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Abstract. We show an effective construction of (a periodicity dedoipof) the

maximal simulation relation for a given one-counter netetwe demonstrate
how to reducesimulationproblems over one-counter nets to analogaissnula-

tion problems over one-counter automata. We use this to denabmsire decid-
ability of various problems, specifically testing reguiaand strong regularity of
one-counter nets with respect to simulation equivalened,tasting simulation
equivalence between a one-counter net and a deterministicipwn automaton.
Various obvious generalisations of these problems are kriowee undecidable.

1 Introduction

In concurrency theory, processs typically defined to be a state irtransition system
which is a tripleT = (S, X, —) whereS is a set oftates X is a set ofactions(assumed

to befinitein this paper) and- C S x £ x S is atransition relation. We writes — t
instead of(s, a, t) € —, and we extend this notation in the natural way to elements of
X*. A statet is reachablefrom a states iff s = t for somew € I*. T is image-finite

iff forall s € Sanda € I the sef(t : s = t} is finite; T is deterministicif each such
set is of size at most 1.

In this paper, we consider such processes generateddsgounter automatanon-
deterministic finite-state automata operating on a singlenter variable ranging over
the setN of nonnegative integers. Formally this is a tuple= (Q, Z, 5=, 6~) where
Q is a finite set ofcontrol states X is a finite set ofactions andé= : Q x £ —
P(Qx{0,1}),67:Q x X - P(Q x{-1,0,1}) aretransition functions(whereP(A)
denotes the set of subsetsAy. 6~ represents the transitions which are enabled when
the counter value is zero, and represents the transitions which are enabled when the
counter value is positiveV is aone-counter neiff Vg € Q,Va € X : $=(q,a) C
57 (q,a). To M we associate the (image-finite) transition systég = (S, %, =),
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whereS = {p(n):p € Q,n € N} and— is defined as follows:

a . {n:O, and(p’,1) € 6=(p,a); or

pn) =p'(n+1i) iff
n>0, and(p’,1) € 67 (p, a).

Note that any transition increments, decrements, or leawelsanged the counter value;
and a decrementing transition is only possible if the caumédue is positive. Also
observe that when>0 the transitions op (n) do not depend on the actual valuerof
Finally, note that a one-counteetcan in a sense test if its counter is nonzero (that is,
it can perform some transitions only on the proviso that dsrter is nonzero), but it
cannot test in any sense if its counter is zero.

As an example, we might tak@ = {p}, £ = {q, z}, and take the only non-empty
transition function values to b&~ (p, a) = {(p,+1), (p,—1)}, 6=(p,a) = {(p, +1)},
and5=(p,z) = {(p,0)}. This one-counter automaton gives rise to the infiniteestat
transition system depicted in Fig. 1; if we eliminate thaction, then this would be
a one-counter net. The class of transition systems whiclyemerated by one-counter
nets is the same (up to isomorphism) as that generated byabe @f labelled Petri
nets with (at most) one unbounded place. The class of transystems which are
generated by one-counter automata is the same (up to ishiprpas that generated
by the class of realtime pushdown automata with a singl&k stgmbol (apart from a
special bottom-of-stack marker).

Given a transition syste = (S, £, —), asimulationis a binary relatiorR C Sx S
satisfying: whenevefs, t) € R, if s 5 s’ thent % t’ for somet’ with (s’,t') € R.

s is simulatedby t, writtens < t, iff (s,t) € R for some simulatiofR; ands andt are
simulation equivalentwrittens <= t, iff s < t andt < s. (The relationg, being the
union of all simulation relations, is in fact the maximal silation relation.) Abisim-
ulation is a symmetric simulation relation, ancandt arebisimulation equivalentor
bisimilar, writtens ~ t, if they are related by a bisimulation. Simulations andrbisi
lations can also be used to relate statedifférenttransition systems; formally, we can
consider two transition systems to be a single one by takiaglisjoint union of their
state sets.

There are various other equivalences over processes winettieen studied within
the framework of concurrency theory; an overview and corsparof these is presented
in [14]. Each has its specific advantages and disadvantagds;onsequently none is
universally accepted as the “best” one, although it seeatssttmulation and bisimula-
tion equivalences are of particular importance as theiomganying theory has been
intensively developed. Bisimilarity is especially mattegivally tractable, having the
best polynomial-time algorithms over finite-state transisystems (while all language-
based equivalences by comparison are PSPACE-complete)haronly one which is
decidable for various classes of infinite-state systems ascontext-free processes and
commutative context-free processes (see [12] for a surfveyah results).

