
Context Sensitive Pattern Based Segmentation: A Thai Challenge

Petr Sojka and David Antoš
Faculty of Informatics, Masaryk University Brno, Czech Republic

sojka@informatics.muni.cz xantos@informatics.muni.cz

Abstract

A Thai written text is a string of symbols
without explicit word boundary markup. A
method for a development of a segmenta-
tion tool from a corpus of already segmented
text is described. The methodology is based
on the technology ofcompeting patterns,
evolved from algorithm for English hyphen-
ation. A new UNICODE pattern generation
program, OPATGEN, is used for the learn-
ing phase. We have shown feasibility of our
methodology by generating patterns for Thai
segmentation from already segmented text of
the Thai corpus ORCHID. The algorithm rec-
ognizes almost 100% of word boundaries in
the corpus and performs well on unseen text,
too. We discuss the results and compare them
to the conventional methods of segmenting
Thai text. Finally, we enumerate possible
new applications based on pattern technique,
and conclude with the suggestion of a general
Pattern Translation Process. The technol-
ogy is general and can be used for any other
segmentation tasks as phonetic, morphologic
segmentation, word hyphenation, sentence
segmentation and text topic segmentation for
any language.

1 Motivation and Problem Description
From Latinsegmentum, from secare‘to cut’

(as term in geometry).
— Origin of wordsegmentation: (Hanks, 1998)

Many natural language processing applications need to
cut strings of letters, words or sentences into segments:
phonetic, morphologic segmentation, word hyphen-
ation, word phrase and sentence segmentation may
serve as examples of thissegmentation task. In Thai,
Japanese, Korean and Chinese languages, where there

are no explicit word boundaries in written texts, per-
forming character stream segmentation is a crucial first
step in the natural language processing of written texts.
An elegant way of solving of this task is to learn the
segmentation from already segmented corpus by a su-
pervised machine learning technique.

1.1 Thai Segmentation Problem

A Thai paragraph is a string of symbols (44 conso-
nants, 28 vowels). There are neither explicit syllable,
word and sentence boundaries, nor punctuation in Thai
text streams. For lexical, semantic analysis or type-
setting, crucial first step is to find syllable, word and
sentence boundaries. The Thai typesetting engine has
to be able to segment the text in order to break lines
automatically, too. Similarly, tools are needed to in-
sert the<wbr> HTML tag automatically for the web
browser rendering engine. A good word segmentation
is a prerequisite for any Thai text processing including
Part-of-Speech (POS) tagging (Murata et al., 2002).

1.2 Existing Approaches to Thai Segmentation

There is a program SWATH (Smart Word Anal-
ysis for THai) with three implemented dictionary
based algorithms (longest matching, maximal match-
ing, bigram model). It is used by the Thai Word-
break Insertion servicehttp://ntl.nectec.or.th/
services/www/thaiwordbreak.html at NECTEC,
the Thai National Electronics and Computer Tech-
nology Center. These methods have limited perfor-
mance because of problems with handling of unknown
words. There are other approaches based on the proba-
bilistic language modelling (Sornlertlamvanich, 1998;
Sukhahuta and Smith, 2001) or logically combined
neural networks (Ma et al., 1996).

Mamoru and Satoshi (2001) reported that their Thai
syllable recognizer, in which knowledge rules based
on heuristics derived from the analysis of unsuccess-
ful cases were adapted, gave a ratio of segmentation

of 93.9% in terms of sentences for the input of Thai
text. The Thai text used wasKot Mai Tra Sarm
Duang (Law of Three Seals), and had 20,631 sen-
tences (Jaruskulchai, 1998, Chapter 3).

Feature based approach using RIPPER and Winnow
learning algorithms is described in (Meknavin et al.,
1997). Aroonmanakun (2002) recently reported ap-
proach based on trigram model of syllables and syllable
merging, with very high precision and recall. His Thai
word segmentation online service onhttp://www.
arts.chula.ac.th/~ling/wordseg/ is performed
using maximum collocation approach.

All these attempts show the need and importance of
highly efficient and quality solution of Thai word seg-
mentation problem.

2 Patterns
Middle Englishpatron‘something serving as a model’,
from Old French. The change in sense is from the idea
of a patron giving an example to be copied. Metathesis

in the second syllable occured in the 16th century.
By 1700 patronceased to be used on things,

and the two forms became differentiated in sense.
— Origin of wordpattern: (Hanks, 1998)

Patterns are used to recognise “points of interest” (seg-
ment boundaries) in data. The pattern is a sub-word of
a given word set and the information of the points of
interest is written between its symbols.

