
157

Competing Patterns for Language Engineering
Methods to Handle and Store Empirical Data∗

Petr Sojka

NLP Laboratory, Faculty of Informatics, Masaryk University in Brno
Botanická 68a, 602 00 Brno, Czech Republic

E-mail:sojka@informatics.muni.cz

Abstract. In this paper we describe a method of effective handling of linguistic
data by means ofcovering and inhibiting patterns– patterns that “compete”
each other. A methodology of developing such patterns is outlined. Applications
in the areas of morphology, hyphenation and part-of-speech tagging are shown.
This pattern-driven approach to language engineering allows the combination of
linguist expertise with the data learned from corpora – layering of knowledge.
Searching for information in pattern database (dictionary problem) is blindingly
fast – linear with respect to the length of searching word as with other finite-state
approaches.

1 Introduction

There is a need to store empirical language data in almost all areas on natural language
engineering (LE). Finite-state methods [21,13,16,17,10] have found their revival in
the last decade. The theory of finite-state automata (FSA) and transducers (FST) is a
well developed part of theoretical computer science (for an overview, see e.g. [6,2]).
As the finite-state machines (FSM) needed tend to grow with increased demand for
quality of language processing, more attention is being given to the efficiency of the
handling of FSM [18,3]. The size of some FSM used in natural language processing
exceeds ten millions states (e.g. weighted finite automata and transducers for speech
recognition). Practical need to reduce the size of these data structures without losing
their expressiveness and excellent time complexity of operations on them is driving
new research activities – trend of experimental Computer Science is seen. Several FSM-
based software tools [19,23,28,7] have already been implemented for LE.

In this paper we explore a method of FSM decomposition that allows a significant
size reduction of FSM – the idea of storing empirical data usingcompeting patterns.
The data structuretrie and pattern technique have been developed by Liang [14] for
hyphenation algorithm in TEX [11, Appendix H]. We defined several kinds of patterns
and our extensive experiments showed that the method is applicable in several areas of
language engineering.Bootstrappingandstratificationtechniques allow us to speed up
development of such machines – space savings and time of development savings are
enormous.

∗ This research has been partially supported by the Czech Ministry of Education under the Grant
VS97028 and by the Grant CEZ:J07/98:143300003.

Petr Sojka, Ivan Kopěcek and Karel Pala (Eds.): TSD 2000, LNAI 1902, pp. 157–162, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

mailto:sojka@informatics.muni.cz

158 Petr Sojka

This paper is organized as follows. In Section 2, we give basic definitions and
short overview of known results. Section 3 discusses pattern development methodology.
Section 4 describes in detail applications in the area of Czech morphology. An overview
of results for hyphenation and compound word division is given in Section 5. Possible
applications like part-of-speech (POS) tagging are described in Section 6.

2 Patterns

We start by formally introducing different kinds of patterns and basic notions (for a
detailed discussion and examples, see e.g. [2,8]).

Definition 1 (pattern). Let’s have two disjoint alphabets6 (the alphabet ofterminals)
and V (the alphabet ofvariables). Patternsare words over monoid〈6∪V, ·, ε〉. Patterns
consisting of terminals only calledterminal patterns. The languageL(α) defined by
patternα consists of all words obtained fromα by leaving the terminals unchanged and
substituting a terminal word for each variablev. The substitution in our case has to
be uniform: different occurences ofv are replaced by the same terminal word. If the
substitution replaces variables always bynonemptyword, such language LNE is non-
erasing, and such pattern is calledNE-pattern. Similarly, we defineerasinglanguage
LE as a language generated byE-patternsuch that substitution of variablev by empty
wordε is allowed.

As an example of E-pattern may serve patternSVOMPT for English sentences
where the variables denote Subject, Verb, Object, Mood, Place, Time. An obvious useful
task is to infer a pattern common to all input words in a given sample by the process
of inductive inference. It has been shown in [8] thatinclusion problemis undecidable
for both erasing and non-erasing pattern languages. It is easy to show that decidability
of equivalence problemfor non-erasing languages is trivial. The decidability status of
the equivalence problem for E-patterns remains open. These results show that trying
to infer language description in the form of set of patterns (or the whole grammar)
automatically is very hard task. It has been shown that decomposition of the problem
by usinglocal grammars[5] or building cascades of FSM [7] is a tractable, but very
time-consuming task. Methods for the induction of patterns (from corpora) are needed.

