
TIL and Logic Programming

Martina Číhalová, Nikola Ciprich, Marie Duží, Marek Menšík

VŠB-Technical University Ostrava
17. listopadu 15, 708 33 Ostrava, Czech Republic

m.tina.cihal@gmail.com, nikola.ciprich@linuxbox.cz,
marie.duzi@vsb.cz, mensikm@gmail.com

Abstract. The paper introduces a method of transition from TIL into
Prolog system and vice versa, in order to utilize Prolog inference machine
in the deductive system of TIL. We specify a subset of the set of TIL
constructions the elements of which can be encoded in Prolog language,
and introduce the method of translation from TIL into Prolog. Since
Prolog is less expressive than TIL, we have to build up a TIL functional
overlay that makes it possible to realize the reverse transition from Prolog
into TIL in a near to equivalent way.

Key words: TIL, T IL-Script language, inference machine, Prolog

1 Introduction

Transparent Intensional Logic (TIL) is a highly expressive logical system apt
for the logical analysis of natural language.1 In our project ’Logic and Artificial
Intelligence for Multi-agent Systems’ we deal with the problem of agents’
communication with each other as well as with their environment. Human-
computer communication should be smooth and near to isomorphic to natural-
language communication. For this reason we voted for the language of TIL
constructions as a specification and communication language of a multi-agent
system. We develop the T IL-Script language, a computational variant of
TIL, which serves as a content language of agents’ messaging.2 T IL-Script
is a TIL dialect using only ASCII characters and slightly adjusted semantics.
On the other hand, a great expressive power is inversely proportional to
an easy implementation of a suitable automatic deductive system. Since TIL
is a logic based on the infinite ramified hierarchy of types, it is impossible
to create a complete logical calculus and make use of a standard automatic
theorem prover. Though TIL deductive system has been theoretically specified,
its implementation is still a work in progress. For this reason we decided to
specify a subclass of TIL and to utilize a first-order inference machine such as
Prolog. This is a feasible way due to TIL being a fully compositional system and
from this point of view extensional calculus.

1 See, for instance, [7] and [8]. 2 For details on the project, see [4]. T IL-Script and agents’ messaging is FIPA

compliant. For FIPA standards see [6]. More on T IL-Script , see [2] or [3].

Petr Sojka, Aleš Horák (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2008, pp. 17–30, 2008. c©Masaryk University, Brno 2008

18 Martina Číhalová, Nikola Ciprich, Marie Duží, Marek Menšík

The goal of this paper is to specify a subset of TIL constructions which
can be encoded in Prolog, together with the algorithm of their translation. The
transition from TIL into Prolog and vice versa has to be specified in a near to
equivalent way, i.e., without the loss of important information encoded by TIL
constructions. Thus prior to the translation proper, TIL functional overlay of the
Prolog machine has to be specified. In particular, we have to take into account
that standard Prolog does not work with modal and temporal parameters,
and with the types of denoted entities. Moreover, T IL-Script is a functional
language whereas Prolog a relational one, which is also a problem that has to
be dealt with prior to translation proper. In the paper we propose a general
strategy of adjusting TIL constructions into the form that can be processed by
Prolog.

The paper is organized as follows. Section 2 briefly describes basic princi-
ples of programming in logic using Prolog. The main Section 3 is a descrip-
tion of the transition from TIL into Prolog. We first describe the translation
of simple sentences into Prolog facts, rules and goals. Then we specify the
method of translating wh-questions and yes-no questions. Finally, an algorithm
of the specification of TIL subset of constructions transferable into Prolog is pre-
sented. Concluding Section 4 is an outline of future research.

2 A Brief Description of the Prolog System

Prolog can be defined as a couple (K, I), where K is the program base consisting
of facts, rules and queries encoded in a first-order language, and I is an
inference machine that makes it possible to derive consequences of K.3 The
inference machine is based on the general resolution algorithm for the first-
order predicate logic (FOL). An input for the resolution algorithm is a set of
formulas in the Skolem clausal form. Since FOL is only partly decidable,4 the
clauses of a Prolog language are limited to the decidable subset of FOL, namely
the set of Horn clauses. To put this description on a more solid ground, we
define:

Literal is an atomic formula or its negation. For instance, p(x, y), ¬q(f (x))
are literals. Clause is a disjunstion of (positive and/or negative) literals:

C = l1 ∨ l2 ∨ . . . ∨ ln ∨ ¬m1 ∨ . . . ∨ ¬mk .

Skolem clausal from of a formula is a conjunctive normal form without
existential quantifiers

SCF = ∀x1 . . . ∀xm(C1 ∧ . . . ∧ Cn),

where C1, . . . , Cn are clauses.