Let s be a state of a transition systehand~s be an equivalence over the class
of all processes (that is, all states of all transition aysies is ~-regular, or regular
w.r.t. &, iff s &~ f for some staté of a finite-state transition system; ards strongly
~-regular, or strongly regular w.r.t., iff only finitely many states, up te:, are reach-
able froms. For bisimilarity, these two concepts coincide, but thisastrue in general
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Fig. 1. A one-counter automata process and a simulation-equiveitete-state process.

for other equivalences. For example, the stat@) of the infinite-state transition sys-
tem depicted in Fig. 1 is¢=-regular, being simulation equivalent to the stHt®f the
depicted finite-state system. However, it is not stronghrregular (nor~-regular) as
p(i) £ p(j) wheneveii < j. The conditions of regularity and strong regularity say tha
a process can in some sense be finitely represented (up tquh@lence): in the first
case there is an equivalent finite-state process; and iretttnd case the quotient of
its state-space under the equivalence is finite. As all tealle” process equivalences
are preserved under their respective quotients [8] (th&iaich state is equivalent to its
equivalence class in the automaton produced by collapsjuiy&ent states [2]), strong
regularity in fact guarantees the existence of a finiteegpabcess whose state-space is
the same (up to the equivalence); this process provides @ rabust description of the
original process as it preserves strictly more logical prtips than a process which is
just equivalent [9].

Finite descriptions of infinite-state processes are ingmirfrom the point of view
of automatic formal verification. Verification tools typlgawork only for finite-state
systems, and the types of systems which they analyze, syntotasols, are typically
semanticallyfinite-state. However, these systems are often expresg#ecticallyas
infinite-state systems, for example maintaining a countasd many unacknowledged
messages have been sent, so it is advantageous to devebophahg which replace
infinite-state processes with equivalent finite-stateesyist(when they exist). Examples
of such algorithms appearin [2,4,5,8,11]

In Section 2 we show an effective construction of (a periigidescription of) the
maximal simulation relation for a given one-counter neteifhin Section 3, we study
the connection between simulation and bisimulation refetj and demonstrate the de-
cidability of the<(=-regularity and strongg=-regularity problems foone-counter nets
a restricted form of Petri nets; the¢=-regularity problem is reduced to theregularity
problem for the more general classasfe-counter automatavhich is known to be de-
cidable [3]. Note that theg=-regularity problem is known to be undecidable for general
Petri nets [5] and an incomparable class of PA processeskir@jlly, we demonstrate
how to decide simulation equivalence between (a procesterkto) a one-counter net
and (a process related to) a deterministic pushdown automiere note that simula-
tion equivalence between a (nondeterministic) one-comttomaton and a determin-
istic one-counter automaton (i.e., a special determmmishdown automaton) can be
demonstrated to be undecidable [7].

2 Simulation on One-Counter Nets

In this section we fix a one-counter net with control stat€xetnd present an algorithm
which constructs a (simple) description of the set

S = {{p(m),am)) : p,g€Q, mmneN, p(m) 5 q(n)}



i.e., the maximal simulation relation on the transitionteysassociated to the né&tcan
be viewed as a collection 0f|? subsets ofNx N: to eachp,q € Q we associate
Sp,qy = 1{m,mn) : p(m) < q(n)}. Observe that ib(m) < q(n) thenp(m') 5
g(n') forallm’<mandn’>nsince the set(p(m’), q(n’)) : p(m) < q(n) forsome
m>m', n<n’}is a simulation relation.

By acolouring we mean a functiof® : (QxQ) — (Nx N)—{black white}, where
we write the function applications &%, oy (m,n). We further stipulate that a colour-
ing must satisfy the following monotonicity condition: @, 4y (m,n)=black then
Cip,q)y (m',n")=black for all m’'<m andn’>n. With this proviso, eaclC,, 4 is

determined by thérontier function ffp,q> : N —» N U {w} defined by:f(?pm(n) =
min{m : Cx, ) (m,n)=white}; we putf(?p’q>(n):w if Cp,q) (m,n)=black for
all m. Note that this function is nondecreasing, i.e., es{elpffp’q>(n+1) — ffp‘q> (n)
is nonnegative. Whefy,, y(n) € N, we call the pairf, 4 (n),n) afrontier point
and the set of all frontier points constitutes thentier (in C,, ).

