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Abstract
We study the computational complexity of some central anal-
ysis problems for One-Counter Markov Decision Processes
(OC-MDPs), a class of finitely-presented, countable-state
MDPs.

OC-MDPs extend finite-state MDPs with an unbounded
counter. The counter can be incremented, decremented, or
not changed during each state transition, and transitions may
be enabled or not depending on both the current state and
on whether the counter value is 0 or not. Some states are
“random”, from where the next transition is chosen accord-
ing to a given probability distribution, while other states are
“controlled”, from where the next transition is chosen by the
controller. Different objectives for the controller give rise to
different computational problems, aimed at computing opti-
mal achievable objective values and optimal strategies.

OC-MDPs are in fact equivalent to a controlled exten-
sion of (discrete-time) Quasi-Birth-Death processes (QBDs),
a purely stochastic model heavily studied in queueing the-
ory and applied probability. They can thus be viewed as a
natural “adversarial” extension of a classic stochastic model.
They can also be viewed as a natural probabilistic/controlled
extension of classic one-counter automata. OC-MDPs also
subsume (as a very restricted special case) a recently stud-
ied MDP model called “solvency games” that model a risk-
averse gambling scenario.

Basic computational questions for OC-MDPs include
“termination” questions and “limit” questions, such as the
following: does the controller have a strategy to ensure that
the counter (which may, for example, count the number of
jobs in the queue) will hit value 0 (the empty queue) almost
surely (a.s.)? Or that the counter will have lim sup value
∞, a.s.? Or, that it will hit value 0 in a selected terminal
state, a.s.? Or, in case such properties are not satisfied almost
surely, compute their optimal probability over all strategies.

We provide new upper and lower bounds on the com-
plexity of such problems. Specifically, we show that sev-
eral quantitative and almost-sure limit problems can be an-
swered in polynomial time, and that almost-sure termination
problems (without selection of desired terminal states) can
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also be answered in polynomial time. On the other hand, we
show that the almost-sure termination problem with selected
terminal states is PSPACE-hard and we provide an exponen-
tial time algorithm for this problem. We also characterize
classes of strategies that suffice for optimality in several of
these settings.

Our upper bounds combine a number of techniques from
the theory of MDP reward models, the theory of random
walks, and a variety of automata-theoretic methods.

1 Introduction
Markov Decision Processes (MDPs) are a standard model
for stochastic dynamic optimization. They describe a system
that exhibits both stochastic and controlled behavior. The
system begins in some state and makes a sequence of state
transitions; depending on the state, either the controller gets
to choose from among possible transitions, or there is a
probability distribution over possible transitions.1 Fixing
a strategy for the controller determines a probability space
of (potentially infinite) runs, or trajectories, of the MDP.
The controller’s goal is to optimize the (expected) value of
some objective function, which may be a function of the
entire trajectory. Two fundamental computational questions
that arise are “what is the optimal value that the controller
can achieve?” and “what strategies achieve this?”. For
finite-state MDPs, such questions have been studied for
many objectives and there is a large literature on both the
complexity of central questions as well as on methods that
work well in practice, such as value iteration and policy
iteration (see, e.g., [23]).

Many important stochastic models are, however, not
finite-state, but are finitely-presented and describe an
infinite-state underlying stochastic process. Classic exam-
ples include branching processes, birth-death processes, and
many others. Computational questions for such purely
stochastic models have also been studied for a long time. A
model that is of direct relevance to this paper is the Quasi-
Birth-Death process (QBD), a generalization of birth-death
processes that has been heavily studied in queueing theory
and applied probability (see, e.g., the books [21, 20, 3]).

1Our focus is on discrete state spaces, and discrete-time MDPs. In some
presentations of such MDPs, probabilistic and controlled transitions are
combined into one: each transition entails a controller move followed by
a probabilistic move. The two presentations are equivalent.



Intuitively, a QBD describes an unbounded queue, using a
counter to count the number of jobs in the queue, and such
that the queue can be in one of a bounded number of distinct
“modes” or “states”. Stochastic transitions can add or re-
move jobs from the queue and can also transition the queue
from one state to another. QBDs are in general studied as
continuous-time processes, but many of their key analyses
(including both steady-state and transient analyses) amount
to analysis of their underlying embedded discrete-time QBD
(see, e.g., [20]). An equivalent way to view discrete-time
QBDs is as a probabilistic extension of classic one-counter
automata (see, e.g, [26]), which extend finite-state automata
with an unbounded counter. The counter can be incremented,
decremented, or remain unchanged during state transitions,
and transitions may be enabled or not depending on both the
current state and on whether the counter value is 0 or not. In
probabilistic one-counter automata (i.e., QBDs), from every
state the next transition is chosen according to a probabil-
ity distribution depending on that state. (See [10] for much
more information on the relation between QBDs and other
models.)

In this paper we study One-Counter Markov Decision
Processes (OC-MDPs), which extend discrete-time QBDs
with a controller. An OC-MDP has a finite set of states: some
states are random, from where the next transition is chosen
according to a given probability distribution, and other states
are controlled, from where the next transition is chosen by
the controller. Again, transitions can change the state and
can also change the value of the (unbounded) counter by at
most 1. Different objectives for the controller give rise to
different computational problems for OC-MDPs, aimed at
optimizing those objectives.

Motivation for studying OC-MDPs comes from several
different directions. Firstly, it is very natural, both in queue-
ing theory and in other contexts, to consider an “adversarial”
extension of stochastic models like QBDs, so that stochas-
tic assumptions can sometimes be replaced by “worst-case”
or “best-case” assumptions. For example, under stochastic
assumptions about arrivals, we may wish to know whether
there exists a “best-case” control of the queue under which
the queue will almost surely become empty (such questions
are of course related to the stability of the queue), or we may
ask if we can do this with at least a given probability. Such
questions are similar in spirit to questions asked in the rich
literature on “adversarial queueing theory” (see, e.g., [4]),
although this is a somewhat different setting. These consid-
erations lead naturally to the extension of QBDs with con-
trol, and thus to OC-MDPs. Indeed, MDP variants of QBDs
have already been studied in the stochastic modeling litera-
ture, see [27, 19]. However, in order to keep their analyses
tractable, these works take the drastic approach of cutting
off the value of the counter (i.e., size of the queue) at some
arbitrary finite value N, effectively adding dead-end absorb-

ing states at values higher than N. This restricts the model
to a finite-state “approximation”. However, cutting off the
counter value can radically alter the behavior of the model,
even for purely probabilistic QBDs, and it is easy to con-
struct examples that exhibit this (see the full version [5] for
simple examples). Thus the existing work in the QBD liter-
ature on MDPs does not establish any results about the com-
putational complexity, or even decidability, of basic analysis
problems for general OC-MDPs.