There are two possible values for this information.
One value indicates the point of interestis here, the
other indicates the point of interestis nothere. Natural
numbers are the typical representation of that knowl-
edge; odd for yes, even for no. So we havecovering
andinhibitingpatterns. Special symbols are often used,
for example a dot for the word boundary. Patterns are
as short as possible to store the information: context of
variable length is modelled by this approach.

2.1 Competing Patterns

More formally, let us have an alphabet
�

. Patternsare
words over the free monoid�� � �� � �

where
�

is the
empty word, and

�
(centered dot) is operation ofcon-

catenation. Let �A� ��
be a partially ordered system,�

be alattice order (every finite non-empty subset of
A has lower and upper bound). Let� be a distinguished
symbol (dot) in

�� 	 �
 ��� that denotes the begin-
ning and the end of word:begin of word markerand
end of word marker. Classifying patternsare the words
over

��

A such that the dot symbol is allowed at the

beginning or end of patterns only.
Let P be a set of patterns over

��

A (competing pat-

terns, pattern base). Let 	 12 � � � n be a word
to classify with P. Classificationclassify� �

P� 	
a01a11 � � � nan of with respect toP is com-
puted from the pattern baseP by the followingcom-

petition. All patterns whose projection to
�

match
substring of are collected.ai is the supremum of
all values between characters i and i�1 in matched
patterns.classify� �

P� is also calledwinning pattern.
Winning pattern holds the definitive information (hy-
phenation, segmentation) about with respect to the
pattern baseP. There can be several pattern bases for
the same that “compete” as well.

2.2 Example

An example of competing patterns used for hyphen-
ation of English words is shown in Figure 1 on page 3.
In this example the ordered system�A� ��

used is for
classification of candidates for hyphenation border is�
(natural numbers). There are five pattern levels used in
the example —Level1. . . Level 5. There were eight
patterns that matched the input (1na, 1tio,. . .). Pat-
terns in odd levels arecovering, in an even levelsin-
hibiting. Inhibiting patterns specify the exceptions with
respect to the knowledge acquired in lower levels. Win-
ner pattern is.h0y3p0h0e2n5a4t2i0o0n.: one sees
that e.g. patternh e n5a twinsovern2a t, thus pos-
sible segmentations arehy-phen-ation.

Competing pattern sets can be used on all levels of
natural language processing—covering structures used
in morphology, their exploration is seen on both syn-
tax (parsing) and semantic (word sense discrimination)
levels.

For the detailed definitions and more examples
see (Liang, 1983; Sojka, 2000).

2.3 Comparison with Finite-State Approaches

Competing patterns technology can be viewed as one of
finite-state approaches, with their pros and cons. Com-
peting patterns extend the power of Finite-State Trans-
ducers (FST) similarly as adding the complement op-
erator with respect to

�
. Ideally, instead of storing full

FST, we make patterns that embody the same informa-
tion in even more compact manner. Collecting patterns
matching given word can be done in linear time, using
trie data structure for pattern storage.

It has been shown that decomposition of the prob-
lem by usinglocal grammars(Gross, 1997) or build-
ing cascades of Finite-State Machines (Hobbs et al.,
1997) is a tractable, but very time-consuming task. Su-
pervised learning methods for the induction of patterns
from segmented text are needed.

2.4 Pattern Generation—PAT GEN and
OPAT GEN Programs

Liang (1983) wrote a pattern generation program PAT-
GEN for generation of hyphenation patterns from the
list of already hyphenated words. The method for gen-
eration of patterns is not only independent of language

h y p h e n a t i o n
Level 1 1n a
Level 1 1t i o

Level 2 n2a t
Level 2 2i o
Level 2 h e2n

Level 3 .h y3p h

Level 4 h e n a4

Level 5 h e n5a t
.h0y3p0h0e2n5a4t2i0o0n.
h y-p h e n-a t i o n

Figure 1: Competing patterns and pattern levels for segmentation of English wordhyphenation.

for which (hyphenation) patterns are generated, but of
an application domain, too. PATGEN has been used for
the preparation of quality hyphenation patterns for sev-
eral dozens of languages (Sojka andŠeveček, 1995).
A new enriched (UNICODE) version of PATGEN called
OPATGEN, has been developed at Masaryk University
Brno (Antoš and Sojka, 2001). The program opens
new possibilities for pattern generation and new appli-
cations. The only thing that must be done to create
patterns is to map the problem in mind to the alphabet
used by OPATGEN (UNICODE). OPATGEN is based on
separate PATL IB (Antoš, 2002) library, so even making
a new special purpose frontend for a new application
should be straightforward.

