On Homogeneous Segments

Robert Batisek, Ivan Kopecek, and Antonin Kucera

Faculty of Informatics, Masaryk University
Botanicka 68a, 602 00 Brno
Czech Republic

{xbatusek,kopecek,tony}0fi.muni.cz

Abstract. Properties of homogeneous segment sets are investigated in this paper.
A universal characterization of homogeneous sets is presented in the form of a
polynomial algorithm which decides whether or not a set S is homogeneous with
respect to S™. It is shown that any set of homogeneous segments can be reduced
to the uniquely determined minimal base and a polynomial algorithm solving this
task is presented as well. Further, an efficient algorithm for finding the segment
representation of a word by homogeneous segments is provided.

1 Introduction

Investigating segment set properties is related in particular to the applications in con-
catenative speech synthesis (see e.g. [1, 3, 6, 8, 10]) where we are trying to get optimal
segment databases. The optimality usually involves contradicting requirements to the
segment set; on one hand, we need the segment set to be as small as possible, on the
other hand it should maximally respect coarticulation, which leads mostly to longer
segments and large databases. To master these complex problems, an understanding of
the properties and the structure of segment sets is of considerable value.

Basic taxonomy of the segments is given in [8]. Some other related work can be
found in [2, 3]. In this paper, we investigate homogeneous segments. We show that this
type of segments has particular properties, that are of theoretical interest and can be
exploited in applications.

In the text we use standard terms and notation of the theory of formal languages and
automata. If M is an alphabet (i.e. a finite nonempty set), then M* will denote the free
monoid over the set M, i.e. the set of all strings consisting of the elements of the set
M (including the empty string). card(M) denotes the cardinality of M, i.e. (for finite
sets) the number of elements belonging to the set M.

2 Basic Types of Segments

In this section we briefly recall the definition of homogeneous segments and some other
basic types of segment sets (see [3,8]). Let us first briefly mention the notation and
present basic terminology. Let A be an alphabet and S a finite nonempty subset of
A* not including the empty word. The set S is interpreted as a segment set (segment
database). S* denotes the set of all strings that can be obtained by concatenating the
elements of S.

Further, let C' be a language over the alphabet A, i.e. a nonempty subset of A*. C
will be interpreted as a corpus. Here, we are slightly generalizing the concept presented
in [8], where the corpora are considered to be finite. In what follows, this generalization
appears to be convenient.

In concatenative speech synthesis problems, this abstraction may be interpreted,
for example, by considering A to be the set of phonemes, S to be the set of syllable
segments and C' to be a speech corpus. The following definitions present a basic classi-
fication of speech segments [8] in a slightly generalized form.

Definition 1. A set of segments S = {s1, sa, ..., s, } is C-compatible (compatible with
C), if for any u € C there are s;,5j,...,5, € S such that u = s;5; . .. 5. We denote
S(C) the set of all sets of segments compatible with C.

Definition 2. A C-compatible set S is consistent, if each element of S is a substring of
a string belonging to C.

Definition 3. A C-compatible set S is a base (of C), if removing any element of S
implies that the resulting set is not compatible.

Thus, having in mind just compatibility, the bases are in this sense optimal.

Definition 4. A segment set S is C-homogeneous if each element of C can be obtained
uniquely as concatenation of the segments belonging to the set S.

When we use the term homogenity (as distinct from C'-homogenity), we mean, that
the segment set is C'-homogeneous, but we do not specify the related set C' explicitly.
Many real instances of segments databases in concatenative speech synthesis are homo-
geneous, for example, allophones, diphones, etc. A more complicated situation arises
with segments sets based on syllables or syllables combined with morphemic segments
(see e.g. [5,7,9]), where the homogenity depends on the concrete choice of the segment
database.

Definition 5. A C-compatible set S is strongly homogeneous if no element of S is a
substring of a different element of S.

Definition 6. A compatible set S is strictly C-homogeneous if for any u € S do not
existv € S and w € S such that v # u, w # w and u is a substring of vw.

Definition 7. A compatible set S is C-heterogeneous if it is not C-homogeneous.
Let us recall some elementary properties of the basic classes of segments [8].
Proposition 1.

— Any base is a consistent set.
— If S is strongly C-homogeneous, then it is C-homogeneous.
— If S is strictly C-homogeneous, then it is strongly C-homogeneous.

3 Determining Homogenity and Bases of Homogeneous Sets

In this section we present an algorithm that can effectively decide whether a segment
set is homogeneous. Then we show that for homogeneous segments we can easily de-
termine their base.

Proposition 2. Let S be a C-homogenous segment set and let Cy C C. Then S is C
homogeneous.

From this property it follows that if S is S*-homogeneous then it is C'-homogeneous
for any C' such that S is C'-compatible. This raises a natural question. How to find out
that a segment set is S*-homogeneous? The following procedure represents a polyno-
mial algorithm that decides whether or not a given segment set S is S*-homogeneous.