3 For details on Prolog see, e.g. [1]. 4 As a consequence of Gödel’s incompleteness theorem, there is no proof

calculus deciding FOL. Church proved that there are calculi that partly decide FOL; this means that if a

formula F is logically valid then it is provable, whereas if F is not logically valid then it can be the case that there

is no finite proof of F in the calculus.

TIL and Logic Programming 19

Each FOL formula F can be transformed into SCF in such a way that the
transformation is consistency preserving. In other words, if F has a model then
SCF has a model as well. And if SCF is a contradiction then F is a contradiction
as well. Thus the proof by general resolution is an indirect proof. The proof
method is guarded by the following rules:

General quantifier elimination: ∀xA(x) ` A(t/x), where the term t is
substitutable for the variable x.

General resolution rule: Let Ai, Bi, l1, l2 be atomic formulas of FOL, σ a
collision-less substitution such that l1σ = l2σ. Then the following rule is valid

A1 ∨ . . . ∨ Am ∨ l1, B1 ∨ . . . ∨ Bn ∨ ¬l2
A1σ ∨ . . . ∨ Amσ ∨ B1σ ∨ . . . ∨ Bnσ

An SCF formula is not satisfiable if and only if the empty clause (#) is
derivable from SCF by step-by-step application of the general resolution rule.

Method of Programming in Logic (Prolog) is a special case of the general
resolution method with three major restrictions. First, it works only with Horn
clauses, i.e. clauses with at most one positive literal:

HC = l ∨ ¬m1 ∨ . . . ∨ ¬mk.

Second, Prolog mostly applies a goal driven, depth-first strategy with back-
tracking for generating resolvents. Though this strategy is not complete, it is
more effective than other strategies evaluating the computational tree com-
pletely. Third, negation is dealt with as a failure to prove (the Close World As-
sumption).

Notation in Prolog.
Rule (Conditional statement): P:- Q1,. . . ,Qn.

Atomic formula P = p(t1,. . . ,tm) is the head of the rule, ti are its formal
parameters; atomic formulas Q1,. . . ,Qn is the body (tail) of the rule with the sub-
goals Qi.

Note that conditional statement is equivalent to

(Q1 ∧ . . . ∧Qn) ⊃ P or i(¬Q1 ∨ . . . ∨ ¬Qn ∨ P).

Fact: P. A Horn clause without negative literals, i.e., an atomic formula.
Goals: ?- Q1, . . . , Qn. A Horn clause without a positive literal: ¬Q1 ∨ . . . ∨ ¬Qn.

Note that this formula is equivalent to (Q1 ∧ . . . ∧Qn) ⊃ False.
An empty clause: #. (Contradiction, success).

Logic program is a sequence of rules and facts. Prolog inference machine
derives answers to the questions (goals) by applying respective substitutions
in order to instantiate variables in goals and generate resolvents. Derivation of
an empty clause is a success; the respective substitution is then an answer to
the goal.

20 Martina Číhalová, Nikola Ciprich, Marie Duží, Marek Menšík

3 Transition from TIL into Prolog

When encoding TIL constructions in Prolog, we focus on the constructions that
construct empirical entities of type oτω, (oα)τω and (oα1 . . . αn)τω, i.e., proposi-
tions, properties and relations-in-intension, respectively, or mathematical facts
of type o. Constructions of propositions are translated as Prolog facts/rules
or Yes–No questions according whether a respective message is of a kind ‘In-
form’ or ‘Query’. Constructions of properties and relations are translated as
Wh-questions.5

When creating a Prolog base of facts and rules we have to record the types
of entities that receive mention in TIL constructions. In particular, types of
intensions have to be distinguished from types of extensions. To this end we
use a special Prolog predicate ‘type’. Prolog base of facts and rules then contains
Prolog translation of TIL constructions v−constructing True (or False in case of
an incorrect data collection), i.e., values of the propositions in a given world w
at a time t of data collection. When querying on this base, we use a construction
of an intension and ask for its value in a state of affairs as recorded in or entailed
by the Prolog base.

3.1 Building up a Prolog base of facts and rules

Prolog base of facts and rules is created by transferring indicative messages of
the kind ‘Inform’, the content of which is encoded in the T IL-Script language.

For instance, the proposition that Charles is a professor constructed by the
Closure

λwλt[0Professorwt
0Charles]

and encoded in T IL-Script by6

[\w:World \t:Time [[’Professor@wt ’Charles]]].

is translated into a Prolog fact

prof(charles). (1)

By means of the Prolog predicate ‘type’ we remember TIL type of Professor, i.e.,
the type (oι)τω of an individual property, in order to reconstruct the original
proposition in the reverse translation into T IL-Script .

