
TUGboat, Volume 44 (2023), No. 2 draft: August 4, 2023 15:43 1

A Roadmap for Universal Syllabic
Segmentation

Ondřej Sojka, Petr Sojka, Jakub Máca

Abstract

Space- and time-effective segmentation (word hy-
phenation) of natural languages remain at the core
of every document rendering system, be it TEX, web
browser, or mobile operating system. In most lan-
guages, segmentation mimicking syllabic pronuncia-
tion is a pragmatic preference today.

As language switching is often not marked in
rendered texts, the typesetting engine needs univer-
sal syllabic segmentation. In this article, we show
the feasibility of this idea by offering a prototypical
solution to two main problems:
A) Patgen generation process for several languages

at once;
B) no wide character support in tools like Patgen

or TEX hyphenation, e.g. internal Unicode com-
pliance is missing.
For A), we have applied it to generating univer-

sal syllabic patterns from wordlists of nine syllabic, as
opposed to etymology-based, languages. For B), we
have created a version of Patgen that uses the Judy
array data structure and compared its effectiveness
with the trie implementation.

With the data from nine languages (Czech, Slo-
vak, Georgian, Greek, Polish, Russian, Turkish, Turk-
men, and Ukrainian) we showed that
A) developing universal, up-to-date, high-coverage,

and highly generalized universal syllabic segmen-
tation patterns is possible, with high impact on
virtually all typesetting engines, including web
page renderers, and

B) bringing wide character support into the hyphen-
ation part of TEX suite of programs is possible
by using the Judy array.

1 Motivation

Justified alignment achieved with quality hyphen-
ation algorithm is both optically pleasing and saves
time to read, in addition to saving trees. Only quality
hyphenation allow interword spaces to be as uniform
as possible, close to Gutenberg’s ideal of space of
fixed width. High coverage, space- and time-effective
hyphenation (segmentation) algorithm of all natu-
ral languages is badly needed1 as it remains at the
core of every document rendering system, be it TEX,
web browser supporting HTML with CSS3, or an

1 https://bugzilla.mozilla.org/show_bug.cgi?id=
672320

operating system providing text rendering for mobile
applications.

In most languages, segmentation mimicking syl-
labic pronunciation is pragmatically preferred today.
As language switching is often not marked in ren-
dered texts, and cannot be safely guessed only from
words themselves, language-agnostic orthographic
syllabification, is needed. We call this task univer-
sal syllabic segmentation, or in short, syllabification
problem.

The syllabification problem has been tackled by
several finite state [2] or machine learning techniques
recently [11, 1, 22, 14]. Bartlett et al. [1] uses struc-
tured support vector machines (SVM) to solve syllabi-
fication as tagging problem. Krantz et al. [6] leverage
modern neural network techniques with long short-
term memory (LSTM) cells, a convolutional compo-
nent, and a conditional random field (CRF) output
layer, and demonstrated cross-linguistic generaliz-
ability, syllabifying English, Dutch, Italian, French,
Manipuri, and Basque datasets together.

From an orthographic viewpoint (hyphenation),
universal language solutions today should reflect the
Unicode standard [21]. Internal UCS-2 (two byte)
Unicode compliance, a must in today’s operating
systems and applications, is missing in TEX fam-
ily of programs, e.g. in Patgen or TEX itself. The
internal processing is thus limited by the internal
one-byte representation of language characters and is
hardwired into the optimized code of these programs.
Therefore processing languages with huge alphabets
(Chinese, Japanese, Korean) and sets of languages
whose character representations need wide character
support is close to impossible. Special “hacks” are
needed for character and font encodings both on
the input side (package inputenc) and output side
(packages fontenc or fontspec) are not backed by
wide character support internally.

The problem arises both in typesetting texts in
these languages that need automated hyphenation
for words using wide character representation. Both
TEX and Patgen have hardwired 8-bit character rep-
resentation. To develop practically useable universal
syllabic hyphenation, one needs to overcome these
constraints.

In this paper we a) constructively show the fea-
sibility of preparation of universal syllabic patterns,
b) demonstrate the version of Patgen with wide
character support, and c) discuss further steps to do
in TEX program suite to make language hyphenation
“Unicode compliant”.

