:=0o(s+ Y%, pt, ,(0))and ¢’ := o(s[H/H,]). Note that for
every path of ' there is a corresponding path of ¢ with the same image
under y. Consequently,

IOn(t")(7) <On(t)(7), forallTe V.
For the other direction, suppose that there is some sequence 7 € ¥ with
n(¢')(7) < n(£)(7).

By definition of s| H/H, |, it follows that there are vertices v < u of s with
ve HN Hoand 7 = x(0s|,). If IIN(H,) < N, this would mean that
IIN(H) > IIn(H,), which contradicts our assumption on H,. Hence,
IIn(Ho) = N and we have

N> Hy(6)(r) > O (¢)(7) > O (Ho) () = N.

A contradiction. O
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Proposition 6.17. Let A be a finitary w-path algebra and o € V. For every
forest s € Fy Ay, there exists a o-separated forest t € Fy A,y such that
§~g L.

Proof. Let us call a vertex v € dom(s) insignificant if the product 7(pr) is
o-insignificant. The set I of all insignificant vertices forms an initial subset
of dom(s). The frontier H of s consists of the minimal (in the forest ordering)
vertices of dom(s) \ I. We choose a finite subset H, € H such that

IIN(os/Ho) = IIn(0s/H).
Set
t':=s[H/Ho] and s :=s+ 2veH, ffrvlg(o) )

Then it follows by Lemma 6.16 that ITx(0s") = IIn(ot"), which implies
thats ~4 t'.

Hence, it is sufficient to find a g-separated forest t ~, t'. By definition,
we have

t' = s[H/H,] = o+ Z f)vrvla(sfv),

veH,

where 1’ is the forest obtained from s by removing all subtrees attached to a
vertex in H. If we can find a 0-separated forest r ~, r’, we can take

ti=r+ pr, o (sfy)
veH,
as the desired o-separated forest with t ~ s. Set y := IIn(07r"). Let B be
a set containing, for every infinite character 7 € A?x}Ag, exactly u(7)
infinite branches of r’ with character 7. Furthermore, fix a finite initial subset
I ¢ dom(r') containing, for every finite character 7 € A’{X}, at least p(7)
vertices v such that y(opr,) = 7. Let "’ be the forest obtained from r’ by
deleting every vertex that does not belong to I U [J B. Then

Iy (or") =p=TIn(or").
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Finally, set

ri= Z r"|/; + Zprv(o) .

BeB vel

By construction, we have
IIn(or)(7) > p(7) = In(0r")(7).
Set ¢ := IIx(or). Then
Ix(o(r" + 2. (a(n) = u(n)) x (1) (0))) ()
=u(r) +0(7) - u(7)
=0o(7)
= HN(CT?’) .
Hence, r ~4 "' ~4 1/, as desired. O

This proposition provides our simplification operation for forests. The
next step is to show that the product of g-separated forests can be defined
using path languages. Our main tool will be what we call the profile of such a
forest.

Definition 6.18. Let U be a w-path algebraand o € V.
(a) For¢, ¢’ € Ay, we set

cng i cac=oacd’, forall o-significant a € Ay

We denote the ~-class of ¢ by [c],.
b) We denote by ¥{%) the subset of ¥ 1 consisting of all characters T

whose product 71(7) is 0-significant.
(c) The o-profile pf(s) of a g-separated forest s = i, qi + iy Pi(11)

consists of two functions

pf,(s): ¥y = [N+1] and pf (s): ‘P{(Zi —> [N +1] x Ag/~g,
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where the first one maps a character 7 € ¥ to the number
{i<m|x(q:) =7}

and the second one maps a character 7 € ‘I’{(;T]? to the pair (k, [c],) where

k=l{i<n|xp) =7} and =Y {n(r) | x(p)=7}. |
Lemma 6.19. If s and s" are g-separated forests, then
pE(s) = pf(s') implies (o) = n(as").
Proof. Suppose that
pE,(5)(1) =1 and  pf,()(7) = (ke [c:]1)-
Then

n(s)=b+ > Lxt+ > > 7dl

€Y, Te‘P,(”) i<k;
=b+ Y Lxt+ Y (vde+ (ke —1) x 7(0)),
re¥, o
a(s)=b'+ > Lxt+ Y > Tel
A Te‘I’,(") i<k,
=b'+ > Lxt+ Y (1é+ (ke —1) x 7(0)),
eV, e Bl
where b and b’ are sums of o-insignificant elements, azf =3, d;, éri= 3, ei,

and d; 4 ¢; ¥, é;. Note that, according to Lemma 6.14 (b), the element

a(x) + b is o-significant, for every b. By the definition of ~,, it therefore
follows that

A

dr ~g é;  implies O(TJT +a)=o0(té;+a), forallaecAy.
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In particular for

a:=Y Lxt+ Y (kr—1)x7(0),

—

T, <,
we have
n(o(s))za(a+b+ﬁ‘y i)
~ofa+ Y mu wd.)
=o(a+ Tewref)
(

ola+b'+ ), TeT) =n(a(s")),

Te¥;

where the second and forth step follow by Lemma 6.11. O

We are finally at the point where we can prove the other part of our
characterisation. The main step of the proof is the following propositon.

Proposition 6.20. Let U be an w-path algebra, S a pseudo-variety of finite w-
semigroups, and KC the corresponding family of co-word languages. Suppose that
IC is closed under concatenation and that the vertical w-semigroup (A ¢y, Ag;, -)
belongs to S. Let ¢ : TX — A be a morphism of F-algebras, 0 € ¥,y a
character, and ¢ € Ay an element. Then

Loci={seFZ]a(g(s)) =c}

is an S-path language. If A is a +-path algebra, L, . is even an S*-path

language.

Proof. We prove the claim by induction on the Er-class of 0. If ¢ is Egr-
minimal, Lemma 6.9 tells us that L, . is either empty or it contains all
forests. It particular, it is an S*-path language for every pseudo-varitety S.
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For the inductive step, suppose that ¢ is not Er-minimal. Below we will
construct S-path languages My, M (1 [c],) € FA such tha, for every
o-separated forest s € F A,

seM; iff  pf (s)(7) =k,
=

SEMp e, i pf(s)(7) = (k. [c]o).

and, for arbitrary forests s, s € Fz Ay, s ~5 5" implies that
se€Myp<s €My and se€ M) <5 € Myl -
We claim that
Lo, = J{ (Fgo)"[M,] | 4 a profile such that
pf(s) = = n(os)=c},

where @, = ¢ o sing is the restriction of ¢ to the alphabet X and

M, =) Mo o) N N Mo, (7) -

e (o)
° TE‘I’{X}

To prove this equality, we start by noting that, for a 0-separated forest s € FA,

seM, iff seM,, (ryandse M, (r), forallsuitabler,
iff  pf,(s)(7) = po(7) and pf (s)(7) = puu(7),

for all suitable 7,

iff pf(s)=u.

Now consider a forest t € FX and set s := Fg, (t). By Proposition 6.17, there
exists a o-separated forest s" ~g s. Furthermore, Lemma 6.14 implies that

n(os") =n(os) = a(e(t)).
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Consequently, we have

teLy. iff seM,, forsome u such that
pf(r)=p = n(or)=c

u» for some p such that
pf(r)=p = n(or)=c

iff  pf(r) =pf(s") = n(or)=c

iff  n(os’)=c

i a(p(0) =,

if deM

where the fourth equivalence follows by Lemma 6.19.

It remains to construct the languages M, and M (,[c],)- First, note
that, since (A{x}, Ag, -) € S and K is closed under concatenation, the
class KC contains all word languages of the form

K;:=x"(1), forteV.
Consequently,
Mk = Bi,k, > Brak,

is an S-path language. (Recall that By, k refers to one of the basic S-path
languages.) Furthermore, T being 0-significant we clearly have

! . . A
s~ys implies se M, < s €My,

for all forests s, s € Fz A,y Before defining M (i, [c],), we show that the
languages

N, ={s€FgA|n(s) s c}
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are §-path languages. Let H be the set of all o-significant elements in A (..
Note that

s€N[, iff  7(s)~ec
if  oa(n(s))=0a(c), forallacH,
iff s €Lgg0a(c)s foralla e H,
iff se() Loa,ca(c) -
aeH

Using the inductive hypothesis, we see that N[, is an intersection of S-path
languages and, thus, an S-path language itself.

Let N ;'[C]a be the language obtained from N}, by replacing each basic
S-path language B; k appearing in the corresponding boolean combination
by the language B; x x where

K,;:=yx"(1), forte ‘I’{(;’}) .

For a path p with y(p) =7 € 'I’{(g}) it then follows
pseNy, iff 7(s)mec,

Hence, we can set
Mk, c1,) = (Biok, > Branx,) NN -

Before showing that M (1 [],) has the desired property, let us note that,
since 71(T) is o-significant, we have

s~y s’ implies se€ M. k(1) < s'e M- (k,[c10) »

for arbitrary forests s, s € FzAy,y.

Given a 0-separated forest s, the first term of the above intersection ex-
presses that pf(s)(7) = (k, [d],), for some d. We claim that the second
term ensures that d ~, ¢. Hence, consider a 0-separated forest s. By the first
term of the intersection, we may assume that s has exactly k components of
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the form p(r) with y(p) = 7. Hence, s = s, + X1, pi(r;) with x(pi) = 7.
Set

r:=Zr,~ and s" =5+ po(r)+ Y. pi(o).

o<i<k
Then IIN(s) = IIn(s"), which implies that
seENL g, i STeNT
iff  po(r)e N;,[C]U
iff  7(r)~c
iff  pf,(s)(7) = (k [c]o)-

To conclude the proof, suppose that U is a +-path algebra. We want to
show that L, . is a S -path language. The above proof goes through with
minor modifications: we have to change the definitions of pf (s)(7) and
M i to only count finite paths. O

Combining Proposition 6.7 and 6.20 we obtain the following character-
isation result.

Theorem 6.21. Let S be a pseudo-variety of finite w-semigroups such that the
corresponding family of oo-word languages is closed under concatenation.
(a) A forest language L is an S-path language if, and only if, it is recognised
by an w-path algebra A whose vertical semigroup (A}, Ag, - ) belongs to S.
(b) A forest language L is an S*-path language if, and only if, it is recognised
by a +-path algebra A whose vertical semigroup (A}, Ag, - ) belongs to S.

Let us see what this theorem entails for the graded logics we introduced
above. We start by defining the needed algebras.
For n < w, let 93?!) be the F-algebra with domains

(N(ye=[n+1], for&ez.

The product of a forest s is simply the sum (up to n) of all labels s(v),
v € dom(s).
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n

For n < w, let ERZ;) be the [F-algebra with domains
(N(De=[n+1]xP(§), forfes.

To define the product of a forest s, let us call a vertex v € dom(s) reachable if,
for each u < v and every variable x with ux < v, we have s() = (i, I) with
x € I. We set

n(s) =} J),

where j is the sum of all first components of labels of reachable vertices (up
to ), and J is the set of all reachable variables.
We also define a variant 9?‘("2;‘ with the domains

(NEDYe = [t 1] % [ 1] < 9(E)
where the product is given by

n(s) = (i k J),

such that j is the sum of all first components of labels of reachable vertices
(up to n), k is the sum of all second compontents of reachable vertices plus
the number of infinite branches all vertices of which are reachable, and J is
the set of all reachable variables.

The proof of the following theorem is similar to that of Theorem 5.5.

Theorem 6.22. A forest language is definable in one of the logics below if, and
only if, it is recognised by an iterated wreath product of algebras from the following
table.
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cEF 932‘1), n<w

cwCTL 9?22;‘, n<w

cCTL 93?2')‘, 93‘(”2;’, n<w

cPDL path algebras

cwCTL*  aperiodic path algebras
cCTL* aperiodic w-path algebras
FO aperiodic path algebras
WMPL  aperiodic path algebras
MPL aperiodic w-path algebras
WMCL  path algebras

MCL w-path algebras

Totes

6. Path algebras

Much of this chapter is based on [14], where the corresponding material
was developed for finite forests. The equivalence between MPL = cCTL*

has been proven by Moller and Rabinovitch [33], while the equivalences
FO = WMPL = ¢cwCTL" can be found in [26].
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VIIL. JPower Sets

POWER‘SET OPERATIONS PLAY AN IMPORTANT role in language theory.
In this chapter we develop the general theory and we present some
applications.

1. Power-Set Sunctors

Although there is no abstract notion of a (covariant) power-set functor, we
will present a fairly general definition below. Before doing so, let us present
the most important examples. For the category Set, there are two canonical
choices.

Definition 1. (a) The covariant power-set functor Pw : Set® — Set” is
defined by

Pw:(A) =F(Ay), forlek.
The image of a function f : A - Bis
Pw(f)(S):= f[S], forScA.

For an infinite cardinal k, we denote by Pw, the subfunctor consisting of all
sets of size less than x.
(b) Let « be a regular cardinal. We denote the class of all cardinals by Cn.

The functor Lin, : Set® — Set® maps a set A to the set Lin,(A) whose
component of sort & consists of all functions y : Ay - Cn satisfying

Z pla) <x.

acAg
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VII. Power Sets

We regard such functions as multi-sets, where the cardinal y(a) indicates
how many times the element a belongs to the set. Frequently, we will write
multi-sets as linear combinations Y ;.1 a; or ¥ ;1 ki-a; where |I| < &, k; < x,
and a; € A;. (The elements a; are not required to be distinct.)

The image of a function f : A — B is the function

Lin(f)(u) =1 where @'(B)= Y u(a),

acf~(b)
ot, in sum notation,
Ling(f)( X kivai) = ki f(a).
iel iel
For k = R,, we omit the subscript and simply write Lin. j

It is straightforward to check that these two functors form monads.
Lemmar.2. Thefunctor Pw : Set™ — Set® forms a monad with multiplication
union: PwoPw = Pw:Hw~ ( JH,
and unit morphism
pt:ld=Pw:aw~ {a}.
Proof. We have
union(pt(I)) = J{I} =1,
union(Pw(pt) (1)) = J{{a}|acI} =1,
union(Pw(union)(H)) = (J{UI|IeH}
={alaeUL IcH}
={alaes, sel,1eH}

=U{s|seL IeH}
=UUH

= union(union(H)) . O
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1. Power-set functors

Exercise 1.1. Prove that, for a regular cardinal x, Pw, forms a submonad
of Pw. A

Lemma 1.3. If « is a regular cardinal, the functor Lin, : Set® - Set® forms
a monad with multiplication

sum:LinKOLinK3LinK:ZZk,~j~aiji—> Z kij-aij,
ieljeJi (i,j)eXier Ji
(or in compact notation sum(f)(a) = X, p(a) - f(u)) and unit morphism

pt:Ild=Linc:a+—a.

Proof. First, note that sum(p) € Lin, (A) since

Y2 wa) = > v(a)-u(v)

=2(Zv0)- 6
=> Ay u(v), whereld,:= z;qv(a) <K.

This is a sum of fewer than «k cardinals that are all less than k. As « is regular,
it follows that the sum is also less than .
It remains to check the monad axiom:s.

sum(pt(p))(a) = 3 v(a) - pr(u) (v) = p(a),

v

sum(Lin, (pt) () (a) = 3 v(a) - Ling (pe) () (v)

v

=2v() Y u(b)
v bept™1(v)

= Zb:pt(b)(a)-#(b)

=u(a),
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VII. Power Sets

sum(Lin,(sum)(4)) (a) = Z v(a) - Ling (sum)(p)(v)
= ZVZV(a) 'Aesu;@)#u)
= %ﬁsum(l)(a) ~pu(d)
= ZZV(a) A(w) - u(d)
Z (a)- ZA(V) u(d)
Zv: v(a)-sum(p)(v)
= sum(sum(p))(a) . O
Remark. A Lin, -algebra is nothing more than an abelian semigroup.

Example. Another example is the monad FD producing finite probability
distributions, which is defined by

FD(A) := {8 tA - [o,1] | Y sea 0(a) = 1and there are only
finitely many a € A with §(a) # o } .

The unit is given by

ifa=">,

otherwise,

pe(a)(b) = {;

and the multiplication by

sum(A)(a) = > A(8)-8(a).

5¢FD(A) ,

For the category Pos, the two most common power-set functors take the
following form.
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1. Power-set functors

Definition 1.4. Let A € Pos®.
(a) For X C A, we write

1X:={aeA|a>xforsomexeX},
and |X:={acA|a<xforsomexeX}.

For single elements x € A, we omit the braces and simply write x and |/ x.

(b) The (upward) power set UpA of A is the ordered set with domains
UpgAi={1C Ag|Iisupwardsclosed}, forée 2,
and ordering
I<] iff I2], forl, JeUp,A.
For a function f : A — B, we define Upf : UpA — UpB by
Upf(I):=1f[I], forleUpA.

Given an infinite cardinal «, we denote by Up, (A) € Up(A) the subset
of all sets of the form f}I with |I| < «.
(c) The (downward) power set DnA of A is the ordered set with domains

DngA = {I1S Ay | Tis downwards closed }, for £ € &,
and ordering
I<J :iff Ic], forl,JeDngA.
For a function f : A — B, we define Dnf : DnA — DnB by
Dnf(I):=f[I], forIcDnA.

Given an infinite cardinal x, we denote by Dn,(A) € Dn(A) the subset
of all sets of the form || I with |I] < «. )

In the following we will state and prove most results only for the func-
tor Up. The case of Dn can be handled in exactly the same way. Again it is
straightforward to check that Up forms a monad on Pos~.
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VII. Power Sets

Proposition 1.5. The functor Up : Pos® — Pos® forms a monad where the

multiplication
union : UpUp(A) - Up(A): X » UX

is given by taking the union and the singleton function
pe: A~ Up(A):arfi{a}

is given by the principal filter operation.

Proof. Note that, for I € Up(A), we have i = { K | K € I }. Therefore,

anion(pe(1)) = UMI} = 1,
union(Up(pe)(I)) =UM{{a} [acl} =T,
union(Up(union)(H)) = Uﬂ{UI ’ Ie H}
={alacUL IeH}
:{a|a€s,5€I,IEH}
=J{s|seL IeH}
UUH

= union(union(H)).

O

Remark. Note that Dn and Up are isomorphic as functors, but not as mon-
ads. The corresponding natural isomorphism ¢ : Dn = Up maps a set
I € Dn(A) to its complement A \ I. But ¢ is not a morphism of monads

since the complement of |4 is not of the form f}a.

The algebras for the monad Up are easy to characterise.

4

Lemma 1.6. A pair (A, 1) forms an Up-algebra if, and only if, A is a complete

partial order and 7 = inf.
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1. Power-set functors

Proof. (<«=) Clearly,
(infopt)(a) =inf{b|b>a}=a,
(inf o Up(inf))(H) = inf {inf(I) [ Ie H}
=inf (J I
IeH
= (inf o union)(H) .
(=) For I € Up(A), let a € I and let ¢ be a lower bound of I. Then
I<fa implies n(I)<n(fta)=n(pt(a))=a,
fle<I  implies 7(I)>n(fic) = n(pt(c)) =c.

Consequently, 7(I) is a lower bound of I that is greater or equal to every

other lower bound. Thus, 7(I) = inf I. O

Example. For compact HausdorfF spaces, we have the Vietoris monad Vt

defined by
Ve(%) :={Cc X|Cclosed },

where the topology on Vt(¥) is generated by the open subbasis consisting
of the sets

Ct={UeVt(})|UnC=g},
C ={UeVt(X)|Ug¢C},

for C € Vt(¥). Multiplication and unit are given by
union(A) :=UA and pt(x):={x}. )

To be able to treat the above functors in a uniform way, we introduce the
following general notion of a power-set functor. It is relatively straightforward
to define a generalised notion of a contravariant power-set functor: we can
fix a set @ of weights and use the hom-functor C(—, @). To get a covariant
version of such a functor, we need additional assumptions. The simplest one
is to assume that @ is equipped with the structure of a semiring.
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VII. Power Sets

Definition 1.7. Let C be a concrete category with forgetful functor V: C —
Set and let @ € C be an object that is equipped with the structure of a
commutative semiring, We assume in @ that all infinite sums used below are
defined and that the product of @ distributes over all such sums. A monad
(P, union, pt) is a generalised power-set monad over @ if

¢ we can identify every element s € PA with a function s : A — @ (which
we will do so tacitly from now on), that is, we have VIPA ¢ C(A, D),

¢ the action of P on morphisms is given by

Pf(s)(b) = X s(a) - (pro f)(a)(b),

acA
for f: A—> B,sePA,and b € B,
¢ the product of IP satisfies

union(s)(a) := Z s(t)-t(a), forsePPAandacA.

tePA Bl

Example. There is a generalised power-set monad consisting only of the
singletons. We set

PA:=J{pt(a) |ac A},
where
1 ifa=b,
o otherwise.

pe(a)(b) !:{

The multiplication is defined by
anion(pr(pe(a))) = pi(a) J

Examples. All of the monads introduced above can be understood as gener-
alised power-set monads.