The proposition that all professors are employees constructed by the Clo-
sure

λwλt ∀x[[0Professorwt x] ⊃ [0Employeewt x]]

is translated into the Prolog rule (accompanied by the respective type predi-
cates)

empl(X):- prof(X). (2)

5 For details on the analysis of questions and answers in TIL see, e.g., [5]. 6 For details on the T IL-Script

language see, e.g., [1] or [2].

TIL and Logic Programming 21

Similarly the proposition that cars and bicycles are mobile agents constructed
by

λwλt ∀x[[[0Carwt x] ∨ [0Bikewt x]] ⊃ [[0Mobile 0Agent]wt x]]

is translated into the Prolog rule (accompanied by the respective type predi-
cates)

mobile_agent(X):- car(X); bike(X). (3)

So far so good. However, TIL is based on the functional approach whereas
Prolog is a relational language. Thus the translation of constructions containing
constituents v−constructing functions of types (αβ) and attributes (empirical
functions) of types (αβ)τω, where α 6= o, is not so straightforward. We have
to first transform them into constructions of relations of type (oαβ)τω by
introducing an auxiliary variable.

For instance, the fact that Charles’ only car is a mobile agent is con-
structed by

λwλt[[0Mobile 0Agent]wt [0The[0Car_of wt
0Charles]]]

Types. Mobile/((oι)τω(oι)τω) – modifier; Agent/(oι)τω; Car_of ((oι)ι)τω;
The/(ι(oι)) – the singulariser (‘the only . . . ’).
The respective code in the T IL-Script language is this:

[\w:World [\t:Time [
[’Mobile ’Agent]@wt [’Sing [’Car_of@wt ’Charles]]

]]].

We have to simplify this construction by ignoring the singulariser, and trans-
form this Closure into the Prolog rule

mobile_agent(Y):- car_of(Y,charles).

Gloss. For all y, if y is a car of Charles then y is a mobile agent.
In general, the pre-processing of constructions of empirical functions in TIL

is driven by this strategy. If Attr → (αβ)τω is a construction of an empirical
function, P → (oα)τω a construction of an α-property and b an entity of type β,
then the construction of a proposition of the form

λwλt[Pwt [Attrwt
0b]]

is modified into (x → α)

λwλt[∀x[[x = [Attrwt
0b]] ⊃ [Pwt x]]]

which is then translated into the Prolog rule

p(X) :- attr(X,b).

Moreover, TIL functional overlay over the so-created Prolog base of facts and
rules must also make it possible to distinguish between analytically necessary
facts and rules and empirical ones.

22 Martina Číhalová, Nikola Ciprich, Marie Duží, Marek Menšík

For instance, the above proposition that cars and bicycles are mobile agents
could be specified as an analytical one, meaning that necessarily, all cars or
bicycles are mobile agents. The respective TIL analysis is then this Closure

∀w∀t∀x[[[0Carwt x] ∨ [0Bikewt x]] ⊃ [[0Mobile 0Agent]wt x]].

However, the resulting Prolog rule will be the same as the above rule (3). In
such a case we must remember in the TIL ontology that the property of being a
mobile agent is a requisite of the properties of being a car and being a bicycle.

Another problem we meet when translating TIL constructions into Prolog
is the problem of equivalences. For instance, inserting a formula of the form
(p ≡ q) ⇔ (p ⊃ q) ∧ (q ⊃ p) into the Prolog base might cause the inference
machine to be kept in an infinite loop. Yet we need to record such equivalences
in TIL ontology. This is in particular the case of a meaning refined by definition.

Imagine, for instance, the situation of an agent a who does not have in its
ontology the concept of a car park with vacancies. Then a may learn by asking
the other agents that “A car park with vacancies is a car park some of whose
parking spaces nobody has occupied yet”. The content of a ‘query’ message
asking for the definition of ‘car park with vacancies’ is [0Unrecognized 0[0Vac
0Car_Park]]. The reply message content is

[0Refine 0[0Vac 0Car_Park]
0[λwλtλx[[0Car_Parkwt x] ∧ ∃y[[0Space_of wt y x] ∧ ¬[0Occupiedwt y]]]]].

Thus the constructions [0Vac 0Car_Park] and

[λwλtλx[[0Car_Parkwtx] ∧ ∃y[[0Space_of wt yx] ∧ ¬[0Occupiedwt y]]]]

are ex definitione equivalent by constructing one and the same property. This
fact can be encoded in Prolog only by a general rule:

vac_park(X,Y) :- park(X), space_of(Y,X), non_occupied(Y).

Gloss. (For all X, Y), X has a parking vacancy Y if X is a car park and Y is a space
of X and Y is not occupied.