The paper is structured as follows. In Section 2
we set the terminology and describe language data
we have used in our experiments. Section 3 reminds

doi.org/10.47397/tb/44-2/main

A Roadmap for Universal Syllabic Segmentation

https://en.wikipedia.org/wiki/Wide_character
https://en.wikipedia.org/wiki/Judy_array
https://en.wikipedia.org/wiki/Judy_array
https://bugzilla.mozilla.org/show_bug.cgi?id=672320
https://bugzilla.mozilla.org/show_bug.cgi?id=672320
https://en.wikipedia.org/wiki/Wide_character
https://doi.org/10.47397/tb/44-2/main

2 draft: August 4, 2023 15:43 TUGboat, Volume 44 (2023), No. 2

the reader about the principles of the hyphenation
algorithm in TEX and of Patgen-based pattern gen-
eration and pattern representation possibilities. Sec-
tion 4 evaluates the experiments with universal pat-
tern generation. In Section 5 we elaborate on the
possible routes towards wide character support in
the typesetting engines and Patgen. As usual, we
sum up and conclude in the final Section 6.

“The concept of the syllable is cross-linguistic, though
formal definitions are rarely agreed upon, even within

a language. In response, data-driven syllabification
methods have been developed to learn from syllabified

examples. . . . Syllabification can be considered a
sequence labeling task where each label delineates

the existence or absence of a syllable boundary.” [6].

2 Syllabification

Human beings convey the meaning by pronouncing
words as sequences of phonemes. Phonology stud-
ies the structure of phonemes we are able to pro-
nounce as syllables [10]. Etymologically, a syllable
is an Anglo-Norman variation of Old French sillabe,
from Latin syllaba, from Greek συλλαβή syllabē “that
which is held together; a syllable, several sounds or
letters taken together” to make a single sound. [3]

When we delineate boundaries in the ortho-
graphic representation of words, we speak about
hyphenation of words as sequences of characters.

2.1 Hyphenation as syllabification

There are subtle differences between syllabification
and hyphenation, though. Let us take the Czech
word sestra. The Czech language authorities [23]
allow hyphenations as se-s-t-ra, while agreeing that
there are only two syllables based on Consonant and
Vowel sequencing: either se-stra (CV-CCCV), or ses-
tra (CVC-CCV), or sest-ra (CVCC-CV). Similarly
as with hyphenation, defining segments for syllab-
ification is full of exceptions. The Czech sentence
Strč prst skrz krk or word scvrnkls (CCCCCCCC)
contain consonants-only syllables.

There are also rare cases where word segmen-
tation should differ in different contexts. It may be
necessary within one language (different hyphenation
re-cord and rec-ord depending on part-of-speech), or
in different languages. When developing universal
syllabic patterns, these theoretically possible segmen-
tations should not be allowed in the input hyphen-
ated wordlist in training. But this should not matter,
as e.g. implicit Liang’s hyphen.tex patterns do not
cover more than 10% of positions [8] and nobody
complains about this coverage.

2.2 Data Preparation

To show the feasibility of universal pattern gener-
ation, we have collected wordlists of dozen of lan-
guages as shown in Table 1. The picked languages
that a) have a wide diversity in alphabets and syl-
lables and b) have existing hyphenation patterns
as an approximation for syllable segments. The
wordlists were collected from public sources or pro-
vided for our research as stratified dictionaries from
TenTen corpora [4] by Lexical Computing. In the
wordlist sorted by frequency cut at low 5% of word
occurrences to eliminate typos appearing in docu-
ments. Each tenth word was taken into a wordlist —
a stratified sampling technique inspired by Knuth [5]
that was already used successfully in pattern gen-
eration [20]. Wordlists were hyphenated by legacy
patterns, mostly taken from [13].

Alphabet analysis and statistics are shown in
Table 2. Total number of characters appearing in
all languages exceeds 245, the maximum number
of characters that current Patgen could cope with.
That is why wide-char representation (of Unicode
UCS-2 type) support in Patgen (and then in the
hyphenator library in a typesetting engine) would be
needed to extend our generation to more languages.

3 Pattern development

The idea of squeezing the hyphenated wordlist into
the set of patterns was coined in the dissertation of
Frank Liang [8] supervised by Don Knuth. For the
automated generation of patterns from a wordlist,
he wrote the Patgen program. Patgen was one of
the very first approaches that harnessed the power of
data with supervised machine learning. Programmed
originally to support English and ASCII, it was later
extended to be used for 8 bit characters and for
wordlists that contain at most 245 characters [9].
It is capable of efficient lossy or lossless compression
of hyphenated dictionary with several orders of mag-
nitude compression ratio. Generated patterns have
minimal length, e.g., the shortest context possible,
which results in their generalization properties.

Generally, exact lossless pattern minimization
is non-polynomial by reduction to the minimum set
cover problem [16]. For Czech, exact lossless pattern
generation is feasible [17], while reaching 100% cov-
erage and simultaneously no errors. Strict pattern
minimality (size) is not an issue nowadays.

