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A. We consider a class of infinite-state stochastic games generated by stateless pushdown
automata (or, equivalently, 1-exit recursive state machines), where the winning objective is specified
by a regular set of target configurations and a qualitative probability constraint ‘>0’ or ‘=1’. The
goal of one player is to maximize the probability of reaching the target set so that the constraint is
satisfied, while the other player aims at the opposite. We show that the winner in such games can be
determined inNP∩ co-NP. Further, we prove that the winning regions for both players are regular,
and we design algorithms which compute the associated finite-state automata. Finally, we show that
winning strategies can be synthesized effectively.

1. Introduction

Stochastic games are a formal model for discrete systems where the behavior in each state is
either controllable, adversarial, or stochastic. Formally, a stochastic game is a directed graphG with
a denumerable set of verticesV which are split into three disjoint subsetsV�, V^, andV©. For every
v ∈ V©, there is a fixed probability distribution over the outgoing edges ofv. We also require that the
set of outgoing edges of every vertex is nonempty. The game is initiated by putting a token on some
vertex. The token is then moved from vertex to vertex by two players,� and^, who choose the
next move in the vertices ofV� andV^, respectively. In the vertices ofV©, the outgoing edges are
chosen according to the associated fixed probability distribution. Aquantitative winning objective
is specified by some Borel setW of infinite paths inG and a probability constraint⊲̺, where
⊲ ∈ {>,≥} is a comparison and̺∈ [0, 1]. An important subclass of quantitative winning objectives
arequalitative winning objectiveswhere the constant̺must be either 0 or 1. The goal of player� is
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to maximize the probability of all runs that stay inW so that it is⊲-related to̺ , while player̂ aims
at the opposite. Astrategyspecifies how a player should play. In general, a strategy may or may
not depend on the history of a play (we say that a strategy ishistory-dependent (H)or memoryless
(M)), and the edges may be chosen deterministically or randomly (deterministic (D)andrandomized
(R) strategies). In the case of randomized strategies, a player chooses a probability distribution on
the set of outgoing edges. Note that deterministic strategies can be seen as restricted randomized
strategies, where one of the outgoing edges has probability 1. Each pair of strategies (σ, π) for
players� and^ determines aplay, i.e., a unique Markov chain obtained fromG by applying the
strategiesσ andπ in the natural way. Theoutcomeof a play initiated inv is the probability of all
runs initiated inv that are in the setW, denotedPσ,πv (W). We say that a play is (⊲̺)-won by player�
if its outcome is⊲-related to̺ ; otherwise, the play is (⊲̺)-won by player̂ . A strategy of player�
(or player^) is (⊲̺)-winning if for every strategy of the other player, the corresponding play is
(⊲̺)-won by player� (or by player^, respectively). A natural question is whether one of the two
players always has a (⊲̺)-winning strategy, i.e., whether the game isdetermined. The answer is
somewhat subtle. A celebrated result of Martin [18] (see also [17]) implies that stochastic games
with Borel winning conditions areweakly determined, i.e., each vertexv has avaluegiven by

val(v) = sup
σ

inf
π
Pσ,πv (W) = inf

π
sup
σ

Pσ,πv (W) (1.1)

Hereσ andπ ranges over the set of all strategies for player� and player̂ , respectively. However,
the players do not necessarily haveoptimal strategies that would guarantee the outcomeval(v) or
better against every strategy of the opponent. On the other hand, it follows directly from the above
equation that each player has anε-optimal strategy (see Definition 2.3) for everyε > 0. This means
that if ̺ , val(v), then one of the two players has a (⊲̺)-winning strategy for the game initiated
in v. The situation when̺ = val(v) is more problematic, and to the best of our knowledge, the
literature does not yet offer a general answer. Let us also note that forfinite-statestochastic games
and the “usual” classes of quantitative/qualitative Borel objectives (such as Büchi, Rabin, Street,
etc.), the determinacy follows from the existence of optimal strategies (hence, the sup and inf in
Equation 1.1 can be safely replaced with max and min, respectively). For classes of infinite-state
stochastic games (such as stochastic BPA games considered in this paper), optimal strategies do not
necessarily exist and the associated determinacy results must be proven by other methods.

Algorithmic issues for stochastic games with quantitative/qualitative winning objectives have
been studied mainly for finite-state stochastic games. A lot of attention has been devoted to quanti-
tative reachability objectives, even in the special case when̺ = 1

2. The problem whether player�
has a (>1

2)-winning strategy is known to be inNP∩ co-NP, but its membership toP is one of the
long-standing open problems in algorithmic game theory [9, 20]. Later, more complicated qualita-
tive/quantitativeω-regular winning objectives (such as Büchi, co-Büchi, Rabin, Street, Muller, etc.)
were considered, and the complexity of the corresponding decision problems was analysed. We
refer to [10, 6, 8, 7, 21, 19] for more details. As for infinite-state stochastic games, the attention has
so far been focused on stochastic games induced by lossy channel systems [1, 2] and by pushdown
automata (or, equivalently, recursive state machines) [14, 15, 13, 12, 4]. In the next paragraphs,
we discuss the latter model in greater detail because these results are closely related to the results
presented in this paper.