(a) For Pw : Set — Set, we can set use the semiring @ := {o,1} with
maximum and minimum for, respectively, addition and multiplication. Then
we obtain an isomorphism

Pw(A) = Set(A, ©)
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1. Power-set functors

that maps a subset S C A to its characteristic function. Under this isomorph-
ism the monad operations become

union(s)(a) = Z s(t) - t(a),

teSet(A, D)

pi(a) () - { et

o otherwise.

For the requirement on IPf in the definition above, note that

P =1 i be{f(a)|s(a) =1}
iff  thereis some a € A with s(a) =1and
pr(f(a))(b) =1
iff 7 s(a)- (pro f)(a)(b) =1.

acA

(b) For Lin, : Set — Set, we can set use the semiring @ := Cn, consisting
of all cardinals less than or equal to x with the usual cardinal arithmetic for
addition and multiplication. (Infinite sums and products with a value greater
than « evaluate to k.) Then we obtain

Ling(A) = {s € Set(A, @) | X eas(a) <x}.

In this case, IP is a proper subfunctor of Set(—, @). According to Lemma 1.3,
the monad operations are

union(s)(a) = Z s(t)-t(a),

tePA
1 ifa=b»,

o otherwise.

pe(a)(b) = {
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VII. Power Sets

For the requirement on Pf in the definition above, note that
Pf(s)(b)= >, s(a)
aef1(b)
= > s(a)-pr(f(a))(b)

acA

=2 s(a)- (pro f)(a)(b).

acA

(c) For Up : Pos — Pos, we can set use the semiring @ := {o, 1} with the
natural ordering and with maximum and minimum for, respectively, addition
and multiplication. Then we obtain an isomorphism

Up(A) = Pos(A, @)°F

that maps a subset S C A to its characteristic function, where Pos(A4, [2])°P
denotes the set Pos(4, [2]) equipped with the opposite of the usual ordering,

Under this isomorphism the monad operations become

union(s)(a) = Z s(t)-t(a),

teSet(A, D)

pe(a)(b) = {

1 ifa<b,

o otherwise.

For the requirement on Pf in the definition above, note that

Pf(s)(b) =1 iff b > f(a)forsomea withs(a) =1
iff  thereis somea € A with s(a) =1and
pe(f(a))(b) =1
iff Z;AS(ﬂ)'(Pfof)(ﬂ)(b)ﬂ'

(d) For Dn : Pos — Pos, we can set use the semiring @ := {0, 1} with the
natural ordering and with minimum and maximum for, respectively, addition
and multiplication. (Note that these are swapped, so that o is the neutral
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2. Linear monads

element for multiplication and 1 the one for addition.) Then we obtain an
isomorphism

Dn(A) = Pos(A, @)°P
that maps a subset s C A to the function

if ,
S(Q)::{o 1racecs

1 otherwise.

Under this isomorphism the monad operations become

union(s)(a) = Z s(t) - t(a),
teSet(A, D)
pe(a)(b) = {

o ifa>b,

1 otherwise.

For the requirement on IPf in the definition above, note that
Pf(s)(b) =0 iff b< f(a) forsomeawiths(a) =0
iff  thereis some a € A with s(a) = o and
pe(f(a))(b) =0
iff ) s(a)- (prof)(a)(b) =o.

acA

2. Linear Monads

The goal of this section is to determine whether or not there exists a distribu-
tive law between a given polynomial monad and one of the above power-set
monads. We will isolate a property of a polynomial monad called linearity
that characterises the existence of such a distributive law. Intuitively, linearity
requires that the multiplication MM = M does not duplicate labels. Before
we can give the formal definition, we need to take a look at the special form
the multiplication morphism for a polynomial functor takes.
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VII. Power Sets

Remark. Let (M, y, €) be a polynomial monad with MIX = ¥, Xdom(),
‘We have seen in Lemma I.3.4 that the composition M o Ml is the polynomial
functor given by

MMX=Y 3 XZwtonn dom(z(:)),
iel g:dom(i)—I

Thus MMX =37, XEi where
= ZId(’m(i) and  E; g = Z dom(g(v)).
iel vedom(i)
Further, note that the identity functor Id is polynomial since
d(A) = Y A%,
EeE

where lgisaset with a single element, which has sort &. Therefore, we can
apply Proposition 1.3.9 to the natural transformations g : MM = M and
¢ : Id = M and we obtain the corresponding morphisms

(f, (95)jes) : (dom(i))ier = (Ej)jeg
(b, (Ye)gez) : (dom(i))ier > (Lg)gez
of IT1(Set). Thus,
(81, yg:dom(h(§)) -1, foréesZ,
f:]=>1,  ¢j:dom(f(j)) > E;, forje].

With our conventions regarding polynomial functors, we can write the latter
as

¢, dom(u(s)) - Z dom(s(v)), forse MMA.

vedom(s) J

Definition 2.1. Let (M, g4, &) be a polynomial monad and let (f, (¢;) je7)
and (h, (¥¢)gez) be the functions corresponding to the natural transforma-
tions ¢ : MM = M and ¢ : Id = M as above. We call (M, y, ¢) linear if,
for all indices jand &, the maps ¢ j and y; are bijective. |
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2. Linear monads

Example. The monads G, R, F, and T are linear since each vertex of flat(g)
corresponds to exactly one vertex of exactly one component g(v). The mon-
adsF* and T™ on the other hand are not, since their multiplication duplicates

labels: substituting b(z) for x in a(x, x) creates two copies of b. )

To derive our distributive law for linear monads, we start with two tech-
nical lemmas. The first one works for arbitrary polynomial functors, the
second one requires linearity.

Lemma 2.2. Let (P, union, pt) be a generalised power-set monad on D and
M : D% — D= a polynomial functor of arity k. Suppose that

o D is commutative, has products of size less than k, and such products dis-
tribute over arbitrary sums, and

* forevery A € DZ, there exists a function 64 : MIPA — PMA satisfying

[T (M)CE) ifs=at,
6A(s)(t): vedom(s)

o otherwise,

&4 o Mpt = pt,
for s € MIPA and t € MA.
Then M : D — DF has an extension M to Free(IP) such that
Mf = union o P(8p o M(f o pt)),
for every P-morphism f : PA — PB.

Proof. For simplicity we will work in this proof with the representation
of Free(IP) where we use the same objects as D and morphisms of the
form A — IPB. Then the composition of two morphisms f : A - IPB and
g: B — PCis given by unionoPgo f : A - IPC. Using this convention, we
define M : Free(P) - Free(PP) by

MA := MA, for objects A € DZ,

IVJIf = 0gp o Mf, formorphisms f: A — PB.
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VII. Power Sets

Let us start by showing that M extends M. For objects A this is trivial

since we have MIA = MA by definition. For morphisms, note that a function
f: A = Bof D corresponds to the morphism pto f : A — PB of Free(P),
and that

M(pto f) = 85 o M(pto f) = pto Mf.

It remains to show that Ml is a functor. We start with two remarks. First,
note that

Mg(p)()= [T a(p())(t(v))

vedom(p)

[I (unionoprog)(p(v))(¢(v))

vedom(p)

[T union((prog)(p(»)))(t(v))

vedom(p)

[T X (prog)(p(v)(q)-aq(t(v)).

vedom(p) q€PC

Second, recall that the composition of f : A - PBand g: B - PCin
Free(PP) is given by unionoPgo f : A - PC, and that, fora € Aand c € C,

we have

(union o Pgo f)(a)(c)

> (Pgo f)(a)(e) - t(c)

tePC

> [ f@) @) (pre g ®)(0)] - 1(e)

tePC "beB

NIOIORPHCINOIGG]

beB tePC

= 2. f(a)(b) - union((pro g)(b))(c)

beB

= 2. f(a)(b) - (union o pt) (g(b))(c)

beB

=2 f(@)(b) - g(b)(c).

beB
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2. Linear monads

By distributivity and commutativitiy of the semiring @, it therefore follows
that

M(unionO]P’gOf)(s)(t)
= (8¢ ounionoPgo f)(s)(t)
- I (wnionoPgo f)(s(r))(e(v)

vedom(s)

[T > PgoNHs(v))(9)-q(t(v))

vedom(s) qePC

[T X 2 fG6)®)(prog)(b)(q) q(t(v))

vedom(s) q€PC beB

> IT X fG6) @) (prog)(p(»))(a) - 4(t(v))

peMB vedom(s) qePC

Pshs
=2 II FGWN@@)- 3 (prog(p(v))(9) - a(t(v))
I;JEEIYE? vedom(s) qePC

>[I f6eNee))]

peMB “vedom(s)

Phs
[T X (pro)(p())(9)-a(t(v))]

vedom(p) qePC

= > Mf(s)(p) - Mg(p) (1)

peMB
= (union o IF’Mg o I\Vﬂf)(s)(t) ,
where the last two steps follow from the above remarks. O

Lemma 2.3. Let (P, union, pt) be a generalised power-set monad on D and
(M, He &) a linear monad on D= that satisfies the assumptions of Lemma 2.2.
Let M be the corresponding extension of M to Free(IP), and let ¢ : PA — PB
be a morphism of Free(P). Then

MpoPe=Peog and MeoPu=PuoMMe.
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VII. Power Sets

Proof. Fix a morphism ¢ : PA — IPB between free P-algebras and set
@o = @opt: A— PB, By Lemma 2.2, we have
Mg o pt = union o P(85 o Mi(¢ o pt)) o pt
= union o pt o §g o M(¢ o pt)
= 6p o Mo, .

As M is linear, there is a unique vertex in dom(e(a)). We denote it by .
(a) For a € A and t € MB, we have

(Flg o Pe o pr) () 1)
= (Fg o pro)(a)(e)
= (80 Mgy 0 )(a)(1)
(80c090)(a)(2)
[T (e(pa(@)(®) ()

vedom(e(go(a)))
(90(a)) () (£(+))
(9o(a))(:(+))
= (union o Ppr) (9o (a)) (¢(+))
= 3 Ppt(po(0))(5) - s(:(+))

sePB

= 2 2. 9o(a)(b) - (propr)(b)(s) -s(¢(+))

sePB beB

= 2. (@) (b) - 3 (propt)(b)(s) s(t(*))

beB sePB

= > 9o(a)(b) - union((peo pr) (b)) (¢(*))

beB

= 2 9o(a)(b) - pr(b)(t(*))

beB

= 2 9o(a) () - pe(e(b) () (t(+))

beB

=2 eo(a)(®)- T pe(e(®)(»))(t(»))

beB vedom(e(b))
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2. Linear monads

= > 9o(a)(b)- (8 o Mptoe)(b)(t)

beB

= 2. o(a)(b) - (proe)(b)(1)

beB
= Pe(9o(a))(t)
= (Peogopr)(a)(t).

Since P-morphisms are determined by their restriction to rng pt, it follows
that M(p oPe=Peog.
(b) For s e MMA and ¢t € MIA, we have

(Mg oPp o pt)(s)(t)
= (Mg o Py o pr)(s)(t)
= (Mg o prou)(s)(t)
= (0 o M(gopt)ou)(s)(t)
(05 o p o MMg,)(s)(t)
(85 0 Mg, o p)(s)(t)
(Pid o 85 o Mg, o ) (s)(t)
Y. (80 Mggou)(s)(r)-pe(r)(¢)

reMA

S I ool @)Gw)] pe()(0)
r;’j\gé) wedom(u(s))

> [T T eels0@)(r)w)]

reMMA “vedom(s) uedom(s(v))
s

1) (peo ) (1) (6)

(Mo (s()) () (r(v)(w))
reMMA  “vedom(s) uedom(s(v))

T™shS

r(v)=ms(v) (ptoﬂ)(r)(t)
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VII. Power Sets

> [ T (@50Mgo)(s())(r(v)]- (prow)(r)(0)
rE’XJISII\‘/EA vedom(s)

r(v)~ns(v)
[T (M50 MMgpo)())(n)(r(v))]

reMMA  “vedom(s)

r(v)=ms(v) (pto y)(f)(t)

> (s o Mg o MMgo ) (s)(r) - (pro ) (r)(t)
reMMA

= (P o Sy o Midp o MM g, ) (s)(¢t)
= (P o dwip o M(85 o M(g 0 pt))) (s)(¢)
= (Py o g o M(Mg 0 pe)) (s)(t)
= (Pu o MMg o pr) (s) (1),
where in the 9-th step we use the fact that, by linearity of M, there exists

a label-preserving bijection between dom(¢(s)) and ¥, dom(s(v)). As
above it follows that Mg o Py = Py o MMg. O

The central result of this section is the following existence statement of a
distributive law.

Theorem 2.4. Let (P, union, pt) be a generalised power-set monad on D and
(ML, p, €) be a linear monad of arity . Suppose that

o D is commutative, has products of size less than K, and such products dis-
tribute over arbitrary sums, and

o forevery A e DZ, there exists a function 64 : MIPA — PMA satisfying

[T )W) ifs=mt,
8a(s)(t) = { vedom(s)

o otherwise,

64 o Mpt = pt,
fors e MIPA and t € MA.
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2. Linear monads

Then the family of functions 8 = (84 ) a forms a distributive law MoP = PoM.

Proof. Let F : D= — Free(P) be the functor mapping a set A to the free
algebra PA generated by it, and let M be the functor from Lemma 2.2. We
claim that (M, Fy, Fe) is an extension of the monad (M, g, €) to Free(P).
First, note that it follows by Lemma 2.3 that

Fu:MM =M and Fe:ld= M

are natural transformations. Hence, we only have to check the monad laws

for (M, Fu, Fe).

Fu o MFu = Fu o FMy

=F(uoMu)=F(uou)=FuoFu,
FuoFe=F(uoe)=id,

Fu o MFe = Fu o FMe = F(u o M) = id.

Having found this extension M, we can now use Theorem 1.6.7 (and its
proof) to obtain a distributive law MIP = PM consisting of the morphisms

VMunion o pt = union o P(8 o M(union o pt)) o pt
= union o P§ o pt
= unionopto

=9,
where V : Free(IP) — D= is the forgetful functor. O

Corollary 2.5. Let (M, p, €) be a linear monad of arity x.
(a) The family dist = (dista ) 4 defined by

dista(t) :={seMA|s My, for t e MPw(A),

forms a distributive law M o Pw = Pw o M.
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VII. Power Sets

(b) Let A > « be a regular cardinal such that
E<A and n<x implies ET<A.
Then the family dist = (dista) o defined by

[T (W)@ ifs=pt,
dist 4 (s)(¢) := { vedom(s)

o otherwise,

for s € MLinj (A) and t € MA, forms a distributive law M o Lin) =
Lin)L o ML

(c) The family dist = (dista ) 4 defined by
dista(t) == {seMA|se™ ¢}, forte MUp(A),

forms a distributive law Ml o Up = Up o ML
(d) The family dist = (dista ) a defined by

dista(t) :={seMA|s M t}, forteMDn(A),
forms a distributive law Ml o Dn = Dn o M.

Proof. We have shown in the example on page 412 how to express the above
power-set functors as a generalised power-set monad. It remains to check
that these representations satisfy the assumptions of Theorem 2.4.

(a) For Pw we use the semiring @ := {0, 1} with maximum and minimum
for, respectively, addition and multiplication; and we encode a subset S ¢ A
by its characteristic function A - ©.

Clearly, @ is commutative, it has arbitrary infinite sums and products,
and these distribute. Furthermore, the category Set® obviously contains a
function dist4 satisfying

[T GM)(e@) ifs=mt,
diStA(S)(t): vedom(s)

o otherwise .
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Finally note that, for s ~, t, we have

(dista oMpt)(s)() =1 if ] pt(s(v))(t(v)) =1

vedom(s)
iff s=t
iff  pe(s)(¢t) =1.

(b) For Lin) we use the semiring @ := Cn, with the usual cardinal
arithmetic. This semiring is again commutative, it has arbitrary infinite sums
and products, and these distribute. The category Set obviously contains
the functions dist4 but we have to check that dist4 (s) € Liny (MA), for all
s € MLin) (A). Hence, let s € MLin) (A) and t € MA. As A is regular, we

have

E:= sup s(v)(t(v)) <A and #:=|dom(s)|<x,

vedom(s)
which implies that

dista(s)(t) = J] s(v)(t(v)) <&T<A, forallteMA.

vedom(s)
Furthermore, setting
P,:={aeAl|s(v)(a)>oforsomev e dom(t)},
we have
dista(s)(t) >0 implies ¢~ sandt e MP;.
Since p := |Ps| < [dom(s)|- A = #A = A, there are at most
|ps||d°m(5)| =yl <A
terms t with dist4 (s)(¢) > o. By regularity of A, it follows that

Z dista(s)(¢t) <A,

teMA
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VII. Power Sets

since this is a sum of less than A cardinals of size less than A.
It remains to check that dist o Mipt = pt. Fixing s, t € MIA with s ~, ¢,
we have

(dista o Mpt)(s)(¢)

[T pe(s())(e(v)

vedom(s)

B {I ifs(v) =t(v)forallv,

o otherwise,
=pt(s)(t).

(c) For Up we use the semiring @ := {0, 1} with maximum and minimum
for, respectively, addition and multiplication; and we encode a subset S C A
by its characteristic function A — . These characteristic functions are
ordered by the opposite of the usual ordering.

The proof is analogous to that of (a), the only difference is that we have
to show that dist4 is a morphism of Pos~, i.e., that it is monotone. Hence,
consider elements s, s’ € MUp(A) and ¢, ' € MA with s ~y, t,5 <5, and
t < t'. This means that

{(1)(0) 2 ()(a), s()(@) <)), and t(v) <¢(v),

for v € dom(s) and a < a’ in A. Consequently,

dista(s)(t) = H (s(v))(t(v))

vedom(s)

H (s'(v))(t(v)) =dista(s")(¢t),

vedom(s’)

[T (s0))

vedom(s)

H (s(v))(t'(v)) = distA(s)(t'),

vedom(s)

which implies that dists (s) < dista (s") and dist4 (s)(¢) < dista(s)(¢).

(d) For Dn we use the semiring @ := {0, 1} with minimum and maximum

v

disca (s)(¢)

IA

for, respectively, addition and multiplication; and we encode a subset S € A
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2. Linear monads

by the function A - @ mapping the members of S to o. These characteristic
functions are ordered by the opposite of the usual ordering.

Asin (c), we only have to show that dist, is monotone. The argument is
exactly the same as in (c). O

Remark. Let us note that cardinals A as in (b) above do exist. If k = R, we
can use, e.g., A := R,. For arbitrary «, we can take

A= (2<")+, forany y > «,
since £ < 1 and # < x < y implies that
ET< ()T =2 <),

(2# denotes the cardinal sup { 2" | 5 < p }.) For instance, for the monads

T or IF whose arity is k = ®,, we can use A := (27°)*, J

For the functor Up, we can strengthen Theorem 2.4 in two ways: (1) the
distributive law dist is unique and (11) there is no distributive law for non-
linear monads. We start with the former.

Theorem 2.6. Let M be a polynomial monad on Pos™ and 8 : MUp = UpM
a distributive law. Then & = dist.

Proof. (2) Since 6 is monotone, we have

0(t) <inf{d8(s)|s>t}
< inf{5(Mpt(r)) | Mpt(r) > t}
= inf { pt(r) | Mpt(r)(v) > t(v) forall v }
= inf { pt(r) | pt(r(v)) > ¢(v) forall v }
= U{pt(r) ’ pt(r(v)) € t(v) for allv}
= U{pt(r) | r(v) € t(v) for allv}

=f{rlrefe}
= dist(t).
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VII. Power Sets

(S) Suppose that s € §(t) for t € MUpA. To prove that s € dist(t) it is
sufficient to show that s(v) € ¢(v), for all v. Hence, fix v € dom(¢t) and let
6 : A — [2] be the map with

0(a) = {1 ifaet(v),

o otherwise.

Then MUp6(¢t)(v) = UpB(¢t(v)) = {1}. Since [2] is well-ordered, we can
find some r € M[2] such that MUp8(t) = Mpt(r). It follows that

UpMO(8(1)) = 8(MUpO(1)) = 6(Mpe(r)) = pe(r) -
Consequently,
O(s(v)) =MO(s)(v) >r(v) =1 implies s(v)et(v). O
As a consequence, we obtain the following strengthening of Theorem 2.4.

