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Abstract. With the exponential growth of information in the digital
form, information retrieval and querying digital libraries is of paramount
importance, and mathematical and technical STEM documents are not an
exception. The key for precise searching is the adequate and unambiguous
representation of documents, paragraphs, sentences and words, which we
are going to evaluate. We are presenting a roadmap to tackle the problem of
searching and question answering in the digital mathematical libraries, and
discuss the pros and cons of promising approaches primarily for the key
part, namely the document representation: several types of embeddings,
topic mixtures and LSTM. The listed representation learning options will
be evaluated at the next ARQMath evaluation lab of CLEF 2020 conference.

Keywords: math information retrieval, question answering, STEM, digital
mathematical libraries, embeddings, MIaS, MIaSNG, DML

“If not now, when?”
Chapters of the Fathers (Pirkei Avot, 1:14)

1 Introduction

Content is king. Content expressed in math formalism and formulae are often
crucial and non-negligible part of the content of science, technology, engineering,
and mathematics (STEM) papers. Mathematical formulae and diagrams, mostly
due to their inherent structure and complexity, used to be not taken into account
when processing the language of documents. Mathematical discourse, as a niche
market, was not supported by tools for indexing and searching, digitization, or
question answering.

There is already more than a decade of attempts to tackle the problem of
Math Information Retrieval (MIR) in the Digital Mathematical Libraries (DML):

Infty, 2003 first math optical character recognition (OCR) system. [45]
MathDex, 2006 first search engine ever indexing MathML. [26]
DML-CZ, 2005–2009 one of the first attempts to classify and categorize

mathematical knowledge [43] by automated means and tools: Gensim library
has been designed for the DML usage [34,35].
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DML workshop series, 2008–2011 first workshop series specifically targeted
for MIR and related problems.

EuDML, 2010–2013 first DML that deployed the MIaS search engine [41,42,52]
designed for searching math formulae, and developed tools like Web-
MIaS [20] specifically for the STEM domain.

NTCIR 10, 2013 first evaluation competition with a MIR task. [1]

Tangent, 2012–2014 first visual-based indexing (symbol layout tree) and search
engine, that is able to find any two dimensional mathematical and diagram-
matical structures. [28,38]

MCAT, Aizawa MIR group, 2016 first system to learn how to effectively com-
bine text and math for reranking. [14]

Equation embeddings, 2018 first joint embedding model that represents formu-
lae by taking into account surrounding texts. [15]

Tangent CFT, 2019 first formula embedding model that uses two hierarchical
representations: Symbol Layout Trees (SLTs) for appearance, and Operator
Trees (OPTs) for mathematical content. [21]

TopicEq, 2019 first topic model that jointly generates mathematical equations
and their surrounding text (TopicEq). [53]

ARQMath lab, c/o CLEF 2020 first answer retrieval task for questions on math
data1.

The accelerated pace with which the research in MIR continues, and new
machine-learning approaches that appeared recently show promise of a new
generation of search engines. It will take into account not only similar words
or phrases, but the disambiguated meaning of structured objects like equations,
sentences, paragraphs, or trains of thoughts.

We are going to develop the Math Indexer and Searcher of New Generation
(MIaSNG) that will take into account the latest state of the art in the area
of document meaning representation. To this end, we start by studying and
evaluating several approaches in document representations.

The structure of the paper is as follows. In Section 2, we present recent
approaches based on embeddings, specifically those that are capable of
representing structured objects such as equations. In Section 3, a method based
on joint text and math topic modeling is discussed. Another possibility of
representing sequences of tree structures is described in Section 4. Section 5
evaluates versions of transfer learning for our goals. This list of possibilities
is by no means exhaustive, but presents approaches for evaluation during the
preparation of MIaSNG.

1 https://www.cs.rit.edu/~dprl/ARQMath/

https://www.cs.rit.edu/~dprl/ARQMath/
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“The day is short, the labor vast, the toilers idle, the reward great,
and the Master of the house is insistent.”

Chapters of the Fathers (Pirkei Avot, 2:20)
2 Joint Embeddings for Text and Math: Equation Embeddings

Since the seminal work of Mikolov et al. [25], unsupervised word embeddings
have become the preferred word representations for many natural language
processing tasks. Document similarity measures extracted from unsupervised
word embeddings, such as the Soft Cosine Measure (SCM) [39], are fast [27] and
achieve strong performance on semantic text similarity [5], textual information
retrieval [9], and entrance exam question answering [39] tasks.