Ondřej Sojka, Petr Sojka, Jakub Máca

TUGboat, Volume 44 (2023), No. 2 draft: August 4, 2023 15:43 3

Table 1: Language resources and patterns used in pattern development experiments.
All data have been converted to UTF-8 encoding and contain lowercase alphabetic
characters only. Alphabet size (# chars) counts characters appearing in the language
wordlist collected. Languages were chosen by the diversity in the size of patterns,
syllables

Language # words # chars # patterns # syllables pattern source, alphabet

Czech+Slovak (cz+sk) 606,499 47 8,231 2,288,413 [19] correct optimized parameters, Latin
Georgian (ka) 50,644 33 2,110 224,799 [13] tex-hyphen repo, Georgian
Greek (el-monoton) 10,432 48 1,208 37,736 [13] tex-hyphen repo, Greek
Panjabi (pa) 892 52 60 2,579 [13] tex-hyphen repo, Gurmukhi
Polish (pl) 20,490 34 4,053 65,510 [13] tex-hyphen repo, Latin
Russian (ru) 19,698 33 4,808 75,532 [13] tex-hyphen repo
Tamil (ta) 46,526 48 71 209,380 [13] tex-hyphen repo, Tamil
Telugu (te) 28,849 66 72 125,508 [13] tex-hyphen repo, Telugu
Thai (th) 757 64 4,342 1,185 [13] tex-hyphen repo, Thai
Turkish (tr) 24,634 32 597 103,989 [13] tex-hyphen repo, Latin
Turkmen (tk) 9,262 30 2,371 33,080 [13] tex-hyphen repo, Latin
Ukrainian (ua) 17,007 33 1,990 65,099 [13] tex-hyphen repo, Cyrillic

Table 2: Language alphabet overlaps. Cells contain the number of lowercase
characters that overlap between languages. In total, 13 languages contain in total
412 different lowercase characters, more than Patgen is capable of digesting.

Language cz+sk ka el pa pl ru ta te th tr tk ua

Czech+Slovak (cz+sk) 47 0 0 0 26 0 0 0 0 25 28 0
Georgian (ka) 0 33 0 0 0 0 0 0 0 0 0 0
Greek (el-monoton) 0 0 48 0 0 0 0 0 0 0 0 0
Panjabi (pa) 0 0 0 52 0 0 0 0 0 0 0 0
Polish (pl) 26 0 0 0 34 0 0 0 0 23 22 0
Russian (ru) 0 0 0 0 0 33 0 0 0 0 0 29
Tamil (ta) 0 0 0 0 0 0 48 0 0 0 0 0
Telugu (te) 0 0 0 0 0 0 0 66 0 0 0 0
Thai (th) 0 0 0 0 0 0 0 0 64 0 0 0
Turkish (tr) 25 0 0 0 23 0 0 0 0 32 25 0
Turkmen (tk) 28 0 0 0 22 0 0 0 0 25 30 0
Ukrainian (ua) 0 0 0 0 0 29 0 0 0 0 0 33

A Roadmap for Universal Syllabic Segmentation

4 draft: August 4, 2023 15:43 TUGboat, Volume 44 (2023), No. 2

The idea and its realization is a programming
pearl. Motivated by space and time constraints, in-
stead of the classical solution of dictionary problem
in the logarithmic time of dictionary size, the word
hyphenation is computed from patterns in constant
time, where the constant is given by word length. It
is capable of efficient lossy or lossless compression
of hyphenated dictionary with a compression ratio
of several orders of magnitude. Generated patterns
have minimal length, e.g., the shortest context possi-
ble, which results in their generalization properties.

Generally, exact lossless pattern minimization
is non-polynomial by reduction to the minimum set
cover problem [16]. For Czech, exact lossless pattern
generation is feasible [17], while reaching 100% cov-
erage and simultaneously no errors. Strict pattern
minimality (size) is not an issue nowadays.

Space needed for patterns in the packed trie data
structure is typically in tens of kB, which is several
orders of magnitude smaller than the wordlist size.
With fine-tuned parameters of pattern generation in
the so-called levels, one could prepare patterns with
zero errors and almost full coverage of hyphenation
points from the input dictionary.

The patterns are collected in the repository
maintained by the TEX community [13]. It is no
surprise that most, if not all leading typesetting
engines deploy this “competing pattern engineering
technology” [15].

3.1 Patterns

The patterns “compete” with each other whether to
split the word at a position, given varying characters
in both side contexts, see Figure 1.