We useG to denote the following distinguished colouring:

black if p(m) < q(n);
Gip,q) (M) = {white, if p(m) £ q(n).

The observation aboudt from above confirms that this is a valid colouring, i.e., tift
required monotonicity condition holds. We uig  to denote the frontier function of
G¢p,q)» and we understand the terrfigntier functionandfrontier to be related td
when not specified otherwise.

The following “Belt Theorem” gives a crucial fact about ft@rs; by abelt we
mean the set of points of the (first quadrant of the) planeglyiatween two parallel
lines.

Belt Theorem. Every frontier lies within a belt with nonnegative ratioral infinite
slope.

This theorem is central for the decidability of simulatioreoone-counter nets. It was
proven in [6] by a combination of short and intuitive argurseithe theorem is also
present (though not so explicitly) in [1] but the proof onéd there is formidable.

Note that if, for a frontier functioffi, f(n)=cw for somen then the respective frontier
is finite and lies within a horizontal belt (i.e., with slope @therwisef (as a function
N — N) is almost linear, though its stemﬁ(nﬂ )—f(n]) need not be constant. Nev-
ertheless, we shall show thiis periodig i.e., from somen a finite sequence of steps
is repeated forever; and moreover, jitsriodicity descriptior—i.e., ng, the sequence
of steps to be repeated, and the value§(af] for all n<ny—can be effectively com-
puted, yielding the simple description of the Se{Note that the decision algorithms in
both [1] and [6] only approximate the s&t or equivalently the colouring, to a suf-
ficient level to answer the relevant question; effectivestarctability of the functions
f(p,q) does not follow from there.)

We now show how the frontier functioriig, 4, can be stepwise approximated. First
we say that a poinfm, n) (in Nx N) islocally correct in a colouringC iff the following
holds for allp,q € Q: if Cy, ) (m,n)=black andp(m) 4 p’(m') then there is

an) 3 q'(n') with Cipr,qy(m',n')=Dblack. Note that the local correctness of a



point (m,n) depends only on the restriction €f to the neighbourhoodof (m,n),
i.e., to the sef (m’,n') : Im'—m|<1,|n’—n|<1}; this follows from the fact that a
transition in a one-counter net can change the counter vl most 1. We say that
C is k-admissible wherek € N U {w}, iff each point(m, n) with m,n < k is locally
correctinC. In particular, note thak is w-admissible.

The functionG* : (QxQ) — (Nx N)—{black white} defined by

Gk

(p.a) (m,n) = black iff C, 4y (m,n) = black for somek-admissible colourin@

is easily seen to belaadmissible colouring, and is in fact theaximal(i.e.,maximally-
black) k-admissiblecolouring; furthermore, the maximab-admissible colourings®
is clearlyG. Fork € N, we denote the frontier function @Zv a) by ffp a) and note

that the range 0f1<<p o 1{0,1,..., k=1}U{w}and tha’tf‘gp‘q> (n) = w for all n>k.

The description of each functioﬁ)[p ay’ i.e., (a table of) its values far, 1,... , k—1,

is effectively computable, for example, by an exhausties®e AsG* is i-admissible
for anyi<k, we have, for each, q, f%,,q)Zfzp_q)fop,q)Z . me_q) (wheref’zf./,
meansyn € N : f'(n) > f"(n)). Therefore the function, ¢y = liMn 00 o, ) IS
well-defined, andy(,, q)>f(p,q)- But since the colouring defined by theseﬁimit func-
tions g, 4y (as the frontier functions) isv-admissible (recall the “locality” of the
local correctness condition), aifdl is the maximalw-admissible colouring, we have
9(p,a) <f(p,q)- ThUSg(;, qy=F (5 q), and therefore we get the following.

Lemma 1. For eachn € N there isk > n such that eacl‘ﬁ‘{p‘q> coincides withf ., 4
ontheset0,1,2,... ,n}.