OC-MDPs also subsume another recently studied
infinite-state MDP model called solvency games [1], which
amount to a very limited subclass of OC-MDPs. Solvency
games model a risk-averse “gambler” (or “investor”). The
gambler has an initial pot of money, given by a positive inte-
ger, n. He/she then has to choose repeatedly from among a fi-
nite set of possible gambles, each of which has an associated
random gain/loss given by a finite-support probability distri-
bution over the integers. Berger et. al. [1] study the gambler
objective of minimizing the probability of going bankrupt.
One can of course study the same basic repeated gambling
model under a variety of other objectives, and many such
objectives have been studied. It is not hard to see that all
such repeated gambling models constitute special cases of
OC-MDPs. The counter in an OC-MDP can keep track of
the gambler’s wealth. Although, by definition, OC-MDPs
can only increment or decrement the counter by one in each
state transition, it is easy to augment any finite change to the
counter value by using auxiliary states and incrementing or
decrementing the counter by one at a time. Similarly, with
an OC-MDP one can easily augment any choice over finite-
support probability distribution on integers, each of which
defines the random change to the counter corresponding to a
particular gamble. [1] showed that if the solvency game sat-
isfies several additional restrictive technical conditions, then
one can characterize the optimal strategies for minimizing
the probability of bankruptcy (as a kind of “ultimately mem-
oryless” strategy) and compute them using linear program-
ming. They did not however establish any results for general,
unrestricted, solvency games. They conclude with the fol-
lowing remark: “It is clear that our results are at best a sketch
of basic elements of a larger theory”. We believe OC-MDPs
constitute an appropriate larger framework within which to
study algorithmic questions not just for solvency games, but
for various more general infinite-state MDP models that em-
ploy a counter. In Proposition 4.1, we show that all qualita-
tive questions about (unrestricted) solvency games, namely
whether the gambler has a strategy to not go bankrupt with
probability > 0, = 1, = 0, < 1, can be answered in polyno-
mial time.

Our goal it to study the computational complexity of
central analysis problems for OC-MDPs. Key quantities
associated with discrete-time QBDs, which can be used
to derive many other useful quantities, are “termination



probabilities” (also known as their “G matrix”). These
are the probabilities that, starting from a given state, with
counter value 1, we will eventually reach counter value 0
for the first time in some other given state. The complexity
of computing termination probabilities for QBDs is already
an intriguing problem, and many numerical methods have
been devised for it. A recent result in [10] shows that
these probabilities can be approximated in time polynomial
in the size of the QBD, in the unit-cost RAM model of
computation, using a variant of Newton’s method, but that
deciding , e.g., whether a termination probability is ≥ p for
a given rational p ∈ (0, 1) in the standard Turing model
is at least as hard as a long standing open problem in
exact numerical computation, namely the square-root sum
problem, which is not even known to be in NP nor the
polynomial-time hierarchy. (See [10] for more information.)

We study OC-MDPs under related objectives, in particu-
lar, the objective of maximizing termination probability, and
of maximizing the probability of termination in a particu-
lar subset of the states (the latter problem is considerably
harder, as we shall see). Partly as a stepping stone toward
these objectives, but also for its own intrinsic interest, we
also consider OC-MDPs without boundary, meaning where
the counter can take on both positive and negative values,
and we study the objective of optimizing the probability that
the lim sup value is = ∞ (or, by symmetry, that the lim inf
is = −∞). The boundaryless model is related, in a rather
subtle way, to the well-studied model of finite-state MDPs
with limiting average reward objectives (see, e.g., [23]). This
connection enables us to exploit recent results for finite-state
MDPs ([15]), and classic facts in the theory of 1-dimensional
random walks and sums of i.i.d. random variables, to ana-
lyze the boundaryless case of OC-MDPs. We then use these
analyses as crucial building blocks for the analysis of opti-
mal termination probabilities in the case of OC-MDPs with
boundary. Our main results are the following:

1. For boundaryless OC-MDPs, where the objective of the
controller is to maximize the probability that the lim sup
(lim inf) of the counter value in the run (the trajectory)
is ∞ (−∞), the situation is as good as we could hope;
namely, we show:

(a) The optimal probability is a rational value that is
polynomial-time computable.

(b) There exist deterministic optimal strategies that
are both “counter-oblivious” and memoryless (we
shall call these CMD strategies), meaning the
choice of the next transition depends only on the
current state and neither on the history, nor on the
current counter value.
Furthermore, such an optimal strategy can be
computed in polynomial time.

2. For OC-MDPs with boundary, where the objective is to
maximize the probability that, starting in some state and
with counter value 1, we eventually terminate (reach
counter value 0) in any state, we have:

(a) In general the optimal (supremum) probability can
be an irrational value, and this is so already in the
case of QBDs where there is no controller, see
[10].

(b) It is decidable in polynomial time whether the
optimal probability is 1.

(c) There is a CMD strategy such that starting from
every state with value 1, using that strategy we
terminate almost surely.
(Optimal CMD strategies need not exist starting
from states where the optimal probability is < 1.)

3. For OC-MDPs with boundary, where the objective is
to maximize the probability that, starting from a given
state and counter value 1, we terminate in a selected
subset of states F (i.e., reach counter value 0 for the
first time in one of these selected states), we know the
following:

(a) There need not exist any optimal strategy, even
when the supremum probability of termination in
selected states is 1 (i.e., only ε-optimal strategies
may exist).

(b) Even deciding whether there is an optimal strategy
which ensures probability 1 termination in the
selected states is PSPACE-hard.

(c) We provide an exponential time algorithm to de-
termine whether there is a strategy using which the
probability of termination in the selected states is
1, starting at a given state and counter value.

Our proofs employ techniques from several areas: from
the theory of finite-state MDP reward models (including
some recent results), from the theory of 1-dimensional ran-
dom walks and sums of i.i.d. random variables, and a vari-
ety of automata-theoretic methods (e.g., pumping arguments,
decomposition arguments, etc.).

Our results leave open many interesting questions about
OC-MDPs. For example, we do not know whether the
following problem is decidable: given an OC-MDP and a
rational probability p ∈ (0, 1), decide whether the optimal
probability of termination (in any state) is greater than
p. Other open questions pertain to OC-MDPs where the
objective is to minimize termination probabilities. We view
this paper as laying the basic foundations for the algorithmic
analysis of OC-MDPs, and we feel that answering some
of the remaining open questions will reveal an even richer
underlying theory.