3.2 Querying in Prolog

As stated above, messages of the kind ‘Query’ with the semantic content
constructing propositions represent Yes–No questions on the truth-value of the
respective proposition in a given state-of-affairs. The semantic core of a Yes–No
question (the content of the respective message) is thus the same as that of a
corresponding indicative sentence; a construction of a proposition.

For instance, the above example of the proposition that “Charles is a
professor” is encoded by a message with the same content as the corresponding
query “Is Charles a professor?”. The two messages differ only in their kind. The
former is of the kind ‘Inform’, the latter of the kind ‘Query’.

However, the Prolog code will differ. We now ask whether this proposition is
entailed by the recorded Prolog knowledge base. To this end we must translate

TIL and Logic Programming 23

the message as a negative Prolog fact so that Prolog inference machine can check
whether the negated proposition contradicts the base:

?- prof(charles).

In this case Prolog answers Yes providing the fact (1) is contained in its base.
We can also put Yes–No questions on the existence of individuals with such

and such properties. In such a case Prolog would answer not only simple Yes,
but also which individuals (according to its knowledge) are such and such.

For instance, the query “Are some employees professors?” is analysed by
TIL Closure (Employee, Professor/(oι)τω; x → ι)

λwλt[∃x[[0Employeewt x] ∧ [0Professorwt x]]].

The T IL-Script encoding is then

[\w:World [\t:Time [Exists x:Indiv [
’And [’Empl@wt x] [’Prof@wt x]

]]]].

And the respective Prolog code is this

?- empl(X), prof(X).

Now Prolog tries to succeed in deriving these two goals. To this end Prolog
searches its knowledge base for facts and rules containing the empl or prof
in their head, and if possible Prolog unifies the variable X with the respective
arguments of the found rules/facts. In our case empl(X) first matches with (2)
and then prof(X) with (1) resulting in the success by substituting charles for
X. Thus Prolog answer is Yes, X=charles.

When raising ‘wh-questions’ we ask for the value of an α-property or an
α-relation-in-intension in a given world w at time t. As explained in [5], the
analysis is driven by a possible answer. If an answer is a set of individuals, we
construct a property. In general, if an answer is a set of tuples of α1, . . . , αm-
objects, we construct a relation-in-intension of type (oα1 . . . αm)τω.

For instance, the answer to the question “Which professors are older than
60 years?” can be {Materna, Duží}, i.e., the set of individuals. Thus we have to
construct the property of individuals:

λwλtλx[[0Professorwt x] ∧ [0> [0Agewt x] 060]],

where Age is an attribute of type (τι)τω. Again, the respective T IL-Script code
is

[\w:World [\t:Time [\x:Indiv [
’And [’Prof@wt x] [’> [’Age@wt x] ’60]

]]]].

24 Martina Číhalová, Nikola Ciprich, Marie Duží, Marek Menšík

In order to translate this question into Prolog, we have to convert the attribute
Age into a binary relation using an auxiliary variable in a similar way as
described above. The resulting construction is

λwλtλx[∃y[[0Professorwt x] ∧ [[y = [0Agewt x]] ∧ [0> y 060]]]].

This Closure is transformed into three Prolog goals as follows:

?- prof(X), age(Y,X), Y>60.7

Now there is another problem generated by Prolog relational approach.
Whereas a functional program would return the value of the above prop-
erty recorded in a given knowledge base state, i.e., a set of individuals,
Prolog answer in case of the success in meeting these goals will be, e.g.,
Yes, X=Duzi, Y=60. If we want another individual instantiating the property,
we have to keep entering semicolon, ‘;’, until obtaining the answer No.

In order to overcome this difficulty, we may use Prolog ‘findall/3’ predicate
which has three arguments: (what, from where, to where). However, in such a
case we have to specify one goal (from where). Here is how. We create a new
unique name of the property the instances of which are asked for. For instance,
the above property can be coined ‘Aged_professor’, and the equality definition
“Aged professors are professors older than 60 years” inserted as follows:

λwλtλx[0Aged_professorwtx] = λwλtλx[[0Professorwtx] ∧ [0> [0Agewt x]060]].

However, as explained above, in Prolog we cannot deal with equivalences,
because equivalence would cause Prolog attempting to succeed in meeting a
goal ad infinitum. Thus we have to insert a new rule the head of which is the
definiendum and tail is the definiens of the inserted definition. The resulting
Prolog code is

?-assert(aged_prof(X):-prof(X), age(Y,X), Y>60.),
findall(X,aged_prof(X),Result),
retract(aged_prof(X):-prof(X), age(Y,X), Y>60.).8

The predicate assert serves for inserting the auxiliary rule into Prolog base,
and retract for erasing it.

