
Towards Perfection of Machine Learning of
Competing Patterns

The Use Case of Czechoslovak Patterns Development

Ondřej Sojka and Petr Sojka

Faculty of Informatics, Masaryk University, Brno, Czech Republic
454904@mail.muni.cz, sojka@fi.muni.cz

Abstract. Finding space- and time-effective even perfect solution to the
dictionary problem is an important practical and research problem, which
solving may lead to a breakthrough in computation. Competing pattern
technology from TEX is a special case, where for a given dictionary a
word segmentation is stored in the competing patterns yet with very good
generalization quality. Recently, the unreasonable effectiveness of pattern
generation has been shown – it is possible to use hyphenation patterns to
solve the dictionary problem jointly even for several languages without
compromise.
In this article, we study the effectiveness of patgen for the supervised
machine learning of the generation of the Czechoslovak hyphenation
patterns. We show the machine learning techniques to develop competing
patterns that are close to being perfect. We evaluate the new approach by
improvements and space savings we gained during the development and
finetuning of Czechoslovak hyphenation patterns.

Keywords: dictionary problem, effectiveness, hyphenation patterns,
patgen, syllabification, Czech, Slovak, Czechoslovak patterns, machine
learning

“When you’re passionate about something, you want it to be all it can be.”
Debra Messing

1 Introduction

Dictionary problem is the task of storing a dictionary seen as a database of
words where we distinguish the key part (the word) and the data part (values
of the key). Finding space- and time-effective even optimal solution to the
dictionary problem is an important practical and research problem. Solving it
may lead to a breakthrough in computation. The effectiveness of the solution
lies in the implicit data structures used. Typically some sort of trees (B-trees [1],
tries) or hashing or their combination is used [4]. Time complexity is constant

A. Horák, P. Rychlý, A. Rambousek (eds.): Proceedings of Recent Advances in Slavonic Natural Language
Processing, RASLAN 2023, pp. 113–120, 2023. © Tribun EU 2023

https://orcid.org/0000-0003-2048-9977
https://orcid.org/0000-0002-5768-4007
https://en.wikipedia.org/wiki/Implicit_data_structure
http://www.muni.cz/people/1648
http://www.muni.cz/people/3692
http://www.muni.cz/people/60380
http://raslan2023.nlp-consulting.net/


114 O. Sojka and P. Sojka

𝑂(1) for both tree-based solutions (constant 𝐶 is the tree depth to locate values
in the list or hash computation time) and space in 𝑂(𝐷), e.g. linear in dictionary
storage size 𝐷. Absolute value of 𝐶 and linear coefficient for 𝐷 are important.

In TEX, a solution to the dictionary problem is used for hyphenation. For a
given key, e.g. a word to be hyphenated, the values are the positions of a word
where hyphenation may occur. To minimize the storage size of ever-growing
dictionaries Frank Liang designed the competing pattern technology for TEX [6].
The dictionary problem is decomposed in such a way that word segmentation
is stored in the competing patterns generated from the already hyphenated
wordlist.

Recently, the unreasonable effectiveness of pattern generation [10] has been
shown. It is possible to use hyphenation patterns to solve the dictionary problem
even for several languages without compromise. Also, multiple languages could
be covered in the same set of patterns [12,7]. All these developments trigger the
necessity of effectiveness and of bringing new solutions.

In this article, we show the effectiveness of patgen for the generation of the
Czechoslovak hyphenation patterns that are close to being optimal.

The paper is structured as follows. We describe competing patterns in Sec-
tion 2. We define pattern development processes in machine learning nomencla-
ture and define metrics for rigorous evaluation of dictionary problem solutions
by competing patterns in Section 3. Section 4 shows an experiment with the
hyphenation model development and dataset cleaning. Experiment with grid
search of parameter generation and the achieved results are in Section 5. We
show that designed techniques and the grid search of parameter generation lead
to the development of hyphenation patterns with effectiveness improvements
and space savings on the use case of Czechoslovak hyphenation patterns.

Finally, we describe the potential for future work in Section 6 and conclude
by Section 7.