3 Thai Texts in ORCHID Corpus
Literally ‘free’.

— Origin of wordThai: (Hanks, 1998)

There is a freely available corpus of already segmented
Thai texts called ORCHID (Sornlertlamvanich et al.,
1997). Snapshot of the corpus loaded in Emacs edi-
tor can be seen in Figure 2 on page 4. Parts of speech
are tagged, too, using bootstrapping technique, manual
editing and proofreading. There are 9,967 paragraphs
in the corpus (6 MB in TIS-620 encoding).

Even native Thai speakers do not agree on the def-
inition of the main notion—Thai word (Jaruskulchai,
1998) (problems appear whether a “compound word”
should be considered as single entity or not). We
have based our machine learning experiments purely
on the data available in the ORCHID corpus, showing
the power of the machine learning technique. We can-
not comment on the quality of the corpus tagging, as
we are not Thai native speakers.

The corpus consists of articles. Every article has
headers containing meta-information, usually in Thai
and English, followed by the text, consisting of para-
graphs. Paragraphs are numbered and tagged with#Pn

marks. Paragraphs contain sentences. The sentences
are tagged with#n. Each sentence appears twice, first

untagged. The second occurrence is tagged with part-
of-speech tags. Each word is followed by the tag, eg.,
/VACT for active verb.

3.1 Corpus Preprocessing

In order to create patterns recognizing Thai word
boundaries we had to pre-process the corpus. We used
a simple Perl script. The word boundaries are marked
in the second occurrences of sentences in the corpus.
Therefore we cut out only the marked parts. The
“points of interest” should be denoted with ‘-’ sign
for OPATGEN. We substituted all the part-of-speech
tags with the minus signs. There are also text entities
marked with single angle bracket tags, e.g.,<space>.
All of them act as word separators in the corpus and we
also substituted them with our word boundary mark.
That is also what we did with numbers, we silently re-
moved them as there is no reason to encounter them
into patterns. When applying patterns, numbers are
trivially word boundaries.

Finally, we joined the whole paragraphs up. The
places between sentences are also word boundaries.
We decided not to join larger portions of the text (like
several paragraphs or even articles) as we did not want
the words OPATGEN had to deal with to be longer than
hundreds of symbols. It would slow the pattern genera-
tion down and we would add only a bit of information,
only the word boundaries that appear between words
finishing and starting a paragraph. The preprocessed
eight paragraphs from ORCHID (input for OPATGEN)
look like this:

-¡ÒÃ-»ÃÐªØÁ-·Ò§-ÇÔªÒ¡ÒÃ-¤ÃÑé§-·Õè-
â¤Ã§¡ÒÃÇÔ¨ÑÂáÅÐ¾Ñ²¹Ò-ÍÔàÅç¡·ÃÍ¹Ô¡Ê�-áÅÐ-
¤ÍÁ¾ÔÇàµÍÃ�-»�§º»ÃÐÁÒ³-àÅ�Á-
-ÈÙ¹Â�à·¤â¹âÅÂÕÍÔàÅç¡·ÃÍ¹Ô¡Ê�áÅÐ¤ÍÁ¾ÔÇàµÍÃ�áË�§ªÒµÔ-

¡ÃÐ·ÃÇ§ÇÔ·ÂÒÈÒÊµÃ�-à·¤â¹âÅÂÕáÅÐ¡ÒÃ¾ÅÑ§§Ò¹-
-ÇÑ¹-·Õè-ÊÔ§ËÒ¤Á-Ë�Í§»ÃÐªØÁ-ªÑé¹-
-ÊÒÃ-

Figure 2: ORCHID loaded into Emacs.

