
The Sources of Randomness in Mobile Devices

Jan Krhovják, Petr Švenda, Václav Matyáš
Masaryk University, Brno, Czech Republic
{xkrhovj, xsvenda, matyas}@fi.muni.cz

Abstract

The goal of this paper is to examine randomness sources available in current mobile phones or
other mobile devices. We identify potential sources of randomness and perform an analysis focused
on the camera and the microphone input noise as promising sources of randomness. We also perform
statistical tests and analyse quality of these sources of randomness including estimation of entropy
in the generated data.

Keywords: Entropy estimation, mobile device, smartphone, source of randomness.

1 Introduction

Our paper deals with issues related to the generation of truly random data (i.e., bits, numbers, and
sequences) in mobile computing environments. We describe the expected application requirements in
terms of amount and speed of random data generation in such environments, and then we focus on
available sources of randomness in mobile devices. The main goal of this work is identification of such
sources, evaluation of their acquisition speed, statistical testing of their quality, and estimation of the
amount of available entropy in a given time period. Some issues described in this paper were discussed
at the conceptual level in [5].

Our work covers the possibilities of random data generation from both external and internal envi-
ronmental characteristics. The examined external sources are audio and video streams that can be
captured by a mobile device. With respect to the internal sources, we investigated the information
accessible through the application programming interfaces (API) of mobile devices like the actual
battery charge level and other accessible system statistics.

Identified sources of randomness are tested on the Nokia N73 with the Symbian OS and E-Ten X500
and M700 with Windows the Mobile OS.

2 Basics of random number generation

Overwhelming majority of commonly used cryptosystems is designed in accordance with the Kerck-
hoffs’ principle – i.e., the security of cryptosystem must be based on secrecy of the cryptographic
keys and not on the a cryptosystem itself. This allows anybody to perform an independent analysis
of particular cryptosystems (ideally also alongside with the verification of their source codes) and on
the contrary, security can essentially be reduced reduced to the secrecy of private/secret keys. The
quality and unpredictability of random data (i.e., bits, numbers, and sequences) that are the basis for
cryptographic keys are therefore critical. Random data are in addition to generation of cryptographic
keys also used for other cryptographic operations – e.g., as initialization vectors, various pad values

1



(padding), random challenges (nonces) in cryptographic protocols, in the process of digital signing
(per-message secrets), and for masking data to prevent dangerous side-channel attacks.

In general, two kinds of generators can be distinguished – the true random number generator and the
pseudorandom number generator. The former is typically based on nondeterministic physical phenom-
ena (e.g., radioactive decay or thermal noise), while the latter is only a deterministic algorithm where
all randomness of the output is fully dependent on the randomness of the input (often called seed).
Getting truly random data in the deterministic environment of computer systems is extremely hard
and slow (i.e., only a small amount of good quality random data can be generated in a reasonable
time), therefore we often restrict ourselves to the use of deterministically generated pseudorandom
data. Generating pseudorandom data is typically (in most environments) faster and truly random
data are used in this process only as an initial input. Since the whole generating process is deter-
ministic, the randomness of the output is fully dependent on the randomness of the input. Many
classes of pseudorandom number generators (designed, e.g., for simulation purposes or randomized al-
gorithms) exist, but the goal of a pseudorandom number generator in cryptography is the production
of pseudorandom data that are computationally indistinguishable from truly random data. The goal
of cryptanalysis is to prove the converse.

Randomness is a probabilistic property, therefore verification of the statistical quality of (pseudo)random
data by detecting deviations from true randomness (known a priori) is based on statistical testing.
These tests may be useful as the first step in determining whether or not a generator is suitable for
a particular cryptographic application. However, no set of statistical tests can absolutely certainly
point out a generator as appropriate for usage in a particular application, i.e., statistical testing cannot
serve as a substitute for cryptanalysis. In addition, the results of statistical testing must be interpreted
with some care and caution to avoid wrong conclusions about a specific generator. Most commonly
used statistical test suites are DIEHARD [4] and NIST [1], which test whether the presented sequence
statistically appears in the same way as the truly random sequence would.

