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Abstract. We present a modular architecture for processing informal
mathematical language as found in textbooks and mathematical publica-
tions. We point at its properties relevant in addressing three aspects of
informal mathematical discourse: (i) the interleaved symbolic and natu-
ral language, (ii) the linguistic, domain, and notational context, and (iii)
the imprecision of the informal language. The objective in the modular
approach is to enable parameterisation of the system with respect to the
natural language of the text and the mathematical domain of discourse.
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1 Introduction

Informal mathematical discourse in textbooks and mathematical publications
is partly written in natural language and partly in a symbolic notation — even
within a single utterance. Be it information retrieval or text mining mathematical
documents, flexible human-oriented mathematical user interfaces, or automated
verification of informal proofs crucially rely on automated analysis of the
informal language.

In [8,9,2] we presented methods of, respectively: parsing, lexical analysis,
and domain-specific interpretation of informal mathematical proofs, and
introduced linguistic resources necessary for processing. In this paper, we
present a modular architecture of a system for processing mathematical
language based on those resources and emphasise three core aspects of the
informal mathematical discourse it addresses: the interleaved symbolic and
natural language, the linguistic, domain, and notational context, and the
imprecision of the informal language. The objective in the modular approach is
to enable parameterisation of the system with respect to the natural language
of the text in question, the mathematical domain of the discourse, and the
mathematical notation. We first briefly discuss the above-mentioned aspects of
the mathematical language based on example utterances, then we present our
processing architecture, and finally outline the related work on mathematical
discourse and our further work.
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2 Language Phenomena

The following statements from naive set theory in English and German illustrate
three core re-curring language phenomena; A and B are sets:1

(1) If x ∈ B then x /∈ A.
Wenn x ∈ B dann x /∈ A

(2) B contains no x ∈ A.
B enthaelt kein x ∈ A

(3) A contains no elements that are also in B.
A enthaelt keinesfalls Elemente, die auch in B sind.

(4) A and B have no common elements.
A hat keine Elemente mit B gemeinsam.

Symbolic and Natural Language. The two language “modes” can be smoothly
interleaved and the same content can be expressed using a variety of syntactic
constructions, more and less verbose. Symbolic expressions can occur as clausal,
(1), or noun phrase, (2)–(4), constituents depending on whether they are
formulas or terms.2 (2) shows how tightly the two modes can be interleaved:
under the intended reading, the formula x ∈ A has two constituents (“x”, a
noun constituent and “∈ A”, a restrictive relative clause with the meaning
“which is an element of A”), the scope of the negation word (here in the function
of a a determiner) is over a part of the formula following it (“x” on the left-hand
side). Tight interleaving is a cross-linguistic phenomenon, shown here only in
English and German. A parsing component of any processing architecture must
be capable of systematic analysis of the various degrees of verbalisation and
the interactions between the natural and symbolic languages.

Linguistic and Domain Context, and Notation. The linguistic context is
determined by the national language in which the text is written (e.g. English,
German) with its lexis and grammar. The lexicon includes general and
specialised (technical) vocabulary. Certain general words have technical
meaning in mathematics (the word “group” for example) and should be
part of the terminological dictionary. A number of technical terms may be
compounds or multi-word proper names (e.g. names of theorems). Certain
multi-word constructs have fixed meaning (e.g. “if and only if,” “without loss
of generality”).

The domain context is specified globally by the mathematical domain of
the discourse (e.g. naive set theory) and locally by the given text segment
(e.g. a proof or its meaningful part: a case in a case-split, a step in an inductive

1 The presentation of language phenomena is limited here for space reasons. Further
discussion can be found in the mentioned publications. Examples therein are from
tutorial dialogues, however, the phenomena are also relevant in processing textbooks.

2 This is, of course, an over-generalisation: formula mentions occur in the function of
nouns/noun phrases in formal logic texts, for instance, on proof theory. “P ⊃ Q is a
formula” is a typical example from a paragraph on the syntax of propositional logic.
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proof). The global domain context determines the scope of the terminological
dictionary, whereas the local domain context determines the interpretation of
the introduced entities (e.g. their types; A and B above are sets — they could
be sentence parameters in another context) and the scope of reference (e.g. for
anaphor resolution).

The notational convention determines the set of symbols used and the way
symbolic expressions are to be “read” (i.e. parsed) and interpreted, as well
as syntactic constructions and referring expressions; when pre- or post-fix
notation is used, constructs such as (2) and referring expressions such as “the
left-/right-hand side” (of a formula) are not likely to occur.

Imprecision. While mathematics is generally considered as the precise science
par excellence, its language can be remarkably imprecise. This is for the most
part due to the natural language part which tends to introduce ambiguity
and imprecision. (2) and (3) exemplify just one type of lexical ambiguity
introduced by the word “contain” which may be interpreted in the sense
of membership or subset (lexical ambiguity at the domain level). Common
referring expressions such as “the left side” or “the smaller set” are also
imprecise; the former typically refers to the object denoted by the term to
the left of some formula’s main operator, rather than the area with respect to
its geometric center, the latter typically denotes the set of lower cardinality,
rather than a set of a smaller physical size. One of the sources of these types
of imprecision are the mental models which we employ in thinking about
mathematical concepts, e.g. conceptual metaphors. These, in turn, can manifest
themselves in the language. Because mental models are an inherent part of
mathematical thinking [6], imprecise language is only to be expected in informal
mathematical discourse and hence must be addressed in a mathematical
discourse processing system. In particular, the example utterances above (1–4)
should obtain the same resulting interpretation.

