On the Decidability of Temporal Properties of
Probabilistic Pushdown Automata

Tomas Brazdil*, Antonin Kuéera**, and Oldfich Strazovsky

Faculty of Informatics, Masaryk University,
Botanicka 68a, 60200 Brno, Czech Republic.
{brazdil,kucera,strazovsky}0fi.muni.cz

Abstract. We consider qualitative and quantitative model-checking
problems for probabilistic pushdown automata (pPDA) and vari-
ous temporal logics. We prove that the qualitative and quantita-
tive model-checking problem for w-regular properties and pPDA is in
2-EXPSPACE and 3-EXPTIME, respectively. We also prove that
model-checking the qualitative fragment of the logic PECTL™* for pPDA
is in 2-EXPSPACE, and model-checking the qualitative fragment of
PCTL for pPDA is in EXPSPACE. Furthermore, model-checking the
qualitative fragment of PCTL is shown to be EXPTIME-hard even for
stateless pPDA. Finally, we show that PCTL model-checking is unde-
cidable for pPDA, and PCTL™ model-checking is undecidable even for
stateless pPDA.

1 Introduction

In this paper we concentrate on a subclass of discrete probabilistic systems (see,
e.g., [22]) that correspond to probabilistic sequential programs with recursive
procedure calls. Such programs can conveniently be modeled by probabilistic
pushdown automata (pPDA), where the stack symbols correspond to procedures
and global data is stored in the finite control. This model is equivalent to proba-
bilistic recursive state machines, or recursive Markov chains (see, e.g., [3, 16, 15]).
An important subclass of pPDA are stateless pPDA, denoted pBPA!. In the non-
probabilistic setting, BPA are often easier to analyze than general PDA (i.e., the
corresponding algorithms are more efficient), but they still retain a reasonable
expressive power which is sufficient, e.g., for modelling some problems of inter-
procedural dataflow analysis [12]. There is a close relationship between pBPA
and stochastic context-free grammars. In fact, pPBPA are stochastic context-free
grammars, but they are seen from a different perspective in the setting of our
paper. We consider the model-checking problem for pPDA /pBPA systems and
properties expressible in probabilistic extensions of various temporal logics.

* Supported by the Grant Agency of the Czech Republic, grant No. 201/03/1161.
** Supported by the Alexander von Humboldt Foundation and by the 1M National
Research Centre “Institute for Theoretical Computer Science (ITI)”.
! This notation is borrowed from process algebra; stateless PDA correspond (in a
well-defined sense) to processes of the so-called Basic Process Algebra.
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The State of the Art. Methods for automatic verification of probabilistic
systems have so far been examined mainly for finite-state probabilistic sys-
tems. Model-checking algorithms for various (probabilistic) temporal logics like
LTL, PCTL, PCTL*, probabilistic p-calculus, etc., have been presented in
[23, 19, 26, 18, 4, 10, 20, 11]. As for infinite-state systems, most works so far
considered probabilistic lossy channel systems [21] which model asynchronous
communication through unreliable channels [5, 1, 2, 6, 25]. The problem of de-
ciding probabilistic bisimilarity over various classes of infinite-state probabilistic
systems has recently been considered in [7]. Model-checking problems for pPDA
and pBPA processes have been studied in [13]. In [13], it has been shown that
the qualitative/quantitative random walk problem for pPDA is in EXPTIME,
that the qualitative fragment of the logic PCTL is decidable for pPDA (but
no upper complexity bound was given), and that the qualitative/quantitative
model-checking problem for pPDA and a subclass of w-regular properties defin-
able by deterministic Biichi automata is also decidable. The reachability problem
for pPDA and pBPA processes is studied in greater depth in [16], where it is
shown that the qualitative reachability problem for pBPA is solvable in polyno-
mial time, and a fast-converging algorithm for quantitative pPDA reachability
is given.