Theorem 2.7. Let (M, y, €) be a polynomial monad on Pos”. There exists a
distributive law § : MIUp = UpM if, and only if, Ml is linear.

Proof. (<) has already been proved in Theorem 2.4.

(=) Suppose that Ml is not linear and let (f, (¢;) jes) and (h, (V¢)sez)
be the functions corresponding to the natural transformations y : MM =
M and ¢ : Id = M as in the definition of linearity. By Theorem 2.6, it is
sufficient to show that dist is not a distributive law. For a contradiction,
suppose otherwise.

By assumption, there is some index j or & such that ¢ ; is not injective or
¢ not bijective. First, assume that ¢; : dom(f(j)) — E; is not injective,
for some index j. Then there are two positions u,v € dom(f(j)) with
¢j(u) = @j(v).Setw := ¢;(u), Let A be a set with at least two elements
a and b of the same sort as these positions (and trivial ordering), and let

s € MMUpMA be such that dom(s) = Ej,

s(w) :={e(a),e(b)} and s(x)={e(cx)}, forallx+w.
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2. Linear monads

By Theorem 1.6.7, (UpMA, Up () o dist) is an M-algebra with product
7 := Up(p) o dist. Note that

{ (t(u), t(v)) | te dist(y(s))}

={(t(u), t(v)) |t " u(s) }

={{pa) | peu(s)(w), qepu(s)(v) }

{@4|Pq€4wﬂ

= {(e(a),£(a)), (e(a), e(b)), (e(b), £(a)), ((b), (b))}

Similarly,

{t(w) | tedist(Mn(s)) }
= { t(w) | t M Mﬂ(s)}
={p|pen(s(w)}
~ {p | p € Upa)(dise(s(w))) }
= {(e(0)), u(e(0))}
={a,b}.
Since every ¢ € dist(¢(s)) is of the form t = Mle(¢,), for some t, € MA, it
follows that
{{e(u), t(v)) | £ € Up () (dise(u(5))) }
= {{u(t(0)), u(t(v))) | ¢ € dise(u(s)) }
~{{ara), (a.b), (b3}, (0,81}

But

{{e(u), t(v)) | ¢ € Up(u) (diste(Mn(s))) }
= { (t(w), t(w)) | t € dist(Mr(s)) }
= {(a, a), (b, b)} .
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VII. Power Sets

Thus 7(p(s)) # m(Mn(s)). A contradiction.

It remains to consider the case where V¢ is not bijective, for some &, Then,
for every element a of sort &, the domain D := dom(&(a)) is either empty
or of size at least 2. Let A := {a, b} be a set with two elements of sort £ and
the trivial ordering. If D is empty, we set s := ¢(a) and ¢ := €(b). Then

dom(e(s)) = @ = dom(e(t)) implies &(s) =e(t).

Hence, s = p(&(s)) = u(e(t)) = t. A contradiction.
Consequently, D must have at least two elements and ¢(a) : D — {a} is
the constant function with value a. Note that A € UpA and

Up(e)(A) = {e(a), e(b) }

={s|s:D — {a, b} a constant function },
dist(e(A)) = {s|s M e(A)}

={s|s:D—{ab}}.

As|D| > 1, there exist non-constant functions D — {a, b}. This implies that
dist o € # Up(€), a violation of one of the axioms of a distributive law. [

3. lofure Under Projection

As a simple application of the distributive law for linear monads, let us prove
that MSO-definable algebras are closed under the functor Dn, which one
minor technical caveat: algebras of the form Dn () need not be finitely
generated. Hence, we have to take a finitely generated subalgebra instead.

Proposition 3.1. If U is an MSO-definable T-algebra, then so is every finitely-
generated subalgebra of Dn () and Up ().

Proof. Clearly, if A; is finite, so is Dn(A¢). For the second condition, fix a
finite set C € Dn(A) and an element I € Dn(A). Then D := U C is also
finite and, as A is MSO-definable, there exist MSO-formulae ¢, for a € A,
such that

teg, iff n(t)>a, foreveryteTD.
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3. Closure under projection

Let { be the sort of I. For s € TC it then follows that
n(s) 21 iff foreverya €I there exists ¢ " swith7(t) > a

iff  foreverya € I thereexistst € switht = @,.
Since the relation €T is MSO-definable, so is the above statement. O

Remark. With a suitable definition of MSO, this statement generalises to
other linear monads, like IF, G, R, etc.

a

One reason why we are interest in closure under Dn is that this is what
is needed to prove that the family of recognisable languages is closed under
projections.

Proposition 3.2. Let (M, g, €) be a linear monad on Pos™ and C a class of
M-algebras such that

AeC implies BeC, foreveryfinitely-generated subalgebra
B c Dn(Y).

If K € MLX is recognised by a morphism to an algebra in C then so is its image
Mf[K] € MT, for every f : £ — I.

Proof. We define the pseudo-inverse g~ : B —> Dn(A) ofamap g: A > B
by

g (b)={acAlgla)<b}.
It follows that

Dn(g)og™ = pr.

Suppose that K = ¢ ™[ P] for some morphism ¢ : MIZ - A with A e C
and some upwards closed P ¢ A. Note that

dist(Mf~ () = t{s| s € Mf (1)}
=t{s|se{r|f(r(») 2 t(v) }}
={r|Mf(r) 21}
= (Mf)~(1).
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VII. Power Sets

Hence,

te Mf[K] iff thereissomese Kwitht=Mf(s)
iff  thereis somes € K with ¢t > Mf(s)
iff  thereissomes e Kwithse (Mf)™(¢t)
if (Mf)y ()nK=#@
if (Dn(g)o(Mf) )(t)nP+@
iff (Dn(¢)odistoMf™)(t)nP+2
it y(t)eQ,
where ¢ : MII' > Dn(A) and Q € Dn(A) are given by
y:=Dn(¢)odistoMf™ and Q:={IeDn(A)|INnP+g}.

Note that Q is upwards closed. Let & € Dn () be the subalgebra induced
by rng . As MII' is finitely generated, so is B. Hence, B € C.

To conclude the proof, it is therefore suflicient to show that y : MI' - B
is a morphism of Ml-algebras. As M f~ is such a morphism, we only need to
consider ¥, := Dn(¢) o dist. By Corollary 1.6.8 (b), the product of Dn ()
is given by 71 := Dn(7r) o dist. Furthermore,

7t o Mly,, = Dn(7r) o dist o M(Dn(¢) o dist)
= Dn(n) o Dn(Mg) o dist o Midist
= Dn(m o M) o dist o Mdist
=Dn(¢ o y) o dist o Midist
=Dn(¢) o Dn(u) o dist o Midist
=Dn(¢) odistou

=Yool O

4. Mon-Linear drees

Unfortunately, the monad T : Pos® — Pos” is not linear. As we have
seen in Theorem 2.7, this means that there does not exist a distributive law
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4. Non-linear trees

T* o Up = Up o T*. Nevertheless, for certain arguments involving infinite
trees it would be very convenient to have such a law. In this section, we will
prove a weaker property that can sometimes be used instead. We will show
that we can lift Up to the class of free T* -algebras.

We start with some technical remarks considering sorts. Below we will
need to deal with trees with infinitely many different variables, that is, we
have to work in the category Pos™* instead of Pos~ where 2, := (). It
is straightforward to extend the monads R, T, and T to this more general
setting, We will denote them by the same letters to keep notation simple.

‘The Action On The Dariables

As noted above, the problem with finding a distributive law for T* is that this
monad is not linear: its multiplication contains an unravelling operation gun
which can duplicate arguments for variables appearing multiple times. To
continue we need a variant of this operation that also modifies the variables

of the given graph.

Definition 4.1. Let g € R;A be a graph.

(a) For a surjective function 0 : { - &, we denote by “¢ € R¢A the graph
obtained from g by replacing each variable x by o (x).

(b) We set

un(g) := (0, 1),

where ¢ is the tree obtained from the unravelling gun(g) by renaming the
variables so that each of them appears exactly once (note that this changes
the sort) and ¢ is the function such that 7t = gun(g). (To make this well-
defined, we can fix a standard well-ordering on the domain, say, the length-
lexicographic one, and we number the variables in increasing order with
respect to this ordering, i.e., if vo <ilex ¥1 <llex *** is an enumeration of all
vertices labelled by a variable, we set t(v;) == x;, where x,, x;, ... is some
fixed sequence of variables.)

(c) We denote by T° A the set of trees t € T* A such that un(t) = (id, t).
Let:: T° = T™ be the inclusion. (In actual calculations we will frequently
omit / to keep the notation simple.) )
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VII. Power Sets

Remark. Note that the operation un can introduce infinitely many different

variables. This is the reason why we have to work in Pos=*. ,

Example. un(a(x,y,x)) = (0, a(xo, %1, x,)) where ¢ maps xo, x;, X, to
%,9,x. Then 7a(xq, x1, x,) = a(x, y,z). )

To make sense of the type of the above operations, we introduce the fol-
lowing monad where every element is annotated by some function renaming
the variables.

* — Pos™* as follows. For

Definition 4.2. (a) We define a functor X : Pos
A € Pos™, we set

XeA:={(0,a)|acA;, 0:{— &surjective } .
We define the order on XA by

(0,a) <(1,b) :iff o=7 and a<b.
For a morphism f : A — B, we define Xf : XA - XB by

Xf((,a)) 5= {0, f(a)).

(b) We define functions comp : XXA - XA andin: A - XA by

comp((7,{0,a))) :=(ro0,a) and in(a):=(id, a). )

Lemma 4.3. (X, comp, in) and (T°, flat, sing) are monads.

Exercise 4.1. Show that; : T° = T* is the equaliser of un : T* = XT°
and in : T* = XT" in the category of all endofunctors on D. ,

The set T™ A carries a canonical structure of an X-algebra.

Definition 4.4. For {0, t) € XT* A, we define the reconstitution operation
re((o,t)) :="te T A.

We denote its restriction to XT° by re, := re 0o Xy : XT° = T*. |
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4. Non-linear trees

The unravelling operation on trees can now be formalised using the fol-
lowing two natural transformations.

Lemma 4.5. The inclusion morphism 1 : T° = T is a morphism of monads.
The functions

un: T = XT°, reo:XT° =T, and re:XT*=T"

form natural transformations satisfying the following equations.
(a) reo oun =id
(b) un o re = comp o Xun

(c) unor=in

—~~

)
)
d) reo o comp = re o Xre,
() flat™ ore, = re o X(flac™ o 1)
f
)

g) unore, =id

reoin =1id

Proof. The fact that 1 is a morphism of monads is straightforward. To see
that un is natural, it is sufficient to note that

un(t) =(o,s) iff un(T*f(t)) =(0,T°f(s5)),

for every function f : A — B. For re, we have

T f(re({0,£))) =T f(°¢)
=7(T*f(1))
=re({o, T*f(£))) = re(XT"f((0,t))) -

Since re, = re o X1, this implies that re, is natural as well.
(a) Note that re,, o un = id holds since

un(t) = (o,s) implies %s=t, fortreeste T A.
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(b) Suppose that un(t) = (0, s) and un("t) = (p, r). Then

In particular, s and r only differ in the labelling of the variables. Buts, r € T°A
implies that the variables appear in the same order in both trees. Hence,
s = r and it follows that 7 0 ¢ = p. Consequently,

un(re((7,£))) = (p, 7)

=(t100,s)
= comp((7, (0,s))) = comp(Xun((7, ¢))) .

(c)—(f) We have
un(e(t)) = (id, t) = in(t),

reo(comp((a, <T, t)))) = reo((a oT, t))
— UQT[(t)
=("(6)
= "reo((7,£))
:re(<0,reo((‘r,t>)))
:re(Xreo((G,(T, t)))),
flat™ (reo ({0, t))) = flac™ (%4(¢))
= (flac™ o 1)(t)
:re(<0, (fat™ 01)(t)))
= (reo X(flat* 0 1))({o,t)),
re(in(t)) = re({id, t)) = idy _ g,
(g) By (c), we have

unore, =unoreo X =compoXunoXi=compoXin=id. [
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4. Non-linear trees

We can understand point (a) of this lemma as saying that T™ is a retract
of XT*, but only as functors, not necessarily as monads. For the latter we
first have to establish that XT° forms a monad and that the operations
un and re, are morphisms of monads.

Proposition 4.6.

(a) XT® forms a monad with multiplication
un o re o X(flat™ 010 Tre, ) : XT°XT® = XT°
and unit
in osing : Id = XT°,
(b) re, : XT° = T™ and un : T* = XT° are isomorphisms of monads.
(c) in:T° = XT° is an injective morphism of monads.
Proof. (a), (b) By Lemma 4.5 (c), (e), and (a), we have
re, © in o sing = re, © un © ¢ © sing = [ 0 sing = singx,
flat™ o re, 0 XT°re, = re o X(flat”™ 010 T re, )
=re, ounoreo X(flat® o 10T re,).
As re, is a surjective natural transformation, most of the claim therefore
follows by Lemma 1.6.2. It only remains to check that un is also a morphism
of monads. For this, note that by Lemma 4.5 (c), (), and (e) we have
in o sing = un o 1 o sing = un o sing”™,
un o flat™ = un o flat™ o re, o un

=unoreoX(flat" o1) oun

un o re o X(flac™ o 1) o un o T*(re, o un)

=unoreo X(flat" o1 0T rey) ouno T un.

(c) As un and 1 are morphisms of monads, soisun o ¢ = in. 0
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Corollary 4.7. T™ = XT° (as monads)

Proposition 4.8. The functions

dist“((0,1)) :=={ (0, a) |a eI}
form a distributive law dist™ : X 0 Up = Up o X.
Proof. Note that

X(X = Z Xg

0:£—( surjective
is polynomial. Furthermore X is linear since the sets

dom(comp(s)) and > dom(s(v)), forseXXA,

vedom(s)
are both singletons. Consequently, the claim follows by Theorem 2.4. [J

One could hope to construct a distributive law T°X = XT° by applying
the Theorem of Beck to the monad structure on XT°, This does not work
for the following reason.

Lemma 4.9. The natural transformation Xsing : X = XT° isnot a morphism
of monads.

Proof. The following of the two axioms fails:

X(fat™ 010 T°re,) o Xsing o XXsing # Xsing o comp.
To see this, fix (0, (7, a)) € XXA. Then
(X(flat™ o 10 T°re, ) o Xsing o XXsing) ({0, (7, 4)))
X(flat™ 0 1 0 T°re, o sing o Xsing) ({0, (7, a)))
X(flat™ o 1 o sing o re, o Xsing) ({0, (7, a)))
X

(1e0 o Xsing) ({0, (7, 0)))
= (0, Tsing(a)) ,
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whereas

(Xsing o comp) ({0, (7, a)))
= Xsing({o o 7, a))

= (0 o 1,sing(a)).
For 7 # id, these two values are different. O

Exercise 4.2. Prove that the monad XT° satisfies all of the other conditions
in the Theorem of Beck. j

GBraphs 2nd Uncavellings

The next step is to transfer the unravelling operation from T™ A to arbitrary
sets.

Definition 4.10. (a) An unravelling structure (A, re, un) consists of a set
A € Pos™ equipped with two functions

re:XA—->A and un:A->XA
such that (A, re) forms an X-algebra while un satisfies
Xunoun=Xinoun and reoun=id.
We call un(a) the unravelling of a. To keep notation simple, we write
%a:=re({(0,a)).
(b) A morphism of unravelling structures is a function ¢ : A — B satisfying
uno @ =Xgpoun and ¢@ore=reoXg.

(c) The free unravelling structure generated by a set X is (XX, comp, Xin).

a
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Clearly, the operations re and un defined above for trees t € T* A induce
an unravelling structure on T A. But note that this is not the case for RA
since we have re(un(g)) # g for every g € RA that is not a tree.

Example. For each T*-algebra A = (A, 71), we can equip the universe A
with the trivial unravelling structure where

un:=in and “a:=7(’sing(a)). J

Remark. (a) Note that the monad multiplication flat™ is not a morphism
of unravelling structures since un o flat™ # Xflat™ o un. In what follows
we will therefore not work in the category of unravelling structures and
their morphisms. Instead we will work in the weaker category of unravelling
structures with arbitrary monotone maps as morphisms.

(b) Intuitively the axioms for un : A — XA say that (A, un) forms a
coalgebra for the comonad’ (X, Xin, re). But note that re is not a natural
transformation. So the definition is ‘local’ to the set A. |

As a technical tool we use the following generalisation of the unravelling
relation for graphs where we do not only unravel the graph itself but also each
label. The intuition is as follows. Suppose we are given a relation 6 € A x B
and a graph h € RB. We construct an (unravelled) graph g € RA as follows.
Starting at the root v, we pick some element ¢ 6 h(v), and label g(v) by
the unravelling of ¢. Then we recursively choose labellings for the successors.
Note that the shapes of g and b are different since we are unravelling g, so
the labels in g might have a higher arity than the corresponding ones in h.
Therefore, we simultaneously construct a graph homomorphism ¢ : g = b
to keep track of which vertices of g correspond to which ones of h.

To simplify the definition, we will split the construction into two stages. In
the first step we apply the unravelling operation to every label of b, resulting
in a graph Run(h) € RXB. What is then left for the second step is the
following relation, which does the choosing of the label and the unravelling
of the tree. What makes this operation complicated is the fact that the
unravelling depends on the chosen label, while the label may depend on
which copy (produced by previous unravelling steps) of a vertex we are at.
So we cannot separate the second stage into two independent phases.

440



4. Non-linear trees

Definition 4.11. (a) Let g € R¢A and b € R;B. A graph homomorphism is a
function ¢ : dom, (g) — dom, (h) such that

¢ @ maps the root of g to the root of h;

¢ ¢(u) is a successor of ¢(v) if, and only if, u is a successor of v (not
necessarily with the same edge labelling); and

¢ ¢(v) is labelled by a variable if, and only if, v is labelled by one.

(b) Suppose that ¢ : ¢ — h is a surjective graph homomorphism and let
v € dom, (g) be a vertex of sort & with successors (14 ) ez and suppose that

@(v) has sort {. We denote by ¢/, : & — ( the function such that
@(uy) is the @, (x)-successor of ¢(v).
(c) Lets € RgA, t € R¢B, and 6 € XA x B. We write
@005 0% ¢

if the following conditions are satisfied.
e secT°A
® ¢ :s — tisasurjective graph homomorphism.
e 0:&->(is surjective.
¢ (@,,5(v)) 0 t(p(v)), foreveryvedom(s).
e a(s(v)) =tle(v)), if s(v) = x is a variable. )

We are mostly interested in the cases where 6 is either the identity = or
set membership €. The resulting relations are

9,0 —sel t, forseT*AandtecT*XA,

9,05 et forseT Aandte T*Up(XA).
Combining them with the unravelling operation as explained above, we
obtain the relations

n

@, 0:5=""¢ :iff ¢@,0:5="Run(t),
@05, ciff @015 RUp(un)(t).
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Example. We have ¢, 0 : g €*" h where g is the tree on the left, h the one on
the right, ¢ : ¢ > b is the obvious homomorphism, and 0 : {x, y,z} - {x}.

a(xy}’) {a(x,x)}

7 X *|
b(x,y,z) C(xr)"z) {f((::i,:;;}
AN AN U
d x ) e d z {d,e} x !

Remark. (a) For every graph g, there exists a canonical graph homomorph-

ism ¢ : gun(g) ~ g.
(b) Note that

¢,0:¢g="'k and kO%h implies ¢,0:g6% b,

but the converse is generally not true since the function ¢ does not need to
be injective and we can choose different values (¢, ¢4 ), (¢/,,¢,) 0 h(w)

sel

for u,v € 9~ (w). For this reason, we cannot reduce the relation €**' to the

sel

much simpler = s

Let us derive an algebraic description of the relation ¢, o : s =*¢! ¢ that is
much easier to work with. We introduce a function sun satisfying

(0,s) =sun(t) iff ¢,0:s —sel t, forsome¢,

and a similar function dun associated with the relation =",

Definition 4.12. (a) For a set A, we define the strong unravelling operation

sun : T*XA - XT°A by
sun := un o flat™ o T*(re, o Xsing) .

