
RASLAN 2007
Recent Advances in Slavonic
Natural Language Processing



Masaryk Universityhttp://nlp.fi.muni.z/raslan/2007/

http://nlp.fi.muni.cz/raslan/2007/


P. Sojka, A. Horák (Eds.)

RASLAN 2007

Recent Advances in Slavonic Natural

Language Processing

First Workshop on Recent Advances in

Slavonic Natural Language Processing,

RASLAN 2007

Karlova Studánka, Czech Republic,

December 14–16, 2007

Proceedings

Masaryk University
Brno 2007



Proceedings Editors

Petr Sojka
Faculty of Informatics, Masaryk University
Department of Computer Graphics and Design
Botanická 68a
CZ-602 00 Brno, Czech Republic
Email: sojka�fi.muni.z
Aleš Horák
Faculty of Informatics, Masaryk University
Department of Information Technologies
Botanická 68a
CZ-602 00 Brno, Czech Republic
Email: hales�fi.muni.z
Katalogizace v knize – Národní knihovna ČRRASLAN 2007 (1. : Karlova Studánka, �esko)RASLAN 2007 : Reent Advanes in Slavoni Natural Language Proessing :first workshop on ..., Karlova Studánka, Czeh Republi,Deember 14-16, 2007 : proeeedings / P. Sojka, A. Horák (eds.).� 1st ed. � Brno : Masaryk University, 2007. � viii + 118 s.ISBN 978-80-210-4471-581'322 * 004.82/.83:81'322.2- omputational linguistis- natural language proessing- proeedings of onferenes- po£íta£ová lingvistika- zpraování p°irozeného jazyka- sborníky konferení410 - Linguistis [11℄006.3 - Artifiial intelligene [23℄81 - Lingvistika. Jazyky [11℄004.8 - Um¥lá inteligene [23℄
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned,
specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on
microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the Czech Copyright Law, in its current version, and permission for use
must always be obtained from Masaryk University. Violations are liable for prosecution under the Czech
Copyright Law.

c© Masaryk University, Brno, 2007
Printed in Czech Republic

ISBN 978-80-210-4471-5

http://www.fi.muni.cz/usr/sojka
mailto:sojka@fi.muni.cz
mailto:hales@fi.muni.cz
http://www.muni.cz


Preface

This volume contains the Proceedings of the First Workshop on Recent Ad-
vances in Slavonic Natural Language Processing (RASLAN 2007), organized
by the the Center of Natural Language Processing at the Faculty of Infor-
matics, Masaryk University and held on December 14th–16th 2007 in Karlova
Studánka, Kurzovní chata, Jeseníky, Czech Republic.

The RASLAN Workshop is an event dedicated to exchange of information
between research teams working on the projects of computer processing
of Slavonic languages and related areas going on in the Center. RASLAN
is focused on theoretical as well as technical aspects of the project work,
presentations of verified methods are welcomed together with descriptions of
development trends. The workshop also serves as a place for discussion about
new ideas. The intention is to have it as a forum for presentation and discussion
of the latest developments in the the field of language engineering, especially
for undergraduates and postgraduates affiliated to the NLP Center at FI MU.

Topics of the Workshop include (but are not limited to):

* text corpora and tagging
* syntactic parsing
* sense disambiguation
* machine translation, computer lexicography
* semantic networks and ontologies
* semantic web
* knowledge representation
* applied systems and software for NLP

RASLAN 2007 offers a rich program of presentations, short talks, technical
papers and mainly discussions. A total of 14 papers were accepted, contributed
altogether by 17 authors. Our thanks go to the Program Committee members
and we would also like to express our appreciation to all the members of the
Organizing Committee for their tireless efforts in organizing the Workshop and
ensuring its smooth running. In particular, we would like to mention the work
of Pavel Rychlý, Aleš Horák and Dana Hlaváčková. In addition we would like
to thank Dagmar Janoušková who took care of the administrative burden with
great efficiency, and contributed substantially to the detailed preparation of the
conference. The TEXpertise of Petr Sojka resulted in the extremely speedy and
efficient production of the volume which you are now holding in your hands.
Last but not least, the cooperation of Masaryk University as publisher of these
proceedings, and of tribun.eu as printer is gratefully acknowledged.

Brno, November 2007 Karel Pala





Table of Contents

I Morphological and Syntactic Parsing

DEB Platform Deployment – Current Applications . . . . . . . . . . . . . . . . . . . . . 3
Aleš Horák, Adam Rambousek (Masaryk University Brno)

Parsing System with Contextual Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Vladimír Kadlec (Masaryk University Brno)

Morphological Analysis of Law Texts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Karel Pala, Pavel Rychlý, Pavel Šmerk (Masaryk University Brno)

II Semantic Analysis

The Learning and Question Answering Modes in the Dolphin System
for the Transparent Intensional Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Andrej Gardoň, Aleš Horák (Masaryk University Brno)

Functional Programming Based on Transparent Intensional Logic . . . . . . . 37
Nikola Ciprich, Marie Duží, Michal Košinár (VŠB—Technical University
Ostrava)

Semantic Pre-processing of Anaphoric References . . . . . . . . . . . . . . . . . . . . . . 43
Marie Duží (VŠB–Technical University Ostrava)

Enhancing Anaphora Resolution for Czech . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Vašek Němčík (Masaryk University Brno)

III Text Processing Tools

Manatee/Bonito – A Modular Corpus Manager . . . . . . . . . . . . . . . . . . . . . . . . 65
Pavel Rychlý (Masaryk University Brno)

Corpus Query System Bonito – Recent Development . . . . . . . . . . . . . . . . . . . 71
Vojtěch Kovář (Masaryk University Brno)

Morphemic Analysis: A Dictionary Lookup Instead of Real Analysis . . . . . 77
Pavel Šmerk (Masaryk University Brno)



VIII Table of Contents

IV Lexical Semantics

Classification of Multilingual Mathematical Papers in DML-CZ . . . . . . . . . 89
Petr Sojka, Radim Řehůřek (Masaryk University Brno)

The Relations between Semantic Roles and Semantic Classes in VerbaLex 97
Dana Hlaváčková (Masaryk University Brno)

Keyness in Shakespeare’s Plays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Jiří Materna (Masaryk University Brno)

MetaTrans– Multilingual Meta-Translator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Jan Pomikálek (Masaryk University Brno)

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117



Part I

Morphological and Syntactic
Parsing





DEB Platform Deployment

Current Applications

Aleš Horák and Adam Rambousek

Faculty of Informatics, Masaryk University Brno
Botanická 68a, 602 00 Brno, Czech Republichales�fi.muni.z, xrambous�fi.muni.zhttp://deb.fi.muni.z/

Abstract. In this paper, we summarize the latest development regarding
the client dictionary writing applications based on the DEB II develop-
ment platform. The DEB II framework is nowadays used in several full
grown projects for preparation of high quality lexicographic data created
within (possibly distant) teams of researchers.
We briefly present the current list of DEB II applications with the relevant
projects and their phases. For each of the applications, we offer display
the view of the interface with overview description of the most important
features.

Key words: DEB platform, dictionary editor and browser, dictionary writing
systems

1 Introduction

The Dictionary Editor and Browser (DEB) was first designed as a standalone
program for writing dictionaries. After several problems with adaptation of
the tool for coming new requirements, the second version, sometimes referred
to as DEB II became a complete rewrite of the system based on open standards.

In the following text, we enlist the current state of DEB II applications. We
believe that this list is the best evidence of the qualities of the framework as a
whole together with several hundreds of DEB II users all over the world.

2 Current List of Implemented DEB Applications

In the following sections we present summary details of the particular DEB
clients that are currently being implemented within the DEB platform.

2.1 DEBDict – General Dictionary Browser

This DEB client demonstrates several basic functions of the system:

– multilingual user interface (English, Czech, others can be easily added)

Petr Sojka, Aleš Horák (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2007, pp. 3–11, 2007. c© Masaryk University, Brno 2007

mailto:hales@fi.muni.cz
mailto:xrambous@fi.muni.cz
http://deb.fi.muni.cz/
http://www.fi.muni.cz/usr/sojka/
http://www.muni.cz/people/1648
http://nlp.fi.muni.cz/raslan/2007/


4 Aleš Horák, Adam Rambousek

Fig. 1. The DEBDict common interface to several dictionaries with different
structures.

– queries to several XML dictionaries (of different underlying structure) with
the result passed through an XSLT transformation

– connection to Czech morphological analyzer
– connection to an external website (Google, Answers.com)
– connection to a geographical information system (display of geographical

links directly on their positions within a cartographic map) or any similar
application

The version of DEBDict that is currently running on our server provides a
common interface to 7 dictionaries (see the Figure 1):

– the Dictionary of Literary Czech Language (SSJČ, 180,000 entries)
– the Dictionary of Literary Czech (SSČ, 49,000 entries)
– the Reference Dictionary of Czech Language (PSJČ, 200,000 entries)
– the Dictionary of foreign words (46,000 entries)
– the Dictionary of Czech Synonyms (thesaurus, 23,000 entries)
– two dictionaries of Czech Phrasal Words and Idioms (4,000 and 10,000

entries)
– the Diderot encyclopedia (90,000 entries)

As an addition, DEBDict features an interconnection to several web systems
and the geographical system with the list of the Czech towns and cities.

DEBDict is also able to solve common problems with publication copyright
for particular dictionaries – DEBDict supports individual user access rights.



DEB Platform Deployment 5

This means that it is possible to display selected dictionaries only to a limited
group of users.

2.2 DEBVisDic

DEBVisDic was one of the first applications built over the DEB II platform – it
was designed as a completely new client-server tool for WordNet browsing and
editing.

DEBVisDic uses new versatile interface (see the Figure 2) that allows
the user to arrange the work without any limitations. Of course, DEBVisDic
contains all the main features that were present in VisDic:

– multiple views of multiple WordNets
– freely defined text views
– synset editing
– hypero-hyponymic tree
– query result lists
– plain XML view of a synset
– synchronization
– inter-dictionary linking
– tree browsing
– consistency checks
– journaling

Fig. 2. The DEBVisDic main interface



6 Aleš Horák, Adam Rambousek

Fig. 3. The DEB CPA tool.

– user configuration

With the help of the DEB platform reusability, DEBVisDic will be supplemented
with many new features that are currently accessible only as separate tools or
resources. This functionality includes:

– connection to a morphological analyzer (for languages, where it is avail-
able)

– connection to language corpora, including Word Sketches statistics
– access to any electronic dictionaries stored within the DEB server
– searching for literals within encyclopedic web sites
– and many others

Currently, DEBVisDic is also used for preparation of new Polish, Hungarian,
Slovenian, Dutch (within the Cornetto project), Nepalese and Afrikaans Word-
Nets and it is proposed as the main tool for the prepared Global WordNet Grid.

2.3 DEB CPA Editor and Browser

Corpus Pattern Analysis (CPA, [1]) is a new technique for mapping meaning
to words in text. No attempt is made in CPA to identify the meaning of a verb
or noun directly, as a word in isolation. Instead, meanings are associated with
prototypical sentence contexts. Concordance lines are grouped into semanti-
cally motivated syntagmatic patterns. Associating a “meaning” with each pat-
tern is a secondary step, carried out in close coordination with the assignment
of concordance lines to patterns.



DEB Platform Deployment 7

CPA editing tool (see the Figure 3) displays the list of verb entries, along
with the information who and when updated the entry. Each entry consists
of several patterns (the number of patterns is not limited) and it is possible
to freely modify their order and content. The main part of the tool, the
pattern editing window, allows to enter and modify all the information about
one pattern. The form is very versatile, e.g. it allows to add any number of
subject/object alternations. The tool is connected to an on-line resource – it
is possible to look up subject and object semantic type in Brandeis Semantic
Ontology [2] which is hosted on a web server at Brandeis University. Examples
documenting the pattern are taken from BNC using a modified version of
Bonito2 corpus manager that is integrated to the DEB CPA tool.

2.4 DEB TEDI Terminological Dictionary Tool

The DEB TEDI client is the main tool used for preparation of a new terminolog-
ical dictionary of Czech art terms. This work is a joint project of the Faculty of
Fine Arts, Brno University of Technology and Masaryk University. The aim of
the project is to build a terminological database consisting of about 5 000 dictio-
nary entries which are classified into categories and supplemented with term
definitions, translations info English, German and French, and with Czech us-
age examples. The resulting dictionary will be offered as a publicly available
application directed especially to fine arts students.

2.5 The PRALED Lexicographic Station

This client is designed for the development of the Czech Lexical Database (CLD,
denoted also as LEXIKON 21 [3]) and it serves as a main tool in preparation of
the new comprehensive and exhaustive database of lexicographic information
for the Czech language. The user’s part of the PRALED tool is presently under
the development in the Institute of Czech Language (ICL), Czech Academy of
Sciences, Prague.

The PRALED system offers the following functionality:

– queries to several XML dictionaries (of different underlying structures),
particularly to all relevant Czech dictionaries, i.e. SSJČ, SSČ, PSJČ, SCS,
SČFI and DIDEROT (see [4,5,6,7,8]),

– editing existing or writing new dictionary entries. A lexicographer can use
a set of forms which define the structure of the entry and fill in all relevant
fields (see the Figure 4) which presently are:
• orthoepy (spelling)
• morphological properties (POS, the respective grammatical categories)
• description of the meaning (entry definition)
• word formation nest (subnet)
• syntactic properties (most often valencies)
• stylistic, domain and regional features
• semantic relations to other entries (cross-references)



8 Aleš Horák, Adam Rambousek

Fig. 4. The PRALED user interface

• etymological information
• integration with Czech morphological analyzer
• connection to an external website (Google, Answers.com)
• remarks and additional comments
• integration with the corpus manager Bonito2 and Word Sketch En-

gine [9], which allows a lexicographer to obtain the sorted individual
word contexts including frequencies and statistical distribution param-
eters (salience).

2.6 Cornetto

The Cornetto project (STE05039) is funded by the Nederlandse Taalunie in the
STEVIN framework. The goal is to build a lexical semantic database for Dutch,
covering 40K entries, including the most generic and central part of the lan-
guage. Cornetto will combine the structures of both the Princeton WordNet and
FrameNet for English [10], by combining and aligning two existing semantic re-
sources for Dutch: the Dutch WordNet [11] and the Referentie Bestand Neder-
lands [12]. The Dutch WordNet (DWN) is similar to the Princeton WordNet for
English, and the Referentie Bestand (RBN) includes frame-like information as in
FrameNet plus additional information on the combinatoric behaviour of words
in a particular meaning. The combination of the two lexical resources will result



DEB Platform Deployment 9

Fig. 5. Cornetto Identifiers window, showing the edit form with several alter-
nate mappings

in a much richer relational database that may improve natural language pro-
cessing (NLP) technologies, such as word sense-disambiguation and language-
generation systems. In addition to merging the WordNet and FrameNet-like
information, the database is also mapped to a formal ontology to provide a
more solid semantic backbone.

The resulting data structure is stored in a database that keeps separate
collections for lexical units (mainly derived from RBN), synsets (derived from
DWN) and a formal ontology (SUMO/MILO plus extensions [13]). These 3
semantic resources represent different view points and layers of linguistic,
conceptual information. The alignment of the view points is stored in a
separate mapping table. The database is itself set up so that the formal
semantic definition of meaning can be tightened for lexical units and synsets by
exploiting the semantic framework of the ontology. At the same time, we want
to maintain the flexibility to have a wide coverage for a complete lexicon and
encode additional linguistic information. The resulting resource will be made
available in the form of an XML database.



10 Aleš Horák, Adam Rambousek

The Cornetto database (CDB) consists of 3 main data collections:

1. Collection of Lexical Units, mainly derived from the RBN
2. Collection of Synsets, mainly derived from DWN
3. Collection of Terms and axioms, mainly derived from SUMO and MILO

In addition to the three data collections, a separate table of so-called Cornetto
Identifiers (CIDs) is provided, see the Figure 5. These identifiers contain the
relations between the lexical units and the synsets in the CDB but also to the
original word senses and synsets in the RBN and DWN.

Since one of the basic parts of the Cornetto database is the Dutch WordNet,
we have decided to use DEBVisDic as the core for Cornetto client software. We
have developed four new modules, described in more details below. All the
databases are linked together and also to external resources (Princeton English
WordNet and SUMO ontology), thus every possible user action had to be very
carefully analyzed and described.

3 Conclusions

During the last three years, DEB II has been going through rapid development
and several real applications for electronic dictionaries have been built. The free
access to the Brno DEB server is nowadays in use by more than 250 users from
14 countries.

The DEB II server part is also available for download and is currently
installed on 7 servers worldwide (Brno, Prague, Amsterdam-UvA, Amsterdam-
VU, Poznan, Johannesburg and Budapest), where the DEB applications are
used for national research projects.

Acknowledgments

This work has been partly supported by the Academy of Sciences of Czech
Republic under the project T100300419 and by the Ministry of Education of CR
within the Center of basic research LC536.

References

1. Hanks, P.: Corpus Pattern Analysis. In: Proceedings of the Eleventh EURALEX
International Congress, Lorient, France, Universite de Bretagne-Sud (2004).

2. Pustejovsky, J., Havasi, C., Littman, J., Rumshisky, A., Verhagen, M.: Towards a
Generative Lexical Resource: The Brandeis Semantic Ontology. In: Proceedings of
LREC 2006, Genoa, Italy (2006) demo.

3. Rangelova, A., Králík, J.: Wider Framework of the Research Plan Creation of a
Lexical Database of the Czech Language of the Beginning of the 21st Century. In:
Proceedings of the Computer Treatment of Slavic and East European Languages
2007, Bratislava, Slovakia (2007) 209–217.



DEB Platform Deployment 11

4. Petr, J., et al.: Slovník spisovného jazyka českého (Dictionary of Written Czech,
SSJČ). 1st edn. Academia, Praha (2002) electronic version, created in the Institute
of Czech Language, Czech Academy of Sciences Prague in cooperation with Faculty
of Informatics, Masaryk University Brno.

5. Filipec, J., et al.: Slovník spisovné češtiny (Dictionary of Literary Czech, SSČ). 1st

edn. Academia, Praha (1995) electronic version, LEDA, Praha.
6. Havránek, B., ed.: Příruční slovník jazyka českého (Reference Dictionary of Czech

Language, PSJČ). Státní nakladatelství/SPN, Praha (1933–1957).
7. Kraus, J., Petráčková, V., et al.: Akademický slovník cizích slov (Academic Dictio-

nary of Foreign Words, SCS). Academia, Praha (1999) electronic version, LEDA,
Praha.

8. Čermák, F., et al.: Slovník české frazeologie a idiomatiky I-IV (Dictionary of Czech
Phraseology and Idioms, SČFI). Academia, Praha (1983).

9. Kilgarriff, A., Rychlý, P., Smrž, P., Tugwell, D.: The Sketch Engine. In: Proceedings
of the Eleventh EURALEX International Congress, Lorient, France, Universite de
Bretagne-Sud (2004) 105–116.

10. Fillmore, C., Baker, C., Sato, H.: FrameNet as a ’net’. In: Proceedings of Language
Resources and Evaluation Conference (LREC 04). Volume vol. 4, 1091-1094., Lisbon,
ELRA (2004).

11. Vossen, P., ed.: EuroWordNet: A Multilingual Database with Lexical Semantic
Networks for European Languages. Kluwer Academic Publishers, Dordrecht (1998).

12. Maks, I., Martin, W., de Meerseman, H.: RBN Manual. (1999).
13. Niles, I., Pease, A.: Linking Lexicons and Ontologies: Mapping WordNet to the

Suggested Upper Merged Ontology. In: Proceedings of the IEEE International
Conference on Information and Knowledge Engineering. (2003) 412–416.





Parsing System with Contextual Constraints

Vladimír Kadlec

Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republicxkadle�fi.muni.z

Abstract. The aim of the presented work is to design algorithms and
methods for an effective and robust syntactic analysis of natural lan-
guages. The algorithms are language-independent, any language with an
appropriate grammar can be modeled. The analysis of sentences by the
described system is based on context-free grammar for a given language
supplemented by context sensitive structures. The internal representation
of derivation trees allows to apply contextual constraints, e.g. case agree-
ment fulfillment. The evaluation of semantic actions and contextual con-
straints helps us to reduce a huge number of derivation trees and we are
also able to calculate some new information, which is not contained in
the context-free part of the grammar. Also n-best trees (according to a tree
rank, e.g probability) can be selected. This is an important feature for lin-
guistics developing a grammar by hand.

1 Introduction

Syntactic analysis is a “corner-stone” of applications for automated processing
of texts in natural languages. Any machine translation application, an auto-
matic grammar checker or information retrieval system must be capable of un-
derstanding the structure of a sentence. Recognition of the sentence structure is
called parsing.

The analysis of sentences by the described system is based on context-
free grammar for the given language. Context-free parsing techniques are well
suited to be incorporated into real-world nature language processing systems
because of their time efficiency and low memory requirements. Though, it
is known that some natural language phenomena cannot be handled with
the context-free grammar formalism, researchers often use the context-free
backbone as the core of their grammar formalism and enhance it with context
sensitive feature structures (e.g. [1]).

2 System Overview

Described system consists of several independent modules. The modular
design makes the system easily extensible and rather flexible. Figure 1 shows
the data flow through the system.

There are several inputs to the system:

Petr Sojka, Aleš Horák (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2007, pp. 13–20, 2007. c© Masaryk University, Brno 2007

mailto:xkadlec@fi.muni.cz
http://www.fi.muni.cz/usr/sojka/
http://www.muni.cz/people/1648
http://nlp.fi.muni.cz/raslan/2007/


14 Vladimír Kadlec

Fig. 1. Parsing System with Contextual Constraints



Parsing System with Contextual Constraints 15

– A sentence in a natural language.

– Context-free (CF) grammar.

– Semantic actions and contextual constraints for grammar rules.

Words in the input sentence can be optionally tagged. If they are not tagged,
then the internal “tagger” is used. The notation of “tagger” is not correct here,
because we leave ambiguities in tags. For the Czech language, morphological
analyzer ajka [2] is used to create tags. For other languages the tags are usually
read from an static lexicon. These tags are stored as “values” (see below)
for every word. The terminals (or sometimes called pre-terminals) for given
context-free grammar are created by simplification the tags, e.g. using only
word category as a terminal.

Once the terminals are created the context-free parsing algorithm is run.
This algorithm produces all possible derivation trees at the output with respect
to the input sentence and input grammar. All these derivation trees are stored
in a data structure based on shared-packed forest [3]. Because a chart parser
is used in our system [4], the derivation trees are stored as a chart data
structure [5,6] directly. Any context-free parsing algorithm could be used,
the modularity of the system allows us compare the effectiveness of these
algorithms easily [7].

All derivation trees created in the previous step can be filtered by some basic
filter, that cuts some trees off. In this step only basic filtering “compatible” with
the shared-packed forest data structure is allowed. E.g. only a whole sub-forests
can be removed. The example of such filtration is in Section 3.

The next step is application of contextual constraints and semantic actions.
In this step a new data structure is created, a “forest of values”. The forest
of values is created by a bottom-up recursive run of semantic actions, see
Section 4.

If the input sentence cannot be generated by the input grammar, i.e. there
is no derivation tree at the output of the context-free parsing algorithm, the
system offers a robust module. In this case, the contextual constraints and
semantic actions are applied on every derivation sub-tree in the shared-packed
forest. Then the robust algorithm presented in [8] is used to get the derivation
tree(s).

The resulting forest of values can be further filtered by constraints, that work
with the whole forest, not only with local values. The example of this global
filtering is usage lexicon of verb valencies VerbaLex, see [9].

In the end, the derivation trees are generated from the filtered forest of
values. Only one or several “best” derivation trees can be created, with respect
to the ranking function, e.g. a probability of the tree could be used as one input
to the ranking function.

In the following sections, the above ideas are described in more detail.



16 Vladimír Kadlec

3 Shared-Packed Forest filtering

This filtering is used only to remove some data from the structure, no new
information is added. This technique is a step preceding the filtering by
contextual constraints, see Figure 1 in Section 2 for an overview of the whole
system. The resulting shared-packed forest is always sub-forest of the original.
That means that only simple transformations such as removing a node is done
here.

3.1 Filtering by rule levels

One of possible filtering the shared-packed forest is a local (with respect to
the node of the forest) filtering based on what we call “rule levels”. The rule
level is a function, that assigns a natural number to every grammar rule. In
the following the term “a rule level of a grammar rule” denotes the resulting
number of application this function to the rule.

The idea is, that for some grammar rules: if the specific grammar rule
succeeds during the parse process, then an application of some other rule (with
the same non-terminal on the right hand side of the rule) is wrong. To be
more precise, if the specific grammar rule covers the same input as some other
grammar rule beginning with the same non-terminal, then the rule with lower
rule level is refused.

The chart structure [5] represents the shared-packed forest. So the filtering
method is described in terms of the chart parsing: If there are edges [A → •α•,
i, j] and [A → •β•, i, j] in the chart, then delete the edge with the grammar rule
with the lower rule level. If the edges have the same rule level, keep them both
in the chart. Figure 2 shows an example of such rules, w1, w2, . . . , w6 represent
the input sentence.

Fig. 2. Filtering by rule levels. Two sub-forests with grammar rules A → α and
A → β in their roots. One of them is filtered out, if these rules has a different
rule level set.



Parsing System with Contextual Constraints 17

Notice that this kind of filtering is different from a probability of the
grammar rule. The presented method is local to the specific node in the shared-
packed forest. By default all grammar rules have the same rule level. The rule
levels are set by hand and only in very specific cases. Actually, only one rule in
our grammar for Czech [10] has non-default rule level. Only small number of
experiments were performed, because this method is new to our system.

4 Contextual Constraints and Semantic Actions

Our main problem with the context-free (CF) parsing is, that there are too
many derivation trees for a given input sentence. The contextual constraints
are mainly used to prune incorrect derivation trees from the CF parsing
result. Also some additional information can be computed by these constraints,
that is why we also call them “semantic actions”. In the following the term
“contextual constraint” has the same meaning as the term “semantic action”.
Our algorithms for CF parsing generates the chart structure, thus we use the
word “chart” to denote “a result of the CF parsing”.

See Figure 1 to have a better view, in which part of the parsing system the
constraints are computed.

The contextual constraints (or actions) defined in the grammar can be
divided into four groups:

1. rule-tied actions
2. case agreement constraints
3. post-processing actions
4. actions based on derivation tree

The example of a rule-tied action is a rule-based probability estimation.
Case agreement constraints serve as chart pruning actions. The case agreement
constraints represent the functional constraints, whose processing can be inter-
leaved with that of phrasal constraints.

