
On the Complexity of Semantic Equivalences for
Pushdown Automata and BPA

Antonı́n Kučera⋆1 and Richard Mayr2

1 Faculty of Informatics, Masaryk University, Botanická 68a, 60200 Brno, Czech Republic,
tony@fi.muni.cz

2 Department of Computer Science, Albert-Ludwigs-University Freiburg
Georges-Koehler-Allee 51, D-79110 Freiburg, Germany.

mayrri@informatik.uni-freiburg.de

Abstract. We study the complexity of comparing pushdown automata (PDA)
and context-free processes (BPA) to finite-state systems, w.r.t. strong and weak
simulation preorder/equivalence and strong and weak bisimulation equivalence.
We present a complete picture of the complexity of all these problems. In partic-
ular, we show that strong and weak simulation preorder (and hence simulation
equivalence) isEXPTIME -complete between PDA/BPA and finite-state sys-
tems in both directions. For PDA the lower bound even holds ifthe finite-state
system is fixed, while simulation-checking between BPA and any fixed finite-
state system is already polynomial. Furthermore, we show that weak (and strong)
bisimilarity between PDA and finite-state systems isPSPACE -complete, while
strong (and weak) bisimilarity between two PDAs isEXPTIME -hard.

1 Introduction

Transition systemsare a fundamental and widely accepted model of processes with
discrete states and dynamics (such as computer programs). Formally, a transition system
is a tripleT = (S,Act ,→) whereS is a set ofstates(or processes), Act is a finite set
of actions, and→ ⊆ S × Act × S is a transition relation. We writes

a
→ t instead of

(s, a, t) ∈ → and we extend this notation to elements ofAct∗ in the natural way. A
statet is reachablefrom a states, writtens→∗ t, iff s

w
→ t for somew ∈ Act∗.

In theequivalence-checkingapproach to formal verification, one describes thespe-
cification (the intended behavior) and the actualimplementationof a given process as
states in transition systems, and then it is shown that they are equivalent. Here the no-
tion of equivalence can be formalized in various ways according to specific needs of a
given practical problem (see, e.g., [15] for an overview). It seems, however, thatsim-
ulation andbisimulationequivalence are of special importance as their accompanying
theory has been developed very intensively and found its wayto many practical appli-
cations. LetT = (S,Act ,→) be a transition system. A binary relationR ⊆ S × S is a
simulationiff whenever(s, t) ∈ R, then for eachs

a
→ s′ there is somet

a
→ t′ such that

(s′, t′) ∈ R. A processs is simulatedby t, writtens ⊑ t, iff there is a simulationR such

⋆ Supported by the Grant Agency of the Czech Republic, grant No. 201/00/0400.

that(s, t) ∈ R. Processess, t aresimulation equivalent, writtens ≃ t, iff they can sim-
ulate each other. Abisimulationis a symmetric simulation relation, and two processes
s andt arebisimilar iff they are related by some bisimulation. In order to abstract from
internal (‘invisible’) transitions of a given system, simulations and bisimulations are
sometimes considered in theirweakforms. Here, the silent steps are usually modeled
by a distinguished actionτ , and theextendedtransition relation⇒ ⊆ S × Act × S is

defined bys
a
⇒ t iff either s = t anda = τ , or s

τ i

→ s′
a
→ t′

τ j

→ t for somei, j ∈ IN0

ands′, t′ ∈ S.

Simulations (and bisimulations) can also be viewed asgames[12, 14] between two
players, the attacker and the defender. In a simulation gamethe attacker wants to show
thats 6⊑ t, while the defender attempts to frustrate this. Imagine that there are two to-
kens put on statess andt. Now the two players, attacker and defender, start to play a
simulation gamewhich consists of a (possibly infinite) number ofroundswhere each
round is performed as follows: The attacker takes the token which was put ons orig-
inally and moves it along a transition labeled by (some)a; the task of the defender
is to move the other token along a transition with the same label. If one player cannot
move then the other player wins. The defender wins every infinite game. It can be easily
shown thats ⊑ t iff the defender has a universal winning strategy. The only difference
between a simulation game and abisimulation gameis that the attacker canchoosehis
token at the beginning of every round (the defender has to respond by moving the other
token). Again we get thats ∼ t iff the defender has a winning strategy. Corresponding
‘weak forms’ of the two games are defined in the obvious way. Weuse the introduced
games at some points to give a more intuitive justification for our claims. Simulations
and bisimulations can also be used to relate states ofdifferenttransition systems; for-
mally, two systems are considered to be a single one by takingthe disjoint union.