Our algorithm will constructG* for k = 0,1,2,...; Lemma 1 guarantees that
larger and larger initial portions of (the graphs &f), .y are appearing during the run
of the algorithm (though we do not know the extent of the portsf G in G*). To show
when our algorithm can terminate, recognizing an initiattiom of G and providing
a description of the whol&, we now explore a certain “repeatable pattern” which is
guaranteed to appear @

By the Belt Theorem, we can fix a set of belts with nonnegatti®nal or infinite
slopes such that each frontier is contained in one of themas¥ame that the belts are
“sufficiently” thick; thus we can, for instance, supposettihe belt slopes are pairwise
distinct (merging parallel belts into one thicker).

Now we can chooskq, ha,1 € N, whereO<h;<h,<i, such that (see Fig. 2):

1. for each frontier functiorf with f(h,)<w, all frontier points(f(n),n) between
levelsh; andh;, (i.e., withh; <n<h;) lie in one of the belts (this follows trivially
from our assumption; note that Fig. 2 depicts just one fesniti each belt, though
in general there can be several frontiers in a single belt);

2. the belts are pairwise disjoint at and above lével-1 (i.e., we choosé, large
enough so that at levél; —1 each belt is to the right of any other belt with greater
slope);

3. for each frontier functioffi: if f(h1—1)<1 thenf(h,)=f(h;—1); and iff(h, )=w
thenf(h;—1)=w (this is satisfied wheh; andh; are chosen large enough);
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Fig. 2. Graphs ofG,,, 4 displaying a repeatable pattern, superimposed onto eaeh ot

4. for each frontier functioi and eactm<h;: if f(n)<w thenf(n)<i (this is satis-
fied by choosing large enough after the choicelof andh,).

Each frontier poin{f(n),n) has a certain (horizontadjistanceto the left border line
of the belt in which it lies. Since the slope of each belt isorl, it is clear that such
distances range over finitely many possible values. So, Isambktforward use of the
pigeonhole principle, we can additionally suppose (i.e,aould choosé, h;,1i so)
that the frontier points of all frontiers inside a singletlielve the same relative positions
at levelsh, andh,—1 as at level$; andh;—1, respectively. More precisely:

5. for each frontier functiorf with f(h,)<w, the slope of the belt in which the re-
spective frontier appears between levieisandh; is (ho—hq)/(f(h2)—f(hq));
moreoverf(h;)—f(h,—1) = f(hy)—f(h;=1)

The number of possible distances would allow us to calcw@dieundb such that we
can even suppose (i.e., choose so) thath;<b. Note thatb does not depend on
how thick the belts are chosen. In particular, we can assuaok belt to be so thick
that for each frontier poingf(n), n) in the belt, withn>h,, the point(f(n), n+b) is
still an interior point of the belt, i.e., its whole neighbourhood lies in the beifot-
mally we say that the belt hasafficiently thick monochromatic left subb@boveh,);
monochromatic means that ea@ly, 4 is constant (either black or white) on the sub-
belt. Therefore we could choose belts &ndh, andi so that the following additional
condition is satisfied:



6. for each frontier poin{f(n), n) with h; <n<h,, the point{(f(n), n+(h,—h,)) is
an interior point of the belt in which the respective fronties between levela
andh,.

We now say that a colourin@ has arepeatable patternbased orhy, h, andi, iff
there are belts such that the above conditions 1.—6. asfisdt{where the ternfson-
tier andfrontier functionare understood as those related}o We have thus demon-
strated tha6 has a repeatable pattern. Our algorithm which const@iti&' , G2, . ..
terminates when it finds sonf@ which has a repeatable pattern based on somé.
andi with i<j; such a condition is clearly decidable; and Lemma 1, togeilii the
fact thatG has a repeatable pattern, guarantees termination of tbeitalp. Having
discovered a repeatable pattern @r based orh;, h, andi with i<j, we define the
colouringG* by defining its frontier functionézp‘q> inductively as follows:

f’;p‘q>(n), if n<hs
(n) =

fa))q)(nfc) +d, ifn>hy

wherec = h,—h; andd = f’;p q>(h2] - f’;p q>(h1 ). Hence eacli;‘p a) is periodic,
arising fromf’;p_ a) by repeating the sequence of steps betweeandh, forever. Also

note that if‘f’;p,q>(n):wforsomen§h2 thenfzp‘q>:f’<p‘q>.We shall show (Lemma 3)
that G* is in factG. To this end, we make some considerations and introduce some
auxiliary notions.