The post-processing actions are not triggered until the chart is already
completed. Actions on this level are used mainly for computation of analysis
probabilities for a particular input sentence and particular analysis. Some such
computations (e.g. verb valency probability) demand exponential resources for
computation over the whole chart structure. This problem is solved by splitting
the calculation process into the pruning part (run on the level of post-processing
actions) and the reordering part, that is postponed until the actions based on
derivation tree.

The actions that do not need to work with the whole chart structure are run
after the best or n most probable derivation trees have been selected. These
actions are used, for example, for determination of possible verb valencies
within the input sentence, which can produce a new ordering of the selected
trees, or for the logical analysis of the sentence [11].



18 Vladimír Kadlec

[0, 2, npnl] [0, 1, np] [1, 2, np]

value2

value1 value1

value2

value3

value4

List of values List of children

->

Fig. 3. Example of the forest of values.

4.1 Representation of values

It was shown that parsing is in general NP-complete if grammars are allowed
to have agreement features [12]. But the pruning constraints in our system are
weaker than for example general feature structures [13].

We allow a a node in the derivation tree to have only limited number
of features. We call the features “values”, because they rise as results of our
semantic actions. E.g. the number of values for noun groups in our system is
at most 56. To compute the values, we build a new structure, a forest of values,
instead of pruning or extending the original chart.

The forest of values is computed by the depth-first walk through the chart
structure. The chart can be viewed as oriented graph. Every edge in the chart is
passed only once, the edge can generate at most one node in the new forest of
values.

The value is computed as a result of the semantic action – for the grammar
rule given by the current edge. The parameters for the semantic action are
filled from the values on lower level, “lower” with respect to the derivation
tree, i.e. closer to the leaves of the tree. So also arguments of the semantic
action are limited by the limit (e.g. 56 possibilities in our case). Because there
could be more than one derivation tree containing the current edge, all possible
combination of values are passed to the semantic action. The worst-case time
complexity for one node in the forest of values is therefore 56δ, where δ is the
length of the longest right-hand side grammar rule. Notice that this complexity
is independent of the number of words in input sentence.

The values in the forest of values are linked with the edges backwards. An
edge contains a single linked list of its values. Each value holds a single linked
list of its children. The child is one dimensional array of values. This array
represents one combination of values that leads to the parent value. Notice that
there can be more combinations of values that lead to the same value. The i-th
cell of the array contains a reference to a value from i-th symbol on the RHS of
the corresponding grammar rule. The i-th symbol has not to be used to compute
the parent value. We use only reference to the edge from such unused cell.

The Figure 3 shows an example representing the rule npnl → np np and
containing three edges ([0, 2, npnl → •np np•], [0, 1, np → •α•], [1, 2, np →
•β•]). The right hand sides of each rule are not shown in the figure, they play
no role here. np → α and np → β are some rules in the input grammar.



Parsing System with Contextual Constraints 19

Each np edge contains two values, value1 and value2. This gives us four pos-
sible combinations. The semantic action computes from combinations value1 ×
value2 and value2 × value1 the same value value4. The combination value2 ×
value2 was classified as incorrect (by the action – contextual constraint), so it is
not here.

4.2 Generation of a grammar with values

It is possible to create CF grammar, without our contextual constraints, which
generates the same derivation trees as the CF grammar supplemented by the
constraints. In the following, a method, that for the given input generates a
such CF grammar without values, is provided. This allows us to compare our
system, that is able to evaluate the constraints, with other systems able to work
only with “pure” CF grammars.

We use the following procedure for every inactive edge [i, j, A →
X1X2...Xn•] in the chart:

– for every value v in the edge, we generate the rule: A → A_value, where
value is an unique textual representation of the value v.

– for every child of the value v, we generate the rule: A_value → X
′

1X
′

2...X
′

n,
where X_i

′
is:

• Xi_valuei if a value valuei from i-th non-terminal is used to compute the
value v.

• Xi otherwise.

Duplicate rules are removed.
Why are the actions and semantic constraints used when they can be

replaced by a grammar with values? There are three main reasons. First of all,
the grammar with values for all possible inputs would be extremely large, even
if the domain range is limited, e.g. by 56 in our case. Secondly, the actions can
be easily changed and debugged when computed separately. The third reason
is that some of our experiments use semantic actions with unlimited domain
range and these actions cannot be substituted by the grammar.

5 Conclusions

In this work, the language independent parsing system is presented. It is based
on context-free parser supplemented by contextual constraints and semantic
actions.

The evaluation of semantic actions and contextual constraints helps us to
reduce a huge number of derivation trees and we are also able to calculate
some new information which is not covered in the context-free part of the
grammar. The dependency graph or filtering by valency lexicon are examples
of such information. The experiments with dependency graphs are at the
beginning. But even for some kinds of short non-projective sentences, the
correct dependencies can be generated within our approach as well.



20 Vladimír Kadlec

All described algorithms are integrated in the parsing system synt [10,14].
Future research is aimed at the experiments with verb valences and lexicon of
verb valencies for the Czech VerbaLex.

Acknowledgements This work has been partly supported by the Academy of
Sciences of Czech Republic under the project 1ET100300414 and by the Ministry
of Education of CR within the Center of basic research LC536 and by the Czech
Science Foundation under the project 201/05/2781.

References

1. Neidle, C.: Lexical-Functional Grammar (LFG). In Asher, R.E., ed.: Encyclopedia of
Language and Linguistics. Volume 3. Pergamon Press, Oxford (1994) 2147–2153.

2. Sedláček, R.: Morphemic Analyser for Czech. Ph.D. thesis, Faculty of Informatics,
Masaryk University, Brno, Czech Republic (2005).

3. Tomita, M.: Efficient Parsing for Natural Languages: A Fast Algorithm for Practical
Systems. Kluwer Academic Publishers, Boston, MA (1986).

4. Kadlec, V., Smrž, P.: How many dots are really needed for head-driven chart
parsing? In: Proceedings of SOFSEM 2006, Czech Republic, Springer-Verlag (2006)
483–492.

5. Kay, M.: Algorithm schemata and data structures in syntactic processing. In: Report
CSL-80-12, Palo Alto, California, Xerox PARC (1989).

6. Earley, J.: An efficient context-free parsing algorithm. In: Communications of the
ACM. Volume 13. (1970) 94–102.

7. Kadlec, V., Smrž, P.: PACE - parser comparison and evaluation. In: Proceedings of
the 8th International Workshop on Parsing Technologies, IWPT 2003, Le Chesnay
Cedex, France, INRIA, Domaine de Voluceau, Rocquencourt (2003) 211–212.

8. Kadlec, V., Ailomaa, M., Chappelier, J.C., Rajman, M.: Robust stochastic parsing us-
ing optimal maximum coverage. In: Proceedings of The International Conference
Recent Advances In Natural Language Processing (RANLP) 2005, Shoumen, Bul-
garia, INCOMA (2005) 258–263.

9. Hlaváčková, D., Horák, A., Kadlec, V.: Exploitation of the Verbalex verb valency
lexicon in the syntactic analysis of Czech. In: Proceedings of Text, Speech and
Dialogue 2006, Brno, Czech Republic, Springer-Verlag (2006) 85–92.

10. Horák, A., Kadlec, V.: New Meta-grammar Constructs in Czech Language Parser
synt. In: Proceedings of Text, Speech and Dialogue 2005, Karlovy Vary, Czech
Republic, Springer-Verlag (2005) 85–92.

11. Horák, A.: Analysis of Knowledge in Sentences. Ph.D. thesis, Faculty of Informatics,
Masaryk University, Brno, Czech Republic (2002).

12. Barton, G.E., Berwick, R.C., Ristad, E.S.: Computational complexity and natural
language. MIT Press, Cambridge, Massachusetts (1987).

13. Kay, M.: Parsing in functional unification grammar. In: Natural Language Parsing,
England, Cambridge (1985) 251–278.

14. Horák, A., Kadlec, V.: Platform for Full-Syntax Grammar Development Using
Meta-grammar Constructs. In: Proceedings of the 20th Pacific Asia Conference on
Language, Information and Computation, Beijing, China, Tsinghua University Press
(2006) 311–318.



Morphological Analysis of Law Texts

Karel Pala, Pavel Rychlý, and Pavel Šmerk

Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic{pala,pary,xsmerk}�fi.muni.z

Abstract. In the paper we explore the morphology of the Czech law texts
including Constitution, acts, public notices and court judgements which
form a huge textual database. As many texts from small domains, the
used language is partially restricted and in relevant aspects also different
from general Czech.
The paper presents first results of the morphological analysis of Czech
law texts and their conversion to the specific formats. Partly, the partial
syntactic analysis has been performed as well.

1 Introduction

In the paper we describe the first results of the new project whose final goal
is to build an electronic dictionary of Czech law terms. We start with a legal
database Lexis which presently includes approx. 50,000 Czech law documents
ranging from the beginning of Czechoslovakia in 1918 to present days. It also
includes court judgements, main representative law textbooks and law reports.
All the texts exist in electronic form.

1.1 Pilot project

As a pilot project we have decided to analyse the current version of the Penal
Code of the Czech Republic. It is one of the biggest law documents containing
almost 36,000 word forms. The overall characteristic of the document can be
found in Table 1.

The task is to process the document by the Czech morphological analyser
(lemmatizer) Ajka in such a way that for each word form in the source text
a morphological information in the form of morphological tags is obtained.
Thus we get information to what parts of speech the word forms belong, and,
for instance, for nouns also grammatical categories like gender, number and
case. Each word form in the document is associated with its respective lemma
as well. In the highly inflectional language like Czech all this information is
relevant for the further analysis of law terms. The results of the morphological
analysis and lemmatizations are transformed into a special format which is
described below.

Petr Sojka, Aleš Horák (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2007, pp. 21–26, 2007. c© Masaryk University, Brno 2007

http://www.fi.muni.cz/usr/sojka/
http://www.muni.cz/people/1648
http://nlp.fi.muni.cz/raslan/2007/


22 Karel Pala, Pavel Rychlý, Pavel Šmerk

Table 1. The overall characteristic of the Penal Code of the Czech Republic

Number of

word forms (tokens) 35,893
numbers 2,647
punctuation marks 9,135
tokens total 47,865
different word forms (types) 5,019
different numbers 467
different punctuation marks 12
types total 5,019

2 Morphological Analysis

We have used several simple scripts to create what is called vertical file from
the source text. It is a plain text file without any formatting (word-processing
options). Words are written in a column, i.e. each line contains one word,
number or punctuation. Optional annotation is on the same line and the
respective words are divided by the tabulator character. The first step uses only
word forms from the source text. The vertical file serves as an input text for
many corpus processing tools like CQP [1] and Manatee [2].

In the next step, we processed the vertical file with the morphological anal-
yser Ajka [3]. It is a tool exploited for annotating and lemmatizing general
Czech texts, however, the processing law texts requires modifications, e.g. en-
riching the list of stems of Ajka. The programme yields all possible combina-
tions of lemma and morphological tags for each Czech word form. In the fol-
lowing example of the Ajka output the tag k1gFnSc1 means: part of speech (k)
= noun (1), gender (g) = female (F), number (n) = singular (S) and case (c) =
first (nominative) (1), tags beginning with k2 are adjectives, k3 – pronouns, k5
– verbs and k7 – prepositions.

Příprava <l>příprava <>k1gFnSc1 (preparation)
k <l>k <>k7c3 (to)
trestnému <l>trestný <>k2eAgMnSc3d1 <>k2eAgInSc3d1 <>k2eAgNnSc3d1

(criminal)
činu <l>čin <>k1gInSc3 <>k1gInSc6 <>k1gInSc2 <l>čina <>k1gFnSc4

(act)
je <l>být <>k5eAaImIp3nSrDaI <l>on <>k3p3gMnPc4xP<>k3p3gInPc4xP <>k3p3gNnSc4xP <>k3p3gNnPc4xP<>k3p3gFnPc4xP <l>je <>k0 (is)
trestná <l>trestný <>k2eAgFnSc1d1 <>k2eAgFnSc5d1 <>k2eAgNnPc1d1<>k2eAgNnPc4d1 <>k2eAgNnPc5d1 (criminal)

As one can see, many word forms are ambiguous: there are more than one
possible tag or even lemma for a given word form. In the analysed document,
76 % of word forms are ambiguous, more than 42 % of word forms have more
than one possible lemma and average number of tags for an ambiguous word
form is 6.75.



Morphological Analysis of Law Texts 23

We have used part-of-speech tagger Desamb [4] to disambiguate such
word forms. The output of the Desamb tool contains only the most probable
lemma/tag for each word form. Table 2 contains output of Desamb for the input
text above.

Table 2. The document in vertical format with morphological annotation (after
disambiguation)

Příprava příprava k1gFnSc1
k k k7c3
trestnému trestný k2eAgInSc3d1
činu čin k1gInSc3
je být k5eAaImIp3nS
trestná trestný k2eAgFnSc1d1
podle podle k7c2
trestní trestní k2eAgFnSc2d1
sazby sazba k1gFnSc2
stanovené stanovený k2eAgFnSc2d1
na na k7c4
trestný trestný k2eAgInSc4d1
čin čin k1gInSc4

The annotated version of the document contains 2,560 different lemmas.
Frequencies of each part of speech are in Table 3.

Table 3. Frequencies of part of speech in the document

Part of Speech Count
k1 – noun 12884
k2 – adjective 4634
k3 – pronoun 2252
k4 – numeral 1028
k5 – verb 4504
k6 – adverb 933
k7 – preposition 3600
k8 – conjunction 3764

3 Noun Groups

For the recognition of the noun groups we have used the partial syntactic
analyzer for Czech DIS/VADIS [5] at first. Unfortunately, DIS/VADIS presently
does not contain rules which can recognize genitival and coordinate structures
because during the development of DIS/VADIS these rules were found too



24 Karel Pala, Pavel Rychlý, Pavel Šmerk

erroneous (overgenerating) when applied to an unrestricted text. However,
there are plenty of such structures in the law texts and overgenerating is not
a problem here because the results will be checked manually.

Moreover, the partial syntactic analyzer DIS/VADIS has one more disad-
vantage: it is written in Prolog which implies that the recognition process is
rather slow. Therefore we have rewritten the rules for noun groups to Perl 5 reg-
ular expressions (which have nontrivial backtracking capabilities) and added
the rules for genitival and coordinate structures and some adverbials common
to the law texts which also were not recognized by DIS/VADIS (e.g. zvlášt’ (ex-
ceedingly), zjevně (evidently) etc.).

For each noun group found in the law texts we determine its:

1. base form (nominative singular),
2. head
3. for nouns in genitive groups also their part.

For example for the noun group dalším páchání trestné činnosti (subsequent
commission of criminal activity, dative) we get:

1. další páchání trestné činnosti
2. páchání
3. další páchání

We can recognize 8,594 noun groups counting repeating occurencies, 3,992
different noun groups. Table 4 lists several most frequent noun groups (since
there are problems with finding the correct English equivalent terms we do not
offer them here). Table 5 presents the most frequent part-of-speech patterns of
the recognized noun groups.

Table 4. The most frequent noun groups

Noun Group Count
odnětím svobody 492
peněžitým trestem 139

jeden rok 123
trestný čin 79

odnětí svobody 76
účinnosti dne 65

zákazem činnosti 64
trestného činu 58

velkého rozsahu 49
závažný následek 47

zvlášt’ závažný následek 46



Morphological Analysis of Law Texts 25

Table 5. The most frequent POS patterns

Part of Speech Patterns Count
k2 k1gI 1526
k2 k1gF 1127

k1gN k1gF 769
k2 k1gN 469

k1gI k1gN 210
k1gN k1gI 203
k1gI k1gF 193
k1gF k1gI 177
k1gF k1gN 171
k1gF k1gF 164

4 Verb List

Though law terms typically consist of the nouns, noun groups and other
nominal constructions we also have paid attention to the verbs found in the
whole database of the 50,000 law documents. The reason for this comes from
the fact that verbs on one hand do not display strictly terminological nature
but on the other they are relational elements linking the terminological nouns
and noun groups together. This can be captured by the surface and deep verb
valency frames [6] of the verbs occuring in the law documents. We are not
aware of any attempt to describe the valency frames of the verbs coming from
law texts. Presently the verb list comprises 15,110 items, particularly 10,190
infinitives and 4,920 participles (which are mostly the passive ones). The list
has been processed by the morphological analyzer Ajka [3] as a result we
have obtained the list of 914 items that were not recognized by Ajka tool. The
structure of this list shows that at least three types of the non-recognized items
can be observed:

1. erroneous forms caused by typing errors, they can be corrected, e. g. cítít
(feel),

2. the verbs that Ajka does not know, i. e. the ones that do not appear in the
Ajka’s list of stems. Typically, they display a terminological character and
they should be added to the Ajka’s stem list, e. g. derogovat (derogate). They
will enrich the list of (Czech) stems and their law meanings constitute a
terminological subset of verbs,

3. erroneous forms that cannot be corrected without correcting the whole
paragraph of a law document.

The next step is to add the non-recognized verbs to Ajka’s list of the verb stems
and to make an intersection with our existing database Verbalex [6] containing
presently about 11,306 (general) Czech verbs.



26 Karel Pala, Pavel Rychlý, Pavel Šmerk

5 Conclusion

We have presented the preliminary results of the computational analysis of
Czech law documents, or more precisely, their samples. On one hand we
have used the already existing tools such as Ajka or DIS/VADIS, on the other
hand we have modified respectively them for the purpose of the present
task. As a result we can enrich them with regard to the law language but,
more importantly, we have obtained basic knowledge about the grammatical
structure of the law texts (law terminology) and in this way we are prepared
to continue our exploration of the contexts in which law terms occur in the
law documents. The knowledge of such contexts is a necessary condition for
a deeper understanding of how law terminology works and how it can be
made more consistent. As an application we hope to obtain the basic rules for
intelligent searching law documents. A tool based on such rules can serve to
judges, attorneys and experts in creating new law documents.

Acknowledgements

This work has been partly supported by the Academy of Sciences of the Czech
Republic under the projects 407/07/0679 and by the Ministry of Education of
the Czech Republic within the Centre of basic research LC536.

References

1. Schulze, B.M., Christ, O.: The CQP User’s Manual. (1996).
2. Rychlý, P.: Corpus Managers and their Effective Implementation. Ph.D. thesis,

Faculty of Informatics, Masaryk University (2000).
3. Sedláček, R.: Morphemic Analyser for Czech. PhD thesis, Masaryk University (2005).
4. Šmerk, P.: Towards Morphological Disambiguation of Czech. Ph.D. thesis proposals,

Faculty of Informatics, Masaryk University (2007).
5. Žáčková, E.: Partial Syntactic Analysis of Czech. Ph.D. thesis, Faculty of Informatics,

Masaryk University (2002).
6. Horák, A., Hlaváčková, D.: VerbaLex – New Comprehensive Lexicon of Verb

Valencies for Czech. In: Computer Treatment of Slavic and East European Languages,
Third International Seminar, Bratislava, VEDA (2005) 107–115.



Part II

Semantic Analysis





The Learning and Question Answering Modes

in the Dolphin System for the Transparent

Intensional Logic

Andrej Gardoň and Aleš Horák

Faculty of Informatics, Masaryk University Brno
Botanická 68a, 602 00 Brno, Czech Republicxgardon�fi.muni.z, hales�fi.muni.zhttp://nlp.fi.muni.z/projets/dolphin

Abstract. In this paper, we present the two modes of operation of the
developed Dolphin system, which implements a knowledge base for the
Transparent Intensional Logic formalism.
We offer several examples of the system input with detailed explanation
of how these inputs are parsed and stored in the system and how the
system reuses the knowledge base information for answering simple
questions offering a kind of simple inference.

Key words: Dolphin, transparent intensional logic, TIL, knowledge base

1 Introduction

The transparent intensional logic (TIL) is a higher order typed logical system
designed for representing meaning of human language in a computer. In
comparison with traditional logic systems, TIL is able to distinguish so called
intensions, i.e. entities dependent on the reference possible world and time
moment, and extensions. Using the higher order types, TIL allows us to express
attitudes1 to other natural languages objects in a declarative manner. For more
detailed information about TIL you can see [1,2].

In the following text, we will present details of an ongoing project called
Dolphin, which is an implementation of an efficient knowledge base built over
the TIL formalism. The basic ideas of Dolphin have been published in [3].

2 The TIL Knowledge Base Architecture

The Dolphin system is designed to process the output of the syntactic parsersynt [2,4], which is able to produce syntactic trees as well as logical represen-
tations of input sentences in the form of TIL constructions. In Dolphin, the con-
structions are parsed and stored in the knowledge base (KB), which takes the

1 e.g. Tom believes that Peter says that the earth is flat.

Petr Sojka, Aleš Horák (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2007, pp. 29–36, 2007. c© Masaryk University, Brno 2007

mailto:xgardon@fi.muni.cz
mailto:hales@fi.muni.cz
http://nlp.fi.muni.cz/projects/dolphin
http://www.fi.muni.cz/usr/sojka/
http://www.muni.cz/people/1648
http://nlp.fi.muni.cz/raslan/2007/


30 Andrej Gardoň, Aleš Horák

form of a semantic network. The system is then able to process the facts from
KB in the way allowing to answer yes/no questions and questions about firmly
established objects relations in the form of The apple is red. The cube is red. What
red objects do you know?. Although current version of the system does not sup-
port all TIL capabilities in full breadth, we hope the design of it will make it
easy to add them in the future.

2.1 How the Dolphin Database Works

The Basic Dolphin idea is a separation of the language layer from the logical layer.
Human words are just a way how to describe some objects. There are many
languages but all of them work over the same set of objects. Therefore Dolphin
works with this set and is ready to understand everything what his teacher
teaches him. This process lies in transforming teacher words to the KB objects
mentioned above. Here synt plays its role as it produces TIL transcription of
sentence. As a young child who gets in touch with word apple for the first time,
Dolphin after obtaining apple on its input takes its TIL description and creates
new object in its object layer – let it be object #1. Next time we mention this
particular apple, Dolphin realizes object #1 in its KB and whatever is told about
it is appended to this object.

2.2 The Role of the Language Layer

The linkage from the apple and the object #1 is driven by the language layer.
The word apple is stored in the appropriate language file and is connected
to the object #1. If the system is switched to the question answering mode (see
the Section 2.3), whenever the word apple appears, it is replaced by object #1
for the purpose of the logical inference. The current implementation of the
language layer supports multiple languages but the rest of the system works,
at the moment, with one selected language. The reason for this is that the
language learning needs to employ specific inference. The language layer also
offers techniques for synonyms and homonyms but again complex inference
is needed to use it. The implementation of the language layer uses an adapted
library of special B-trees and thus provides effective transcription of a word to
the equivalent object.

2.3 The Input Sentence Processing

Let us take an example input sentence (in Czech, as this is the current input
language of synt):

Jablko je červené. (An apple is red)

and its corresponding TIL transcription:

λw1λt2(∃i3)([0jablko-0w1t2
, i3] ∧ [0£ervený-2w1t2

, i3]) . . . π



Learning and Question Answering Modes in Dolphin 31

At first, variables are identified and single applications are isolated. Variables
that are not covered by λ-abstraction are replaced by new constants named after
the variables. The λ-abstracted variables are currently handled in a simplified
way – when the λ-abstraction is used without quantification, the abstracted
variables usually go over the ω (possible worlds) or τ (time moments) types.
In case of an ω-variable, the Dolphin’s world wDolphin is assigned to it. All
time variables (of type τ) are, in the current version, replaced by an object
representing a “general time independent object,” so as we can see the current
version does not support time processing at all. This feature will be the main
goal of our future work. Other quantified variables are initialized differently
according to the system running mode. There are two running modes currently
available – the learning mode and the question answering mode.

The Learning Mode processes and stores new facts and it is activated by a full
stop mark at the end of a sentence. In this mode, each uninitialized variable
is replaced by a new object named after the variable. If we want to add new
facts about an object previously mentioned in the conversation with Dolphin,
we have to stress this with the demonstrative pronoun (ten, ta, to – in Czech
this corresponds to the definite article in English). The object is then marked
with an exclamation mark (!) and is looked up in the knowledge base and the
variable is replaced by the stored object. For example if we want to add the fact
that

To jablko je červené. (The apple is red.)

the apple is analysed as 0!jablko-0/(oi)τω and then found as the previously
stored object #23 and the construction would thus contain object 0#23 instead
of the i3 variable displayed above. Currently, the system supports only the ex-
istential quantification since the universal quantification defines new inference
rules and the complex inference has not been implemented so far.

We may mentioned the way, how possible fact conflicts are handled – if the
input fact assigns something to an existing KB object and the fact is in conflict
with the KB content then an error message is raised. For demonstration let us
have a sentence

The apple is red.

stored in KB. Now we would like to store the sentence

The apple is not red.

This raises an error message and the second sentence is not stored. Today there
is no tool for saying to Dolphin:

A fact in KB is wrong, I have the correct one.

so whatever is stored in KB will remain unchanged until a reset of the whole
database.



32 Andrej Gardoň, Aleš Horák

The Question Answering Mode works similarly to the learning mode but
there is no unification of free variables with new objects. Instead, the first
application containing an uninitialized variable suggests a way how to unify
this variable with a particular value. If we take our example sentence as a
question

Je nějaké jablko červené? (Is there any red apple?)

first application containing free variable i3 (variables w1 and t2 are initialized
as described above) will be

[0jablko-0w1t2
, i3]

Thanks to this application, i3 is unified with an object that is stored in Dolphin
and is an Apple (is linked to the class construction of apples). The following
application (saying that the object is red) posts a second requirement to check.
If the object unified with i3 is not Red (there is no relation between the unified
object and the class of red objects), the system returns to the state when i3 was
initialized and tries another possibility. If all possible ways were checked and
there is no object that is Apple and Red concurrently the answer NO is returned.
In case all the requirements are fulfilled, the answer YES is returned with the
selected i3 value. Again there is no universal quantification feature yet, but
simple questions such as

Jaké červené objekty znáš? (What red objects do you know?)

can be processed correctly.

2.4 How the Objects are Stored

Objects are essential elements of logical analysis and the TIL construction
processing. In the Dolphin knowledge base, all data are objects related with
each other. It does not matter if we store an individual or a function in KB,
we are still working with one object. For example, the class of apples (Apple)
is represented as the characteristic function of the class, i.e. as a (world and
time dependent) function which returns an o-object (boolean true/false) for
each ι-object (an individual) given as its argument. Each such ι-object is stored
separately from Apple, of course.

There is an information that Apple and the ι-object i3 are in relation and this
information is shared among all participants. Each object is represented as
a separate file. This can be considered as very ineffective while each time



Learning and Question Answering Modes in Dolphin 33

we need an object we have to read a separate file from disc. In fact, there
is no solution that does not use disc reading as there is so many objects
and absolutely no chance to store them all in operating memory. On the
other hand simple file for each object offers some benefits. In the future, a
specialized file system technology can be developed or archiving methods
can be incorporated in the storage process without the database functionality
limitation or reimplementation.