A pushdown automaton (PDA)(see, e.g., [16]) is equipped with a finite control unit and an
unbounded stack. The dynamics is specified by a finite set of rules of the formpX ֒→ qα, where
p, q are control states,X is a stack symbol, andα is a (possibly empty) sequence of stack symbols.
A rule of the form pX ֒→ qα is applicable to every configuration of the formpXβ and produces
the configurationqαβ. If there are several rules with the same left-hand side, one of them must be
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chosen, and the choice is appointed to player�, player^, or it is randomized. Technically, the set
of all left-hand sides (i.e., pairs of the formpX) is split into three disjoint subsetsH�, H^, andH©,
and for all pX ∈ H© there is a fixed probability distribution over the set of all rules of the form
pX ֒→ qα. Thus, each PDA induces the associated infinite-state stochastic game where the vertices
are PDA configurations and the edges are determined in the natural way. An important subclass
of PDA is obtained by restricting the number of control states to 1. Such PDA are also known as
statelessPDA or (mainly in concurrency theory) as BPA. PDA and BPA correspond torecursive
state machines (RSM)and1-exit RSMrespectively, in the sense that their descriptive powers are
equivalent, and there are effective linear-time translations between the corresponding models.

In [13], the quantitative and qualitativetermination objectivefor PDA and BPA stochastic
games is examined (a terminating run is a run which hits a configuration with the empty stack;
hence, termination is a special form of reachability). For BPA, it is shown that the vector of optimal
values (val(X),X ∈ Γ), whereΓ is the stack alphabet, forms the least solution of an effectively con-
structible system of min-max equations. Moreover, both players have optimal MD strategies which
depend only on the top-of-the-stack symbol of a given configuration (such strategies are called
SMD, meaning Stackless MD). Hence, stochastic BPA games with quantitative/qualitative termina-
tion objectives are determined. Since the least solution of the constructed equational system can be
encoded in first order theory of the reals, the existence of a (⊲̺)-winning strategy for player� and
player^ can be decided in polynomial space. In the same paper [13], theΣP

2 ∩Π
P
2 upper complexity

bound for the subclass of qualitative termination objectives is established. As for PDA games, it
is shown that for every fixedε > 0, the problem to distinguish whether the optimal valueval(pX)
is equal to 1 or less thanε, is undecidable. TheΣP

2 ∩ Π
P
2 upper bound for stochastic BPA games

with qualitative termination objectives was improved toNP∩ co-NP in [15]. In the same paper, it
is also shown that the quantitative reachability problem for finite-state stochastic games (see above)
is efficiently reducible to the qualitative termination problem for stochastic BPA games. Hence, the
NP ∩ co-NPupper bound cannot be improved without a major breakthrough in algorithmic game
theory. In the special case of stochastic BPA games whereH^ = ∅ or H� = ∅, the qualitative
termination problem is shown to be inP (observe that ifH^ = ∅ or H� = ∅, then a given BPA
induces an infinite-state Markov decision process and the goal of the only player is to maximize
or minimize the termination probability, respectively). The results for Markov decision processes
induced by BPA are generalized to (arbitrary) qualitativereachability objectivesin [5], retaining the
P upper complexity bound. In the same paper, it is also noted that the properties of reachability
objectives are quite different from the ones of termination (in particular, there is no apparent way
how to express the vector of optimal values as a solution of some recursive equational system, and
the SMD determinacy result (see above) does not hold).

Our contribution: In this paper, we continue the study initiated in [14, 15, 13, 12, 4] and
solve the qualitative reachability problem for unrestricted stochastic BPA games. Thus, we obtain a
substantial generalization of the previous results.

We start by resolving the determinacy issue in Section 3, and this part of our work actually
applies to arbitraryfinitely branchingstochastic games, where each vertex has only finitely many
successors (BPA stochastic games are finitely branching). We show that finitely branching stochastic
games with quantitative/qualitative reachability objectives are determined, i.e., in every vertex, one
of the two players has a (⊲̺)-wining strategy. This is a consequence of several observations that are
specific for reachability objectives and perhaps interesting on their own.

The main results of our paper, presented in Section 4, concern stochastic BPA games with
qualitative reachability objectives. In the context of BPA, a reachability objective is specified by
a regular setT of target configurations. We show that the problem of determining the winner in
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stochastic BPA games with qualitative reachability objectives is inNP ∩ co-NP. Here we rely
on the previously discussed results about qualitative termination [15] and use the corresponding
algorithms as “black-box procedures” at appropriate places. We also rely on observations presented
in [5] which were used to solve the simpler case with only one player. However, the full (two-
player) case brings completely new complications that need to be tackled by new methods and
ideas. Many “natural” hypotheses turned out to be incorrect (some of the interesting cases are
documented by examples in Section 4). We also show that the sets of all configurations where
player� and player̂ have a (⊲̺)-winning strategy (where̺ ∈ {0, 1}) is effectively regular and
the corresponding finite-state automata are effectively constructible by a deterministic polynomial-
time algorithm withNP ∩ co-NP oracle. Finally, we also give an algorithm whichcomputesa
(⊲̺)-winning strategy if it exists. These strategies are randomized and memoryless, and they are
alsoeffectively regularin the sense that their functionality can effectively be encoded by finite-state
automata (see Definition 4.3). Hence, winning strategies in stochastic BPA games with qualitative
reachability objectives can be effectively implemented.

Due to space constraints, most of the proofs had to be omitted and can be found in the full
version of this paper [3]. In the main body of the paper, we try to sketch the key ideas and provide
some intuition behind the presented technical constructions.