Input: A segment set S = {s1,...,8n}
Output: YES if S is S*-homogenous, NO otherwise

1: E:=5;

2: repeat

3: Temp = 0;

4: for each v € Suf(S)\ E do

5: if there are s € S and v’ € E such that
6: v=sv ors=uvv

7: then Temp := Temp U {v};

8: E = E U Temp;

9: until Temp =0

10: if there are s, s’ € S such that s = s'v where v € E
11: then return NO;

12: else return YES;

Fig. 1. An algorithm which decides whether or not S is S*-homogenous.

Theorem 1. The problem whether or not a given segment set S is S*-homogeneous is
decidable in polynomial time.

Proof. Let S = {s1,...,s,} be a segment set. An index sequence (for S) is a finite
sequence o = ay, - - - , of natural numbers, where k& > 1 is the length of o (denoted
length(a)), and 1 < «a; < n for every «;. Each such « determines a unique word
Wa = Say Say * - Sa, Over the alphabet A.

The set of all suffixes of segments in S is denoted Suf(S). More precisely,
Suf(S) = {v | 3s € S,v' € A* : s = v'v}. Note that S C Suf(S), and the
size of Suf(S) is O(m?) where m is the total length of all strings in S. We say that
v € Suf (S) is erasable if there are index sequences «, 3 such that vw, = wg.

We claim that S is S*-heterogeneous if and only if there are two different s, s’ € S
such that s = s’v and v is erasable. The ‘=" direction is obvious. For the other direc-
tion, it suffices to realize that if S is S*-heterogeneous, there must be (by definition) two

different index sequences ~, ¢ such that w, = ws. First, realize that we can safely re-
move the longest common prefix of v, § from these sequences; the resulting sequences
7', 6" still have the property w,, = ws. Since 77 # 81, 5,1 # S5, and hence one of
the two segments must be a proper prefix of the other (otherwise it could not be that
w, = ws). Let us assume that, e.g., Syt is a prefix of S5 - That is, Sy1U = Sg for some
non-empty suffix v of ss . Hence, if we define a and 3 to be the sequences obtained
by deleting the first element of ' and ¢’, respectively, we have that vw, = wg. This
means that v € Suf(5) is erasable and we are done.

So, to determine whether or not S is S*-homogenous, it suffices to compute the set
E C Suf(S) of all erasable suffixes and then check whether there are s,s’ € S and
v € E such that s = s’v. We prove that the set E is computed by the lines 1-9 of the
algorithm presented in Fig. 1. First, realize that

‘the variable E contains only strings which are erasable suffixes’

is an invariant of the loop presented in lines 2-9 (this follows immediately by inspecting
the if statement in lines 5-7). Since F is initialized to .S (line 1) and all segments of .S
are erasable suffixes, this invariant is surely valid before the first iteration of the loop.
Hence, it is also satisfied after the last iteration (note that the total number of iterations
of the loop is O(m?)). It remains to show that every erasable suffix eventually appears
in the set assigned to the variable E. To do that, for every erasable suffix v we define its
norm, denoted norm(v), as follows:

norm(v) = min{length(a) + length(0) | vwa = wg}

We claim that after the i*" iteration of the loop (lines 2-9), the variable E contains
all erasable suffixes whose norm is at most ¢ + 1. This is easy to verify by induction
on i — since norm(v) = 1 for every v € S, the induction base is established; and
the induction step is proven easily by inspecting the code in lines 5-6 (the induction
hypothesis is used to determine the content of E at line 5).

The previous observations imply the correctness of the algorithm in Fig. 1. The fact
that it requires only polynomial time is also obvious (we only need to realize that the
loop in lines 2-9 terminates after O(m?) iterations, where m is the size of S). ad

If we have a C-compatible segment set .S, our interest is in reducing it as much as
possible, simultaneously preserving compatibility. In other words, we would like to find
out a C'-base that is included in .S, which has minimal number of segments. In general,
we do not know a polynomial algorithm to solve this problem. However, we present a
solution to this problem for homogeneous segments.

Proposition 3. Ler S be a C-homogeneous segment set. Then there exists precisely one
C-base, which is a subset of S. The following procedure is a polynomial algorithm that
determines the C-base:

1. 1:=0; X :=0;
2.1:=1+1;
3. Determine the segmets 1, ..., s such that s1...s; = u(i) (u(7) being the i-th

element of ') and add them to the set X.

4. if 7 does not exceed the number of the elements of C, go to 2
5. Remove all the elements that do not belong to X from S. This reduced set S’ is a
C-base (and it is a subset of .S).

Proof. The proof easily follows from the fact that the segments w1, ..., u; with the
property uy ...ur = (i) are determined uniquely. Hence, they cannot be removed
from S. On the other hand, if a segment is not used for concatenating an element from
C, it can be removed. The polynomiality of the algorithm follows directly from its
description; in fact, the algorithm is linear with respect to the number of elements in C.