First recall that the local correctness of a paint,n) in a colouringC depends
only on the restriction of to the neighbourhood dfm, n). Also recall that the pos-
sible transitions from a state(m) do not depend om whenm>0. ThereforeG* is
surelyw-admissible: each poirfin, n) in theverified areai.e., withm<j andn<h,,
is locally correct since it is (by definition) locally corteio G', andG’ andG* co-
incide on the neighbourhood d¢fn, n). Furthermore, each point outside the verified
area obviously has a corresponding point in the verified etea@se neighbourhood is
coloured identically. By the fact tha&® is the maximalw-admissible colouring, we

havefy, \<f( q)- Sincefmq)gf"(p‘q), we havef? . (n)=fq, qy(n) for all n<h,

(wherefz*p)q> coincides withf’;p’q>). The only possibility thaGG* andG are not equal
is if fzv.q> (n)<f(p,q) (n) for somen>h,. Due to the next result (Lemma 2), this will
be lead to a contradiction in the proof of Lemma 3.

Letv = (vi,v2) € ZxZ be a vector with integer entries. A poifitn,n) €
NxN with m+vy,n+vy > 0islit by v in Gy, oy iff G, gy (m,n) = black and
Gp,q) (M+Vv1,n+v2) = white; if (m,n) is lit by v in someGy, 4, then we say that
(m,n) islit by v. For points(m, n), (m’,n') € NxN we write (m,n) <, (m’,n’)
iff both are lit byv, andjm—m'| < 1 and/n—n'| < 1. The transitive closure of,,
is denoted by—%. Note that(m,n) <2 (m’,n’) can be demonstrated by giving a
trajectory, a sequence of pointsny, no), (mi,n1), ... , (Mg, ng) such that

(m,n) = (Mo, Mo) Sy (M1, 1) Oy -+ 3y (M, i) = (M, n').



Lemma 2. Leth>0 andv = (v1,v2) with v <0 andv,<0. If a point (mg, ng) with
no+v2 > his lit by v then there is a pointmj,ng) with n{4+v, = h such that
(mo,mo) 3 (Mg, ng).

Proof. Supposem,, no) satisfies the assumption but there is no requireg, n});
thenn'+v, > hforeach(m’,n’) such thatmog, no) <3 (m’,n’). Define the colour-
ing G by
Gp,qy(m,n) = black iff G, q (m,n) = black, or
(m—vy,n—vz)islitby vin G, 4y and
(Mo, no) 33 (M—v1,n—vy).

G obviously satisfies the monotonicity property of colouspgnd we can easily check
that each point is locally correct iit. HenceG is w-admissible, which contradicts the
fact thatG is themaximalw-admissible colouring. O

Lemma 3. G* is equal toG.

Proof. We have already shown that eac}), ,, coincides withf, 4 on the set
{0,1,2,...,h2}, so we only have to exclude the possibility tﬁ%gm (n)<f(p q)(n)
for somen>h,.

Recall that our algorithm stops by finding a repeatable patfer hq, h,, 1, in G
(i<j). Let us fix a corresponding set of belts required by the dédimiof a repeatable
pattern (note that each frontier Gf lies in one of the belts above).

We say that a belB is valid iff G* coincides withG when restricted td. (In
particular, the horizontal belt, if it was chosen, is sured§id.) If all belts are valid,
then surelyG* is equal toG. Otherwise, letB be therightmostbelt (i.e., the belt
with the least slope) which is not valid. Consideriawalid point(mo, 1) in B, i.e.,
Gzp‘q> (Mo, no)=white andGy,, 4y (Mo, no)=black, for somep, q; moreover we sup-
posen, to be minimal (i.e.B is valid belown,). Note thatny>h,.