3 A Complex Example

Let us take three example sentences:

1. Toto je jablko. (This is an apple.)
2. Tato kostka je červená. (This cube is red.)
3. To jablko je červené. (The apple is red.)

and their TIL transcriptions provided as inputs to Dolphin, step by step:

λw1λt2([
0jablko-0w1t2

, Toto]) . . . π

The word toto (this) makes the resulting construction an open construction
(with the free variable Toto) which needs to receive so called pragmatic anchor.2

This input creates a new object in the knowledge base and Dolphin prints the
assigned object number:> Toto je jablko. (This is an apple.)> stored as objet 6.
The second sentence> Tato kostka je £ervená. (This ube is red.)
with the corresponding TIL construction

λw1λt2([
0!kostka-0w1t2 , i3] ∧ [0£ervený-2w1t2

, i3]) . . . π

where the variable w1 is unified with object #2 (representing the Dolphin’s
world), the variable t2 is unified with object #3 (representing the General time
object) and the variable i3 is now initialized with a new object of type ι (let it be
#7), since no previously mentioned object from the class kostka was found.

Each trivialization asks the language layer whether it knows the word. If
the word is not found, it is stored and a new object is created with connection
to this word.

So ∧ (AND) in our transcription causes that search in language layer is
performed and object #10 is returned (we suppose that AND was previously
stored).

2 see [2, the Section 5.2.4] or [5, the Section 7.1]



34 Andrej Gardoň, Aleš Horák

Applications are represented as relations among objects that are participat-
ing in the application. Thus in Dolphin, the partial application

[0£ervený-2/(oi)τωw1]

is represented as a relation between červený and the object of the variable w1.
The information about the relation is stored both in object červený and w1 object
and of course in the final object – the result of this application is a new (oι)τ-
object (a chronology of the class of objects which are červený/red) which is than
applied on the general time object. The final object of the application

[0£ervený-2w1t2
, i3] . . . o

is then created as an o-object (a truth value) and in the learning mode the object
receives the true value.

The third example sentence is stored similarly as the second one with the i3
variable definition difference.> To jablko je £ervené. (The apple is red.)
TIL transcription

λw1λt2([
0!jablko-0w1t2

, 0#6] ∧ [0£ervený-2w1t2
, 0#6]) . . . π

Semantic network for three sentences is displayed in the Figure 1. Note that
there are many objects with true value in the network. This is because each
application leads to a unique object and if this object is not yet in KB, it is
created. Thanks to this, the λ-abstraction can be done in a straightforward way.
It is worth saying that negation is a special function over the o-object that does
not create a new object but it replaces the existing true value with false. If we ask
the question

Je to jabko červené? (Is the apple red?)

TIL transcription is in form of a match:

x . . . o : ([0!jablko-0wDolphin tnow , 0#6] ∧ [0£ervený-2wDolphin tnow , 0#6]) . . . o

Basically it asks whether the previously mentioned object #6 is in relation with
Apple and Red concurrently. It is easy to answer as we have this information in
our knowledge base already. System just obtains the result of the applications
on the right side of the match (common applications of objects) and checks
whether final object of the right side is true. In this case, the answer is yes but
what happens if we have the question

Je to jablko zelené? (Is the apple green?)

Since we are in the question answering mode, the basic trivialization of green
will fail as we do not have such object in KB yet. The system does not follow the
predicate logic closed world assumption, thus the answer is “I DO NOT KNOW”
instead of “NO.” The question



Learning and Question Answering Modes in Dolphin 35

Fig. 1. The semantic network for the 3 example sentences.

Které červené objekty znáš? (What red objects do you know?)

is again analysed as a match

s . . . (oi) : 0£ervený-1wDolphin tnow . . . (oi)

Here the system evaluates all possible objects which are stored in KB as related
to the class červený (applied on the Dolphin’s world and the general time object)
obtaining the class of all red objects known to Dolphin. Thanks to system
design, this operation consists in fast searching through the semantic network.
As can be seen in the Figure 1, the Red object applied on the Dolphin’s world
and the General time object ((oi)-object with (9,2) 3 label) has connections
to the true value. Now (simplified) it is enough to look what object is at the
end of the connection that runs out from the place of the true value where the
connection from (9, 2) 3 object ended. In this way we find out that objects #6
and #7 are red.



36 Andrej Gardoň, Aleš Horák

4 Conclusions and Future Work

We have presented the current state of development of the Dolphin knowledge
base for the Transparent Intensional Logic. The system is currently able to store
TIL constructions in an efficient semantic network structure with offers basic
question answering ability.

The Dolphin system is able to parse and store the synt output in the form
of TIL constructions, to check the consistence of the database and to answer
simple questions. The final aim of the Dolphin development is the full support
of working with possible worlds and time moments and the provision of a
complex inference tool. The directly following version will be directed to the
time span support. The plan is that every mentioned time moment will be
represented as a separate object, which will contain contain information about
objects that are in relation with it. Through this system a simple fact will have
different truth value in various time moments and it will be possible to answer
questions like:

What is true in the time moment XXX?

Acknowledgments

This work has been partly supported by the Academy of Sciences of Czech
Republic under the project T100300414 and by the Czech Science Foundation
under the project 201/05/2781.

References

1. Tichý, P.: The Foundations of Frege’s Logic. de Gruyter, Berlin, New York (1988).
2. Horák, A.: The Normal Translation Algorithm in Transparent Intensional Logic for

Czech. Ph.D. thesis, Masaryk University, Brno (2002).
3. Gardoň, A., Horák, A.: Dolphin – a Knowledge Base for Transparent Intensional

Logic. In: Proceedings of the Seventh International Workshop on Computational
Semantics (IWCS-7), Tilburg, The Netherlands (2007) 316–319.

4. Horák, A., Kadlec, V.: New Meta-grammar Constructs in Czech Language Parser
synt. In: Proceedings of Text, Speech and Dialogue 2005, Karlovy Vary, Czech
Republic, Springer-Verlag (2005) 85–92.

5. Materna, P.: Concepts and Objects. Volume 63 of Acta Philosophica Fennica. The
Philosophical Society of Finland, Helsinki (1998).



Functional Programming

Based on Transparent Intensional Logic

Nikola Ciprich, Marie Duží, Michal Košinár

VŠB—Technical University Ostrava
Faculty of Electrical Engineering and Computer Science
17. listopadu 15, 708 33, Ostrava-Poruba, Czech Republicnikola.iprih�linuxbox.z

Abstract. In the paper we introduce an interpreter of the Transperent
Intensional Logic (TIL), namely the TIL-Script language, its design and
implementation. TIL is a brainchild of the Czech logician Pavel Tichý
and in many ways a revolutionary logical system. The work on the TIL-
Script project is being pursued by the team of undergraduate students.
The paper we provide is a brief review of the TIL-Script syntax.

Key words: TIL, TIL-Script, Transparent Intensional Logic, syntax, grammar

1 Introduction

1.1 Motivation

Pavel Tichý set his work on TIL in 1970s, and since then he demonstrated its
great expressive power, in particular in the area of analysis of natural language
processing (see [3,4]). Since hitherto there is no computer implementation of
TIL, we decided to create our own and make it available to public.

1.2 Objective

The notational syntax of TIL language of constructions as originally proposed
by Tichý is not optimal for computer processing. It contains lots of non-
ASCII characters which are difficult to type on a computer; for instance, Greek
alphabet is used to denote particular atomic and molecular types, lots of upper
indexing, etc. On the other hand, some special types that are useful from the
computational point of view are missing (like the type for integers, a special
type for time, lists and tuples, etc.). Therefore the changes in syntax and slight
modifications in semantics had to be done in order that the code be easy to type
and read. Since TIL as a higher-order logic is undecidable, it is also important
to create a limited but working inference engine.

2 Constructions

There are six kinds of constructions in TIL, two atomic and four molecular ones.
In the TIL-Script code each entry of a construction is terminated by a period.

Petr Sojka, Aleš Horák (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2007, pp. 37–42, 2007. c© Masaryk University, Brno 2007

mailto:nikola.ciprich@linuxbox.cz
http://www.fi.muni.cz/usr/sojka/
http://www.muni.cz/people/1648
http://nlp.fi.muni.cz/raslan/2007/


38 Nikola Ciprich, Marie Duží, Michal Košinár

2.1 Trivialisation

The first atomic construction is trivialisation. Given an object, it just returns the
object. It could be thought of as compared to a pointer, and its dereference. In
TIL, the Trivialisation is denoted by the 0 symbol (thus writing 0Object). TIL-
Script uses the apostrophe (’) symbol, as it’s a symbol similar to the original
one and easy to type. Thus we have the transcription of 0Object into 'Object.
Any object, even a construction can be trivialised.

2.2 Variables

Another atomic construction is a variable. From the syntactic point of view,
variables in TIL are usually named by lower-case letters; similarly in TIL-Script
we can use any name beginning with a lowercase letter and consisting only of
letters, numbers and ’_’ symbol.

2.3 Closures

The third construction is a Closure (also a lambda closure). It constructs an
anonymous function f , that can then be applied to its argument a by using the
Composition of the closure with a construction of a. In TIL, the syntax is similar
to the lambda-calculus lambda abstraction, using the symbol λ to mark lambda-
bound variables. For example, the Closure constructing the successor function
can be written as [λx[0+x01]]. TIL-Script retains this syntax, just replacing the
symbol λ by ’\’ (and of course using the ’ symbol for trivialisation). Moreover,
types have to be specified (more on types see below). So the TIL-Script notation
of the successor closure is as follows:[\x:Int ['+ x '1℄℄.
Creating functions using named closures In TIL-Script, we can also construct
a named function using Closure. To this end the def keyword is used; for
instance, the above construction of the successor function named as Succ is in
TIL-Script written as follows1:def Su := [\x:Int ['+ x '1℄℄.
2.4 Compositions

The Composition construction is an instruction to apply a function to its
arguments. There is no notational difference between TIL and TIL-Script
concerning a Composition. For instance, here is a Composition of the above
Closure with the Trivialisation of the number 5:[[\x:Int ['+ x '1℄℄ '5℄.
1 Parameter types can also be specified in another way, this will be discussed later



Functional Programming Based on Transparent Intensional Logic 39

Or, using the pre-defined name of the successor function, we have:['Su '5℄.
both constructing the number 6.

2.5 Double execution

Some constructions can be used twice over: the Double Execution of a construc-
tion X, in symbols 2X, v-constructs what is v-constructed by X. In TIL-Script
the upper index 2 is replaced by the ^2 notation: ^2X.

2.6 Partiality

It is important to note that TIL operates with partial functions. Thus a construc-
tion can fail to v-construct anything, i.e., it can be v-improper. This is in princi-
ple due to a Composition, when a partial function f is applied to an argument
a but there is no value of f at a. Thus the Composition of the division function
with an argument <x,0> encoded in TIL-Script by [’Div x ’0], is v-improper for
any x. And so is any Composition of another construction with the former, like,
e.g., [’Plus [’Div x ’0] ’1]. We say that ’partiality is being strictly propagated up’.

Closure never fails to v-construct, it always v-constructs a function, even if
it were a function that is undefined at all its arguments like [\x ['Div x '0℄℄.
3 Types

TIL defines four basic types: ι (iota) for the set of individuals (the universe of
discourse), o (omicron) for the set of truth values, τ (tau) for the set of times
and/or real numbers and ω (omega) for the set of possible worlds. TIL-Script
slightly extends and modifies this set of basic types, as the mix of real numbers
and times and the absence of integer numbers is not plausible. Therefore the
types in TIL-Script are:

– Bool or o for truth values (o)
– Indiv or i for individuals (ι)
– Time or t for time (τ)
– Real or r for real numbers
– Int for integer numbers

Special keyword Any stands for an unspecified type (α in TIL) that is used
to indicate polymorphic function. The frequently used abbreviation of the
Composition [[Cw]t] that is used for the extensionalisation of intensions
(functions from possible worlds into chronologies of entities of a given type)
is replaced by the C�wt notation.



40 Nikola Ciprich, Marie Duží, Michal Košinár

3.1 Lists

From the computational point of view, an important type is that of a list. A list
is a (potentially infinite) sequence of entities and can thus be constructed by a
composed TIL construction. However, since lists (or tuples) are frequently used
in a computer program, we decided to include list into TIL-Script as a special
type. To this end we use the list keyword: list(type1 type2 . . . ). For example,
the list of individuals is declared by list(Indiv) or list(i), the list of triples
of numbers is declared by list(Int, Int, Int). Lists can also be defined
recursively; thus by using list(list(Int, Indiv)) we declare the list of lists
of number-individual pairs. Types are then specified using the slash or colon
(in Closures). There are two ways of defining types of function arguments.
Either by defining the type of an entity (slash notation), or by defining the
range of a variable (the colon notation). To adduce some examples, here are the
types of individuals, empirical functions, properties and the range of variable
x, respectively:Charles, Tomas/Indiv.Ostrava/Indiv.President/(((ii)t)w).President/(ii)�tw.Property1/((oi)t)w).Property2/(oi)�wt.def Su1:= [\x:Int ['+ x '1℄℄.Su2/(Int Int).def Su2:=[\x ['+ x '1℄℄.
4 Miscellaneous

4.1 Assignment operator

As an assignment operator, the let keyword is used, e.g.: let city:=’Ostrava. It
assigns a value to a variable, and it is used mainly in recursive definitions and
in the discourse processing (see [6]).

4.2 Quantifiers

For quantifiers we use the keywords ForAll (stands for ∀), Exists (stands for ∃),
and Single for singularisers.

4.3 Infix × prefix notation

The first version of TIL-Script will support only prefix notation for all operators,
further versions will also support the infix notation.



Functional Programming Based on Transparent Intensional Logic 41

5 Examples

As an example we now introduce the transcription of the analysis of three
agents communication (taken from [6]) into TIL-Script:ind, lo/i.pred, prof/(oi)�tw.rel1/(oi(oi)�tw)�tw.rel2/(oii)�tw.rel3/(oio�tw)�tw.prop/o�tw.onstr/*n.
Adam to Cecil: “Berta is comming. She is looking for a parking”. ’Inform’
message content:\w\t['Comming�wt 'Berta℄.
Discourse variables updates:let ind:='Berta.let pred:='Coming.let prop:=\w\t['Coming�wt 'Berta℄.\w\t ^2['Sub ind 'she '['Looking_for�wt she 'Parking℄℄.% (is transformed into:)\w\t['Looking_for�wt 'Berta 'Parking℄.
Discourse variables updates:let rel1:='Looking_for.let pred:='Parking.let prop:=\w\t['Looking_for�wt 'Berta 'Parking℄.let prof:=\w\t\x['Looking_for�wt x 'Parking℄.
Cecil to Adam: “So am I”. ’Inform’ message content:\w\t^2['Sub prof 'so '[so�wt 'Ceil℄℄. % transforms to:\w\t['Looking_for�wt 'Ceil 'Parking℄.
Discourse variables updates:let ind:='Ceil.
Adam to both: “There is a free parking at p1”. ’Inform’ message content:\w\t[['Free 'Parking℄�wt 'p1℄.
Discourse variables Updates:



42 Nikola Ciprich, Marie Duží, Michal Košinárlet lo:='p1.let pred:=['Free 'Parking℄.let prop:=\w\t[['Free 'Parking℄�wt 'p1℄.
Berta to Adam: “What do you mean by free parking?” ’Query’ message content:\w\t['Refine�wt '['Free 'Parking℄℄.
Adam to Berta: “Free parking is a parking and some parts of it are not occupied”.
’Reply’ message content:'['Free 'Parking℄ ='[\w\t\x ['And['Parking�wt x℄['Exists y [And['Part_of�wt y x℄Not ['Oupied�wt y℄℄℄℄℄.
6 Conclusion

In this paper we outlined the syntax of the TIL-Script language that is being
developed within the project “Logic and Artificial intelligence for Multi-Agent
Systems”. TIL-Script is a FIPA compliant language in which the content of FCA
messages is encoded. Agents communicate by messaging in TIL-Script.

In the paper we illustrated how smooth and natural the communication in
TIL-Script is. The translation from natural language into TIL-Script messages
(and vice versa) is near-to-isomorphic. Thus the humans can easily formulate
the messages that the computational agents understand and perform.

Acknowledgements This research has been supported by the program “Infor-
mation Society” of the Czech Academy of Sciences, project No. 1ET101940420
“Logic and Artificial Intelligence for Multi-Agent Systems”2.

References

1. Duží M., Jespersen B., Materna P.: Transparent Intensional Logic - Foundations and
Applications, mns. 2007.

2. Tichý P.: The Foundations of Frege’s Logic, 1988, Berlin, New York: De Gruyter.
3. Tichý P.: Cracking the Natural Language Code, 1994 reprinted in [5]: pp. 843–857.
4. Tichý P.: The Analysis of Natural Language, 1994 reprinted in [5]: pp. 801–841.
5. Pavel Tichý’s Collected Papers in Logic and Philosophy edited by V. Svoboda, B.

Jespersen, C. Cheyne (eds.) Prague: Filosofia, Czech Academy of Sciences, and
Dunedin: University of Otago Press.

6. Duží M.: TIL as the Logic of Communication in a Multi-Agent System Submitted to
CICLING 2008.

2 see http://labis.vsb.z

http://labis.vsb.cz


Semantic Pre-processing of Anaphoric References

Marie Duží

VŠB-Technical University Ostrava, Czech Republicmarie.duzi�vsb.z
Abstract. In the paper we describe the method of encoding communi-
cation of agents in a multi-agent system (MAS). The autonomous agents
communicate with each other by exchanging messages formulated in a
near-to-natural language. Transparent Intensional Logic (TIL) is an ex-
pressive system primarily designed for the logical analysis of natural lan-
guage; thus we make use of TIL as a tool for encoding the semantic con-
tent of messages. The hyper-intensional features of TIL analysis are de-
scribed in particular with respect to agents’ attitudes and anaphoric refer-
ences. By an example we illustrate the way TIL can function as a dynamic
logic of discourse where anaphoric pronouns refer to entities of any type,
even constructions, i.e. the structured meanings of other expressions.

1 Introduction

Multi-agent system (MAS) is a system composed of autonomous, intelligent
but resource-bounded agents. The agents are active in their perceiving environ-
ment and acting in order to achieve their individual as well as collective goals.
As a whole, the system of collaborative agents is able to deal with the situations
that are hardly manageable by an individual agent or a monolithic centralised
system. The agents communicate and collaborate with each other by exchang-
ing messages formulated in a standardised natural language. According to the
FIPA standards1 for MAS, a message is the basic unit of communication. It can
be of an arbitrary form but it is supposed to have a structure containing several
attributes. Message semantic content is one of these attributes, the other being
for instance ‘Performatives’, like ‘Query’, ‘Inform’, ‘Request’ or ‘Reply’. The
content can be encoded in any suitable language. The FIPA standard languages
(for instance the SL language or KIF) are mostly based on the First-Order Logic
(FOL) paradigm, enriched with higher-order constructs wherever needed. The
enrichments extending FOL are well defined syntactically, while their seman-
tics is often rather sketchy, which may lead to communication inconsistencies.
Moreover, the bottom-up development from FOL to more complicated cases
yields the versions that do not fully meet the needs of the MAS communica-
tion. In particular, agents’ attitudes and anaphora processing create a problem.
In the paper we focus on agents’ communication, and we are going to demon-
strate the need for an expressive logical tool of Transparent Intensional Logic
(TIL) for encoding the semantic content of messages.

1 The Foundation for Intelligent Physical Agents, http://www.fipa.org
Petr Sojka, Aleš Horák (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2007, pp. 43–56, 2007. c© Masaryk University, Brno 2007

mailto:marie.duzi@vsb.cz
http://www.fipa.org
http://www.fi.muni.cz/usr/sojka/
http://www.muni.cz/people/1648
http://nlp.fi.muni.cz/raslan/2007/


44 Marie Duží

The paper is organised as follows. After briefly introducing TIL philosophy
and motivations in the next Section 2, in Section 3 we describe the method
of analysing sentences with anaphoric references occurring in any context;
extensional, intensional, or even hyperintensional context of attitudes. By way
of an example we demonstrate in Section 4 how TIL functions as the logic of
dynamic discourse. Finally, a few notes on TIL implementation by the TIL-
Script language are contained in concluding Section 5.

2 Basic notions of Transparent Intensional Logic

TIL constructions are uniquely assigned to expressions as their structured mean-
ings. Intuitively, construction is a procedure (an instruction or a generalised
algorithm), that consists of particular sub-instructions on how to proceed in or-
der to obtain the output entity given some input entities. Thus the sense of a
sentence is a hyper-proposition, i.e., the construction of a proposition denoted
by the sentence. The denoted proposition is a flat mapping with the domain
of possible worlds. Our motive for working ‘top-down’ has to do with anti-
contextualism: any given term or expression (even one involving indexicals or
anaphoric pronouns) expresses the same construction as its sense (meaning) in
whatever sort of context the term or expression is embedded within. And the
meaning of an expression determines the respective denoted entity (if any), but
not vice versa. However, some terms, like those with indexicals or anaphoric
pronouns, express only incomplete meanings (open constructions) and, there-
fore, only v(aluation)-denote, being insofar sensitive to which context they are
embedded in.

There are two kinds of constructions, atomic and compound. Atomic con-
structions (Variables and Trivializations) do not contain any other constituent but
itself; they supply objects (of any type) on which compound constructions op-
erate. Variables x, y, p, q, . . . , construct objects dependently on a valuation; they
v−construct. Trivialisation of an object X(of any type, even a construction), in
symbols 0X, constructs simply Xwithout the mediation of any other construc-
tion. Compound constructions, which consist of other constituents, are Composi-
tion and Closure. Composition [F A1. . . An] is the instruction to apply a function
f (v−constructed by F) to an argument A (v−constructed by A1. . . An).2 Thus
it v−constructs the value of f at A, if the function f is defined at A, otherwise
the Composition is v−improper, i.e., it does not v−construct anything. Closure
[λx1. . . xn X] is the instruction to v−construct a function by abstracting over
variables x1,. . . ,xn in the ordinary manner of λ-calculi. Finally, higher-order
constructions can be used twice over as constituents of composed construc-
tions. This is achieved by a fifth construction called Double Execution, 2X, that
behaves as follows: If X v−constructs a construction X’, and X′ v−constructs
an entity Y, then 2X v−constructs Y; otherwise 2X is v−improper.

TIL constructions, as well as the entities they construct, all receive a type.
The formal ontology of TIL is bi-dimensional; one dimension is made up of

2 We treat functions as mappings, i.e., set-theoretical objects, unlike the constructions of functions.



Semantic Pre-processing of Anaphoric References 45

constructions, the other dimension encompasses non-constructions. On the
ground level of the type-hierarchy, there are entities unstructured from the
algorithmic point of view belonging to a type of order 1. Given a so-called
epistemic (or ‘objectual’) base of atomic types (o-truth values, ι-individuals,
τ-time moments / real numbers, ω-possible worlds), the induction rule for
forming functions is applied: where α, β1,. . . ,βn are types of order 1, the set of
partial mappings from β1×. . .×βn to α, denoted (α β1. . . βn), is a type of order
1 as well.3 Constructions that construct entities of order 1 are constructions of
order 1. They belong to a type of order 2, denoted by *1. This type *1together
with atomic types of order 1 serves as a base for the induction rule: any
collection of partial mappings, type (α β1. . . βn), involving *1 in their domain
or range is a type of order 2. Constructions belonging to a type *2 that identify
entities of order 1 or 2, and partial mappings involving such constructions,
belong to a type of order 3. And so on ad infinitum.

An object A of a type α is called an α-object, denoted A/α. That a construc-
tion C v−constructs an α-object is denoted C →v α. Quantifiers, ∀α (the gen-
eral one) and ∃α (the existential one), are of types (o(oα)), i.e., sets of sets of
α-objects.4 [0∀αλxA] v−constructs True iff [λxA] v−constructs the whole type
α, otherwise False; [0∃αλxA] v−constructs True iff [λxA] v−constructs a non-
empty subset of the type α, otherwise False. We write ‘∀xA’, ‘∃xA’ instead of
‘[0∀α λxA]’, ‘[0∃α λxA]’, respectively, when no confusion can arise. Singularisers
ια are of types (α(oα)); [0ια λxA] v−constructs the only α-member of the single-
ton v−constructed by λxA, otherwise (i.e., if λxA v-constructs an empty class
or a multi-element class) v−improper.

We use an infix notation without trivialisation when using constructions
of truth-value functions ∧ (conjunction), ∨ (disjunction), ⊃ (implication), ≡
(equivalence) and negation (¬), and when using a construction of an identity.

(α-)intensions are members of a type (αω), i.e., functions from possible
worlds to an arbitrary type α. (α-)extensions are members of the type α, where
α is not equal to (βω) for any β, i.e., extensions are not functions from
possible worlds. Intensions are frequently functions of a type ((ατ)ω), i.e.,
functions from possible worlds to chronologies of the type α (in symbols: ατω),
where a chronology is a function of type (ατ). We will use variables w, w1,
. . . as v−constructing elements of type ω (possible worlds), and t, t1, . . . as
v−constructing elements of type τ (times). If C → ατω v−constructs an α-
intension, the frequently used Composition of the form [[Cw]t], the intensional
descent of the α-intension, is abbreviated as Cwt.

Some important kinds of intensions are:
Propositions, type oτω. They are denoted by empirical (declarative) sen-

tences.

3 TIL is an open-ended system. The above epistemic base {o, ι, τ, ω} was chosen, because it is apt for

natural-language analysis, but the choice of base depends on the area to be analysed. 4 Collections, sets,

classes of ‘α-objects’ are members of type (oα); TIL handles classes (subsets of a type) as characteristic functions.

Similarly relations (-in-extension) are of type(s) (oβ1 . . . βm).



46 Marie Duží

Properties of members of a type α, or simply α-properties, type (oα)τω. General
terms (some substantives, intransitive verbs) denote properties, mostly of
individuals.

Relations-in-intension, type (oβ1. . . βm)τω. For example transitive empirical
verbs, also attitudinal verbs denote these relations.

α-roles, offices, type ατω, where α 6= (oβ). Frequently ιτω. Often denoted by
concatenation of a superlative and a noun (“the highest mountain”).

Example: We are going to analyse the sentence “Adam is looking for a
parking place”. Our method of analysis consists of three steps:

1. Type-theoretical analysis, i.e., assigning types to the objects talked about by
the analysed sentence. In our case we have:
(a) Adam/ι;
(b) Look_for/(oι(oι)τω)τω−the relation-in-intension of an individual to a

property of individuals: the seeker wants to find an instance of the
property;

(c) Parking(Place)/(oι)τω−the property of individuals.