2.1 Specifics of the mobile devices

Mobile devices are different from general purpose computers and this also influences the process
of generating of (pseudo)random data. The possibility to change environment of mobile devices is
definitely a great advantage given by the mobility nature of the device. The existence of several
embedded input devices as microphone, radio receiver, video camera, or touchable display is another
advantage. On the contrary, the mobility and the small physical size of device brings also a higher
possibility of a theft or (temporary) lost with potential compromise of generator. The important
assumption of high-quality secure generator design is thus the impossibility of deducing the inner
state of the generator and fast recovering of its entropy level (after time-limited compromise). Other
disadvantages can be low performance (CPU frequency is in the best smartphones roughly 200MHz)
and restricted random access memory size (in the order of tens of MB).

Application requirements are both static (e.g., cryptographic keys) and dynamic (e.g., initialization
vectors). The latter case is restricted (and bounded) by the type used transmission technology (EDGE,
Bluetooth, WiFi, WiMAX, etc.). However, exact requirements here are dependent also on the applica-
tion in use that can be categorised as an interactive (e.g., transfer of voice or video), semi-interactive
(e.g., web-based services), and non-interactive (e.g., one-time file transfer or sending e-mail). The
data can be thus encrypted and transferred (according to these categories) immediately after creat-
ing/filling outgoing packet (to prevent unwanted delays), or after reaching other pre-specified sizes.
A new initialization vector (and often also padding) is required for each encryption. Splitting data to
several independent pieces thus impllies higher requirements on initialization vectors (and padding).
The consequence is higher requirements on (pseudo)random data.

2



Well-designed and robust generator must always have a sufficient amount of entropy – shortly after
turning the device on, after letting the device out of sight, and after an intensive generation of random
data. This non-trivial task may require employment of the energetically costly sources of randomness
(e.g., video camera) and/or the user contribution. Utilization of these sources may be required to
assure higher security of generated data – e.g., for mobile banking purposes.

Important characteristics of all sources are: availability in different environments, time variability with
noise presence and unpredictability and uninfluenceability for the attacker. More detailed discussion
of possible sources of randomness and attacker models can be found in [5].

3 Analysis of selected sources of randomness

This part of the paper deals with issues related to the practical experiments performed on the smart-
phone Nokia N73. The goal of these experiments was to assess the quality of selected randomness
sources in one particular mobile device and to estimate the amount of randomness (entropy) in these
sources. Due to the API restrictions, we were forced to drop sources like the battery level, signal
strength or GPS position as measurements over these sources do not provide an output with a suffi-
cient precision (e.g., battery and signal values are available in the form of an integer between 0 and 10)
or frequency (e.g., external GPS provides only one measurement per second with fluctuations typically
only in two least significant bits).

3.1 Theoretical entropy estimation

The basic measure for randomness is in information theory often called uncertainty or entropy and is
typically defined [6] as:

H1(X) = −
∑

x∈X

PX(x) log PX(x)

where the sample x is drawn from random distribution X with probability PX(x). The logarithm base
typically correspondents to the unit of measured information – in information theory base 2 is often
used and that implies that the unit will be bits. This entropy measure is often referred as Shannon
entropy or alternatively information entropy.

Unfortunately, Shannon entropy may be inappropriate for our purposes, since it is in fact only av-
erage case entropy. We cannot make any assumptions about distributions formed by our sources of
randomness. The problem is that the attacker can simply force the source of randomness to produce
the most probable values that contain minimum entropy. To cope with this situation the min-entropy
measuring the worst case entropy is often used (especially in the theory of randomness extractors). It
is defined as:

H∞(X) = minx∈X(− log PX(x)) = − log(maxx∈XPX(x))

where the sample x is drawn from random distribution X with probability PX(x). It can be easily
seen that min-entropy is always less or equal then Shannon entropy (the tight example is for uniform
distribution). These two entropy measures are special cases of generalised so-called Rényi entropy [2].