“All fixed set patterns are incapable of adaptability or pliability.
The truth is outside of all fixed patterns.” – Bruce Lee

2 Competing Patterns

Frank Liang [6] designed an efficient solution to a dictionary problem with
competing patterns. Patterns are generated from the dictionary in the form of
an already hyphenated wordlist with program patgen. [3]

Generation is decomposed into phases called levels. In each level, all charac-
ter patterns in the range of length are considered. Patterns added in odd levels
are covering, they add new hyphenation points given the letter context, while in
even levels and inhibiting, e.g. forbid hyphenation points. Iteration of covering
and inhibiting levels creates a hierarchy of exceptions. The patterns generated
in odd levels compete with those generated in even levels whether to hyphenate
or not.

The key to having both high-coverage and small sets of patterns with no
bad hyphenation point allowed lies in the setting of thresholds for each level



Towards Perfection of Machine Learning of Competing Patterns 115

that decide whether patterns will or will not be included in the final set of
patterns. [8]

An example of competing patterns generation from the Czechoslovak
wordlist of cca 600,000 hyphenated words (8.5 MB) is in [11, Table 2]. The gener-
ated pattern dictionary of 8,231 patterns has a size of 45 kB. Patterns loaded into
RAM in the packed trie data structure are even smaller, reaching a compression
ratio of around 2000:1. The hyphenation value for the input word is found in the
constant time of several instructions needed to reach the list of trie storing the
pattern.

The competing pattern generation technique thus maps the dictionary prob-
lem of storing the hyphenation point for all words of language into the dictio-
nary problem of storing orders of magnitude smaller sets of short patterns.

Another crucial advantage of pattern-based solution is that short patterns
learn hyphenation rules that are applicable to words not seen during training.
As new words steadily appear in natural languages, learning hyphenation rules
rather than hyphenated wordlist brings new generalization properties.

“In God we trust, all others bring data.” — W Edwards Deming

3 Evaluation Metrics

The preparation of patterns from a wordlist is a typical supervised machine
learning solution to dictionary problems.

There are four numbers in the confusion matrix (also called contingency
table) that compare hyphenation point prediction by patterns with the ground
truth expressed in the wordlist: true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN). In the evaluation results, we report
several metrics:

Good sum or percentage of found hyphenation points as a TP,
Bad sum or percentage of badly suggested hyphenation points (FP, type 1

error),
Missed sum or percentage of missed hyphenation points (FN, type 2 error),
Precision defined as Good

Good+Bad = TP
TP+FP ,

Recall defined as Good
Good+Missed = TP

TP+FN ,

F-score, 𝐹𝛽 defined as 𝐹𝛽 = (1 + 𝛽2) ⋅ Precision⋅Recall
(𝛽2⋅Precision)+Recall = (1+𝛽2)⋅TP

(1+𝛽2)⋅TP+𝛽2⋅FN+FP ,
where a positive real factor 𝛽 is chosen such that Recall is considered 𝛽 times
as important as Precision.

As Precision is much more important than Recall, we report 𝐹1/7 and 𝐹1/77: type
1 errors are more severe than type 2 errors in our hyphenation points setup.

Nonzero Bad or Missed results do not necessarily mean that the patterns
performed badly, the opposite is often the case – patterns have found a rule that
is not obeyed in the ground truth wordlist. In other words, the patterns found



116 O. Sojka and P. Sojka

an inconsistency that needs to be fixed in the underlying wordlist, rather than a
valid exception.

There are two main parts of the machine learning (ML) solution: model de-
velopment and model evaluation. The practice of manually inspecting and fix-
ing bad hyphenation points has been used during the model development of
the wordlist so that the data do not contradict each other. Precision, sometimes
called coverage, tells how many hyphenation points used in training were cor-
rectly predicted by the patterns.

The model evaluation of the quality of developed patterns could be done
with the same metrics as for the model development of a hyphenated wordlist.

Evaluation of generalization properties, e.g. how the patterns behave on
unseen data, has to be done on the words not available in the data used during
patgen training. The dataset has to be split into non-overlapping training and
validation test sets.

To assess the generalization properties, we used 10-fold cross-validation, leav-
ing validation dataset – one-tenth out of the training set – to evaluate the effec-
tiveness metrics of the patterns on unseen words.