We have shown how effective and powerful the
technique is, and that its power depends on the pa-
rameters of pattern generation. [17] The key is the
proper setting of Patgen parameters for pattern gen-
eration. The universality idea of segmentation with
Patgen has been coined already in [18]. Then we
actually demonstrated the techniques for the devel-
opment of two languages together, Czech and Slovak,
and developed a joint wordlist and patterns [19].

We thought of extending the technique to other
Slavic and syllabic languages. The bottleneck for
adding new languages was Patgen and TEX´s con-
straint of one-byte character support only for storing
patterns in tries. We thought of using a modern data
structure that would allow wide char trie representa-
tion. That was the task for the bachelor thesis Judy:
[12].

3.2 Judy array

Judy array, also known as simple Judy, is a data
structure that implements a sparse dynamic array,
allowing for versatile applications such as a dynam-
ically sized array or an associative array. Judy is
internally implemented as a tree structure, where ev-
ery internal node has 256 ancestor nodes. The most
interesting thing about this structure is that it tries
to be as memory efficient as possible by effectively
using cache and avoiding unnecessary access to main
memory. As a result, Judy array is fast and memory
efficient.

The feasibility of utilizing the Judy structure for
storing hyphenation patterns is demonstrated in the
thesis [12]. In Chapter 4, it is shown that Judy has
the potential to be faster and more memory-efficient
compared to Trie when working with patterns. Fur-
thermore, Chapter 5 explores the potential integra-
tion of Judy into Patgen and the consequent impact
on Patgen’s generation process. The results from this
chapter indicate that rewriting Patgen with Judy
is possible but would require an almost complete
overhaul of Patgen s code and algorithms. This re-
development would yield a Patgen version capable
of handling input of any kind, enabling the gener-
ation of patterns composed of arbitrary alphabets.
However, it is important to note that the generation
process would be approximately four times slower
than the current implementation. This is due to
the hiding of access to the inner nodes of stored
tries in Judy. As this access is not needed in TEX
for the hyphenation of individual words, using Judy
in some variant of TEX successor would make the
hyphenation faster.

3.3 Universal pattern generation

To pursue the idea of universal syllabic pattern gen-
eration, we have checked whether the legacy patterns
hyphenate the same word valid in different languages
differently. The result with a short discussion is in
Table 3 on the facing page. The expectation that
syllable forming principles are universal as phonol-
ogy theory confirms, and the errors we have found
were due to the difference between hyphenation and
syllabification caused by inconsistent markup rather
than a principled difference in the word morphology,
e.g. compound word segmentation in one language
and a single word in the other.2

2 Compound word could evolve in perception as a single
word even in language itself. As examples may serve evolution
of e-mail into email or roz-um into syllabic ro-zum in Czech.

Ondřej Sojka, Petr Sojka, Jakub Máca

TUGboat, Volume 44 (2023), No. 2 draft: August 4, 2023 15:43 5

h y p h e n a t i o n
p1 1n a
p1 1t i o n
p2 n2a t
p2 2i o
p2 h e2n
p3 h y3p h
p4 h e n a4
p5 h e n5a t

h0y3p0h0e2n5a4t2i0o0n

hy-phen-ation → 2 6
. . .→ . . .
. . .→ . . .
key → data

Solution to the dictionary problem:
For key part (the word) to store
the data part (its division)

Figure 1: 8 patterns “compete” how to hyphenate hyphenation. Winners are patterns
hy3ph and hen5at generated at the highest covering level (odd numbers) generation.
Level hierarchy allows for storing exceptions, exceptions to exceptions, exceptions to
exceptions to exceptions,. . . , with character contexts as parameters. [8]

Table 3: Different word hyphenations overlaps. Cells contain the number of same
words that are segmented differently between languages. Differences are caused
typically by suboptimal coverage patterns used to hyphenate wordlist (vi-bram vs.
vib-ram, up-gra-de vs. upg-ra-de). We remove the differently hyphenated words when
joining wordlists for the final syllabic generation.

Language cz+sk ka el pa pl ru ta te th tr tk ua

Czech+Slovak (cz+sk) 9 0 0 0 388 0 0 0 0 640 69 0
Georgian (ka) 0 0 0 0 0 0 0 0 0 0 0 0
Greek (el-monoton) 0 0 0 0 0 0 0 0 0 0 0 0
Panjabi (pa) 0 0 0 0 0 0 0 0 0 0 0 0
Polish (pl) 388 0 0 0 0 0 0 0 0 187 9 0
Russian (ru) 0 0 0 0 0 0 0 0 0 0 0 125
Tamil (ta) 0 0 0 0 0 0 0 0 0 0 0 0
Telugu (te) 0 0 0 0 0 0 0 0 0 0 0 0
Thai (th) 0 0 0 0 0 0 0 0 0 0 0 0
Turkish (tr) 640 0 0 0 187 0 0 0 0 0 80 0
Turkmen (tk) 69 0 0 0 9 0 0 0 0 80 0 0
Ukrainian (ua) 0 0 0 0 0 125 0 0 0 0 0 0

We removed all colliding words when joining
wordlists into the wordlist universal pattern genera-
tion — we collected words for nine languages (cz, sk,
ka, el, pl, ru, tr, tk a ua).