2. Basic Definitions

In this paper, the set of all positive integers, non-negative integers, rational numbers, real num-
bers, and non-negative real numbers are denotedN,N0,Q,R, andR≥0, respectively. For every finite
or countably infinite setS, the symbolS∗ denotes the set of all finite words overS. The length of
a given wordu is denoted|u|, and the individual letters inu are denotedu(0), · · · , u(|u| − 1). The
empty word is denotedε, where|ε| = 0. We also useS+ to denote the setS∗ r {ε}. For every finite
or countably infinite setM, a binary relation→ ⊆ M × M is total if for every m ∈ M there is some
n ∈ M such thatm → n. A path in M = (M,→) is a finite or infinite sequencew = m0,m1, . . .

such thatmi → mi+1 for every i. The lengthof a finite pathw = m0, . . . ,mi, denotedlength(w), is
i + 1. We also usew(i) to denote the elementmi of w, andwi to denote the pathmi ,mi+1, . . . (by
writing w(i) = m or wi we implicitly impose the condition thatlength(w) ≥ i+1). A givenn ∈ M
is reachablefrom a givenm ∈ M, written m→∗ n, if there is a finite path fromm to n. A run is
an infinite path. The sets of all finite paths and all runs inM are denotedFPath(M) andRun(M),
respectively. Similarly, the sets of all finite paths and runs that start in a givenm ∈ M are denoted
FPath(M,m) andRun(M,m), respectively.

Now we recall basic notions of probability theory. LetA be a finite or countably infinite set. A
probability distributionon A is a function f : A→ R≥0 such that

∑
a∈A f (a) = 1. A distribution f is

rational if f (a) ∈ Q for everya ∈ A, positiveif f (a) > 0 for everya ∈ A, andDirac if f (a) = 1 for
somea ∈ A. The set of all distributions onA is denotedD(A).

A σ-field over a setX is a setF ⊆ 2X that includesX and is closed under complement and
countable union. Ameasurable spaceis a pair (X,F ) whereX is a set calledsample spaceandF is
aσ-field overX. A probability measureover a measurable space (X,F ) is a functionP : F → R≥0

such that, for each countable collection{Xi}i∈I of pairwise disjoint elements ofF , P(
⋃

i∈I Xi) =∑
i∈I P(Xi), and moreoverP(X) = 1. A probability spaceis a triple (X,F ,P) where (X,F ) is a

measurable space andP is a probability measure over (X,F ).

Definition 2.1. A Markov chainis a tripleM = (M, −→ ,Prob) whereM is a finite or countably
infinite set ofstates, −→ ⊆ M × M is a totaltransition relation, andProb is a function which to
eachs∈ M assigns a positive probability distribution over the set of its outgoing transitions.
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In the rest of this paper, we writes x
−→ t whenevers−→ t and Prob((s, t)) = x. Eachw ∈

FPath(M) determines abasic cylinder Run(M,w) which consists of all runs that start withw. To
everys∈ M we associate the probability space (Run(M, s),F ,P) whereF is theσ-field generated
by all basic cylindersRun(M,w) wherew starts withs, andP : F → R≥0 is the unique probability
measure such thatP(Run(M,w)) = Πm−1

i=0 xi wherew = s0, · · · , sm andsi
xi−→ si+1 for every 0≤ i < m

(if m= 0, we putP(Run(M,w)) = 1).

Definition 2.2. A stochastic gameis a tupleG = (V, 7→ , (V�,V^,V©),Prob) whereV is a finite or
countably infinite set ofvertices, 7→ ⊆ V × V is a totaledge relation, (V�,V^,V©) is a partition
of V, andProb is a probability assignmentwhich to eachv ∈ V© assigns a positive probability
distribution on the set of its outgoing transitions. We say thatG is finitely branchingif for each
v ∈ V there are only finitely manyu ∈ V such thatv 7→ u.

A stochastic game is played by two players,� and^, who select the moves in the vertices ofV�
andV^, respectively. Let⊙ ∈ {�,^}. A strategyfor player⊙ is a function which to eachwv∈ V∗V⊙
assigns a probability distribution on the set of outgoing edges ofv. The set of all strategies for
player� and player̂ is denotedΣ andΠ, respectively. We say that a strategyτ is memoryless (M)
if τ(wv) depends just on the last vertexv, anddeterministic (D)if τ(wv) is a Dirac distribution for all
wv. Strategies that are not necessarily memoryless are calledhistory-dependent (H), and strategies
that are not necessarily deterministic are calledrandomized (R). Hence, we can define the following
four classes of strategies: MD, MR, HD, and HR, where MD⊆ HD ⊆ HR and MD⊆ MR ⊆ HR,
but MR and HD are incomparable.

Each pair of strategies (σ, π) ∈ Σ × Π determines a uniqueplay of the gameG, which is a
Markov chainG(σ, π) whereV+ is the set of states, andwu x

−→wuu′ iff u 7→ u′ and one of the
following conditions holds:

• u ∈ V� andσ(wu) assignsx to u 7→ u′, wherex > 0;
• u ∈ V^ andπ(wu) assignsx to u 7→ u′, wherex > 0;
• u ∈ V© andu x

7→u′.
Let T ⊆ V be a set oftarget vertices. For each pair of strategies (σ, π) ∈ Σ × Π and everyv ∈ V,
let Pσ,πv (Reach(T)) be the probability of allw ∈ Run(G(σ, π), v) such thatw visits someu ∈ T
(technically, this means thatw(i) ∈ V∗T for somei ∈ N0). We say that a givenv ∈ V has a valueif
supσ∈Σ infπ∈ΠP

σ,π
v (Reach(T)) = inf π∈Π supσ∈ΣP

σ,π
v (Reach(T)). If v has a value, thenval(v) denotes

thevalue of vdefined by this equality. Since the set of all runs that visit a vertex ofT is obviously
Borel, we can apply the powerful result of Martin [18] (see also Theorem 3.3) and conclude that
every v∈ V has a value.