Our Contribution. In this paper we continue the study initiated in [13]. We
still concentrate mainly on clarifying the decidability /undecidability border for
model-checking problems, but we also pay attention to complexity issues. Basic
definitions together with some useful existing results are recalled in Section 2.
As a warm-up, in Section 3 we show that both qualitative and quantitative
model-checking problem for w-regular properties and pPDA is decidable. More
precisely, if w-regular properties are encoded by Biichi automata, then the quali-
tative variant of the problem is in 2-EXPSPACE, and the quantitative one is in
3-EXPTIME. The proof is obtained by extending and modifying the construc-
tion for deterministic Biichi automata given in [13] so that it works for Muller
automata. Note that the considered problems are known to be PSPACE-hard
even for finite-state systems [26]. The core of the paper is Section 4. First we
prove that model-checking general PCTL is undecidable for pPDA, and model-
checking PCTL™ is undecidable even for pBPA. Since the structure of formu-
lae which are constructed in our proofs is relatively simple, our undecidability
results hold even for fragments of these logics. From a certain point of view,
these results are tight (see Section 4). Note that in the non-probabilistic case,
the model-checking problems for logics like CTL, CTL*, or even the modal pu-
calculus, are decidable for PDA. Our undecidability proofs are based on a careful
arrangement of transition probabilities in the constructed pPDA so that various
nontrivial properties can be encoded by specifying probabilities of certain events
(which are expressible in PCTL or PCTL™). We believe that these tricks might
be applicable to other problems and possibly also to other models. In the light of
these undecidability results, it is sensible to ask if the model-checking problem is
decidable at least for some natural fragments of probabilistic branching-time log-
ics. We show that model-checking the qualitative fragment of the logic PECTL*
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is decidable for pPDA, and we give the 2-EXPSPACE upper bound. For the
qualitative fragment of PCTL we give the EXPSPACE upper bound. We also
show that model-checking the qualitative fragment of PCTL is EXPTIME-
hard even for pBPA processes. Our proof is a simple modification of the one
given in [27] which shows EXPTIME-hardness of the model-checking problem
for (non-probabilistic) CTL and PDA. Due to space constraints, formal proofs
are omitted. We refer to [8] for technical details.

2 Preliminaries

For every alphabet X', the symbols X* and X“ denote the sets of all finite and
infinite words over the alphabet X', respectively. The length of a given w €
2*UX¥ is denoted |w| (if w € X then we put |w| = w). For every w € X*U X%
and every 0 < i < |w|, the symbols w(i) and w; denote the i+1-th letter of w
and the suffix of w which starts with w(i), respectively. By writing w(¢) or w;
we implicitly impose the condition that the object exists.

Definition 1. A Biichi autonaton is a tuple B = (X, B, 9,br, Acc), where X is
a finite alphabet, B is a finite set of states, o C B x X X B is a transition
relation (we write b = ' instead of (b,a,b’) € o), by is the initial state, and
Acc C B is a set of accepting states.

A word w € X% is accepted by B if there is a run of B on w which visits some
accepting state infinitely often. The set of all w € X“ which are accepted by B
is denoted L(B).

Definition 2. A probabilistic transition system is a triple 7 = (S, —, Prob)
where S is a finite or countably infinite set of states, — C S x S s a tran-
sition relation, and Prob is a function which to each transition s — t of T
assigns its probability Prob(s — t) € (0,1] so that for every s € S we have that
Yoy Prob(s — t) € {0,1}. (The sum above can be 0 if s does not have any
outgoing transitions.)

In the rest of this paper we write s = ¢ instead of Prob(s — t) = . A path in
7 is a word w € S* U S* such that w(i—1) — w(i) for every 1 < i < |w|. A run
is a maximal path, i.e., a path which cannot be prolonged. The sets of all finite
paths, all runs, and all infinite runs of 7 are denoted FPath, Run, and [Run,
respectively?. Similarly, the sets of all finite paths, runs, and infinite runs that
start in a given s € S are denoted FPath(s), Run(s), and IRun(s), respectively.

Each w € FPath determines a basic cylinder Run(w) which consists of all
runs that start with w. To every s € S we associate the probabilistic space
(Run(s), F,P) where F is the o-field generated by all basic cylinders Run(w)
where w starts with s, and P : F — [0, 1] is the unique probability function such
that P(Run(w)) = Hi‘:‘flxi where w(i—1) =% w(i) for every 1 < i < |w| (if
|w| =1, we put P(Run(w)) = 1).