In this paper we mainly consider processes ofpushdown automata, which are in-
terpreted as a (natural) model of sequential systems with mutually recursive proce-
dures. A pushdown automaton is a tuple∆ = (Q,Γ,Act , δ) whereQ is a finite
set ofcontrol states, Γ is a finitestack alphabet, Act is a finite input alphabet, and
δ : (Q × Γ) → P(Act × (Q × Γ ∗)) is a transition functionwith finite image (here
P(M) denotes the power set ofM). We can assume (w.l.o.g.) that each transition in-
creases the height (or length) of the stack by at most one (each PDA can be efficiently
transformed to this kind of normal form). In the rest of this paper we adopt a more
intuitive notation, writingpA

a
→ qβ ∈ δ instead of(a, (q, β)) ∈ δ(p,A). To ∆ we

associate the transition systemT∆ whereQ × Γ ∗ is the set of states (we writepα in-
stead of(p, α)), Act is the set of actions, and the transition relation is determined by
pAα

a
→ qβα iff pA

a
→ qβ ∈ δ.

Let A,B be classes of processes. The problem whether a given processs of A is
simulated (or weakly simulated) by a given processt of B is denoted byA ⊑ B (or
A ⊑w B, respectively). Similarly, the problem ifs and t are simulation equivalent,
weakly simulation equivalent, bisimilar, or weakly bisimilar, is denoted byA ≃ B,
A ≃w B, A ∼ B, orA ≈ B, respectively. The classes of all pushdown processes and
finite-state processes (i.e., processes of finite-state transition systems) are denotedPDA
andFS, respectively.BPA (basic process algebra), also called context-free processes, is
the subclass ofPDA where|Q| = 1, i.e., without a finite-control.

The state of the art for simulation:
It has been known for some time that strong simulation preorder betweenPDA andFS
is decidable in exponential time. This is because one can reduce the simulation problem
to the model-checking problem withPDA and a fixed formula of the modalµ-calculus
(see, e.g., [6, 4]). As model checkingPDA with the modalµ-calculus isEXPTIME -
complete [17] the result follows. APSPACE lower bound for theFS ⊑ BPA prob-
lem and a co-NP lower bound for theBPA ⊑ FS andBPA ≃ FS problems have
been shown in [6]. Furthermore, anEXPTIME lower bound for theFS ⊑ PDA and
FS≃ PDA problems have been shown in [4], but in these constructions the finite-state
systems were not fixed. The problems of comparing two different BPA/PDA processes
w.r.t. simulation preorder/equivalence are all undecidable.
Our contribution:
We show that the problemsBPA ⊑ FS, FS ⊑ BPA andBPA ≃ FS areEXPTIME -
complete, but polynomial for every fixed finite-state system. On the other hand, the
problemsPDA ⊑ FS, FS⊑ PDA andPDA ≃ FSareEXPTIME -complete, even for a
fixed finite-state system. Here, the main point are the lower bounds, which require some
new insights into the power of the defender in simulation games. The matching upper
bounds are obtained by a straightforward extension of the above mentioned reduction
to the model-checking problem with the modalµ-calculus.
The state of the art for bisimulation:
It was known that strong and weak bisimulation equivalence betweenPDA andFS is
decidable in exponential time, because one can construct (in polynomial time) char-
acteristic modalµ-calculus formulae for the finite-state system and thus reduce the
problem to model checking thePDA with a modalµ-calculus formula [11], which is
decidable in exponential time [17]. The best known lower bound for thePDA ≈ FS
problem wasPSPACE -hardness, which even holds for a fixed finite state system [8].
The problemPDA ∼ FS is alsoPSPACE -hard, but polynomial in the size of the
PDA for every fixed finite-state system [8]. Interestingly, the problemBPA ≈ FS (and
BPA ∼ FS) is polynomial [7]. The symmetric problem ofPDA ∼ PDA is decidable
[9, 13], but the complexity is not known. So far, the best known lower bound for it was
PSPACE -hardness [8]. The decidability of thePDA ≈ PDA problem is still open.
Our contribution:
We show that the problemsPDA ∼ FS andPDA ≈ FS arePSPACE -complete by
improving the knownEXPTIME upper bound toPSPACE . Furthermore, we show
that the symmetric problemPDA ∼ PDA isEXPTIME -hard, by improving the known
PSPACE lower bound toEXPTIME . This newEXPTIME lower bound even holds
for the subclass of normedPDA.