The process of generating a generic property corresponding to a ‘wh-
-question’ is this:

1) Transform the TIL compound construction of a property into an equivalent
construction by inserting a new unique primitive concept of the property.
If C1, . . . , Cm are the respective constituents of the compound Closure, then
the schema of TIL pre-processing is as follows:
λwλtλx[0C_newwt x] = λwλtλx[[C1

wtx] ∧ . . . ∧ [Cm
wt x]].

2) Translate into Prolog: c_new(X):-c1(X),...,ck(X).

7 Due to Prolog depth-first, left-to-right evaluation strategy the order of the goals is important here.

The variable Y has to be instantiated first with the value of age_of X, and then compared with 60.
8 The method of processing the attribute Age_of is similar as above and it is described in Section 3.3.1.

TIL and Logic Programming 25

3) If the rule ‘cnew’ is contained in Prolog base, then
findall(X, c_new(X), Result).
Otherwise, i.e., if ‘cnew’ is not contained in Prolog base, then
?-not(c_new(X)), assert(c_new(X):-c1(X), ..., ck(X)),

findall(X, c_new(X), Result),
retract(c_new(X):-c1(X), ..., ck(X)).

3.3 Schema of the transition from TIL into Prolog

It should be clear by now that prior to the translation of TIL constructions into
Prolog, a lot of pre-processing has to be done in TIL. These modifications vary
according to the structure of constructions and the type of entities constructed
by primitive concepts, i.e., Trivialisations of non-constructive entities. These
primitive concepts fully determine a conceptual system within which we work,
and they have to be contained in the respective ontology together with their
types. The choice of a conceptual system depends, of course, on the domain
area and also on application goals and problems to be solved.

By way of summary we now present a general schema for TIL pre-
processing and translation of particular constructions into Prolog code accord-
ing to the type of entities that receive mention by constituents of a construction.
Recall that types of the entities have to be also remembered by Prolog, which
we do not indicate here.

Questions are expressed as constructions of intensions, the extension of
which in a particular world w and time t we want to know. In case of wh-
question the respective constructed entity is a property or relation. In case
of Yes–No question it is a proposition. In case of mathematical questions we
consider constructions of mathematical functions the value of which we want
to compute. In what follows we use double arrow ‘⇒’ for ‘translated or pre-
processed into’.

3.3.1 Analysis and translation of simple facts or wh-queries. First we
present a schema of pre-processing simple constructions that do not contain
constituents of truth-value functions and quantifiers. Let constructions P, Attr,
Rel and Calc be constructions of such a simple form.

1. Constitents of propositions. Let P → o, Then λwλtP ⇒ ?-p. or p.
Example. “Is Charles a professor?”;
λwλt [0Prof wt

0Charles] ⇒ ?- prof(charles).
2. Constituents of α-properties. Let P → (oα)τω; x → α. Then

λwλtλx[Pwtx] ⇒ ?-p(X).

Example. “Who are our the associate professors?”;
λwλtλx[[0Associate 0Prof]wt x] ⇒ ?-assoc_prof(X).

3. Constituents of (αβ)-attributes. Let Attr → (αβ)τω, P → (oα)τω; b/β; α 6= o;
x → β; y → α.
Now we have to distinguish two cases.

26 Martina Číhalová, Nikola Ciprich, Marie Duží, Marek Menšík

a) The constituent is used in an ‘Inform’ message, the content of which is
of the form λwλt [Pwt[Attrwt b]]. Then
λwλt [Pwt [Attrwt b]] ⇒ λwλt [∀y[[0 = y [Attrwt b]] ⊃ [Pwt y]]]
⇒ p(Y) :- attr(Y,b).
Example. “Charles’ father is a professor”.
λwλt [0Professorwt[0Father_of wt

0Charles]] ⇒
λwλt [∀y[[0 = y [0Fatherwt

0Charles]] ⊃ [0Professorwt y]]]
⇒ prof(Y) :- father(Y,charles).

b) The constituent is used in a ‘Query message’ and it is of the form
λwλtλx[Pwt[Attrwt x]]. Then
λwλtλx[Pwt[Attrwt x]] ⇒ λwλtλx[∃y[[0= y[Attrwt x]] ∧ [Pwt y]]]
⇒ ?- attr(Y,X), p(Y).
Example. “Whose father is a professor?”.
λwλtλx[0Professorwt[

0Father_of wt x]] ⇒
λwλtλx[∃y[[0= y[0Fatherwt x]] ∧ [0Professorwt y]]]]
⇒ :- father(Y,X), prof(Y).

4. Constituents of relations-in-intension. Let Rel → (oαβ)τω; x → α; y → β.
Then
λwλtλxλy[Relwt xy] ⇒ ?-rel(X,Y).
Example. “Who is affiliated to whom?”;
λwλtλxλy[0Affiliatewtxy] ⇒ ?-affiliate(X,Y).

