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Abstract. We examine the problem of finite-state representabilityndifhite-
state processes w.r.t. certain behavioural equivalewesshow that the clas-
sical notion of regularity becomes insufficient in case ¢eguivalences of van
Glabbeek’s hierarchy except bisimilarity, and we desig jaistify a generaliza-
tion in the form of strong regularity and finite charactetiaas. We show that the
condition of strong regularity guarantees an existenceniteficharacterization
in case of all equivalences of van Glabbeek’s hierarchyvemdlso demonstrate
that there are behaviours which are regular but not straegfylar w.r.t. all equiv-
alences of the mentioned hierarchy except bisimilarity.

1 Introduction

The problem whether a given infinite-state behaviour (pgsrean be equivalently rep-
resented by a finite-state one has recently attracted a #dteaftion. A similar problem
has been actually known from the theory of formal languagesflong time—qgiven
a grammarG, one can ask whether there is an equivakegular grammarG’. The
grammarG’ can be seen as a ‘finite-state representatiotr because of the associated
finite-state automaton. However, it is folklore that the ti@med problem isundecid-
ableeven for context-free grammars.

The situation is more complicated within the framework ohcarrency theory.
Transition systems are widely accepted as structures vdaiotexactly define seman-
tics of concurrent process; however, there are nimhaviouralequivalences over the
class of transition systems which try to formally expressrigness’ of two concurrent
systems. Rob van Glabbeek presented in [vG90] a hierarckyuf/alences, relating
them w.r.t. theicoarsenesésee Figure 1).

The problem whether for a given process there is an equivéildte-state one
has been intensively studied w.ittisimulation equivalence (bisimilarityjt is also
known as the “regularity problem”. Regularity has been prbto be decidable for BPA
processes [MM94,BG96,BCS96], labelled Petri nets (and tlso BPP processes)
[JE96], normed PA processes [Kuc96], and one-countergssms [Jan97]. Those re-
sults are also interesting from the practical point of viewerification of infinite-state
systems is generally difficult, but if we replace an infirstate system with some
equivalent finite-state one, the procedure can be muchred&ieeover, decidability
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of regularity can simplify various considerations aboutnite-state behaviours (see
e.g., CKK97,Kut97]).

In this paper we examine a general question what propetii@sd have a finite-
state transition system if it is to be used as a ‘reliabletdpsion of some infite-state
one. We argue that in case of all equivalences of van Glalbbigkarchy except bisim-
ilarity the notion of regularity becomes insufficient, addies not characterize reachable
states (see the first paragraph of Section 3). We design atify ja new notion of finite
characterizatiorand we examine its basic properties. We prove that the dondiff
strong regularityguarantees an existence of a finite characterization alr.¢quiva-
lences of van Glabbeek’s hierarchy. As regularity and stregularitycoincidein case
of bisimilarity, the condition of strong regularity can bees as a ‘proper’ predicate
expressing the feature of finite representability. We atse@that regularity and strong
regularity donot coincide in case of all equivalences of van Glabbeek’s hitaex-
cept bisimilarity, i.e., strong regularity is really a ‘strger’ condition than regularity.
We conclude with some remarks on future work.

2 Definitions

Definition 1. A transition systerfl’ is a tuple(S, Act, —,r) whereS is a set ofstates
Actis aset olabels —C SxActx S is atransition relatiorandr € S'is a distinguished
state calledroot The class of all transition systems is denotedhy

As usual, we writes % ¢ instead of(s,a,t) € — and we extend this notation to
elements ofAct* in an obvious way (we sometimes writke—* ¢ instead ofs — ¢ if
w € Act' is irrelevant). A state is said to baeachablefrom a states if s —* ¢. The
states which are reachable from the root are said te&ehable

Various behavioural equivalencesver the class of transition systems were pro-
posed in the literature—each of them tries to express aindgeel of ‘sameness’
which is proper in certain situations. Rob van Glabbeekegntel in [vG90] a hier-
archy of behavioural equivalences, relating them w.rdirttoarseness.e., how many
identifications they make. The resulting lattice is presdiim Figure 1.

Definition 2. LetT be a transition system and let be an equivalence ovér. The
systenl” is regularw.r.t. « if there is a finite-state transition systefhsuch thatl" —
F. Such a systerf' is called a finiterepresentatioof 7.