Related work. A more general MDP model that strictly
subsumes OC-MDPs, called Recursive Markov Decision
Processes (RMDPs) was studied in [11, 12]. These are
equivalent to MDPs whose state transition structure is that
of a general pushdown automaton. Problems such as decid-
ing whether there is a strategy that yields termination prob-
ability 1, or even approximating the maximum probability
within any non-trivial additive factor, were shown to be un-
decidable for general RMDPs in [11]. For the restricted class
of 1-exit RMDPs (which correspond in a precise sense to
MDP versions of multi-type branching processes, stochastic
context-free grammars, and a related model called pBPAs),
[11] showed quantitative problems for optimal termination
probability are decidable in PSPACE, and [12] showed that
deciding whether the optimal termination probability is 1
can be done in P-time. In [6] this was extended further to
answer certain qualitative almost-sure reachability questions
for 1-exit RMDPs in P-time. 1-exit RMDPs are however
incompatible with OC-MDPs (which actually correspond to
1-box RMDPs). In [10], quantiative termination problems
for purely stochastic QBDs were studied. The references
in these cited papers point to earlier related literature, in
particular on probabilistic Pushdown Systems and Recursive
Markov chains. There is a substantial literature on numerical
algorithms for analysis of QBDs and related purely stochas-
tic models (see [21, 20, 3]). In that literature one can find
results related to qualitative questions, like whether the ter-
mination probability for a given QBD is 1. Specifically, it
is known that for an irreducible QBD, i.e., a QBD in which
from every configuration (counter value and state) one can
reach every other configuration with non-zero probability,
whether the underlying Markov chain is recurrent boils down
to steady-state analysis of induced finite-state chains over
states of the QBD, and in particular on whether the expected
one-step change in the counter value in steady state is ≤ 0
(see, e.g., Chapter 7 of [20] for a proof). However, these re-
sults crucially assume the QBD is irreducible. They do not
directly yield an algorithm for deciding, for general QBDs,
whether the probability of termination is 1 starting from a
given state and counter value 1. Thus, our results for OC-
MDPs yield new results even for purely stochastic QBDs
without controller.

2 Basic definitions
We fix some notation. We use Z,N,N0 to denote the integers,
positive integers, and non-negative integers, respectively. We
use standard notation for intervals, e.g., (0, 1] denotes {x ∈
R | 0 < x ≤ 1}. The set of finite words over an alphabet Σ is
denoted Σ∗, and the set of infinite words over Σ is denoted Σω.
Σ+ denotes Σ∗ r {ε} where ε is the empty word. The length
of a given w ∈ Σ∗ ∪ Σω is denoted |w|, where the length of
an infinite word is ∞. Given a word (finite or infinite) over
Σ, the individual letters of w are denoted w(0),w(1), · · · (so

indexing begins at 0). For a word w, we denote by w↓n the
prefix w(0) · · ·w(n−1) of w. Let V = (V, → ) where V is a
non-empty set and → ⊆ V ×V a total relation (i.e., for every
v ∈ V there is some u ∈ V such that v→ u). The reflexive
transitive closure of → is denoted → ∗. A path in V is a
finite or infinite word w ∈ V+ ∪ Vω such that w(i−1)→w(i)
for every 1 ≤ i < |w|. A run in V is an infinite path in V .
The set of all runs inV is denoted RunV. The set of runs in
V that start with a given finite path w is denoted RunV(w).

We assume familiarity with basic notions of probability,
e.g., a σ-field, F , over a set Ω, and a probability measure P :
F 7→ [0, 1], together define a probability space (Ω,F ,P).
As usual, a probability distribution over a finite or countably
infinite set X is a function f : X → [0, 1] such that∑

x∈X f (x) = 1. We call f positive if f (x) > 0 for every x ∈ X,
and rational if f (x) ∈ Q for every x ∈ X.

For our purposes, a Markov chain is a triple
M = (S , → ,Prob) where S is a finite or countably infinite
set of states, → ⊆ S × S is a total transition relation, and
Prob is a function that assigns to each state s ∈ S a positive
probability distribution over the outgoing transitions of s.
As usual, we write s x

→ t when s→ t and x is the probabil-
ity of s→ t. To every s ∈ S we associate the probability
space (RunM(s),F ,P) of runs starting at s, where F is the
σ-field generated by all basic cylinders, RunM(w), where
w is a finite path starting with s, and P : F → [0, 1] is
the unique probability measure such that P(RunM(w)) =∏|w|−1

i=1 xi where w(i−1) xi→w(i) for every 1 ≤ i < |w|. If
|w| = 1, we put P(RunM(w)) = 1.

D 2.1. A Markov decision process (MDP) is a
tuple D = (V, ↪→ , (VN ,VP),Prob), where V is a finite or
countable set of vertices, ↪→ ⊆ V × V is a total transition
relation, (VN ,VP) is a partition of V into non-deterministic
(or “controlled”) and probabilistic vertices, and Prob is
a probability assignment which to each v ∈ VP assigns
a rational probability distribution on its set of outgoing
transitions.

A strategy is a function σ which to each wv ∈ V∗VN assigns
a probability distribution on the set of outgoing transitions
of v. We say that a strategy σ is memoryless (M) if σ(wv)
depends only on the last vertex v, and deterministic (D) if
σ(wv) is a Dirac distribution (assigns probability 1 to some
transition) for each wv ∈ V∗VN . When σ is D, we write
σ(wv) = v′ instead of σ(wv)(v, v′) = 1. For a memoryless
deterministic (MD) strategy σ, we write σ(v) = v′ instead
of σ(wv)(v, v′) = 1. Strategies that are not necessarily
memoryless (respectively, deterministic) are called history-
dependent (H) (respectively, randomized (R)). We use HR to
denote the set of all (i.e., H and R) strategies.

Each strategy σ determines a unique Markov chain
D(σ) for which V+ is the set of states, and wu x

→wuu′ iff
u ↪→ u′ and one of the following conditions holds: (1) u ∈ VP



and Prob(u ↪→ u′) = x, or (2) u ∈ VN and σ(wu) assigns x to
the transition u ↪→ u′. To every w ∈ RunD(σ) we associate
the corresponding run wD ∈ RunD where wD(i) is the vertex
currently visited by w(i), i.e., the last element of w(i) (note
w(i) ∈ V+).

For our purposes in this paper, an objective2 is a set
O ⊆ RunD (in situations when the underlying MDP D is
not clear from the context, we write OD instead of O). For
every strategy σ, let Oσ be the set of all w ∈ RunD(σ) such
that wD ∈ O. Further, for every v ∈ V we use Oσ(v) to
denote the set of all w ∈ Oσ which start at v. We say
that O is measurable if Oσ(v) is measurable for all σ and
v. For a measurable objective O and a vertex v, the O-value
in v is defined as follows: ValO(v) = supσ∈HR P(Oσ(v)). We
say that a strategy σ is O-optimal starting at a given vertex
v if P(Oσ(v)) = ValO(v). We say σ is O-optimal, if it is
optimal starting at every vertex. An important objective for
us is reachability. For every set T ⊆ V of target vertices,
we define the objective ReachT = {w ∈ RunD | ∃i ∈
N0 s.t. w(i) ∈ T }.