We generated universal patterns with the same
three sets of Patgen parameters (custom, correct
optimized, and size optimized) as when generating
Czechoslovak patterns. The results are at Tables 4
(custom), 5 (correct optimized) and 6 (size opti-
mized). The results are comparable with genera-
tion for two languages and confirm the feasibility of
universal pattern development.

We did not pursue 100% coverage at all costs
because the source data is noisy, and we do not want
the patterns to learn all the typos and inconsistencies.
Also, the size of the new languages was rather small,
compared to the Czechoslovak one.

4 Evaluation

We evaluated the quality of developed patterns by
two metrics. Coverage of hyphenation points in the
training word list tells how the patterns correctly
predicted hyphenation points used in training. Gen-
eralization means how the patterns behave on unseen
data, on words not available in the data used dur-
ing Patgen training. The methodology is the same
as we used in the development of Czechoslovak pat-
terns [19].

In Table 8, we compare the efficiency of dif-
ferent approaches to hyphenating 2 languages and
9 languages from one pattern set. We see that the
performance of universal patterns is comparable in
size and quality to double- or single-language ones —
there is only a negligible difference. The table shows
that generalization qualities, given the small input
size wordlists, are very good, and comparable to the

A Roadmap for Universal Syllabic Segmentation

6 draft: August 4, 2023 15:43 TUGboat, Volume 44 (2023), No. 2

Table 4: Statistics from the generation of universal patterns for cz+sk, ka, el, pl,
ru, tr, tk a ua with custom parameters and \lefthyphenmin=2, \righthyphenmin=2.
Generation took 33.23 seconds, 11,238 patterns, 77 kB.

Level Patterns Good Bad Missed Lengths Params

1 2,407 2,066,410 280,020 70,588 1 3 1 3 12
2 2,375 2,025,245 8,866 111,753 2 4 1 1 5
3 4,626 2,118,063 19,213 18,935 3 6 1 2 4
4 2,993 2,117,739 5,920 19,259 3 7 1 4 2

Table 5: Statistics from the generation of universal patterns for cz+sk, ka, el,
pl, ru, tr, tk a ua with correct optimized parameters and \lefthyphenmin=2,
\righthyphenmin=2. Generation took 35.43 seconds, 29,742 patterns, 219 kB.

Level Patterns Good Bad Missed Lengths Params

1 7,188 2,049,375 164,224 87,623 1 3 1 5 1
2 4,108 2,042,249 14,094 94,749 1 3 1 5 1
3 15,010 2,134,692 20,544 2,306 2 6 1 3 1
4 6,920 2,133,458 815 3,540 2 7 1 3 1

Table 6: Statistics from the generation of universal patterns for cz+sk, ka,
el, pl, ru, tr, tk a ua with size optimized parameters and \lefthyphenmin=2,
\righthyphenmin=2. Generation took 29.75 seconds, 14,321 patterns, 101 kB.

Level Patterns Good Bad Missed Lengths Params

1 1,201 2,092,928 598,321 44,070 1 3 1 2 20
2 2,695 1,736,372 5,274 400,626 2 4 2 1 8
3 4,835 2,102,803 20,094 34,195 3 5 1 4 7
4 6,508 2,099,607 210 37,391 4 7 3 2 1

fine-tuned Czechoslovak ones. Investing in the purifi-
cation and consistency of input wordlists (as we did
for Czech and Slovak) would result in near to perfect
syllabic patterns with almost 100% coverage and no
errors.

5 Future work

A natural further step is to merge further languages,
where the syllabic principle is used for hyphenation.
For that, one would need a version of Patgen we
provisionally call UniPatgen. This version would
support Unicode not only in I/O but also internally
as a wide char (UCS-2) character encoded in the pat-
tern representation in packed trie or in Judy array.
This would allow merging more languages without
increasing the computational complexity of hyphen-
ation, and only sublinear increase of pattern size. We
believe that coverage may differ from 100% only by
words that should be hyphenated differently in differ-
ent languages — our estimate is in small, single-digit

percents, while currently widely used hyphen.tex
patterns do not cover 10+%!