Due to space constraints, several proofs are omitted. They can be found in the full
version of the paper [5].

2 Lower Bounds

In this section we prove that all of the problemsBPA ⊑ FS, FS ⊑ BPA andBPA ≃
FS areEXPTIME -hard. The problemsPDA ⊑ FS, FS ⊑ PDA, PDA ≃ FS are
EXPTIME -hard even for afixedfinite-state system. Moreover, we showEXPTIME -
hardness of thePDA ∼ PDA problem.

An alternating LBA is a tupleM = (S,Σ, γ, s0,⊢,⊣, π) whereS,Σ, γ, s0,⊢,
and ⊣ are defined as for ordinary non-deterministic LBA. In particular, S is a fi-
nite set of control states (we reserve ‘Q’ to denote a set of control states of push-
down automata),⊢,⊣ ∈ Σ are the left-end and right-end markers, respectively, and
π : S → {∀, ∃, acc, rej} is a function which partitions the control states ofS into uni-
versal, existential, accepting, andrejecting, respectively. We assume (w.l.o.g.) thatγ is
defined so that

– for all s ∈ S andA ∈ Σ such thatπ(s) = ∀ orπ(s) = ∃ we have that|γ(s,A)| = 2
(i.e., γ(s,A) = {s1, s2} for somes1, s2 ∈ S). The first element ofγ(s,A) is
denoted byfirst(s,A), and the second one bysecond(s,A). It means that each
configuration ofM where the control state is universal or existential has exactly
two immediate successors (configurations reachable in one computational step).

– for all s ∈ S andA ∈ Σ such thatπ(s) = acc or π(s) = rej we have that
γ(s,A) = ∅, i.e., each configuration ofM where the control state is accepting or
rejecting is ‘terminated’ (without any successors).

A computational treefor M on a wordw ∈ Σ∗ is a finite treeT satisfying the fol-
lowing: the root ofT is (labeled by) the initial configurations0⊢w⊣ of M, and ifN
is a node ofM labeled by a configurationusv whereu, v ∈ Σ∗ ands ∈ S, then the
following holds:

– if s is accepting or rejecting, thenT is a leaf;
– if s is existential, thenT has one successor whose label is one of the two configu-

rations reachable fromusv in one step (here, the notion of a computational step is
defined in the same way as for ‘ordinary’ Turing machines);

– if s is universal, thenT has two successors labeled by the two configurations reach-
able fromusv in one step.

M acceptsw iff there is a computational treeT such that all leafs ofT are ac-
cepting configurations. The acceptance problem for alternating LBA is known to be
EXPTIME -complete.

In subsequent proofs we often useM⋆ to denote the setM ∪ {⋆} whereM is a set
and⋆ 6∈M is a fresh symbol.

Theorem 1. The problemBPA ⊑ FS is EXPTIME -hard.

Proof. Let M = (S,Σ, γ, s0,⊢,⊣, π) be an alternating LBA andw ∈ Σ∗ an input
word. We construct (in polynomial time) a BPA system∆ = (Γ,Act , δ), a finite-
state systemF = (S,Act ,→), and processesα andX of ∆ and F , resp., such
that M acceptsw iff α 6⊑ X . Let n be the length ofw. We putΓ = S⋆×Σ ∪
S×Σ⋆×{0, · · · , n+2} ∪ S×Σ×{W} ∪ {T, Z}. Configurations ofM are encoded by
strings overS⋆×Σ of lengthn+2. A configurationusv, whereu, v ∈ Σ∗ ands ∈ S, is
written as〈⋆, v(k)〉 〈⋆, v(k − 1)〉 · · · 〈⋆, v(2)〉 〈s, v(1)〉 〈⋆, u(m)〉 · · · 〈⋆, u(1)〉 where
k andm are the lengths ofv andu, resp., andv(i) denotes theith symbol ofv (con-
figurations are represented in a ‘reversed order’ since we want to write the top stack
symbol on the left-hand side). Elements ofS × Σ⋆ × {0, · · · , n + 2} are used as top
stack symbols when pushing a new configuration to the stack (see below); they should

be seen as a finite memory where we keep (and update) the information about the po-
sition of the symbol which will be guessed by the next transition (as we count symbols
from zero, the bounded counter reaches the valuen+ 2 after guessing the last symbol),
about the control state which is to be pushed, and about the (only) symbol of the form
〈s, a〉 which was actually pushed. TheZ is a special ‘bottom’ symbol which can emit
all actions and cannot be popped. The role of symbols ofS×Σ×{W} ∪ {T } will be
clarified later. The set of actions isAct = {a, c, f, s, d, t} ∪ (S⋆×Σ), andδ consists of
the following transitions:

1. (〈s, ⋆〉, i)
a
→ (〈s, ⋆〉, i+ 1) 〈⋆,A〉 for all A ∈ Σ, s ∈ S, 0 ≤ i ≤ n+ 1;

2. (〈s, ⋆〉, i)
a
→ (〈s,A〉, i+ 1) 〈s,A〉 for all A ∈ Σ, s ∈ S, 0 ≤ i ≤ n+ 1;

3. (〈s,A〉, i)
a
→ (〈s,A〉, i+ 1) 〈⋆,B〉 for all A,B ∈ Σ, s ∈ S, 0 ≤ i ≤ n+ 1;

4. (〈s,A〉, n+ 2)
c
→ (〈s,A〉,W) for all A ∈ Σ, s ∈ S;

5. (〈s,A〉,W)
d
→ ε for all s ∈ S, A ∈ Σ such thats is not

rejecting;

6. (〈s,A〉,W)
f
→ (〈s′, ⋆〉, 0) for all s, s′ ∈ S, A ∈ Σ such that

π(s) ∈ {∀, ∃} ands′ = first(s,A);
7. (〈s,A〉,W)

s
→ (〈s′, ⋆〉, 0) for all s, s′ ∈ S, A ∈ Σ such that

π(s) ∈ {∀, ∃} ands′ = second(s,A);

8. (〈s,A〉,W)
f
→ (〈s′, ⋆〉, 0) for all s, s′ ∈ S, A ∈ Σ such that

π(s) = ∃ ands′ = second(s,A);
9. (〈s,A〉,W)

s
→ (〈s′, ⋆〉, 0) for all s, s′ ∈ S, A ∈ Σ such that

π(s) = ∃ ands′ = first(s,A);
10. (〈s,A〉,W)

y
→ T for all s ∈ S, y ∈ {f, s} such that

π(s) = acc;

11. T
t
→ T

12. Z
y
→ Z for all y ∈ Act ;

13. 〈x,A〉
〈x,A〉
→ ε for all x ∈ S⋆, A ∈ Σ.

The processα corresponds to the initial configuration ofM, i.e.,

α = (〈s0,⊢〉, n+2) 〈⋆,⊣〉 〈⋆, w(n)〉 · · · 〈⋆, w(2)〉 〈⋆, w(1)〉 〈s0,⊢〉Z

The behavior ofα can be described as follows: whenever the top stack symbol isof the
form (〈s,A〉,W), we know that the previously pushed configuration contains the sym-
bol 〈s,A〉. If s is rejecting, no further transitions are possible. Otherwise,(〈s,A〉,W)
can either disappear (emitting the actiond—see rule 5), or it can perform one of thef
ands actions as follows:

– If s is universalor existential, (〈s,A〉,W) can emit eitherf or s, storingfirst(s,A)
or second(s,A) in the top stack symbol, respectively (rules 6, 7).

– If s is existential, (〈s,A〉,W) can also emitf ands while storingsecond(s,A) and
first(s,A), respectively (rules 8, 9).

– If s is accepting, (〈s,A〉,W) emitsf or s and pushes the symbolT which can do
the actiont forever (rules 10, 11).

If (〈s,A〉,W) disappears, the other symbols stored in the stack subsequently per-
form their symbol-specific actions and disappear (rule 13).If s is not accepting and
(〈s,A〉,W) emitsf or s, a new configuration is guessed and pushed to the stack; the
construction ofδ ensures that

– exactlyn+ 2 symbols are pushed (rules 1–4);
– at most one symbol of the form〈s′, B〉 is pushed; moreover, thes′ must be the

control state stored in the top stack symbol. After pushing〈s′, B〉, theB is also
remembered in the top stack symbol (rule 2);

– if no symbol of the form〈s′, B〉 is pushed, no further transitions are possible after
guessing the last symbol of the configuration (there are no transitions for symbols
of the form(〈s′, ∗〉, n+ 2));

– after pushing the last symbol, the actionc is emitted and a ‘waiting’ symbol
(〈s′, B〉,W) is pushed.