3.2 Microphone input

An embedded or hands-free microphone is used as a voice input device in mobile devices. Almost all
commonly used microphones are typically based on an oscillating membrane and some mechanisms that
transform the oscillation to the voltage representing particular signal elements. Supported sampling
frequency, modulation method, and number of bits used for representing the value of one sample

3



Figure 1: Frequency spectrum
of the recorded music sample
(embedded microphone).

Figure 2: Frequency spectrum
of the recorded noise sample
(embedded microphone).

Figure 3: Frequency spectrum
of the recorded noise sample
(hands-free microphone).

are the most important parameters of such devices. The Nokia N73 smartphone uses 16-bit pulse
coded modulation (a signed PCM) at the frequency 8000 Hz for sampling a sound wave – the data
throughput is thus 16000 B/s. We restrict ourselves only to the small number of 204800 samples that
corresponds to 25.6 seconds of sound due to memory restrictions of the inspected device.

Note that each microphone may have slightly different characteristic (e.g., due to different solidity of
membrane or other manufacturing differences). Our goal is to estimate the amount of entropy in the
input sound signal captured by the microphone. We focus mainly on measuring min-entropy of the
noise originated in the microphone.

We used the fast Fourier transformation (FFT) algorithm to compute a discrete Fourier transform
(DFT) for analyzing the basic frequency components present in the noise. We performed this analysis
of the embedded microphone on the sound sample of both recorded music (Figure 1) and noise (Figure
2). Moreover, we analysed also the hands-free microphone on the sound sample of noise (Figure 3).
We are interested only in the spectrum of frequencies between 0 and 4000 Hz due to the Nyquist
theorem (as we are sampling at 8000 Hz). Ideal noise is expected to have all frequencies uniformly
present. The results shows that there are significant differences in the observed spectrums of the noise.
The hands-free microphone appears to be more sensitive than the embedded one.

Finally, we analysed histograms of all these recordings. They have approximately normal distribution
and the actual minimum/maximum values are –32764/32767, –14220/8856, and –347/574, respectively.
However, especially in the case of noise, these numbers are strongly influenced by the sharp peak on the
beginning of each recording trace – caused probably by the device turn on. More accurate limit values
–12/13 and –9/8 are obtained when this peak is removed. Hence, we can make a very preliminary
estimation that at most log28 = 3 bits of entropy can be presented in each sampled value. Of course,
this is only the upper bound of the maximum possible entropy.

Focusing only on the more sensitive hands-free microphone, the estimations are 2.9 bits of entropy
according to the Shannon formula and 0.5 bits of entropy according to the min-entropy formula. These
estimations (and especially probabilities used in those formulas) were also calculated from histograms
with the assumption of full independency within the samples. However, correlation tests (described
below in camera section) found correlation in the recorded samples of noise. This correlation decreases
as we took only every second/third value from our samples. Sequence created from every fourth
value was without statistically significant correlations. We therefore recommended to lower estimated
entropy at least 5× with respect to amount calculated for each sample value.

3.3 Camera input

Digital optical input devices (e.g., cameras, microscopes, or scanners) can be based on several different
silicon sensors (e.g., CCD, CMOS, EMCCD, and ICCD) [7]. All of them use an array of semiconductor

4



photo-sensors to transfer an accumulated electric charge to a voltage. Digital cameras based on CCD
(e.g., Sony-Ericsson S700i) or CMOS (e.g., Nokia N* series) sensors (for simplicity will be denoted
as optical sensors) are commonly used in current computer systems and mobile phones. As we will
mention in next paragraphs – these optical sensors are influenced by thermal noise, they have problems
with vignetting, blooming, sensitivity to some colours, etc. Some of these problems are solved by the
manufactures by purely software means (that are often kept secret). This makes the entropy estimation
harder.