(b) For an unravelling structure A, we define the deep unravelling operation

dun : T*A — XT° A by

dun := sun o T un. p

442



4. Non-linear trees

(000, a) a(Xo0,Xo)
Xo Xo
(010, b) b(x1, x0)
/N VAN
xo  (id, c) Xo  c(xo)
Xo Xo
X1 X1

a a
"\ N\
b b b b
NN /N /N
Xo c Xo [4 Xo [4 X2 c

Xo

Xo

Xo

Xo

X1 X1 X1 X3

Figure 1.: An example of sun(t)
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Example. To understand the definition of sun, let us consider the following
tree t € T*XA in Figure 1. We have depicted ¢ itself, the intermediate terms
t':= T*(reo o Xsing)(t) and ¢ := flat(t'), and the end resule sun(t). Here
a,be Al € €Ay and 0ij denotes the function mapping x, +— x;
and x; — x;. j

Let us check that the above definitions have the desired effect.

Lemma 4.13. We have

(0, s) =sun(t) iff ¢@,0s —sel t, forsome g,
(0,s) =dun(t) if ¢@,0:5=""¢, forsomeg.

Proof. We only have to prove the first equivalence. Then the second one
follows by definition of dun and ="". Given a tree t, we set

r:=R(re, o Xsing)(t) and (0,s):=un(flat™(r)).

Let ¢ : dom, (flat”™ (r)) — dom, () be the graph homomorphism induced

by the canonical map

dom(flat*(r)) — Z dom(r(v)),

vedom(r)
and fix ¢’, 0/, s" with ¢’, 0" : 5’ =s¢l ¢ Tt is sufficient to show that
=9, o=0¢", and s=s.
We start by proving that ¢(v) = ¢’(v) and s(v) = s"(v). We proceed by
induction on v. For the root v = () of flat” (1), we have ¢ ({)) = () = ¢’ ({)).
For the inductive step, suppose that we have already shown that ¢(v) =

¢'(v). We will prove that s(v) = s'(v) and that ¢(u) = ¢'(u), for every

successor u of v. By definition of =5¢1 we have

t(p'(v)) = ((p;u,sl(v)), for v € dom, (s").
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This implies that

r(9'(v)) = (req 0 Xsing) ({¢), 5" (v)}) = “Fsing(s' (v)) .

Consequently,

s(v) = flac” (r)(v) = r(9(v))({) = r(¢"(W))(() =" (v).

To complete the induction, it remains to show that ¢, = (p;v. Let (ux)x be

the successors of v in s and let (w ), be the successors of ¢(v) in r. Then

r(p(v)) = sing(s(v))

implies that the x-successor of v in s corresponds (via ¢) to the q);v(x)—

successor of ¢(v) in r, that is,
9(ux) =Wy (x) -

But, by definition of ¢, we also have ¢ (u) = Wy, (x)- Hence,

o0 (x) = 9, (x).

This completes the induction. To finish the proof it remains to show that
0 = 0" and that s(v) = s'(v), for all v € dom, (s) \ dom(s). For the latter,
note that the vertices of s carrying a variable are the same as those of s’
carrying one. Since the variable labelling is determined by the ordering of
these vertices with respect to the length-lexicographic order, it follows that
the two labellings coincide.

Hence, let v be such a vertex. Then

o(s(v)) = flar” (r)(v) = r(p(v)) = t(p(v))
=0'(s'(v)) = o' (s(v)) .

Thus, 0(x) = ¢’ (x), for all x, which implies that ¢ = ¢’ O

Let us collect a few basic properties of the operations we have just intro-

duced.
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Lemma 4.14.

(a) X(unoflat™ o) odun = X(in o flat™ o 1) o dun

(b) flat™ o re o dun = flat™

(c) unoflac® = X(flat™ o) o dun

(d) sunoT*in =un

(e) sunosing” = Xsing
Proof. (a) Let (0, s) = dun(t). According to Lemma 4.13, this means that
@, 0 s ="" t. By definition of ="", we therefore have

un(t(@(v))) = (9, s(v)), forallv e dom(s).

In particular, s(v) € T°A and, therefore, s € T°T°A. This implies that
flac(s) € T°A. Hence, un(flat(s)) = (id, flat(s)) and we have
X(un o flat)(dun(t)) = (0, un(fat(s)))
= (0, (id, flat(s)}))
= (0,in(flat(s))) = X(in o flac) (dun(t)) .
(b) By Lemma 4.5 it follows that

flac”™ o re, o Xsing o un = re, o X(flat™ o 1) o Xsing o un
= re, 0 X(flat™ o sing™) o un
= re, o un
=id.
Consequently,

flac™ o re o dun = flat™ o re o un o flat™ o T (re, o Xsing o un)
= flat™ o flat” o T (re, o Xsing o un)
= flat™ o T*flat” o T*(re, o Xsing o un)
= flac™ o T*id

= flat™.
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(c) By (a) and Lemma 4.5, we have

X(flat™ o 1) o dun = comp o X(in o flat™ o 1) o dun

= comp o X(in o flat* o 1) o dun

= comp o Xun o X(flat™ o 1) o dun
=unoreoX(flat® o) o dun
=un o flat™ o re, o dun

=uno flat”.
(d), (e) We have

sun o T™in = un o flat”™ o T*(re, o Xsing) o T™in
= un o flac™ o T*(re, o in o sing)
= un o flac™ o T*sing
=un,
sun o sing”™ = un o flat™ o T (re, o Xsing) o sing™
= un o flat”™ o sing™ o re, o Xsing
= un o re, o Xsing
= Xsing. O
In Lemma 4.13, we have found an algebraic characterisation of the relations
=%¢l and =" in terms of the operations sun and dun. Unfortunately, there

does not seem to exist a similar purely algebraic characterisation of the

relation €*L. Tnstead, we define the corresponding operation directly in

terms of €%¢L,

Definition 4.15. The selection operation sel : T* o Upo X = UpoXo T is
defined by

sel(t) :={(0,s) | @,0:5s el t}, forteT Up(XA). )

The properties of this operation are as follows.
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Lemma 4.16.
(a) sel: T* o UpoX = Up o X o T is a natural transformation on Pos™*
(b) sel o T*pt = ptosun
(c) selosing™ = Up(Xsing)
(d) selo T*(ptoin) = ptoun
)

(e) Up(dunore,) oselo T*Up(un) = sel o T*Up(un)

Proof. (a) Let f : A — B. By definition of el we have

9,05 € T Up(Xf)(1)
(g s()) € Up(KA) (t(0(0))). forall v,
iff  s(v)2f(r(v)) and (@, r(v))€t(p(v)), forallv,
if s>T°f(r) and @,0:ret,
This implies that sel(T*Up(Xf)(t)) = Up(XT° f)(sel(t)).

(b) To simplify notation, we will leave the universal quantification over
vertices v implicit in the expressions below. Let t € T*XA. Then

sel(T*pe(t)) = { (0,5) | 9, 0°+5 € T*pe(e) }
= {0} [ {90 5(v)) € pe(e(9(v))) or
[s(v) = x and T*pt(t) (9(v)) = 0 (x)] }
= (o) [ {9 5(1)) 2 t(9(v)) or
[s(v) = x and t(¢(v)) = 0(x)] }
= (a5} [ {9 s(»)) = t(9(v)) or
[s(v) = x and t((v)) = 0(x)] }
=M{{os) | poss ="t}
= fi{sun(e)}
= pt(sun(t)) .
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(c) Let I € Up(XA). Then

sel(sing™ (1)) = 1{ (0, s) | 9, 0 = s € sing™ (1) }
=fM{(o,s)|s=sing(a), (1,a)el, o=1}
=1{{o,sing(a)) | (0, a) € I'}
= Up(Xsing)(I) .
(d) By (b) and Lemma 4.14 (d), we have

selo T*(ptoin) = ptosuno T”in = ptoun.

(e) Let {0, s) € sel(T*Up(un)(t)). Then ¢, o : s €l T*Up(un)(t),
which implies that

((p/v,s(v)> eun(t(e(v))), forallvedom(s).
Consequently, we have un(s(v)) = (id, s(v)), that is, T°un(s) = T°in(s).
Hence,
(T°unore,)({0,s)) = T°un(’s)
= 7T un(s)
= 7T°in(s)
=T°n(’s) = (T°inore, ) ({0,s)).

Furthermore, s € T°A implies that un(s) = (id, s). It therefore follows by
Lemma 4.14 (d) that

(dunorey)({0,s)) = (suno T*unore,)({0,s))
= (suno T inore,)({0,s))
 (unores)((0,5))
= (comp o Xun) ({0, s))
= (comp o Xin)((0,s))
=(0,s).
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Consequently,
Up(dunore,) I (selo T*Up(un)) = Up(id) | (sel o T*Up(un)).
O

We need one more equation concerning the operation sel whose proof is
more involved: Lemma 4.18 below contains a commutation relation between
sel and flat™ that is similar to one of the axioms of a distributive law. The
proof makes use of the following technical lemma.

Lemma 4.17. Letr € T*T* A and t € T*T"B be trees, set s := flat(r), let
x : dom, (s) = dom, (fat™(t)),
9 dom, (1) > dom, (1),
Yy = dom, (r(v)) > dom, (¢(¢(v)))
be surjective graph homomorphisms, and let

A:domy (flac” () » > dom(t(v)) + [dom, (t) \ dom(t)],

vedom(t)

u:dom,(flac(r)) > > dom(r(v)) + [dom(r) \ dom(r)]

vedom(r)

be the functions induced by the canonical maps

dom(flat™(t)) > > dom(t(v))

vedom(t)

dom(flat(r)) — Z dom(r(v)).

vedom(r)

Then

Ax(w)) = (o), ¥, (u)), foreveryw € dom(s) with
u(w) = (v,u),

implies that

Xpw = (Wo)us  for u(w) = (v,u).
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Proof. Consider a vertex w € dom(s) with y(w) = (v, u) and an x-suc-
cessor # of u. Suppose that A(y(w)) = (v',u’). First, let us consider the
case where 4 € dom(r(v)). Let # be the successor of w with y (i) = (v, #).
By assumption, we have A(y(w)) = (¢(v), v, (@)) and y, (%) is the y-
successor of ¥, (#) in t(¢(v)), for some y. By definition, it follows that

Xpw(x) = yand () 7u(x) = y.
It remains to consider the case where @ ¢ dom(r(v)). Then r(v)(%) =z,
for some variable z. Let v/ be the z-successor of v, let () be the root of r(v'),

and let i be the successor of w with u(i) = (v, (}). Then A(y(w)) =
{@(v"), ¥y ((}))- Let y be the variable such that A(@(v"), v,/ ({))) is the

y-successor of A(@(v), ¥, (u)). Then x/,,(x) = yand (v, )/, (x) =y. O
Lemma 4.18. sel o flac”™ = Up(Xflat) o sel o T*sel

Proof. Note that the canonical function

dom(flac™(¢)) — Z dom(t(v))

vedom(t)
induces a function

A:dom,(flac”(£)) > > dom(t(v))+ [dom,(t) \ dom(t)].

vedom(t)

Similarly, for a tree r (which we will specify below), we obtain a function

y : dom, (flat(r)) — Z dom(r(v)) + [dom, (r) \ dom(r)].

vedom(r)

To prove the lemma, we check the two inclusions separately.

(2) Suppose that (o, s) € Up(Xflat) (sel(T*sel(t))). Then
s=flac(r), forsome ¢,0:r e T sel(t).
For every vertex v of , it follows that

(910, 1(v)) € sel(e(o(v)))
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or r(v)=xandsel(t(p(v))) =0(x).

This implies that

Yo, 9p0 1 1(v) €9 t(@(v)) o r(v) = xand t(p(v)) = 0(x),
for some homomorphism ¥,. Let x be the unique graph homomorphism

satisfying the equations

[lo@)pa ) i) = (r0),
M) = {<p<v> ) = v,

where A and y are the homomorphisms defined above. We claim that y, 0 :
s € flat™(t), which implies that (g, s) € sel(flac™ (¢)).

Hence, fix a vertex w € dom, (s) = dom, (flat(r)). First, consider the
case where w € dom(s). Suppose that y(w) = (v,u). Then y,, ¢/, :
r(v) € t(g(v)) implies that

(W) urr(v) () € t(o(v)) (9o (w)) -
Consequently, we have

(o) jurs(w)) € t(@(v) (yo (u)) = fla™ () (x(w)) -

Furthermore, we have (¥, )/, = x/, by Lemma 4.17.

It remains to consider the case where s(w) = x is a variable. Then p(w) =
v, for some v € dom,(r), and r(v) = x implies that t(¢(v)) = o(x).
Hence,

flac” (¢) (x(w)) = t(A(x(w))) = t(p(v)) = o(x) .
(<) Suppose that (o, s) € sel(flat™ (¢t)). Then
x,0:s e flac(t), for some y.

We define a tree r with flat(r) = s as follows. Intuitively, we factorise s
by cutting every edge w — w’ such that the corresponding vertices y(w)
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and y(w') in flat” (t) belong to different components t(v) and t(v"), i.e.,
if A(x(w)) = (v,u) and A(x(w')) = (v, u’) with v # v'. The formal
definition is as follows. Let us call a vertex w € dom. (s) principal if its image
under y corresponds to the root of some conponent ¢(v), or to a leaf, that is,

if
AMy(w))=(v,()) or A(x(w))=v, forsomev,

(where () denotes the root of t(v)). We define the domain of r by
dom, (r) := {w € dom, (s) | w is principal }

and the edge relation as follows. Given a principal vertex w, let wo, ..., w,_;
be an enumeration of all minimal principal vertices w’ with w < w’. We
make w; an i-successor of w. (The precise labels i are not important, only
the fact that they are pairwise distinct.) Finally, the labelling of r is given by

_JTw ifw € dom(s),
r(w): {s(w) ifw ¢ dom(s),

where r,, is the tree with
dom, (ry) = { u € dom, (s) | w < u and there is no principal w’
with w <w’<u},

s(u) ifu¢dom,(r)oru=w,
rw(u) =11 if u = w; € dom, (1) is the i-successor of w

inr.
By definition, it follows that flat(r) = s and that

u(w) =(v,w), ifwedom(s), wherev is the maximal principal
vertex with v < w,

and p(w)=w, ifw ¢ dom(s).
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Let ¢ and y, be the functions defined by the equations

(@) v () = A(x(w)), for u(w) = (v, u),
o(w) =A(x(w)), ifwedom,(s) dom(s),
v, (u) =u" ifu € dom, (r(v)) \ dom(r(v)),

where the vertex u”’ in the last equation is chosen as follows. Given u, let
u' be the predecessor of u and let x be the label of the edge 4’ — u. Then
' is the (¥, ) 7,/ (x)-successor of ¥, (u”).

We claim that, for all v,

Vo pp i r(v) €9 t(g(v)) or r(v) =xand (p(v)) = o (x).

Then it follows that

(910, 7(v)) € sel(t(p(v)))
or r(v)=xandsel(t(p(v))) =0(x).
Thus,
(0,7) €sel(T sel(t)) and (o,s) e Up(Xflat)(sel(T"sel(t))),

as desired. Hence, it remains to prove the above claim.
If r(v) = x is a variable, we have s(v) = r(v) = x and, therefore,

t(p(v)) = t(A(x(v))) = flac” () (x(v)) = 0 (x),,

as desired. Otherwise, v € dom(r) and we have to show that

L/ q)/v : 1"(1/) esel t(?’(“)) .
Note that y, 0 : s €l flac” (¢) implies that

(Xpwrs(w)) € flac” (£) (x(w)), forallw.
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We distinguish two cases. If u € dom(r(v)), let w € dom(s) be the vertex
with y(w) = (v, u). Then

(g r(0) () = (X s(w)) € flac” () (x(w)) = t(@(v)) (v (4)) -

By Lemma 4.17, we have XJw = (v, )/u, which implies that

(W) r(v)(w)) € t(o(v)) (o () -

Ifu € dom, (r(v)) N dom(r(v)) with label r(v)(u) = x, let v’ be the
x-successor of v. By definition of ¢, it follows that ¢(v") is the ¢, (x)-
successor of ¢(v) in t. This implies that t(v) (v, (4)) = ¢/, (x). O

Exercise 4.3. Prove that sun o1 : T°X = XT° forms a distributive law on
Pos™*.

a

Exercise 4.4. Prove that Xi o sun : T*X = XT” satisfies all axioms of a
distributive law except for the equation (X1 o sun) o T*in = in. )

2 Partial Diftributive Law

The idea to find our partial distributive law is to work in the category of
unravelling structures, although this does not solve our problems entirely.
First of all, there is no obvious way to lift the functor Up to unravelling
structures. Given an unravelling structure A, we can define an ‘unravelling
map’ Up(un) : Up(A) — Up(XA), but we would need one of the form
Up(A) — XUp(A), and there is no natural transformation Up o X =
X o Up. The functor T™ on the other hand can be lifted to the category
of unravelling structures, but only in a trivial way: given A we can forget
its unravelling structure, construct T* A, and equip it with the canonical
unravelling structure defined above (which does not depend on that of A). In
particular, with this definition the monad multiplication flat™ would not be a
morphism of the resulting unravelling structure. What would be more useful
would be a lift that uses deep unravelling dun as the unravelling operation
on T A. But there is no corresponding reconstitution operation re satisfying
re o dun = id.
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What we will do instead is to use an ad-hoc argument showing how to
define a lift of Up to sufficiently well-behaved T*-algebras. We are mainly
interested in free T*-algebras, but a slightly more abstract definition helps
to make the proof more modular. We extract the needed properties of the
algebras in question in the following technical definition.

Definition 4.19. We say that a T*-algebra A = (A, ) supports unravelling
if its universe A can be equipped with an unravelling structure that satisfies
the following conditions.

JToreo Xsing>< =re,
un o re = comp o Xun,
X(unomot)odun=X(inomor)odun. )
The following observation might help explaining the second of the above

axioms.

Lemma 4.20. An unravelling structure (A, re, un) is a retract of a free one if,
and only if, it satisfies

un o re = comp o Xun.

Proof. (=) Suppose that there are morphisms of unravelling structures

p:A—XXandp: XX - Awith poy =id. Then

un o re = Xy o Xin o comp o Xy
= Xp o comp o XXin o Xy
= Xp o comp o XXy o Xun
= Xp o Xy o comp o Xun = comp o Xun.

(<=) Set
K:={aecA|(0o,a) ermgun},

leti : K - A be the inclusion map, and let pt : A — XK be the corestriction
of un. Then un = Xi o y. We claim that g is the desired embedding of A
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into XK and that p := re o Xi : XK — A is the corresponding quotient
map.
First, note that

popu=reoXioy=reoun=id.

Hence, it remains to show that p and y are morphisms of unravelling struc-
tures.
For y, note that

comp o Xy = compoXun=unore=fore

and Xpoun=Xunoun=Xinoun=ZXinoy,

where the former holds by assumption and the latter by the axioms of an
unravelling structure.

Concerning p, we have un(a) = (id, a), for every a € K. Consequently,
un o { = in o i, which implies that

uno p = unoreo Xi
= comp o Xun o Xi

= comp o Xin o Xi = Xi = Xp o Xin.
Furthermore,

p o comp = re o Xi o comp
= re o comp o XXi
=reoXreoXXi=reoXp. O

The intended target for this definition are the free algebras. We start by
noting that these satisfy the above conditions.

Proposition 4.21. The free T*-algebra (T* A, flac™) supports unravelling.

457



VII. Power Sets

Proof. Using the operations un and re from Definitions 4.1 and 4.4, it follows
by Lemma 4.5 (e) and (b), that

flat”™ o re o Xsing = flat™ o re, o Xsing
= reo X(flat™ o 1) o Xsing
= reo X(flat™ osing™) = re,

un o re = comp o Xun,
while the third condition follows by Lemma 4.14 (a). O

For the proof below, let us collect a few basic properties of algebras that
support unravelling,

Lemma 4.22. Let U be a T -algebra that supports unravelling.

(a) more=reoXn

(b) moreodun=m

(c) Up(uno more,) osel o T*Up(un) = Up(Xrm) o sel o T*Up(un)

Proof. Below we will make freely use of the equations from Lemma 4.5.
(a) We have

more=moreoX(fla” osing™)
= 7o flat™ o re o Xsing*
=moT"m o re o Xsing”™
= moreo XT°7 o Xsing”
= moreo Xsing™ o X7

=reo X7,

where the last step follows from the fact that U supports unravelling.

(b) Since

T o re, 0 Xsing o un = re, 0 X7 o Xsing o un = re, oun = id,
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we have

moreodun =7moreounoflac” o T*(re, o Xsing o un)

7o flat”™ o T (re, o Xsing o un)

7o T moT*(re, o Xsing o un)
=moT"id

=T7r.