-Ï¾³Ï-ÃÑ°Á¹µÃÕÇ�Ò¡ÒÃ-¡ÃÐ·ÃÇ§ÇÔ·ÂÒÈÒÊµÃ�-
à·¤â¹âÅÂÕáÅÐ¡ÒÃ¾ÅÑ§§Ò¹-

-»ÃÐà·Èä·Â-ä �́-ÁÕ-¡ÒÃ-»ÃÑºà»ÅÕèÂ¹-â¤Ã§ÊÃ�Ò§-ã¹-
¡ÒÃ-¾Ñ²¹Ò-àÈÃÉ°¡Ô¨-¢Í§-»ÃÐà·È-¨Ò¡-»ÃÐà·È-
à¡ÉµÃ¡ÃÃÁ-ä»ÊÙ�-¤ÇÒÁ-à»�¹-»ÃÐà·ÈÍØµÊÒË¡ÃÃÁ-
ÁÒ¡-ÂÔè§¢Öé¹-ã¹-¡ÒÃ- í́Òà¹Ô¹¡ÒÃ-à¾×èÍãË�-ºÃÃÅØ-
ÇÑµ¶Ø»ÃÐÊ§¤�- Ñ́§¡Å�ÒÇ-¨Ð-µ�Í§-ÍÒÈÑÂ-»�¨¨ÑÂ¾×é¹°Ò¹-
ËÅÒÂ-»ÃÐ¡ÒÃ-ã¹-¡ÒÃ-à»�¹-µÑÇàÃ�§-áÅÐ-à»�¹-
°Ò¹-àª�¹-¡ÒÃ-¾Ñ²¹Ò-à·¤â¹âÅÂÕ-·Õè-ãª�-ã¹-¡ÒÃ-
¼ÅÔµ-¢Í§-ÀÒ¤ÍØµÊÒË¡ÃÃÁ-¡ÃÐ·ÃÇ§ÇÔ·ÂÒÈÒÊµÃ�-
à·¤â¹âÅÂÕáÅÐ¡ÒÃ¾ÅÑ§§Ò¹-¨Ö§-ä �́-ãË�¤ÇÒÁÊÓ¤Ñ-à»�¹-
ÅíÒ Ñ́º-ÊÙ§-ã¹-¡ÒÃ-¾Ñ²¹Ò-ÍØµÊÒË¡ÃÃÁ-ÍÔàÅç¡·ÃÍ¹Ô¡Ê�-

áÅÐ-¤ÍÁ¾ÔÇàµÍÃ�-«Öè§-ÍØµÊÒË¡ÃÃÁ-¹Õé-¨Ð-ÁÕ-º·ºÒ·-
·Õè-ÊÓ¤Ñ-ÁÒ¡-ã¹-ÀÒ¤ÍØµÊÒË¡ÃÃÁ-â´Â-à»�¹-
»�¨¨ÑÂ¾×é¹°Ò¹-ËÃ×Í-Ê�Ç¹»ÃÐ¡Íº-·Õè-ÊÓ¤Ñ-¢Í§-
¡ÒÃ-¼ÅÔµ-¼ÅÔµÀÑ³±�ÍØµÊÒË¡ÃÃÁ-á·º-·Ø¡-ÊÒ¢Ò-

-ã¹-»ÅÒÂ»�-¡ÃÐ·ÃÇ§ÇÔ·ÂÒÈÒÊµÃ�-
à·¤â¹âÅÂÕáÅÐ¡ÒÃ¾ÅÑ§§Ò¹-â´Â-
ÁµÔ-¤³Ð-ÃÑ°Á¹µÃÕ-ä �́-¨Ñ´µÑé§-
ÈÙ¹Â�à·¤â¹âÅÂÕÍÔàÅç¡·ÃÍ¹Ô¡Ê�áÅÐ¤ÍÁ¾ÔÇàµÍÃ�áË�§ªÒµÔ-
¢Öé¹-à¾×èÍ-¾Ñ²¹Ò-à·¤â¹âÅÂÕ-ÍÔàÅç¡·ÃÍ¹Ô¡Ê�-ã¹-»ÃÐà·È-
áÅÐ-à·¤â¹âÅÂÕ- �́Ò¹-¤ÍÁ¾ÔÇàµÍÃ�-·Ñé§-«Í¿µ�áÇÃ�-
áÅÐ-ÎÒÃ�´áÇÃ�-â´Â-¡ÒÃ-Ê¹ÑºÊ¹Ø¹-ãË�-ÁÕ-¡ÒÃ-
ÇÔ¨ÑÂáÅÐ¾Ñ²¹Ò-ã¹- �́Ò¹-¹Õé-¨¹¶Ö§-¢Ñé¹-¾Ñ²¹Ò-¼Å-

¢Í§-¡ÒÃ-ÇÔ¨ÑÂ-áÅÐ-¾Ñ²¹Ò-ä»ÊÙ�-¡ÒÃ-¼ÅÔµ-ã¹-àªÔ§-
ÍØµÊÒË¡ÃÃÁ-áÅÐ-¾Ò³ÔªÂ�-µÅÍ´¨¹-ÊÒÁÒÃ¶-á¢�§¢Ñ¹-
ä �́-ã¹-µÅÒ´-ÀÒÂã¹-áÅÐ-µ�Ò§»ÃÐà·È-
. . .