3 Finite Characterizations

The notion of finite representation can be used for any etprica of van Glabbeek’s
hierarchy. It is extremely useful in case of bisimilarityrebwe argue this is due to the
following fact: if we take bisimilar transition systerfisand F' such thatF" has finitely
many states, then for each reachable stafel” there is a bisimilar reachable stat®f
F. In other words}" gives a complete characterizatioredifreachable states @f. This

is no more true for the other equivalences of van Glabbeeé&taichy; if we take e.qg.,
trace equivalence (see Definition 8) and two transitionesys” and /' such thatZ” and
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F are trace equivalent anfl has finitely many states, then the only thing we can say
aboutT" andF is that theirootshave the same sets of traces—but if we take a reachable
statet of T', it need not be trace equivalent to any reachable stafé ¢f we want to
check some temporal property 6f(e.g., something bad never happens), then we are
usually interested iall reachable states @f. It is thus sensible to ask whether there is

a finite-state transition systef’ such thateachreachable state df is equivalent to
some state of”. If so, we can examine features Bf instead ofl" and asF’ has only
finitely many states, it should be easier. This is the bagia igthich leads to the notion

of finite characterization

Definition 3. LetT be atransition system and let be an equivalence ovér. A finite-
state transition systemi is a finite characterizatiof 7" w.r.t. « if all the following
conditions are trueI” « F, states off’ are pairwise nonequivalent w.r4-, and for
each reachable statieof T' there is a reachable statg of F' such that < f.

Now we examine the question when finite characterizatiorss ard what is their rela-
tionship with finite representations. First we need to idtree further notions.

Definition 4. Let< be an equivalence ovér. For each transition systeffi = (.S, Act,
—,r) we define the transition systefl., = (S’, Act, —', ') in the following way:

— S’ contains equivalence classes$ft . (the equivalence class containinge S
is denoted bys]).

— The relation—' is determined by the rule % ¢ = [s]%/ [t].

=1

The equivalence- is said tohave quotientsf for any T € 7 the natural projection
p: T — T/, assigning to each stateof 7' the state[s] of T/, , is a part of —
(i.e.,s < [s] for each states of T').

The notion of finite characterization is naturally motivht®&low we can ask what fea-
tures of a transition systeffi guarantee an existence of a finite characterizatidfi.of
This is the aim of the following definition:

Definition 5. Let« be an equivalence ovér. A transition systerit’ is strongly regular
w.r.t. « if T' can reach only finitely many states up<a

The next lemma says when the condition of strong regulatigrgntees an existence
of a finite characterization.

Lemma 1. Let — be an equivalence ovér which has quotients. Theéf has a finite
characterization w.r.t— iff T" is strongly regular w.r.t<.

Proof.

“=" Obvious.

“«<" As T is strongly regular w.r.t— and« has quotients, the transition syst&m.,
is a finite characterization df. a



Now we prove that the requirement of “having quotients” frtme previous lemma
is not too restrictive in fact—all equivalences of van Glaék's hierarchy have this
property. Due to the lack of space we cannot give a separatd for each of them;

instead we present just two full proofs which “cover” the whhierarchy in the sense
that all remaining proofs can be obtained by slight modiftcet of one of the two

indicated approaches.

Definition 6. LetT = (S,Act,—,r) be a transition system. For each statec S
we define the sef(s) = {a € Act| 3t € Ssuchthats % t}. A pair (w,®) €
Act” x P(Act) is a failure pairof T, if there is a states € S such thatr =% s and
I(s) N @ = (). Let F(T) denote the set of all failure pairs @f. Transition systems
Ty, T arefailure equivalentwritten Ty =5 Ty, if F(Th) = F (1)

Lemma 2. Failure equivalence has quotients.

Proof. Let T = (S, Act, —, r) be a transition system. We show ttafp) = F([p]) for
each state € S.

“C" Let (w,®) € Act® x P(Act) be a failure pair op. By definition, there is a state
p’ € Ssuchthap = p’ andI(p’) N & = (. But then alsdp] = [p']. The set/([p])
is the union of allZ(¢) such thaty € [p']. Asu =; v impliesI(u) = I(v), we can
conclude thaf ([p']) = I(p'), hencel ([p']) N @ = 0, thus(w, ?) € F([p]).

“D" Let (w,P) € Act” x P(Act) be a failure pair ofp] and letw = ay ...a;. By
definition, there is a sequence of transitidpg % [px—1] =" ... = [po] in T/=,
such that € [px] andI([po]) N & = 0. We show that for each stateof 7" such that
q € [p:;], wherei € {0,...,k}, the pair(a; ...a1, ) belongs taF'(q). We proceed by
induction or:

—i=0:asl(q) = I([po]), we have(e,P) € F(q).

— induction step: as [p;] % [p;_1], there are states,v of T such thatu % v,
u € [p;] andv € [p;—_1]. By induction hypothesis we havye;_1 ...a1,®) € F(v),
hence(a; ...a1,9) € F(u). Asq =¢ u, the pair(a; . ..a1,P) belongs toF'(q).

O

The same technique can be also applied to trace equivaleoicgleted trace equiv-

alence, readiness equivalence, failure trace equivalenady trace equivalence and

possible-futures equivalence.