There are other effectiveness metrics that could be measured in the dictio-
nary task:

speed of getting values for the given key (word), and
size size of data structure to store keys (words, patterns).

The above metrics computed for our use case of Czechoslovak patterns are
reported in tables 2 and 3. It is clear that when adding 33 bad hyphenation points
as full word patterns, the coverage is 99.99% with no error on seen words and
only 0.15% error rate on unseen new words.

It has been proven that the task of creating the minimal pattern set is NP-
complete [9].

“Pleasure in the job puts perfection in the work.” – Aristotle

4 Dataset Consistency for Model Development

Even though the previous results testify to unreasonable effectiveness [10], we
have designed a model development task by improving consistency of syllable
markup. The rationale is that when inconsistent hyphenation points are marked
in the data, more patterns are needed to cover all those idiosyncrasies.

Natural language is in continual development. In Czech and Slovak, some
compound words like roz-um are no longer considered compounds with hy-
phenation points separating constituent words. Instead, syllabic hyphenation
ro-zum is preferred.

Further, syllabic rules hold also near the word border, while it is forbidden
to hyphenate so that a single character is cut during hyphenation.

We have semiautomatically filtered 25,273 words that start with one charac-
ter vowel syllable (aeiouy), and added a hyphenation point after it in patgen



Towards Perfection of Machine Learning of Competing Patterns 117

Table 1. Pattern generation parameters: statistics from the generation of Czechoslovak
hyphenation patterns in 2020 [11] with correct optimized patgen generation parameters
(correctopt2020)

Level Patterns Good Bad Missed Lengths Params

1 2,032 2,800,136 242,962 55,605 1 3 1 5 1
2 2,009 2,791,326 10,343 64,415 1 3 1 5 1
3 3,704 2,855,554 11,970 187 2 6 1 3 1
4 1,206 2,854,794 33 947 2 7 1 3 1

Table 2. Coverage and Effectiveness: comparison of the efficiency of different settings to
generate Czechoslovak patterns in 2020 [11]

Word list Parameters Good Bad Missed Size Patterns

2020 custom2020 99.67% 0.00% 0.33% 40 kB 7,417
2020 correctopt2020 99.99% 0.00% 0.01% 45 kB 8,231
2020 sizeopt2020 99.87% 0.03% 0.13% 32 kB 5,907

Table 3. Generalization: results of 10-fold cross-validation with evaluated parameters

Wordlist Parameters Good Bad Missed

2020 custom2020 99.85% 0.22% 0.15%
2020 correctopt2020 99.95% 0.15% 0.05%
2020 sizeopt2020 99.58% 0.18% 0.42%

wordlist. These points are typically filtered out during typesetting by setting
of both hyphenmin registers to 2. We call the new wordlist dataset model
2023uniqlr1: it comes with slightly changed syllable markup and word dedu-
plication.

The results are provided in tables 4 and 5 on the following page. The change
gives better coverage metrics but slightly worse generalizations, probably be-
cause of introducing other inconsistencies.

“If I had more time I would have written you a shorter letter.”
– Blaise Pascal

5 Parameter Optimization of Pattern Generation

The quality and effectiveness of generating patterns depend on parameters of
patgen for generation. There is not much insight and heuristics on how to set up
patgen parameters. The most basic hyperparameter tuning method is setting a
grid search. Grid search is a method to perform hyperparameter optimization,
that is, it is a method to find the best combination of hyperparameters. Given



118 O. Sojka and P. Sojka

Table 4. The effect of consistency: statistics from the generation of Czechoslovak hyphen-
ation patterns with consistent syllable markup added for one character syllables at the
beginning of words and \lefthyphenmin and \righthyphenmin set to 1 (patgen genera-
tion parameters (correctopt2020))

Level Patterns Good Bad Missed Lengths Params

1 2,675 1,605,899 127,339 61,344 1 3 1 5 1
1 1,505 1,604,012 1,883 63,231 1 3 1 5 1
3 4,289 1,667,204 5,390 39 2 6 1 3 1
4 723 1,666,990 3 253 2 7 1 3 1