4 Methodology
Problems worthy of attack prove their worth by hitting back.

— Piet Hein: Grooks

An important question is what kind of evaluation mea-
sures is most appropriate to compare the segmentation
proposed by automated tools with the correct segmen-
tations in the test set. A widely used evaluation scheme
is thePARSEVAL scheme, based on the notions ofpre-
cisionandrecall.

4.1 Evaluation Measures

Definition of the measures for our application is as fol-
lows:

Precision
	 # found well

found well� # bad
(1)

Recall
	 # found well

found well� # missed
(2)

Segment is correct if both the start and the end of the
segment is correctly predicted.

The precision and recall scores are combined into a
single measure, known as theF-score (Manning and
Schütze, 1999):

F-score
	 2 � Precision� Recall

Precision� Recall
(3)

Another possibilities of an evaluation metric for seg-
mentation arePk metric (Beeferman et al., 1997;
Beeferman et al., 1999) or WindowDiff (Pevzner and
Hearst, 2002). We do not use them, as they are appro-
priate for topic text segmentation, where small errors in
positions of segment cuts are acceptable.

4.2 Experiments

We have divided the corpus into training set (3/5)
and test set (2/5) and used the training set (6,000
paragraphs) for pattern generation. Ideally, we strive
for smallest patterns solving the task with the highest
F-score as possible. As general procedure how to
achieve this goal is not known, parameters for the
generation have been chosen after some trial and error
(one has to find good-working thresholds for adding
new patterns). Using the knowledge about threshold
parameters used for the generation of hyphenation
patterns we have quickly reached 100% precision
(patterns were able to cover segmentation in training
set without errors).

Parameters used for pattern generation are shown in
Table 1 on page 6. In the second column, there are

lengths of pattern candidates. A generation process can
be parametrised by several parameters whose tuning
strategies are beyond the scope of this paper; see (Sojka
andŠeveček, 1995; Sojka, 1995) for details. Setting of
the thresholds could be tuned so that virtually all hy-
phenation points are covered.

As there are quite long words in Thai (10 to 20-
syllable word is not an exception), to achieve 100%
precision, we may possibly need patterns as long as
20 characters to model long distance dependencies.
This increases the time of pattern generation, but not
above achievable level (it took half a day on Pentium 4
class PC).

The ‘param’ column contains the pattern choosing
the rule weights. The percentages show the behaviour
of the patterns on the corpus during generation. Finally,
there is the number of patterns added in particular level
and pattern size in kilobytes (coded in UTF-8 encod-
ing). It is seen that most of the work is done by short
patterns.

Next, we increased the training set to 8,000 para-
graphs. Results are shown in Table 2 on page 6. Both
precision and recall slightly increase with bigger train-
ing sets.

The behaviour of the patterns on data they were gen-
erated from does not show how they act on previously
unseen data (generalization abilities). Therefore we
tested performance on the test set (3,967 paragraphs).
The obtained recall is above 90%. With the bigger
training corpus we do get better performace measures
as shown in Table 3 on page 7. From the main results
given in this table follows that the the ORCHID Corpus
is quite small for our task: given the bigger training
corpus one would have even better performance.

Resulting 19424 patterns look like this:
.o1m .p1me .pre1p .s1f .s2mo .s1mp
.st1in .x1p .x1y .¡1¡ .¡1Á .¡1Ë
.¡ÒÃ¨�ÒÂ3 .¡ÒÃ5¾Ñ²¹Ò .¡ÒÃ¾Ñ²¹ÒÃÐºº5
.¡ÒÃ¾Ñ²¹Òâ»Ãá¡ÃÁ5Ê .¡ÒÃÃÑº4 .¡ÒÃ1Ç
.¡ÒÃ5ÈÖ¡ÉÒ .¡ÒÃÍÍ¡áºº5 .¡ÒÃÍÍ¡áººáÅÐ5
.¡ÒÃÍÍ¡áººáÅÐ¾Ñ²¹Ò5 .¡ÒÃ5àÃÔèÁ .¡�Í¹·Õè3
.¤³Ð5¡ÃÃÁ¡ÒÃ¹âÂºÒÂ. .¤³Ð¡ÃÃÁ¡ÒÃ5ºÃÔËÒÃ.
.¤³Ð¡ÃÃÁ¡ÒÃÍÓ¹ÇÂ¡ÒÃ6 .¤³Ð¼Ù�5·íÒ5 .¤³Ð3ÇÔÈ
.¤³Ð5Í¹Ø¡ÃÃÁ¡ÒÃ· .¤íÒ3¡ .¤íÒ1À .§1¡ .§Ò¹1¤
.§Ò¹1° . . .