Definition 7. LetTy = (S1,Act;, —1,71) andTy = (S3, Acty, —2,r2) be transition
systems. A relatio® C S; x S5 is asimulationif whenever(s,t) € R then

VacAct : s 518 = It Lot AN(s/,H)ER

Transition systenT; is simulatedby T3, written T T Ty, if there is a simulation?
with (r1,72) € R. Itis easy to see that is a preorder. Transition systens, T are
simulation equivalentritten T} =, 15, if Ty &, Ty andT T, T.

Lemma 3. Simulation equivalence has quotients.



Proof. Let T = (S, Act,—, r) be a transition system. We show thiat, [t] for each
statet € S. By definition, we must show an existence of two simulatidh®2 such
that (¢, [t]) € P and([t],t) € R. The simulationP is exactly the natural projection
p:T—T/=,,ie,P={(u,u]) : ue S} ltiseasytocheck tha® is a simulation.
The simulationR is defined as follows:

(ful,v) e R <& Fpe[u]:pCyo

We prove thatR is indeed a simulation. Suppogé - [u/]. By definition of 7'/,
there arey, ¢’ € S such thayy = ¢/, u =, ¢, andu’ =, ¢’. Moreover, by definition of
R thereisp € S with p =; gandp C; v. Asq Cs p C; v, we also have C; v by
transitivity of C,. Hencev % o' for somev’ € S with ¢/ C, v'. As ¢’ € [v/], the pair
([u'],v") belongs taRk and the proof is finished. O

This method also works for ready simulation equivalencezandsted simulation equiv-
alence. As bisimilarity has quotients (this is obvious),aa® now state the following
theorem:

Theorem 1. Each equivalence in van Glabbeek’s hierarchy has quotients

There are also other well-known equivalences which havéienis, e.g., weak bisimi-
larity (see [Mil89]) or branching bisimilarity (see [vGWB9BuUt this property is natu-
rally not general—there are also equivalences which do ae¢ lgquotients. To present
a concrete example, we first need several definitions.

Definition 8. LetT = (S, Act —, r) be transition system. tkaceof T' is any sequence
w € X+ such thatr = s for somes € S. A tracew of T is completedf » = s for
somes € S which does not have any successors. Transition systenis are

— trace equivalenif they have the same sets of traces.

— completed trace equivaleifithey have the same sets of traces and the same sets of
completed traces.

— language equivalenwritten 77 =;, T5, if they have the same sets of completed
traces.

Language equivalence is well-known from the theory of fdrlaaguages and au-
tomata. Note that it is incomparable even with trace eqaived.

Theorem 2. Language equivalence does not have quotients.

Proof. A simple counterexample looks as follows:

° T/:L : °
N e
@) @)

b b

Clearlyr #;, [r] because the set of completed traces &f {a} while the set of com-
pleted traces ofir] is empty. O



We have seen that if we restrict our attention to behavicegaivalences which have
quotients, then the condition of strong regularity becomssessary and sufficient for
an existence of a finite characterization. An interestingstjon is, what is the exact
relationship between conditions of regularity and stroegutarity. First, we already
know that there are equivalences for which these two canditcoincide (e.g., bisimi-
larity, weak bisimilarity or branching bisimilarity). Bubere are also equivalences for
which conditions of regularity and strong regularity exgzdifferent properties.

Theorem 3. Let — be an equivalence of van Glabbeek’s hierarchy which liessund
bisimilarity. Then there is a transition systéfisuch thafl” is regular w.r.t.«<—~ and 7' is
not strongly regular w.r.t—.

Proof. (sketch) Transition systeni§; andT}, of Figure 2 are ready simulation equiv-
alent. AsTy has finitely many stated s is regular w.r.t. all equivalences which lie
under ready simulation equivalence in van Glabbeek’s hibga At the same time we
may observe thaf’s can reach infinitely many states which are pairwise nonedgnt
w.r.t. trace equivalence. Hen@g is not strongly regular w.r.t. any equivalence in van
Glabbeek’s hierarchy.

Similarly, 77 andT; are 2-nested simulation equivalent, fiytcan reach infinitely
many states which are pairwise nonequivalentw.r.t. ptessiliures equivalence. Hence
T, is regular w.r.t. possible-futures equivalence and 2atesimulation equivalence,
but not strongly regular w.r.t. the mentioned equivalences a0

Ty : [ Ty : ° o

Ts : Q a e N T Q 5

Fig. 2. Transition systems from the proof of Theorem 3



4  Future work

An open problem is whether the notions of regularity andrgjne@gularity have differ-
ent decidability features. However, this area seems to lie gnexplored. The notions
of finite characterization and strong regularity surelyahes a deeper examination, and
this is the subject we would like to work on in the future.
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