Definition 2.3. Let ε ≥ 0. We say that

• σ ∈ Σ is ε-optimal(or ε-optimal maximizing) if Pσ,πv (Reach(T)) ≥ val(v) − ε for all π ∈ Π;
• π ∈ Π is ε-optimal (or ε-optimal minimizing) if Pσ,πv (Reach(T)) ≤ val(v) + ε for all σ ∈ Σ.

A 0-optimal strategy is calledoptimal. A (quantitative) reachability objectiveis a pair (T,⊲̺)
whereT ⊆ V and⊲̺ is a probability constraint, i.e.,⊲ ∈ {>,≥} and̺ ∈ [0, 1]. If ̺ ∈ {0, 1}, then the
objective isqualitative. We say that

• σ ∈ Σ is (⊲̺)-winning if Pσ,πv (Reach(T)) ⊲ ̺ for all π ∈ Π;
• π ∈ Π is (⊲̺)-winning if Pσ,πv (Reach(T)) 6⊲ ̺ for all σ ∈ Σ.
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3. The Determinacy of Stochastic Games with Reachability Objectives

In this section we show that finitely-branching stochastic games with quantitative/qualitative
reachability objectives aredeterminedin the sense that for every quantitative reachability objective
(T,⊲̺) and every vertexv of a finitely branching stochastic game, one of the two players has a
(⊲̺)-winning strategy.

For the rest of this section, let us fix a finitely branching gameG = (V, 7→ , (V�,V^,V©),Prob)
and a set of target verticesT. Also, for everyn ∈ N0 and a pair of strategies (σ, π) ∈ Σ × Π, let
P
σ,π
v (Reachn(T)) be the probability of all runsw ∈ Run(G(σ, π), v) such thatw visits someu ∈ T in

at mostn transitions (clearly,Pσ,πv (Reach(T)) = limn→∞P
σ,π
v (Reachn(T))).

To keep this paper self-contained, we start by giving a simple proof of Martin’s weak de-
terminacy result (Equation 1.1) for the special case of finitely-branching games with reachability
objectives. For everyv ∈ V and i ∈ N0, we defineVi(v) ∈ N0 inductively as follows:V0(v) is
equal either to 1 or 0, depending on whetherv ∈ T or not, respectively.Vi+1(v) (for v < T) is equal
either to max{Vi(u) | v 7→ u}, min{Vi(u) | v 7→ u}, or

∑

v
x
7→u

x · Vi(u), depending on whetherv ∈ V�,
v ∈ V^, or v ∈ V©, respectively. (Forv ∈ T we putVi+1(v) = 1.) Further, putV(v) = lim i→∞Vi(v)
(note that the limit exists because the sequenceV0(v),V1(v), . . . is non-decreasing and bounded).
A straightforward induction oni reveals that

Vi(v) = max
σ∈Σ

min
π∈Π
Pσ,πv (Reachi(T)) = min

π∈Π
max
σ∈Σ
Pσ,πv (Reachi(T))

Also observe that, for everyi ∈ N0, there are fixed HD strategiesσi ∈ Σ andπi ∈ Π such that for
everyπ ∈ Π andσ ∈ Σ we have thatPσ,πi

v (Reachi(T)) ≤ Vi(v) ≤ Pσi ,π
v (Reachi(T)).

Theorem 3.1. Every v∈ V has a value and val(v) = V(v).

Proof. One can easily verify that

V(v) ≤ sup
σ∈Σ

inf
π∈Π
Pσ,πv (Reach(T)) ≤ inf

π∈Π
sup
σ∈Σ

Pσ,πv (Reach(T)) (3.1)

Hence, it suffices to show that, for everyv ∈ V, player^ has a (>V(v))-winning HD strategy ¯π in v.
For everyi ∈ N, let Wi be the set of allw ∈ V∗V^ such thatw(0) = v, length(w) = i, and

w(i) 7→w(i+1) for every 0≤ i < length(w). The strategy ¯π is defined inductively, together with an
auxiliary setΠi ⊆ Π. We start by puttingΠ1 = {πi | i ∈ N0}. Now assume thatΠi has already been
defined. For everywu ∈ Wi , let us fix an edgeu 7→ u′ such thatπ(wu)(u 7→ u′) = 1 for infinitely
manyπ ∈ Πi (observe that there must be such an edge becauseG is finitely branching). We put
π̄(wu)(u 7→ u′) = 1 andΠi+1 = {π ∈ Πi | π(wu)(u 7→ u′) = 1}.

We claim that for everyσ ∈ Σ we have thatPσ,π̄v (Reach(T)) ≤ V(v). Assume the opposite.
Then there is ¯σ ∈ Σ such thatPσ̄,π̄v (Reach(T)) = ̺ > V(v). Further, there is somek ∈ N such
that Pσ̄,π̄v (Reachk(T)) > V(v) + (̺ − V(v))/2. It follows directly from the definition of ¯π that
there is somem ∈ N,m > k such thatπm ∈ Πm and π̄(w) = πm(w) for every w ∈ Wm. Hence,
P
σ̄,πm
v (Reachm(T)) > V(v) + (̺ −V(v))/2 > V(v), which contradicts the definition ofV.