To sum up the properties of pattern technique, even
with small data like ORCHID Corpus we have got
1:20 compression of the information stored and hidden
there. The patterns can be trained to 100% precision on
the training data and making essentially no error (one
can always add the pattern for the whole paragraph).
One can balance tradeoff between recall and precision
measured on testing data. Moreover, the application of
patterns is very efficient. Speed of the segmentation is

Table 1: Results of Thai segmentation patterns generation (6,000 paragraphs from ORCHID).

level length param % correct % wrong # patterns UTF-8 size (kB)
1 1–5 1 6 1 97.98 4.87 +12907 130
2 2–6 1 1 1 96.83 0.69 + 2091 156

3 3–11 1 3 1 99.58 0.82 + 2578 204
4 4–12 4 1 1 97.83 0.03 + 685 217

5 9–19 1 3 1 99.58 0.15 + 1689 270
6 10–20 1 1 1 99.56 0.04 + 119 274

Table 2: Results of Thai segmentation patterns generation (8,000 paragraphs from ORCHID).

level length param % correct % wrong # patterns UTF-8 size (kB)
1 1–5 1 6 1 97.92 4.86 +15443 161
2 2–6 1 1 1 96.53 0.65 + 2596 196

3 3–11 1 3 1 99.57 0.79 + 3448 267
4 4–12 4 1 1 97.87 0.03 + 953 286

5 9–19 1 3 1 99.68 0.12 + 2468 364
6 10–20 1 1 1 99.67 0.04 + 129 368

linear wrt. the length of the word we apply them on: in
our case with length of the paragraph. It makes them
one of the first choices in cases where processing speed
is important. The speed of the segmentation using de-
veloped Thai patterns is at the range of 10,000 wps
(words per second) on a Pentium 4 class PC. Mem-
ory consumption using compact digital trie implemen-
tation used in TEX for this performance is much below
0.3 MB.

The generation process may be optimized with re-
spect to the resulting pattern size; the tradeoff among
size, covering ratio, and error is adjustable. Never-
theless good patterns may be small in size and there-
fore applicable for handhelds, mobile phones and other
small equipment. There is no reason for SMS’s to
have awfully broken words on the display of a cellu-
lar phone.

Creating patterns is possible due to availability of
large tagged corpora. Technique of competing pattern
generation might be useful for corpora builders as well.
Thresholds set for pattern generation can be tuned up
in such a way that highly improbable (bad?) segmen-
tation points are not learned. This way, pattern genera-
tion process may serve as filter selecting possible errors
in input corpus tagging. These errors are a traditional
nightmare for anybody who deals with large experi-
mental data. Creating patterns for a phenomenon ap-
pearing in the corpus thus may help to clean the errors
when the error list reported by the generator is checked
manually. The size of the error list may be tuned by
the number of levels and by the setting the thresholds
appropriately.

5 Data-Driven Approach Based on
Competing Patterns
If all you have is a hammer, everything looks like a nail.

— Abraham Maslow

Let us comment on the technology of competing pat-
terns from different points of view. The applica-
tion of the techniques of bootstrapping and stratifica-
tion (Sojka, 1995; Sojka, 1999) made it even more at-
tractive.

5.1 Pattern Translation Processes

A process based on competing patterns that adds
markup to the string of symbols is calledPattern Trans-
lation Process (PTP)(Antoš and Sojka, 2001). In
the terminology of automata theory, it is special type
of finite state transducer. With this finite state ap-
proach (Roche and Schabes, 1997), quite powerfull en-
gines could be designed, with exceptional speed: time
complexity of the PTP implementation based on digi-
tal tries islinear with respect to the input length (length
of input sentence). Putting PTP’s in a cascade, we still
stay in linear time. In addition to PATL IB, there are
quite efficient digital trie publicly available implemen-
tations as JUDY (Silverstein, 2002). Such PTP imple-
mentations are very memory efficient.

Although many natural language special purpose
tools are being developed, their implementation us-
ing competing patterns technology with bootstrapping,
stratification and pattern generation techniques (Sojka
andŠeveček, 1995; Sojka, 1995; Sojka, 1999) is pos-
sible. We believe that in addition to the one of hard-
est problems—Thai segmentation—many other NLP

Table 3: Precision, recall, and F-score on unseen text.

trained on # paragraphs good bad missed precision recall F-score
4,000 139788 11231 15529 92.56% 90.00% 91.26
6,000 98243 7951 9432 92.51% 91.24% 91.87
8,000 46361 3358 3703 93.25% 92.60% 92.92

problems can be solved by our competing pattern data-
driven approach. Let us add couple of notes about ap-
plications in the Computer Typesetting area.