2. Synthesis, i.e., composing the constructions of the objects ad (1) in order
to construct the proposition of type oτω denoted by the whole sentence.
The sentence claims that the individual Adam has the ‘seeking-property’
of looking for a parking place. Thus we have to construct the individual
Adam, the ‘seeking-property’, and then apply the latter to the former. Here
is how:

(a) The atomic construction of the individual called Adam is simply 0Adam;

(b) The ‘seeking-property’ has to be constructed by Composing the
relation-in-intension Look_for with a seeker x → ι and the
property Parking/(oι)τω an instance of which is being sought:
[0Look_forwtx 0Parking] v−constructing a truth value. Abstracting first
from x by λx[0Look_forwtx 0Parking] we obtain the class of individuals;
abstracting further from wandt we obtain the ‘seeking-property’:
λwλt [λx[0Look_forwtx 0Parking]].

(c) Now we have to Compose the property constructed ad (b) with the
individual constructed ad (a). The property has to be subjected to the
intensional descent first, i.e., [λwλt [λx[0Look_forwtx 0Parking]]]wt and
then Composed with the former.5 Since we are going to construct a
proposition, i.e., an intension, we finally have to abstract from w, t:

λwλt [[λwλt [λx[0Look_forwtx0Parking]]]0
wtAdam].

This construction is the literal analysis of our sentence. It can be still
β-reduced to the equivalent form:

λwλt [0Look_forwt
0Adam 0Parking].

5 For details on predication of properties and relations-in-intension of individuals, see Jespersen (forthcoming).



Semantic Pre-processing of Anaphoric References 47

3. Type-Theoretical checking:

λwλt [ 0Look_forwt
0Adam 0Parking

(oι(oι)τω) ι (oι)τω
︸ ︷︷ ︸

]

o
oτω

The role of Trivialisation and empirical parameters w → ω, t → τ in the
communication between agents can be elucidated as follows. Each agent has
to be equipped with a basic ontology, namely the set of primitive concepts
(Trivialised objects) she is informed about. Thus the upper index ‘0’ serves as a
marker of the primitive concept that the agents should have in their ontology.
If they do not, they have to learn them by asking the others. The lower index
‘wt’ can be understood as an instruction to execute an empirical inquiry (search)
in order to obtain the actual current value of an intension, for instance by
searching agent’s database or by asking the other agents, or even by means
of agent’s sense perception.

3 Anaphora and Meaning

The problem of an anaphoric reference to a previously used expression is
a well-known hard nut of linguistic analysis, because the antecedent of the
anaphoric reference is often not unambiguously determined. Thus it is often
said that anaphora constitutes a pragmatic problem rather than a problem
of logical semantics. We agree that logical analysis cannot disambiguate any
sentence, because it presupposes understanding and full linguistic competence.
Yet our method of logical analysis can contribute to solving the problem of
disambiguation in at least two respects; (a) a type-theoretical analysis often
unambiguously determines which of the possible meanings of a homonymous
expression is used in a sentence, and (b) if there are two or more possible
readings of a sentence, the logical analysis should make all of them explicit.
This often concerns the distinction between de dicto and de re readings.

In this section we propose a method of logically analysing sentences with
anaphoric references. The method consists in substituting an appropriate
construction of the object to which the anaphora refers for the anaphoric
variable. In other words, we perform a semantic pre-processing of the embedded
anaphoric clause based on the meaning of the respective antecedent. In this
sense anaphora is a semantic problem.

3.1 Semantic pre-processing of Anaphoric References

Our hyperintensional (procedural) semantics makes it possible to apply anti-
contextualist and compositional analysis to anaphoric sentences. The meaning
of a sentence containing a clause with an anaphoric reference is the procedure
which is a two-phase instruction that comes down to this:



48 Marie Duží

(i) execute the substitution based on the meaning of the antecedent for the anaphoric
variable;

(ii) execute the result (a propositional construction) again to obtain a proposition.

To specify phase (i) we make use of the fact that constructions are objects
sui generis that the other constructions can operate on. The substitution is
realised by a function Sub/(*n*n*n*n) that operates on constructions C1, C2
and C3 yielding as output the construction C4 that is the result of substituting
C1 for C2 in C3. The phase (ii) consists in executing the adjusted meaning,
namely the construction pre-processed by phase (i). To this end we use the
fifth construction defined above, the Double Execution. The method is uniquely
applicable to all kinds of sentences, including those that express (de dicto / de
re) attitudes to a hyperintension, attitudes to an intension, and relations (-in-
intension) to extensional entities. Now we adduce examples that illustrate the
method. (A) “5 + 7 = 12, and Charles knows it.”

The embedded clause “Charles knows it” does not express Charles’
relation(-in-intension) to a truth-value, but to a construction, here the procedure
of calculating the result of 5 + 7 = 12. Hence Know(ing)/(oι*1)τω is a relation-in-
intension of an individual to a construction.However, the meaning of the clause
is incomplete; it is an open construction with the free variable it: λwλt[0Knowwt
0Charles it]. The variable it/*2 → ∗1 is the meaning of the pronoun ‘it’ that in
(A) anaphorically refers to the meaning of “5 + 7 = 12”, i.e., the construction
[0+05 07]. The meaning of the whole sentence (A) is, however, complete. It is
the closed construction

(A’) λwλt[[0 = 0+0507] 012] ∧
z[0Sub 00[0 = 0+0507] 012] 0it 0[λwλt[0Knowwt

0Charles it]]]wt]

Types: Charles/ι; Know/(oι*1)τω; Sub/(*2*2*2*2); it/*2 → *1; the other types
are obvious.

Since (A’) seems to be rather complicated, we now show that (A’) is an
adequate analysis meeting our three requirements of compositionality, anti-
contextualism and a purely semantic solution. The argument of the second
conjunct of (A’), namely

(S) [0Sub 00[0 = 0+0507] 012] 0it 0[λwλt[0Knowwt
0Charles it]]]wt] → *1

constructs a construction of order 1, namely the one obtained by the substitution
of the construction 0[0 = 0+0507] 012] for the variable it into the construction
[λwλt[0Knowwt

0Charles it]].The result is the construction

(S’) [λwλt[0Knowwt
0Charles 0[0 = 0+0507] 012]]],

which constructs a proposition P. But an argument of the truth-value function
conjunction (∧) can be neither a propositional construction, nor a proposition,
but must be a truth-value. Since (S) constructs the construction (S’), and (S’)
constructs the proposition P, the execution steps have to be: (a) execute (S) to
obtain the propositional construction (S’), (b) execute the result (S’) to obtain
the proposition P; hence we need the Double Execution of (S) to construct the



Semantic Pre-processing of Anaphoric References 49

proposition P, and then (c) P has to undergo intensional descent with respect to
the external w, t in order to v−construct a truth-value.

Note that the open construction λwλt [0Know0
wtCharles it] is assigned to

“Charles knows it” invariably of a context. The variable it is free here either
for a pragmatic valuation or for a substitution by means of the meaning of
the antecedent that is referred to in the linguistic context. The object—what
is known by Charles—can be completed by a situation of utterance or by
a linguistic context. If the sentence occurs within another linguistic context,
then Sub substitutes a different construction for the variable it, namely the
construction to which ‘it’ anaphorically refers.

The other example concerns Charles’ attitude of seeking the occupant of an
individual office:

(B) “Charles sought the Mayor of Dunedin but (he) did not find him.”

Suppose now the de dicto reading of (B), i.e., that Charles’ search concerned
the office of Mayor of Dunedin and not the location of its holder. The function
Sub creates a new construction from constructions and, so, can easily be
iterated. The analysis of (B) is:

(Bd) λwλt [[0Seekwt
0Ch λwλt [0Mayor_of wt

0D]] ∧2[ 0Sub 00Ch 0he
[0Sub 0[λwλt [0Mayor_of wt

0D]] 0him 0[λwλt¬[0Findwt he him]]]]wt].

Types: Seek/(oιιτω)τω; Find/(oιιτω)τω; Ch(arles)/ι; Mayor_of (something)/
(ιι)τω; D(unedin)/ι; he/∗1 → ι; him/∗1 → ιτω.

Again, the meaning of (B) is the closed construction (Bd), and the meaning
of the embedded clause “he did not find him” is the open construction6

λwλt¬[0Findwt he him] with the two free variables he and him.
Of course, another refinement is thinkable. The variables he and him, ranging

over individuals and individual offices, respectively, reduce the ambiguity of
‘find’ by determining that here we are dealing with finding the occupant of an
individual office. But the expressions like ‘he’, ‘him’, or ‘she’, ‘her’ also indicate
that the finder as well as the occupant of the sought office are male and female,
respectively. Thus, e.g., a refined meaning of “He found her” might be

λwλt [[0Findwt he her] ∧ [0Malewthe] ∧ [0Femalewt herwt]].

Additional types: Male, Female/(oι)τω; her/∗1 → ιτω.
Now perhaps a more natural de re reading (Br) of the sentence (B) is un-

derstood as uttered in a situation where Charles knows who the Mayor is, and
is striving to locate this individual. Unlike the de dicto case, the sentence un-
derstood de re has an existential presupposition: in order that (Br) have any truth
value, the Mayor has to exist. Thus we must not substitute the construction of
an office, but of the individual (if any) that occupies the office. To this end we
use [0Tr [0Mayor_of 0

wtD]] that fails to construct anything if [0Mayor_of 0
wtD] is

v−improper (the Mayor does not exist), otherwise it v−constructs the Triviali-
sation of the occupant of the office. Using the technique of substitutions we can
discover the adequate analysis of (Br). Here is how:

6 Tenses are disregarded.



50 Marie Duží

λwλt[[0SeekL
wt

0Charles 2[0Sub [0Tr [0Mayor_of wt
0D]] 0who 0[λwλt [0Locwt

who]]]] ∧ 2[0Sub00Charles 0he [0Sub [0Sub [0Tr [0Mayor_of wt
0D]] 0who 0[λwλt

[0Locwtwho]]] 0it 0[λwλt¬[0FindL
wthe it]]]]wt]

Types: SeekL, FindL/(oιµτω)τω; Tr/(∗1ι); Charles/ι; Mayor_of (something)/(ιι)τω;
D(unedin)/ι; he, who/∗1 → ι; it/∗1 → µτω; Loc/(µι)τω.7

The second conjunct, which is rather more complicated, needs a gloss. Here
we have to pre-process by substitution the meaning of the second embedded
clause “he did not find it”, i.e. the open construction [λwλt¬[0FindL

wthe it]],
by substituting the construction that has been sought, i.e., the location of the
individual who plays the role of Mayor of Dunedin: [0Sub [0Tr [0Mayor_of 0

wtD]]
0who 0[λwλt [0Locwtwho]]].

3.2 Donkey Sentences

The following example is a variant of the well-known problem of Peter Geach’s
donkey sentences:

(D) “If somebody has got a new car then he often washes it.”

The analysis of the embedded clause “he often washes it” containing the
anaphoric pronouns ‘he’ and ‘it’ is again an open construction with two free
variables he—who (washes), it—what (is washed), he, it → ι; Wash/(oιι)τω:

λwλt[0Washwt he it].

If we also want to analyze the frequency of washing, i.e., the meaning
of ‘often’, then we use the function Freq(uently)/((o(oτ))τ). The function Freq
associates each time T with a set of those time intervals (of type (o(oτ))) that
are frequent in T (for instance, once a week). The analysis of “he often washes
it” is then

λwλt [0Freqt λt’[0Washwt’ he it]].

However, since rendering the frequency of washing does not influence the
way of solving the problem of anaphora in donkey sentences, we will use, for
the sake of simplicity, the simpler construction λwλt[0Washwt he it].

The problem of donkey sentences consists in discovering their logical form,
because it is not clear how to understand them. Geach (1962, p. 126) proposes
a structure that can be rendered in 1st-order predicate logic as follows (NC new
car):

∀x∀y((NC(y) ∧ Has(x, y)) → Wash(x, y)).

However, Russell objected to this analysis that the expression ‘a new car’
is an indefinite description, which is not rendered by Geach’s analysis. Hence
Russell proposed an analysis that corresponds to this formula of 1st-order
predicate logic:

∀x (∃y (NC(y) ∧ Has(x, y)) → Wash(x,y)).

7 The type µ is the type of a location/position.



Semantic Pre-processing of Anaphoric References 51

But the last occurrence of the variable y (marked in bold) is free in this
formula—out of the scope of the existential quantifier supposed to bind it.

Neale in his (1990) proposes a solution that combines both of the above
proposals. On the one hand, the existential character of an indefinite description
is saved (Russell’s demand), and on the other hand, the anaphoric variable is
bound by a general quantifier (Geach’s solution). Neale introduces so-called
restricted quantifiers:8

[every x: man x and [a y: new-car y](x owns y)]([whe z: car z and x owns z]
(x often washes z)).

The sentence (D) does not entail that if the man owns more than one new
car then some of this cars are not washed by him. Hence we can reformulate
the sentence into

(D1) “Anybody who owns some new cars often washes all of them [each of the
new cars he owns].”

However, the following sentence (D”) means something else:

(D2) “Anybody who owns some new cars often washes some of them [some of
the new cars he owns].”

The analysis of (D1), which in principle corresponds to Geach’s proposal, is

(D1’) λwλt∀x∀y[[[0NCwty] ∧ [0Ownwt x y]] ⊃
2[0Sub 0x0he [0Sub 0y0it 0[λwλt[0Washwt he it]]]]wt].

Types: Own/(oιι)τω; Wash/(oιι)τω; NC (being a new car)/(oι)τω; x, y, he, it → ι.
But then an objection due to Neale can be levelled against these analyses,

namely that in the original sentence (D) the anaphoric pronoun ‘it’ stands
outside of the scope of the quantifier occurring in the antecedent. To overcome
this objection, we use a different type of quantifiers. Apart the common
quantifiers ∀, ∃ / (o(oι)) that operate on a set of individuals, we use quantifiers
of another type, namely Some and All/((o(oι))(oι)). Some is a function that
associates the argument—a set S—with the set of all those sets which have a
non-empty intersection with S. All is a function that associates the argument—
a set S—with the set of all those sets which contain S as a subset. Thus for
instance the sentence “Some students are happy” is analyzed by

λwλt [[0Some 0Studentwt] 0Happywt].

The analyses of the embedded clauses of (D1), (D2), namely “he washes all
of them”, “he washes some of them” are (the anaphoric pronoun ‘them’ refers
here to the set of individuals; we use the variable them → (oι) as the meaning of
‘them’)

λwλt [[0All them] λit[0Washwt he it]], λwλt [[0Some them] λit[0Washwt he it]]

respectively. Now we need to substitute a construction of the set of new cars
owned by the man for the variable them. Further, we have to substitute the

8 Neale (1990, p. 236). Neale takes into account that the sentence is true even if a man owns more than one new

car. To avoid singularity he thus claims that the description used in his analysis does not have to be singular

(definite) but plural: his abbreviation ‘whe F’ stands for ‘the F or the Fs’.



52 Marie Duží

variable x (‘anybody’) for the variable he (‘who washes’), and then the pre-
processed construction has to be Double Executed. To prevent collision of
variables, we rename the internal variables w, t.

(D1”) λwλt [0∀λx [[[0Manwtx] ∧ [0∃λy[[0NCwty] ∧ [0Ownwt x y]]]] ⊃
2[0Sub 0[λy[[0NCwty] ∧ [0Ownwt x y]]] 0them [0Sub0x0he
0[λw’λt’ [[0All them] λit[0Washw’t’ he it]]]]]wt]].

Gloss: “For every man, if the man owns some new cars then all of them [i.e.,
the new cars owned] are washed by him [the man x].”

This construction can be viewed as the most adequate analysis of (D1),
because it meets Russell’s requirement of an indefinite description in the
antecedent, while the scope of ∃ does not exceed the antecedent.

The second possible reading of (D) is now analyzed using Some instead of
All:

(D2”) λwλt [0∀λx [[[0Manwtx] ∧ [0∃λy[[0NCwty] ∧ [0Ownwt x y]]]] ⊃
2[0Sub 0[λy[[0NCwty] ∧ [0Ownwt x y]]] 0them [0Sub0x0he
0[λw’λt’ [[0Some them] λit[0Washw’t’ he it]]]]]wt]].

Gloss: “For every man, if the man owns some new cars then some of them
[i.e., the new cars owned] are washed by him [the man x].”

As we pointed out above, it is not clear how to exactly understand the
sentence (D), simply because the sentence is ambiguous. We thus offered
analyses that disambiguate it. Whether these readings are the only possible
ones is not for us to decide. In our opinion the reading (D1) is more plausible,
and Neale takes into account only this one. However, our method makes it
possible to easily analyse particular variants of donkey sentences like “. . . most
of them. . . ”, and suchlike. It might be objected, however, that in the interest of
disambiguation, we actually analysed two variants of the original sentence.

Sandu formulates in (1997) two principles that every ‘compositional proce-
dure for analysing natural language sentences’ should obey:

(a) there is a one-to-one mapping of the surface structure of a sentence of (a
fragment of) English into its logical form which preserves the left-to-right
ordering of the logical constants

(b) the mapping preserves the nature of the lexical properties of the logical
constants, in the sense that an indefinite is translated by an existential
quantifier, etc.

One can see that our analyses (D1”) and (D2”) obey these principles with
respect to the glossed variants, but not with respect to the original sentence (D).
Regardless of the disambiguation concerning some/all new cars being washed,
principle (b) is violated because ‘a man’ is analysed as ‘every man’. To put our
arguments on a still more solid ground, we now propose the literal analysis of
the sentence (D). The analysis of the clause “A man has a new car” is as follows:

(NC) λwλt [0∃λxy [[0Manwtx] ∧ [0NCwty] ∧ [0Ownwt x y]]].

Additional type: ∃/(o(oιι)).



Semantic Pre-processing of Anaphoric References 53

The consequent of (D) expresses that all the couples <he, it> are such that
he Washes it. Using a variable couples/∗1 → (oιι), we have:

λwλt[[0Allcouples] λhe it [0Washwt he it]].

Now composing (NC) with the latter, we substitute the construction of the
set of couples constructed by the Closure of (NC) for the variable couples:

(D’) λwλt[[0∃λxy [[0Manwtx] ∧ [0NCwty] ∧ [0Ownwt x y]]] ⊃
2[0Sub 0[λxy [[0Manwtx] ∧ [0NCwty] ∧ [0Ownwt x y]]] 0couples
0[λwλt[[0All couples] λhe it [0Washwt he it]]]]wt].

As is seen, (D’) is fully compositional. Our constituents operate on construc-
tions of sets of couples of individuals, as well as particular individuals, which
is impossible within a first-order theory. In this respect Hintikka is right when
claiming that the compositional treatment does not work;9 it does not work
within a first-order framework. But as soon as we have a powerful higher-order
system like TIL at our disposal, there is no need to give up the desirable princi-
ple of compositionality.

One pressing question is whether the anaphoric pronouns should be, in
general, bound, and if so, another pressing question is whether this is to
be in a standard or non-standard way. The Dynamic Predicate Logic (DPL)
applies a mechanism of passing on binding.10 Note that (D’) at the same time
provides the semantics of this mechanism. Indeed, the variables he and it are
bound in (D’), but the binding is of another kind. They are not directly bound
by the existential quantifier. Technically, they are bound by Trivialization;
semantically, they are bound by the condition that the pairs of individuals they
v−construct have to belong to the set mentioned by the antecedent clause.

4 Outline of an Implementation Method

Now we outline the method of computing the complete meaning of anaphoric
sentences, i.e., the method of substituting an appropriate antecedent for an ana-
phoric reference. The method is similar to the one applied in general by Hans
Kamp’s Discourse Representation Theory (DRT). ‘DRT’ is an umbrella term for
a collection of logical and computational linguistic methods developed for dy-
namic interpretation of natural language, where each sentence is interpreted
within a certain discourse, which is a sequence of sentences uttered by the
same speaker. Interpretation conditions are given via instructions for updat-
ing the discourse representation. DPL is a logic belonging to this group of the-
ories. Discourse representation theory as presented in Kamp & Reyle (1993)
addresses in particular the problem of anaphoric links crossing the sentence
boundary. It is a first-order theory, and it can be proved that the expressive
power of the DRT language with negation is the same as that of first-order pred-
icate logic. Thus actually only expressions denoting individuals (indefinite or
definite noun phrases) introduce the so-called discourse referents, i.e., free vari-
ables that are updated when interpreting the discourse. Anaphoric pronouns

9 See Sandu & Hintikka (2001) 10 See Sandu (1997).



54 Marie Duží

are represented by free variables linked to appropriate antecedent discourse
variables. As we have seen above, our semantics is hyperintensional, i.e., proce-
dural, and higher order. Thus not only individuals, but entities of any type, like
properties of individuals, propositions, relations-in-intension of an individual
to another individual, and even constructions (i.e. meanings of the antecedent
expressions), can be linked to anaphoric variables.

The specification of the implementation algorithm proposed here is imper-
ative; similarly as in DRT, we update the list of potential antecedents, or rather
constructions expressed by them, in order to substitute the type-appropriate
entities for anaphoric variables, whenever needed.11 For each type (ι, (oι)τω,
oτω, (oι(oι)τω)τω, (oιι)τω, ∗n, etc.) the list of discourse variables is created. The
method substitutes the content of type-appropriate discourse variables for ana-
phoric variables to complete the meaning of anaphoric clauses. Each closed con-
stituent of a resulting construction becomes an updated value of the respective
(type-appropriate) free discourse-referent variable. In this way the discourse
variables are gradually updated.

Here we only illustrate the method by an example of a simple dialog
between three agents, Adam, Berta and Cecil. The list of discourse variables for
the dialog together with the types of entities constructed by their respective
content is: ind:=ι, loc:=µ, pred:=(oι)τω, prof :=(oι)τω—‘propositional function’,
rel1:=(oι(oι)τω)τω, rel2:=(oιι)τω, rel3:=(oιoτω)τω, prop:=oτω, constr:=∗n.
Adam to Cecil: “Berta is coming. She is looking for a parking”.
‘Inform’ message content:

λwλt[[0Coming0
wtBerta];

(Relevant) discourse variables updates:
ind:=0Berta; pred:=0Coming;
prop:= λwλt[[0Coming0

wtBerta];
λwλt 2[0Sub ind 0she 0[0Looking_forwtshe 0Parking]] ⇒ (is transformed into)
λwλt[0Looking_for0

wtBerta 0Parking].
(Relevant) discourse variables updates:

rel1:=0Looking_for; pred:=0Parking;
prop:= λwλt[0Looking_for0

wtBerta 0Parking];
prof := λwλtλx[0Looking_forwtx0Parking]; (‘propositional function’)

Cecil to Adam: “So am I.”
‘Inform’ message content:

λwλt2[0Sub prof 0so 0[so0
wtCecil]] ⇒ λwλt[0Looking_for0

wtCecil 0Parking]
Discourse variables updates:

ind:=0Cecil; rel1:=0Looking_for; pred:=0Parking;
Adam to both: “There is a free parking at p1”.
‘Inform’ message content: λwλt[[0Free 0Parking]wt

0 p1]
Discourse variables updates: loc:=0p1; pred:=[0Free 0Parking];

prop:= λwλt[[0Free 0Parking]wt
0 p1]

Berta to Adam: “What do you mean by free parking?”
‘Query’ message content: λwλt [0Refinewt

0[0Free 0Parking]]

11 The algorithm was first proposed in Křetínský (2007).



Semantic Pre-processing of Anaphoric References 55

Discourse variables updates: constr:=0[0Free 0Parking]
Adam to Berta: “Free parking is a parking and some parts of it are not

occupied”.
‘Reply’ message content: 0[0Free 0Parking] =

0[λwλtλx[[0Parkingwtx] ∧ ∃y[[0Part_of wtyx] ∧ ¬[0Occupiedwty]]]]
Discourse variables updates: constr:=0[0Free 0Parking] = . . .

Berta to Adam: “I don’t believe it. I have just been there”.
‘Inform’ message content:

λwλt [2[0Sub prop 0it 0[¬[0Believewt
0Berta it]]] ⇒

λwλt ¬[0Believewt
0Berta 0[λwλt[[0Free 0Parking]wt p1]]],

Discourse variables updates:
ind:=0Berta; loc:=0p1;
λwλt ∃t’[[t’ ≤ t] ∧ 2[0Sub loc 0there 0[0Is_at0

wt’Berta there]]] ⇒

λwλt∃t’[[t’ ≤ t] ∧ [0Is_at0
wt’Berta 0 p1]].

Discourse variables updates:
prop:= λwλt∃t’[[t’ ≤ t] ∧ [0Is_at0

wt’Berta 0 p1]], . . .
And so on.
Of course, improvements of this method are straightforward. For instance,

in the example we were substituting the last type-appropriate entity that
received mention; if we wanted to take into account ambiguities of anaphoric
references, we might store in the discourse-representation file more than one
variable for each type, together with the other characteristics or prerequisites
of the entity (e.g., gender, or implicative properties), so as to be able to generate
more meanings of an ambiguous sentence.

5 Concluding Remarks

The above described method is currently being implemented in the TIL-
Script programming language, the computational variant of TIL. TIL-Script
is a FIPA compliant higher-order modification of the standards like FIPA SL
(Semantic Language) and FIPA KIF (Knowledge Interchange Format). It is a
declarative functional language. Its only imperative feature is the Let command
for the dynamic assignment of a construction C to a discourse variable. A brief
introduction to TIL-Script is the subject of another paper in this proceedings,
namely ‘TIL-Script: Functional Programming Based on Transparent Intensional
Logic’ by Nikola Ciprich, Marie Duží, and Michal Košinár.

Acknowledgements

This research has been supported by the program ‘Information Society’ of the
Czech Academy of Sciences within the project No. 1ET101940420 “Logic and
Artificial Intelligence for multi-agent systems”.



56 Marie Duží

References

1. Geach, P.: Reference and Generality. Ithaca, NY: Cornell University Press (1962).
2. Kamp, H. and Reyle, U.: From Discourse to Logic. Introduction to Model-Theoretic

Semantics of Natural Language, Formal Logic and Discourse Representation Theory.
Springer (1993).

3. Jespersen, B.: ‘Predication and extensionalization’. Journal of Philosophical Logic,
forthcoming (accepted 24 October 2007).