Definition 2 (classifying pattern). Let 〈A,≤〉 be a partially ordered system,≤ be a
lattice order(every finite non-empty subset of A has lower and upper bound). Let. be a
distinguished symbol in6′ = 6 ∪ {.} that denotes the beginning and the end of word –
begin of word markerandend of word marker. Classifying patternsare the words over
6′ ∪ V ∪ A such that dot symbol is allowed at the beginning or end of patterns.

Terminal patterns are “context-free”, they apply anywhere in the classified word –
dot symbol in a pattern specifies pattern at the beginning and end of word. Classifying
patterns allow us to buildtagging hierarchieson patterns.

Definition 3 (word classification, competing word patterns).Let P be a set of
patterns over6′ ∪ V ∪ A (competing patterns, pattern base). Let w = w1w2 . . . wn
be a word to classify with P. Classification classify(w, P) = a0w1a1w1 . . . wnan of w

Competing Patterns for Language Engineering 159

h y p h e n a t i o n
l1 1n a
l1 1t i o
l2 n2a t
l2 2i o
l2 h e2n
l3 .h y3p h
l4 h e n a4
l5 h e n5a t
.h0y3p0h0e2n5a4t2i0o0n.
h y-p h e n-a t i o n

In this example〈A,≤〉 is N (natural numbers).
There are 5 pattern levels –l1. . .l5. Patterns in
odd levels arecovering, in an even levelsinhibiting.
Winner pattern is.h0y3p0h0e2n5a4t2i0o0n.
Patternh e n5a t wins overn2a t, thus hyphen-
ation is possible.

Fig. 1.Competing patterns and pattern levels

with respect to P is computed from pattern base P by competition. All patterns whose
projection to6 match substring ofw are collected. ai is supremum of all values between
characterswi and wi+1 in matched patterns. classify(w, P) is also calledwinning
pattern.

An example of competing patterns is shown in Figure 1. Competing patterns extend
the power of FST somewhat like adding the complement operator with respect toA.
Ideally, instead of storing full FST, we make patterns that embody the same information
in even more compact manner. Collecting patterns matching given word can be done in
linear time, using trie data structure for pattern storage.

3 Methodology

Pattern GenerationSize-optimised full-coverage pattern generation for a given word-
list is an NP-complete task. However, there are several pattern generation strategies that
allow the choice between size-optimal or coverage-optimal patterns [27] withpatgen
program [15]. A generation process can be parametrised by several parameters whose
tuning strategies are beyond the scope of this paper; see [27,24] for details. Parameters
could be tuned so that virtually all hyphenation points are covered, leading to about
99.9 % efficiency, and size is not far from optimum. Further investigation and research
is necessary to find sufficient conditions for finding optimal results.

Stratification TechniqueAs word-lists from which patterns are generated are rather big
(5,000,000 for Czech morphology or hyphenation, even more for other tasks as POS
tagging), they may be stratified. Stratification means that from ‘equivalent’ words only
one or small number of representants are chosen for the pattern generation process.

Bootstrapping TechniqueDeveloping patterns is usually an iterative process. One starts
with hand-written patterns, uses them on input word-list, sees the results, makes the
correction, generates new patterns, etc. This technique proved to speed up pattern
development process by the order of magnitude. We usually do not start from scratch,
but use some previously collected knowledge (e.g. word-list).

160 Petr Sojka

4 Application to Czech Morphology

For the information extraction, information retrieval systems, indexing and similar tasks
we need information on many kinds of sub-word divisions: dividing a word into atoms
(cutting of prefixes, compound words recognition etc.) [12]. We have created several
competing pattern sets using the word database of Czech morphological analyser
ajka [22]. We have taken a word-list of 564974 Czech words (6.6 MB) with marked
prefix segmentation and added 51816 similar ones (starting with the same letters, but
morphologically different). We were able to build patterns that were able to perform
prefix segmentation on 99.9% of words of our input word-list and 98% of words in our
test set.

In comparison to naïve storage of word segmentation, there is several order of
magnitude higher compression ratio. Even compared to storage of FSM using suffix
compression in a trie, patterns compacted in trie data structure gives about tenfold of
space reduction, still with linear access time.