3.3.1 Camera view finding noise

A significant part of current mobile devices (cell phones, smart phones and PDAs) is equipped with
a built-in camera that can be used for entropy gathering. For camera input we suggest that entropy
should be extracted from an optical sensor noise during “view finding” rather than from a high-
resolution picture of the surrounding environment. The data output from view finding is more suitable
source than a high-resolution snapshot output for two main reasons: 1) view finding is not post-
processed by software noise reduction and compression, 2) data acquisition is much faster – commonly
between 10–15 frames per second – and has more suitable size for the additional manipulation: a
single frame with 180×240 pixels can be fully stored and processed in the RAM memory (∼130kB),
which is unlikely for a high-resolution picture.

Lower-quality optical sensors (often used in mobile devices) have generally higher noise presence than
sensors in high-end cameras. The noise is typically unwanted for almost all applications – with
the exception of the random number generation process. The optical sensor white noise should be
always present, but its actual level may depend on physical conditions – namely the temperature. We
performed practical experiments with the Nokia N73 camera within temperatures 5 � and 45 � and
concluded that an inside decrease of the noise towards lower temperature can be detected. However,
this noise is still significantly present to provide enough entropy.

The input source is available even when the camera cover is closed or lens are covered with a finger.
This is both convenient and useful – it serves as an important defence against an active attacker that
illuminates the sensor. An overexposure of the sensor can be caused, for example, by an intense light,
like the halogen lamp (see Figure 4). All colour components within the exposed area are boosted up
to the maximum value (255) and thus all possible entropy obtainable from (not only white) noise is
effectively removed. A similar effect can be also caused by direct sunlight. To successfully mount such
attack, attacker must be able to overexpose almost the whole area of the camera chip. Degradation
during random data generation is prevented if the lens are equipped with a closable cover or are
shielded by the finger. This assumption is reasonable when the device is controlled by the user and an
attacker can only manipulate surrounding environment. On all accounts, the random data gathering
application should test the input stream for overexposed values and lower the estimated amount of
gathered entropy in real-time.

3.3.2 Camera input entropy estimation

In this section, we would like to estimate the amount of entropy extractable from a camera input. We
proceed as follows:

1. We developed a custom application for storing large amount of frames produced by a mobile
device camera into a removable memory card. Systematic defects of the input due to post-
processing were examined using visualization and statistical tools.

2. Noise dependency on the surrounding temperature was experimentally measured and evaluated.

5



Figure 4: A visualized overexposure caused by the halogen lamp (blue colour component).

3. The correlation between neighbour pixels, pixels in the same row and column was computed,
as well as autocorrelation and fast Fourier transformation of values from single pixel in time
(subsequent frames).

4. The distribution of values for separate colour components was computed for the temperature
with the least noise within device operation value (5 �) and entropy was estimated based on
Shannon entropy and min-entropy formulas.

5. A simple technique for entropy extraction (with least possible post-processing) was implemented
and we tested the resulting binary stream tested with the suite of NIST randomness tests to
evaluate its statistical properties.

6. We performed, practical tests of maximal data throughput of SHA-1 hash function on mobile
devices with Symbian OS and JavaME. Preliminary entropy extraction function using SHA-1
was implemented.

The systematic defects introduced into camera frames due to post-processing and optical sensor tech-
nology (like row-dependent readouts) are clearly visible from Figure 5 when the average camera input
with a closed lense cover is visualized. There are hot pixels around borders, significant rips in the rows,
centered circle rips and significantly different intensity towards centre of the frame. Especially, blue
colour component shows visible row-dependent rips (caused by the readout technology) and red colour
component has significantly increased value towards chip borders. This effect is probably caused by
camera post-processing (out of our control) to balance light drop due to different lens mass towards
borders. Such effect may lead to a suspicion that some pixels are systematically correlated. However,
when values for each single pixel are normalized by subtracting mean of the pixel in a longer time
period, most systematic effects vanish. The colour histograms of normalized input taken over 2000 sub-
sequent frames are depicted on Figure 6 (histograms are centred to 0). All colours exhibits Gauss-like
distribution, blue colour providing more entropy (in Shannon sense) than other colour components.
The presented frames were taken in a temperature around 5 �.