5. Constituents of mathematical functions. Let Calc→ (ττ); x, y → τ; m/τ. Then
[Calc 0m] ⇒ ?- Y is calc(m).
λx [Calc x] ⇒ λxλy[0= y[Calc x]] ⇒ ?-Y is calc(X).
In general, constituents of n−ary mathematical functions are transferred as
follows. Let Calcn/(ττ . . . τ). Then
λx1. . . xn[Calc x1. . . xn] ⇒ λx1. . . xnλy[0= y[Calc x1. . . xn]] ⇒
?- Y is calc(X1,...,Xn).
Example. “Which is the value of the square root of 144?”;
[0Square_root 0144] ⇒ ?- Y is square_root(144).

3.3.2 Analysis and translation of more complex wh-queries. Since Prolog
queries can be only Horn clauses without a positive literal, i.e., clauses of a
form ¬l1 ∨¬l2∨ . . . ¬lm, their general form is ¬(l1 ∧ l2∧ . . . lm), which in Prolog
notation is recorded as ?- l1, l2, . . . ,lm. The clauses l1,. . . ,lm are the goals to be
met.

Thus a TIL construction to be translated must be a conjunctive construction
of a property or relation, or of an existential proposition. Let C1, . . . , Cm be
simple constructions not containing constituents of truth-value functions and
quantifiers. Then the general form of TIL construction translatable into a Prolog
wh-question is:

λwλtλx1 . . . xn[C1 ∧ . . . ∧ Cm], or λwλt[∃x1 . . . xn[C1 ∧ . . . ∧ Cm]].

Schema of the resulting Prolog wh-query is

?- c1, ..., ck.

TIL and Logic Programming 27

where the c1, ..., ck are simple goals created according to the items (1)–(5)
of the proceeding paragraph.

According to the complexity of a construction C we first create the structure
tree of C, leafs of which are simple constituents of C. The pre-processing and
translation of C is then executed bottom up, from leafs to the root of the tree.

Example. “Who are the professors older than 2× 30 years?”.
The analysis is a construction of the property of being a professor older than
2× 30 years:

λwλtλx[0∧[0Prof wt x][0> [0Age_of wt x][0× 02 030]]].

The structure tree is this:
Level 0 λwλtλx
Level 1

0
∧

Level 2 [0Prof wtx] 0
>

Level 3 [0Age of wtx] [0×0
2

0
30]

Beginning with the bottommost level 3, we transform leafs containing attributes
and mathematical functions in compliance with the above rules (3) and (5),
respectively, into constituents [0 = y [0Age_of wt x]] and [0 = z[0×02 030]]. The
auxiliary variables y, z become the arguments of the parent node at level 2:
[0 > y z]. The node [0Prof wt x] remains without change, as well as the parent
node 0∧ of level 1, because they v−construct a truth-value of type o. Finally we
have to adjust the root level 0 in compliance with (3) above into λwλtλxλyλz
. . . The resulting construction is

λwλtλxλyλz[0∧[0Prof wt x][0∧[0= y[0Age_ofwt x]][0∧[0= z[0× 02 030]][0> y z]]]].

The respective Prolog code is then

?- prof(X),age_of(Y,X), Z is ×(2,30), Y>Z.

As stated above, if we want all the professors older than 2× 30 years, we
have to insert a new unique name of the property by the equation definition
λwλtλx[0Aged_professorwtx] =

λwλtλx[∃y∃z[0∧[0Prof wt x]
[0∧[0= y[0Age_of wt x]][0∧[0= z[0×02030]][0> yz]]]]].

The resulting Prolog code is
?-assert(aged_prof(X):-prof(X),age_of(Y,X),Z is ×(2,30),Y>Z.),
findall(X,aged_prof(X),Result).

3.4 Specification of a TIL subset transferable into Prolog code

Up to now we considered only constructions v−constructing entities of a
type (oβ), the structure tree of which is conjunctive. Using a terminology of
predicate logic, we considered only constructions which are in a generalised

28 Martina Číhalová, Nikola Ciprich, Marie Duží, Marek Menšík

conjunctive normal form λwλt λx1 . . . xm [C1 ∧ . . . ∧ Cm], where C1, . . . , Cm are
simple constructions not containing constituents of truth-value functions and
quantifiers.

In order to specify the subset of TIL that can be encoded in Prolog, we have
to specify restrictions on TIL propositional constructions implied by Prolog,
and describe an algorithm of transferring a closed construction C → oτω into
the Skolem clausal form (SCF). Here is how.

In what follows we now use ‘C(x,y,. . .)’ as a schema of a construction
containing free variables x, y, . . .