4. Křetínský, J. (2007): Use-mention Distinction in Transparent Intensional Logic. Bachelor
thesis, Masaryk University Brno. Retrievable at:http://is.muni.z/th/139914/fi_b/bahelor.pdf

5. Materna, P.: Conceptual Systems. Logos Verlag, Berlin (2004).
6. Neale, S.: Descriptions. The MIT Press, Cambridge (1990).
7. Rescher, N.: Epistemic Logic. Pittsburgh: University of Pittsburgh Press (2005).
8. Sandu, G.: ‘On the theory of anaphora: dynamic predicate logic vs. game-theoretical

semantics’. Linguistic and Philosophy 20 (1997), 147–174.
9. Sandu, G., Hintikka, J.: ‘Aspects of compositionality’. Journal of Logic, Language,

Information 10 (2001) 49–61.
10. Tichý, P.: The Foundations of Frege’s Logic, Berlin, New York: De Gruyter (1988).
11. Tichý, P.: Collected Papers in Logic and Philosophy, V. Svoboda, B. Jespersen, C. Cheyne

(eds.), Prague: Filosofia, Czech Academy of Sciences, and Dunedin: University of
Otago Press (2004).

http://is.muni.cz/th/139914/fi_b/bachelor.pdf


Enhancing Anaphora Resolution for Czech

Vašek Němčík

NLP Laboratory,
Faculty of Informatics, Masaryk University,

Brno, Czech Republicxnemik�fi.muni.z
Abstract. Resolution of anaphoric reference is one of the most important
challenges in natural language processing (NLP). Functionality of most
NLP systems crucially relies on an accurate mechanism for determining
which expressions in the input refer to the same entity in the real world.
The immense complexity of this issue has led the research community
to adopt predominantly knowledge-poor methods, despite the fact that
these are known to be incapable of solving this task reliably. This paper
suggests several ways of extending such methods by further resources
and mechanisms in order to arrive at a more adequate anaphora resolu-
tion procedure.

1 Introduction

Anaphora has been one of the most intensively studied issues in the linguis-
tic research over the past decades. It has been studied from many different
perspectives – from the point of view of syntax, semantics, pragmatics, psy-
cholinguistics, computational linguistics, rhetoric, logic, philosophy, etc. Nev-
ertheless, we still seem to be left in the dark about many important aspects of
anaphora.

This situation is well apparent from the recent implementations of anaphora
resolution (henceforth AR) systems. Since the mid-1990s, most of the imple-
mentations have been based on knowledge-poor and machine learning (ML)
approaches, relying solely on low-level features such as morphological tags and
shallow syntactic labels.1 This trend is motivated by practical reasons. The in-
dividual low-level features can be computed automatically, efficiently and with
sufficient accuracy. In contrast, higher-level information, such as a full syntactic
parse or underlying semantics, unfortunately can’t be obtained reliably enough,
and the consequent errors undermine the AR performance considerably.

Knowledge-poor systems have proven themselves as a sensible trade-off
between accuracy and computational feasibility. On the other hand, higher-
level information is known to play an important role in anaphoric relations
and thus can’t be ignored altogether. This can be illustrated by the following

1 The most influential knowledge-poor systems are systems presented by Lappin and Leass ([7]), Kennedy and

Boguraev ([5]), Baldwin ([1]), and Mitkov et al. ([12]). ML-based systems will be discussed in section 3.

Petr Sojka, Aleš Horák (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2007, pp. 57–62, 2007. c© Masaryk University, Brno 2007

mailto:xnemcik@fi.muni.cz
http://www.fi.muni.cz/usr/sojka/
http://www.muni.cz/people/1648
http://nlp.fi.muni.cz/raslan/2007/


58 Vašek Němčík

examples that demonstrate the necessity of semantic information and world
knowledge for proper treatment of anaphora:

(1) a. After the bartenderi served the patronj, hei got a big tip.
b. After the bartenderi served the patronj, hej left a big tip.

(2) If the babyi does not thrive on raw milkj, boil it∗i,j.

Although it is obvious that obtaining and combining all types of informa-
tion relevant to AR is well beyond the scope of today’s science, it is worthwhile
to use at least certain types of higher-level information. This paper proposes
how this can be done for Czech.

Next section suggests how to take advantage of certain more sophisticated
linguistic resources to improve the performance of AR. Further, section 3
suggests several ways of adapting AR methods based on machine learning so
that they grasp the properties of anaphoric relations in a more plausible way.

2 Exploiting Linguistic Resources for AR

This section gives a number of hints how to extend the common knowledge-
poor systems by considering various kinds of higher-level information. Of
course, the possibilities depend on what resources are available for the lan-
guage in question. As this article concerns anaphora resolution with regard
to Czech, it reflects particular resources available for Czech. Nonetheless, the
following ideas can be straightforwardly applied to any language for which
similar resources exist.

To my knowledge, at the moment, there are three AR systems for Czech.
The first one is the modular system proposed by Němčík ([13]), encompassing
selected salience-based algorithms. The other two systems were presented by
Linh ([9]) – one of them is rule-based and the other is based on machine
learning. All of these systems take advantage of solely knowledge-poor features
and can be straightforwardly extended to use further resources.

The desired extension would ideally help to rule out semantically implau-
sible antecedent candidates that would get otherwise incorrectly chosen by the
original system.2 Not necessarily all such antecedents need to be ruled out, on
the other hand, it is important that the enhancing mechanism in question be
sound, i.e. it shouldn’t rule out correct antecedents.

The first potentially useful resource available for Czech is the Czech Word-
net, described by Pala and Smrž ([15]).3 Its English version is often used to de-
termine semantic plausibility when dealing with coreference resolution. How-
ever, on its own, it is rather useless for resolving pronominal anaphora.

2 This idea has already been mentioned by Hobbs ([4]). 3 Strube and Ponzetto ([17]) argue that for practical

purposes Wikipedia is a more useful resource, because it doesn’t suffer from problems of hand-crafted

taxonomies and contains information not only about classes but also idividual real-world instances. Moreover, it

is larger and grows faster than Wordnet.



Enhancing Anaphora Resolution for Czech 59

Another type of resource that could be used within the AR process are
valency lexicons. For Czech, two of them are available, Vallex and Verbalex.4

In my opinion, especially Verbalex is very helpful in this cause because its
valency slots are annotated with semantic constraints. These are marked using
Wordnet synsets, meaning that each slot can be filled only by an concept that
is a hyponym of the synset indicated. This can be straightforwadly used in
combination with Wordnet as a semantic plausibility check for AR illustrated
by the following schema:

(3) a. Verb1 α1 . . . αi−1 Y αi+1 . . .
. . .

b. Verb2 β1 . . . βj−1 X βj+1 . . .

Let us assume that X is an anaphor and Y an antecedent candidate preceding
it.5 Should Y be a plausible antecedent for X, it should meet the restrictions
posed on the valency slot of X. In particular, it should be a hyponym of the
synset associated with this valency slot. This mechanism can contribute to the
correct resolution of anaphors in the following examples:6

(4) a. Obsluhující roboti
Robot (MASC.SG.)

odnesl
took

prázdnou misku
the empty bowl

od ovocej
of fruits (NEUT.SG.)

“The robot took away the empty fruit bowl”
b. a

and
Alvar
Alvar

si teprve
only then

díky tomu
thanks to this

uvědomil,
realized,

“and only after noticing this Alvar realized”
c. že

that
ho∗i,j
him/it (MASC./NEUT.SG.)

vůbec
actually

snědl.
ate.

“that he actually ate it.”

(5) a. Dolehl
echoed

k němui
to him (MASC.SG.)

zvukj
sound (MASC.SG.)

melodického smíchu
of melodic laughter
“A sound of melodic laughter echoed to him”

b. a
and

∅i,∗j,∗k
[he (MASC.SG.)]

na okamžik
for a moment

si myslel,
thought,

“and for a moment he thought”
c. že

that
je
is

to
it

Mary.
Mary.

“it was Mary.”

4 For more information about Vallex and Verbalex please refer to Lopatková et al. ([10]), and Hlaváčková and

Horák ([3]), respectively. 5 It may well be that Verb1 = Verb2 , that is, that the anaphor and the antecedent are

in the same clause. 6 The examples are for the sake of brevity slightly abridged sentences taken from The

Czech National Corpus ([18]).



60 Vašek Němčík

Obviously, this mechanism is not applicable to all anaphor–antecedent
candidate pairs of this kind. The potential hindrances are many – it is not
possible to reliably assign a unique valency frame to every sentence, to
disambiguate every relevant word and match it with the correct Wordnet
synset, and most importantly, neither Wordnet nor Verbalex can cover all
words. However, to obtain a similar effect with higher recall, we can engage
methods for determining semantic relatedness.

Recently, many interesting corpus-based methods have been proposed
that make it possible to measure semantic similarity between words. For
instance, Lin ([8]) has formulated a similarity measure based on mutual
information between words.7 A similar measure is adopted in the Sketch
Engine tool (Kilgarriff et al., [6]) and can be utilized to approximate suitability
of verb–argument combinations. This allows making a more sophisticated
choice among top antecedent candidates. As a result, many resolution errors
can be avoided, especially in cases when there is only a small difference in
salience among top antecedent candidates.

The above-mentioned mechanisms seem to be a very promising first step
in integrating semantics into AR systems. Investigation of their potential in
practice is subject of my future work.

3 Anaphora Resolution and Machine Learning

This section suggests how AR approaches based on ML can be altered to more
closely reflect the properties of anaphoric reference.

Presently, methods based on ML form an integral part of the mainstream
AR research. Nevertheless, ML methods are not directly applicable to the AR
task, because its structure is unsuitable and it needs to be transformed first
to fit the ML concept. To my knowledge, two notable re-formulations of AR
as a classification task have been proposed. They are in turn sketched by the
following schemata:8

(6) Antecedent1 Antecedent2 Anaphor 1/2

(7) Antecedent Anaphor Y/N

Connolly et al. ([2]) suggested instances consisting of an anaphor and two
antecedent candidates, the target information left to be learnt being which of
these two candidates is “better” for the anaphor in question. This information
could be then utilized by a step-by-step elimination of the less plausible
candidates to determine the correct antecedent.

The other formulation of the task has been proposed by McCarthy and
Lehnert ([11]) and has been used by most of the state-of-the-art systems as
the standard one. It postulates instances formed by an anaphor–antecedent
candidate pair together with the information whether the candidate is a

7 The mutual information scores have been computed based on dependency triples extracted from a large

parsed corpus. 8 A word represents a set of features (of the entity hinted by its meaning), symbols in bold

represent possible values of the target feature.



Enhancing Anaphora Resolution for Czech 61

valid antecedent of the anaphor or not. This attribute determines whether the
instance is understood as positive or negative.

Most ML-based AR systems use knowledge-poor features to describe the
individual instances. Unsurprisingly, this poses problems similar to the ones
described in the previous section. In my opinion, an important additional prob-
lem is that the features are considered out of context. The individual instances
provide a very detailed description of the relationship between the anaphor
and the antecedent, which is very advantageous for nominal coreference reso-
lution, where the relation between the referred entities plays a more important
role than context. However, this view of the task is very unsuitable for grasping
pronominal anaphora, where different types of information, such as salience or
interplay with other antecedent candidates, play an important role. Moreover,
this seems to be yet a bigger issue for Czech, where, compared to English, in-
formation structure is not as tightly connected with the syntactic structure of
the sentence.

One solution to this problem is introducing new features reflecting salience.
In this respect, Ng and Cardie ([14]) have used the result of a syntactic search
AR algorithm as a binary feature, and Preiss ([16]) has engaged the salience
factors proposed in the rule-based system of Kennedy and Boguraev ([5]).
The latter is a very plausible approach, for Czech with a big potential of
benefiting from the rich interaction between syntax and information structure.
Moreover, I would suggest re-computing the salience model iteratively during
the classification phase to account for the information in already resolved links.

Another solution to this problem can be possibly obtained by a different
formulation of AR as a classification task. It can be argued that the AR task has
inherently the following structure:

(8) Antecedentn . . . Antecedent1 Anaphor 1/.../n

Nevertheless, this concept is not very suitable for ML in this form. The main
problems lie in data sparseness and the correct linearization of the antecedent
candidates – these can be arbitrarily embedded into each other. On the other
hand, this formulation of the AR task contains more information about the
relevant context, and the information corresponding to the target feature is
actually the piece of information we aim to learn – which antecedent to choose
for a given anaphor from a list of candidates. The potential of this AR task re-
formulation needs to be investigated empirically.

4 Conclusion

In this paper, I have discussed the most notable limitation of most state-of-the-
art AR systems – the fact that they disregard higher-level cues, even though
these are known to play an important role. I have proposed possible ways
of taking advantage of higher-level information available in the AR process,
namely considering verbal valency constraints and predicate-arguments statis-
tics. I have also suggested several ways of adapting the ML-based AR methods
in order to account for the structure of the AR task more closely.



62 Vašek Němčík

Acknowledgments

This work has been partly supported by the Ministry of Education of CR within
the Center of basic research LC536.

References

1. Baldwin, B.: Cogniac: High precision coreference with limited knowledge and lin-
guistic resources. In: Proceedings of the ACL ’97/EACL ’97 workshop on Opera-
tional factors in practical, robust anaphora resolution. (1997).

2. Connolly, D., Burger, J.D., Day, D.S.: A machine learning approach to anaphoric
reference. In: Proceedings of the International Conference on New Methods in
Language Processing (NeMLaP), ACL (1994).

3. Hlaváčková, D., Horák, A.: Verbalex – new comprehensive lexicon of verb valencies
for Czech. In: Computer Treatment of Slavic and East European Languages,
Bratislava, Slovakia, Slovenský národný korpus (2006) 107–115.

4. Hobbs, J.R.: Resolving pronoun references. In Grosz, B.J., Spärck-Jones, K., Webber,
B.L., eds.: Readings in Natural Language Processing. Morgan Kaufmann Publishers,
Los Altos (1978) 339–352.

5. Kennedy, C., Boguraev, B.: Anaphora for everyone: pronominal anaphora resolu-
ation without a parser. In: Proceedings of the 16th conference on Computational
linguistics, Morristown, NJ, USA, ACL (1996) 113–118.

6. Kilgarriff, A., Rychlý, P., Smrž, P., Tugwell, D.: The sketch engine. In: Proceedings
of the Eleventh EURALEX International Congress. (2004) 105–116.

7. Lappin, S., Leass, H.J.: An algorithm for pronominal anaphora resolution. Compu-
tatinal Linguistics 20(4) (1994) 535–561.

8. Lin, D.: Automatic retrieval and clustering of similar words. In: COLING-ACL.
(1998) 768–774.

9. Linh, N.G.: Návrh souboru pravidel pro analýzu anafor v českém jazyce. Master’s
thesis, Charles University, Faculty of Mathematics and Physics, Prague (2006).

10. Lopatková, M., Žabokrtský, Z., Benešová, V.: Valency lexicon of czech verbs
VALLEX 2.0. Technical Report 34, UFAL MFF UK (2006).

11. McCarthy, J.F., Lehnert, W.G.: Using decision trees for coreference resolution. In:
Proceedings of the 14th International Conference on Artificial Intelligence IJCAI-95,
Montreal, Canada (1995) 1050–1055.

12. Mitkov, R., Evans, R., Orăsan, C.: A new, fully automatic version of mitkov’s
knowledge-poor pronoun resolution method. In: Proceedings of the Third Inter-
national Conference on Intelligent Text Processing and Computational Linguistics
(CICLing-2002), Mexico City, Mexico (February 17–23, 2002).

13. Němčík, V.: Anaphora resolution. Master’s thesis, Masaryk University, Faculty of
Informatics, Brno (2006).

14. Ng, V., Cardie, C.: Improving machine learning approaches to coreference resolu-
tion. In: Proceedings of the 40th Annual Meeting of the ACL. (2002) 104–111.

15. Pala, K., Smrž, P.: Building Czech WordNet. 2004(7) (2004) 79–88.
16. Preiss, J.: Machine learning for anaphora resolution. Technical Report CS-01-10,

University of Sheffield, Sheffield, England (Aug 2001).
17. Strube, M., Ponzetto, S.: WikiRelate! Computing semantic relatedness using

Wikipedia. In: Proceedings of the 21st National Conference on Artificial Intelligence
(AAAI-06), Boston, Mass. (July 2006) 1419–1424.

18. The Czech National Corpus (2006) http://unk.ff.uni.z/english/.

http://ucnk.ff.cuni.cz/english/


Part III

Text Processing Tools





Manatee/Bonito – A Modular Corpus Manager

Pavel Rychlý

Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republicpary�fi.muni.z

Abstract. A corpus is a large collection of texts in electronic form. Corpus
managers are tools or sets of tools for coping with corpora. They can en-
code, query, and visualise texts. This paper describes widely used corpus
manager Manatee that has many unique features: modular design, dy-
namic attributes, multi-values, multi-language support, almost unlimited
corpus size and others.
The second part of the paper presents Bonito – the graphical user interface
of the Manatee system. Other extensions of the system are also mentioned.

1 Introduction

Text Corpora play a crucial role in current linguistics. They provide empirical
data for studies on how a language is used. Corpora are stored in computers
but there are not many applications which can handle huge corpora of size in
billions of tokens (word forms) which are being available in last years.

An ideal general-purpose corpus management tool should implement the
following features:

text preparation – conversion from various formats, encodings, etc.;
metadata management – integration of the information about the source of

data, authors, topics, genre, ...
tokenization – language-dependent determination of the elementary unit ac-

cessed, usually a word;
corpus annotation – potentially ambiguous, manual and automatic tagging on

morphological, syntactic, semantic and pragmatic levels;
efficient corpus storage – the storage structures should enable fast retrieval of

all stored data
concordancing – retrieving text snippets matching the user’s query;
computation of statistics – searching for typical patterns in data, frequency

distribution of various features, co-occurrence statistics, etc.

2 Manatee

The presented corpus management system Manatee is able to deal with
extremely large corpora and is able to provide a platform for computing a wide

Petr Sojka, Aleš Horák (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2007, pp. 65–70, 2007. c© Masaryk University, Brno 2007

mailto:pary@fi.muni.cz
http://www.fi.muni.cz/usr/sojka/
http://www.muni.cz/people/1648
http://nlp.fi.muni.cz/raslan/2007/


66 Pavel Rychlý

range of lexical statistics. It has all the above mentioned features and it is also
language and tag-set/annotation independent.

The system is designed with the modular approach. There are an indexing
library for compression, building and retrieving indexes; a query evaluation mod-
ule with classes for different query operations, a query parser which transforms
the queries into abstract syntactic trees, a set of command line tools for corpus
building and maintenance, two graphical user interfaces.

The Manatee system is based on the text indexing library FinLib [1] that
provides storage structures and retrieval procedures for corpus data based on
an efficient implementation of inverted indexes, word compression, etc.

The system processes either the output of an external tokenizer or that of the
simple internal one. There are two kinds of annotation that can be provided:

positional attributes adds linguistic information (like PoS tag, basic form) for
each token,

structure annotation that denotes a structure in the text (e.g. a sentence,
paragraph or document boundaries, noun or verb phrases).

There is also a special type of positional attributes – dynamic attributes.
These are not store in the corpus explicitly, a function is declared in the corpus
configuration. The function defines how to compute the value of the dynamic
attribute for each particular token. There are three types of dynamic attribute
usages:

1. transformation of tag values (e.g. displaying a full description of tag codes),
2. selection of partial information from an attribute (e.g. an attribute repre-

senting the gender is derived from a complex grammatical tag),
3. linking external information sources (e.g. linking a thesaurus database or

morphological analyzer)

Selected attributes can be marked as ambiguous, it means the attribute can
contain multi-value – a set of values. A user can ask for any of respective values
to find such token.

The system is fully internationalized. Thextual data can be stored in dif-
ferent character encodings including Unicode (UTF-8 [2]) and users can define
local language settings for each corpus or even for each attribute. These settings
are used during query evaluation and for locale sorting conventions.

Manatee implements a powerful query language. It enables searches given
by restrictions on any positional attribute, on any meta information, or on any
of their combinations. A given query can be further refined by means of positive
or negative filters that are applied on the current result. Meta information
can be used to create sub-corpora. The query language is an extension of the
popular CQP [3].

3 Bonito

Bonito is a graphical user interface (GUI) of the Manatee corpus manager. It
enables queries to be formed and given to various corpora. The results are



Manatee/Bonito – A Modular Corpus Manager 67

clearly displayed and can be changed in various ways. Statistics can also be
computed on them.

Fig. 1. Bonito application window

Bonito use the client/server architecture. Bonito is the client part, it is
a standalone applications which runs on most systems (Unix + X Window,
Windows 95+/NT/2000 ME/Vista, Macintosh and others with the Tcl/Tk
suport). The server part runs on a server (Unix, Windows, ...) where corpus
data are stored. The client communicates to server over the Internet (TCP/IP)
connection, the communication protocol is very lightweight, even a modem
connection is sufficient for proper work. It is also possible to use “local”
connection without Internet, in such case, client and server runs on a PC and
corpus data are stored on a local disk.

The corpus query result is the so-called concordance list that creates all
corpus positions corresponding with the query given. The concordance list is
then displayed in KWIC (Key Word(s) In Context) format. The searched words
are displayed with their contexts one below the other. The concordance list is
sometimes abbreviated as concordance.



68 Pavel Rychlý

A concordance is one of the central objects of Bonito. Most of the Bonito’s
window area is formed by the concordance list where query results are
displayed. An example of the Bonito window is Figure 1.

Fig. 2. Bonito2 concordance page

4 Bonito2

Bonito2 is a new GUI, it provedes the same (or better) functionality as the older
Bonito. The crucial difference is that is a web application. Users do not need
to install any client application, they use standard web browsers to access the
interface. All regular web browsing techniques like cut&paste and bookmarks
are available for users.

Web pages are generated by a CGI script on the web server. Standard web
server authentication can be used to limit access. The known solutions of access
and load control can be applied to the web server and the standard secured
web protocol (https) can be used too. Finally, it is easy to connect Bonito2 to
other sources and/or applications – the web pages can be read from other



Manatee/Bonito – A Modular Corpus Manager 69

applications, and links to external sources (a picture, a sound sample, a video)
can be presented. Concordance view is displayed on Figure 2.

5 Sketch Engine

Because of the modular design of the system, it is easy to add more functions
to the system or use the system as part of another application.

Fig. 3. Word Sketch of verb ‘break’

The Sketch Engine [4] use the whole Manatee system and Bonito2 inter-
face and provides word sketches, grammatical relations, and a distributional
thesaurus as additions. A word sketch (see Figure 3) is a one-page, automatic,
corpus-derived summary of a word’s grammatical and collocational behaviour.
Each word sketch contains direct links to concordances illustrating the listed
collocation.



70 Pavel Rychlý

6 Conclusion

This paper describes main features of the Manatee corpus management system
including graphical user interfaces Bonito and Bonito2. The system is in regular
use in many research groups on universities around the world. There are also
commercial companies (especially publishers) which use the system or its parts
or extensions in day-to-day works.

Acknowledgements

This work has been partly supported by the Academy of Sciences of Czech
Republic under the projects T200610406, T100300419 and by the Ministry of
Education of CR within the Centre of basic research LC536 and National
Research Programme 2C06009.

References

1. Rychlý, P.: Corpus managers and their effective implementation. Ph.D. thesis, Faculty
of Informatics, Masaryk University (2000).

2. Yergeau, F.: RFC2279: UTF-8, a transformation format of ISO 10646. Internet RFCs
(1998).

3. Schulze, B.M., Christ, O.: The CQP User’s Manual. (1996).
4. Kilgarriff, A., Rychlý, P., Smrž, P., Tugwell, D.: The Sketch Engine. Proceedings of

Euralex (2004) 105–116.



Corpus Query System Bonito

Recent Development

Vojtěch Kovář

Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republicxkovar3�fi.muni.z

Abstract. This paper presents two of the new features of corpus query
system Bonito: 1. Saving the outputs of the system in the XML format
and 2. Localization mechanism used to enable easy translation of the
system into different languages. In both cases, the developing process is
described and examples of the new functionality are given. In the first
sections, we also outline the general system functionality and features.

1 Introduction

At the present time, large text corpora form an important source of liguistic in-
formation. They are used for a wide variety of tasks, e.g. language learning and
teaching, testing of automatic text processing tools, discovering of real words
behaviour and many more lingustic research purposes. As the corpus linguis-
tics becomes more and more popular, there is a need of good corpus query
systems (CQS) that enable people to work with large text data comfortably. Ac-
cording to the variety of users needs, there are more and more features and
functions of these CQSs needed.

At Masaryk University in Brno, a corpus manager Manatee/Bonito [1] is
being developed, that is able to perform wide variety of tasks including e.g. fast
searching in big corpora, computing word sketches, thesaurus and many more
statistical characteristics. The system is used by researchers and lexicographers
from all over the world. In order to fulfill different users needs, we continually
extend the system by adding new functions.

In this paper, two of these new functions are discussed. Firstly, we briefly
describe the Manatee/Bonito system in general. In the next sections the new
features – saving outputs in the XML format and localization mechanism of
the system – are introduced. We describe the development process of both new
features and show examples of the new functionality.

2 The Manatee/Bonito System

The Manatee/Bonito corpus query system consists of two parts.

Petr Sojka, Aleš Horák (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2007, pp. 71–76, 2007. c© Masaryk University, Brno 2007

mailto:xkovar3@fi.muni.cz
http://www.fi.muni.cz/usr/sojka/
http://www.muni.cz/people/1648
http://nlp.fi.muni.cz/raslan/2007/


72 Vojtěch Kovář

Manatee provides low-level access to corpus data, it integrates fast search-
ing in corpora and evaluation of complex queries implementing a powerful
corpus query language. It also functions as a corpus management server.

Bonito serves as an interface between low-level Manatee functions and the
user. Version 1 is a standard multiplatform application that connects to the
Manatee server and mediates most of its functions in a user-friendly way. The
newer version Bonito 2 (see Figure 1) is completely web-based. Web pages are
generated on the server (using CGI), with a standard web browser serving as
the corpus client.

Bonito 2 is written in Python, object-oriented and very transparent program-
ming language. It enables the system to be well maintained and easily extensi-
ble. For generating web pages, a templating engine is used which enables easy
changes in web pages appearance.

The functions desribed bellow were implemented within the scope of the
Bonito 2 system.

Fig. 1. Illustration of the Bonito 2 user interface

3 Saving Outputs in XML

In the Bonito 2 system, all possible outputs (concordances, word sketches,
thesaurus) were in the form of HTML pages. This format is very suitable for
viewing the search results but it is not very comfortable e.g. for saving and
further processing of the results.

For this reason, we decided to implement two saving possibilities – plain
text (in form of columns delimited by the tab character) and XML, that is
currently very popular and suitable for further straightforward processing.