Let « be the slope 0B, and letv = (vq,v;), wherev; = (hy—h;)/x andv, =
h;—h; (v corresponds to the “period &f in G*; see Fig. 3). Due to the choicevfas
the period ofB) we haverp‘q> (mo-+v1,no+v2) = white, and sincé is valid below
Mo, we haveG, qy (mo+v1,ne+v2) = white. This means that the poifito, no) is
lit by vin G, 4y - Due to Lemma 2 (foh, in the place oh) there is a poinfm,, ng)
(lit by v) such that{mo, no) <3 (mg,n4) andnj+vr,=hy, i.e.,nj=h,. Recall that
the restrictions ofG* andG to N x {0,1,2,...,h»} coincide. Hence if there is no
belt to the right ofB then there is clearly no poiritn’, h,) which would be lit by
v. Otherwise leB’ be the first belt to the right dB. Any point (m’, h,) which is lit
by v can lie only in, or to the right ofB’. Nevertheless any trajectory demonstrating
(mo, no) &5 (m', ha) would have to cross the (sufficiently thick) monochromait |
subbelt of (the validB’, which is impossible. (The first point on such a trajectoryckih
isin B', and is thus not an interior point &f, cannot be lit by.) O

We can summarize the preceding argument in the following.

Theorem 1. There is an algorithm which, given a one counter net, corstra descrip-
tion of the respective maximal simulation relation; moraceetely, it gives periodicity
descriptions for the corresponding frontier functions.
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Fig. 3. The assumptiofs # G leads to a contradiction.

3 Applications

In this section we show how Theorem 1 can be applied to ob&indecidability results
for one-counter nets. The following one comes almost fa.fre

Theorem 2. The problem of strongd=-regularity of one-counter nets is decidable.

Proof. Letp(i) be a process of the one-counter het= (Q, Z, 6=, 5~). Define the set
M ={q e Q|p(i) =* q(j) forinfinitely manyj € N}. Observe thai\ is effectively
constructible using standard techniques for pushdowmaaii®. AsQ is finite, we see
thatp(i) can reach infinitely many pairwise non-equivalent statethére isq € M

such that for every € N there is somé > 1 such thatq(j) £ q(i). In other words,
p(i) is not strongly regular w.r.t. simulation equivalence féte isq € M such that
the frontier functiorf 4 4y has now-values fn € N: f,, ¢y(n) < w). O

Next we show that a number simulationproblems for processes of one-counter nets
can be reduced to the correspondaigimulationproblems for processes of one-counter
automata. In this way we obtain further (original) decidipresults. The basic tool
which enables the mentioned reductions is taken from [10]iadescribed next.

For every image-finite transition system= (S, Act, —) we define the transition
systemB(T) = (S, Act, =) where— is given by

st iff sStandvueS:(s SuAtgu)=u<t



Note thatB(T) is obtained fromI by deleting certain transitions (preserving only the
“maximal”’ ones). Also note thaf andB(T) have the same set of states; as we often
need to distinguish between processesf' T” and “s of 5(T)", we denote the latter
one bysg. A proof of the next (crucial) theorem, relating simulatiequivalence and
bisimulation equivalence, can be found in [10].

Theorem 3. Lets andt be processes of image-finite transition systdnand T, re-
spectively. It holds that <= s andt <= tg; moreovers <= tiff sg ~ 5.

The next theorem provides the technical basis for the afentioned reductions.

Theorem 4. LetN be a one-counter net. Then the transition systHmy ) is effectively
definable within the syntax of one-counter automata, ime, @an effectively construct
a one-counter automatoml such thatTy, is isomorphic to3(Ty). Moreover, for ev-
ery states = p(i) of Ty we can effectively construct a staté(i’) of Tay which is
isomorphic to the stateg of B(Tn).

Proof. LetN = (Q, Z, 57, 6~) be a one-counter net, and let be the transition rela-
tion of B(Tn). Let us define the functioklaxTran: Q x X x N — P(Q x {—1,0,1})
as follows:

(q,) € MaxTran{p, a,i) iff p(i) S q(i+]j)

where— is the transition relation oB(Ty). In fact, MaxTranp, a,i) represents all
“maximal” a-transitions ofp(i). Our aim is to show that the functidiaxTranis, in
some sense, periodic—we prove that there (effectivel\gtexi > 0 such that for alll
p € Q,a € X, andi > n we have thaMaxTranp, a,i) = MaxTranp, a,i+ n). It
clearly suffices for our purposes because then we can cehatome-counter automaton
M= (Q x{0,...,n—1},XZ,v=,y”) wherey= andy~ are the least sets satisfying
the following conditions:

(
(n—1) ¥ q(n), then({q,0),+1) € v~ ({(p,n—1),a)
—if p(n+1) ¥ q(n+j) where0 <1i,j < n, then((q,j),0) € v~ ({p,),a)
— if p(n) 'E) q(ni ])1 then(<qvn7 ]>)7]) € y>(<pv0>va)