5 Application to Hyphenation and Compound Words

We have used the pattern technique to cover Czech and German hyphenation points
and compound word borders. From a Czech word-list (372562 words, approx. 4 MB),
we were able to create 8239 patterns (40 KB) that cover 99.63% hyphenation points.
From a German word-list (368152 words, 5 MB), we were able to create 4702 patterns
(25.2 KB) that cover 98.37% hyphenation points.

To cover compound word hyphenation was more difficult, as longer patterns are
needed. With slightly different parameters of pattern generation, we were able to
create patterns for German compound words with 8825 patterns (70.2 KB) with 95.28%
coverage. Higher coverage is at the expense of pattern size growth.

For details of hyphenation pattern generation for compound words in Czech and
German usingpatgen, see [27,24,25].

6 Outline of an Application to Part-of-Speech Tagging

Two mainstream approaches are being used for the POS task:linguistic, based on hand-
coded linguistic rules (constraint grammars) [9,20] andmachine learning(statistical,
transformation-based) approaches, based on learning the language model from corpora.
Their combination is probably what is needed – the ‘built-in’ linguistic knowledge
should be communicated to and take preference over e.g. statistical knowledge acquired
during learning. We hope that ordered and competing patterns will be a viable unifying
carrier of information that will allow combination of both approaches.

Finite-state cascaded methods have already been applied to the POS task [1]. Let
us outline one possible approach. Given sentencew1 w2 . . . wn, an ambiguous tagger
gives various possible tags:p11 . . . p1a1 for the first word,p21 . . . p2a2 for the second,
etc. Writing output as (p11 . . . p1a1)(p11 . . . p2a2). . . (pn1 . . . pnan), the task is to
choose the right POSpi j for everywi . Taking tag set from Brown corpus (the Brown
University Standard Corpus of Present-day American English) [4] for the sentence “The
representative put chairs on the table.”, we get the output

Competing Patterns for Language Engineering 161

. AT (NN - JJ) (NN VBD -) (NNS - VBZ) IN AT NN .
The representative put chairs on the table .

Hyphenation markers immediately after POS tag show good solutions for training. Such
‘word-lists’ (for each sentence from training corpus we get one ‘hyphenated word’) are
used bypatgen for disambiguation patterns generation. Sentence borders are explicitly
coded. This or similar notation can be used for both formulation of ambiguous tagging
decision strategies of variable context length by linguists. In comparison to classical
constraint grammars, our experience shows that obligation to write only rules which
are true in any context is very hard and only a few linguists are able to do so. Having
pattern/rule levels/hierarchy helps to develop disambiguation strategies more easily and
quickly. Generalisation for patterns over tree hierarchies is worked on.

7 Conclusion

We have shown effective methods for empirical language data storage and handling by
means of competing patterns. Ourpattern-driven approach to language engineeringhas
been tested in several areas – hyphenation and morphology using prototype solution –
programspatgen and TEX and their algorithms and data structures were used. Search
in the pattern database is blindingly fast (linear with respect to the text length). Optimal
pattern generation has non-polynomial time complexity, but sub-optimal solutions can
be hand-tuned to meet the requirements. It remains to show that this approach is
applicable and useful in areas as phonology, syllabification, speech segmentation, word
sense or semantic disambiguation and speech processing. We believe that pattern-driven
approach will be explored in NLP systems for various classification tasks soon.

Acknowledgement The author would like to thank reviewers for their suggestions to
improve wording of the paper, and Radek Sedláček for providing a prefixed word-list
for experiments described in Section 4.

References

1. Steven Paul Abney. Part-of-Speech Tagging and Partial Parsing. pages 118–136, Dordrecht,
1997. Kluwer Academic Publishers Group.

2. J. Richard Büchi.Towards a Theory of Formal Expressions. Springer-Verlag, New York,
U.S.A, 1989.

3. Cezar Câmpeanu, Nicolae Sânteau, and Sheng Yu. Minimal cover-automata for finite
languages. In Jean-Marc Champarnaud, Denis Maurel, and Djelloul Ziadi, editors,Lecture
Notes in Computer Science 1660, pages 43–56, Berlin, Heidelberg, 1998. Springer-Verlag.