(c) By (a), Lemma 4.16 (e), the fact that A supports unravelling, and (b),

we have

Up(uno mwore) osel o T*Up(un)
= Up(un o re o Xr) o sel o T*Up(un)
= Up(comp o Xun o X7r) o sel o T*Up(un)
= Up(comp o X(un o 7) o dun o re, ) o sel o T*Up(un)
= Up(comp o X(in o 7) o dun o re, ) o sel o T*Up(un)
= Up(comp o X(in o 7)) o sel o T*Up(un)
= Up(Xn) osel o T*Up(un). O

Finally we can state our partial distributive law for Up and T* for algebras
that support unravelling,

Proposition 4.23. If U = (A, 7) is a T -algebra supporting unravelling, we
can form a T -algebra Up() := (Up(A), 7t) with product

ft := Up(m o rey ) o sel o T*Up(un).

Furthermore, the function pt : A — Up(A) induces an embedding A —
Up(2).

Proof. We have to check three equations. To see that pt is an embedding,
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note that

7t o T pt = Up(more,) osel o T*Up(un) o T*pt
=Up(more,)oselo T pto T un
=Up(more,) o ptosuno T un
=ptomore, osuno T un
=ptomore, odun

=ptorm,

where the third step follows by Lemma 4.16 (b), the fifth one by definition
of dun, and the sixth one by Lemma 4.22 (b). For the unit law, we have

7t o sing”™ = Up(m o re,) o sel o T*Up(un) o sing™
= Up(m o re,) o sel o sing™ o Up(un)
= Up(m o re, ) o Up(Xsing) o Up(un)
= Up(re, o un)
=id,

where the third step follows by Lemma 4.16 (c) and the fifth one by the
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definition of an unravelling structure. Finally, for the associative law,

7t o Tt = Up(m o rey ) o sel o T*Up(un)
o TX(Up(ﬂ ore,)oselo TXUp(un))
=Up(more,) o sel
o TX(Up(un omore,)oselo TXUp(un))
=Up(more,) osel o T*(Up(Xrm) osel o T*Up(un))
=Up(morey) o Up(XT°m) o sel o T*(sel o T*Up(un))
=Up(moT more,) osel o T sel o T*T*Up(un)
= Up(mo flat”™ orey) o sel o T*sel o T*T*Up(un)
= Up(m o re, o Xflat™) o sel o T*sel o T*T> Up(un)
= Up(more,) o sel o flac™ o T*T*Up(un)
= Up(more,) osel o T*Up(un) o flat™
= froflat”.
where the third, fourth, seventh, and eighth step follows by, respectively,
Lemmas 4.22 (e), 4.16 (a), 4.22 (a), and 4.18. O

The following consequence can be considered the main result of this
section.

Theorem 4.24. In Pos®, the set Up(T* A) forms a T*-algebra with product

w(t) = f{fac” (°s) | @, 0 :s €™ t}.

Proof. We know by Proposition 4.23 that Up(T*(A 1 £,)) forms a T*-
algebra in Pos™*. Since

Up(T*A) = Up(T*(A 1 E4))lz,

the claim follows by Lemma I1.3.5 (c). 0
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In order to strengthen this theorem to obtain a (Up o T*)-algebra, we
would need to prove that Up o T* forms a monad. The next result shows
that the canonical choice for the corresponding monad multiplication does
not work. (Note that this is not a simple consequence of Theorem 2.7 since
it might be the case that, instead of condition (m1) of Theorem L.6.7 (4), it is
(m2) or (m3) that is violated.)

Proposition 4.25. The function k : (Up o T*)(Upo T*)A — (Upo T*)A
with

k(T) = {fat”(°s) | @,0:5€" ¢, teT}
does not satisfy the associative law
Kox = ko Up(T%)

Proof. We use term notation a(c), b(c,d),... for trees. Note that, for two
sets

X={ai(x0,x0) | i<m} and Y ={sing"(¢;)|i<n}
(where a; € A, )y and ¢; € Ag) we have
c({X(Y)}) = {flac”(°s) | ¢, 015 €™ X(Y) }
= {flac*(%s) | s = u(v,w), u =sing"(a;), i <m,
v =sing" (c), w = sing” (1), k, [ < n}
={ai(ccr) [ i<m, kl<n}.
Similarly, if the a; € A, are unary, we obtain
k({X(Y)})={ai(ct) |i<m, k<n}.
Setting
Ii={a(x0,%0)}, C:={c},

J= {b(xor’%)}’ D:= {d}’
K := {singX (I), sing>< N}, E = {singX(C), singX(D)} ,
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we obtain
x({K(E)}) ={I(C),I(D), J(C), J(D)},
k({1(C)}) ={a(c, )}, x({I(D)}) ={a(d,d)},
k({J(C)}) ={b(c.0)},  x({J(D)})={b(d.d)},
(ko x)({K(E)}) = {a(c,c),a(d,d),b(c,c), b(d, d)},
K(K)=IuJ] =X,
k(E)=CuD=1Y,
Up(T*x) ({K(E)}) = {X(Y)},
(ko Up(T*x)) ({K(E)}) = {u(v,w) |ue{a b}, v,we{c,d}}.
Hence,
(ko x)({K(D)}) # (x o Up(T"x))({K(D)}) .

(For instance, the tree a(c, d) does belong to the right-hand side, but not to

the left-hand one.) O

5. Subltitutions
As a first simple application of the tools we have developed in Section 4, let
us take a look at substitutions for tree languages.

Definition 5.1. Let X be an alphabet.

(a) A substitution is a function 0 : X — Up(T*X). We call ¢ regular if
every 0(x) € T*X is a regular tree language.

(b) Every substitution 0 : X — Up(T*ZX) induces two different function
T*X — Up(T*X). The inside-out morphism g, is defined by

0o (t) := {Aat™(s) | s ¥ Ra(t) },
while the outside-in morphism 0,; is defined by

0oi(t) == {flac* (°s) | ¢, 0 : s " Ra(t) }. )
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Remark. (a) Intuitively, the difference between these two variants is that,
with the inside-out version 0;,, we have to choose the same image s(u) €
o (t(v)) for every vertex u of s corresponding to v € dom. (), while the
outside-in 0,; version allows us to choose a different tree for each of them.
The former has the advantage of simplicity, but the latter turns out to be
more natural from an algebraic perspective: we will show below that it forms
a morphism of T -algebras.
(b) In the notation of Section 4, we can rewrite the above definitions as

i = Up(flat™) o dist o T o,
0oi = Up(flat”™ o re,) o sel o T*(Up(un) 0 g).

Hence, 0j, is based on the failed distributive law dist, while 0,; is based on
the more successful attempt using the relation €**, |

For the next lemma, let us recall from Theorem 4.24 that Up(T*X)
indeed forms a T*-algebra.

Lemma 5.2, 0y; : T*X — Up(T*ZX) is a morphism of T*-algebras.

Proof. According to Theorem 4.24, the product of the algebra Up(T*X) is
given by

7t := Up(flat™ o re, ) o sel o T*Up(un) .
Hence, 0,; = 77 o T* 0 and it follows that

Oo; 0 flat™ = 10 T" ¢ o flat™
froflat o T*T" o

=0T "A0T T 0 = 10T 0. O

Remark. Note that the function 0, : T*X — Up(T*X) is not a morphism
of T -algebras.

a

For the simpler inside-out substitutions, we can solve inequalities of the

form p;o[L] C R as follows.
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Theorem 5.3. Let L € T*X and R € T*X be regular tree languages, o, 7
X — Up(T*X) regular substitutions, and let S be the set of all substitutions p
such that

ccpct and pio[L]SR.
Then

(a) S has finitely many maximal elements.
(b) Every maximal element of S is regular.
)

(c) We can effectively compute the maximal elements of S.

Proof. Since R is regular, it is recognised by some morphism # : T*X —
into an MSO-definable T*-algebra & = (A, ). We define the saturation
p: X - Up(T*X) of a given substitution p : X - Up(T*X) by

p(x) = {s e T"X[n(s) e Up(n)(p(x)) }-

Then we have Up(#) o p = Up(n) o p. Since we can phrase the definition
of pio as

pio = Up(flac™) o dist o T*p,
it follows that
Up(1) © pio = Up (7 0 flat™) o dist o T"p
=Up(moT*n) odisto T™p
= Up(m) o dist o T*Up(#) o T*p
= Up(m) o dist o T*Up(#) o T*p
=Up(moT*y) odisto T™p
= Up(noflac™) o disto T*p
=Up(#) © pio -
As (s) = n(t) implies s € R <> t € R, it therefore follows that
pio(t) SR implies pio(t) S R.
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Since p C p this implies that the maximal elements of S satisfy p = pn 7. In
particular, a substitution of this form is regular. This proves (b).

For (a), note that the number of substitutions of the form p is bounded
by the number of functions X - Up(A). As X is finite and A is sort-wise
finite, there are only finitely many of them.

It remains to establish (c). We can enumerate all functions X — Up(A).
This gives an enumeration of all substitutions of the form p. For each of
them, we can check whether 0 < p N 7. If so, p N 7 is a maximal element
of S. Otherwise, it is not. O

The more complicated case of outside-in substitutions is still open.

Remark. There is one technical detail worth mentioning: the way we have
defined substitutions, every tree in o(x),forx e X ¢ contains all variables
in &. But usually one uses a more general notion of a substitution where the
trees in 0(x) can omit some or all of these variables. We can formalise this
generalisation in our setting as follows,

We consider a substitution as a function 0 : X — Up(T?X), where T is
the functor with

TiX = ) T;X
(ct

(for details, see Section VIILI below). We can extend the monad operation
to T? in the obvious way. As above we define two induced operations 0, Oo;
T?X — Up(T’%). The definition of the outside-in version is the same as
above

0oi(t) == { flat’(“s) | 9,0 : s " R¥a(t) }

(where R? is the corresponding variant of R).

But the inside-out version is more complicated. The problem is that some
sets 0(x) might be empty, but a tree ¢ might still have a non-empty image
0io(t) because, for every vertex v with 0 (t(v)) = &, there might be some
vertex  higher up in the tree where we have chosen an element s € t(u)
which omits the variable corresponding to the subtree containing v. The
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easiest way to formalise this process is to make the problem disappear by
adding dummy elements to all sets 0 (x). Hence, fix some element | ¢ X

and let p : Up(Z) — Up(Z + {L}) be the function with
u(I):=Tu{i}.

Then we set
Gio(£) = {flac’ (5) | s € R¥ (o o) (t), fla’(s) e TS }.

The proof of Theorem 5.3 can now straightforwardly be adapted to these
new definitions.

a

8. Regular Gepreflions

As a second, more involved application of our results let us define regular
expressions for languages of infinite trees. We consider tree languages of the
formL € T? 2, for some alphabet ¥ and some fixed sort £ € Z. Alphabets will
always be assumed to be finite and unordered. Note that, if X is unordered,
sois T} X and Up(T;Z) is just the power set. Hence, we can regard every
language L ¢ T X as an element of Up(T} X).

We aim for a characterisation of which elements of this set are regular
languages. Towards this goal we introduce a few operations on Up(T*X).

Before presenting the definition we need to deal with the problem that
Up o T* does not form a monad and that Up(T*X) not a (Up o T*)-
algebra. For this reason we will work with T*, Up-bialgebras U = (A, 7, p).
By Theorem 4.24, Up(T*X) forms a T*, Up-bialgebra with products.

7: T Up(T"X) » Up(T*X)
comp : Up(Up(TXZ)) — Up(TXZ) .
We use the following operations for our version of regular expressions:

o variables x € X,

¢ letters of the alphabet g € Z,
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VII. Power Sets

¢ substitution -, iteration —*, and w-power —“* with respect to a single
variable x,

¢ relabelling ?— of the variables,
¢ union + and the empty language @.

The formal definition is as follows.

Definition 6.1. Given a bialgebra & = (A, 7, p) we define the following
operations.
(a) Each a € A, induces an operation a : A® — A by

a(b) :=n(s),

where s € T} A is the tree obtained form sing(a) by replacing each leaf with
label x € & by the tree sing(by ).

(b) For sorts &, { € £ and a variable x € &, we define a binary substitution
operation

w A AL Ao by e bi=m(s),

where s is the tree obtained from sing(a) by replacing the leaf labelled x by
the tree sing(b).

(c) For a € A and a surjective map 0 : & — (, we set
%a:=7n(s),
where s is the tree obtained from sing(a) by replacing each label x € & by
o(x).
(d) Wedefine +: Ay x Ay > Agand @ € Ag by

a+b:=p(f{a,b}) and @:=p(2).

(¢) Let { € E. We call a tree s {-trivial if, for all v € dom, (s) and z € {,
we have

s(v)=z iff  visan z-successor.
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(That is, all z-successors are labelled by z and there are no other occurrences
of z.) For a finite sequence of elements a; € Ag,, i < n, and a variable
x € (=8 U---U&,_;, we define the w-power and the iteration by

(ao+-+a, )=
p({ n(s) | s€ T?\{x}{ao, veesayoypis (O~ {x})-trivial }) ,
(ag+ -+ +a, )™=

p({n(s)

s€ T? {a0,...,an_} has finite height and it is
(¢~ {x})-trivial }).

(f) For asort £ € Zand a set X, the set E¢X of regular expression over X
consists of all finite terms R that can be built up from variables and the

operations (a)—(e) (for the bialgebra Up(T* X)), where

¢ we restrict the operations from (a) to those where a = fising(c), for
some ¢ € X, and

¢ the free variables are exactly those in &.

We write [R] € Up(T*X) for the value of R € EX in Up(T*X). )

Remark. The iteration and the w-power in (e) have a built-in sum operation
in order to support choices between terms of different sorts, which is not
possible using the normal sum operation from (d). )

Examples. We consider the alphabet X = {4, b, ¢} where a and b have sort
{x,y} and c has sort @.
(a) A regular expression for the language T*X is

E:= ((a(x,y) +b(x,y) + c)wx)wy.

(b) An expression for the language of all trees with an infinite branch

labelled by a is given by

R:=(a(x,2) + a(z,y))wz «E- E.
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(c) Finally, the following expression describes all trees containing the
letter a.

S:=a(x,y) x E-yE+(b(x,2) + b(z,y))+z za(x,y) xEyE. |

We still have to show that regular expressions capture the class of regular
languages. Recall from Definitions V.5.1 and V.5.6 the notion of a forest
automaton, a partial run, and its profile. We order profiles as follows.

Definition 6.2. Let A be a forest automaton. We define an ordering on

profiles by
(p,UY<(p,U") :if p=p andU, cU.forallze(.
If 0 < 7, we say that the profile o is bounded by 7. ,

Theorem 6.3. Let X be an alphabet. A language L C T7 X is regular if, and
only if, L = [R], for some regular expression R € E;2.

Proof. (<) The class of all regular tree languages is closed under all opera-
tions that can appear in a regular expression.

(=) Let A= (Q, 2,(, A, q1, Q) be an automaton recognising L and fix
an enumeration qo, ..., gn—; of Q such that Q(q,) > -+ > Q(q,-,). For
every profile T of A and every number k < 1, we will construct a regular
expressions R® defining the language

[Rk] = { teT> | there is a partial run on ¢ whose profile is
bounded by 7 and whose internal states are
among go, + + - » Gk—1 } .

Then we obtain the desired expression for L by setting

R := Z R:,
TeH

where H is the set of all profiles 7 = (g1, U) such that, forall z € (,
(k,p) €U, implies (p,z)eA.
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We define the expressions Rf by induction on k. For k = o, we only need
to consider runs without internal states. Hence, we can set

RO :=%"{a(x)|aeX, thereisa partial run on sing(a) whose
profile is bounded by 7 } .

For the inductive step, suppose that T = (p, U), let £ be the sort of 7,
and let D := rng Q be the set of priorities used by \A. We start with an
expression describing runs starting with the state q; and with only finitely
many occurrences of qj, on each branch. For a set 7 € & of variables, we write
Ul, for the subtuple (Uy)xey. Let V := D x {qi}, let y5, yy, ... be new
variables not in &, and set
k. k f , o
Tg=Ry o+ > (S5 4o+ 88 Y
{URUUn—r=§
k k
Yo qu,U|,1° P e R‘ik'ohnﬂ ’

where
¢ the sum ranges over all sequences (, oy« s Nn—r of subsets of & whose
union is equal to § and such that #; # 77, for i # j, and

'S Sg’", A Sﬁ;ﬁ, is an enumeration of all expressions of the form

k

qu,U\nV"'V where 7S {andv S {yo, ..o, Yn-1}

(with |v| copies of V that correspond to the variables y € v).
Then Tg describes all trees that have a run with profile bounded by (g, U)
and such that every branch contains only finitely many occurrences of the
state qg.
Similarly, we obtain an expression for all such trees with possibly infinitely
many occurrences of g, by setting

~k k , ,
TS =T5+ > (S5 4. 4 Shm Yz
{UnoU-Uny,— =
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where the Sf’" are defined as above, except that there is an additional copy
of V corresponding to the variable z.
If Q(qy ) is odd, we can now set

k+1 ._ pk k . k e k
RT = RT + Z RP,U|(V...V Yo ’TU|,,o Jr Yn—1 TU‘rm—x :

{UnoU-Uny—=§

where the variables y,, ..., y,—; are the ones corresponding to the # copies
of the set V. If 2(q;) is even, we instead use

k+1 = k k . T . cee e
Ry =Ry + Z Rp,UlgV..‘V Yo TU|,,° ooy

n-t T[]:(J"?n—x -
{URoU-Uny— =& ]

7. Diftributive Lattices

Note that Up,Dn-bialgebras are the same as complete lattices. Such a lattice
is distributive if joins distribute over meets and vice versa. In this section, we
show that distributivity for lattices corresponds to a distributive law for the
functors Up and Dn. To avoid confusion we use superscripts in the monad
operations to indicate which of the two monads (Up, union"?, ptVP) and
(Dn, union®™, ptD")

We follow our usual strategy of construction a distributive law by lifting
the functor Dn to the Kleisli category of Up. When doing so, it turns out to
be convenient to make a detour through a category of certain relations.

we are talking about.

Definition 7.1. (a) We denote by R the category whose objects are all sets
A € Pos® and whose morphisms R : A — B are relations R € A x B

satisfying
(a,b) e Randa’ >a implies (a’,b) €R,
(a,b) e Rand b" <b implies (a,b’) € R.

The composition of two relations R : A - Band S : B — C is given by

SoR:={(a,c)|(a,b)eR, (bc)eS}.
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(b) We say that a relation R € R(A, B) represents the function f : A -
Dn(B) defined by

f(a):={beB|(a,b)eR}.
(c) The graph of a function f : A — Dn(B) is the relation

G(f)={(ab)c AxB|bef(a)}. .

Lemma 7.2. The operation G mapping a function to its graph induces an
isomorphism Free(Dn) = R.

Proof. 'We can uniquely represent each morphism ¢ : Dn(A) — Dn(B) by
its restriction ¢ o pt : A - Dn(B). Using this representation of Free(Dn),
the composition of two morphisms f : A — Dn(B) and g: B — Dn(C) is
given by

go fi=unionoDn(g)o f.

We start by checking that G induces a functor Free(Dn) - R. Let f :
A — Dn(B). To see that G(f) € R(A, B), consider a pair (a, b) € G(f)
and elements a’ > a and b’ < b. Then

e bef(a)c f(a')impliesbe f(a'),
¢ be f(a)impliesb’ € f(a).
Hence, (4, b) € G(f) and (a,b) € G(f).
Since G(pt) = {(a,b) | a < b}, G maps the identity to the identity.

Finally, we have

G(gef)={(a,c)ce(gof)(a)}
{{a,c)|ceg(b)forsomeb e f(a)}
{(a,c) [ {b,c) € G(g) and (a,b) € G(f) }
G(g)oG(f)-

It remains to prove that this functor is bijective. Clearly, f # g implies
G(f) # G(g). For surjectivity, let R € R(A, B). We claim that R = G(f),
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for the function f : A — Dn(B) defined by
f(a):={beB|(a,b)eR}.
We have to check three conditions.
(1) f is monotone.
(11) The codomain of f is Dn(B).
(m) G(f) =R
(1) Let a < a’. Then f(a) S f(a") since
bef(a) = (ab)eR = (d,b)eR = bef(d).
(11) To see that f(a) is downwards closed, let b’ < b. Then
bef(a) = (ab)eR = (ab')eR = b ef(a).
(111) We have

G(f) ={{ab)[bef(a)}={(ab)|{ab)eR}=R. B

The advantage of encoding Dn-morphisms ¢ : Dn(A) — Dn(B) by
relations R € A x B is that the functor Dn vanishes that way. Hence, to find
an extension of Up, we can simply apply Up to R and then translate back.