A well documented property of the optical sensors is dependency of noise on the temperature – the
noise component should be reduced by lower temperatures (e.g., under-cooling of chip by liquid nitro-
gen). We tested the noise presence with a lens plastic cover in temperatures of 5 � and 45 � (more
precise measurement of optical sensor is not possible without depackaging). The detected differences
between temperatures were detectable, but negligible1 and we can expect slightly decreased (but still
comparable) amount of entropy for the lower temperatures. We used noise obtained from measure-
ments in 5 � for entropy estimation. In the common camera devices the raw data from the optical

1Difference in values probability only in order of 1/1000.

6



Figure 5: The average value of the blue colour com-
ponent over the whole camera’s frame with closed
cover.

Figure 6: The intensity histogram for each
colour component after remove of the pixel post-
processing effects by normalization.

sensor are not directly accessible to the user, but they first go through a few correction steps, which
are usually incorporated into the firmware of the optical sensor. Such corrections take care of some
of different systematic effects, which are partially inherent to the optical sensor working principle and
partially occur by fabrication tolerances of the manufacturing process.

For an overall entropy estimation, we have to know the number of independent (uncorrelated) pixels in
one frame and whether values of single pixel are independent between two or more subsequent frames
(or which frames has to be discarded to obtain uncorrelated values (e.g., pixel value from every 3rd
frame) and finally estimate the expected entropy provided by single independent pixel.

A cross-correlation function (Matlab corrcoef ) was used to verify whether neighbouring pixels and
pixels in the same row and column are independent. No statistically significant correlation was found
on significance level set to 0.012. We generated streams of a binary data from red, green and blue
colour component and tested those streams with the NIST battery for a further verification of results
obtained from cross-correlation. See section 3.3.3 for details.

The camera view finding mode on Nokia N73 provides us with 12 frames per second and thus 12
different values per single pixel (10–15 frames for other cameras). The key question for entropy
estimation is the independency of consequent values of that pixel. The auto-correlation tests were
performed with the vector containing the values taken in time from a single pixel. Statistically
significant deviations from the characteristics of white noise (where significant correlation value is
present only for lag = 0 and can be omitted otherwise) were not detected. This implies that the
consequent frames should be independent. All view finding pixels (180×240) were separately tested
within a sequence of 2100 frames. Fast Fourier transformation was applied to the same vector (values
of a single pixel in time) to detect dominant frequencies. FFT provided almost uniform output (no
dominant frequency) for all tested pixels and thus confirmed independence of values between frames
from an auto-correlation test. Note that as view finding provides 12 frames per second, only frequencies
between 0 to 6 Hz can be tested by FFT due to the Nyquest theorem.

The final step is to compute the amount of entropy carried by the noise in a single (independent)
pixel. As can be seen from Figure 6, histograms of all colour components follow the common Gauss

2This result means that the number of tested vectors with a correlation coefficient lower than 0.01 (strong correlation)
is not significantly higher than the number of correlated ones between truly random vectors. It means that only around
10 vectors from 1000 are expected to be correlated for this significancy level.

7



Single pixel Single pixel
(Shannon) (Minimal)

Red colour (5 �) 3.9203 3.1979
Green colour (5 �) 4.0373 3.3277
Blue colour (5 �) 4.7608 3.9276

Table 1: An entropy estimation according to Shannon and min-entropy formulas for a
single independent pixel. Note, that extrapolation to whole input (180×240 pixels/frame,
12 frames/second) is valid only if the pixels and frames are independent (see 3.3.2 for
discussion and performed tests).

distribution without significant deviations. Overall entropy (see Table 1 for EntropyPerPixel) of
camera view finding source can be computed using a simple formula [bits/s]:

E = IndependentP ixelsPerFrame ∗ IndependentFramesPerSecond ∗EntropyPerP ixel

3.3.3 Statistical testing with the NIST battery

As described in the previous section, we also wanted to verify the statistical properties of binary stream
extractable from view finding input. We extensively tested many sequences extracted from the input
by various different techniques (incorporating only particular colours, pixels, and/or utilising simple
digital post-processing). Our goal was to find the easiest way to extract binary sequences that will
pass common statistical tests. This should help us to assess how much entropy can be present in input
data that we will use for seeding a pseudorandom number generator based on classical cryptographic
functions. Notice that our techniques are far away from theory of classical secure entropy extractors
(a stimulating discussion can be found in [3]) that are constructed by a considerably different way.