2 In this paper, 7 is always clear from the context.
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The logics PCTL, PCTLT, PCTL*, PECTL*, and their qualitative
fragments. Let Ap = {a,b,c,...} be a countably infinite set of atomic propo-
sitions. The syntax of PCTL* state and path formulae is given by the following
abstract syntax equations (for simplicity, we omit the bounded ‘until’ operator
from the syntax of path formulae).

Pu=tt|a| DD ANDy | P %
(p::=¢|ﬁ90|901/\902|/¥§0|§01u902

Here a ranges over Ap, o € [0,1], and ~ € {<,<,>,>}. The logic PCTL is a
fragment of PCTL* where state formulae are defined as for PCTL* and path
formulae are given by the equation ¢ 1= X& | &; U $3. The logic PCTL™T is
a fragment of PCTL* where the X and U operators in path formulae can be
combined using Boolean connectives, but they cannot be nested. Finally, the logic
PECTL* is an extension of PCTL* where only state formulae are introduced and
have the following syntax:

@:::tt|a|ﬁ¢|¢1/\¢gllp~96

Here B is a Biichi automaton over an alphabet 2{%1::®n} where each &; is a
PECTL* formula.

Let T = (S,—,Prob) be a probabilistic transition system, and let
v: Ap — 2% be a waluation. The semantics of PCTL* is defined below. State
formulae are interpreted over S, and path formulae are interpreted over IRun.
(Alternatively, path formulae could also be interpreted over Run. This would
not lead to any problems, and our model-checking algorithms would still work
after some minor modifications. We stick to infinite runs mainly for the sake of
simplicity.)

s EY tt wE" P iff w(0) =" &

sE"a iff s €wv(a) wEY - iff wlpE” @

sEY =D if sEV D wEY piApe iff wEY 1 and w EY @2
s EY P1AD2 i s EY &1 and s EY & wEY X iff wi EY ¢

s Y P iff P({weIRun(s) | wk="g})~o w =" o1l ga i 3> 01wy ¥ g5 and
wiE" 1 for all 0<i<j

For PCTL, the semantics of path formulae is redefined to

w Y XD it w(l) = o
wEYOLUDP, iff Fj>0:w(j) EY P2 and w(i) EY Dy for all 0 <i < j

The semantics of a PECTL* formula P~¢B, where B is a Biichi automaton
over an alphabet 2{%1:®n} s defined as follows. First, we can assume that
the semantics of the PECTL* formulae &4, ---,®,, has already been defined.
This means that for each w € IRun we can define an infinite word wg over
the alphabet 2{®1®n} by wy(i) = {® € {By,---,P,} | w(i) =¥ &}. For
every state s, let Run(s,B) = {w € IRun(s) | wg € L(B)}. We stipulate that
s EY P~eB iff P(Run(s,B)) ~ o.
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The qualitative fragments of PCTL, PCTL*, and PECTL*, denoted qPCTL,
qPCTL*, and qPECTL*, resp., are obtained by restricting the allowed opera-
tor/number combinations in P~2p and P~2B subformulae to ‘< 0’ and ‘> 17,
which can also be written as ‘=0’ and ‘= 17, resp. (Observe that ‘< 1’, > 0 are
definable from ‘< 0’, ‘> 1’, and negation.)

Probabilistic PDA. A probabilistic pushdown automaton (pPDA) is a tuple
A = (Q,TI,6, Prob) where Q is a finite set of control states, I' is a finite stack
alphabet, 6 C Q x I' x Q x I'* is a finite transition relation (we write pX — qa
instead of (p, X,q,a) € §), and Prob is a function which to each transition
pX — qa assigns its probability Prob(pX — qa) € (0,1] so that for all p € Q
and X € I" we have that 3 \_, , Prob(pX — qa) € {0,1}.

A pBPA is a pPDA with just one control state. Formally, a pBPA is under-
stood as a triple A = (I, §, Prob) where § C I" x I'*.