The characterization ofval(v) as a limit ofVi(v) has the following important consequence:

Lemma 3.2. For every fixed vertex v∈ V, we have that

∀ε>0 ∃σ ∈ Σ ∃n ∈ N ∀π ∈ Π : Pσ,πv (Reachn(T)) > val(v) − ε

Proof. It suffices to choose a sufficiently largen ∈ N and putσ = σn.
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Note that from the proof of Theorem 3.1 we obtain a HD strategy ¯π ∈ Π such that∀v ∈ V and
∀σ ∈ Σ we have thatPσ,π̄v (Reach(T)) ≤ val(v). This result can be strengthened to MD strategies.

Theorem 3.3. There is a MD strategyπ ∈ Π such that for every v∈ V and everyσ ∈ Σ we have
thatPσ,πv (Reach(T)) ≤ val(v). That is,π is an optimal minimizing strategy in every vertex.

Theorem 3.4(Determinacy). Let v ∈ V and let(T,⊲̺) be a (quantitative) reachability objective.
Then one of the two players has a(⊲̺)-winning strategy in v.

Proof outline. We prove that if player̂ does not have a⊲̺-winning strategy, then player� has a
⊲̺-winning strategy. That is, we prove the implication

∀π ∈ Π ∃σ ∈ Σ : Pσ,πv (Reach(T)) ⊲ ̺ ⇒ ∃σ ∈ Σ ∀π ∈ Π : Pσ,πv (Reach(T)) ⊲ ̺ (3.2)

If ⊲ is > or val(v) , ̺, then this follows easily by Theorem 3.3. For the constraint≥0 the statement
is trivial. Now suppose that⊲ is ≥ and̺ = val(v) > 0, and assume that the left-hand side in (3.2)
holds. Observe that we can safely restrict the set of edges available to player� to thoseu 7→ u′ where
val(u′) = val(u). Using the left-hand side of (3.2), one can show that for everys ∈ V, the value
val(s) stays unchanged in the new game obtained by applying this restriction. Due to Lemma 3.2, to
everys ∈ V in the new game we can associate a strategyσs ∈ Σ andns ∈ N such that for everyπ ∈ Π
we have thatPσs,π

s (Reachns(T)) > val(s)/2. The≥̺-winning strategyσ for player� is obtained by
“iterating” the strategiesσs in the following sense: we start withσv, and after performing a pathw
of lengthnv, we change the strategy toσs wheres is the last vertex visited byw. The strategyσs is
used for the nextns transition, and then we perform another “iteration”. Observe that each round of
this “iteration” decreases the probability thatT is not reached by a factor of 1/2, independently of
the strategy of player̂ .

4. Qualitative Reachability in Stochastic BPA Games

Stochastic BPA games correspond to stochastic games induced by stateless pushdown automata
or 1-exit recursive state machines (see Section 1). A formal definition follows.

Definition 4.1. A stochastic BPAgame is a tuple∆ = (Γ, ֒→ , (Γ�, Γ^, Γ©),Prob) whereΓ is a finite
stack alphabet, ֒→ ⊆ Γ × Γ≤2 is a finite set ofrules (whereΓ≤2 = {w ∈ Γ∗ : |w| ≤ 2}) such that
for eachX ∈ Γ there is some ruleX ֒→α, (Γ�, Γ^, Γ©) is a partition ofΓ, andProb is aprobability
assignmentwhich to eachX ∈ Γ© assigns a rational positive probability distribution on the set of
all rules of the formX ֒→α.

A configuration of ∆ is a word α ∈ Γ∗, which can intuitively be interpreted as the
current stack content where the leftmost symbol ofα is on top of the stack. Each sto-
chastic BPA game∆ = (Γ, ֒→ , (Γ�, Γ^, Γ©),Prob) determines a unique stochastic game
G∆ = (Γ∗, 7→ , (Γ�Γ∗, Γ^Γ∗, Γ©Γ∗ ∪ {ε}),Prob∆) where the transitions of7→ are determined as fol-
lows: ε 7→ ε, andXβ 7→αβ iff X ֒→α. The probability assignmentProb∆ is the natural extension of
Prob, i.e.,ε 1

7→ ε and for allX ∈ Γ© we have thatXβ x
7→αβ iff X x

֒→α.
In this section we consider stochastic BPA games with qualitative termination objectives (T,⊲̺)

whereT ⊆ Γ∗ is aregular set of configurations. For technical convenience, we define the size ofT
as the size of the minimal deterministic finite-state automatonAT = (Q, q0, δ, F) which recognizes
thereverseof T (if we view configurations as stacks, this corresponds to bottom-up direction). Note
that the automatonAT can be simulated on-the-fly in∆ by employing standard techniques (see, e.g.,
[11]). That is, the stack alphabet is extended toΓ × Q and the rules are adjusted accordingly (for
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example, ifX ֒→YZ, then for everyq ∈ Q the extended BPA game has a rule (X, q) ֒→ (Y, r)(Z, q)
whereδ(q,Z) = r). Note that the on-the-fly simulation ofAT in ∆ does not affect the way how
the game is played, and the size of the extended game in polynomial in|∆| and |AT |. The main
advantage of this simulation is that the information whether a current configuration belongs toT or
not can now be deduced just by looking at the symbol on top of the stack. This leads to an important
technical simplification in the definition ofT:

Definition 4.2. We say thatT ⊆ Γ∗ is simple if ε < T and there isΓT ⊆ Γ such that for every
Xα ∈ Γ+ we have thatXα ∈ T iff X ∈ ΓT .