D 2.2. A one-counter MDP (OC-MDP) is a tuple,
A = (Q, δ=0, δ>0, (QN ,QP), P=0, P>0), where

• Q is a finite set of states, partitioned into non-
deterministic, QN , and probabilistic, QP, states.

• δ>0 ⊆ Q × {−1, 0, 1} × Q and δ=0 ⊆ Q × {0, 1} × Q
are the sets of positive and zero rules (transitions) such
that each p ∈ Q has an outgoing positive rule and an
outgoing zero rule;

• P>0 and P=0 are probability assignments: both assign
to each p ∈ QP, a positive rational probability distri-
bution over the outgoing transitions in δ>0 and δ=0, re-
spectively, of p.

Each OC-MDP, A, naturally determines an infinite-state
MDP with or without a boundary, depending on whether
zero testing is taken into account or not. Formally, we define
MDPsD→

A
andD↔

A
as follows:

• D→
A

= (Q × N0, 7→ , (QN × N0,QP × N0),Prob). Here
for all p, q ∈ Q and j ∈ N0 we have that p(0) 7→ q( j)
iff (p, j, q) ∈ δ=0. If p ∈ QP, then the probability
of p(0) 7→ q( j) is P=0(p, j, q). Further for all p, q ∈
Q, i ∈ N, and j ∈ N0 we have that p(i) 7→ q( j) iff
(p, j−i, q) ∈ δ>0. If p ∈ QP, then the probability of
p(i) 7→ q( j) is P>0(p, j−i, q).

2In general, objectives can be arbitrary Borel measurable functions of
trajectories, for which we want to optimize expected value. We only
consider objectives that are characteristic functions of a measurable set of
trajectories.

• D↔
A

= (Q × Z, 7→ , (QN × Z,QP × Z),Prob), where for
all p, q ∈ Q and i, j ∈ Z we have that p(i) 7→ q( j) iff
(p, j−i, q) ∈ δ>0. If p ∈ QP, then the probability of
p(i) 7→ q( j) is P>0(p, j−i, q).

Since the MDPs D→
A

and D↔
A

have infinitely many vertices,
even MD strategies are not necessarily finitely representable.
But the objectives we consider are often achievable with
strategies that use only finite information about the counter
or even ignore the counter value. We call a strategy, σ, in
D→
A

or D↔
A

, counter-oblivious-MD (denoted CMD) if there
is a selector, f : Q→ δ>0 (which selects a transition out of
each state) so that at any configuration p(n) ∈ Q × N, σ
chooses transition f (p) with probability 1 (ignoring history
and n).

3 OC-MDPs Without Boundary
In this section we study the objective “Cover Negative”
(CN), which says that values of the counter during the run
should cover arbitrarily low negative numbers in Z (i.e., that
the lim inf counter value in the run is = −∞). Our goal is to
prove Theorem 3.1, below. (All missing proofs missing can
be found in the full version [5].)

D 3.1. LetA be a OC-MDP. We use CNA to denote
the set of all runs w ∈ RunD↔

A
such that for every n ∈ Z the

run w visits a configuration p(i) for some p ∈ Q and i ≤ n.

T 3.1. Given a OC-MDP,A, there is a CNA-optimal
CMD strategy for it, which is computable in polynomial time.
Moreover, ValCNA is rational and computable in polynomial
time.

We prove this via a sequence of reductions to problems
for finite-state MDPs with and without rewards. For us a
MDP with reward, D, is equipped with a reward function
r : V → {−1, 0, 1}. For v = v0 · · · vn ∈ V+, we define the
reward r(v) B

∑n
i=0 r(vi).

D 3.2. We denote by CN the set of all w ∈ RunD
satisfying lim infn→∞ r(w↓n) = −∞. We further denote by
MP the set of all runs w ∈ RunD such that limn→∞

r(w↓n)
n

exists and limn→∞
r(w↓n)

n ≤ 0.3

The following is a consequence of a theorem by Gimbert
([15, Theorem 1]).

L 3.1. (. [15]) For finite-state MDPs with rewards,
there always exists a CN-optimal MD strategy.

This follows from [15, Theorem 1] because (the char-
acteristic function of) the objective CN is both prefix-
independent and submixing, and Gimbert’s theorem shows

3“MP” stands for “(non-positive) Mean Payoff”.



that these two criteria are sufficient conditions for the
existence of an optimal MD strategy. Briefly, prefix-
independence means that only the tail of an infinite run is rel-
evant for determining its payoff, and submixing means that if
any given run is cut into infinitely many finite segments and
these segments are partitioned into two parts to make two in-
finite “runs”, then the maximum payoff among the two cre-
ated runs is at least as large as the payoff of the original run.
(See the full version for [5] for details.) Lemma 3.2 below
shows that for OC-MDPs there is also always a CNA-optimal
CMD strategy, which is a fairly simple consequence of the
same fact for finite-state MDPs with rewards. We now define
a sequence of problems which we shall use in reductions for
establishing Theorem 3.1:

OC-MDP-CN:
Input: OC-MDP,A, and z ∈ Z.
Output: a CNA-optimal CMD strategy for A, and
ValCNA (p(z)), for every p ∈ Q.

MDP-CN:
Input: finite-state MDP,D, with reward function r.
Output: a CN-optimal MD strategy for D, and
ValCN(v), for every vertex v ofD.

MDP-CN-qual:
Input: finite-state MDP,D, with reward function r.
Output: set A = {v | ValCN(v) = 1}, and a MD strategy
σ which is CN-optimal starting at every v ∈ A.

MDP-MP-qual:
Input: finite-state MDP,D, with reward function r.
Output: set A = {v | ∃σv ∈ MD : P(MPσv (v)) = 1}, a
σ̄ ∈ MD such that ∀v ∈ A : P(MPσ̄(v)) = 1.4

P 3.1. 1. There exist the following polynomial-
time (Turing) reductions:

OC-MDP-CN ≤P MDP-CN
≤P MDP-CN-qual ≤P MDP-MP-qual

2. The problem MDP-MP-qual can be solved in polyno-
mial time.

The following lemma establishes both the first reduction
of Proposition 3.1, part 1, and the existence of CNA-optimal
CMD strategies for OC-MDPs.

L 3.2. Given a OC-MDP, A, there is a finite-state
MDP with rewards, D, computable in polynomial time from
A, such that the set of vertices of D contains Q and for
every p ∈ Q, i ∈ Z we have that ValCNA (p(i)) = ValCN(p).

4The existence of strategy σ̄ is a consequence of the correctness proof
for procedure Qual-MP which can be found in the full version [5].

Procedure Solve-CN(D,r)
Data: A MDPD with reward r.
Result: Compute the vector

(
ValCN(v)

)
v∈V

, and a
CN-optimal MD strategy, σ.