In the rest of this paper we adopt a more intuitive notation, writing pX = qa
instead of Prob(pX — ga) = x. The set @ x I'* of all configurations of A is
denoted by C(A). We also assume (w.l.o.g.) that if pX — ga € §, then |o| < 2.
Given a configuration pXa of A, we call pX the head and « the tail of pXa.
To A we associate the probabilistic transition system 74 where C(A) is the set
of states and the probabilistic transition relation is determined by pX 8 = qo3
iff pX 5 qo.

The model checking problem for pPDA configurations and any nontrivial
class of properties is clearly undecidable for general valuations. Therefore, we
restrict ourselves to simple valuations where the (in)validity of atomic proposi-
tions depends just on the current control state and the current symbol on top of
the stack. Alternatively, we could consider regular valuations where the set of all
configurations that satisfy a given atomic proposition is encoded by a finite-state
automaton. However, regular valuations can be “encoded” into simple valuations
by simulating the finite-state automata in the stack (see, e.g., [14]), and therefore
they do not bring any extra expressive power.

Definition 3. A wvaluation v is simple if there is a function f, which assigns to
every atomic proposition a subset of QQ x I' such that for every configuration pa
and every a € Ap we have that pa EY a iff « = Xo' and pX € f,(a).

Random Walks on pPDA Graphs. Let 7 = (S, —, Prob) be a probabilis-
tic transition system. For all s € S, C1,Co C S, let Run(s,C1UC2) = {w €
Run(s) | 35 > 0 : w(j) € C2 and w(i) € Cy for all 0 < ¢ < j}. An instance of
the random walk problem is a tuple (s,C1,Ca,~,p), where s € S, C1,C2 C S,
~ € {<,<,>,>,=}, and ¢ € [0,1]. The question is if P(Run(s,C1UCs)) ~ o.
In [13], it was shown that the random walk problem for pPDA processes and
simple sets of configurations is decidable (a simple set is a set of the form
UPXEH{an | @ € I'*} where H is a subset of @xI"). More precisely, it was
shown that for a given tuple (pX, Cy,Ca, ~, p), where C1,Cs are simple sets of con-
figurations of a given pPDA system A, there is an efficiently constructible system
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of recursive quadratic equations such that the probability P(Run(pX,C1U C2))
is the first component in the tuple of non-negative real values which form the
least solution of the system. Thus, the relation P(Run(pX,C1UCz2)) ~ p can
effectively be expressed in (R, +, *, <) by constructing a formula @ saying that a
given vector @ is the least solution of the system and (1) ~ g. Since the quan-
tifier alternation depth in the constructed formula is fixed, it was concluded in
[13] that the random walk problem for pPDA and simple sets of configurations
is in EXPTIME by applying the result of [17]. Later, it was observed in [16]
that the existential fragment of (R, +, x, <) is sufficient to decide the quantita-
tive reachability problem for pPDA. This observation applies also to the random
walk problem. Actually, it follows easily from the results of [13] just by observ-
ing that the existential (or universal) fragment of (R,+,x*,<) is sufficient to
decide whether P(Run(pX,C1UCs)) ~ o when ~ € {<,<} (or ~ € {>,>},
resp.). Since the existential and universal fragments of (R, +,x*, <) are decid-
able in polynomial space [9], we obtain the following result which is used in our
complexity estimations:

Lemma 4. The random walk problem for pPDA processes and simple sets of
configurations is in PSPACE.

3 Model-Checking w-regular Properties

In this section we show that the qualitative and quantitative model-checking
problems for pPDA and w-regular properties represented by Biichi automata
are in 2-EXPSPACE and 3-EXPTIME, respectively. For both of these prob-
lems there is a PSPACE lower complexity bound due to [26]. Our proof is a
generalization of the construction for deterministic Biichi automata presented in
[13]. We show that this construction can be extended to (deterministic) Muller
automata, which have the same expressive power as general Biichi automata.