In mathematical discourse, formulae are often more important than words
for understanding. [16] Unlike words, formulae are deeply structured and most
are unique. Unlike unsupervised embeddings of words, which are many and
well-understood, unsupervised embeddings of mathematical formulae are only
now beginning to be explored. The SCM with joint embeddings of words and
formulae can form a basis of a fast and accurate mathematical search engine.

2.1 EqEmb and EqEmb-U Models

Krstovski and Blei [15] propose unsupervised joint embeddings of math and
formulae: EqEmb and EqEmb-U. Their approach is based on a) symbol layout
tree (SLT) visual encoding of mathematical formulae from Zanibbi et al. [54], and
b) unsupervised embeddings of Koopman-Darmois family probability distribu-
tions [37] that generalize Skipgram with negative sampling of Mikolov et al. [24].

In the EqEmb model, every formula is represented as a single vocabulary
entry and its internal structure is disregarded. For every input word i, the EqEmb
model predicts the context words and formulae, and for every input formula m,
the EqEmb model predicts the context words.

In the EqEmb-U model, formulae are tokenized using the SLT visual
encoding. For every input word i, the EqEmb-U model predicts the context
words and formula tokens, and for every input formula token m, the EqEmb-U
model predicts the context formula tokens. After training, formula embeddings
are obtained by averaging the embeddings of the formula tokens.

Unlike the FastText model of Bojanowski et al. [4], neither EqEmb nor
EqEmb-U take subword information into account. Unlike EqEmb, EqEmb-U
formula embeddings do not take context words into account. Unlike Mansouri
et al. [21], both EqEmb and EqEmb-U use only a visual encoding of formulae
(SLT) and not the Operator Tree (OPT), which encodes the meaning of formulae.

2.2 Evaluation

Krstovski and Blei compare EqEmb and EqEmb-U to existing word embed-
dings [18,25,29,37] using log-likelihood over arXiv articles from the NLP, IR, AI,
and ML domains. They obtain best results using EqEmb-U closely followed by
EqEmb across all domains. Qualitative evaluation shows that kNN on EqEmb for-
mula embeddings can be used to recommend highly related words and formulae.
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“He who acquires a good name, has acquired himself something indeed.”
Chapters of the Fathers (Pirkei Avot, 2:8)

3 Joint Text and Math Topic Modelling

With the increasing number of documents and their archives available in our
digital era, it becomes more difficult to find content that interests us. Search
engines play a fundamental role in the area of information retrieval and help
us find a set of documents based on given keywords. However, sometimes we
might be out of keywords and want to explore similar materials related to the
theme of other ones. Probabilistic topic modeling is designed for this purpose –
a set of statistical methods that analyzes words in the texts and discovers topics
based on their content.

3.1 TopicEq Model

In the context of STEM fields, the text itself is not the only part of papers
that delivers the message. Mathematics is ubiquitous, and it comprehensively
communicates the ideas. However, most works in natural language processing or
machine learning study text and math separately. Yasunuga et al. [53] reason that
these two components should be studied jointly together, as the text surrounding
the mathematical equations can provide context for its better understanding and
vice versa. They propose a new model called TopicEq that applies a topic model
to the text context and jointly the same latent topic proportion vector to generate
a sequence of math symbols in a recurrent neural network (RNN).

In their work, they apply neural variational inference technique [22,23,44] to
train topic models. They employ an RNN to model equations as a sequence of
LATEX tokens [13]. They relate to and extend Latent Dirichlet allocation (LDA) [3]
as they model two different modalities – word text and math equations. They
also demonstrate that RNN-based models [7] are more effective than the bag
of token-based models for equation processing. And finally, this work relates
to equation embeddings [15] with additional modeling of each equation as a
sequence of symbols.

3.2 Implementation and Evaluation

The correlated topic model [2] that uses a log-normal distribution is a baseline
for the TopicEq model. The new model introduces the surrounding text of
an equation as a context, and the generative process takes the same latent
topic proportion vector for both this context and the math expression. An RNN
generates equations as a sequence of mathematical symbols from the vocabulary
of LATEX tokens and the extension of the LSTM [11], named Topic-Embedded
LSTM (TE-LSTM), embeds the proportional vector inside the LSTM cell to keep
the topic knowledge.