(A, τ)← Qual-CN(D,r)1

(σR, (valv)v∈V )← Max-Reach(D,A)2

for every v ∈ VN do if v ∈ A then σ(v)← τ(v) else3

σ(v)← σR(v)
return (valv)v∈V , σ4

Moreover, for a MD strategy σ in D, let σ′ be the CMD
strategy in D↔

A
with a selector f defined by f (p) = σ(p).

Then for each p(i) ∈ Q × Z, P(CNσ′

A
(p(i))) = P(CNσ(p)).

The proof of Lemma 3.2 is very easy. Indeed, in this
boundaryless setting, the objective of making the OC-MDP’s
counter value hit arbitrarily small negative numbers is basi-
cally equivalent to making the accumulated total reward hit
arbitrarily small negative values in the underlying finite-state
MDP, where the one-step reward is defined to be the one-
step change in the counter value. (The only minor difference
is that we have defined rewards on states rather than transi-
tions, but this can be handled easily using auxiliary states.)

By Lemma 3.1 and 3.2, we only have to consider
MD strategies. Dealing with MD strategies simplifies
notation. Although as defined the Markov chain D(σ)
has infinitely many states, for a finite-state MDP D =

(V, ↪→ , (VN ,VP),Prob) and a MD strategy σ we can clearly
replace D(σ) with a finite-state Markov chain D〈σ〉 where
V is the set of states, and u x

→ u′ iff u x
→ uu′ in D(σ). This

only changes notation since for every u ∈ V there is an
isomorphism between the probability spaces RunD(σ)(u) and
RunD〈σ〉(u) given by the bijection of runs which maps run w
to wD, see the definition ofD(σ) in Section 2.

To finish the proof of Theorem 3.1 we have to: (1.)
provide the last two reductions from Proposition 3.1, part
1, prove that ValCN is always rational, and prove Proposi-
tion 3.1, part 2. We do each of these in separate subsections.

3.1 Reduction to Qualitative CN. The key to establishing
the reduction MDP-CN ≤P MDP-CN-qual is the following:

P 3.2. Let A B {v ∈ V | ValCN(v) = 1}. Then for
all u ∈ V we have:

ValCN(u) = max
τ∈MD

P(ReachτA(u)) = sup
τ∈HR
P(ReachτA(u))

In other words, the optimal probability of CN in a finite-
state MDP with reward, is precisely the optimal probabil-
ity of reaching some vertex from which there is a strat-
egy to achieve CN with probability 1. The proof of this
proposition can be sketched as follows. The fact that op-
timal MD strategies exist for reachability objectives, i.e.,



that maxτ∈MD P(ReachτA(u)) = supτ∈HR P(ReachτA(u)), fol-
lows from well established facts about MDPs with reachabil-
ity objectives, see, e.g., [23, Section 7.2.7] or [8]. Clearly
maxτ∈MD P(ReachτA(u)) ≤ ValCN(u), because once we reach a
vertex from which we can achieve CN with probability 1, we
can switch to the appropriate strategy for achieving that. For
the opposite direction, let us pick a CN-optimal MD strategy
σ, which we know exists by Lemma 3.1. Consider the result-
ing finite-state Markov chainD〈σ〉 with states V . There will
be some bottom strongly connected components (BSCCs) of
the underlying directed graph of this resulting Markov chain.
The crucial observation is this: consider some BSCC, C, and
a node u in that BSCC. Let Xu denote the random variable
that describes the change in reward value (counter value) be-
tween consecutive visits to state u in a random walk on the
Markov chain D〈σ〉. (Note that the probability of not re-
visiting u is 0.) Now we can basically view the change in
reward value during an entire infinite run starting at u as a
sum of i.i.d. random variables, S n =

∑n
i=1 Xi, where each Xi

has the same distribution as Xu. It follows from classic facts
about random walks on the real line, i.e., sums of i.i.d. ran-
dom variables, that the probability P(lim infn→∞ S n = −∞)
is either 0 or 1, and that probability 1 happen precisely when
E[Xu] ≤ 0 and Xu is not trivial, i.e., is not identically 0 (in
which case clearly the probability would be 0). See, e.g, [7,
Theorem 8.2.5 and Theorem 8.3.4] for a proof of these facts.
Thus, sinceσwas optimal for CN, and since with probability
1 any run onD〈σ〉 eventually enters one of the BSCCs, opti-
mizing the probability of satisfying CN starting at any vertex
v amounts to optimizing the probability of reaching one of
the BSCCs from which σ achieves CN with probability 1.
The reduction MDP-CN ≤P MDP-CN-qual is described in
procedure Solve-CN. Its correctness follows from Proposi-
tion 3.2. Once the set A of vertices with ValCN = 1, and a cor-
responding CN-optimal strategy, are both computed (line 1,
which calls the subroutine Qual-CN for solving MDP-CN-
qual), solving MDP-CN amounts to computing an MD strat-
egy for maximizing the probability of reaching a vertex in
A, and computing the respective reachability probabilities.
This is done on line 2 by calling procedure Max-Reach. It is
well known that Max-Reach can be implemented in polyno-
mial time via linear programming: both an optimal strategy
and the associated optimal (rational) probabilities can be ob-
tained by solving suitable linear programs (see, e.g., [8] or
[23, Section 7.2.7]). Thus the running time of Solve-CN, ex-
cluding the running time of Qual-CN, is polynomial. More-
over, the optimal values are rational, so Lemma 3.2 implies
that ValCNA is also rational.

3.2 Reduction to Qualitative MP. The reduction
MDP-CN-qual ≤P MDP-MP-qual is described in pro-
cedure Qual-CN. Fixing some initial vertex s, let us
denote by ΣMP the set of all MD strategies σ satisfying

Procedure Qual-CN(D,r)
Data: A MDPD with reward r.
Result: Compute the set A ⊆ V of vertices with

ValCN = 1, and a MD strategy, σ,
CN-optimal starting at every v ∈ A.

D′ ← Decreasing(D)1

(A′, σ′)← Qual-MP(D′,r)2

A← {v ∈ V | (v, 1, 0) ∈ A′}3

σ← CN-FD-to-MD(σ′)4

return (A, σ)5

P(MPσ(s)) = 1, and by ΣCN the set of all MD strategies
σ satisfying P(CNσ(s)) = 1. It is not hard to see that
ΣCN ⊆ ΣMP. If this was an equality, the reduction would boil
down to the identity map. Unfortunately, these sets are not
equal in general. A trivial example is provided by a MDP
with just one vertex s with reward 0. More generally, the
strategy σ may be trapped in a finite loop around 0 (causing
P(MPσ(s)) = 1) but never accumulate all negative values
(causing P(CNσ(s)) = 0). As a solution to this problem, we
characterize in Lemma 3.3 the strategies from ΣMP which
are also in ΣCN , via the property of being “decreasing”:

D 3.3. A MD strategy σ in D is decreasing if for
every state u of D〈σ〉 reachable from s there is a finite path
w initiated in u such that r(w) = −1.