Another possible demanded extension in pattern
development is the support of a specific hyphenation
penalty for compound word borders. This extension,
discussed already 30 years ago [20], would generate
patterns first for compound words, and after fixing
them continue with pattern generation for all other
hyphenation points. ε-TEX would then set the hy-
phenation penalties depending on level ranges in
patterns found for the hyphenated word. This exten-
sion is orthogonal with support for universal patterns
but might need to increase the maximal number of
levels allowed in patterns to two digits.

There are several questions for the TEX devel-
opers’ community:

1. Should the universal syllabic patterns ever be
developed?

2. If so, should the needed wide char representa-
tions be added in the TEX suite of programs

Ondřej Sojka, Petr Sojka, Jakub Máca

TUGboat, Volume 44 (2023), No. 2 draft: August 4, 2023 15:43 7

Table 7: Comparison of the efficiency of different approaches to pattern generation of
Czechoslovak and of universal patterns. Note that the size of universal patterns grows
sublinearly with the number of languages. The generalization ability of universal
patterns is only slightly worse than that of Czechoslovak ones. The experience from
the development of Czechoslovak patterns shows that performance could be improved
by consistent markup of wordlist data.

Word list Parameters Good Bad Missed Size Patterns

Czechoslovak custom 99.87% 0.03% 0.13% 32 kB 5,907
Czechoslovak correctopt 99.99% 0.00% 0.01% 45 kB 8,231
Czechoslovak sizeopt 99.67% 0.00% 0.33% 40 kB 7,417
Universal custom 99.10% 0.28% 0.90% 77 kB 11,238
Universal correctopt 99.83% 0.04% 0.17% 219 kB 29,742
Universal sizeopt 98.25% 0.01% 1.75% 101 kB 14,321

Table 8: Results of 10-fold cross-validation (learning on 90%, and testing on
remaining 10%). Generalization properties (performance on words not seen during
training) are compared with Czechoslovak patterns. By adding 7 languages, the
generalization abilities of universal patterns are only slightly worse.

Wordlist Parameters Good Bad Missed

Czechoslovak custom 99.64% 0.22% 0.14%
Czechoslovak correctopt 99.81% 0.15% 0.04%
Czechoslovak sizeopt 99.41% 0.18% 0.40%
Universal custom 97.99% 1.06% 0.95%
Universal correctopt 98.10% 1.28% 0.62%
Universal sizeopt 97.50% 0.94% 1.56%

(TEX-based engines not yet supporting it3 and
Patgen or UniPatgen) internally?

3. If not, should it be handled by external seg-
menters on TEXs input, based on Patgen’s suc-
cessor as UniPatgen?

4. If UniPatgen would be developed, should it be
added to the distribution, together with Unicode
patterns included and supported in repositories
like [13]?

5. Should UniPatgen (and LuaTEX) add depen-
dence on a Judy library, or should a more con-
servative solution be sought and implemented?
With a conservative solution, which data struc-
ture to use for storing patterns? Should the
memory be allocated dynamically, to overcome
abundant explosion of format size that stores
the patterns during iniTEX phase?

6. Should UniPatgen (and ε-TEX) additionally and
orthogonally support patterns and different hy-
phenation penalty for compound word borders,
currently available in e.g. German wordlist [7]?

3 https://cs.overleaf.com/learn/latex/TeX_
primitives_listed_by_TeX_engine

We would appreciate qualified opinions on these de-
cisions being sent to authors.

“All we are saying, give patterns a chance.”
Our paraphrase of John Lennon’s protest song refrain

6 Conclusion

Preparation of language-agnostic, e.g. universal syl-
labic segmentation patterns could be done! We
have demonstrated this possibility by generating it
based on the wordlists of nine languages with cur-
rent Patgen. They can have superb generalization
qualities, high coverage of hyphenation points (more
than most legacy patterns), and virtually no errors.
Their use can have a high impact on virtually all
typesetting engines including web page renderers.

Supporting wide characters in Patgen is a show-
stopper for adding more languages. We have shown
that bringing wide character support into the hy-
phenation part of TEX suite of programs is possible
by using Judy array. It will allow to generate and
deploy patterns for the whole Unicode character sets.
We have discussed the possible roadmap to make

A Roadmap for Universal Syllabic Segmentation

https://cs.overleaf.com/learn/latex/TeX_primitives_listed_by_TeX_engine
https://cs.overleaf.com/learn/latex/TeX_primitives_listed_by_TeX_engine
https://en.wikipedia.org/wiki/Wide_character
https://en.wikipedia.org/wiki/Judy_array

8 draft: August 4, 2023 15:43 TUGboat, Volume 44 (2023), No. 2

this a reality in typesetting engines including TEX
successors.