Here we should briefly refresh how the NIST test suite works. The input sequence is first divided to
some number of subsequences and to these subsequences are applied several statistical tests – each
yielding so called p-value. There are two ways of interpreting the results of tests. The first method
evaluates the proportion of successfully passed subsequences (successful pass means that the p-value is
less then selected significance level) and the second evaluates uniformity of p-values (using chi-square
goodness-of-fit test).

Tested extraction methods:

1. Raw values only – we begin with testing the raw input for concrete nine pixels and its basic
colours (in both cases separately) and all used NIST tests always failed. The reason is that there
is an obvious non-uniformity of values in particular colours and thus also in the whole pixel (that
consists of three basic colours saved one after another). The statistical distribution of its values
is depicted on the Figure 6.

2. Least significant colour bit – we then extract only the least significant bit from each pixel and
colour (one bit per frame is extracted from the single pixel). All binary strings (for each pixel
and its colour) constructed this way also failed the tests. All tested sequences constructed
from least significant bits (LSB) failed both the proportion of successfully passed subsequences
and the uniformity of p-values. However, for each pixel/colour there was a part (40–60%) of
subsequences that passed the runs, frequency and cumulative-sums test. This proportion was
still too small to pass the whole test, but these tested sequences have slightly better statistical
properties.

3. Colour value combination using XOR – we XORed all three colours together but it was no
surprise that NIST tests also failed for all nine pixels. We also tried to construct the sequence

8



from bits obtained by XORing all eight bits of each value of colour. The results were similar
as in the case of using LSB. We conclude that these elementary techniques can not suppress
all statistical defects introduced in sequences constructed from one pixel and its colours and
utilising of more pixels is thus required.

4. Flip-flop bit extraction – simple but more robust technique that extracts one bit per one pixel
colour component. Extracted bit is 0 or 1 when actual colour value is odd or even. Concrete
mapping between the colour and bit value is reversed after each processed pixel.

Let us describe the flip-flop extraction technique in more details. Note that the purpose of te flip-flop
extraction is not a new extraction technique for real usage, but to design simplest possible technique
used only for our statistical testing. This technique then extracts some entropy from the input, but
does not propagate it through the sequence (confusion in the cryptographic sense) like, e.g., SHA-1
does. Flip-flop is used only during entropy estimation, not in an implementation of a real generator
(where, e.g., SHA-1 may be used). For a given frame, all pixels are processed row by row:

1. For every even pixel do: if pixel value mod 2 = 0, then set output bit b to 0 otherwise to 1.

2. For every odd pixel do: if pixel value mod 2 = 0, then set output bit b to 1 otherwise to 0.

3. Bit b is appended at the end of the bit stream.

Set of the possible values from the range 0–255 is divided into two groups. The first group contains
only even values and the second group contains only odd values. Both groups should have almost
equal sum of probabilities. Values from the first group will result in bit value 0, second group in value
1. Unfortunately, separation into two groups with the same probability is not possible. As groups will
not have exactly the same probability, fixed bit assignment rule may result in a significant difference
between number of ones and zeroes. We chose to invert this bit value for half of the pixels thus
balancing more probable value 0 for one pixel by a higher probability of 1 for the next one and vice
versa.

The independent binary streams were constructed for each colour component using described ex-
traction technique with all pixels within the frame (2100 frames were used, gathered in a burst of 7
consequent frames followed by approximately a 5 second delay needed to save data to removable card).
All streams were tested with the NIST battery (100 sequences per 1 Mb) at the significance level 0.01.
One sequence failed for the red colour, all passed for the green colour and two sequences failed for the
blue colour (one template in non-overlapping template tests). We are aware of the possible impact of
relatively short length of sequences, but we were restricted by the camera memory, acquisition speed
(especially time needed to store the captured frame on a removable card) and 1 bit per pixel extraction
technique.