3 The Architecture

In this section we outline the architecture of our discourse processing system
which can analyse mathematical utterances including the ones exemplified in
Section 2. The system is built on a pipe-line architecture which consists of three
larger sub-parts: pre-processing, parsing, and sentence level and discourse level
interpretation (see Figure 1) and is parameterised with respect to the natural
language of the text, the mathematical domain, and the mathematical notation
convention. The input to the system is raw ascii text with mathematical symbols
marked by their unicodes or in LATEX(-like) format. The components marked
with downward diagonal lines are those whose resources are dependent on
the natural language, upward lines mark dependence on mathematical domain,
and crossing lines on both. The processing proceeds as follows:

At the pre-processing stage the text is segmented into sentences and these
into word(-like) tokens using language and domain specific regular expressions
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Fig. 1. The processing architecture

(e.g. set of relevant mathematical symbols). Multi-word expressions (MWEs)
are identified by regular expressions (currently language and domain specific
lists of MWEs, including wording variants, are read from a file). Likewise,
mathematical expressions (MEs) are identified: the ME tagger takes word-
tokenised text as input and finds ME substrings using regular expressions. This
process is again language and domain specific (for instance, in English, “a” is
ambiguous between an indefinite article and a mathematical symbol). Once
identified, MEs are parsed. Since parsing MEs itself is not the main focus of our
work, we implemented only a simple precedence-based parser which builds
ME trees. An external component, based on for example [4], can be integrated
into the architecture, so long as for every ME it provides its type (formula

or term or part thereof) as well as access functions to retrieve meaningful
sub-components (left/right-hand side, (nested) bracketed sub-expressions, etc.)
The former is used to “normalise” input for parsing (MEs are substituted by
their symbolic types), the latter is used by the anaphor resolution module to
resolve references to parts of mathematical notation.

Next, normalised input is parsed by a Combinatory Categorial Grammar
parser, openccg (openccg.sourceforge.net). The parser’s resources (the
vocabulary and the syntactic categories) are specific to the input’s language
and the mathematical domain. In particular, the grammar defines a number

openccg.sourceforge.net
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of syntactic categories for MEs and their structural parts; for instance, to
account for interaction with preceding context in (2). The parser’s output
is a representation of utterance’s linguistic meaning (based on the Praguian
tectogrammatical dependency level [7]) which needs to be further interpreted.

The interpretation component adds domain specific meaning to the
predicates and the relations in the dependency tree, in a step-wise fashion. First,
a language-specific semantic lexicon is consulted to assign frame semantics-
like roles and concepts (e.g. verb “contain”, with symbolic meaning contain’,
evokes the concept Containment with the dependents in the roles Container
and Contents). Next, the concepts are interpreted within the mathematical
domain through a linguistically motivated however domain-specific ontology
(e.g. Containment, in the context of set theory, can be interpreted as a (proper)
subset or membership).3

The output of the three processing steps is a semantic dependency tree
“annotated” with more specific semantic information at the level of 1) concepts
(still domain-independent) and 2) domain-specific interpretations (possibly
ambiguous). Discourse referents at the tree nodes can be further processed by
an anaphor resolution component. The output represents only the linguistically
realised content; the language processing system is not in a position to
reason about the logical validity of the proof steps which the utterances
express. However, the tree can be transformed into a representation for further
processing, for instance, by an automated theorem prover.

4 Related Work and Outlook

The idea of automating interpretation of mathematical discourse is not new.
Baur [1] and Zinn [11] present DRT-based approaches [5] in integrated
architectures. Their systems process example sentences (Zinn’s system can
process two proofs; nine sentences) in English after the text has been manually
segmented and mathematical expressions manually marked, and they do not
address imprecise language. Marachna [3] has a modular architecture similar
to ours, however, it does not handle interleaved natural and symbolic language
in a systematic way and does not address imprecision either. Kamareddine
et al. [4] present a system which requires that the mathematical input text be
manually annotated before any processing can take place, however, once the
text is annotated, a number of transformations of the original text automate the
analysis, upon which the content can be automatically verified. Our approach
can be thought of as being complementary to this, in that [4] address informal
mathematical expressions in a principled way, whereas their treatment of
natural language phenomena is rather ad hoc by comparison with ours.

Our current implementation of the pre-processing, parsing, lexical semantic
and interpretation modules is informed by and tested on syntactically well-formed

3 More details on parsing can be found in [8], on lexical semantic analysis in [9] and on
interpretation in [2].
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utterances from German corpora of dialogues on tutoring proofs,4 however, we
believe that it lends itself also to processing textbook proofs. We are presently
extending grammar resources to evaluate its performance on proofs from
LATEX source of Landau’s Grundlagen.5 In the future we are also planning
to test the system on English OCR’ed text. Further, we are implementing an
anaphor resolution algorithm for mathematical discourse informed by a corpus
analysis [10].
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