Note that the requirementε < T in the previous definition is not truly restrictive, because each
BPA can be equipped with a fresh bottom-of-the-stack symbol which cannot be removed. Hence,
we can safely restrict ourselves just to simple sets of target configurations. All of the obtained
results (including the complexity bounds) are valid also for regular sets of target configurations.

Since stochastic BPA games have infinitely many vertices, even memoryless strategies are not
necessarily finitely representable. It turns out that the winning strategies for both players in sto-
chastic BPA games with qualitative reachability objectives are (effectively)regular in the following
sense:

Definition 4.3. Let ∆ = (Γ, ֒→ , (Γ�, Γ^, Γ©),Prob) be a stochastic BPA game, and let⊙ ∈ {�,^}.
We say that a strategyτ for player⊙ is regular if there is a deterministic finite-state automaton
A over the alphabetΓ such that, for everyXα ∈ Γ⊙Γ∗, the value ofτ(Xα) depends just on the
control state entered byA after reading the reverse ofXα (i.e., the automatonA reads the stack
bottom-up).

For the rest of this section, we fix a stochastic BPA game∆ = (Γ, ֒→ , (Γ�, Γ^, Γ©),Prob) and a
simple setT of target configurations. Since we are interested just in reachability objectives, we can
safely assume that for everyR ∈ ΓT , the only rule whereR appears on the left-hand side isR֒→R
(this assumption simplifies the formulation of some claims). We useTε to denote the setT ∪ {ε},
and we also slightly abuse the notation by writingε instead of{ε} at some places (particularly in
expressions such asReach(ε)).

For a given setC ⊆ Γ∗ and a given qualitative probability constraint⊲̺, we use [C]⊲̺
�

and [C]⊲̺
^

to denote the set of allα ∈ Γ∗ from which player� and player̂ has a (⊲̺)-winning strategy in the
game∆ with the reachability objective (C,⊲̺), respectively. Observe that [C]⊲̺

�
= Γ∗ r [C]⊲̺

^
due

to the determinacy results presented in Section 3.
In the forthcoming subsections we examine the sets [T]⊲̺

�
for the two meaningful qualitative

probability constraints>0 and=1 (observe that [T]≥0
�
= Γ∗ and [T]>1

�
= ∅). We show that the

membership to [T]>0
�

and [T]=1
�

is in P and NP ∩ co-NP, respectively. The same holds for the
sets [T]>0

^
and [T]=1

^
, respectively. Further, we show that all of these sets are effectively regular,

and that (⊲̺)-winning strategies for both players are effectively computable. The associated upper
complexity bounds are essentially the same as above.

4.1. The Set[T]>0
�

We start by observing that the sets [T]>0
�

and [T]>0
^

are regular, and the associated finite-state
automata have a fixed number of control states. A proof of this observation is actually straightfor-
ward.

Proposition 4.4. Let A = [T]>0
�
∩ Γ and B = [Tε]>0

�
∩ Γ. Then[T]>0

�
= B∗A Γ∗ and [Tε]>0

�
=

B∗A Γ∗ ∪B∗. Consequently,[T]>0
^
= Γ∗ r [T]>0

�
= (B rA )∗ ∪ (B rA )∗(ΓrB)Γ∗.
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Our next proposition says how to compute the setsA andB.

Proposition 4.5. The pair(A ,B) is the least fixed-point of the function F: (2Γ × 2Γ)→ (2Γ × 2Γ),
where F(A, B) = (Â, B̂) is defined as follows:

Â = ΓT ∪ A∪ {X ∈ Γ� ∪ Γ© | there is X֒→ β such thatβ ∈ B∗AΓ∗}

∪ {X ∈ Γ^ | for all X ֒→ β we have thatβ ∈ B∗AΓ∗}

B̂ = ΓT ∪ B∪ {X ∈ Γ� ∪ Γ© | there is X֒→ β such thatβ ∈ B∗AΓ∗ ∪ B∗}

∪ {X ∈ Γ^ | for all X ֒→ β we have thatβ ∈ B∗AΓ∗ ∪ B∗}

Since the least fixed-point of the functionF defined in Proposition 4.5 is computable in poly-
nomial time, the finite-state automata recognizing the sets [T]>0

�
and [T]>0

^
are computable in poly-

nomial time. Thus, we obtain the following theorem:

Theorem 4.6. The membership to[T]>0
�

and [T]>0
^

is decidable in polynomial time. Both sets are
effectively regular, and the associated finite-state automata are constructible in polynomial time.
Further, there are regular strategiesσ ∈ Σ and π ∈ Π constructible in polynomial time that are
(>0)-winning in every configuration of[T]>0

�
and [T]>0

^
, respectively.

4.2. The Set[T]=1
�

The results presented in this subsection constitute the very core of this paper. The problems
are more complicated than in the case of [T]>0

�
, and several deep observations are needed to tackle

them. We start by showing that the sets [T]=1
�

and [T]=1
^

are regular.