L 3.3. ΣCN is the set of all decreasing strategies from
ΣMP.

A key part of the reduction is the construction of an
MDP, D′, described in Figure 1, which simulates the MDP
D, but satisfies that ΣMP = ΣCN for every initial vertex s.
The idea is to augment the vertices of D with additional
information, keeping track of whether the run under some
σ ∈ ΣMP “oscillates” with accumulated rewards in a bounded
neighborhood of 0, or “makes progress” towards −∞. The
last obstacle in the reduction is that MD strategies for D′

do not directly yield MD strategies for D. Rather a CN-
optimal MD strategy, τ′, forD′ induces a deterministic CN-
optimal strategy, τ, which uses a finite automaton to evaluate
the history of play. Fortunately, given such a strategy τ it is
possible to transform it to a CN-optimal MD strategy for D
by carefully eliminating the memory it uses. This is done on
line 4. We refer the reader to the full version of this paper [5]
for proofs of this claims, and just note that the construction
of D′ on line 1, procedure Decreasing can clearly be done
in polynomial time. Thus, the overall time complexity of the
reduction is polynomial.

3.3 Solving Qualitative MP. For a fixed vertex s ∈ V ,
for every MD strategy σ and reward function r, we define
a random variable V[σ, r] such that for every run w ∈



D′ = (V ′,{, (V ′N ,V
′
P),Prob′), where

• V ′ = {(u, n,m), [u, n,m, v] | u ∈ V, u ↪→ v, 0 ≤ n,m ≤
|V |2 + 1} ∪ {div}

• V ′P = {[u, n,m, v] ∈ V ′ | u ∈ VP}, V ′N = V ′ r V ′P

• transition relation { is the least set satisfying the
following for every u, v ∈ V such that u ↪→ v and
0 ≤ m, n ≤ |V |2 + 1:

– if m = |V |2 + 1 and n > 0, then (u, n,m){ div

– if m ≤ |V |2 + 1 and n = 0, then (u, n,m) {
[u, 1, 0, v]

– if m < |V |2 + 1 and n > 0, then (u, n,m) {
[u, n,m, v]

– if u ∈ VP, then [u, n,m, v]{ (v, n + r(u),m + 1)
and [u, n,m, v′] { (v, 1, 0) for all v′ ∈ V r {v}
such that [u, n,m, v′] ∈ V ′

– if u ∈ VN , then [u, n,m, v]{ (v, n + r(u),m + 1)

– div{ div

Prob′([u, n,m, v] { (v′, n′,m′)) = Prob(u ↪→ v′) when-
ever [u, n,m, v] ∈ V ′P and [u, n,m, v] { (v′, n′,m′). Fi-
nally, r′((u, n,m)) = 0, r′([u, n,m, v]) = r(u) and r′(div) =

1.

Figure 1: Definition of the MDPD′.

RunD〈σ〉(s):

V[σ, r](w) =

limn→∞
r(w↓n)

n if the limit exists;
⊥ otherwise.

It follows from, e.g., [22, Theorem 1.10.2] that since σ is
MD the value of V[σ, r] is almost surely defined. Solving
the MP objective amounts to finding a MD strategy σ such
that P(V[σ, r] ≤ 0) is maximal among all MD strategies. We
use the procedure get-MD-min to find for every vertex s ∈ V
and a reward function r a MD strategy % such that EV[%, r] =

minσ∈MD EV[σ, r]. This can be done in polynomial time via
linear programming: see, e.g., [14, Algorithm 2.9.1] or [23,
Section 9.3].

The core idea of procedure Qual-MP for solving MDP-
MP-qual is this: Whenever EV[τ, r] ≤ 0 there is a bottom
strongly connected component (BSCC), C, of the transition
graph ofD〈τ〉, such that almost all runs w reaching C satisfy
V[τ, r](w) ≤ 0. Since ValMP(s) = 1 implies the existence
of some τ ∈ ΣMP such that EV[τ, r] ≤ 0, Qual-MP solves
MDP-MP-qual by successively cutting off the BSCCs just
mentioned, while maintaining the invariant ∃τ : EV[τ, r] ≤
0. Detailed proofs are in the full version [5].
Extract(S ) removes an arbitrary element of a

Procedure Qual-MP(D,r)
Data: A MDPD with reward r.
Result: Compute the set A ⊆ V of vertices with

ValMP = 1 and a MD strategy σ MP-optimal
starting in every v ∈ A.

V? ← V , A← ∅, T ← ∅, r̂ ← r1

while V? , ∅ do2

s← Extract(V?)3

if ∃% : EV[%, r̂] ≤ 0 then4

%← get-MD-min(D,r,s)5

C ← a BSCC C ofD〈%〉 such that C ∩ A = ∅6

and P(V[%, r̂] ≤ 0 | Reach%C) = 1
(τ, (reachv)v∈V )← Max-Reach(D,C ∪ A)7

A′ ← {u ∈ V | reachu = 1}8

for every u ∈ VN , v ∈ V do if9

(u ∈ C ∧ v = %(u)) ∨
(u ∈ A′ r (C ∪ A) ∧ v = τ(u)) then
T ← T ∪ {(u, v)}
A← A′ ∪ A10

for every u ∈ V do if u ∈ A then r̂(u)← 011

if s < A then V? ← V? ∪ {s}12

σ← MD-from-edges(T )13

return (A, σ)14

nonempty set S and returns it, and MD-from-edges(T ) re-
turns an arbitrary MD strategy σ satisfying (u, v) ∈ T ∧ u ∈
VN ⇒ σ(u) = v. Both these procedures can clearly be im-
plemented in polynomial time. Thus by the earlier discus-
sion about the complexity of Max-Reach, in Section 3.1, we
conclude that Qual-MP runs in polynomial time.

4 OC-MDPs with Boundary
Fix an OC-MDP, A = (Q, δ=0, δ>0, (QN ,QP), P=0, P>0), and
its associated MDP,D→

A
.

D 4.1. ( ) The (non-selective)
termination objective, denoted NT, consists of all runs w of
D→
A

that eventually hit a configuration with counter value
zero. Similarly, for a set F ⊆ Q of final states we define the
associated selective termination objective, denoted STF (or
just ST if F is understood), consisting of all runs ofD→

A
that

hit a configuration of the form q(0) where q ∈ F.

Termination objectives are much more complicated to ana-
lyze than the CN objectives considered in Section 3. As men-
tioned in the introduction, even for purely stochastic QBDs
termination probabilities can be irrational (see [10]), and we
leave open quantitative termination problems for OC-MDPs.
Even qualitative problems for OC-MDPs require new in-
sights.