Acknowledgments

We are indebted to Don Knuth for questioning the
common properties of Czech and Slovak hyphenation
during our presentation of [17] at TUG 2019, which
has led us in this research direction. We also thank
everyone whose shoulders we build our work on, e.g.
for wordlists by Lexical Computing, and to all who
commented on our work at TUG 2021 [19] and TUG
2023.

References
[1] S. Bartlett, G. Kondrak, C. Cherry. Automatic

Syllabification with Structured SVMs for
Letter-to-Phoneme Conversion. In Proceedings of
ACL-08: HLT, pp. 568–576, Columbus, Ohio, June
2008. ACL. https://www.aclweb.org/anthology/
P08-1065

[2] Y. Haralambous. New hyphenation techniques
in Ω2. TUGboat 27(1):98–103, 2006.
http://www.ftp.tug.org/TUGboat/Articles/
tb27-1/tb86haralambous-hyph.pdf

[3] Online etymology dictionary. "syllable".
https://www.etymonline.com/word/syllable

[4] M. Jakubíček, A. Kilgarriff, et al. The TenTen
Corpus Family. In Proc. of the 7th International
Corpus Linguistics Conference (CL), pp. 125–127,
Lancaster, July 2013.

[5] D.E. Knuth. 3 : 16 Bible texts illuminated. A-R
Editions, Inc., 1991.

[6] J. Krantz, M. Dulin, P.D. Palma.
Language-agnostic syllabification with
neural sequence labeling. CoRR abs/1909.13362,
2019. http://arxiv.org/abs/1909.13362

[7] W. Lemberg. A database of German
words with hyphenation information, 2023.
https://repo.or.cz/wortliste.git

[8] F.M. Liang. Word Hy-phen-a-tion by Com-put-er.
Ph.D. thesis, Department of Computer Science,
Stanford University, Aug. 1983. https:
//www.tug.org/docs/liang/liang-thesis.pdf

[9] F.M. Liang, P. Breitenlohner. PATtern GENeration
program for the TEX82 hyphenator. Electronic
documentation of PATGEN program version 2.3
from web2c distribution on CTAN, 1999.

[10] I. Maddieson. Syllable Structure. In The World
Atlas of Language Structures Online, M.S. Dryer,
M. Haspelmath, eds. Max Planck Institute
for Evolutionary Anthropology, Leipzig, 2013.
https://wals.info/chapter/12

[11] Y. Marchand, C.R. Adsett, R.I. Damper.
Automatic Syllabification in English:
A Comparison of Different Algorithms.
Language and Speech 52(1):1–27, 2009.
10.1177/0023830908099881

[12] J. Máca. Judy, May 2023. Bachelor Thesis
supervised by Petr Sojka and defended at
Masaryk University, Faculty of Informatics.
https://is.muni.cz/th/kru3j

[13] A. Rosendahl, M. Miklavec. TEX hyphenation
patterns, 2023. Accessed 2023-07-05.
http://hyphenation.org/tex

[14] Y. Shao, C. Hardmeier, J. Nivre. Universal
Word Segmentation: Implementation and
Interpretation. Transactions of the Association
for Computational Linguistics 6:421–435, 2018.
10.1162/tacl_a_00033

[15] P. Sojka. Competing Patterns for Language
Engineering. In Proceedings of the Third
International Workshop on Text, Speech and
Dialogue—TSD 2000, P. Sojka, I. Kopeček,
K. Pala, eds., LNAI 1902, pp. 157–162, Brno,
Czech Republic, Sept. 2000. Springer-Verlag.
10.1007/3-540-45323-7_27

[16] P. Sojka. Competing Patterns in Language
Engineering and Computer Typesetting. Ph.D.
thesis, Masaryk University, Brno, Jan. 2005.
https://www.researchgate.net/publication/
265246931_Competing_Patterns_in_Language_
Engineering_and_Computer_Typesetting/

[17] P. Sojka, O. Sojka. The Unreasonable Effectiveness
of Pattern Generation. TUGboat 40(2):187–193,
2019. https://tug.org/TUGboat/tb40-2/
tb125sojka-patgen.pdf