1. Eliminate w,t. [λwλtC(w, t)] ⇒ C
2. Eliminate unnecessary quantifiers that do not quantify any variable.

(For instance, Composition of the form [[∃y∀zP(z)] ∧ [∀x∃vQ(v)]] is
adjusted into [[∀zP(z)] ∧ [∃vQ(v)]].)

3. Apply α-rule in such a way that different λ-bound variables have different
names.
(For instance, Composition [[∀xP(x)] ∧ [∀xQ(x)]] is adjusted into the
Composition [[∀xP(x)] ∧ [∀yQ(y)]].)

4. Eliminate connectives ⊃ and ≡ by applying the rules [C ⊃ D] ` [¬C ∨ D]
and [C ≡ D] ` [[¬C ∨ D] ∧ [¬D ∨ C]].

5. Apply de Morgan laws:
¬[C ∧ D] ` [¬C ∨ ¬D],¬[C ∨ D] ` [¬C ∧ ¬D],
¬[∃x¬C(x)] ` [∀xC(x)],¬[∀x¬C(x)] ` [∃xC(x)].

6. If the resulting construction C contains now existential quantifiers, then
reject C as non-transferable.
(For instance, Composition of the form [[∃yP(y)] ∧ [∀x∃vQ(x, v)]] is not
transferable into Prolog.)

7. Move general quantifiers to the left.
(For instance, Composition [[∀xP(x)] ∧ [∀yQ(y)]] is adjusted into the
Composition [∀x[∀y [P(x) ∧Q(y)]]].)

8. Apply distributive laws:
[[C ∧ D] ∨ E] ` [[C ∨ E] ∧ [D ∨ E], [C ∨ [D ∧ E]] ` [[C ∨ D] ∧ [C ∨ E].

The resulting construction is now of the form

∀x1[∀x2 . . . [∀xn[C1 ∧ . . . ∧ Cm]]]],

where Ci are clauses, i.e., disjunctions of simple ‘positive/negative’ construc-
tions (not containing constituents of truth-value functions ∧, ∨,⊃,≡ and quan-
tifiers). If for some i the clause Ci contains more than one positive disjunct, then
reject the construction as not transferable into Prolog code. Otherwise, insert the
translation of C1, . . . , Cm into Prolog program base.
Example. Consider the base of sentences.

– “All mobile agents are cars or bicycles”.
– “If Charles is driving on highway D1 then he is a mobile agent”.
– “Paul is not a mobile agent or it is not true that if he lives in New York he

drives his car”.

TIL and Logic Programming 29

– “It is not true that some agents are neither mobile nor infrastructure
agents”.

a) Type-theoretical analysis.
Mobile,Infra(structure)/((oι)τω(oι)τω); Agent, Car, Bike, High_Way, Em-
ployee/(oι)τω; Live_in, Car_of /(oιι)τω; Charles, Paul, D1, NY/ι.

b) Synthesis and pre-processing.

First sentence. λwλt [∀x[[0Mobile 0Agent]wt x] ⊃ [[0Carwt x] ∨ [0Bikewt x]]]]
⇒ (Step 1) [∀x[[0Mobile 0Agent]x] ⊃ [[0Carx] ∨ [0Bikex]]]]
⇒ (Step 4) [∀x¬[[0Mobile 0Agent]x] ∨ [0Carx] ∨ [0Bikex]]]

This construction is not transferable into Prolog code, because it contains
two positive constituents, namely [0Carx] and [0Bikex].
Second sentence.
λwλt [[0Drivewt

0Charles 0D1]∧ [0High_Waywt
0D1]]]⊃ [[0Mobile Agent]wt

0Charles]]]
⇒ (1) [[0Drive 0Charles 0D1] ∧ [0High_Way 0D1]]] ⊃ [[0Mobile Agent] 0Charles]]]
⇒ (4) [¬[0Drive0Charles 0D1] ∨¬[0High_Way0D1]] ∨ [[0Mobile Agent]0Charles]]].
The construction is transferable into a Prolog rule:

mobile_agent(charles):-drive(charles,d1),high_way(d1).