O

4 Finding the Segment Representation of a Word for
Homogeneous Segment Set

Finding a segment representation is a very natural problem. For concatenative speech
synthesis, this task is usually a real-time problem which has to be performed quickly.
Hence, effective algorithms solving this problem are of practical importance. A polyno-
mial algorithm solving a more general problem can be found in [2, 3]. If we restrict our-
selves to homogeneous segments, we can get a quicker and simplier algorithm, which
is presented in what folows.

Problem 1. Let S be a homogeneous segment set. Let ¢ € S*. The task is to find the
sequence (s, S2, - . -, Sp) of elements of S such that ¢t = s153 ... $p,.

The following algorithm finds, given a homogeneous segment set S and ¢t € S* a
solution to Problem 1.

1. Py :={(u)|lu € S; there exists v € A* such that t = uv}.

2.1:=0
3. while no element of P is a solution to the problem do
(@ Piy1:={(s1,82...,8k,u)| (s1,82,...,8) € P;, u € S; exists v € A* such
that ¢ = s153...spuv}.
b) i:=i+1

4. return the element of P;, which is a solution to the problem (there is only one).

The algorithm constructs step by step all possible sequences of elements of S. As
t € L(S) there must exist a sequence (s1, S2, . .., Sy) such that ¢ = s189 ... s,. Thus,
after a finite number of steps the algorithm finds this sequence.

Theorem 2. Let us denote by K = max,cgs |x| and by n the length of t. The time
complexity of the above algorithm is O(Kn).

Proof. 1f s1, s9,. .., sy is an element of P; for some ¢, it cannot be an element of any
P;j for any j # 4. Indeed, as .S is homogeneous, the string 5152 . . . s, (a prefix of ¢) can
be formed by no concatenation of elements of .S other than sy, ss, ..., sg. But, there
are only n different prefixes of ¢. Thus, the total number of elements of all P; during
the whole run of the algorithm is not larger than n.

An effective implementation can ensure that the construction of an element of P,
given an element of P; requires the time proportional to the length of the newly added
string (if we assume that the time complexity of determining whether a string u is an
element of S is O(|u/)). Thus, the time complexity of the algorithm is O(Kn). O

As was mentioned, Problem 1 can be generalized to heterogeneous sets. In this case,
the task is to find a sequence of strings ensuring a minimal number of concatenations.
The time complexity of the general problem is O(K2n?) (see [3]).

5 Conclusions and Future Work

The results presented in the paper show that homogeneous segment sets possesses some
properties that can be advantageous in using them and processing them. In practice we
often meet segment sets, that are “nearly homogeneous”, which means that the ho-
mogenity is violated for a small number of cases. Investigation of this situation may be
valuable from a practical point of view and is the main objective for future research.

Acknowledgement

The authors are grateful to James Thomas for proofreading a draft of the paper. The re-
search has been partially supported by Czech Ministry of Education under the research
project CEZ:J07/98:143300003.

References

1. E.C. Albano, P.A. Aquino: Linguistic Criteria for Building and Recording Units for Con-
catenative Speech Synthesis in Brazilian Portuguese, in Proceedings of Eurospeech, Rhodes,
Greece, pp. 725-728, 1997.

2. R. Battisek. An objective measure for assessment of the concatenative tts segment invento-
ries. In Proceedings of Eurospeech 2001 — Scandinavia, Aalborg, Denmark, Sept. 2001.

3. R. Batusek. Speech Segments and Their Applications in Natural Language Processing. PhD
thesis, Masaryk University, Brno, Czech Republic, 2003. to be defended.

4. S. Deligne, F. Bimbot: Inference of Variable-Length Linguistic and Acoustic Units by Multi-
grams, Speech Communication 23 (1997), 223-241.

5. G. Doddington: Syllable Based Speech Processing; WS97 Project Report, Research Notes
No. 30, J. Hopkins University, 1997.

6. A.J. Hunt, A.W. Black: Unit Selection in A Concatenative Speech Synthesis System Using a
Large Database, in Proceedings of ICSLP, Philadelphia, pp. 373-376, 1996.

7. L. Josifovski, D. Mihajlov, D. Gorgevik: Speech Synthesizer Based on Time Domain Sylla-
ble Concatenation; Proceedings SPECOM’97, Cluj-Napoca, 1997, pp. 165-170.

8. L. Kopecek. Algebraic models of speech segment databases. In Proceedings of TSD 2001,
pages 208-213, Zelezna Ruda, Czech Republic, 2001.

9. L. Kopecek: Automatic Segmentation into Syllable Segments; Proceedings of First Int. Con-
ference on Language Resources and Evaluation, 1998, pp. 1275-1279.

10. Jon R. W. Yi and James R. Glass. Natural-sounding speech synthesis using variable-length
units. In The 5th International Conference on Spoken Language Processing, Sydney, Aus-
tralia, 1998.