Definition 5. A Muller automaton is a tuple M = (X, M, o,my,F), where X
is a finite alphabet, M is a finite set of states, o: M x X — M is a (total)
transition function (we write m < m’ instead of o(m,a) = m’), my is the initial
state, and F C 2M is a set of accepting sets.

For every infinite run v of M, let inf(v) be the set of all states which appear
in v infinitely often. A word w € X is accepted by M if inf(v) € F, where v is
the (unique) run of M on w.

For the rest of this section, we fix a pPDA A = (Q, I, Prob). We consider
specifications given by Muller automata M having @) X I" as their alphabet. Each
infinite run w of A determines a unique word v € (QxI")¥, where v(i) is the head
of w(i) for every i € Ny. A run w of A is accepted by M if its associated word v is
accepted by M. For a given configuration pX, let Run(pX, M) be the set of all
runs of JRun(pX) that are accepted by M. Our aim is to show that the problem
if P(Run(pX, M)) ~ o for given A, pX, M, ~ € {<,<,>,>}, and ¢ € [0,1],
is in 2-EXPTIME. In the qualitative case, we derive the EXPSPACE upper
bound.
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Theorem 6. The quantitative model-checking problem for pPDA processes and
w-regular properties represented by Muller automata s in 2-EXPTIME, and
the qualitative variant of this problem is in EXPSPACE.

Corollary 7. The quantitative model-checking problem for pPDA processes and
w-regular properties represented by Buchi automata is in 3-EXPTIME, and the
qualitative variant of this problem is in 2-EXPSPACE.

4 Model-Checking PCTL, PCTL*, and PECTL*
Properties

We start by proving that model-checking PCTL is undecidable for pPDA pro-
cesses, and model-checking PCTL™ is undecidable for pBPA processes.

A Minsky machine with two counters is a finite sequence C of labeled instruc-
tions fy:insty, - - - , €y inst,, where n > 1, inst,, = halt, and for every 1 < i < n,
the instruction inst; is of one of the following two types:

Type 1. cri=cr+1; goto ¢
Type I1. if ¢, =0 then goto ¢; else ¢, :=c, —1; goto /;

Here r € {1,2} is a counter index. A configuration of C is a triple (¢;,v1,v2),
where 1 < i < nand v1,ve € Ny are counter values. Each configuration (¢;,v1,v2)
has a unique successor which is the configuration obtained by performing inst; on
(4;,v1,v2). The halting problem for Minsky machines with two counters initial-
ized to zero, i.e., the question whether (¢1, 0, 0) eventually reaches a configuration
of the form (¢,,,v1,v2), where v1,v2 € Ny, is undecidable [24].

Our aim is to reduce the halting problem for Minsky machines to the PCTL
model checking problem for pPDA. Since a full proof is somewhat technical, we
give just an intuitive explanation and refer to [8] for missing details.

Let C be a Minsky machine. We construct a pPDA system A, a process pa
of A, and a PCTL formula v such that C halts iff pa = 4. The formula v looks
as follows:

P = 7)>O((Ch€d€ = ((Pstate N Qzero N (Pcount)) U halt)

Here check and halt are atomic propositions, @siate and @.eq, are qualitative
formulae with just one U operator, and @ ,unt is a quantitative formula with just
one U operator. So, Ycount is the only non-qualitative subformula in 1. The stack
content of the initial process pa corresponds to the initial configuration of C. In
general, a configuration (¢;,v1,v2) is represented by the sequence ¢; A¥* B¥2 of
stack symbols, and individual configurations are separated by the # marker.
Starting from pa, A tries to “guess” the successor configuration of C by
pushing a sequence of stack symbols of the form ¢; A" B¥24. The transitions
of A are arranged so that only strings of this syntactical form can be pushed.
Transition probabilities do not matter here, the only important thing is that the
“right” configuration can be guessed with a non-zero probability. After guessing
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the configuration (i.e., after pushing the symbol ¢;), A inevitably pushes one
of the special “checking” symbols of the form (¢;,¢;,r,d), where 1 < i < n,
r € {1,2} is a counter index, and d € {—1,0, 1} a counter change (note that the
previously pushed ¢; is in the second component of the checking symbol). An
intuitive meaning of checking symbols is explained later. Let us just note that
checking symbols correspond to instructions of C and hence not all tuples of
the form (¢;,¢;,7,d) are necessarily checking symbols. Still, there can be several
checking symbols with the same ¢; in the second component, and A can freely
choose among them. Actually, the checking symbol is pushed together with ¢;,
and hence the guessing phase ends in a “checking configuration” where the stack
looks as follows: (¢;, ¢;, 7, d)¢; A"* B¥# . ... The atomic proposition check is valid
in exactly all checking configurations (i.e., configurations with a checking symbol
on top of the stack), and the proposition halt is valid in exactly those configu-
rations where £,, (i.e., the label of halt) is on top of the stack.