Third sentence.
λwλt[¬[[0Mobile 0Agent]wt

0Paul]∨
¬[[0Live_inwt

0Paul 0NY] ⊃ [0Drivewt
0Paul [0Car_of wt

0Paul]]]
⇒ (1) [¬[[0Mobile 0Agent]0Paul] ∨
¬[[0Live_in 0Paul 0NY] ⊃ [0Drive0Paul [0Car_of 0Paul]]]

⇒ (4,5) [¬[[0Mobile 0Agent] 0Paul] ∨
[[0Live_in 0Paul 0NY] ∧¬[0Drive 0Paul [0Car_of 0Paul]]]

⇒ (8) [¬[[0Mobile 0Agent] 0Paul] ∨ [0Live_in 0Paul 0NY]] ∧
[¬[[0Mobile 0Agent]0Paul] ∨¬[0Drive 0Paul [0Car_of 0Paul]]]]

The construction is transferable into a Prolog rule and three goals:

Live_in(paul,ny):-mobile_agent(paul).
:-mobile_agent(paul), drive(paul,Y), car_of(Y,paul).9

Fourth sentence.
λwλt¬[∃x[[0Agentwt x] ∧ ¬[[0Mobile0Agent]wtx] ∧ ¬[[0Infra0Agent]wt x]]]
⇒ (1) ¬[∃x [[0Agentx] ∧¬[[0Mobile 0Agent]x] ∧¬[[0Infra 0Agent]x]]]
⇒ (5) [∀x [¬[0Agentx] ∨ [[0Mobile 0Agent]x] ∨ [[0Infra 0Agent]x]]]
The construction is not transferable into a Prolog rule.
Remark. The first step of pre-processing a construction consists in elimination of
variables w, t. The result is an improper construction due to wrong typing. For
instance, the Composition [0Agentx] is not well formed, because the property
Agent/(oι)τω has to be extensionalised first, and only then applied to an
individual. Yet, since together with the resulting Prolog rules, facts and goals
we remember TIL types, the reverse translation into TIL will be correct.

9 Since Car_of is an attribute, the Composition [0Drive0Paul [0Car_of 0Paul]] is processed by means of the auxiliary

variable y; see Section 3.3.1.

30 Martina Číhalová, Nikola Ciprich, Marie Duží, Marek Menšík

4 Conclusion

We have introduced a method of building up an interface between the func-
tional T IL-Script language and relational Prolog language. By the transition
of TIL into Prolog we gain the inference machine of Prolog. The value we have
to pay is rather high. We have to build a powerful TIL functional overlay in
order not to lose information, and to modify TIL constructions into the form
that can be processed by Prolog. Of course, due to the high expressive power
of TIL, only a subset of TIL constructions is transferable. Thus we also specified
an algorithm that decides which constructions are transferable, and as a result
it produces an adjusted construction specified in the Prolog code.

The direction for future research is clear. We have to extend the method to
involve partiality and hyper-intensional features of TIL in its full power. To
this end the restrictions applied by Prolog seem to be too tight. Thus we will
extend the method into an implementation of the full TIL inference machine.
Yet the clarity of this direction does not imply its triviality. The complexity
of the work going into building such an inference machine is almost certain
to guarantee that complications we are currently unaware of will crop up. A
sensible approach will be to develop the inference machine by involving the
methods of functional programming and extend them to involve partiality and
hyper-intensional, i.e., procedural features.

Acknowledgements. This research has been supported by the program ‘Infor-
mation Society’ of the Czech Academy of Sciences within the project “Logic and
Artificial Intelligence for multi-agent systems”, No. 1ET101940420.

References

1. Bratko, I.: Prolog Programming for Artificial Intelligence. Addison-Wesley, 2001.
2. Ciprich, N., Duží, M., Košinár, M.: T IL-Script : Functional Programming Based on

Transparent Intensional Logic. In: RASLAN 2007, Sojka, P., Horák, A., (Eds.), Masaryk
University Brno, 2007, pp. 37–42.

3. Ciprich, N., Duží, M. and Košinár, M.: The T IL-Script language. To appear in the
Proceedings i of the 18th European Japanese Conference on Information Modelling
and Knowledge Bases (EJC 2008), Tsukuba, Japan 2008.

4. Duží, M. Ďuráková, D., Děrgel, P., Gajdoš, P., Müller, J.: Logic and Artificial Intelli-
gence for multi-agent systems. In: Marie Duží, Hannu Jaakkola, Yasushi Kiyoki and
Hannu Kangassalo (editors), Information Modelling and Knowledge Bases XVIII, Ams-
terdam: IOS Press, pp. 236–244.

5. Duží, M. and Materna, P. Reprezentace znalostí, analýza tázacích vět a specifikace
dotazů nad konceptuálním schématem HIT. In: Dušan Chlápek (Ed.), Datakon 2002,
Brno, pp. 195–208.

6. Foundation for Intelligent Physical Agents. http://www.fipa.org/.
7. Tichý, P. The Foundations of Frege’s Logic. Walter de Gruyter, Berlin-New York, 1988.
8. Tichý, P. (2004): Collected Papers in Logic and Philosophy, V. Svoboda, B. Jespersen,

C. Cheyne (Eds.), Prague: Filosofia, Czech Academy of Sciences, and Dunedin:
University of Otago Press.