[18] P. Sojka, O. Sojka. Towards Universal
Hyphenation Patterns. In Proceedings of
Recent Advances in Slavonic Natural Language
Processing—RASLAN 2019, A. Horák, P. Rychlý,
A. Rambousek, eds., pp. 63–68, Karlova Studánka,
Czech Republic, 2019. Tribun EU. https:
//is.muni.cz/publication/1585259/?lang=en.
https://nlp.fi.muni.cz/raslan/2019/
paper13-sojka.pdf

[19] P. Sojka, O. Sojka. New Czechoslovak
Hyphenation Patterns, Word Lists, and
Workflow. TUGboat 42(2), 2021. https:
//doi.org/10.47397/tb/42-2/tb131sojka-czech

[20] P. Sojka, P. Ševeček. Hyphenation in TEX—
Quo Vadis? TUGboat 16(3):280–289, 1995.
https://tug.org/TUGboat/tb16-3/tb48soj1.pdf

[21] The Unicode Consortium. The Unicode Standard:
Worldwide Character Encoding. Version 15.0.
Unicode, Inc., Mountain View, CA, USA, 2022.
https://www.unicode.org/versions/Unicode15.
0.0

[22] N. Trogkanis, C. Elkan. Conditional Random
Fields for Word Hyphenation. In Proceedings
of the 48th Annual Meeting of the ACL,
pp. 366–374, Uppsala, Sweden, July 2010. ACL.
https://www.aclweb.org/anthology/P10-1038

Ondřej Sojka, Petr Sojka, Jakub Máca

https://www.aclweb.org/anthology/P08-1065
https://www.aclweb.org/anthology/P08-1065
http://www.ftp.tug.org/TUGboat/Articles/tb27-1/tb86haralambous-hyph.pdf
http://www.ftp.tug.org/TUGboat/Articles/tb27-1/tb86haralambous-hyph.pdf
https://www.etymonline.com/word/syllable
http://arxiv.org/abs/1909.13362
https://repo.or.cz/wortliste.git
https://www.tug.org/docs/liang/liang-thesis.pdf
https://www.tug.org/docs/liang/liang-thesis.pdf
https://wals.info/chapter/12
https://doi.org/
https://is.muni.cz/th/kru3j
http://hyphenation.org/tex
https://doi.org/
https://doi.org/
https://www.researchgate.net/publication/265246931_Competing_Patterns_in_Language_Engineering_and_Computer_Typesetting/
https://www.researchgate.net/publication/265246931_Competing_Patterns_in_Language_Engineering_and_Computer_Typesetting/
https://www.researchgate.net/publication/265246931_Competing_Patterns_in_Language_Engineering_and_Computer_Typesetting/
https://tug.org/TUGboat/tb40-2/tb125sojka-patgen.pdf
https://tug.org/TUGboat/tb40-2/tb125sojka-patgen.pdf
https://is.muni.cz/publication/1585259/?lang=en
https://is.muni.cz/publication/1585259/?lang=en
https://nlp.fi.muni.cz/raslan/2019/paper13-sojka.pdf
https://nlp.fi.muni.cz/raslan/2019/paper13-sojka.pdf
https://doi.org/10.47397/tb/42-2/tb131sojka-czech
https://doi.org/10.47397/tb/42-2/tb131sojka-czech
https://tug.org/TUGboat/tb16-3/tb48soj1.pdf
https://www.unicode.org/versions/Unicode15.0.0
https://www.unicode.org/versions/Unicode15.0.0
https://www.aclweb.org/anthology/P10-1038

TUGboat, Volume 44 (2023), No. 2 draft: August 4, 2023 15:43 9

[23] Internetová jazyková příručka (Internet
Language Reference Book), 2023. https:
//prirucka.ujc.cas.cz/?id=135

⋄ Ondřej Sojka
Faculty of Informatics, Masaryk Univ.,

Brno, Czech Republic
454904 (at) mail dot muni dot cz
ORCID 0000-0003-2048-9977

⋄ Petr Sojka
Faculty of Informatics, Masaryk Univ.,

Brno, Czech Republic
sojka (at) fi dot muni dot cz
https://www.fi.muni.cz/usr/sojka/
ORCID 0000-0002-5768-4007

⋄ Jakub Máca
Faculty of Informatics, Masaryk Univ.,

Brno, Czech Republic
514024 (at) mail dot muni dot cz
ORCID 0009-0008-1583-3183

A Roadmap for Universal Syllabic Segmentation

https://prirucka.ujc.cas.cz/?id=135
https://prirucka.ujc.cas.cz/?id=135

	Motivation
	Syllabification
	Hyphenation as syllabification
	Data Preparation

	Pattern development
	Patterns
	Judy array
	Universal pattern generation

	Evaluation
	Future work
	Conclusion