From a checking configuration, A can either pop the checking symbol (note
that the symbol ¢; appears at the top of the stack at this moment) and go on
with guessing another configuration of C, or perform other transitions so that
the subformulae @siate, Prero, and Yeount are (possibly) satisfied. Hence, the
formula 1 says that there is a finite sequence of transitions from pa leading
to a “halting” configuration along which all checking configurations satisfy the
formulae Ystate, Prero, ANA Peount- As can be expected, these three subformulae
together say that the configuration of C just pushed to the stack is the successor
of the configuration which was pushed previously. Let us discuss this part in
greater detail.

First, let us clarify the meaning of checking symbols. Intuitively, each check-
ing symbol corresponds to some computational step of C. More precisely, the set
of all checking symbols is the least set 7 such that for every 1 <i < n we have
that

—if inst; = ¢ :=c¢, +1; goto ¢;, then (¢;,¢;,7,1) €T;
—if inst; = ifc, = 0 then goto ¢; else ¢, := ¢, — 1; goto {;, then
(Eiagjara ),(fi,fk,’l“,—l)ET.

Note that the checking symbol (¢;, ¢;, 7, d) which is pushed together with ¢; at the
end of guessing phase is chosen freely. So, this symbol can also be chosen “badly”
in the sense that ¢; is not the label of the previously pushed configuration, or
the wrong branch of a Type II instruction is selected.

The formula gt intuitively says that we have chosen the “right” ¢;, and
the subformula ¢,er, says that if the checking symbol (¢;,¢;,r,d) claims the
use of a Type II instruction and the counter ¢, was supposed to be zero (i.e.,
d = 0), then the previously pushed configuration of C indeed has zero in the
respective counter. In other words, (¢, verifies that the right branch of a Type
IT instruction was selected.

The most interesting part is the subformula ¢ punt, which says that the
counter values in the current and the previous configuration have changed ac-
cordingly to (¢;,4;,r,d). For example, if r = 0 and d = —1, then the subformula
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Yeount 18 valid in the considered checking configuration iff the first counter was
changed by —1 and the second counter remained unchanged.

To get some intuition on how this can be implemented, let us consider a
simplified version of this problem. Let us assume that we have a configuration of
the form pA™#A"#. Our aim is to set up the transitions of pA™# A" # and to
construct a PCTL formula ¢ so that pA™#A"# = ¢ iff m = n (this indicates
how to check if a counter remains unchanged). Let

pA 172, qA, qA EN qe, rA 272, sA, tA 172, te, sA L SA,
pA2qA gt Sre, A2 e 1A M2 A, uA S uA
t# EN SA,

By inspecting possible runs of pA™# A" 4, one can easily confirm that the prob-
ability that a run of pA™# A™# hits a configuration having sA as its head is
exactly

1 1 1 1 1 1 1
s 0-g) P 5w = 5 g Tawm
Let psa be an atomic proposition which is valid in (exactly) all configurations
having sA as their head. Then pA™#A"# = P=2 (tt U pa) iff m = n.

One can argue that formulae where some probability is required to be equal
to some value are seldom used in practice. However, it is easy to modify the
proof so that for every subformula of the form P~¢yp which is employed in the
proof we have that ~ is > and p is a “simple” rational like 1/2 or 1/4. We refer
to [8] for details.