Now we define the finite-state systemF . The set of states ofF is given by

S = {X,F, S, U,C0, · · · , Cn} ∪ {C0, · · · , Cn} × {0, · · · , n+ 1} × (S⋆ ×Σ)4⋆.

Transitions ofF are

1. X
a
→ X, X

c
→ F, X

c
→ S, X

c
→ Ci for every0 ≤ i ≤ n;

2. F
f
→ X, F

y
→ U for everyy ∈ Act − {f};

3. S
s
→ X, S

y
→ U for everyy ∈ Act − {s};

4. Ci
d
→ (Ci, 0, ⋆, ⋆, ⋆, ⋆), Ci

y
→ U for every0 ≤ i ≤ n, y ∈ Act − {d};

5. U
y
→ U for everyy ∈ Act ;

6. (Ci, j, ⋆, ⋆, ⋆, ⋆)
y
→ (Ci, j+1, ⋆, ⋆, ⋆, ⋆) for all 0 ≤ i ≤ n, 0 ≤ j < i, andy ∈

S⋆×Σ;
7. (Ci, i, ⋆, ⋆, ⋆, ⋆)

y
→ (Ci, i+1, y, ⋆, ⋆, ⋆) for all 0 ≤ i ≤ n andy ∈ S⋆×Σ;

8. (Ci, i+1, y, ⋆, ⋆, ⋆)
z
→ (Ci, (i+2)mod(n+2), y, z, ⋆, ⋆)

for all 0 ≤ i ≤ n andy, z ∈ S⋆×Σ;
9. (Ci, j, y, z, ⋆, ⋆)

u
→ (Ci, (j+1)mod(n+2), y, z, ⋆, ⋆)

for all 0 ≤ i ≤ n, i+2 ≤ j ≤ n+1, andy, z ∈ S⋆×Σ;
10. (Ci, j, y, z, ⋆, ⋆)

u
→ (Ci, j+1, y, z, ⋆, ⋆)

for all 0 ≤ i ≤ n, 0 ≤ j < i, andy, z, u ∈ S⋆×Σ;
11. (Ci, i, y, z, ⋆, ⋆)

u
→ (Ci, i+1, y, z, u, ⋆)

for all 0 ≤ i ≤ n andy, z, u ∈ S⋆×Σ;
12. (Ci, i+1, y, z, u, ⋆)

v
→ (Ci, (i+2)mod(n+2), y, z, u, v)

for all 0 ≤ i ≤ n andy, z, u, v ∈ S⋆×Σ;
13. (Ci, (i+2)mod(n+2), y, z, u, v)

x
→ U

for all 0 ≤ i ≤ n, x ∈ Act , andy, z, u, v ∈ S⋆×Σ such that(y, z) and(u, v) are
not compatible pairs (see below).

A fragment ofF is shown in Fig. 1. The role of states of the form(Ci, 0, ⋆, ⋆, ⋆, ⋆) and
their successors (which are not drawn in Fig. 1) is clarified below.

Now we prove thatM acceptsw iff α 6⊑ X . Intuitively, the simulation game be-
tweenα andX corresponds to constructing a branch in a computational tree for M

SF

U

X

Act−{f}

Act−{s} Act−{d}

Act

Act−{d} d

f

c

c
s c

a

c

d

CnC0

0(C ,0,*,*,*,*) n(C ,0,*,*,*,*)

X

Act−{f}

Act−{s}

Act

c

c
s c

a

CSF
v

d vrd

Act−{v}

Act−{r}

Act−{d,t}

R
U A

V

f

Fig. 1. The systemsF andF ′ (successors of(Ci, 0, ⋆, ⋆, ⋆, ⋆) in F are omitted).