As mentioned in the Introduction, the system performs wide variety of
tasks. Most important of them are concordance view, word lists, frequency lists,
word sketches, thesaurus and collocation candidates computation. For each of
these functions, there is an output in form of HTML page, realized by particular
template.



Corpus Query System Bonito – Recent Development 73

Fig. 2. Concordance – XML structure example

For saving options, we created a new set of templates that is used for text
and XML output instead of HTML pages. For each output type, we designed
different XML structure. The tags used in the structures are quite simple and
self-explaining but they also provide a good structuralization of the data (see
Figure 2). For each function, we also created a web form that enables users to
modify saving options. An example of “Save Concordance” form can be seen
in the Figure 3.

4 Localization Mechanism

The second function we have implemented is the localization mechanism. The
main motivation for this step was the fact that the program is used worldwide
and for many people the default English version can be non-intuitive and
confusing. In the following, we describe all steps leading to well working
localization mechanism.

4.1 Templating Engine

As a first step, we changed the used templating engine. The old templating en-
gine was very tiny and simple, but it was not very fast and it also provided only
small support for gettext utilities that we planned to use for implementing the
localization mechanism (see below).

For this reason, we switched to the Cheetah Templating Engine [2], a robust
templating engine based on the Python language. It has also quite intuitive



74 Vojtěch Kovář

Fig. 3. Save Concordance form

syntax similar to common Python code. All templates used in the system were
translated into the Cheetah language.

4.2 The Translation

For the localization itself, we used the gettext services integrated in the Python
language1.

In the template files, all translatable strings were replaced by gettext
statements. By the gettext tools, we can now extract all translatable strings
from the templates and add next localization language only by adding one file
(containing traslated strings) into the system. This is very flexible, so that the
system is now easily extensible.

4.3 Language Selection

Another question was how to select the correct user interface (UI) language for
particuar user.We solved it by defining two possible ways of how to do that.

By default, the UI language is set according to the preferred language in the
user’s web browser (we got it by parsing the “HTTP_ACCEPT_LANGUAGE”
parameter sent by the browser). The second possibility for the users is to
associate their user name with a particular UI language. Currently, both ways
are implemented.

1 http://dos.python.org/lib/module-gettext.html

http://docs.python.org/lib/module-gettext.html


Corpus Query System Bonito – Recent Development 75

4.4 Input and Output Encoding

When working with corpora in different languages and system with different
localizations, there is a question: In what encoding should be the results
presented? So far, encoding of the currently selected corpus was used in all
system outputs. However, this is useless when using different localizations, e.g.
Czech localization could not be used at the same time as an English corpus in
ISO Latin 1 encoding.

The only possible solution seems to be using UTF 8 encoding for all outputs.
This step brings particular complications, such as recoding of all outputs from
selected corpus encoding into UTF 8 and all inputs from UTF 8 to the corpus
encoding, but it is the only possibility to assure that the localization will work
correctly.

By the input recoding, we also have to handle unknown characters (e.g.
when recoding “ž” from UTF 8 into ISO Latin 1). We solved this problem by
replacing unknown characters by the fullstop that matches any character in
regular expressions used in the corpus query language.

Fig. 4. The main input form in the Czech localization



76 Vojtěch Kovář

Fig. 5. Persian corpus and Czech localization

4.5 The Czech Localization

A a sample, we created a Czech localization of the system. The user interface
in Czech is illustrated in the Figure 4. In the Figure 5, the corpus of Persian is
shown within the system with Czech localization.

5 Conclusions and Future Directions

In the paper, we have presented two of recently added features in the Mana-
tee/Bonito corpus query system. We described motivations, development pro-
cess and some problems related to the implementation as well as their solutions.

In the future development, we want to add more features to enable more
comfortable work with the system. Corpora are very valuable source of lin-
guistic information and we want users from all over the world to be able to
exploit their benefits.

Acknowledgements

This work has been partly supported by the Academy of Sciences of Czech
Republic under the project T100300414.

References

1. Rychlý, P., Smrž, P.: Manatee, Bonito and Word Sketches for Czech. In: Proceedings of
the Second International Conference on Corpus Linguisitcs, Saint-Petersburg, Saint-
Petersburg State University Press (2004) 124–132.

2. Rudd, T., Orr, M., Bicking, I.: Cheetah: The python-powered template engine (2004)http://www.heetahtemplate.org/Py10.html.

http://www.cheetahtemplate.org/Py10.html


Morphemic Analysis:

A Dictionary Lookup Instead of Real Analysis

Pavel Šmerk

Faculty of Informatics, Masaryk University
Botanická 68a, CZ-602 00 Brno, Czech Republicsmerk�mail.muni.z

Abstract. This paper presents an approach for developing morphologi-
cal and morphemic analysis systems for inflective languages based on a
simple and fast dictionary lookup instead of any kind of analysis of the
input word form. This approach allows the information about the word
forms (lemma, tag, morpheme structure, derived words, derivational re-
lations) to be described according to the traditional grammars’ models
and to have such a description completely independent of any require-
ment of the analysis process.

1 Introduction

According to Gelbukh and Sidorov [5], the designer of a morphological ana-
lyzer for an inflective language has the following choice:

– either generate all word forms and build a system with a large dictionary
and a very simple “analysis" (just searching) algorithm,

– or build a system with a much smaller dictionary of stems with informa-
tion about possible endings, but with some more sophisticated algorithm
(analysis through generation, in particular).

For the inflective languages they strongly suggest the second option, because
it allows to use a grammar model almost directly taken over from traditional
grammars, which are oriented mainly toward generation. These traditional
models are rather simple, but foremost intuitive for a system developer or
morphological database editors.

The aim of this paper is to show that it is possible to preserve all advantages
of the use of traditional grammars’ models retaining quite simple “analysis" by
word forms dictionary searching algorithm as well. And, moreover, this applies
not only to the morphological analysis, but even to the morphemic analysis, i.e.
formal description of the derivational morphology. The suggested approach is
based on the use of Jan Daciuk’s [2] algorithms and tools for construction of
minimal deterministic acyclic finite state automata (DAFSA) and on his (but
not only his, cf. further) idea of how to use such automata for morphological
analysis.

Petr Sojka, Aleš Horák (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2007, pp. 77–85, 2007. c© Masaryk University, Brno 2007

mailto:smerk@mail.muni.cz
http://www.fi.muni.cz/usr/sojka/
http://www.muni.cz/people/1648
http://nlp.fi.muni.cz/raslan/2007/


78 Pavel Šmerk

Actually, the basic ideas of all what follows were published by Jan Daciuk
and other authors almost ten years ago. It is hard to believe that there does
not seem to be any real world implementation in the time being, at least
for Slavic languages, for which it could be very interesting due to their high
inflectionality. There are some experimental implementations, of course, but
not any really used Slavic inflectional or even derivative morphology based on
Daciuk’s DAFSAs or on any similar approach.

The following section illustrates the basic idea, why it is advantageous
to represent a morphological dictionary by the minimal DAFSA. It does
not get stuck into technical details concerning the actual construction of the
minimal DAFSA. The algorithms are published, and even ready-to-use tools
are available.1 Instead of it, in Section 3, shows the possible arrangements of
the data for morphological and morphemic analysis and guessing. Section 4
discusses some further advantages of the proposed approach.

2 Basic Idea

The basic idea is very simple, but very powerful. Any finite list of unique
strings can be considered to be a finite (formal) language and as such can be
represented by some DAFSA. If we choose the minimal one, then a partial
path corresponding to any left or right substring shared by some subset of the
modelled strings will occur exactly once in such minimal automaton.2

For example, let us consider the following fraction of some dictionary of the
word form and morphological tag pairs3:Kana¤ánek:1nSgMk1Kana¤ánka:2nSgMk1Kana¤ánkovi:3nSgMk1Holan¤ánek:1nSgMk1Holan¤ánka:2nSgMk1Holan¤ánkovi:3nSgMk1

One can see that all pairs with the word forms of the same lemma (lexeme)
Kanad’ánek or Holand’ánek share some same left substring, in particular Kanad’án
and Holand’án respectively. Similarly, all pairs with the nominative, genitive and
dative singular of the masculine animate nouns share at least the same right
substring :c1nSgMk1, :c2nSgMk1 and :c3nSgMk1 respectively — but in the case
of the same declension or derivational type they can share a few characters

1 http://www.eti.pg.gda.pl/katedry/kiw/praowniy/Jan.Daiuk/personal/fsa.html
2 To be precise, this is not true in some of the cases, when in the same string some left substring shared by more

strings overlap some right substring, which is also shared by more strings. But due to the regularity of an

absolute majority of words in a natural language it does not affect the following claims dramatically (cf. some

results for Nonslavic languages at the beginning of the following section). 3 All examples in this paper are in

Czech: Kanad’ánek is a little Canadian boy (diminutive), Holand’ánek is a little Dutch boy. The text after the colon

is a morphological tag: c1, c2 and c3 is the first, the second and the third case (i.e. nominative, genitive and

dative), nS is number – singular, gM is gender – masculine animate, k1 is part of speech – noun.

http://www.eti.pg.gda.pl/katedry/kiw/pracownicy/Jan.Daciuk/personal/fsa.html


Morphemic Analysis: A Dictionary Lookup . . . 79

more: in the data above they share even d’ánek:c1nSgMk1, d’ánka:c2nSgMk1 and
d’ánkovi:c3nSgMk1. Moreover, all pairs of this example share e.g. the nSgMk1
right substring. Since the inflective languages tend to express all morphological
categories at the end of the word form (and, moreover, often in one single
ending, but it is not important for now), we can take for granted that similar
relations will hold through the whole list of all word form and tag pairs.

The analysis based on an automaton which encodes a list of the word form
and tag pairs is quite straighforward. If an analysed string concatenated with
the separator (the colon in the case above — it serves as the sign of the end of
the string to distinguish for example Kanad’ánka and Kanad’ánkama4) is found
in the automaton then each possible remaining path to the final state of the
automaton encodes one of the possible morphological tags. The “searching" of
the string is as simple (and therefore also quick, of course) as possible, because
the automaton is deterministic, so that for each possible string there is at most
one straightforward path without need of any backtracking.

Apparently, the creation of such a minimal DAFSA can be a simple way
to dramatically reduce the size of the list of word form and tag pairs (or any
other similar list) and thus to get rid of the disadvantage of the list’s big size.
Moreover, the creator of the list has a full freedom of choice of the manner in
which he or she creates the list. The method used will have no influence on the
effectiveness or complexity of the proces of analysis, because the management
of the data is completely separated from their usage.

There is only one condition which has to be met to get really compact
representation of the dictionary: strings representing the data must not have
any unique parts. The next section shows how to arrange the data for various
parts of the morphological and morphemic analysis to meet this condition.

3 Data Representation

As was shown above, the list of word form and tag pairs is suitable for the
construction of the DAFSA. But a serious problem arises when we want to
include the information about the lemma:Kana¤ánek:Kana¤ánek:1nSgMk1Kana¤ánka:Kana¤ánek:2nSgMk1Holan¤ánek:Holan¤ánek:1nSgMk1Holan¤ánka:Holan¤ánek:2nSgMk1

Obviously, all combinations word+lemma and lemma+tag are unique
among all strings. DAFSA can be constructed, of course, but it would be too
large. The solution used by e.g. Daciuk [2], Kowaltowski [8] or in a slightly dif-
ferent manner by the INTEX project [10] is simple: store only the right substring
of the lemma, in which it differs from the particular word form:

4 colloquial form of the instrumental plural



80 Pavel ŠmerkKana¤ánek::1nSgMk1Kana¤ánka:Bek:2nSgMk1Holan¤ánek::1nSgMk1Holan¤ánka:Bek:2nSgMk1
where the B as the second letter of the aplhabet means “to get the lemma

delete two last characters from the word form and then attach the ek". It is
clear now, that the list in this form has the same properties as the list of word
form and tag pairs in previous section and as such can be “compressed" to a
minimal DAFSA. The lookup is similar as was above: after finding the word
form, the remaining paths to the final state describe all proper lemma+tag
combinations. It should be noted that the compression rate could be very high.
Kowaltowski [8] reports 0.25 byte per one word-tag-lemma entry for Brazilian
Portuguese and Daciuk [2] reports less then 0.15 byte per one word-lemma-tag
entry for German and ca. 30 times better compression rate compared to gzip on
that data. Quite preliminary results for Czech data show similar compression
potential.

The following subsections are only variations on this solution.

3.1 Generating All Word Forms from the Lemma

This is quite simple. All we need is to swap word form and lemma in order to
create list of lemma:word form:tag triples. Instead of the full word form there
is, of course, only an ending part in which the word form and lemma differ. The
generation is similar to the above: the lemma is looked up and the remaining
paths describe all possible word forms with proper tags. To generate all word
forms from a word form other then lemma it is the best option to analyse the
input word form to get the lemma and then look up the rest.

3.2 Morphemic Analysis

Let us suppose we have a mechanism, which can handle productive deriva-
tional suffixes and derive words according to some rules. Then we derive all
word forms we can (maybe except for some recursive rules as for great-great-
grandmother and so on) and track the history of the derivation. Of course we
track the internal, “deep" forms of morphemes before any phonological rules
or morphophonological or stem internal alternations apply. Then a dictionary
may look as follows:Kana¤ánek:Ed-an-0k-~Holan¤ánek:Ed-an-0k-~Kana¤ánka:Ed-an-0k-aHolan¤ánka:Ed-an-0k-a

where the E as the fifth letter in the alphabet means “strip last five
characters", as above. The first segment, d, serves for recovering the root



Morphemic Analysis: A Dictionary Lookup . . . 81

morpheme (whose last phoneme has been palatalised, so the base form is
Kanad- as English Canad-), the following segments are derivational suffixes and
the last one is the inflectional ending.5

Obviously, such a morphemic “analysis" is as simple as the morphologi-
cal analysis above. It constrasts with Zeldes’s [12] very recent attempt to mor-
phological/morphemic6 analysis of Polish resulting in the analysis algorithm
which is “computationally more complex, but lexicographically more compact
alternative to text-based morphological analysis techniques currently in use for
Polish"

3.3 Generating All Derived Words

To generate derived words we need a list of stems with possible suffixes7

encoded in the usual way:Kanad:A¤anKana¤an:BánekHoland:A¤anHolan¤an:Bánek
The interpretation (generation) has to be (or can be) recursive, e.g. Kanad- →

Kanad’an → Kanad’ánek.
Another list is needed for determining the word which the analysed word

was derived from:Kana¤an:CdKana¤ánek:DanHolan¤an:CdHolan¤ánek:Dan
It allows recursive interpretation as well. It is sufficient to have both these

lists created for the lemmata only, not for all word forms.

3.4 Morphological and Morphemic Guessing

The dictionaries for guessing morphological or morphemic characteristics
of unknown words are a bit different. There are no full word forms in
them, but only the “surface" forms of endings or endings with sequences of
suffixes, possibly followed by the alternated root final consonant(s). This whole
potential right substring of an unknown word is reverted and the analysed
words are matched from their ends. It is of a high importance to use only really
productive endings and suffixes to avoid the overgeneration. The first list is for
the lemma and tag guessing:

5 0 stands for vowel e alternating regularly with zero and ˜ stands for zero ending — of course, all

these signs are chosen completely arbitrarily. 6 Zeldes wants to get a linguistically adequate

split of an analysed word to the stem and ending, he does not perform a full morphemic analysis
7 Yes, there are also prefixes in the language, let us put them aside, as handling them would be technically more

difficult, but it would not bring any new idea.



82 Pavel Šmerkkená¤::1nSgMk1akná¤:Bek:2nSgMk1
the second for the morphemic guessing:kená¤:Ed-an-0k-~akná¤:Ed-an-0k-a
The structures of both are the same as in the previous subsections.
This paper has started with a polemic against Gelbukh and Sidorov [5]. The

same two argued a year before [4] that (only) the algorithmic, non-dictionary
approaches to the morphological analysis allow the guessing of the unknown
word forms. It should be clear now, that even “dictionary" approach allows the
same.

4 Advantages of the Proposed Approach

There are certainly no doubts that natural language processing needs to have
a usable and reliable derivational (and really derivational, e.g. not only static
description of derivational relations between lexicon entries) morphology.

Then the main advantage of the proposed approach arises from the fact,
that one has to describe and implement all morphophonological alternations or
at least large part of them to accomplish really good derivational morphology
(and morphemic analysis as well). The “every exception is a new paradigm"-
like approaches (e.g. for Czech language analyser ajka [9]) or Jan Hajič’s anal-
yser [6]) hardly can be successful, because they are too redundant from the
derivation’s point of view, and therefore too complex regarding the main-
tainance of the data. Consider, for example, that a need of addition of some
colloquial noun endings appears: having several hundreds noun paradigms, it
will lead either in a creation of some ad hoc and thus possibly erroneous scripts,
or in an manual update of the most frequent paradigms only. Both cases can
cause inconsistencies in the data8.

On the other hand, a system with a small number of paradigms which com-
putes9 these morphophonological (or even stem or root internal, if someone
wants to distinguish it) alternations in the realtime (i.e. during the analysis
phase) has and has to have too complex code to maintain as well. Or, such a
system is too complex at least compared to the approach proposed in this pa-
per, which is: however complex description of the data you have or want to
have, for the analysis generate all of them in advance and then use only simple
static dictionaries.

Even the well known two-level morphology [7] leads to superfluous com-
plexity and unevincible linguistic inadequateness (comparing to described ap-
proach) when used for Slavic languages. Either we have to have a list of stem
alternations (which are rather frequent in these languages). But such a solution

8 This is one of the real present-day deficiencies of the ajka analyser. 9 This “computes” means some kind of

algorithm more complex than a simple walk through some FSA or FST.



Morphemic Analysis: A Dictionary Lookup . . . 83

resigns to any adequate description of the regularity of these alternations. Or
we can encode these alternations into the phonological rules which are likely
to be linguistically inadequate. And if someone wants to use some prepared
tools like Xerox’s xfst [1]10, either has to develop some translation from his or
her data description to the formal language that the particular tool uses, or is
bound to that language.11

Thus, the main advantage is the complete separation of the “analysis"
process and the description of the data. This separation allows not only the free
choice of the model for morphological and morphemic description of the data
(namely of the possible morpheme combinations and the alternations caused
by these combinations), but it also to a great extent simplyfies changes of this
description when needed.

Very simple example: let us suppose some set of words which belong to
a particular paradigm, and another set of words which all have some same
additional form (e.g. due to some diachronnic reasons), so that the analyzer
distinguishes two separate paradigms differing only by this one extra form.
Now let us imagine, that we would like to lower the redundancy of our
paradigm system by employing some inheritance principles. We would want to
have one base paradigm and one derived from this base one by adding the extra
form. To achieve this in traditional models of analysis12, we would have to not
only modify the tools managing the database of lexemes and paradigms, but
also the analyzer. And the second could be not so simple as the analyzers are in
general optimized for high speed of processing and low size of the data. Using
the approach proposed in this paper, the proper modification of the database
managing tools suffices in such case and the analyzer itself may remain intact.

4.1 Description of Productivity

The described approach is very handy especially for the description of the
regularities in the language, namely the process of the derivation of new or
infrequent words. For instance, most of newly created or taken over Czech
verbs adopt the suffix -ov so that the lemma ends with -ovat, e.g. programovat13.
But there is a whole bunch of suffixes completely regularly connected with
this type of verbs: -ován, -ovaný, -ování, -ovaně, -ovanost, -ovatelný, -ovatelně, -
ovatelnost14

Adding a verb from this class to a dictionary of word form, lemma and tag
triples adds in the DAFSA only the stem or some its part and one arc to the
common beginning of all these suffixes. But the language of the DAFSA is by
such an addition enriched with all word forms generated from lemmas, which
means about 150 word forms (many of them are homonymous, however). Of

10 But unfortunately xfst is not freely available. 11 Of course, it is possible to process some part of derivational

morphology in this way, as [11] did for Czech. In her paper only three rules are shown — and all of them are

awkward if one imagine that whole derivational morphology should be done in this “write-only" manner.
12 at least in all really used ones we are aware of 13 to programme 14 Taking the verb to programme, the

glosses can be something like: programmed (pass part), programmed (adj), programming, ?, ?, programmability,

programmable (adj), programmable(?) (adv).



84 Pavel Šmerk

course, it would be useful to have some mechanism of (some tool for) an simple
adding of a new word to such a class also on the generating side of the analyzer
system, i.e. the suffixes should be really interconnected somehow. However, in
this is the power of this approach: one arc in the automaton is able to enrich the
accepted language with even thousands of words. On the other hand, many
of these c. 150 words will occur in real texts rarely or even never. And many
of them or may be even all of them could be correctly analysed as unknown
words. But why try to guess if we are able to know, and it worths almost
nothing? On the other hand, even if we prefer guessing in some cases, it can
be very simplified using the described approach.

4.2 Some Minor Advantages

– The description of morphophonological alternations needs not to be effi-
cient, because it does not affect the process of analysis at all. It is very im-
portant, as it allows to use the description, which is really adequate for the
data. Moreover, it allows the free choice of the programming language for
tools managing the data, e.g. some high level and more comfortable script-
ing language. It also allows the scripts (or programs) to be optimized for
maintainability, which is important for long-life projects.

– It allows to have either several smaller cooperating tools or several quite
independent parts of a analyzer, thus the whole project would be less
complex, which may prevent some programmers’ mistakes from arising.

– This approach also allows a gradual move from some previous morpho-
logical analysis system. It is possible to have some parts of the derivational
(or, of course, also inflective) morphology described in the new system with
proper capture of important productive relations, and to take over the rest
(perhaps non-productive, and therefore more tricky to describe) of the mor-
fology from the previous system in a form of a plain list of word form,
lemma and tag triples etc.

5 Conclusion

As was said at the beginning, the basic ideas of the proposed approach are not
new at all, but their potential seem to be rather underestimated and maybe they
worth to be recalled a bit, what was the aim of this paper.

A new morphological and morphemic analyser for Czech is developed
using this approach, but still in the phase of data preparation (unification of
related paradigms etc.), therefore there are no results available yet.

Acknowledgments

This work has been partly supported by the Academy of Sciences of Czech
Republic under the project 1ET200610406, by the Ministry of Education of CR
within the Center of basic research LC536 and by the Czech Science Foundation
under the project 201/05/2781.



Morphemic Analysis: A Dictionary Lookup . . . 85

References

1. Kenneth R. Beesley and Lauri Karttunen. 2003. Finite State Morphology. CSLI
Publications, Stanford University. 509 p.

2. Jan Daciuk. 1998. Incremental Construction of Finite-State Automata and Transducers,
and their Use in the Natural Language Processing. Ph.D. dissertation, Technical
University of Gdańsk, Poland.

3. Jan Daciuk. 2001. Experiments with Automata Compression. Proceedings of Conference
on Implementation and Application of Automata CIAA’2000. LNCS 2088, Springer-
Verlag, pp. 105–112.

4. Alexander Gelbukh and Grigori Sidorov. 2002. Morphological Analysis of Inflective
Languages through Generation. In: J. Procesamiento de Lenguaje Natural, No 29.
Sociedad Española para el Procesamiento de Lenguaje Natural, ISSN 1135-5948, pp.
105–112.

5. Alexander Gelbukh and Grigori Sidorov. 2003. Approach to Construction of
Automatic Morphological Analysis Systems for Inflective Languages with Little Effort.
In: Computational Linguistics and Intelligent Text Processing. Proc. CICLing-2003.
LNCS 2588, Springer-Verlag, pp. 215–220.

6. Jan Hajič. 2004. Disambiguation of Rich Inflection: Computational Morphology of
Czech. Charles University, The Karolinum Press. 328 p.

7. Kimmo Koskenniemi. 1984. A General Computational Model for Word-Form Recognition
and Production Proceedings of COLING-84, Stanford University, pp. 178–181.

8. Tomasz Kowaltowski, Cláudio L. Lucchesi, and Jorge Stolfi. 1998. Finite Automata
and Efficient Lexicon Implementation. Technical Report IC-98-02, University of Camp-
inas, São Paulo.

9. Radek Sedláček and Pavel Smrž. 2001. A New Czech Morphological Analyser ajka.
In Proceedings of the 4th International Conference TSD 2001. LNCS 2166, Springer-
Verlag, pp. 100–107.

10. Max Silberztein. 1998. INTEX 4.1 for Windows: A Walkthrough. Proceedings of The
Third International Workshop on Implementing Automata, WIA’98. LNCS 1660,
Springer-Verlag, pp. 230–243.

11. Hana Skoumalová 1997 A Czech Morphological Lexicon Proceedings of the Third
Meeting of the ACL Special Interest Group in Computational Phonology, pp. 41–47.

12. Amir Zeldes. 2006. Abstracting Suffixes: A Morphophonemic Approach to Polish
Proceedings of KONVENS 2006 (Konferenz zur Verarbeitung natürlicher Sprache),
Universität Konstanz.





Part IV

Lexical Semantics





Classification of Multilingual Mathematical Papers

in DML-CZ

Preliminary Excursion

Petr Sojka, Radim Řehůřek

Masaryk University, Faculty of Informatics, Brno, Czech Republicsojka�fi.muni.z, xrehurek�fi.muni.z
Abstract. The growth of digital repositories of scientific documents is
speed-ed up by various digitisation activities. Almost all papers of
mathematical journals are reviewed by either Mathematical Reviews or
ZentralBlatt Math, summing up to more than 2.000.000 entries.
In the paper we discuss possibilities and experiments we did on the data
of Czech Digital Mathematics Library, DML-CZ with the goal of devel-
oping novel scalable methods of document classification and retrieval of
multilingual mathematical papers.

1 Motivation – Project of Digital Mathematics Library

You always admire what you really don’t understand. (Blaise Pascal)

Mathematicians from all over the world dream of World Digital Mathemat-
ics Library [1], where (almost) all of reviewed mathematical papers in all lan-
guages will be stored, indexed and searchable with the today’s leading edge
information retrieval machinery. A good resources towards this goals–in addi-
tion to the publisher’s digital libraries–are twofold:

1. ‘local’ repositories of digitised papers as NUMDAM [2]1, DML-CZ [3]2 or
born-digital archives CEDRAM [4]3), arXiv.org>math4

2. two review services for the mathematical community: both ZentrallBlatt
Math5 and Mathematical Reviews6 have more than 2.000.000 entries (paper
metadata and reviews) from more than 2300 mathematical serials and
journals.

Google Scholar7 is becoming useful in the meantime, but lacks specialised math
search and metadata guessed from parsing crawled papers are of low quality
(compared to the controlled repositories).