Lemma 7.3. There exists an extension Up : Free(Dn) — Free(Dn) of
Up : Pos™ — Pos™ to Free(Dn) such that

Up(9) (pt™™(1)) =
{JeUp(B) | Jno(pt°™(a)) + B forallacl},
for every Dn-morphism ¢ : Dn(A) — Dn(B) and all I € Up(A).

Proof. By Lemma 7.2, it is sufficient to define a functor U?) R - R. We
map aset A € R to Up(A) := Up(A) and a relation R : A > B to

Up(R) = {(L,]) e Up(A) x Up(B) [ I R/] },
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where
R/J={acA|({a}x])NnR=z}.

Let us start by showing that Up extends Up. For objects A this is trivial
since we have Up(A) = Up(A) by definition. For morphisms, note that a

function f : A — B of Pos™ corresponds to the morphism pt°" o f: A —
Dn(B) of Free(Dn), and that

Op(G(pcP" o f))
=L [ 1G(p" o f)/T}
={(L J) | for every a € I thereis b € Jwith b € pt®*(f(a)) }
={(L J) | for every a € I thereis b € J with b < f(a) }
={{Lnly= 11}
(LN T<p(HD)}
= G(pt™" o Up(f)) -

Furthermore, for a Dn-morphism ¢ : Dn(A) — Dn(B) and aset I €
Up(A), we have

Up(G(gope™™)) (pc” (1))
={J11cG(pop™)/]}
={J|foralla € Ithereisb ¢ Jwith (a,b) € G(¢popt"™)}
={J|foralla € Ithereisb e Jwithbe (¢ opt°®)(a)}

:{J|Jm((/’°ptDn)(a)¢®foralla€1}.

It remains to show that Up is a functor. Let R € R(A, B). To check that
Up(R) e R(Up(A), Up(B)), ix (I, J) € Up(R) and I" > I, J' < J. Then
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I’ cTand J' 2 J. Hence,

(LJ)eOp(R) = IcR/]

= I'cR/] = (I])eUp(R),
(LJ)eOp(R) = IcR/]

= IcR/] = (LJ)eUp(R),

as desired.
Furthermore, Up maps identities to identities since,

| ({a} x ) N G(pP") # Gforalla e T}
|Uuﬂ]¢®foralla61}
|ae Jforallael}

1<}

Up(G(pe™™)) =

Finally, we have to show that Up preserves composition. Let R € A x B
and S € B x C. For K € Up(C), we have

(SoR)/K
={acA|({a}xK)n(SoR)+2}
={acAltherearebe B, c € Kwith (a,b) €R, (b,c)eS}
={aecA|thereisb e Bwithbe S/Kand (a,b)eR}
={aecA|thereis Jwith Jc S/Kanda e R/]J}
={a e A|thereis Jwith Jc S/Kanda e R/]J}
=R/(S§/K).
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Consequently,

Up(SoR)
={(LK)|Tc(SeR)/K}
={{(LK) [T R/(S/K) }
{{LK) | thereis Jc S/K with IR/ ] }
{{L,K) | thereis (J, K) € Up(S) and (I, J) € Up(R) }
= Up(S) o Up(R). O

Lemma 7.4. Let UT) be the extension of Up to Free(Dn) from Lemma 7.3,
and let ¢ : Dn(A) — Dn(B) be a morphism of Free(Dn). Then
T5(9) 0 Dn(pe) = Dn(pe) o g,
Tp(9) © Dn(anion") = D(union) o Tp(Tp(¢))
Proof. Fixamorphism ¢ : Up(A) — Up(B) between free Dn-algebras and
set o := @ o ptP™ : A — Dn(B).
(a) For a € A, we have
(Tp(@) o Dn(pt"™?) o pc”") (a)
= (Tp(p) o pt”" 0 pc™?) (a)
= {] | Jneo(b) + @ forallb e thP(a)}
={J|Jngo(b) # forallb>a}
={J|Jnes(a) 22}
= {]| b e Jforsomeb € goo(a)}
= {] | ptPP(b) € J for some b € (po(a)}
= {] | pt”P(b) > J for some b € (po(a)}
~U{peP 1) | be gola) )
— (Da(pe) o 9 0 p) (a)
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Since Dn-morphisms are determined by their restriction to rng ptP™, it
follows that Up(¢) o Dn(ptYP) = Dn(ptUP) o .
(b) For H € Up(Up(A)), we have
(Up(¢) o Dn(union"P) o pt™" ) (H)
- (Tp(p) o pt® o union?) (H)
={J|Jngo(a) = @forallac UH}
={J|forall K € Hwehave J N ¢o(a) #+ @ foralla e K }
={J| forall K € H there is I € Up(J) such that
Ing,(a) #QforallaEK}
={UL |forall K € H thereis I € L such that
Ing,(a) i@forallaEK}
={UL|Ln{I|Ing,(a)#@forallacK}+@forall KeH }
={UL|LnTp(9)(pt°"(K)) # @ forallK e H}
= (Dn(union"?) o Up(Tp(9p)) o pt™* ) (H) -

As above it follows that
Up(¢) o Dn(union"?) = Dn(union"?) o Up(Tp(¢)). O
Definition 7.5. We define skolem™” : Dn o Up = Up o Dn by
skolem®*(H) := { {I|In J# @, forall Je H}.
We define skolem"? : Up o Dn = Dn o Up by

skolemUp(H) ={fI|InJ#@, forall Je H}. |

Theorem 7.6. skolem™" : DnoUp = UpoDn and skolem" : UpoDn =
Dn o Up are distributive laws.
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Proof. By duality, it is suflicient to check that one of these operations is a
distributive law. We take skolem"?. Let F : DF — Free(Dn) be the functor
mapping a set A to the free algebra Dn(A) generated by it, and let Up be
the functor from Lemma 7.3. We claim that ( GE, FunionU?, FthP) is an
extension of the monad (Up, union"?, ptP) to Free(Dn). First, note that
it follows by Lemma 7.4 that

Funion”’? : Upo Up = Up and Fpt“?:1d = Up
are natural transformations. Hence, we only have to check the monad laws
for (UI), Funion"?, Fthp).

Funion? o [’E)(FunionUp) = Funion"? o FUp(unionUp)
= F(union"? o Up(unionUp))
= F(union"® o union"?)
= Funion"? o Funion"? B

Funion"? o Fpt“P = F(union"? o ptP)
=id,
Funion"? o Up(Fpt”P) = Funion"? o FUp(pt"P)
= F(unionup o Up(thP))
=id.

Having found this extension Up, we can now use Theorem 1.6.7 (and its

proof) to obtain a distributive law § : Up o Dn = Dn o Up given by
0(H) = (V@(unionD“) o ptD“)(H)
={J€Up(A) | Jnunion®(pt®*(I)) # @ forallI ¢ H }
={JeUp(A)|JnI+@forallle H}
= skolem"? (H),

for H € Up(Dn(A)), where V : Free(Dn) — D= is the forgetful functor.
O
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VII. Power Sets

Remark. A skolem-bialgebra is the same thing as a complete distributive
lattice, i.e., a complete lattice were arbitrary meets distributive over arbitrary
joins and vice versa. ,

Yotes

There is an extensive literature on distributive laws for variants of the power-
set functor. Our presentation is based on [27, 25, 12, 8]. Further relevant
references include [30, 31, 24, 45].
Proposition 3.2 is based on Lemma 6.13 in [10]. Theorem 5.3 is due to [17].
Regular expressions for infinite trees seem to be folklore, but I have not
found them anywhere in the literature (except for a few remarks in [40]).
Regular except for finite trees can be found, e.g,, in Section 2.4 of [29].
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VIII. Brand)~Tontinuous
2llgebras

1. Sublinear drees

HE AIM OF THIS CHAPTER IS to develop a structure theory for T-algebras
T that are generated in a certain way by an w-semigroup. To simplify the
technical development below we define a variant of trees where we are allowed
to omit variables. The following functor Y is a variant of the monad X which
we have introduced in Section VIL4 above. The difference between X and Y
is that X uses surjective functions ¢ : { - & between sorts, while Y uses
inclusion maps { — &.

Definition r.1. (a) The functor Y : D% — D* is defined by

YA := ZA(, foréeE.
[4<13

We write the elements of YA as (¢, a) witha € Ay and { € &
(b) The support of (¢, a) € Yy A with a € A is the set

supp((&, a)) = (.

(c) The canonical inclusion i : Id = Y is the natural transformation

defined by
i(a):=(&a), foracAg.
The merging function m : YY = Y is the natural transformation defined by

m((& ((a))) = (S 0) . .
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VIII. Branch-Continuous Algebras

Lemma 1.2, (Y, m, i} is a monad.

Proof. Forae Agand € { S5 S v, we have
m(i(({a))) = m(((,(, a)))
m(Yi((¢,a))) = m(((, (&, a)))
m(Ym((v, (1, ({,a))))) = m({v. (n,4))))

=(v,4a)
m((v,({,a))))
=m(m({v, (n, (¢, a))))) - H

For trees, we can lift the monad structure from T to Y'T.

Definition 1.3. (a) For a functor IF : DE 5 DE, we define F? : DE — DE
by

(Ca),
(Ca),

)

F:=YoF.

(b) The elements of T are called sublinear trees.

(c) Let prune : TY = YT be the natural transformation mapping each
tree t € T¢YA to prune(t) = (£,5) € T°A, where s is the tree obtained
from t as follows. For every vertex v € dom(t) with t(v) = (&, a) where
a € Ay, we change the label to @ and we remove all subtrees attached at an
x-successor with x € & \ (. Since this operation might remove variables
from t, we have s € ']THA, for some 7 C &.

(d) We define sing’ : Id = T? and flac” : T?T? = T by
sing’ = iosing and flat’ := Yflat o m o Yprune.

where i : Id = Y and m : YY = Y are the functions from above.
(e) Foratreet € T?EA and an injective function ¢ : £ - (, we denote by

“te TZA the tree obtained from ¢ by replacing every variable x by o(x).
IfAisa T"—algebra and a € A, we define

%a = m(%sing’ (a)) . )
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1. Sublinear trees

Lemma 1.4. prune: TY = YT is g distributive law.

Proof. We start by checking that prune is a natural transformation. Let
f:A— BandteTYA. Forv € dom(t), we have

t(v) =(&a) and TYf(t)(v) =(& f(a)), forsomeaandé.

Since supp((£, a)) = supp((&, f(a))) it follows that we delete the same
subtrees when constructing the trees prune(t) and prune(TY f(¢)). Con-
sequently,

YT f(prune(t)) = prune(TY f(¢)).

It remains to check the axioms of a distributive law.
(1) prune o flat = Yflat o prune o Tprune
(11) prune o Tm = m o Yprune o prune
(111) prune o sing = Ysing
(1v) pruneo Ti =i

(111) Let g € Ay and &€ 2 (. Then

(prune o sing)((f, a)) = prune(sing((f, u)))
= (&, sing(a))
= Ysing({&, a)) .

(1v) Let t € TzA. Then
(pruneo Ti)(t) = (& ¢t) = i(t).
(1) Let t € TTYA. Let  : dom(flat(t)) = ¥, eqom(¢) dom(t(v)) be the

canonical bijection. A vertex v € dom(flat(t)) remains in prune(flat(t)) if,
and only if,

x € supp(flac(t)(u)), forallu <y¢ v with suc,(u) <pfv.
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VIII. Branch-Continuous Algebras

Similarly, v € dom(t) belongs to the tree (prune o Tprune)(t) if
x € supp(prune(t(u))), forallu <p¢ v with sucy(u) <p¢v.

Since x € supp(prune(t(u))) if the leaf w, with label x is not removed by
prune(t(u)), the latter is equivalent to

y € supp(t(u)(u')), forallu <y¢ v with sucy (u) <p¢ vandall 4 <p¢ wy with.
It follows that v belongs to the tree (Yflat o prune o Tprune)(¢) if
x esupp(t(u)(u')), forallu,u’ with ™" (u,u") <pf vand sucx (u™" (u,4")) <
Consequently, we have
prune(flat(t)) = (Yflat o prune o Tprune)(t).
(1) Let t € TYYA. For v € dom(¢t), we have
t(v) =(&(,a)) and Ym(t)(v)=(&a), forsomeaand§, (.

Hence,
o prune(Ym(t)) removes all x-successors of v with x € & \ supp(a),
¢ prune(t) removes all x-successors of v with x € £\ {, and
¢ Yprune(prune(t)) removes all x-successors of v with x € { \ supp(a).

It follows that we remove the same successors in both trees. Consequently,
prune(Tm(t)) = (m o Yprune o prune)(t) . O
Corollary 1.5. Let p : T = T be the morphism of monads induced by the

canonical inclusion i : Id = Y.
(a) (T”, ﬂat?, sing”) is a monad on D=.
(b) The reduct functor —|, = Alg(T*) — Alg(T) has a left-adjoint =" :
Alg(T) — Alg(T?) mapping a T-algebra % = (A, 1) to the T’ -algebra

A = (YA, Yromo Yprune) .
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Proof. (a) By Corollary 1.6.8 (a), the functor YT = T* forms a monad with
multiplication

m o Y(Yfat o prune) = m o YYflat o Yprune
= Yflat o m o Yprune

= flat’
and unit map
i 0 sing = sing’.
(b) follows by Corollary 1.6.8 (c) since
moYYmo Yprune = Yrr o m o Yprune. O

Remark. It follows from the above results that a T*-algebra 9 is the same
as a prune-bialgebra, i.e., a T-algebra that is equipped with an additional
Y-product which commutes with the T-product. Note that a Y-product
is nothing but a family of functions Ay — Ay, for for all pairs of sorts
&c (. Thus,a T?‘algebra is a T-algebra equipped with additional functions
A — Ay that are compatible with the T-product. )

9. Gemigroup~Lite lgebras

Below we will be interested in ways an w-semigroup can sit inside a T:-
algebra and in T"‘algebras generated by some w-semigroup they contain.
We start with the simplest case, T?-algebras that are generated by elements
of arity at most 1. These provide the basic building blocks we will use in the
following sections to build more complicated algebras.

Definition 2.1. A T’-algebra U is semigroup-like if it is generated by the
subset Ag U A ;). |

The reason why we are working with the monad T? is that the above
definition becomes trivial for T-algebras.
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VIII. Branch-Continuous Algebras

Exercise 2.1. Prove thata T*-algebra % is generated by the subset AgUA )
if, and only if, A; = & for all sorts & of size [£| > 1. .

The aim of the remainder of this section is to give a more concrete charac-
terisation of when an algebra is semigroup-like.

Definition 2.2. (a) The word functor W : Pos* — Pos® is defined by
W(A,, Ay) = (AT, ATA, + AY).

(b) The natural transformation cat : WW = W maps a sequence (w;);
to their concatenation wowy . ... The natural transformation (-) : Id = W
maps an element a to the sequence (a).

(c) W-algebras are called (ordered) w-semigroups. We use the usual nota-
tion for products in w-semigroups. That is, we denote the product of two
elements a € S;and b € S, +S,, by a-b or just ab. Similarly, we write []; ., 4;
for an infinite product. )

Lemma 2.3. (W, cat, (-)) forms a monad on Pos®.

Remark. Note that there exists a fully faithful embedding Pos® — Pos®
mapping each set (A,, A, ) to

A, ifE={z},
(Af)eez with Af:=1A4, ifé=g,
] otherwise,
where z is some arbitrary, but fixed variable.

This embedding can be used to lift every monad on Pos? to one on Pos”.
In the following we will tacitly identify every set, function, and monad
of Pos® with its image in Pos™.

Using this identification, we obtain an isomorphism of monads

W = T|{®,{z}} .

In particular, using this isomorphism we can consider W a submonad of T.

a
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2. Semigroup-like algebras

When we restrict a T-algebra to the elements of arity 0 and 1 we obtain
an w-semigroup.

Definition 2.4. The w-semigroup associated with a T?—algebra A is the W-
algebra

SG() = Az, 23} - ,

. . . 2
Conversely, we can associate with every w-semigroup © a T"-algebra
which consists of elements of the form a or a(x), for a € S and an optional
variable x.

Definition 2.5. (2) We define a functor TA : Pos® — Pos” as follows. For
sets S € Pos?, we set

TA(S):=8Su +(8: x&), foréeZ.

The ordering on TA(S) is the one induced by the orderings of S, S;, and &,
where we consider the last one to be equipped with the trivial order. We
will use the more suggestive notation a(x) for the elements of the form
(a,x) €S, x¢&

For functions f : § = T, we set

TA(S) (o) 5= {f o)  HacSa,
(f(b),x) ifa=(bx)eS xE&.

(b) We define a natural transformation prune : T? o TA = TA o W
as follows. Given t € ']T"ETA(S), let B = (v;); be the branch of ¢ defined
inductively as follows. We start with the root v, := (). For the inductive step,
suppose that we have already defined v;. If t(v;) € S, or t(v;) € &, we stop.
Otherwise, t(v;) = (a;, x;) € S; x { and we choose for v;,, the x;-successor
of v;. Let w := (a;); be the sequence of labels along f. This sequence is of
one of the following forms:

¢ aninfinite sequence do, d;,... € S¥,

¢ afinite sequence ao, ..., a, € S;' Sy,
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VIII. Branch-Continuous Algebras

¢ afinite sequence do, ..., a, € STE= ST x &
In particular, w € TA(WS) =S¢ + 88, + S x & We set prune(t) := w.
(c) The T*-algebra TA(S) associated with an w-semigroup & is
TA(®) := (TA(S), TA(n) o prune),
where 71 : WS — S is the product of &,

Remark. Note that TA(S) = YS, where S is the set with components

Se ifé=0,
Se=18, if|f =1,
@ if|€>1.

Under this isomorphism, the prune function for TA turns into the one for Y.
That is the reason we have chosen the same name for both.

a

. 2 .
Exercise 2.2, Prove that prune : T° o TA = TA oW is a natural transform-

ation. 1

Proposition 2.6. TA - SG is an adjunction between Alg(T*) and Alg(W).

Proof Since SG = |{®,{z}} and W = T|{®’{z}}, it follows directly by
Lemma I1.3.5 (c) that SG : Alg(T?) — Alg(W) is a functor.

Before continuing let us establish the following two equations, which are
similar to those for a distributive law.

prune o sing = TA({-))

prune o flat = TA(cat) o prune o T’ prune.

The proof is very similar to that of Lemma 1.4. For the first equation, let

a € TA(S). Then

‘ [{a) ifaeS,,
prune(sing(a)) = {(b)(x) ifa=b(x)eS, x&.
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For the second one, consider a tree t € T°T*TA(S) and let B be the path
of flat(t) used to define prune(flat(¢)). The image of 5 under the canonical

map

p:dom(flac(t)) » > dom(t(v))

vedom(t)

induces a path y = (v;); in t and, for each i, a path §; in t(v;). Fur-
thermore, §; is the path defining prune(t(v;)) and y is the one defining
prune(Tprune(t)). Since the sequence of semigroup elements labelling 8
is the concatenation of the sequences labelling §;, the claim follows.

It is straightforward to check that TA preserves identity morphisms and
composition of morphisms. To show that it is a functor Alg(W) — Alg(T?)
it is therefore sufficient to prove that TA maps W-algebras to T* -algebras and
W-morphisms to T’ -morphisms. Hence, let & = (S, 7r) be an w-semigroup.
To see that TA(S) is a T"—algebra, note that

TA(7) o prune o sing
~TA(r) o TA((-))
=id,

(TA(7) o prune) o T?(TA(7) o prune)
= TA(7) o TA(Wr) o prune o T prune
= TA(7r) o TA(cat) o prune o T*prune
= (TA(7r) o prune) o flat.

Let ¢ : & — T be a morphism of w-semigroups. To see that TA(¢) isa
T‘:‘morphism, note that
TA(¢) o (TA(7) o prune) = TA(71 0 W¢) o prune
= (TA(7) o prune) o T*TA(¢).

It remains to prove that TA is the left adjoint of SG. Note that every
T?-morphism ¢ : TA(S) — A induces a W-morphism ¢ : & - SG(¥)
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VIII. Branch-Continuous Algebras

defined by

R _ 9oz(a) ifaesS,,
bla): {(p{z}(a(z)) ifaes,.