Finally, let us note that our undecidability result is tight with respect to
the nesting depth of U . The fragment of PCTL where the U operators are not
nested (and the X" operators can be nested to an arbitrary depth) is decidable by
applying the results of [13]. In our undecidability proof we use a PCTL formula
where the nesting depth of U is 2 (PCTL formulae where the U operators are
not nested have the nesting depth 1).

Theorem 8. The model-checking problem for pPDA processes and the logic
PCTL is undecidable. Moreover, the undecidability result holds even for the
fragment of PCTL where the nesting depth of U is at most two, and for all
subformulae of the form P~%p we have that ~ is >.

The proof of Theorem 8 does not carry over to pBPA processes. The decidability
of PCTL for pBPA processes is one of the challenges which are left open for future
work. Nevertheless, we were able to show that model-checking PCTL" (and in
fact a simple fragment of this logic) is undecidable even for pBPA. The structure
of the construction is similar as in Theorem 8, but the proof contains new tricks
invented specifically for pBPA. In particular, the consistency of counter values
in consecutive configurations is verified somewhat differently. This is the only
place where we use the expressive power of PCTL™T.

Theorem 9. The model-checking problem for pBPA processes and the logic
PCTL" is undecidable. More precisely, the undecidability result holds even for
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a fragment of PCTL" where the nesting depth of U is at most two, and for all
subformulae of the form P~%p we have that ~ is >.

Now we prove that the model-checking problem for pPDA and the logic
qPECTL* is decidable and belongs to 2-EXPSPACE. For the logic PCTL,
our algorithm only needs singly exponential space.

Let us fix a pPPDA A = (Q, I, 0, Prob), gPECTL* formula 7, and a simple
valuation v. The symbol CI(7) denotes the set of all subformulae of 7, and
Acl(t) C CI(7) is the subset of all “automata subformulae” of the form P=*5.

Let ¢ = P=*B € Acl(r) where B is a Biichi automaton over an alphabet
Y, = 21%1®n} Then there is a (deterministic) Muller automaton M, =
(Xp, M, g@,mé,f@) whose size is at most exponential in the size of B such
that L(My) = L(B). In our constructions we use M, instead of 5.

The intuition behind our proof is that we extend each configuration of A
with some additional information that allows to determine the (in)validity of
each subformula of 7 in a given configuration just by inspecting the head of the
configuration. Our algorithm computes a sequence of extensions of A that are
obtained from A by augmenting stack symbols and transition rules with some
information about subformulae of 7. These extensions are formally introduced in
our next definition. For notation convenience, we define St = U¢€Acl(7)2QXMW.
For every v € St, the projection of v onto a given ¢ € Acl(7) is denoted v(p).
Note that v(y) is a set of pairs of the form (g, m), where g € @ and m € M,,.

Definition 10. We say that a pPDA A’ = (Q, I, 8, Prob’) is an extension of
A if and only if T = St x I' x St (elements of I'" are written as (uXv), where
u,v € St and X € I'), and the outgoing transitions of every p(uXv) € Q x I
satisfy the following:

1. if pX 5 qe, then p(uXv) 5 qe;
2. if pX 5 qY, then there is a unique z € St such that p(uXv) = q(zYv);
3. if pX 5 qY Z, then there are unique z,w € St such that
p(uXv) % q(zYw)(wZv);
4. p(uXv) has no other outgoing transitions.

Note that due to 2. and 3., a given A can have many extensions. However,
all of these extensions have the same set of control states and the same stack
alphabet. Moreover, the part of 74, which is reachable from a configuration
p(u1 X1v1) - - - (up, Xpvy) is isomorphic to the part of 74 reachable from the con-
figuration pXi - - - X,,.

Definition 11. Let A’ = (Q,I",§, Prob’) be an extension of A. For each
@ € Cl(t) we define a set C, C Q x I'" inductively as follows:

— if ¢ = a where a € Ap, then C, = {p(uXv) | pX € f,(a) and u,v € St}
—if =19 ANE, then C, = Cy N Ce

— if o=, then C, = (Q x I'") N Cy,

— if o = P=*B, then C, = {p(uXv) | u,v € St and (p,m}) € u(p)}
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For each ¢ € Acl(1) we define a Muller automaton M, = (X, M, o, mfp, Fo)s
which is a modification of the automaton My, as follows: Z‘fp =Qx1I', and

m L m’ is a transition of o, iff there is A € X, such that m A m! is a transi-
tion of 0, and h € (e 4 Cp) ~ Uyga Cy- Note that M, is again deterministic.