Both review services agreed on the supported Mathematics Subject Classifi-
cation (MSC) scheme8, and currently used MSC 2000 is being revised for use in

1 http://www.numdam.org 2 http://www.dml.z 3 http://www.edram.org
4 http://arxiv.org/arhive/math 5 http://www.zblmath.fiz-karlsruhe.de/MATH/
6 http://www.ams.org/mr-database 7 http://sholar.google.om 8 http://www.ams.org/ms/
Petr Sojka, Aleš Horák (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2007, pp. 89–96, 2007. c© Masaryk University, Brno 2007

http://www.numdam.org
http://www.dml.cz
http://www.cedram.org
http://arxiv.org/archive/math
http://www.zblmath.fiz-karlsruhe.de/MATH/
http://www.ams.org/mr-database
http://scholar.google.com
http://www.ams.org/msc/
http://www.fi.muni.cz/usr/sojka/
http://www.muni.cz/people/1648
http://nlp.fi.muni.cz/raslan/2007/


90 Petr Sojka, Radim Řehůřek

2010 (MSC2010). Most journals request classification being used already by au-
thors when submitting journals for publication; however, most of retrodigitised
papers published before MSC 1990 are not classified by MSC in the databases.

Within the DML-CZ project we have investigated possibilities to classify
(retrodigitised) mathematical papers by machine learning techniques, to enrich
math searching capabilities and to allow semantically related search. As text
of scanned pages is usually optically recognised, machine learning algorithms
may use not only metadata (and reviews, if any), but also full text. Interesting
question to pose is to find to which extent mathematical formulae are important
for classification, document similarity measures, and search.

2 Data Preprocessing

We run carelessly to the precipice, after we have put something
before us to prevent us seeing it. (Blaise Pascal)

There are many modelling techniques for given classification task in the area
of pattern recognition. To design a classifier, we have to choose measurable
features. These features should be as discriminative as possible with regard to
the pattern of interest. Most of the methods use bag of words representation of
a document. There are methods such as Latent Semantic Analysis (LSA), that
try to find main document topics based on word co-occurences in documents.

2.1 Primary data

The data available for experiments are metadata and full texts of mathematical
journals covered by DML-CZ project. During the first three years of the project,
we have digitized and collected data in digital library, accessible via web tool
called Metadata editor9. To date (November 2007), in the digitised part there
are 351 volumes of 9 journals: 1449 issues, 11725 articles on 173779 pages. We
are promised to get another 15000+ full texts of articles of other digitisation
project. In addition, digital born data of currently processed articles by various
journals are being imported into the library, as workflow of paper publishing
process was modified a bit so that all fine-grained metadata including the full
text are exported for the digital library for long-term storage (CEDRAM).

By 2009, we target for a digital library with about 50000 mathematical
articles with full texts, and much more with basic article metadata (abstracts,
reviews).

For first experiments, we have used two types of data:

1. texts from scanned pages of digitized journals (usually before 1990, where
no electronic data are available);

2. texts from ‘digital-born’ papers, written in TEX.

9 editor.dml.z

editor.dml.cz


Classification of Multilingual Mathematical Papers in DML-CZ 91

We started our experiments with retrodigitised articles from the Czech Mathe-
matical Journal (CMJ)10 from years 1951 to 1991 (starting 1992 there exist born-
digital data). We took only those papers where both primary MSC classifica-
tion in Zentrallblatt and Mathematical Reviews agree. This was done to ensure
a clean training and evaluation set. In addition, we have used only part of the
text corpus of the journal: only MSC categories with more than 60 papers were
trained in the experiments. We got 925 papers in eight MSC categories:

class 05-xx (Combinatorics): 129 articles
class 06-xx (Order, lattices, ordered algebraic structures): 178 articles
class 08-xx (General algebraic systems): 64 articles
class 20-xx (Group theory and generalizations): 147 articles
class 34-xx (Ordinary differential equations): 146 articles
class 46-xx (Functional analysis): 70 articles
class 53-xx (Differential geometry): 87 articles
class 54-xx (General topology): 104 articles

Second text corpora we used in our experiments was created from papers
of Journal Archivum Mathematicum11 from years 1992–2007, where we had TEX
source files available. For machine learning we use MSC categories for which
we had at least 40 papers – they were categories 34, 53 and 58 (Global analysis,
analysis on manifolds).

2.2 Preprocessing and methods used

It is widely known that design of the learning architecture is very important, as
is preprocessing, learning methods and their parameters [5].

First part of the preprocessing is tokenizing the input documents. We used
alphabetic tokenizer, with lowercase or Krovetz stemmer [6]. No stoplists were
used, no word bi-grams, no lemmatization yet.

The setup of the experiments is such that we run whole bunch of training
attempts in multidimensional learning space of learning methods, features,
term weighting types and classifiers:

feature selectors: χ2, mutual information
feature amount: 100, 500, 2000, all features
term weighting: bnn, nnn, atc [7] (corresponding to binary, term frequency and

augmentented TF*IDF weighting schemes in SMART notation)
threshold estimators: fixed, s-cut
classifiers: Naive Bayes, Artificial Neural Network (six hidden units, threshold

function tanh), k-Nearest Neighbours and Support Vector Machines

For evaluation purposes, we take note on micro/macro F1, TP10, TP20, 11-
point-average, accuracy, correlation coefficient, break-even point and their
standard deviations for 10-fold crossvalidation.

10 http://mj.math.as.z/ 11 http://www.emis.de/journals/AM/

http://cmj.math.cas.cz/
http://www.emis.de/journals/AM/


92 Petr Sojka, Radim Řehůřek

All these results are then compared to see which ‘points’ in the parameter
space perform best. This framework allows easy comparison of the evaluated
parameters with visualization of the whole result space – see for example
multidimensional data visualization on Figure 1. For details see [5].

Fig. 1. Framework for comparing learning methods. This figure shows compar-
ison of the kNN and Naive Bayes classifiers. On the horizontal axis there are
particular combinations of the learning space parameters and on the vertical
axis the microaveraged F1 measure.

3 Preliminary Results

We know the truth, not only by the reason, but also by the heart. (Blaise Pascal)

Apart from classification, we also tried Latent Semantic Analysis (LSA) [8] to
see which concepts are the most relevant.

3.1 Language is relevant

There were papers in several different languages in the CMJ data. After listing
the top concepts in LSA of CMJ it is clear that the most significant concepts
correspond to language:



Classification of Multilingual Mathematical Papers in DML-CZ 93

1. 0.3*"the" +0.19*"and" +0.19*"is" +0.18*"that" +0.15*"of" +0.14*"we"
+0.14*"for" +0.11*"ε" +0.11*"let" +0.11*"then"

2. −0.41*"ist" −0.40*"die" −0.28*"und" −0.26*"der" −0.23*"wir" −0.21*"für"
−0.17*"eine" −0.17*"von" −0.14*"mit" −0.13*"dann"

3. −0.31*"de" −0.30*"est" −0.29*"que" −0.27*"la" −0.26*"les" −0.2*"une"
−0.2*"pour" −0.20*"et" −0.18*"dans" −0.18*"nous"

4. −0.36*"hto" −0.29*"dl�" −0.23*"pust~" −0.19*"iz" −0.19*"esli"
−0.16*"tak" −0.16*"to" −0.14*"na" −0.14*"togda" −0.131169*"my"

5. −0.33*"semigroup" −0.25*"ideal" −0.19*"group" −0.18*"lattice"
+0.18*"solution" +0.16*"equation" −0.16*"ordered" −0.15*"ideals"
−0.15*"semigroups" −0.13*"prime"

6. 0.46*"graph" +0.40*"vertices" +0.36*"vertex" +0.23*"graphs" +0.2*"edge"
+0.19*"edges" −0.18*"ε" −0.15*"semigroup" −0.13*"ideal"
+0.13*"connected"

7. 0.81*"ε" −0.25*"semigroup" −0.16*"ideal" +0.12*"lattice"
−0.11*"semigroups" +0.10*"i" −0.1*"ideals" +0.09*"ordered" +0.09*"ř"
−0.08*"idempotent"

8. 0.29*"semigroup" −0.22*"space" +0.2*"ε" +0.19*"solution" +0.19*"ideal"
+0.18*"equation" +0.16*"oscillatory" −0.15*"spaces" −0.16*"compact"
+0.14*"ds"

9. 0.28*"lattice" −0.27*"ε" +0.27*"ordered" +0.23*"group" −0.21*"semigroup"
+0.2*"subgroup" −0.19*"ideal" −0.18*"space" +0.16*"groups"
+0.16*"torsion"

10. −0.57*"tolerance" −0.22*"compatible" −0.21*"congruence"
−0.20*"tolerances" +0.19*"ideal" +0.16*"group" +0.14*"subgroup"
+0.13*"prime" −0.13*"algebras" −0.13*"algebra"

First concepts clearly capture the language of the paper (EN, DE, FR, RU),
and only then topical itemsets start to be grabbed. It is not surprising – the
classifiers then have to be trained either for every language (there is sparsity
problem for languages as Czech, Italian or German even French presented in
the digital library), or the document features have to be chosen in a language
independent manner by mapping words to some common topic ontology. To
the best of our knowledge, nothing like EuroWordNet for mathematical subject
classification terms or mathematics exists.

3.2 Math notation may be relevant

We also ran LSA on the monolingual corpora of Archivum Mathematicum,
where mathematics formulae were not thrown away (recall that this is a
subcorpora created from TEX files). Again, taking note of the topmost concepts
and their most significant components, we may observe that there appear a few
terms containing mathematical formulae (here r and mn):

1. −0.32*"t" −0.24*"ds" −0.17*"u" −0.17*"_" −0.17*"x" −0.15*"solution"
−0.12*"equation" −0.11*"q" −0.11*"x_" −0.11*"oscillatory"



94 Petr Sojka, Radim Řehůřek

2. 0.28*"ds" +0.28*"t" −0.22*"bundle" −0.16*"natural" +0.15*"oscillatory"
−0.15*"vector" +0.13*"solution" −0.13*"connection" −0.13*"manifold"
+0.11*"t_0"

3. −0.22*"bundle" +0.19*"ring" −0.17*"natural" −0.16*"oscillatory"
+0.15*"fuzzy" −0.15*"ds" +0.12*"ideal" −0.11*"t" −0.11*"r_0"
−0.11*"nonoscillatory"

4. 0.29*"ring" −0.23*"x_" −0.21*"_" +0.21*"oscillatory" +0.18*"ideal"
+0.17*"r" +0.16*"prime" +0.15*"rings" +0.13*"nonoscillatory" −0.12*"x_n"

5. −0.30*"_" −0.29*"a_" −0.17*"q_" −0.15*"ij" +0.14*"ds" −0.14*"x_"
+0.14*"x_n" −0.14*"u_" +0.14*"fuzzy" +0.13*"measurable"

6. 0.87*"fuzzy" +0.19*"x_" +0.10*"oscillatory" +0.10*"ordered" −0.09*"x_n"
+0.07*"nonoscillatory" +0.07*"objects" +0.07*"oscillation" −0.06*"ring"
−0.06*"periodic"

7. −0.31*"ring" −0.21*"ds" −0.2*"r" −0.17*"rings" −0.17*"ideal" −0.15*"u"
+0.13*"oscillatory" −0.12*"prime" +0.12*"curvature" −0.17*"x_"

8. −0.35*"ds" +0.26*"r_0" +0.2*"dx" −0.19*"t_" −0.16*"x_" +0.15*"x_n"
−0.15*"holonomic" +0.14*"z" −0.13*"_" +0.12*"natural"

9. −0.24*"r_0" +0.23*"curvature" +0.16*"fuzzy" −0.15*"x_"
+0.14*"symmetric" +0.13*"riemannian" +0.13*"mn" +0.13*"connection"
−0.124373*"ordered" −0.124305*"lattice"

10. 0.28*"x_" −0.25*"r_0" −0.24*"ds" −0.18*"fuzzy" +0.15*"oscillatory"
+0.14*"holonomic" −0.13*"curvature" −0.12*"u" −0.11*"mn"
+0.1*"oscillation"

3.3 MSC classification can be learned

Detailed evaluation of classification accuracy shows that with almost all meth-
ods we easily reach about 90 % classification accuracy to classify the first two
letters of primary MSC. With fine-tuning the best method (Support Vector Ma-
chine with Mutual Information feature selection, atc term weighting and 500–
2000 features) we can increase the accuracy to 95 % or more.

4 Conclusions and Future Work

Words differently arranged have a different meaning,
and meanings differently arranged have different effects.

(Blaise Pascal)

The results presented show feasibility of machine learning approach to the
classification of mathematical papers. Given enough data, when we extrapolate
the results of preliminary experiments with linear machine methods (creating
separable convex spaces in multidimensional feature space) we could approach
very high accuracy 98 % or even more. With ambitions for even higher accuracy,
higher order models (deep networks) should be used. Mainstream machine
learning research was concentrated on using “convex”, shallow methods (SVM,
neural networks with backpropagation training) so far. State-of-the-art fine



Classification of Multilingual Mathematical Papers in DML-CZ 95

Fig. 2. Side by side comparison of classifier and term weighting performance.
Each coloured line represents performance of a combination of classifier (SVM,
kNN or Naive Bayes) together with a term weighter (atc, bnn or nnn). The
evaluation measure here is microaveraged accuracy, that is, the portion of
correctly classified test examples. We may see that kNN and SVM outperform
Naive Bayes and both work consistently best with the atc term weighting.

tuned methods allow very high accuracy even on large scale classification
problems. However, training of these methods is exceptionally high and the
models are big. Using the ensambles of classifiers make the situation even
worse (size even bigger), and the final models need to be regularized.

Training large models with non-convex optimization [10] may give classifi-
cations that does not exhibit overfitting.

Further studies will encompass fine-grained classification trained on bigger
collections, scaling issues, and fine-tuning the best performance by choosing
the best set of preprocessing parameters and machine learning methods.

Acknowledgements This study has been partially supported by the grants
1ET208050513 and 1ET208050401 of Academy of Sciences Czech Republic.



96 Petr Sojka, Radim Řehůřek

References

1. Jackson, A.: The Digital Mathematics Library. Notices of the AMS 50 (2003) 918–923.
2. Bouche, T.: Towards a Digital Mathematics Library? (2006) accepted for publication

as a book chapter in Communicating mathematics in the digital era (CMDE) 2006
by A.K. Peters.

3. Sojka, P.: From Scanned Image to Knowledge Sharing. In Tochtermann, K.,
Maurer, H., eds.: Proceedings of I-KNOW ’05: Fifth International Conference on
Knowledge Management, Graz, Austria, Know-Center in coop. with Graz Uni,
Joanneum Research and Springer Pub. Co. (2005) 664–672.

4. Bouche, T.: A pdfLATEX-based automated journal production system. TUGboat 27
(2006) 45–50.

5. Pomikálek, J., Řehůřek, R.: The Influence of Preprocessing Parameters on Text Cat-
egorization. International Journal of Applied Science, Engineering and Technology
1 (2007) 430–434.

6. Krovetz, R.: Viewing morphology as an inference process. In: Proceedings
of the Sixteenth Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval. Linguistic Analysis (1993) 191–202.

7. Lee, J.H.: Analyses of multiple evidence combination. In: Proceedings of the 20th
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval. Combination Techniques (1997) 267–276.

8. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing
by Latent Semantic Analysis. Journal of the American Society for Information
Science 41 (1990) 391–407.

9. Ježek, K., Toman, M.: Documents categorization in multilingual environment. In:
Proceedings of ElPub 2005, Leuven, Belgium, Peeters Publishing (2005) 97–104.

10. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of
deep networks. In Schölkopf, B., Platt, J., Hoffman, T., eds.: Advances in Neural
Information Processing Systems 19. MIT Press, Cambridge, MA (2007) 153–160.



The Relations between Semantic Roles and

Semantic Classes in VerbaLex

Dana Hlaváčková

Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republicydana�aurora.fi.muni.z

Abstract. In this paper we present the database of verb valency frames
for Czech language named VerbaLex being created presently in NLP
Laboratory at Faculty of Informatics Masaryk University. This work
involves building the valency database of Czech verbs with their surface
and deep valency frames. Moreover we adopt the list of verb semantic
classes from English to Czech. We want to show the way of more precisely
subclassification of semantic classes for Czech verbs.

1 Introduction

VerbaLex – a large lexical database of Czech verb valency frames has been
developed since 2005 at the Natural Language Processing Laboratory at the
Faculty of Informatics Masaryk University (FI MU). VerbaLex is based on three
existing independent resources:

1. BRIEF – dictionary of 50 000 valency frames for 15 000 Czech verbs is source
of lexical data for VerbaLex. BRIEF was created at FI MU in 1997 [1]. The
different verb senses are not distinguished here and valency frames are
surface only, without any semantic information.

2. VALLEX – valency lexicon of Czech verbs is based on the formalism
of the Functional Generative Description (FGD) and has been developed
during the Prague Dependency Treebank (PDT) project [2]. Vallex and
VerbaLex are similar projects with some important distinctions. The way
of transformation of plain text format (for dictionary editing) to another
formats (xml, pdf, html) used in Vallex has been used and changed for
VerbaLex.

3. Czech WordNet valency frames dictionary, was created during the Balkanet
project [3] and contains 1 359 valency frames (incl. semantic roles) associ-
ated with 824 sets of synonyms (synsets).

The organization of lexical data in VerbaLex comes out from the WordNet
structure [4]. The lexical units in WordNet are organized into synsets arranged
in the hierarchy of word meanings (hyper-hyponymic relations). For that rea-
son, the headwords in VerbaLex are formed with lemmata in a synonymic re-
lation (synset subsets) followed by their sense numbers (standard Princeton-
WordNet notation). The basic valency frames (BVF) display two types of infor-
mation – the constituent elements of valency frames cover both syntactic level

Petr Sojka, Aleš Horák (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2007, pp. 97–101, 2007. c© Masaryk University, Brno 2007

mailto:ydana@aurora.fi.muni.cz
http://www.fi.muni.cz/usr/sojka/
http://www.muni.cz/people/1648
http://nlp.fi.muni.cz/raslan/2007/


98 Dana Hlaváčková

and lexical semantic level. The default verb position ’VERB’ as the centre of the
sentence is marked on the syntactic level. The pattern of sentence constituents
are situated in left and right positions in accordance with the complementarity
needed by the verb. The constituent elements of frame entries are entered as
pure pronominal terms, e.g. kdo (who), co (what), or prepositional phrase pat-
tern (with the lemma of the preposition) followed by the number of the required
grammatical case of the phrase. This way of notation allows to differentiate an
animate or inanimate subject or object position. The types of verbal comple-
mentation (nouns, adjectives, adverbs, infinitive constructions or subordinate
clauses) are precisely distinguished in the verb frame notation. There is marked
up the type of valency relation for each constituent element – obligatory ’obl’
(must be present) or optional ’opt’. BVF is followed by simple example of usage
verb in sentence. For example:
Synset: bavit:1, rozptýlit:2, rozptylovat:2
(PrincetonWordNet: amuse:2 /make (somebody) laugh)

frame: AG <person:1>
obl
whoNom VERB PAT <person:1>

obl
whatAccus

ACT <act:2>
opt
by doing whatInstr

– example: impf: bavil děti hrou (he amused the children by playing the game)

VerbaLex captures additional information about the verbs which is organized
in complex valency frames (CVF):

– definition of verb meanings for each synset;
– verb ability to create passive form;
– number of meaning for homonymous verbs;
– semantic classes;
– aspect (perfective – pf., imperfective – impf. or both aspects – biasp.);
– types of verb use (primary – prim., figurative – fig., idiomatic – idiom.);
– types of reflexivity for reflexive verbs.

For example:
SYNSET: BAVIT:1, ROZPTÝLIT:2, ROZPTYLOVAT:2
DEFINITION: poskytovat někomu zábavu/make (somebody) laugh

– passive: yes
– meaning: I
– class: amuse-31.1-1
– impf: bavit:1 pf: rozptýlit:2 impf: rozptylovat:2

frame: AG <person:1>
obl
whoNom VERB PAT <person:1>

obl
whatAccus

ACT <act:2>
opt
by doing whatInstr

– example: impf: bavil děti hrou (he amused the children by playing the game)



The Relations between Semantic Roles and . . . in VerbaLex 99

– attr: use: prim, reflexivity: obj_ak

Current version of VerbaLex 2.0 contains 7 063 synsets, 23 461 verb senses, 10
596 verb lemmata and 21 100 valency frames. Valency database is available in
txt, xml and html formats [5].

2 Semantic Roles

Semantic information of verb complementation is represented by two-level
semantic roles in BVF. The first level contains the main semantic roles proposed
on the 1stOrder-Entity and 2ndOrderEntity basis from EuroWordNet Top
Ontology [6]. The 1st level semantic roles represent close list of 29 semantic
tags (e.g. AG – agent, OBJ – object, INS – instrument, ACT – activity, INFO
– information, SUBS – substance etc.). On the second level, we use specific
literals (lexical units) from the set of PrincetonWordNet Base Concepts with
relevant sense numbers. We can thus specify groups of words (hyponyms
of these literals) replenishable to valency frames. This concept allows us to
specify valency frames notation with large degree of sense differentiability
(e.g. SUBS(beverage:1), OBJ(furniture:1), INS(edge tool:1) etc.). The list of 2nd level
semantic roles is open, current version contains about 1 000 wordnet lexical
unites.

3 Semantic Classes

We work with verb semantic classes that were originally adopted from the
Levin’s list of English verb classes [7] (48 classes). We also use the list of Martha
Palmer’s VerbNet project with more fine-grained sets of verbs [8] (82 classes,
total of 395 subclasses). These verb classes have been translated and adopted
for Czech language. Czech classes were enriched with Czech synonyms, aspect
counterparts and Czech prefixed verbs. Presently, we work with 82 semantic
verb classes, 258 subclasses and 6 393 Czech verb lemmata in the current
version of our list. In building the semantic classes we prefer semantic criteria
against the syntactic alternations used by Levin. As a result we get verb classes
that are semantically more consistent than Levin’s.

4 Relations

The process of adopting and enriching Czech semantic classes initially started
with Levin/Palmer’s classes but within VerbaLex we try to modify them with
regard to the semantic features of predicate-argument structures of Czech
verbs. Our aim is to create classes based also on the inventory of the semantic
roles denoting verb arguments. This approach allows us to build semantic
classes and subclasses more precisely in many cases.

Our point of view is based on assumption that verbs complemented by the
identical 2nd level semantic roles belong to one semantic class. For example, the



100 Dana Hlaváčková

verbs linked to the semantic role beverage:1 (it occurs in 42 valency frames in
VerbaLex) can create following semantic groups:

beverage consumption – pít/drink, upíjet/sip, bumbat/guggle, ochutnávat/taste. . .
oversized beverage consumption – chlastat/booze, opíjet se/soak, přihnout si/

swig. . .
beverage serving – čepovat/tap, točit/draw, nalévat/pour, napojit/water. . .
beverage preparation – zkvasit/ferment, vařit/brew, ledovat/frost, protřepat/shake. . .
physical result after oversized beverage consumption – zvracet/vomit, dávit/

throw up, blinkat/be sick. . .

In Levin/Palmer’s list of semantic classes this type of verbs belongs mostly
to class 39. Verbs of Ingesting and to wide and more closely undefined class 45.
Verbs of Change of State.

Verbs complemented by 2nd level semantic role furniture:1 (it occurs in 60
valency frames in VerbaLex) can create following semantic groups:

furniture usage – posadit se/sit down, ležet/lie, uložit se/lie down. . .
furniture handling – sklopit/recline, uklidit/tidy away, srovnat/order, umístit/place,

stěhovat/move, otevřít/open. . .
furniture making and maintenance – čalounit/upholster, mořit/ebonize, leštit/pol-

ish, sklížit/glue. . .

In Levin/Palmer’s list of semantic classes this type of verbs belongs mostly
to wide classes 9. Verbs of Putting, 45. Verbs of Change of State and 47. Verbs of
Existence.

Verbs complemented by 2nd level semantic role vehicle:1 (it occurs in 153
valency frames in VerbaLex) can create following semantic groups:

modes of movement – zrychlit/accelerate, zpomalit/slow down, brzdit/brake, cou-
vat/back a car, zatočit/turn, předjet/overtake. . .

meet with an accident – nabourat/smash car, narazit/crash. . .
transport of people – jet/go, nastoupit/get in, vystoupit/get out, cestovat/travel,

dojíždět/commute. . .
transport of load – vézt/carry, naložit/load, vyložit/unload, přepravit/transport. . .
visual and acoustic signals – houkat/hoot, troubit/toot, blikat/blink, burácet/roar. . .

In Levin/Palmer’s list of semantic classes this type of verbs belongs mostly
to classes 11. Verbs of Sending and Carrying, 18. Verbs of Contact by Impact,
43. Verbs of Emission and 51. Verbs of Motion.

5 Conclusion

The described type of classification can be used for 2nd level semantic role with
reasonable frequency in VerbaLex (from 30 to 1 000 occurrences). The roles with
general meaning and frequency higher than 1 000 occurrences are not suitable
for this purpose (e.g. object:1 – 2 500 occurrences). In spite of this, 2nd level
semantic roles in VerbaLex present significant support for subclassification of
verb semantic classes.



The Relations between Semantic Roles and . . . in VerbaLex 101

Acknowledgements

This work has been partly supported by the Academy of Sciences of Czech
Republic under the projects 1ET100300414 and 1ET200610406 and by the Czech
Science Foundation under the project 201/05/2781.

References

1. Pala, K., Ševeček, P.: Valence českých sloves. In: Proceedings of Works of Philosoph-
ical Faculty at the University of Brno, Brno, MU (1997), 41–54.

2. Žabokrtský, K.: Valency Lexicon of Czech Verbs. Ph.D. thesis, Prague (2005).
3. BalkaNet: Balkanet project website (2001–2004).
4. Fellbaum, C.e.: WordNet. An Electronic Lexical Database. MIT Press, Cambridge

(1998).
5. Hlaváčková, D., Horák, A.: Verbalex – New Comprehensive Lexicon of Verb

Valencies for Czech. In: Computer Treatment of Slavic and East European Languages,
Third International Seminar, Bratislava, VEDA (2005) 107–115.

6. Vossen, P., Bloksma, L.e.a.: The EuroWordNet Base Concepts and Top Ontology.
In: Technical Report Deliverable D017, D034, D036, WP5 EuroWordNet, LE2-4003,
Amsterdam, University of Amsterdam (1998).

7. Levin, B.: English Verb Classes and Alternations: A Preliminary Investigation,
Chicago, The University of Chicago Press (1993).

8. Palmer, M., Rosenzweig, J., Dang, H.T.e.a.: Investigating regular sense extensions
based on intersective Levin classes. In: Coling/ACL-98, 36th Association of Compu-
tational Linguistics Conference, Montreal (1998) 293–300.