We define ValOneNT and ValOneST be the sets of all
p(i) ∈ Q×N0 such that ValNT (p(i)) = 1 and ValST (p(i)) = 1,



respectively. We also define their subsets OptValOneNT and
OptValOneST consisting of all p(i) ∈ ValOneNT and all p(i) ∈
ValOneST , respectively, such that there is an optimal strategy
achieving value 1 (with respect to NT , and ST , respectively)
starting at p(i). Are the inclusions OptValOneNT ⊆ ValOneNT

and OptValOneST ⊆ ValOneST proper? It turns out that the
two objectives differ in this respect. We begin by stating our
results about qualitative NT objectives.

T 4.1. ValOneNT = OptValOneNT . In other words,
for the non-selective termination objective, if the supremum
probability of termination achievable is 1, then there is a
strategy that achieves this.

Moreover, given a OC-MDP, A, and a configuration
q(i) of A, we can decide in polynomial time whether q(i) ∈
ValOneNT . Furthermore, there is a CMD strategy, σ, con-
structible in polynomial time, which is optimal starting at
every configuration in ValOneNT = OptValOneNT .

We now sketch the proof of this theorem. Basically,
when starting at a configuration p(i) where the value of the
counter, i, is large enough (specifically, when i ≥ |Q|, where
|Q| denotes the number of states), we can show that if the
supremum probability of termination starting at p(i) is 1,
then if we view the OC-MDP as boundaryless, the supremum
probability of achieving CNA (arbitrarily small values of the
counter) starting at p(i) is also 1. Furthermore, since we
know we can achieve CNA with an optimal CMD strategy,
we conclude that we can achieve NT with an optimal CMD
strategy, when starting at large enough counter values i.
Now, observe that the set of configurations q( j) such that j ≤
|Q| is finite (and indeed there are polynomially many such
configurations). We can therefore consider these as forming
a finite-state MDP, where our objective is to either reach a
configuration q(0) or to reach a configuration q(|Q|) from
which we know that we can achieve CNA with probability
1. Since, as discussed earlier, MDP reachability problems
are solvable in P-time, we are done.

Next we turn to ST objectives. First, let us observe
that the inclusion OptValOneST ⊆ ValOneST is proper: there
may be no optimal strategy for ST even when the value is 1.
Consider the OC-MDP Â of the following figure (we draw
directly the associated MDPD→

Â
):

0 1 2 3 4 5 6

p

r

s

The state p is controlled, and the other two states are stochas-
tic. The probability distributions are always uniform, and the
only final state is s. Now observe that OptValOneST = {s(i) |
i ∈ N0}, while ValOneST consists of all p(i), s(i), i ∈ N0. This
is basically because starting from p(i) we can first increment

the counter to an arbitrarily high value j > i, and thus insure
that once we move from p( j) to r( j), that we have an arbitrar-
ily large number of chances to move (with positive probabil-
ity bounded away from 0) from r(k) to s(k) and thereafter to
s(0). Thus we can make the probability of termination in s(0)
starting from p(i) arbitrarily close to 1. But there is clearly no
single strategy that achieves probability 1, because any strat-
egy that achieves positive probability of termination has to,
for some i, and with positive probability, move to r(i) from
p(i), and thereafter with positive probability we terminate in
r(0) rather than s(0).

We now provide an exponential time algorithm to de-
cide whether a given configuration q(i) is in OptValOneST ,
and we show that there is a “counter-regular” strategy σ con-
structible in exponential time that is optimal starting at all
configurations in OptValOneST . We first introduce the notion
of coloring.

D 4.2. () A coloring is a map
C : Q × N0 → {b,w, g, r}, where b, w, g, and r are the
four different “colors” (black, white, gray, and red). For
every i ∈ N0, we define the i-th column of C as a map
Ci : Q→ {b,w, g, r}, where Ci(q) = C(q(i)).

A coloring can be depicted as an infinite matrix of points
(each being black, white, gray, or red) with rows indexed by
control states and columns indexed by counter values. We
are mainly interested in the coloring, R, which represents the
set OptValOneST in the sense that for every p(i) ∈ Q × N0,
the value of R(p(i)) is either b or w, depending on whether
p(i) ∈ OptValOneST or not. First, we show R is “ultimately
periodic”:

L 4.1. Let N = 2|Q|. There is an `, 1 ≤ ` ≤ N, such that
for j ≥ N, we have R j = R j+`.

The proof is quite simple: There are only N distinct
possible colorings for each column R j, so there must be two
distinct columns such that R j = Rk. Specifically, there must
be j ≤ N and 1 ≤ ` ≤ N such that R j = R j+`. Then we
simply observe that for any k, the coloring of column Rk+1
is entirely determined by the coloring of column Rk. This
is because starting at any configuration p(k + 1) there is a
strategy to terminate with probability 1 in the desired set of
states F, if and only if there is a strategy using which we
shall, with probability 1, eventually hit counter value k and
furthermore the first time we do hit counter value k we shall
be at a “black” configuration, i.e., one from which we have
a strategy to terminate with probability 1 in the desired set F
of states.

Thus the coloring R consists of an “initial rectangle”
of width N + 1 followed by infinitely many copies of the
“periodic rectangle” of width ` (see Fig. 2). Note that
RN = RN+`. Another important observation about the
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initial rect. periodic rect.

Figure 2: The structure of coloring R (where N = 2|Q|).

coloring R is the following: let q(m) be a configuration
of A where q ∈ QN and C(q(m)) = b. Let us call a
transition q(m) 7→ r(n) useless if C(r(n)) = w. Obviously,
useless transitions are never used by an optimal strategy
that achieves the value 1 with respect to the considered
ST objective. Let D be the MDP obtained from D→

A
by

removing all useless transitions. Since the coloring R is
ultimately periodic, there is a one-counter automaton A`

such that D = D→
A`

. The control states of A` are pairs
(q, k) where q ∈ Q and 0 ≤ k ≤ N+`, and the zero/positive
rules of A` “encode” the structure of the initial/periodic
rectangle of D→

A
where all useless transitions are removed.

For example, ((q,N+`), 1, (r,N+1)) is a positive rule of A`

iff R(q(N+`)) = R(r(N+`+1)) = b and q(N+`) 7→ r(N+`+1)
is a transition of A. Hence, the counter of A` encodes
the “index” of the current periodic rectangle. One can
prove that for every q(N+k) where 1 ≤ k ≤ ` we have that
R(q(N+k)) = b iff ValCN((q,N+k)(1)) = 1, which establishes
an important link to our previous results.