They perform experiments on the dataset of context-equation pairs, con-
structed from sampled 100,000 arXiv articles. They define a context as five
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consecutive sentences both before and after the equation and kept equations
only of a specific length, which yields the final 400,000 context-equation pairs. In
the topic model evaluation, the results show that using the joint RNN equation
model significantly improves the coherence of topics of scientific texts. In the
equation model evaluation, TE-LSTM outperforms generic LSTM in reducing
the perplexity and syntax error rate while also requiring less training time.

Qualitative analysis of the newly designed model shows its high capability to
interconnecting the mathematics with the topics in several applications. In topic-
aware equation generation, the generated equations reflect the characteristics of
given topics, even if a mixture of topics is in question. In the equation topic infer-
ence, the TopicEq model performs better in precision and consistency than the
bag-of-token baseline, and the topic-dependent alignment between mathemat-
ical tokens and words can predict results adequately based on the given topic.

TopicEq model can increase the interpretability of equations regarding
their context and improve the exploring similar scientific documents. More
experiments should be undergone for the very short as well as complex formulae
to see the performance of this topic model. The selection of the proper word
context length could also be crucial for the results.

“What is the right path a man should choose?
Whatever is honorable to himself, and honorable in the eyes of others.”

Chapters of the Fathers (Pirkei Avot, 2:1)

4 Mathematical Expressions Embedding Using
Tree-Structured Bidirectional LSTM

The past few years have witnessed an upsurge in the use of deep learning
architectures for semantic representation of sequential data due to their ability
to capture long-range dependencies. Long short-term memory networks [11]
addresses the problem of exploding or vanishing gradients, which had hitherto
made traditional recurrent neural networks (RNNs) unable to capture long-
range correlations in a sequence such as text. The long-range dependencies are
preserved with a memory cell.

The bi-directional LSTM [10] is a variant of the traditional LSTM, which con-
sists of two LSTMs that are run simultaneously, one for the input sequence and
the other for the reverse of the input. This is to enable the network model to learn
in both directions, taking into account the left and the right contexts i.e. the past
and the future information using the hidden state of the LSTM at each time step.

The bi-directional LSTM architecture is suitable for strictly sequential
information propagation and cannot handle information with hierarchical
structure in mathematical formulae and expressions. The tree-structured
LSTMs [17,46,55,56] have been introduced to model the syntactic structure of
natural language text but they have not yet been applied to mathematics.
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Fig. 1. Proposed Tree-Structured Bi-directional LSTM for Math Expressions Embedding

4.1 Proposed Bi-directional Tree-Structured LSTM

The general architecture of our proposed Bi-directional Tree-Structured LSTM is
presented in Figure 1.

Recently, Thanda et al. [48], in their math information retrieval system for
NTCIR-12 MathIR task used a bag-of-words version of Paragraph Vector (PV-
DBOW) [18]. In their work, the math formulae in Wikipedia and arXiv papers
are utilized. The math formulae are represented in the form of a tree, where
the non-leaf nodes correspond to operators and the leaf nodes correspond to
operands.

Our proposed method aims to use a similar approach but using the tree-
structured bi-directional LSTM that can capture long-range dependencies. To
represent any mathematical expression in a document, each mathematical
operator will serve as the target token, and the two LSTMs will learn contexts
in both directions. The operands will serve as the leaves, taking into account
the structure of the formulae. First, the formulae or expressions will be parsed
using ANTLR2 or BISON3 to recover their structure. The raw expressions will
be converted to XML and MathML using the LATEXML, the result of which will
be canonicalized [40] and used to train a model using an adaptation of the
Bi-directional Tree-structured LSTM [47] with a pre-trained embedding, using
Word2Vec [24] as the objective.

As applicable to natural language texts, we hypothesize that the LSTM, apart
from its capability to capture the long-range coherence in Math expressions will
also be able to capture the order of combination of operators and operands alike,
taking into account notational variations. However, we envisage an outcome

2 https://www.antlr.org/
3 https://www.gnu.org/software/bison/manual/bison.html

https://www.antlr.org/
https://www.gnu.org/software/bison/manual/bison.html
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which may not be exact as the results reported for natural language texts due to
the peculiarity of Math texts.