4 Results for PDA phones E-Ten X500 and M700

In this section we summarize our results from additional experiments with PDA phones Glofish E-Ten
X500 and Glofish E-Ten M700.

4.1 E-Ten specifics and capturing of picture

E-Ten PDA phones X500/M700 are based on the Windows Mobile 5 OS (WM5) that can be easily
upgraded also to the Windows Mobile 6 OS (WM6). These operating systems support a special native
Camera API for a direct camera control. Unfortunately, this low-level API is in turn not supported

9



−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Color value

C
ol

or
 o

cc
ur

en
ce

 p
ro

ba
bi

lit
y

Color histogram, pixel mean value substracted for every pixel

 

 
red color
green color
blue color

Figure 7: E-Ten X500 – Y-axis values are in the
magnitude of 107.

−30 −20 −10 0 10 20 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Color value

C
ol

or
 o

cc
ur

en
ce

 p
ro

ba
bi

lit
y

Color histogram, pixel mean value substracted for every pixel

 

 
red color
green color
blue color

Figure 8: E-Ten M700 – Y-axis values are in the
magnitude of 106.

by the tested E-Ten devices (regardless of the OS, tested for both WM5 and WM6) and so we used a
special video driver capable of capturing and sending the actual screen image over the USB port to a
PC. This approach has its advantage – the data can be retrieved and stored faster than for the N73
phone and the total amount of the captured data is not limited by the phone flash memory. However,
there are also a drawbacks – transferred pictures have only a limited number of possible colour values
(red and blue colour components are limited to 5 bits per pixel; green colour component is limited to
6 bits per pixel – while the original resolution was 8 bits per pixel) and can only be retrieved at the
rate of one picture per second.

4.2 Camera input

The first significant difference to N73 is that the camera of E-Ten devices is automatically turned
off when the lens are covered. This would imply that a direct capture of noise on a perfectly black
background is not possible (see the following section for clarification). E-Ten X500 and E-Ten M700
also have different camera chips with visually different noise patterns. This was confirmed by the
statistical analysis of the intensity histograms for each colour component after removing the pixel
post-processing effects – see figures 7 and 8 with histograms of distances from the mean value. The
significant peak at zero axis (mean value) for all colours means that actual colour value of the pixel
often tends to be equal to the mean value. This can be caused by a limited precision of the captured
images.

4.2.1 Camera input entropy estimation

The noise produced by a camera chip is again dependent on the temperature, similarly as for the N73
device. At 45 � the noise from the chip is so significant that prevents a software switch off even when
the camera lens are completely covered. Unfortunately, the threshold temperature for this behavior is
around 35 � and thus not reachable during the device standard operating temperatures. However, it
allows us to obtain the noise from a black-only input, similarly to the scenario with the closed cover
in the case of N73.

Distributions of the noise (presented above) are taken from the images captured in an 8 � environment
as this is the scenario with lowest noise presence within common usage operational conditions.

10



Single pixel Single pixel
(Shannon) (Minimal)

X500 Red colour (8 �) 3.0851 1.2786
X500 Green colour (8 �) 3.1220 2.1894
X500 Blue colour (8 �) 2.9927 1.0675
M700 Red colour (8 �) 4.4626 2.9875
M700 Green colour (8 �) 4.2577 2.9284
M700 Blue colour (8 �) 5.3759 3.6527

Table 2: Entropy estimation according to Shannon and min-entropy formulas.