( )

2n—1 '3 q(zn]r then(<q,0>,+]] € Y>(<D»n— ]>,(1)

Note that the definition oM is effective, because the constanican be effectively
found and for every transitiop(i) — p(j) of Ty we can effectively decide whether
p(i) » p(j) (here we need the decidability of simulation for one-counts). The
fact thatTy, is isomorphic toB(Ty) is easy to see as soon as we realize 8@ty )
can be viewed as a sequence of “blocks” of heightvhere all “blocks” except for
the initial one are the same. The structure of the two (tygeblocks is encoded in
the finite control oM, and the number of “current” blocks is stored in its counsee(
Fig. 4). Note thatVl indeed needs the test for zero in order to recognize thanttial i
block has been entered.

Now we show how to construct the constantrFirst, we prove that for alp € Q,
a € X one can effectively find two constanit$p, a) andl(p, a) such that for every
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Fig. 4. The structure off (left) andB(Tn) (right)

i > k(p,a) we haveMaxTranp, a,i) = MaxTranp, a,i + l(p,a)). We start by
reminding ourselves that the out-going transitiong @fy andp(j), wherei,j > 1, are
the “same” in the following sense (see Fig. 4):

p(A) =S qi+m) iff p(j) > q(+m) iff (q,m)e€d(p,a).

Hence, the seélaxTranp, a, i), wherei > 1, is obtained by selecting certain elements
from &~ (p, a). In order to find these elements, we must (by the definitiods OF ))
take all pairs({q, m), (r,n)) € 6~ (p,a) x 8~ (p, a), determine whetheg(i + m) =
r(1+ n), and select only the “maximals”. For each such gé&ir, m), (r,n)) we define
an infinite binary sequencg as follows:S(i) = 1if Giq ) (i + m,i+ n) = black,
andS(i) = 0 otherwise. As (a description of}, ., can be effectively constructed,
and the frontier functiorf  ,y is periodic (see Theorem 1), we can conclude that
S = ap® wherex, B are finite binary strings. Note thatand 3 can be “read” from
the constructed description 6 ,y and thus they are effectively constructible. As
5~ (p, a) is finite, there are only finitely many pairs to consider anddeewe obtain
only finitely manya’s andp’s. Now we letk(p, a) be the length of the longest, and
let 1(p, a) be the product of lengths of gii’'s. In this way we achieve that the whole
information which determines the selection of “maximakmlents ob~ (p, a) during
the construction oMaxTranp, a,i) is periodic (w.r.ti) with periodl(p, a) after a fi-
nite “initial segment” of lengthk(p, a). LetK = maxk(p,a) | p € Q,a € X}, and
L= HpeQ.aEZ U(p, a). Finally, letn = K - L.

To finish the proof, we need to show that for every state p(i) of Ty one can
construct a state’(i') of Tyy which is isomorphic to the statgs of B(Ty). This is
straightforward; we simply take’ = (p,i modn) and i’ =1idivn. |

Two concrete examples of how Theorems 3 and 4 can be appliebt&in (new and
nontrivial) positive decidability results on one-countets are given next.

Corollary 1. The problem ok:=-regularity of one-counter nets is decidable.



Proof. It suffices to realize that a proces®f a transition systen is <=-regular iff
the processp of B(T) is ~-regular. As~-regularity is decidable for processes of one-
counter automata [3], we are done. 0

Corollary 2. Letpa be a process of a deterministic pushdown automd&tand q(i)
be a process of a one-counter Mét The problem whethgra <= (1) is decidable.

Proof. First, realize that il is a deterministic transition system thBfT ) = T. Hence,
pa==q(i) iff pa~ q'(i') whereq’(i’) is the process of Theorem 4. As one-counter
automata are (special) pushdown automata, we can applesh# of [13] which says
that bisimilarity is decidable for pushdown processes. 0

The previous corollary touches, in a sense, the decidghititlecidability border for
simulation equivalence, because the problem whetheg>= q(i) wherep«x is a pro-
cess of a deterministic PDR andq(1i) is a process of a one-counter automakdris
undecidable [7] (in fact, it is undecidable even if we requirto be a deterministic
one-counter automaton).
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