Table 5. The effect of consistency on generalization: results of 10-fold cross-validation
with evaluated parameters

Parameters Good Bad Missed Size Patterns Precision 𝐹1/7

custom2020 99.40% 0.75% 0.60% 29 kB 5,124 0.9925 0.9925
correctopt2020 99.57% 0.83% 0.42% 50 kB 8,384 0.9916 0.9917
sizeopt2020 99.11% 0.72% 0.88% 35 kB 5,955 0.9927 0.9927

Table 6. Parameters found by grid search on wordlist dataset model 2023uniqlr1.
Generalization metrics: Good: 99.60%, Bad: 0.86%, Missed: 0.40%, Precision: 0.9914,
Recall: 0.9960, F-Score (𝛽 = 1/7): 0.9915, F-Score (𝛽 = 1/77): 0.9914

Level Patterns Good Bad Missed Lengths Params

1 2,216 1,615,261 187,508 51,982 1 3 1 4 1
2 1,726 1,612,057 1,896 55,186 1 3 1 4 1
3 4,198 1,667,198 2,647 45 2 6 1 4 1
4 474 1,667,112 0 131 2 7 1 4 1

the exponential growth of setting combinations, at least hopeful parameter
combinations are evaluated.

In tables 6 and 7 we report the best pattern generation parameters found
in our limited grid search. By changing the linear factor of the number of bad
hyphenation points we achieved our best setup with F1/7-scores above .9916.



Towards Perfection of Machine Learning of Competing Patterns 119

Table 7. Parameters found by grid search on wordlist dataset model 2023uniqlr1.
Generalization metrics: Good: 99.58%, Bad: 0.86%, Missed: 0.42%, Precision: 0.9915,
Recall: 0.9958, F-Score (𝛽 = 1/7): 0.9916, F-Score (𝛽 = 1/77): 0.9915

Level Patterns Good Bad Missed Lengths Params

1 1,889 1,625,346 276,301 41,897 1 3 1 3 1
2 1,872 1,620,864 4,504 46,379 1 3 1 4 1
3 3,886 1,667,204 5,414 39 2 6 1 3 1
4 729 1,666,973 0 270 2 7 1 4 1

“While AI programs try to understand sentences by analyzing word patterns,
we try to hyphenate words by analyzing letter patterns.” – Frank Liang [6, page 42]

6 Future Work

The feasibility of universal patterns that comprise information for several lan-
guages has been confirmed in [7]. Extending Czechoslovak dataset for other
Slavic languages, and generating universal Slavic hyphenation is in progress.

A grid search strategy might be found to minimize the size of the pattern set.
The success of reduction of the minimal set cover problem to a dictionary prob-
lem solvable with competing patterns would lead to the falling of algorithmic
barriers [5]. We are trying to find a monotonous ordering of the set of subsets
that minimally covers the original set with methods from [2]. Is P=NP?

“But in the endgame of life, I fundamentally believe the key to happiness
is letting go of that idea of perfection.” – Debra Messing

7 Conclusion

We have studied the possibilities for improvement of machine learning of
competing patterns. We have confirmed the necessity of model development
and consistency markup in the input dataset. We have shown that techniques
like grid search may improve efficiency even further.

We have used the techniques for the development of Czechoslovak hyphen-
ation patterns. The patterns have been deposited on the LINDAT repository
https://lindat.cz.

Acknowledgement This work has been partly supported by the Ministry of
Education of CR within the LINDAT-CLARIAH-CZ infrastructure LM2023062.
We are indebted to Don Knuth for the questioning that has led us in this
research direction. Firstly, questioned the common properties of Czech and
Slovak hyphenation during our presentation of [10] at TUG 2019. Secondly, he
mentioned the P=NP problem during his talk at the Faculty of Informatics MU
the same year [13].

https://lindat.cz


120 O. Sojka and P. Sojka

References

1. Franceschini, G., Grossi, R., Munro, J., Pagli, L.: Implicit B-trees: a new data structure
for the dictionary problem. Journal of Computer and System Sciences 68(4), 788–807
(2004). https://doi.org/https://doi.org/10.1016/j.jcss.2003.11.003, special Issue on
FOCS 2002

2. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics. Addison-Wesley,
Reading, MA, USA (1989)

3. Haralambous, Y.: A Revisited Small Tutorial on Patgen, 28 Years After. In elec-
tronic form, available from CTAN as info/patgen2.tutorial (Mar 2021), https://
mirrors.nic.cz/tex-archive/info/patgen2-tutorial/patgen2-tutorial.pdf

4. Knuth, D.E.: Sorting and Searching, The Art of Computer Programming, vol. 3. Ad-
dison-Wesley, third edn. (1998)

5. Knuth, D.E., Daylight, E.G.: Algorithmic Barriers Falling: P=NP? Lonely Scholar,
Geel, Belgium (2014)

6. Liang, F.M.: Word Hy-phen-a-tion by Com-put-er. Ph.D. thesis, Dept. of Computer
Science, Stanford University (Aug 1983), https://tug.org/docs/liang/liang-
thesis.pdf

7. Sojka, O., Sojka, P., Máca, J.: A roadmap for universal syllabic segmentation. TUGboat
44(2) (2023), https://doi.org/10.47397/tb/44-2/tb137sojka-syllabic

8. Sojka, P.: Competing Patterns for Language Engineering. In: Sojka, P., Kopeček, I.,
Pala, K. (eds.) Proceedings of the Third International Workshop on Text, Speech
and Dialogue—TSD 2000. pp. 157–162. LNAI 1902, Springer-Verlag, Brno, Czech
Republic (Sep 2000). https://doi.org/10.1007/3-540-45323-7_27

9. Sojka, P.: From Minds to Pixels and Back (Habilitation Thesis). Masaryk University,
Brno (Apr 2008)

10. Sojka, P., Sojka, O.: The Unreasonable Effectiveness of Pattern Generation. TUGboat
40(2), 187–193 (2019), https://tug.org/TUGboat/tb40-2/tb125sojka-patgen.pdf

11. Sojka, P., Sojka, O.: Towards New Czechoslovak Hyphenation Patterns. Zpravodaj
𝐶𝑆TUG 30(3–4), 118–126 (2020). https://doi.org/10.5300/2020-3-4/118, https://
cstug.cz/bulletin/pdf/2020-3-4.pdf#page=16

12. Sojka, P., Sojka, O.: New Czechoslovak Hyphenation Patterns, Word Lists, and Work-
flow. TUGboat 42(2) (2021), https://doi.org/10.47397/tb/42-2/tb131sojka-
czech

13. Szaniszlo, T.: Dva bloky otázok a odpovedí od Donalda Knutha na FI MU. (Two
questions and answers sessions by Donald Knuth at FI MU). Zpravodaj 𝐶𝑆TUG 30(1–
2), 64–97 (2020). https://doi.org/10.5300/2020-1-2/64

https://doi.org/https://doi.org/10.1016/j.jcss.2003.11.003
https://mirrors.nic.cz/tex-archive/info/patgen2-tutorial/patgen2-tutorial.pdf
https://mirrors.nic.cz/tex-archive/info/patgen2-tutorial/patgen2-tutorial.pdf
https://tug.org/docs/liang/liang-thesis.pdf
https://tug.org/docs/liang/liang-thesis.pdf
https://doi.org/10.47397/tb/44-2/tb137sojka-syllabic
https://doi.org/10.1007/3-540-45323-7_27
https://tug.org/TUGboat/tb40-2/tb125sojka-patgen.pdf
https://doi.org/10.5300/2020-3-4/118
https://cstug.cz/bulletin/pdf/2020-3-4.pdf#page=16
https://cstug.cz/bulletin/pdf/2020-3-4.pdf#page=16
https://doi.org/10.47397/tb/42-2/tb131sojka-czech
https://doi.org/10.47397/tb/42-2/tb131sojka-czech
https://doi.org/10.5300/2020-1-2/64

	Introduction
	Competing Patterns
	Evaluation Metrics
	Dataset Consistency for Model Development
	Parameter Optimization of Pattern Generation
	Future Work
	Conclusion