5.2 Applications in Computer Typesetting

A good list of tough problems in the area of the com-
puter typesetting, most of which are tractable by OPAT-
GEN, is presented in (Haralambous and Plaice, 2001).
A new typesetting system� (Haralambous and Plaice,
1997), gradually developed from the well known TEX
typesetting system, is designed to be able to typeset text
in all languages of the world. To solve typesetting prob-
lems that are not supported by the� engine itself exter-
nal special purpose programs outside of� are invoked
as so called external OTP’s (� Translation Processes).

When we analyze most of the problems and appli-
cation of computer typesetting described in (Haralam-
bous and Plaice, 2001), we see that most of them could
be formulated as string rewriting of regular languages
with varying context length. They can be seen as trans-
lation processes that typically add information to a to-
ken (character or word) stream.

In the typesetting engine application, the main idea
is the usage of pattern recognition in the middle of the
digestive process of a typesetting engine. A cascade of
PTP’s is able to efficiently solve the hardest problems
known sofar, in linear time, given the sets of competing
patterns.

6 Conclusion and Future Work
We are all apprentices in a craft

where no-one ever becomes a master.
— Ernest Hemingway

We have shown the feasibility of technology of com-
peting patterns to tackle the Thai word segmentation
problem.

To evaluate next steps of the technology—
bootstrapping and stratification techniques—we are
looking for (native Thai) partners to pursue further re-
search. Improving consistency of tagging of the corpus
will even improve the system performance. Applica-
tion for Thai sentence segmentation problem (Charoen-
pronsawat and Sornlertlamvanich, 2001) is straighfor-
ward, too, but a bigger corpus is needed for learning.

Having a tagged corpus freely available, one may try
easier task of not only word segmentation, but sylla-
ble segmentation. This may be needed for typesetting

engine to use, due to long Thai words. Most promising
approach thus seems to be using competing patterns for
syllable segmentation, and then parse the text upwards,
merging syllables into words and words into sentences.

Another general questions remain open. How to
set the OPATGEN parameters to get space-minimal,
level-minimal, highest-precision, highest recall pat-
terns given the data? We are still looking for rigorous
theory for setting the parameters of the patern gener-
ation process. We also think of an automated pattern
generation, performing the parameter setting using an
expert system or statistical methods.

We also spend some effort on developing better gen-
eration strategies. Implicit strategy used by OPATGEN

is basically brute-force testing of all reasonable pattern
candidates. It is not straightforward how to optimize
the process, but using bigram or trigram statistics of
wordlist is an idea worth trying.

Choice of best fitting data structure for patterns
needs further investigation, even though keeping the
set of patterns is a general dictionary problem, studied
for years by computer scientists. There are other ap-
proaches than those used in TEX, PATGEN and OPAT-
GEN, namely packed dynamic tries LC-tries (Nilsson
and Karlsson, 1999) and new digital trie library imple-
mentations like JUDY (Silverstein, 2002).

Acknowledgement

Support of the grant CEZ:J07/98:143300003 is ac-
knowledged.

References

David Antoš and Petr Sojka. 2001. Pattern Generation
Revisited. In Simon Pepping, editor,Proceedings of
the 16th European TEX Conference, Kerkrade, 2001,
pages 7–17, Kerkrade, The Netherlands, Sep. NTG.

David Antoš. 2002. PATLIB, Pattern Manipulation
Library. http://www.fi.muni.cz/~xantos/
patlib/.

Wirote Aroonmanakun. 2002. Collocation and Thai
Word Segmentation. InProceedings of SNLP-
Oriental COCOSDA 2002, pages 68–75.

Douglas Beeferman, Adam Berger, and John Lafferty.
1997. Text segmentation using exponential models.

In Proceedings of the 2nd Conference on Empirical
Methods in Natural Language Processing, pages 35–
46, Providence, RI.

Douglas Beeferman, Adam Berger, and John Lafferty.
1999. Statistical Models of Text Segmentation.Ma-
chine Learning, 34(1–3):177–210.

Paisarn Charoenpronsawat and Virach Sornlertlam-
vanich. 2001. Automatic Sentence Break Disam-
biguation for Thai. InProceedings of ICCPOL 2001,
pages 231–235, May.

Maurice Gross. 1997. The Construction of Local
Grammars. (Roche and Schabes, 1997), pages 329–
354.