Let A’ be an extension of A. The symbol [s, p(uXv)e], denotes the probability
that a run of Run(p(uXwv)) is accepted by M/, where the initial state of M, is
changed to s. Furthermore, the symbol [s, p(uXv)q, t], denotes the probability
that a run w of Run(p(uXw)) hits the configuration ge, i.e., w is of the form w’ ge,
so that ./\/lfp initiated in s moves to t after reading the heads of all configurations
in w'.

Intuitively, the sets C, are supposed to encode exactly those configurations
where ¢ holds (the information which is relevant for the (in)validity of ¢ should
have been accumulated in the symbol at the top of the stack). However, this
works only under some “consistency” assumptions, which are formalized in our
next definition (see also Lemma 13 below).

Definition 12. Let ¢ € Acl(7) and let A’ be an extension of A. We say that a
symbol (uXv) € I'" is p-consistent in A’ iff the following conditions are satisfied:

— if o = P7B, then u(p) = {(p, s) | [s, p(uXv)o]o + 3 1yeu(p 5 P(uXV)g, t], = 1}
— i = PB, then u(g) = {(p,5) | [5, puX0)0lo+ Xy gu oyl PuX0)g, s = O}

We say that a configuration p(uy1 X1v1) - -+ (unXnvn) s @-consistent in A’ iff
(u; Xiv;) 1s p-consistent in A’ for every 1 < i < n, and v; = w41 for every
1 <1< n.

An extension A’ of A is p-consistent iff for all transitions of the form
p(uXv) & q(zYv) and p(uXv) 5 q(zYw)(wZv) of A’ we have that q(2Yv)
and q(zYw)(wZv) are p-consistent in A’ respectively.

It is important to realize that the conditions of Definition 12 are effectively verifi-
able, because, e.g., the condition [s, p(uXv)e]y + 3 -, ey 5 P(uXV)g, ]y =1
can effectively be translated into (R, +,*, <) using the construction of Theo-
rem 6 and the results on random walks of [13] which were recalled in Section 2.
We refer to [8] for details and complexity estimations.

A v € St is terminal iff for each ¢ € Acl(r) we have that if ¢ = P=!B then
v(p) =0, and if ¢ = P=B then v(p) = Q x M,,.

Lemma 13. Let ¢ € CI(7), and let A" be an extension of A which is
-consistent for all ¢ € Acl(p). Let p(u; Xq1v1) -+ (unXpvyn) (where n > 1)
be a configuration of A" which is -consistent in A" for each v € Acl(p), and
where vy, is terminal. Then pXi -+ X, = ¢ iff p(u1 X1v1) € Cy.

Lemma 14. Let pX be a configuration of A. Then there exists an extension
AT of A which is p-consistent for each ¢ € Acl(7), and a configuration p(uXv)
which is p-consistent in AT for each ¢ € Acl(T). Moreover, A™ and p(uXv) are
effectively constructible is space which is doubly exponential in the size of T (if
7 is a PCTL formula, then the space complexity is only singly exponential in
the size of T7) and singly exponential in the size of A.
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An immediate corollary to Lemma 13 and Lemma 14 is the following;:

Theorem 15. The model-checking problems for pPDA processes and the logics
gPECTL* and qPCTL are in 2-EXPSPACE and EXPSPACE, respectively.

Finally, let us note that the construction presented in [27] which shows
EXPTIME-hardness of the model-checking problem for the logic CTL and
PDA processes can be adapted so that it works for (non-probabilistic) BPA3.
This idea carries over to the probabilistic case after some trivial modifications.
Thus, we obtain the following:

Theorem 16. The model-checking problem for pBPA processes and the logic
qPCTL is EXPTIME-hard.
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