Conversely, every W-morphism v : & - SG(2) induces a T?-morphism
¥ : TA(S) - Aby

N y(a) ifaeS$,,
via): {w(b)(z) ifa=b(z)eS, x&.

Since the two maps ¢ — ¢ and y — V are inverse to each other, it follows
that

Pos® (TA(S), ) = Pos®(&,SG(2)).

To see that this bijection is natural in & and &, consider morphisms f : & —
30:A-B,y:3 > SG(), and ¥’ : & - SG(2). We have to show
that the morphism y o f is mapped to { o TA(f), and that SG(g) o ¢/ is
mapped to g o §/’. Both proofs are straithforward. O

After these preparations, we can characterise semigroup-like algebras as
follows.

Proposition 2.7. A T-algebra A is semigroup-like if, and only if, there exists a
surjective T’ -morphism ¢ : TA(S&) — 9, for some w-semigroup S.

Proof. (=) The counit 4 : TA(SG(¥)) — U of the adjunction from
Proposition 2.6 is surjective since rng 7 = (Ag U Ay o = A.
(<=) Suppose that ¢ : TA(&) — U is surjective and set € := TA(S).
Then
(AguAgy)a=(9[CouCiyl)y
= 9[(CouCizyel = 9[Cl = A.

Hence, % is semigroup-like. O
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3. Meet-distributive algebras

3. Weet-Diftributive llgebras

Having a distributive law available for the functors Up and Dn, we can now
study their bialgebras. Let us give them a special name.

Definition 3.1. Let M be a linear monad on Pos®.

(a) An M, Up-bialgebra A is meet-distributive if it is a dist-bialgebra. An
Up-morphism ¢ : A - B from an M, Up-bialgebra U to an Up-algebra B
is meet-distributive if it is dist-distributive.

(b) An M, Dn-bialgebra U is join-distributive if it is a dist-bialgebra. A
Dn-morphism ¢ : A - B from an M, Dn-bialgebra % to a Dn-algebra B is
join-distributive if it is dist-distributive.

(c) A Dn,Up-bialgebra X is lattice-distributive if it is skolem-distributive.

(d) Let A € Pos® be a set. A subset C C Aisaset of join-generators if every
element of A is a join of elements of C. Similarly, C is a set of meet-generators
if every a € A is a meet of such elements. ,

Remark. Let Ml be a linear monad. Unpacking the definition, we see that an
M-algebra U is meet-distributive if, and only if, A is completely ordered and
the product commutes with meets in the sense that, fora term T' € MUp(A),
we have

7(t) = inf { 7(s) |56M T}, wheret:=Minf(T), 1

Exercise 3.1. Prove that a function j : ¥ — B is meet-distributive if, and
only if, for all terms ¢, t'e MUp(A),

Minf (MUp(j)(t)) < Minf (MUp(j)(¢'))
implies

inf { j(7(s)) |s Mt} <inf{ j(n(s")) | s’ My, )
A special property of the monads Up and Dn is that every Up-algebra

has a canonical Dn-algebra product and vice versa. This is because all Up-
algebras are of the form (A, inf), for some completely ordered set A. This
implies that A also has arbitrary joins and (A, sup) forms a Dn-algebra.
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Lemma 3.2, Let M be a linear monad and A an M-algebra. The canonical

embedding pt : A — Up(A) preserves joins.
Proof. For S ¢ A, we have

pt(supS) ={ceAlc>supS}
= {fa]aes}
= {pt(a) |a€S}=supUp(pt)(S). O

Finally, let us characterise when an algebra is of the form Up(€).

Definition 3.3. Let A be an ordered set. An element a € A is completely
primeif, for every set F € Ay,

inf F<a implies b<aforsomebeF. ,
Theorem 3.4. Let M be a linear monad. An M-algebra U is of the form
A~ Up(B), for some M-algebra B,

if, and only if, A is meet-distributive and there exists a subalgebra € € A such
that C is a set of meet-generators of A and every element ¢ € C is completely
prime in A.

Proof. (=) Suppose that A = Up(B). Then U is meet-distributive, the
function pt : B — A is an embedding of M-algebras, and its range € :=
pt(B) is a subalgebra of A. Furthermore, every element of A can be written
as a infimum of elements of C. Finally, consider an element ¢ € C¢ and a set
Fc Agwithinf F <c. Thenc= f1b, for some b € B, and we have

infF<c = NF21fb
= bel, forsomel€eF,
= I21b
= I<c.

(«<=) Let € € U be a subalgebra as above. Since U is meet-distributive, the
inclusion € — U induces a morphism ¢ : Up(€) — A of M, Up-bialgebras
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4. Trace algebras

via Corollary II.4.4. We claim that ¢ is an isomorphism. As ¢ is a Up-
morphism and every element of I € Up(C) can be written as the infimum
of all singletons flc 2 I, we have

(/)(I) =infI, forlce Up(C),

where the infimum is taken in A. We have to prove the following properties.
(M I12] if o) <))
(11) @ is injective.
(1) ¢ is surjective.

(1) Since ¢ is a morphism of Pos~, it is monotone. For the converse, let

I, J € Up(C). Then

o(I)<e(J) = infI<inf]

= infI<d, forallde ],

=  foreveryd € J thereissomec € I withc <d
= I2].

where the third step follows since the elements of C are completely prime.

(1) By (1),
o(I)=¢(J) implies IS JandJcI.

(111) holds as C is a set of meet-generators of A. O

4. Jrace 2llgebras

The definition of an MSO-definable algebra is quite abstract and not very
helpful when we want to study MSO-definability. Our aim here is to give a
more explicit, purely algebraic characterisation. The class of algebras we are
considering in this section is the following one.

Definition 4.1. A T"—algebra A is a trace algebra if it is meet-distributive
and it has a semigroup-like subalgebra U such that U forms a set of meet-

generators of 2. |
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If follows from the definition that every element of a trace algebra can be
written in the form

ao(x6) M Mapm_y(xpy) MboM--Mby_y,

where ao, ..., a1 € Afz), bo, ..., by € Ag, and the xo, ..., X, are
variables.
We start with a more concrete description of such algebras.

Proposition 4.2. A T -algebra & is a trace algebra if, and only if, there exists a
surjective T?,Up-morphism ¢ : Up(TA(S)) — 2, for some w-semigroup S.

Proof. (=) Let U be a trace algebra and let U be the corresponding sub-
algebra. We can use Proposition 2.7, to find a surjective T"—morphism
9o : TA(S) — U, for some w-semigroup &. Using the adjunction from
Theorem I1.4.3, we can extend this morphism to a T?,Up-morphism ¢ :
Up(TA(S)) — . Since U is a set of meet-generators of A and rng ¢
includes U, it follows that ¢ is surjective.

(<) Given a T?,Up-morphism ¢ : Up(TA(S)) — 2, let U be the
subalgebra of % induced by ¢[ TA(S)]. By Proposition 2.7, U is semigroup-
like.

To see that U is a set of meet-generators of A, fix an element a € A. Since
¢ is surjective, there is some b € Up(TA(S)) with ¢(b) = a. Furthermore,
since TA(S) is a set of meet-generators of Up(TA(S)), we can find a set
I < TA(S) with inf I = b. Consequently,

a=¢(b) = (infI) = inf ¢[I]

is a meet of elements of U.
It remains to prove that U is meet-distributive. By Theorem II.4.3, the
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4. Trace algebras

algebra Up(TA(®)) is meet-distributive. Hence,

o T?inf o T'Up(g) = 7 o T (¢ o inf)
=@ omo T inf
= @ oinf o Up(m) o dist
=inf o Up(¢ o 7) o dist
= inf o Up(7 o T"¢) o dist
= inf o Up(7 0 T?¢) o dist
= inf o Up(7) o dist o T*Up(¢) .

As ¢ is surjective and T’ and Up preserve surjectivity, it follows that
70 Tfinf = inf o Up(7) o dist,
as desired. O

The product in a trace algebra takes a particularly simple form.

Definition 4.3. Let A bea T"—algebra, t e T?Aatree, andlet f = (v;)ica
be a path (finite or infinite) in ¢ starting at the root.

A trace of t along f3 is a tree s € T? A that forms a single path of the same
length as f§ and whose labelling satisfies

%(s(u;)) = t(v;), ift(v;)isnota variable,
s(u;) =t(v;), ift(v;)isavariable.

where (u;);<q is an increasing enumeration of dom(s) and the functions
0; : {; — &; are defined as follows. (; is the sort of u; and &; the sort of v;.

If {; = {z;}, 0; is the function mapping z; to the variable x; such that
v+ is the x;-successor of v;. If {; = &, 0; is the unique function @ — &;.

a

Example. Let a, b be elements of sort {z} and ¢, d ones of sort &. The tree
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a(x)nb(y)ncnd
x y
c a(x) nb(x)
| RN
d b d

has the following traces.

cnd, a(c), b(a(y)l‘lb(y)).

Furthermore, every sequence that is point-wise greater than one of these is
also a trace. 1

Lemma 4.4. Let U be a semigroup-like T?‘algebm‘ Every tree t € T A has a
trace s € T° A with 71(s) = m(¢t).

Proof. Fixte T? A, By Proposition 2.7, there exists a surjective morphism
¢ : TA(S) - ¥, for some w-semigroup S. We fix a tree ' € T'TA(S)
with T?@(¢") = t. Let f8 be the branch of ¢’ used to define prune(t') and let
s’ be the trace of t' along 8 where each vertex of s” has the same label as the
corresponding vertex of ', Then

n(s") = TA(m) (prune(t')) = ().
Consequently, s := T*¢(s") is a trace of t’ with
1(s) = p(n(s") = p(n(t)) = m(T'¢(¢')) = m(t). [

Lemma 4.5. Let U be a trace algebra and let U C A be the corresponding
semigroup-like subalgebra.

n(t) =inf {n(s) |se T'Uatraceof t}, forteT A.

Proof. Given a tree t € T*A, there exists some tree T € T*Up(U) with
t = T*inf (T'). By meet-distributivity, it follows that

m(t) =inf {n(r) | r " TY.
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To conclude the proof, it is therefore sufficient to show that, for every r el T,
there is some trace s of t with

seT'U and 7(s) = n(r).

Hence, fix r €T T. By definition of T, we have r € T?U and ¢ < r. Con-
sequently, we can use Lemma 4.4 to find a trace s of r with 71(s) = 7(r).
The claim follows since ¢ < r implies that s is also a trace of t. O

As an immediate corollary, we obtain the following observation.
Proposition 4.6. Every finitary trace algebra is MSO-definable.
Proof. Let U be a trace algebra, let I € U be the corresponding semigroup-
like subalgebra, and let D S A be a finite set of generators of 2. There
exists an MSO-interpretation mapping every tree t € T’ D to the set of all
of its traces. Furthermore, the product of a trace can be computed by per-

forming a product in the w-semigroup SG(), which can be done in MSO.
Consequently, we can compute the set

{7(s)|seT’Uatrace of t }

in MSO. According to Lemma 4.5, the infimum of this set is the desired
value 7(t). O

. ° .
We can characterise the class of MSO-definable T" -algebras in terms of
certain trace algebras derived from automata.

Definition 4.7, Let A = (Q, 2,4, 490, Q) be a tree automaton.
(a) The w-semigroup S 4 = (S, Sy ) associated with A has the domains

S;:=0xDxQ+{L} and S,:=Q+{L},
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where D := rng ( is the set of priorities used by .4 and 1 is used as an ‘error
element. The multiplication is given by

, , (p,m,q') ifp’ =qgandm:=min{k,1},
(p,k,p%(q:l,q)::{}’ " e

1 otherwise,

ifp' = q,
(p,k,P’)~q=={p poi

1 otherwise,

H(Pi:ki;f’”:: {Po ifPli:Pi+I foralli’

<o L otherwise,

and every product involving L evaluates to L.

(b) The transition algebra of A is the T’ -algebra
E(A) = Up(TA(CA)) -

(a) Let 7 = {p, u) be a profile with u, = (ky, qx), for x € &. An element
a € T¢(A) represents 7 if it is of the form

a=pn |—| (P ke, qx)(x) or a= |_| (prkxs gx)(x)

xek xed
(The latter only if & # @.) )
The following observation immediately follows from Proposition 4.2.
Lemma 4.8. The transition algebra T(A) is a trace algebra.

Exercise 4.1. 'We call a tree automaton A = (Q, 2, A, g0, Q) deterministic if,
for every state p € Q and every letter a € X, there exists a unique transition
(r,b,q) € A withr = pand b = a. Prove that every language K ¢ TEZ
recognised by a deterministic automaton is recognised by a finitary trace

algebra. ,

‘We can use transition algebras to give a more concrete characterisation of
when an algebra is MSO-definable. But the price we pay for this is that we
need a slightly more general notion of recognition.
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4. Trace algebras

Definition 4.9. Let 2 and B be T’—algebras.

(a) A relational morphism R : A — B is a subalgebra R € A x B such that
the projection R — A to the first component is surjective.

(b) A subset K € A¢ is recognised by a relational morphism R : & — B if
there exists a set P € By such that

K={aeAg|(a,b)cRforsomebeP}. )
The relational morphisms we are interested in are of the following form.

Definition 4.10. Let2bea T?‘algebra, A an automaton, andlet C € Abea
set of generators of 2. We denote by R(2, A) : TA — Z(A) the relational

morphism with domains

Re (2, A) == { (TP (t), 7) | te ’]T';T'JC and 7 € T(\A) represents the
profile of some partial run of A on

the input tree flac(t) } ,

a

To see that R(¥, A) is really a relational morphism we have to check that
the projection R(%, A) — A is surjective.

Lemma 4.11. Let A be an MSO-definable T’—algebm and A an automaton
that has at least one partial run on every tree.

(a) The projection p : R(A, A) — T is surjective and every fibre p™*(a) is
finite.
(b) R(A, A) : T?U — Z(A) is a relational morphism.

Proof. (a) Consider an element a € A;. Fix some transition § of A for the
input letter a and let 7 € T(A) be (an element represeting) the profile
corresponding to 8. Then (a,7) € R(¥,.A) and p({a,7)) = a. Hence,
a € rng p. For the second statement, note that every domain RE(QI, A) ¢
Ag x Tg(A) is finite. Hence, so is p™"(a) € R¢(Y, A), for a € Ap.

(b) We have already proved in (a) that the projection to U is surjective. To
see that R(¥, A) is closed under products, fix a finite set C C A of generators
and consider a tree t € T°R(, A). Let r € T'T?A and s € T’ T(A)
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be the projections of ¢ to the two components. For every v € dom(t), it
follows that there is some tree T'(v) € T*T?°C with T?n(T (v)) = r(v) and
s(v) is (an element represeting) the profile of some run of A and flat( T'(v)).
Consequently, 7(s) is the profile of some run of A on flat(flat(T')) and

T n(flac(T)) = Aae(T T 72(T)) = fae(r) .

This implies that 77(t) = (flac(r), 7(s)) € R(Y, A). O

We obtain the following characterisation of when a T?‘algebra is MSO-
definable.

Theorem 4.12. Let A be a finitary T?‘algebm and C C A a finite set of gen-
erators. A is MSO-definable if, and only if, there exists a trace algebra D and a
relational morphism R : T'U — D such that

o every fibre p~'(a) of the projection p : R(%, A) — A is finite, and
o the relational morphism (id x 1) o T*R(, A) : T'U — D recognises

every preimage
n'(a), foracAgzUAp,.

Proof. (=) Let A be MSO-definable. Then all preimages 77" (a) N T’ C, for
a € Ay U Ay, are regular. We can combine the corresponding automata
into a single automaton A that, for every a € Ag U Ay,y, is equipped with
a distinguished state g, such that, when starting in q,, A recognises all
trees in 77" (a) N TC. Set ® := T(A) and let R(¥, A) be the relational
morphism from Definition 4.10. We have seen above that ® is a trace algebra,
the projection p : R(¥, A) — A is surjective, and all fibres p~* () are finite.

To conclude the proof, consider an element a € Ay of sort &E=For
& = {z}. Let P, € D¢ be the set of all (elements representing) profiles of
the form (q,, ()) or (g4, (k, p)) (depending on whether & = @ or & = {z})

where the priority k is arbitrary and p is a state such that, when starting in p,
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A accepts the singleton tree with label z. For ¢ € TEA, it follows that

n(t)=a if t=Tn(T), for some T € T'T*C with
n(fat(T)) = a,
iff  there exist T € T°T°C and an accepting runon T

starting in the state q, such that ¢t = T’ 7(T)
iff (t,7)eR(Y, A)forsometeP,.

(«=) By Proposition V.5.12, it is sufficient to show that the preimages
77" (a) N T’C are regular for elements a of sort & with || < 1. Hence, let
a€AgzU A, and set

C {T | (sing(c), 7) € R(Y, A) for some c € C } .

Note that C’ is a finite set since, by assumption, all fibres of p are finite. We
start by proving that

(t, Ty e R(A, A) iff (t,s)e R’, forsomes¢€ 7 (1)n T/,
where
R':= {(t,s) | (sing(t(v)),s(v)) e R(Y, A) for all v } .

(S) Suppose that (t, 7) € R(2,.A). Then there exists a tree T € T*T*C
such that t = T’ 7(T) and 7 is (an element representing) the profile of some
partial run p on flat(T). The restriction of p to dom(T'(v)) forms a partial
run on T(v). Let s(v) be its profile. Then s € T’D, 7(s) = 7, and

(sing(t(v)),s(v)) e R(Y, A), forallvedom(T).
Hence, (t,s) € R’. Furthermore, by definition of C " we have s € T?C’.
(2) Suppose that (t,s) € R"and s € 77" (1) N T*C". Let v € dom(t).

Since (sing(t(v)),s(v)) € R(¥, A), there exists a tree T(v) € T°C with
(T (v)) = t(v) such that s(v) is the profile of some partial run on T'(v).
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It follows that ¢ = T°7(T) and 7 = 71(s) is the profile of some partial run
on flat(T). Hence, (t, 7) € R(Y, A).

To conclude the proof note that, by assumption, there exists a (finite) set
P ¢ D¢ such that

' (a) = { t eT§A| (t,7) € R(Y, A) for some T € P}
= TLJ){ teTA | (t, 1) e R(Y A) }
= U{tET':gA ’ (t,s) € R', for some s € ﬂfI(T)ﬁT?C’}.

T€P

By Proposition 4.6 and the fact that the class of MSO-definable algebras
is closed under taking finitary subalgebras, it follows that each preimage
77 (1) NT? C’ forms a regular language. Furthermore, regular tree languages
are closed under projections and inverse projections. Hence, each term in
the above union is regular and, therefore, so is the union itself. O

5. Bame 2lgebras

We consider games between two players, called & and O, moving a token
along the edges of a directed graph. The vertices of this graph are partitioned
into two classes, one for Player < and one for Player O. The class of the
current vertex determines which of the two player may choose the next move.
Every edge of the graph and every leaf (i.e., a vertex without outgoing edges)
is labelled by an element of some w-semigroup &. The winner of a given
play of the game is determined by the product of the labels along the path
traversed during this play. As we want to compose games we also equip these
graphs with distinguished leaves where we can attach other games.

Definition 5.1. Let & = (S,, S,,) be an w-semigroup.
(a) A game graph over & of sort £ € Z is a structure of the form

8= <V<>l VIII: (Ea)aES,: (Pc)cesw; Vos "_1>

where
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5. Game algebras

*

V = V¢ + Vg is the set of positions,

*

V. is the set of positions for Player &,

*

V4 is the set of positions for Player O,
E, € V x V is the set of edges with label a € S;,

P. € V is the set of vertices labelled ¢ € S,

*

*

* v, € V is the initial position, and
o € V¥isa E-tuple of holes or variables.

We assume that each variable u is a leaf of &, that the predicates P, contain
only non-variable leaves, and that every non-variable leaf belongs to exactly
one P,. We set

GG(®) = (GG¢(©)) ez € Pos®,

where GG¢(&) is the set of all game graphs over & of sort . We equip
GG(®) with the trivial ordering where all elements are incomparable.

(b) A play of & is a sequence of edges that forms a path starting in the
initial position v,, and that is either infinite, or it ends in some leaf. Let p be
aplay and let (@;)i<q be the sequence of labels of the edges in p. The outcome
of p is the element of TA (&) given by

[Tico @i if p is infinite,
do'*aq—;-¢  if p endsin a position belonging to P, ,

(ao-agq-yr,x) ifpendsinu,.