Patrick Hanks, editor. 1998.The New Oxford Dictio-
nary of English. Oxford University Press, Oxford.

Yannis Haralambous and John Plaice. 1997. Methods
for Processing Languages with Omega. InProceed-
ings of the Second International Symposium on Mul-
tilingual Information Processing, Tsukuba, Japan.
available ashttp://genepi.louis-jean.com/
omega/tsukuba-methods97.pdf.

Yannis Haralambous and John Plaice. 2001. Traite-
ment automatique des langues et composition sous
Omega. Cahiers GUTenberg, (39–40):139–166,
May.

Jerry R. Hobbs, Douglas Appelt, John Bear, David Is-
rael, Megumi Kameyama, Mark Stickel, and Mabry
Tyson. 1997. FASTUS: A Cascaded Finite-State
Transducer for Extracting Information from Natural-
Language Text. (Roche and Schabes, 1997), pages
383–406.

Chuleerat Jaruskulchai. 1998.Automatic Indexing for
Thai Text Retrieval. Ph.D. thesis, School of Engi-
neering and Applied Science, George Washington
University, August.

Franklin M. Liang. 1983. Word Hy-phen-a-tion by
Com-put-er. Ph.D. thesis, Department of Computer
Science, Stanford University, August.

Qing Ma, Hitoshi Isahara, and Hiromi Ozaku. 1996.
Automatic part-of-speech tagging of thai corpus
neural networks. InLecture Notes in Computer Sci-
ence 1112, pages 275–280. Springer-Verlag.

Shibayama Mamoru and Hoshino Satoshi. 2001. Thai
Morphological Analyses Based on the Syllable For-
mation Rules. Journal of Information Procesing,
15(04–007).

Christopher D. Manning and Hinrich Schütze. 1999.
Foundations of Statistical Natural Language Pro-
cessing. MIT Press.

Surapant Meknavin, Paisarn Charoenpornsawat, and
Boonserm Kijsirikul. 1997. Feature-based Thai
Word Segmentation. InProceedings of the Nat-
ural Language Processing Pacific Rim Symposium
(NLPRS 1997), pages 41–46.

Masaki Murata, Qing Ma, and Hitoshi Isahara. 2002.
Comparision of Three Machine-Learning Methods
for Thai Part-of-Speech Tagging.ACM Transac-
tions on Asian Language Information Processing,
1(2):145–158.

Stefan Nilsson and Gunnar Karlsson. 1999. IP-
Address Lookup Using LC-Tries. IEEE Journal
on Selected Areas in Communications, 17(6):1083–
1092.

Lev Pevzner and Marti A. Hearst. 2002. A Cri-
tique and Improvement of an Evaluation Metric
for Text Segmentation.Computational Linguistics,
28(1):19–36.

Emmanuel Roche and Yves Schabes. 1997.Finite-
State Language Processing. MIT Press.

Alan Silverstein. 2002. Judy IV Shop Man-
ual. http://judy.sourceforge.net/
application/shop_interm.pdf.

Petr Sojka and PavelŠeveček. 1995. Hyphenation in
TEX—Quo Vadis?TUGboat, 16(3):280–289.

Petr Sojka. 1995. Notes on Compound Word Hyphen-
ation in TEX. TUGboat, 16(3):290–297.

Petr Sojka. 1999. Hyphenation on Demand.TUGboat,
20(3):241–247.

Petr Sojka. 2000. Competing Patterns for Language
Engineering. In Petr Sojka, Ivan Kopeček, and
Karel Pala, editors,Proceedings of the Third Inter-
national Workshop on Text, Speech and Dialogue—
TSD 2000, Lecture Notes in Artificial Intelligence
LNCS/LNAI 1902, pages 157–162, Brno, Czech Re-
public, Sep. Springer-Verlag.

Virach Sornlertlamvanich, Thatsanee Charoenporn,
and Hitoshi Isahara. 1997. ORCHID: Thai Part-
Of-Speech Tagged Corpus. Technical Report TR-
NECTEC-1997-001, Thai National Electronics and
Computer Technology Center, December.http:
//www.links.nectec.or.th/.

Virach Sornlertlamvanich. 1998.Probabilistic Lan-
guage Modeling for Generalized LR Parsing. Ph.D.
thesis, Department of Computer Science, Tokyo In-
stitute of Technology, September.

Rattasit Sukhahuta and Dan Smith. 2001. Information
Extraction Strategies for Thai Documents.Interna-
tional Journal of Computer Processing of Oriental
Languages (IJCPOL), 14(2):153–172.