Proposition 4.7. LetA = [Tε]=1
^
∩Γ, B = [Tε]=1

�
∩[T]=1

^
∩Γ, C = [T]=1

�
∩Γ. Then[T]=1

�
= B∗C Γ∗

and [T]=1
^
= B∗A Γ∗ ∪B∗.

Proposition 4.7 can be proven by a straightforward induction on the length of configurations.
Observe that if there is an algorithm which computes the setA = [Tε]=1

^
∩ Γ for an arbitrary

stochastic BPA game, then this algorithm can also be used to compute the set [T]=1
^
∩ Γ (this is

becauseX ∈ [T]=1
^

iff X̂ ∈ [T̂ε]=1
^

, where [T̂ε]=1
^

is considered in a stochastic BPA game∆̂ obtained
from ∆ by adding two fresh stochastic symbolsX̂,Z together with the ruleŝX 1

֒→XZ, Z 1
֒→Z, and

settingT̂ = T). Due to Theorem 3.4, we have thatC = Γ r ([T]=1
^
∩ Γ), and thus we can compute

also the setC . SinceB = Γ r (A ∪ C ) (again by Theorem 3.4), we can also compute the setB.
Hence, the core of the problem is to design an algorithm which computes the setA .

In the next definition we introduce the crucial notion of aterminalset of stack symbols, which
plays a key role in our considerations.

Definition 4.8. A set M ⊆ Γ is terminal if the following conditions are satisfied:

• ΓT ∩ M = ∅;
• for everyZ ∈ M ∩ (Γ� ∪ Γ©) and every rule of the formZ ֒→ α we have thatα ∈ M∗;
• for everyZ ∈ M ∩ Γ^ there is a ruleZ ֒→α such thatα ∈ M∗.

Since∅ is terminal and the union of two terminal sets is terminal, there is the greatest terminal
set that will be denotedC in the rest of this section. Also note thatC determines a unique stochastic
BPA game∆C obtained from∆ by restricting the set of stack symbols toC and including all rules
X ֒→α whereX, α ∈ C∗. The set of rules of∆C is denoted֒→C. The probability of stochastic rules
in ∆C is the same as in∆.
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Definition 4.9. A stack symbolY ∈ Γ is awitnessif one of the following conditions is satisfied:
(1) Y ∈ [Tε]>0

^
;

(2) Y ∈ C andY ∈ [ε]=1
^

, where the set [ε]=1
^

is computed in∆C.

The set of all witnesses is denotedW.

Observe that the problem whetherY ∈W for a givenY ∈ Γ is decidable inNP∩co-NP, because
Condition (1) is decidable inP due to Theorem 4.6, the setC is computable in polynomial time,
and the membership to [ε]=1

^
is in NP∩ co-NPdue to [15] (this is the only place where we use the

decision algorithm for qualitative termination designed in [15]).
Obviously,W ⊆ A . One may be tempted to think that the setA is just theattractor of W,

denotedAtt(W), which consists of allV ∈ Γ from which player̂ can enforce visiting a witness with
a positive probability (i.e.,V ∈ Att(W) iff ∃π ∈ Π ∀σ ∈ Σ : Pσ,πV (Reach(WΓ∗)) > 0). However,
this is not true, as it is demonstrated in the following example:

Example 4.10. Consider a stochastic BPA gamê∆ = ({X,Y,Z,R}, ֒→ , ({X}, ∅, {Y,Z,R}),Prob),
where X ֒→ X, X ֒→Y, X ֒→Z, Y 1

֒→Y, Z 1/2
֒→Y, Z 1/2

֒→R, R 1
֒→R, and the setTΓ contains justR.

The game is initiated inX, and the relevant part ofG∆̂ (reachable fromX) is shown in the following
figure:

Y X Z R1

1
2

1
1
2

Observe thatA = {X,Y,Z}, C =W = {Y}, butAtt({Y}) = {Z,Y}.

In Example 4.10, the problem is that player� can use a strategy which always selects the rule
X ֒→X with probability one, and player̂ has no way to influence this. Nevertheless, observe
that player� has essentially two options: he either enters a symbol ofAtt({Y}), or he performs the
loop X ֒→X forever. The second possibility can be analyzed by “cutting off” the setAtt({Y}) and
recomputing the set of all witnesses together with its attractor in the resulting stochastic BPA game,
which contains onlyX and the ruleX ֒→X. Observe thatX is a witness in this game, and hence it
can be safely added to the setA . Thus, the computation of the setA for the stochastic BPA game
∆̄ is completed.

For general stochastic BPA games, the algorithm for computing the setA proceeds by initiating
A to ∅ and then repeatedly computing the setAtt(W), settingA := A ∪ Att(W), and “cutting off”
the setAtt(W) from the game. This goes on until the game or the setAtt(W) becomes empty. The
way how Att(W) is “cut off” from the current game is described below. First, let us present an
important (and highly non-trivial) result which states the following:

Proposition 4.11. If A , ∅, then W, ∅.

Proof outline. We show that ifW = ∅, then there is a MR strategyσ ∈ Σ such that for everyX ∈ Γ
and everyπ ∈ Π we have thatPσ,πX (Reach(Tε)) = 1. In particular, this means thatA = ∅.