We show how to compute the initial and periodic rectan-
gles of R by, intuitively, trying out all (exponentially many)
candidates for the width ` and the columns RN = RN+`. For
each such pair of candidates, the algorithm tries to determine
the color of the remaining points in the initial and periodic
rectangles, until it either finds an inconsistency with the cur-
rent candidates, or produces a coloring which is not neces-
sarily the same as R, but where all black points are certified
by an optimal strategy. Since the algorithm eventually tries
also the “real” ` and RN = RN+`, all black points of R are
discovered.

Let us briefly discuss the way colors of points in the
periodic rectangle are determined. First, the color of all
these points is initialized to gray, which represents the “don’t
know” value. Then, the algorithm tries to recolor as many
gray points as possible to white or black by looking at
the current color of the immediate successors of a given
point. For example, a gray stochastic vertex is recolored
to black/white if all/some of its successors are black/white.
Note that this procedure can also fail in the sense that the
same point may need to be recolored both to black and
white, in which case the algorithm immediately reports an
inconsistency in the current choice of candidates for the ` and
the columns RN = RN+`. (The red color is used for flagging

such inconsistencies. We will not indicate here how this is
done in any more detail.) Otherwise, the periodic rectangle
is recolored so that all points are either black, white, or gray,
and the color of each point is consistent with the colors
of its immediate successors (for example, each controlled
point which is black or gray can only have successors that
are black or gray), and no point can be further recolored
in the above described way. Now, the algorithm constructs
the one-counter automaton A` discussed above (using the
current candidate for ` and treating all gray points as if they
were black). For every black or gray point q(N+k) we now
compute the associated CN-value ValCN((q,N+k)(1)). Note
that this can be done in time polynomial in the size of A`

and hence exponential in the size of A by applying the
results of Section 3. If we discover a black point such that
the associated CN-value is not 1, the algorithm reports an
inconsistency in the current choice of candidates for the `
and the columns RN = RN+`. Otherwise, each gray point
is recolored to black or white depending on whether its
associated CN-value is equal to 1 or not, respectively.

Similarly, we determine the color of the remaining
points in the initial rectangle. A full description of the
algorithm, along with a discussion of its many subtleties and
a proof of correctness, is given in the full version [5].

T 4.2. An automaton recognizing OptValOneST , and
a counter-regular strategy, σ, optimal starting at every con-
figuration in OptValOneST , are both computable in exponen-
tial time.

Thus, membership in OptValOneST is solvable in exponential
time. We do not have an analogous result for ValOneST and
leave this as an open problem (the example earlier which
showed that in general ValOneST , OptValOneST , gives a
taste of the difficulties).

A straightforward reduction from the emptiness prob-
lem for alternating finite automata over a one-letter alphabet,
which is PSPACE-hard, see e.g. [17], shows that member-
ship in OptValOneST is PSPACE-hard. Further, we show
that membership in ValOneST is hard for the Boolean Hierar-
chy (BH) over NP, and thus neither in NP nor coNP assum-
ing standard complexity assumptions. The proof technique,
based on a number-theoretic encoding, originated in [18] and
was used in [16, 24].

T 4.3. Membership in ValOneST is BH-hard. Mem-
bership in OptValOneST is PSPACE-hard.

For the special subclass of OC-MDPs consisting of
solvency games [1], we show all qualitative problems are
decidable in polynomial time. A solvency game, is given
by a positive integer, n, (the initial wealth of the “investor”
or “gambler”), and a finite set A = {A1, . . . , Ak} of actions
(or “gambles”), each of which is associated with a finite-
support probability distribution on the integers. (So, we can



equate an action Ai with the random variable that samples
from its associated distribution.) We assume the distribution
associated with each action Ai, is encoded by giving a
set of pairs {(ni,1, pi,1), (ni,2, pi,2), . . . , (ni,mi , pi,mi )}, such that
for j = 1, . . . ,mi, ni, j ∈ Z and pi, j are positive rational
probabilities, and

∑mi
j=1 pi, j = 1. We assume integers and

rational probabilities are encoded in the standard way in
binary. The investor with wealth n has to repeatedly choose
an action (gamble) from the setA. If at any time the current
wealth is n′ > 0 and the gambler chooses an action Ai,
then we sample from the distribution of Ai and the resulting
integer is added to n′ to determine the new wealth. If
wealth ever hits 0 or becomes negative, play immediately
stops: the investor is bankrupt. The investor’s objective is
to minimize the probability of bankruptcy. As discussed in
the introduction, it is easy to see that solvency games form a
subclass of OC-MDPs.

P 4.1. Given a solvency game, it is (easily) decid-
able in polynomial time whether the gambler has a strategy
to not go bankrupt with probability: > 0, = 1, = 0, or < 1.

The cases other than > 0 are either trivial or follow very
easily from what we have established for OC-MDPs. Indeed,
there is a strategy to not go bankrupt with probability = 1
(< 1, respectively) iff there is an action Ai that does not have
(that has, respectively) a negative integer in its support. Also,
there is a strategy to not go bankrupt with probability = 0,
i.e., to almost surely go bankrupt, iff there is an action Ai

that has a negative integer in its support and furthermore its
expectation (or drift) is nonpositive, i.e., E[Ai] ≤ 0. (This
is because, by our results for OC-MDPs, a CMD optimal
strategy suffices for maximizing termination probability, and
this implies that for the special case of solvency games
repeating some particular action Ai forever is an optimal
strategy for maximizing the probability of bankruptcy.)

For the more interesting case, > 0, we make use of
a lovely theorem on controlled random walks by Durrett,
Kesten, and Lawler [9, Theorem 1]. Their theorem says that
if we can choose an infinite sequence of independent random
variables Xi, i = 1, ..... each from a finite set of distributions
F1, . . . , Fk, each having expectation 0 and bounded variance,
then even if we can make our choices adaptively based on
outcomes of earlier choices, the sums S n =

∑n
i=1 Xi will

have the property that they are recurrent, meaning that values
close to 0 recur infinitely often with probability 1. The
statement of their theorem looks intuitively obvious, but their
proof is quite non-trivial. (It makes use of Skorokhod’s
theorem on the embeddability of any 0 expectation and
bounded-variance random variable inside Brownian motion.
It is worth noting that when variance is not bounded their
theorem can fail, and they give examples of this.) Using
their theorem, we can conclude that there is a strategy to
not go bankrupt with probability > 0 in a solvency game

iff there is either a trivial action Ai ≡ 0, using which the
wealth stays unchanged with probability 1, or there is some
action Ai available whose expected drift satisfies E[Ai] > 0.
Repeating that action forever will yield positive probability
of not going bankrupt, and since actions have finite support
and thus bounded variance, [9, Theorem 1] easily implies
one of these two conditions is also necessary.
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tonı́n Kučera, and Dominik Wojtczak. One-Counter
Markov Decision Processes. CoRR, abs/0904.2511, 2009.
http://arxiv.org/abs/0904.2511.
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