Both cameras of our E-Ten devices probably utilize an automatic ISO sensitivity correction – with
the same temperature, more noise can be obtained if the light conditions are worsened (decrease of
ambient light or an object put close to the lens). As the ISO sensitivity is automatically increased
by the camera controller, the noise generated by the chip is amplified and more noise is present in
captured images. This hypothesis based on visual observations was tested experimentally. The camera
chip was heated up to 50 � at which the camera input is not turned off by the postprocessing and
series of the images were taken. The temperature was then lowered to 40 � with the lens still covered
and next series of images were taken. At the hardware level we see (as expected) that the noise
level decreases with a decreasing temperature. But the resulting noise present in the captured images
exhibits an opposite trend – there is more noise for the lower value. This seemingly opposite result is
caused by the automatic ISO correction. As the real noise level produced by the chip decreases with
the decreasing temperature, camera controller (out of our control) detects a smaller range of colour
values at the actual ISO level and automatically increases the level. Increased ISO level results in an
amplification of the noise generated by the chip and thus more noise is propagated into the captured
picture.

Estimates of entropy present in samples from cameras of E-Ten X500 and M700 are summarized in
the Table 2.

4.3 Microphone input

Embedded microphones in the E-Ten devices are more sensitive and thus also capable to record
significantly more noise than the microphones used in the Nokia N73. Basic frequency components
present in the noise are depicted bellow.

0 1000 2000 3000 4000
0

0.5

1

1.5

2

2.5
x 10

7

Frequency [Hz]

A
bs

. M
ag

ni
tu

de

Fast Fourier Transform

Figure 9: M700 – recorded mu-
sic (same as for N73).

0 1000 2000 3000 4000
0

1

2

3

4

5

6
x 10

6

Frequency [Hz]

A
bs

. M
ag

ni
tu

de

Fast Fourier Transform

Figure 10: M700 – recorded
noise sample.

0 1000 2000 3000 4000
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

6

Frequency [Hz]

A
bs

. M
ag

ni
tu

de

Fast Fourier Transform

Figure 11: X500 – recorded
noise sample.

The histograms of all these recordings have approximately normal distribution and the actual mini-
mum/maximum values are –32258/32767, –1958/1633, and –806/716, respectively. There are no peaks

11



at the beginning of each recording trace. Hence, we can make a very preliminary estimation that at
most 11 bits of entropy (given by encoding) can be extracted from each sampled value. Of course,
this is (again) only the upper bound of the maximum possible entropy. The precise estimations are
10.124 and 9.365 bits of an entropy according to Shannon formula and 0.016 and 0.023 bits of entropy
according to min-entropy formula for M700 and X500, respectively.

5 Conclusions and future work

We have seen that mobile devices provide us with several randomness sources that can be utilized for
generating truly random numbers. Namely the microphone and camera inputs that are available in
(almost) each mobile phone have a promising potential and should allow for generating data with a
sufficiently large amount of entropy that can be used for cryptographic purposes. A subject of our
next research will be a better examination of these sources with more accurate entropy estimation,
particularly the mask of independent elements from a given source (pixels for a camera, sampled values
from a microphone) to estimate an extractable random bits per second.

References

[1] Federal Information Processing Standards Special Publication 800-22. A statistical test suite
for random and pseudorandom number generators for cryptographic applications, available at:
http://csrc.nist.gov/publications/nistpubs/800-22/sp-800-22-051501.pdf. 2001.

[2] Rényi A. On measures of information and entropy. In Proceedings of the 4th Berkeley Symposium
on Mathematics, Statistics and Probability, pages 547–561, 1960.

[3] Barak B., Shaltiel R., and Tromer E. True random number generators secure in a changing
environment, available at: http://theory.csail.mit.edu/∼tromer/papers/rng.pdf.

[4] Marsaglia G. Diehard statistical tests, available at: http://stat.fsu.edu/pub/diehard/. 1995.

[5] Krhovják J., Švenda P., Matyáš V., and Smoĺık L. The sources of randomness in smartphones
with symbian os. In Proceedings of Security and Protection of Information 2007, Brno, 2007.

[6] C. E. Shannon. A mathematical theory of communication. In The Bell System Technical Journal,
1948.

[7] Andor Technology. Digital camera fundamentals, available at: http://www.andor.com/pdfs/digital
camera fundamentals.pdf.

12