SinceW = ∅, the condition of Definition 4.9 does not hold for anyY ∈ Γ, which in particular
means that for allY ∈ C we have thatY < [ε]=1

^
, i.e., Y ∈ [ε]=1

�
by Theorem 3.4 (here, the sets

[ε]=1
^

and [ε]=1
�

are considered in the game∆C). Due to [13], there exists a SMD strategyσT for
player� in ∆C such that for everyY ∈ C and every strategyπ of player^ in ∆C we have that
PσT ,π(Reach(ε)) = 1. Now we define the promised MR strategyσ ∈ Σ as follows: for a given
Xα ∈ Γ�Γ∗, we putσ(Xα) = σT(Xα) if Xα starts with someβ ∈ C∗ where|β| > |∆|. Otherwise,
σ(Xα) returns the uniform probability distribution over the outgoing transitions ofXα.
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Now, let us fix some strategyπ ∈ Π. Our goal is to show thatPσ,πX (Reach(Tε)) = 1. By
analyzing the playG∆(σ, π), one can show that there is a set of runsV ⊆ Run(G∆(σ, π),X) and a set
of rules ֒→ V ⊆ ֒→ such that

(A) P(V) > 0, ֒→ V ⊆ ֒→C, and for everyw ∈ V we have thatw does not visitTε and the set of
rules that are used infinitely often inw is exactly ֒→ V.

Observe that eachw ∈ V has a finite prefixvw such that the rules of֒→r ֒→C are used only invw.
Further, we can partition the runs ofV into countably many sets according to this prefix. One of
these sets must have a positive probability, and hence we can conclude that there isU ⊆ V and a
finite pathv ∈ FPath(X) such that

(B) P(U) > 0, and eachw ∈ U satisfies the following:w starts withv, the rules of֒→r ֒→C

are used only in the prefixv of w, and the length of every configuration ofw visited after
the prefixv is at least as large as the length of the last configuration in the prefixv (the last
condition still requires a justification which is omitted in here).

We show thatP(U) = 0, which is a contradiction. Roughly speaking, this is achieved by observing
that, after performing the prefixv, the strategiesσ andπ can be “simulated” by strategiesσ′ and
π′ in the gameG∆C so that the set of runsU is “projected” onto the set of runsU′ in the play
G∆C(σ′, π′) whereP(U) = P(U′). Then, it is shown thatP(U′) = 0. This is because the strategy
σ′ is “sufficiently similar” to the strategyσT (see above), and hence the probability of visitingε
in G∆C(σ′, π′) is 1. From this we getP(U′) = 0, becauseU′ consists only of infinite runs, which
cannot visitε. The arguments are subtle and rely on several auxiliary technical observations.

In other words, the non-emptiness ofA is always certified by at least one witness ofW, and
hence each stochastic BPA game with a non-emptyA can be made smaller by “cutting off” Att(W).

The procedure which “cuts off” the symbolsAtt(W) is not completely trivial. A naive idea of
removing the symbols ofAtt(W) together with the rules where they appear (this was used for the
stochastic BPA game of Example 4.10) does not always work. This is illustrated in the following
example:

Example 4.12. Consider a stochastic BPA gamê∆ = ({X,Y,Z,R}, ֒→ , ({X}, ∅, {Y,Z,R}),Prob),
where X ֒→X, X ֒→Y, X ֒→ZY, Y 1

֒→Y, Z 1/2
֒→X, Z 1/2

֒→R, R 1
֒→R, and TΓ̂ = {R}. The game is

initiated in X. We have thatA = {Y} (observe thatX,Z,R ∈ [Tε]=1
�

, because the strategyσ
of player� which always selects the ruleX ֒→ZY is (=1)-winning). We have thatC = W =

Att(W) = {Y}. If we removeY together with all rules whereY appears, we obtain the game
∆′ = ({X,Z,R}, ֒→ , ({X}, ∅, {Z,R}),Prob), whereX ֒→ X, Z 1/2

֒→ X, Z 1/2
֒→R, R 1

֒→R. In the game∆′, X
becomes a witness and hence the algorithm would incorrectly putX into A .

Hence, the “cutting” procedure must be designed more carefully. Intuitively, we do not remove
rules of the formX ֒→ZY whereY ∈ Att(W), but change them intoX ֒→Z′Y, where the symbolZ′

behaves likeZ but it cannot reachε. Thus, we obtain the following theorem:

Theorem 4.13. The membership to[T]=1
�

and [T]=1
^

is decidable inNP ∩ co-NP. Both sets are
effectively regular, and the associated finite-state automata are constructible by a deterministic
polynomial-time algorithm withNP ∩ co-NP oracle. Further, there is a regular strategyσ ∈ Σ
that is (=1)-winning in every configuration of[T]=1

�
. Moreover, the strategyσ is constructible by a

deterministic polynomial-time algorithm withNP ∩ co-NP oracle.

Note that in Theorem 4.13, we do not claim the existence (and constructability) of a regular
(=1)-winning strategyπ for player^. Actually, such a strategydoeseffectively exist, but we only
managed to find a relatively complicated and technical proof which, in our opinion, is of little
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practical interest (we do not see any natural reason for implementing a strategy which guarantees
that the probability of visitingT is strictly less than 1). Hence, this proof is not included in the paper.

5. Conclusions

We have solved the qualitative reachability problem for stochastic BPA games, retaining the
same upper complexity bounds that have previously been established for termination [15]. One
interesting question which remains unsolved is the decidability of the problem whetherval(α) = 1
for a given BPA configurationα (we can only decide whether player� has a (=1)-winning strat-
egy, which is sufficient but not necessary forval(α) = 1). Another open problem is quantitative
reachability for stochastic BPA games, where the methods presented in this paper seem insufficient.
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