“In a place where there are no worthy men, strive to be worthy.”
Chapters of the Fathers (Pirkei Avot, 2:5)

5 Representation and Transfer Learning for Math

Lately, we have been the observers of the dramatic movement of the reached
quality in solving some of the principal high-level NLP Tasks [6,33,50]. Some of
the new approaches have, in fact, overreached not only the current state-of-the-
art by even tens of percent [8,51], but also the measured human performance [33].

The new technologies are based on a distinct set of ideas which has driven
the development of their architecture. ELMo [30] builds upon a character-level
convolution and a joint optimization of sequential language models (bi-LM),
while attention-based transformer architectures, such as GPT [32] or BERT [8],
utilize forward, or bi-directional incremental pooling of so-called attention [49]
in forward, or bi-directional manner, respectively.

Yet, there is an attribute that intersects this new stream of methods. It is a fact
they are pre-trained without a supervisor on a vast amount of data in the form
of general language corpus [8,30,32]. Subsequently, they can be fine-tuned on
downstream tasks [30], or their internal representations can be even used in zero-
shot manner [32]. Furthermore, the generalization properties of transformers
in language modeling [32] has even been underscored by their performance on
language-agnostic downstream tasks [31], where some multilingual models are
documented to perform well on a zero-shot classification of previously-unseen
languages, even on ones that do not share any vocabulary with the fine-tuned
language [31].

The surprising generalization capabilities of the attention-based technologies
motivate us to evaluate their performance in the context of relevant tasks of
math understanding. For our objectives, we propose several adaptations of the
Transformer architecture, which reaches state-of-the-art results on other tasks,
e.g. a question answering task [33] with an objective of explaining math formula
variables, based on the surrounding context. Here, the variable denotation can
be interpreted as a question, and the figure context as the answering paragraph.
Similarly, we propose the use of sequence classification architecture used for
paraphrase detection for the MIR formula-based search [20]: the similarity of
their contexts can determine the disambiguation of the parts of the formulae.

We believe that the mentioned math understanding tasks could be fine-
tuned from the weights pre-trained on general language modeling tasks [19],
just like their native paired tasks. Subsequently, in cases where we can directly
interpret our tasks in a framework of the native ones (SQuAD and MRPC, in the
mentioned cases), we might be able to utilize the rich data sets of these native
tasks to additionally fine-tune the pre-trained models in favour of our objectives.

Perhaps the main drawback of the methods above is their computational
complexity. In any area related to the information retrieval, it is crucially
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important to be able to either compute the representations of the documents on-
the-fly, or to pre-index them and compare pairwise to the query in the real time.

It remains an open question whether the transferability of the models can
also be successfully utilized in MIR. There are reports that the methods can be
used to directly infer the context-dependent embeddings [8] of the input, or the
internal representations can be fine-tuned to provide the similar embeddings of
related paragraph pairs [36].

We believe that all the aforementioned methods are not necessarily bound
to natural language applications: the successful inter-lingual applications [31]
suggest that as long as the meaning of mathematical documents can be captured
both in the natural language, just as in the math formulae, their general
representation can be modeled.

We plan to design the experiments to evaluate whether the bidirectional
sequence embeddings [12] or Transformers’ internal representation [49] can
be adapted to a general math representation. It is possible that the meaning
shared among the math formulae and its interpretation in a natural text is still
too latent to follow using a single model. Another eventual threat is that joint
representations will, in comparison to standard, separate representations, miss
some important low-level (e.g. morphological) features that are, however, crucial
for relevant math information retrieval.

“It is not incumbent upon you to complete the work,
but neither are you at liberty to desist from it.”

Chapters of the Fathers (Pirkei Avot, 2:21)
6 Conclusion

This essay records the possibilities of representing the complex meaning of
mathematical structures in STEM documents. Discussed representations reach
state-of-the-art performance in text-only versions of NLP tasks, and their
adaptation to cope with math seems feasible.

The paper thus serves as an outline of the prototypical implementation
and evaluation of MIaSNG, the Math Indexing and Searching system of New
Generation, which we are about to develop in the following years. We believe
that having a joint representation of the meaning of both text and math will
allow a new level of querying mathematical corpora such as arXiv or EuDML.
Even though it seems that the Pareto principle holds – 80% of the conveyed
message is in the form of text, the discussed approaches consistently show that
coupling the text and math meaning increases the quality of language models,
representations, and thus the future MIR via MIaSNG.
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