Keyness in Shakespeare’s Plays

Jiří Materna

Natural Language Processing Lab
Faculty of Informatics, Masaryk University
Botanická 68a, 602 00, Brno, Czech Republicxmaterna�fi.muni.z, http://nlp.fi.muni.z

Abstract. This paper describes a novel method of identifying keyness
in texts using relational learning. The relational learning is based on
Inductive Logic Programing (ILP) in first-order logic. Using this method
we can extract first-order logic formulas satisfied in a set of positive
examples and not satisfied in a set of negative examples.
We tested this method on a collection of Shakespeare’s plays to identify
keyness (or aboutness) of particular plays. The research was especially re-
lated to Hamlet, Prince of Denmark which was already investigated by
Mike Scott [1]. He used his own tool WordSmith, based on wordlists gen-
erating. Aim of this paper is to describe another way of automatic identi-
fying keyness and to show that this method can find more comprehensive
keyness representation.

Key words: keyword, keyness, Shakespeare, ILP

1 Introduction

In our life we often use the term ’key’ to identify something important. The term
is so widely used that keyness seems to be generally intuitively obvious. Here,
though, we must think about the term more carefully. We should distinguish
between language, mind, culture and text keyness [2]. For example, the term
’thee’ can be a keyword in recent texts because of its archaic nature but it
can hardly be considering a keyword in Shakespeare’s language. In this paper,
we are interested only in the text keyness, that is, the other aspects must be
excluded. In order to eliminate language, mind or culture influence, we use a
referential corpus composed of texts of the same type as an investigated text. In
our case we use as a referential corpus set of all Shakespeare’s plays.

First, we will describe classical methods of identifying aboutness in texts
(Kintsch’s and van Dijk’s propositional analysis, Hoey’s method) and then
we will aim our effort much more precisely to clarify Scott’s approach and a
method of keyness extraction in first-order logic.

1.1 Keyness and aboutness

In the past, text linguists worked on related issues without using term keyness.
One of the most famous approaches is Kintsch’s and van Dijk’s propositional

Petr Sojka, Aleš Horák (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2007, pp. 103–108, 2007. c© Masaryk University, Brno 2007

mailto:xmaterna@fi.muni.cz
http://nlp.fi.muni.cz
http://www.fi.muni.cz/usr/sojka/
http://www.muni.cz/people/1648
http://nlp.fi.muni.cz/raslan/2007/


104 Jiří Materna

analysis [3]. The method starts by splitting a text into its propositional compo-
nents. For example, the sentenceThree big green elephants were rossing the Main Streetyesterday.
may have following propositions:The elephants are threeThe elephants are bigThe elephants are greenThe elephants were rossing the streetThe street is alled Main StreetIt happened yesterday
It does not matter how each proposition is expressed. We are not dealing
with words or clauses, we are handling concepts. It would be possible to
replace each proposition with an abstract symbol or paraphrase in another
language. Kintsch and van Dijk then proceed to study which of the propositions
get referred to most in the entire set. That means, the method identifies the
propositions which are most important in the sense that they get linked to
most of all in the text [3]. This approach is called macropropositions. These
macroproposition seem to be, more than the others, what the text is really about.

Another author who has tackled issue of aboutness in texts was Hoey [4].
His method is similar to the Kintsch’s and Dijk’s one. The difference is that it
does not take propositions but whole sentences. Like Kintsh and van Dijk, Hoey
seeks out the elements which are most linked. A link for Hoey is based on the
plain text before him. What he counts as a link is a repetition of some kind. It
need not be only a verbatim repetition but for example grammatical variants
like the same lemma, synonym, hyponym or meronym.

2 Keywords and Scott’s Keyness Analysis

The method of identifying keyness used by Scott is based on keywords.
Keyword is defined like a word form that is frequent in an investigated text.
Repetition here is a simple verbatim repetition, so we don’t consider terms ’car’
and ’cars’ to be the same token.

Simple verbatim repetition alone is not, however, a good indicator of what
is important and what a text is about. It is obvious that the most frequent
terms will be determiners like ’the’ or ’of’, verbal auxiliaries and words usually
occurring in general texts. These terms can hardly be good indicators of
aboutness [5]. What we are looking for are terms like ’Romeo’, ’Juliet’, ’love’,
’death’, ’poison’ etc. in example of Rome and Juliet.

To eliminate unwanted frequent terms, we often use a referential corpus.
The referential corpus should be a set of general texts in the same language
and style as an investigated text. We simply compute frequent terms for both
investigated and referential corpus and exclude terms frequented in both ones.



Keyness in Shakespeare’s Plays 105

To do this, Scott uses his own text processing tool called WordSmith [6].
This tool is based on wordlist computing. Wordlist is a list of text tokens paired
with their frequency in corpus. The most useful way of arranging this list is to
sort it by frequency, so you can easily filter the infrequent items. The threshold
frequency which determines what terms will be considered to be a keyword is
usually established experimentally.

In his work, Scott defines keyness as a set of related keywords. He noticed
that keywords can be globally spread or locally concentrated in the text, so
he was interested in collocational neighbors of each keyword in the text. If
there are other keywords nearby, in terms of keyness, they are qualified to be
a key together. The important issue is, of course, a span. In his experiments,
Scott uses narrow span (1 to 5 tokens) and wide span (11 to 25 tokens). It was
demonstrated that wide span rather tends to identify genre keyness, whereas
the narrow span is more suitable for text keyness investigation.

3 Keyness in Terms of Relational Learning

In contrast to previous method, relational learning express keyness not only by
a set of keywords but it can represent the aboutness or concept by relations
between words, their attributes or positions, and even between document
segments like sentences, paragraphs or phrases. For us, the key is then a
relational pattern which is frequent throughout the document.

Formally, following [7], keyness K is a set of logic formulas in first-order
predicate logic with modal operators that are frequent for the document. We
call such formulas frequent patterns [8]. A frequent pattern is a conjunction of
predicates from a given set of predicates called background knowledge. This
set must contain a keyword predicate keyword/2. keyword(D, KW) predicate
holds if KW is a keyword for the document D.

Background knowledge then consists of relations that are domain
independent (e.g. describing relative position of words like before/3,after/3, follows/3, preedes/3, their modal variants (e.g. always_after/3,always_before/3) or that, describing morphological and syntactical categories.
E.g. hasVerb(Sentene, Subjet, Verb, Objet) returns for a given sen-
tence a triple (subject, verb, object). Background knowledge can also contain
domain dependant predicates that express semantics of a word. An example is
information about synsets or hypo/hyperonymic relations obtained from do-
main dependent ontology.

Each frequent pattern is characterized by a level of significance. A level of
significance is given by a number of instances, typically a set of words and their
attributes that are covered by this formula. This level of significance is called
support.

An example of a frequent pattern is below.word(S, B), after(S, B, C), begCap(S, C),hasTag(S, C, 'NNP'), after(S, C, D), hasTag(S, D, 'CC')



106 Jiří Materna

It says that ”in the sentence A, there is a word B, somewhere on the right
there is a word C which starts with a capital letter and has tag ’NNP’ and
somewhere right from the word C there is a word D with tag ’CC’“.

4 An Experiment

We tested this method on a collection of Shakespeare’s plays. In our interest
was especially Hamlet, Prince of Denmark. Our main goal was try to find some
additional information about keywords found by Scott.

He defines two kinds of keywords – positive and negative. Positive key-
words are the ones that are outstandingly frequent in the text and negative
keywords are outstandingly infrequent comparing to referential corpus.

In Hamlet, he found following positive keywords:SENSE, VERY, DEATH, LORD, DO, IT, MOST, LET, WOO'T,PHRASE, THE, T, COULD, E'EN, WHY, OF, A, OR, THIS,WHERETO, HOW
Negative keywords for all Shakespeare’s plays are listed below:A, AND, DOTH, FATHER, FOR, FROM,GOOD, HE, HER, HIM,HIS, I, I'LL, IN, IT, KING, LORD, LOVE, MASTER, ME,MOST, MY, OF, OUR, SHE, SIR, THE, THEE, THEIR, THERE,THY, THOU, TIS, WE, WHAT, WHY, YOU, YOUR, DO
You can see that some keywords are unsurprising. For example ’death’

is supposed to be a keyword in play about death. But what is surprising,
among positive keywords there are words like ’do’ or ’it’. These tokens are
even negative keywords in the other plays. There is no idea why these words
should be a positive key in Hamlet and relatively insignificant in the other
Shakespeare’s plays. Scott’s tool does not provide any feature to solve this issue,
so we tried to answer it using our method.

In order to ease our task we only selected four words to be analyzed:DO, IT, LORD, MOST
From both Hamlet corpus (HC) and all Shakespeare’s plays corpus (AC),

we only selected the sentences containing one of the Scott’s keyword (for each
keyword separately). Each created document was then splitted into sentences.
It implies that we did not take into account any relations that concern two or
more sentences. These sentences were then tagged by Memory-Based Shallow
Parser [9] on morphological and syntactical level. Information about characters
and position in the play for each sentence was added too.

When the data were prepared, we employed relational learning system
RAP [10]. RAP is an ILP system for mining maximal frequent patterns in first-
order logic written in Prolog. It uses generate-test paradigm for finding first-
order clauses which cover at least N examples. The value N is so called minimal
support and supposes to be given by user.



Keyness in Shakespeare’s Plays 107

The most important issue in relational learning is background knowledge
definition, that is, issue of what predicates can a frequent pattern consist of.
Firstly, we tried to use following predicates:key(S) – in the document, there is a sentence ShasWord(S, W) – somewhere in the sentence S, there is a word Wbefore(S, A, B) – in the sentence S, there is a word A before BisWord(W, T) – the word W has a token Tpers(S, P) – the sentence S is pronounced by P

Even though we set maximal pattern length to 7 there were no longer
patterns than 6 found. It is, however, strongly dependent on minimal support
value. We set it to 10 in order to eliminate uninteresting patterns. All maximal
patterns found for keyword ’DO’ you can see below. A trivial pattern with ’do’
token was omitted.key(A), pers(A,hamlet), hasWord(A,B), isWord(A,B,I)key(A), pers(A,hamlet), hasWord(A,B), isWord(A,B,and)key(A), pers(A,hamlet), hasWord(A,B), isWord(A,B,in)key(A), pers(A,hamlet), hasWord(A,B), isWord(A,B,it)key(A), pers(A,hamlet), hasWord(A,B), isWord(A,B,me)key(A), pers(A,hamlet), hasWord(A,B), isWord(A,B,my)key(A), pers(A,hamlet), hasWord(A,B), isWord(A,B,not)key(A), pers(A,polonius), hasWord(A,B), isWord(A,B,you)key(A), hasWord(A,B), isWord(A,B,your)key(A), hasWord(A,B), isWord(A,B,what)key(A), hasWord(A,B), isWord(A,B,we)key(A), hasWord(A,B), isWord(A,B,think)key(A), hasWord(A,B), isWord(A,B,they)key(A), hasWord(A,B), isWord(A,B,them)key(A), hasWord(A,B), isWord(A,B,lord)key(A), hasWord(A,B), isWord(A,B,know)key(A), hasWord(A,B), isWord(A,B,is)key(A), hasWord(A,B), isWord(A,B,his)key(A), hasWord(A,B), isWord(A,B,but)key(A), hasWord(A,B), isWord(A,B,as)key(A), hasWord(A,B), hasWord(A,C), before(A,B,C),isWord(A,B,Do), isWord(A,C,you)key(A), hasWord(A,B), hasWord(A,C), before(A,B,C),isWord(A,B,And), isWord(A,C,do)key(A), hasWord(A,B), hasWord(A,C), before(A,B,C),isWord(A,B,Do), isWord(A,C,not)

Among frequent patterns you can find some interesting ones. For example
the last one. It says that there are a lot of negations in Hamlet. That can be one
of the reasons of frequent occurring ’do’ in Hamlet. Another noticeable thing



108 Jiří Materna

is that ’do’ is pronounced more often by Hamlet than other persons. But, it
can be caused by preponderance of Hamlet’s utterances. You can also notice
that there are several other keywords among frequent patterns. It is denoted by
co-occurrence these keywords with ’do’. In a similar way you can analyze the
other keywords.

5 Conclusion

We described classical methods of text keyness representation and introduced
a novel way based on relational learning. This method represents keyness as a
set of frequent patterns in first-order logic. Hoping that this method can express
keyness better then previous methods, we tried to analyze keywords in Hamlet
found by Scott. It was shown on an example of ’do’ keyword that relational
learning can find more comprehensive information, however, found patterns
was not still comprehensive enough.

In our future work we want to extend domain knowledge by other predi-
cates and try to find some other useful information. We will also be interested
in so called clouds of patterns. By a special measure we will try to identify near
frequent patterns. This clouds may give us a good indication of pattern signifi-
cance.

Acknowledgments

This work has been partly supported by the Czech Science Foundation under
the project 407/07/0679.

References

1. Scott, M.: Key words and key sections: Exploring shakespeare. TALC, Paris (2006).
2. Scott, M., Tribble, C.: Textual Patterns: Key words and corpus analysis in language

education. Philadelphia: John Benjamins (2006).
3. Kintsch, W., Van Dijk, T.: Toward a model of text comprehension and production.

Psychological Review (1978).
4. Hoey, M.: Patterns of Lexis in Text. Oxford University Press (1991).
5. Phillips, M.: Lexical Structure of Text: Discourse Analysis Monograph 12. University

of Birmingham Printing Section (1989).
6. Scott, M.: Lexical analysis software for the PC. Oxford University Press (1996).
7. Popelínský, L.: Keyness and relational learning. In: Keyness in Text, University of

Siena (2007).
8. Cussens, J., Džerovski, S.: Learning language in logic. Lecture notes in computer

science. Lecture notes in artificial intelligence. Berlin : Springer (2000).
9. Daelemans, W., van den Bosch, A.: Memory-based language processing. Cambridge

University Press (2005).
10. Blat’ák, J., Popelínský, L., Nepil, M.: RAP: Framework for mining frequent datalog

patterns. Proceedings of the first KDID workshop at ECML/PKDD 2002 (2002).



MetaTrans

Multilingual Meta-Translator

Jan Pomikálek

Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republicxpomikal�fi.muni.z

Abstract. This paper presents MetaTrans, a meta-search engine for online
dictionaries. With this software, users are able to find translations in a
number of online dictionaries simultaneously. The MetaTrans features
a web interface which is easy to use. The modular design of the tool
enables adding support for more online dictionaries with minimal effort.
MetaTrans also utilizes information from text corpora, WordNets and a
morphological analyzer.

1 Introduction

There are many freely available online dictionaries on the web which contain
large vocabularies for many language pairs. While common terms are often
well covered by each of these dictionaries, the coverage of specialized terms
and phrases differs from dictionary to dictionary. An obvious step for a user
who did not find a translation of an unknown term in their dictionary is to look
into another one. This may mean that the term needs to be searched for multiple
times in many different dictionaries until a satisfying translation is found. This
can be a tedious and time-consuming process.

We present a system which acts as a meta-translator for a virtually unlimited
number of online dictionaries. If a user looks for a translation of term X from
language A into language B, the system operates as follows. First, a list of online
dictionaries is determined which support translating from A to B. Then each of
these dictionaries is searched for a translation of X. The results are merged and
returned to the user.

Five online dictionaries are currently supported by the MetaTrans. How-
ever, as long as the design of the system is fully modular, it is very easy to add
support for more online dictionaries.

The MetaTrans back-end is freely available on CPAN1. The MetaTrans
web application can be accessed at http://metatrans.fi.muni.z/ with
some restrictions when used on computers outside Masaryk Universite. These
restrictions are specified later in this paper.

1 http://searh.pan.org/author/JANPOM/MetaTrans-1.04/bin/metatrans
Petr Sojka, Aleš Horák (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2007, pp. 109–115, 2007. c© Masaryk University, Brno 2007

mailto:xpomikal@fi.muni.cz
http://metatrans.fi.muni.cz/
http://search.cpan.org/author/JANPOM/MetaTrans-1.04/bin/metatrans
http://www.fi.muni.cz/usr/sojka/
http://www.muni.cz/people/1648
http://nlp.fi.muni.cz/raslan/2007/


110 Jan Pomikálek

Fig. 1. MetaTrans main window

2 MetaTrans

MetaTrans is written in pure Perl using object oriented programming. For each
online dictionary, a simple object class needs to be created which implements
two methods – create_request and process_response.

The create_request method accepts three parameters – the term to be trans-
lated, the source language and the destination language. It returns a HTTP re-
quest which the given online dictionary will respond to with the appropriate
list of translations. For example, to translate the word pes from Czech to English
using the slovnik.seznam.z online dictionary, the following HTTP GET re-
quest is required: http://slovnik.seznam.z/searh.py?wd=pes&lg=z_en.

The process_response method also accepts three parameters – the response
from the online dictionary, the source language and the destination language.
The response is returned as an HTML page. The method is responsible for
extracting the translations from the HTML code. This can be done either by
using regular expressions or using an HTML parser. A relevant part of the
response to the request specified above is shown in Fig. 2 The process_response
method is responsible for converting it into the list of pairs which is shown in
Fig. 3

http://slovnik.seznam.cz/search.py?wd=pes&lg=cz_en


MetaTrans – Multilingual Meta-Translator 111

Additional information is sometimes provided with a translation which
specifies the senses of the terms. For the sake of consistency, this information
should always be enclosed in parentheses. The process_response method
is responsible for the appropriate conversion if necessary. In the previous
example, the translations are already in the correct format. However, if we had
something like pes – lovecký instead of pes (lovecký) we would need to convert it.

Apart from the two above mentioned methods, the object class also has to
contain a constructor which sets the meta-data of the given online dictionary,
such as name and list of supported language pairs.

<li> <strong> <a href="searh.py?lg=z_en&wd=pes">pes</a></strong> &nbsp;-&nbsp;<a href="searh.py?lg=en_z&wd=tyke">tyke</a> </li><li> <strong> <a href="searh.py?lg=z_en&wd=pes">pes</a></strong> &nbsp;-&nbsp;<a href="searh.py?lg=en_z&wd=pooh">pooh</a> </li><li> <strong> <a href="searh.py?lg=z_en&wd=pes%20%28lovek%C3%BD%29">pes(loveký)</a></strong> &nbsp;-&nbsp; <a href="searh.py?lg=en_z&wd=hound">hound</a><a href="./sound/A/A22051.WAV" title="P°ehrát zvuk"><img sr="http://1.im.z/sl/repro.gif"width="13" height="13" alt="" lass="repro" /></a> </li><li> <strong> <a href="searh.py?lg=z_en&wd=pes%20%28t%C3%A9%C5%BE%20p%C5%99en.%29">pes(téº p°en.)</a></strong> &nbsp;-&nbsp; <a href="searh.py?lg=en_z&wd=dog">dog</a><a href="./sound/A/A1331.WAV" title="P°ehrát zvuk"><img sr="http://1.im.z/sl/repro.gif"width="13" height="13" alt="" lass="repro" /></a> </li>
Fig. 2. Response sample for slovnik.seznam.z

With the object classes for the online dictionaries, it is already straightfor-
ward to search for translations. For a given language pair (A, B) and the input
term X, each dictionary is queried for the list of translations of X. In order to
speed up the process a new thread is spawned for each dictionary so that all of
them can be queried at the same time. When all the responses are retrieved, the
results are merged. If the same translation is obtained from multiple sources, it
is only displayed once and it is associated with the list of dictionary icons, in
which it was found. This is useful information for the user. The more sources
of the translation the more likely it is that the translation is correct. If on the
other hand, the translation is only found in a single dictionary, it may be that
the translation is incorrect or inappropriate.

pes - tykepes - poohpes (loveký) - houndpes (téº p°en.) - dog
Fig. 3. The result of processing the response sample



112 Jan Pomikálek

2.1 Sorting

MetaTrans supports two types of sorting the retrieved translations – alpha-
betically and by average position in the source dictionaries. The alphabetical
sorting uses the relevance of the left side to the searched term as the primary
criterion. With the left side we refer to the term in the source language. The
relevance is determined using the following three rules:

1. The terms which are identical with the searched term are the most relevant.
2. The terms which contain the searched term as a substring are more relevant

than the ones which do not contain it (doggie is more relevant to dog than
hound is).

3. The more words in the term the lower relevance (big dog is more relevant to
dog than big bad dog is).

The terms within the groups with the same relevance are sorted alphabetically,
primarily by the left side, secondarily by the right side.

The next supported sorting is by average position and this is the default one.
This is based on the assumption that the source dictionaries return the most
usual or the most appropriate translations first (at the top). This is the most
practical ordering for most users. The sorting by average position attempts to
maintain this ordering. For each of the retrieved translations T, and for each
source dictionary D, the position (rank) of the T is found within the translations
returned by D. If the translation is not found in the list, the position behind the
last translation returned by D is used. The positions are then averaged across
the dictionaries used. The translations are sorted by the average position.

2.2 Filtering

Several filtering options are available in MetaTrans. The names of the options
are mostly self-explanatory. We will therefore only demonstrate the effect of the
most important ones on one example. Let us suppose that for a query dog, the
translation of the following terms were found: dog, doggie, dog bite, bad dog, bad
doggie, hound. The results of the filtering are presented in Table 1.

Table 1. The effects of filtering options for the input term dog

option
match at word boundaries

yes no
exact match dog dog
match expression at start dog bite dog bite, doggie
match expression anywhere dog, dog bite, bad dog dog, doggie, dog bite, bad dog,

bad doggie



MetaTrans – Multilingual Meta-Translator 113

Fig. 4. Word sketches and WordNet information for shine

2.3 Additional Resources

MetaTrans can display additional information of various kinds for the retrieved
translations. If the user clicks on a term, they are presented with the Word
Sketches for the word, with the information from WordNet and with the
morphological analysis of the word. Each of these resources is, however, only
available for a limited number of languages.

A word sketch [1] is a summary of a word’s grammatical and collocational
behavior. Word sketches can be produced automatically from large annotated
corpora using the Sketch Engine [2]. The collocates in the word sketches table
displayed by the MetaTrans can be clicked on in order to display concordances
from a text corpus (see Fig. 5). The concordances serve as usage examples of the
given word in relation with the collocate.

The word sketches in the MetaTrans are available for Czech, English and
French. The British National Corpus [3] is used for English, the Czech National
Corpus for Czech. A web derived corpus is used for French. Since the last
release of MetaTrans, word sketch tables were developed for a number of
additional languages. These will be utilized in the next MetaTrans version. Due
to license restrictions, the word sketches information is only available if the
MetaTrans is accessed from the Masaryk University network.



114 Jan Pomikálek

Fig. 5. Contexts for shine in relation with torch from the BNC

WordNet [4] is a well-known lexical database which was originally devel-
oped for English. In the EuroWordNet project, WordNets were produced for
several European languages and linked together. MetaTrans provides web ac-
cess to the English, Czech and French WordNets.

For Czech words, morphological analysis is available which is provided by
the web interface of the morphological analyzer ajka [5].

3 Conclusion

We have presented the multilingual meta-translator MetaTrans, a system for
parallel searching in multiple online dictionaries. It has a convenient web
interface which is easy to use especially for non-technical people. Its parallel
processing of the online resources makes MetaTrans reasonably fast. Modular
design enables using additional online dictionaries with very little effort.
MetaTrans is completely language independent and can be used for translating
between any pair of languages, as long as an online dictionary exists for the
language pair.



MetaTrans – Multilingual Meta-Translator 115

Apart from the data from the online dictionaries, different kinds of language
resources are used, such as word sketches, WordNets and a morphological
analyzer. This makes MetaTrans unique resource for a wide range of users.
Its large vocabulary also makes MetaTrans a valuable dictionary for obtaining
specialized terminology.

Acknowledgments

This work has been partly supported by the Ministry of Education of CR within
the Center of basic research LC536 and in the National Research Programme II
project 2C06009.

References

1. Kilgarriff, A., Tugwell, D.: Sketching words. Lexicography and natural language
processing: a festschrift in honour of B. TS Atkins, Euralex (2002) 125–137.

2. Kilgarriff, A., Rychlý, P., Smrž, P., Tugwell, D.: The Sketch Engine. Proceedings of
Euralex (2004) 105–116.

3. Aston, G., Burnard, L.: The BNC handbook: Exploring the British National Corpus
with SARA. Edinburgh University Press (1998).

4. Miller, G.: WordNet: A Lexical Database for English. Communications of the ACM
38(11) (1995) p. 39.

5. Sedláček, R., Smrž, P.: A New Czech Morphological Analyser ajka. Proceedings of
the TSD (2001) 100–107.





Author Index

Ciprich, Nikola 37

Duží, Marie 37, 43

Gardoň, Andrej 29

Hlaváčková, Dana 97
Horák, Aleš 3, 29

Kadlec, Vladimír 13
Košinár, Michal 37
Kovář, Vojtěch 71

Materna, Jiří 103

Němčík, Vašek 57

Pala, Karel 21
Pomikálek, Jan 109

Rambousek, Adam 3
Řehůřek, Radim 89
Rychlý, Pavel 21, 65

Šmerk, Pavel 21, 77
Sojka, Petr 89



Book orders should be addressed to:

Pavel Mareček c/o FI MU
Botanická 68a
CZ-602 00 Brno
Phone: ++420 549 498 735
Email: mareek�kup.to

RASLAN 2007
Recent Advances in Slavonic Natural Language

Processing
First Workshop on Recent Advances in Slavonic

Natural Language Processing, RASLAN 2007
Karlova Studánka, Czech Republic, December 14–16,

2007
Proceedings

P. Sojka, A. Horák (Eds.)

Published by Masaryk University, Brno in 2007

Cover design: Petr Sojka

Typesetting: Petr Sojka

Data conversion: Adam Rambousek

Printing: http://librix.eu
First edition, 2007

55-987B-2007 02/58 2/INF

ISBN 978-80-210-4471-5

http://www.fi.muni.cz/usr/sojka
http://librix.eu

	I Morphological and Syntactic Parsing
	DEB Platform Deployment -- Current Applications
	Parsing System with Contextual Constraints
	Morphological Analysis of Law Texts

	II Semantic Analysis
	The Learning and Question Answering Modes in the Dolphin System for the Transparent Intensional Logic
	Functional Programming Based on Transparent Intensional Logic
	Semantic Pre-processing of Anaphoric References
	Enhancing Anaphora Resolution for Czech

	III Text Processing Tools
	Manatee/Bonito -- A Modular Corpus Manager
	Corpus Query System Bonito -- Recent Development
	Morphemic Analysis: A Dictionary Lookup Instead of Real Analysis

	IV Lexical Semantics
	Classification of Multilingual Mathematical Papers in DML-CZ
	The Relations between Semantic Roles and Semantic Classes in VerbaLex
	Keyness in Shakespeare's Plays
	MetaTrans Multilingual Meta-Translator