4. Nelson W. Francis and Henry Kučera. Frequency Analysis of English Usage: Lexicon and
Grammar. Houghton Mifflin, 1982.

5. Maurice Gross. The Construction of Local Grammars. [21], pages 329–354.
6. Jozef Gruska.Foundations of Computing. International Thomson Computer Press, 1997.
7. Jerry R. Hobbs, Douglas Appelt, John Bear, David Israel, Megumi Kameyama, Mark Stickel,

and Mabry Tyson. FASTUS: A Cascaded Finite-State Transducer for Extracting Information
from Natural-Language Text. [21], pages 383–406.

162 Petr Sojka

8. Tao Jiang, Arto Salomaa, Kai Salomaa, and Sheng Yu. Decision problems for patterns.
Journal of Computer and Systems Sciences, 50(1):53–63, 1995.

9. Fred Karlsson, A. Voutilainen, J. Heikkilä, and A. Antilla.Constraint Grammar: A
Language-Independent System for Parsing Unrestricted Text. Mouton de Gruyter, Berlin,
1995.

10. Lauri Karttunen, Jean-Pierre Chanod, Gregory Grefenstette, and Anne Schiller. Regular
Expressions for Language Engineering.Natural Language Engineering, 2(4):305–328,
1996.

11. Donald E. Knuth.The TEXbook, volume A ofComputers and Typesetting. Addison-Wesley,
Reading, MA, USA, 1986.

12. Gabriele Kodydek. A Word Analysis System for German Hyphenation, Full Text Search,
and Spell Checking, with Regard to the Latest Reform of German Orthography. In Sojka
et al. [26], pages 51–56.

13. András Kornai.Extended Finite State Models of Language. Cambridge University Press,
1999.

14. Franklin M. Liang. Word Hy-phen-a-tion by Com-put-er. Ph.D. Thesis, Department of
Computer Science, Stanford University, August 1983.

15. Franklin M. Liang and Peter Breitenlohner.PATtern GENeration program for the TEX82
hyphenator. Electronic documentation ofPATGEN program version 2.3 from web2c
distribution on CTAN, 1999.

16. Mehryar Mohri. On some applications of finite-state automata theory to natural language
processing.Natural Language Engineering, 2(1):61–80, 1996.

17. Mehryar Mohri. Finite-State Transducers in Language and Speech Processing.Computa-
tional Linguistics, 23(2):269–311, 1997.

18. Mehryar Mohri. Minimization algorithms for sequential transducers.Theoretical Computer
Science, 234:177–201, 2000.

19. Mehryar Mohri, Fernando C.N. Pereira, and Michael D. Riley. FSM Library – General-
purpose finite-state machine software tools, 1998.http://www.research.att.com/sw/
tools/fsm/.

20. Karel Oliva, Milena Hnátková, Vladimír Petkevič, and Paven Kv̌etǒn. The Linguistic Basis
of a Rule-Based Tagger of Czech. In Sojka et al. [26], pages 3–8.

21. Emmanuel Roche and Yves Schabes.Finite-State Language Processing. MIT Press, 1997.
22. Radek Sedlá̌cek. Morphological Analyzer of Czech (in Czech). Master’s thesis, Faculty of

Informatics, April 1999.
23. Max Silberztein. INTEX: an FST toolbox.Theoretical Computer Science, 234:33–46, 2000.
24. Petr Sojka. Notes on Compound Word Hyphenation in TEX. TUGboat, 16(3):290–297, 1995.
25. Petr Sojka. Hyphenation on Demand.TUGboat, 20(3):241–247, 1999.
26. Petr Sojka, Ivan Kopeček, and Karel Pala, editors.Proceedings of the Third Workshop

on Text, Speech and Dialogue — TSD 2000, LNAI 1902, Brno, Czech Republic, Sep 2000.
Springer-Verlag.

27. Petr Sojka and Pavel Ševeček. Hyphenation in TEX – Quo Vadis?TUGboat, 16(3):280–289,
1995.

28. Bruce W. Watson. Implementing and using finite automata toolkits. [13], pages 19–36.

http://www.research.att.com/sw/tools/fsm/
http://www.research.att.com/sw/tools/fsm/

	Competing Patterns for Language Engineering