(c) A strategy for Player o € {<>, O} is a function that returns the next
move for the player when given the sequence of previous moves as input.
Formally, we consider a strategy as a function ¢ mapping each prefix of a
play that ends in a position for Player « to one of the outgoing edges.

We say that a play p conforms to a strategy o for Player « if, for every
prefix p, of p that ends in a position for Player a, the edge ¢ := d(p,)
returned by 0 is the next edge in p, that is, if p,e is also a prefix of p. )
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Example. A parity game is a game for the w-semigroup D, for some 1 < w,
where ®,, = (D/, D! ) has the domains

D!:=[n] and D] :=[2],
and the product

k-l:=min{k, 1},  k-b:=b,  []ki:=(liminfk;) mod2,
i<w t<w

fork,1,k; € D} and b € D. j
We can equip the set GG(&) with the structure of an R-algebra.

Definition 5.2. Let g € R;GG(S). The product 7(g) € GG¢(S) is formed
as follows. We take the disjoint union of all game graphs g(v), for v €
dom(g), plus single vertices for each variable in g. For each component g(v),
we delete all variables and we redirect each edge ending in a variable x to the
initial position of g(u), where u is the x-successor of v. )

Lemma 5.3. (GG(S&), 7) forms an R-algebra.

Frequently, we would like to abstract away from the precise shape of the
game graph and only consider the available strategies for the two players.

This leads to the following algebra.

Definition 5.4. Let & be an w-semigroup.
(a) We set

Game(&) := (DnoUpo TA)(S).

(b) The outcome map out : GG(&) — Game(&) maps a game graph &

to the element
out(®) := sup_ inf; agr,

where 0 ranges over all strategies for Player <, 7 ranges of the strategies for
Player O, and a4, € TA(®) is the outcome of the unique play conforming
to the strategies 0 and 7. |
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5. Game algebras

Example. The game graph

|
VN

O o
YN
cO X y
is mapped by the function out to the element

[ba“’ ul bu"b(y)] n [bbc Uba(x)uba®u| | ba"“b(y)] .

n<w n<w 4

Lemma 5.5. Let Sgp,, be the category of w-semigroups. GG and Game form
functors Sgp,, — Alg(R), and out : GG = Game is a natural transformation.

Exercise 5.1. (a) Prove that GG(®) is generated by elements of the form

S(ao(%6)severn—1(xp=1)), DOlao(x0),evvsdn(xs-1)), ¢,

forag,...,a,-y € S;and c € Sy, where &(a0(x,), ... ) denotes the game
with an initial position belonging to Player < and # outgoing edges labelled
@0, +++, dy—; that lead to the variables x,, ..., x,,_;, respectively, and simil-
atly for O(ao(x,), ... ). c is a single position game with label c.

(b) Prove that out : GG(&) - Game(®) is the unique R-morphism

satisfying
out((}(ao(xo), e, a,,,x(xn,l))) =ao(x0) U Uay_y(x,-1),
0ut(D(0 (50 )+ oy () = 00 (x0) MM 0y ().
out(c) :=c,
forag,...,a,_r € S;andc € S,. ,

Recall the characterisation of automata in terms of Automaton-Pathfinder
games from Section V.5. We can use the machinery of games developed
. . . . . 2
above to turn this characterisation into a morphism T°X — Game(S).
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Theorem 5.6. For every tree automaton A there exists a finite w-semigroup S
and a morphism ¢ : T°Z — Game(S) recognising L(A).

Proof. Let & = & 4 be the w-semigroup from associated with A as in
Definition 4.7. For a tree t € T';Z, we set

¢(t) := sup { 7| 7 the profile of some partial run pon ¢t },

where we encode a profile 7 = (p, U) as a meet

prl] 11 (pka(x).

xe&(k,q)eUx

Then it follows that

@(t) = out(8,),
where &, is the Automaton-Pathfinder game on the input tree t. O

The game returned by the morphism ¢ from the preceding theorem is
not quite the Automaton-Pathfinder game, but a related one. We can return
the exact Automaton-Pathfinder game if we make the game algebra slightly
more complicated. In the preceding theorem we have encoded the states of
the automaton in the elements of the semigroup. But in the Automaton-
Pathfinder game the states are part of the positions of the game. To model
this in our algebra we will use games with several initial positions, one for
each state of the automaton. This is equivalent to using tuples of games with
one component per state. The formal definition is as follows.

Definition 5.7. Let A be a T’—algebra and 7 € £ a set of sorts. The #-th
matrix power A7) of A is the T*-algebra with domains

Agﬂ] = (Ayue)?, forek.

The product is defined as follows. Given a tree t € T2 Al ], we construct a
graph g € R’ A with set of vertices

dom(g) := 1 x dom(¢t)
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and labelling

g({y,v)) = ay where a := t(v).

There is an (y, x)-labelled edge from (z,v) to (y, sucy(v)). For y € 1, let
sy := gun(g) be the unravelling of g starting at the vertex (y, ()). We set

n(g) = (7(sy))yen
where the products on the right-hand side are computed in 9. )

Example. Let A = (Q, 2, 3,4, 90, Q) be a tree automaton (we omit the
product 0 on Q since we are dealing with ranked trees, not unranked ones),
and let ®,, be the w-semigroup from the example on page 503. We define a
T?-morphism APG 4 : T*2 - GG(D,)[L! by

APG 4(sing(a)) =g, foraeZXg,

where, forp € Q, gpis the game with a initial position belonging to Player <
(Automaton) with one outgoing edge for each transition (p, a, §) € A match-
ing the state p and the input letter a. The label of these edges is Q(p). The
edge belonging to (p, 4, q) leads to a position for Player O (Pathfinder) with
one outgoing edge, for each variable x € £, and label Q(gx)- These edges
lead to the variable (g, x) € Q x & For every tree t € T?3, it follows that
APG 4(t) is the Automaton-Pathfinder game of A on input ¢. )

Brandy-Tontinuity

In the same way we built trace algebras by taking meets of semigroup ele-
ments, we can construct more complicated algebras from semigroup elements
by taking both meets and joins. It turns out that the resulting algebras are
exactly the quotients of game algebras. The abstract definition is as follows.

Definition 5.8, Let A bea T’—algebra.
(a) A subalgebra U C U is a skeleton of A if

+ U is semigroup-like,
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¢ the embedding U — A is meet-distributive with induced product 7,
¢ the closure of U under meets is a set of join-generators of 2.
(b) A is branch-continuous if it is join-distributive, lattice-distributive, and

it has a skeleton. 3
Proposition 5.9. Let 2 be a T¢ -algebra. The following statements are equivalent.

(1) U is branch-continuous.

(2) A is completely ordered and there exists a surjective T¢,Up,Dn-morphism

¢ : Game(&) — U, for some w-semigroup S.

(3) s join-distributive, lattice-distributive, and there exists a T, Up-morph-
ism @ : D — A from some trace algebra D such that rng ¢ is a set of
join-generators of .

Proof. (1) = (3) Suppose that U is branch-continuous. By definition, this
implies that U is join-distributive and lattice-distributive. Let I ¢ A be
its skeleton and C the closure of U under meets. We have to check three
conditions.
(1) The set C induces a subalgebra € of 2.

(11) The inclusion i : € — 2 is a T?,Up-morphism.
(1) Cis atrace algebra.

(1) Fix t € T?C. As C is a set of join-generators, there exists some tree
s € T*Up(U) with ¢ = T inf (s). Since the inclusion j : U - A is meet-
distributive with induced product 7, it follows that

n(t) = n(T?inf(s)) = inf Up(7)(dist(s)) .

As dist(s) € Up(T?U) and U is closed under products, it follows that
72(t) is a meet of elements of U. Hence, 71(¢t) € C.

(11) As € is a subalgebra of 2, the inclusion is a T’ -morphism. Hence, it
remains to prove that it also preserves meets. Fix a set X € C. We have to
show that the meet inf 4 X of X in A is the same as its meet infc X in C.
Asinfc X is a lower bound of X in A, we have

infc X< ian X.
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For a contradiction, suppose that infc X < inf4 X. Then infy X ¢ C.
By definition of C we can find, for every x € X, some set P, C U with
inf 4 Py = x. Setting

P:=J P

xeX

it follows that
ianX:ian{ianPx |XEX}:ianP€C.

A contradiction.

(111) By (11) and the definition of C, U is a semigroup-like subalgebra of €
and all elements of C can be written as meets of elements of U. Hence, it is
sufficient to show that € is meet-distributive. Since the inclusion j: U - A
is meet-distributive with induced product 7, so is its corestriction k : U — C.
Consequently, the meet-distributivity of € follows by Proposition II.4.10.

(3) = (2) Suppose that U is join-distributive, lattice-distributive, and
that ¢ : © — A is a T?,Up-morphism as above. By Proposition 4.2, there
exists a surjective T?,Up-morphism ¢ : Up(TA(S)) — D, for some
w-semigroup S. Since U is join-distributive, it is the reduct of a T?,Dn-
bialgebra. We can therefore use the adjunction from Theorem II.4.3 to
extend the T?-morphism @ oy : Up(TA(S)) — U to an T?,Dn-morphism
x: Dn(Up(TA(S))) — YU satisfying

xept=goy.

To conclude the proof it remains to show that y is surjective and that it
preserves meets. For surjectivity, let a € A. As C is a set of join-generators,
there exists some set X C C with a = sup X. Since X C rng y and y preserves
joins, it follows that a € rng y.

To check that x is an Up-morphism, we use Lemma II.4.6. According
to this lemma, it is sufficient to prove that y preserves meets of elements in

Up(TA(S)). Hence, let X < Up(TA(S)). Since pt is injective and we have
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shown in (the dual of ) Lemma 3.2 that it preserves meets, we have

K(inf pe{X]) = x(pe(inf X)) = p(y(inf X))
= inf ¢(y[X]) = inf x(pe[X]).
(2) = (1) It is sufficient to prove the following two claims.

(1) Each game algebra Game(®) is branch-continuous.
(1) If ¢ : A > B is a surjective T*,Up,Dn-morphism and & is branch-
continuous, then so is B.

(1) It follows by Theorem 1I.4.3 (applied to the functors PP := Dn and
M := T?) that Game(S) is a dist-bialgebra. In particular, it is a completely
ordered T?-algebra. Similarly, lattice-distributivity of Game(&) follows by
Theorem 1I.4.3 (applied to the functors IP := Dn and M := Up). Hence, it
remains to prove that Game(®) has a skeleton.

Let U be the image of the canonical embedding TA(S) — Game(S)
and let C := Up(U) be its closure under meets. Let Ll and € = Up(ll) be
the corresponding subalgebras. We have to check three properties.

& The fact that U is semigroup-like follows by Proposition 2.7.

¢ The fact that the embedding pt : U — € is meet-distributive follows by
Lemma I1.4.8 since € = Up(Ul).

o Finally, the fact that C is a set of join-generators of Game(S) holds since
Game(S) = Dn(C).

(11) The fact that B is join-distributive and lattice-distributive follows
immediately by Lemma I1.4.5 (applied to the two distributive laws dist :
T? o Dn = Dn o T and skolem : Dn o Up = Up o Dn).

Hence, it remains to prove that B has a skeleton. Let U be the skeleton
of A and C its closure under meets. Set V := ¢[U] and D := ¢[C]. We
claim that D is a skeleton of B. As ¢ is a surjective Up,Dn-morphism, D is
the closure of V under meets and B is the closure of D under joins.

To see that the subalgebra B induced by V is semigroup-like, we use
Proposition 2.7 to find a surjective T*-morphism p : TA(S) — U, for some
w-semigroup &. Then ¢ o p is a surjective T’ -morphism TA(S) — B and
the claim follows by Proposition 2.7.
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Finally, we have to check that the embedding j : ¥ — B is meet-
distributive. As the embedding i : U — U is meet-distributive with induced
product 7, we have

0 Tinf o T*Up(j) o T'Up(¢)
= o T?inf o T*Up(g o i)
= 10T (¢ oinf) o T*Up(i)
=@ omo T inf o T'Up(i)
=9 oinf o Up(i o T[) o dist
=inf o Up(¢p oiom) odist
=inf o Up(jo ¢ o) odist
=inf o Up(jo mo T’ ¢) o dist
= inf o Up(j o ) o dist o T Up(9) .
As ¢ is surjective and T’ and Up preserve surjectivity, it follows that
0 T?inf o T*Up(j) = inf o Up(jo ) o dist,
as desired. O

As for trace algebras, the product in a branch-continuous algebra can be
reduced to a product in an w-semigroup.

Lemma s.10. Let A be a branch-continuous tree algebra, L € A a skeleton of <,
and C the closure of U under meets.

(@) 7(t) =sup { (s sET”C,sST?t , ort € TPA,
p

(b) ﬂ(t):inf{ﬂ(u) |u€T"Uatmceoft}, forteT'C.

Proof. (a) As C is a set of join-generators, we have

n(t) = (T sup(s)), wheres(v):={ceC|c<t(v)}.
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Consequently, the equation follows by join-distributivity.
(b) follows by Lemma 4.5 since the subalgebra € of & induced by C is a
trace algebra. O

Since the conditions in the above lemma can be expressed in MSO, we
obtain the following corollary.

Corollary s.11. Every finitary branch-continuous T°-algebra is MSO-definable.

Note that the functor Game provides an adjunction between the category
of w-semigroups and the category of all branch-continuous algebras.

Proposition 5.12. Let U be a branch-continuous T"—algebm and let S be an
w-semigroup. For every morphism ¢ : & — SG(Y) of w-semigroups, there
exists a unique T°,Up,Dn-morphism ¢ : Game(&) — U extending ¢.

Proof. Let U := TA(S). By Proposition 2.6, there exists a unique T*-
morphism ¢, : U — U extending ¢. Using Theorem II.4.3 twice, we can
first extend @, to a unique T?,Up-morphism ¢, : Up(Ul) — U satisfying
¢, 0 ptP = @, and then to a unique T?,Dn-morphism ¢ : Dn(Up(ll)) —
U satisfying ¢ o pt®™ = ¢,. Finally, note that Lemma I1.4.6 implies that
@ preserves arbitrary meets. O

The reason why branch-continuous algebras are of interest is that they
provide an alternative characterisation of the class of regular tree languages.
Theorem 5.13. Let K € T°Z. The following statements are equivalent.

(1) K is regular.

(2) K isrecognised by a morphism into a finitary branch-continuous T¢ -algebra.

(3) K is recognised by an algebra of the form Game(S), for some finite w-
semigroup S.

Proof. (2) = (1) follows by Corollary 5.11; (1) = (3) by Theorem 5.6; and
(3) = (2) by Proposition 5.9. O

By Theorem IIL5.11, we obtain the following description of MSO-definable
algebras.
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5. Game algebras

Corollary 5.14. The pseudo-variety of all MSO-definable T -algebras is gener-
ated by the class of all algebras of the form Game(S), for finite &.

It follows that game algebras and, more generally, branch-continuous
algebras play a similar role as the MSO-definable ones. The reason we usually
work with the latter is that the former do not form a pseudo-variety: the
class of branch-continuous algebras is not closed under finitely-generated

subalgebras.

Totes

Most of the material in this chapter is new. Section 4 is taken from [6].
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VA

dom(s)
(C)
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upwards closure, 10

downwards closure, 10
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category of posets, 10

category of topological
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category of bounded metric
spaces, 10
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free product completion, 28
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generated subobject, 110
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expansions to sorts in =, 126
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]
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s <t satisfaction, 237
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CTL, 331
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MCL monadic chain logic, 331
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376 reg reconstitution operation, 434
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semigroup, 381 un unravelling operation, 439
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469
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Y omit variables, 481

supp(a) support, 481
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accepting run, 311
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anti-chain logic, 291
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aritiy of a polynomial functor, 24
arity, 279

arity of a function symbol, 38
arity of a signature, 38
automaton, 310
Automaton-Pathfinder Game, 312
axiomatising a class of algebras, 237

back-and-forth argument, 287
M, P-bialgebra, 129
0-bialgebra, 129
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bisimulation, 337
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computation tree logic, 331
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E M -factorisation, 99
factorisation system, 99
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finitary functor, 180

finitary signature, 38
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flattening of a graph, 281
forest, 280

forest automaton, 310

forest formula, 332
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free algebra, 48

free functor, 77
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Kleisli category, 77
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®-labelling, 332

0-language, 169

language algebra, 185
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Liuchli-Leonard operation, 293
lift of a mond, 77

lift of a relation, 41

linear forest, 280

linear monad, 416

linear tree, 280

locally definable algebra, 257
logic, 243

logic over an alphabet, 250

matrix power, 506

meet-distributive algebra, 491

meet-distributive morphism, 491

meet-generator, 491

minimal algebra of a language, 175

minimal morphism of a language, 175

modal logic, 331

modal rank, 333

model, 243

models of a formula, 243

monadic chain logic, 331

monadic path logic, 331

monadic second-order logic, 285

monadic second-order logic for linear
orders, 292

monadic second-order logic with forest
ordering, 286

monadic second-order logic with
successor, 286

monadic second-order logic with
successor ordering, 286

morphism of M|, P-bialgebras, 129

morphism of language algebras, 186

morphism of logics, 246
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neutral element, 381

noetherian, 162

non-linear forest, 280

non-linear tree, 280
nondeterministic rooted graph, 279

w-semigroup, 486
Q-operation, 160
orbit finite set, 167
orbit-finite, 9

origin map, 32
outcome map, 504
outcome of a play, 503
outside-in, 463

parity condition, 311

parity game, 504

partial run of an automaton, 313
+-path algebra, 383

S-path language, 381

w-path algebra, 383
permutation of a forest, 336
place in a forest, 312

play of a game, 503

polynomial functor, 24
w-power, 469

power operator, 21

power-set functor, 405
x-predecessot, 280

preserving a limit/colimit, 116
priority function, 310

o-profile of a forest, 393
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projective object, 150
propositional dynamic logic, 331
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quasi-finite set, 167
quotient, 142

R-class, 298

ranked tree, 280
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499

recognising a language, 169

recognising a language by an automaton,
311

reconstitution operation, 434

reduced path, 382

reduced tree, 320
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reduct of a monad, 65

reduct of an M-algebra, 122
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regular expression for languages of
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regular expressions for trees, 468

regular forest, 313

regular linear order, 294

regular substitution, 463

relabelling, 170

relational morphism, 499

relative character, 382

representing a function by a relation, 473

representing a profile, 498

root, 279

rooted graph, 279

run of an automaton, 311

satisfaction function, 243
satisfying an Ml-inequality, 237
selection operation, 447
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o-separated forest, 300

shape map, 32
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shuffle, 293
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signature, 38

o-significant element, 390

simple interpretation, 288
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sort, 38

sort-accumulation point, 206
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sort-wise properties, 161

standard factorisation system, 109

starting state of a partial run, 313

state of an automaton, 310

strategy, 503
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strong unravelling, 442

strongly M-compositional logic, 273

strongly definable class, 245

strongly finite-dimensional, 161

X-structure, 45

subalgebra, 110

sublinear tree, 482
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substitution, 463

substitution operation, 468
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supporting unravelling, 456
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syntactic algebra, 187
syntactic congruence, 187
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M-theory of a class, 237
theory function, 243

trace algebra, 493

trace of a tree, 495

transition algebra of an automaton, 498
transition relation, 310
transitive closure, 177

tree, 280

tree formula, 332

(-trivial tree, 468

tropical semiring, 159

type of a function symbol, 38

universe, 45

unranked tree, 280
unravelling, 281, 439
unravelling structure, 439

Q-valued logic, 243

variable, 279

varietal logic, 250

variety, 155

R-variety, 206

variety of languages, 206
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weak morphism of logics, 246
weakly definable class, 245
weakly finite-dimensional set, 161
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well-defined factorisation system, 109
word functor, 486

wreath product, 363



The Roman and Fraketur alphabets

A a A a N »n 3 n
B b B b O o 9 o
C ¢ € < P p D
D d © b Q ¢ 9 g
E ¢ € e R r R =
F f § f S s & {3
G ¢ 8 g T t % t
H h o ) U u U u
I i 3 i V.v B v
J i 3 i W w ® w
K k & f X x X 1t
L 1 g 1 Y y 9 v
M m M m Z z 3
The Greek alphabet

A a alpha N v nu

B B beta E & x

I' 'y gamma O o omicron
A §  delta II 7 pi

E & epsilon P p tho
Z ( zeta X 0 sigma
H 175 eta T 71 rtau
©® 9 theta Y v upsilon
I 1+ iota ® ¢ phi
K «x kappa X x chi
A 1 lambda ¥ vy opsi
M yu mu 0O w omega
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