onw. The attacker (who plays withα) wants to show that there is an accepting com-
putational tree, while the defender aims to demonstrate theconverse. The attacker is
therefore ‘responsible’ for choosing the appropriate successors of all existential con-
figurations (selecting those for which an accepting subtreeexists), while the defender
chooses successors of universal configurations (selectingthose for which no accepting
subtree exists). The attacker wins iff the constructed branch reaches an accepting con-
figuration. The choice is implemented as follows: after pushing the last symbol of a
configuration, the attacker has to emit thec action and push a ‘waiting’ symbol (see
above). The defender can reply by entering the stateF , S, or one of theCi states. Intu-
itively, he chooses among the possibilities of selecting the first or the second successor,
or checking that theith symbol of the lastly pushed configuration was guessed cor-
rectly (w.r.t. the previous configuration). Technically, the choice is done by forcing the
attacker to emit a specific action in thenext round—observe that if the defender per-
forms, e.g., theX

c
→ F , transition, then the attackermustuse one of hisf transitions

in the next round, because otherwise the defender would go immediately to the stateU
where he can simulate ‘everything’, i.e., the attacker loses the game. As the defender
is responsible only for selecting the successors ofuniversalconfigurations, the attacker
has to follow his ‘dictate’ only if the lastly pushed configuration was universal; if it was
existential, he can choose the successor according tohis own will (see the rules 6–9 in
the definition ofδ). If the lastly pushed configuration was rejecting, the attacker cannot
perform any further transitions from the waiting symbol, which means that the defender
wins. If the configuration was accepting and the defender entersF of S via the actionc,
then the attacker wins; first he replaces the waiting symbol with T , emittingf or s, resp.
(so that the defender has to go back toX) and then he does the actiont. The purpose of
the statesCi (and their successors) is to ensure that the attacker cannotgain anything
by ‘cheating’, i.e., by guessing configurations incorrectly. If the defender is suspicious
that the attacker has cheated when pushing the last configuration, he can ‘punish’ the
attacker by going (via the actionc) to one of theCi states. Doing so, he forces the at-
tacker toremovethe waiting symbol in the next round (see the rule 5 in the definition of
δ). Now the atacker can only pop symbols from the stack and emitthe symbol-specific
actions. The defender ‘counts’ those actions and ‘remembers’ the symbols at positions
i andi + 1 in the lastly and the previously pushed configurations. After the defender
collects the four symbols, he either enters a universal stateU (i.e., he wins the game), or
gets ‘stuck’ (which means that the attacker wins). It depends on whether the two pairs

of symbols are compatible w.r.t. the transition functionγ of M or not (here we use a
folklore technique of checking the consistency of successive configurations of Turing
machines). Observe that if the lastly pushed configuration was accepting, the defender
still has a chance to perform a consistency check (in fact, itis his ‘last chance’ to win
the game). On the other hand, if the defender decides to checkthe consistency right
at the beginning of the game (when the attacker plays thec transition fromα), he in-
evitably loses because the attacker reaches the bottom symbol Z in n+2 transitions and
then he can emit the actiont. It follows that the attacker has a winning strategy iffM
acceptsw. ⊓⊔

Theorem 2. The problemPDA ⊑ FS is EXPTIME -hard even for a fixed finite-state
process.

Proof. We modify the construction of Theorem 1. Intuitively, we just re-implement the
cheating detection so that the compatibility of selected pairs of symbols is checked by
the pushdown system and not byF (now we can store the four symbols in the finite
control). However, it must still be the defender who selectsthe (position of the) pair.
This can be achieved with a fixed number of states (see [5]).

Theorem 3. The problemFS ⊑ BPA is EXPTIME -hard.

Proof. The technique is similar to the one of Theorem 1 (see [5]).

Theorem 4. The problemFS ⊑ PDA is EXPTIME -hard even for a fixed finite-state
process.

An immediate consequence of Theorem 1 and Theorem 2 is the following:

Corollary 5. The problemBPA ≃ FS is EXPTIME -hard. Moreover, the problem
PDA ≃ FS is EXPTIME -hard even for a fixed finite-state process.

Proof. There is a simple (general) reduction from theA ⊑ B problem to theA ≃ B

problem (whereA,B are classes of processes) which applies also in this case—given
processesp ∈ A andq ∈ B, we construct processesp′, q′ such thatp′ has only the
transitionsp′

a
→ p, p′

a
→ q, andq′ has only the transitionq′

a
→ q. It follows immediately

thatp′ ≃ q′ iff p ⊑ q. ⊓⊔

The problem ofPDA ∼ PDA is decidable, but the exact complexity is not known. The
decision procedures described in [9, 13] do not give any upper complexity bound. So
far, the best known lower bound for this problem wasPSPACE -hardness [8]. How-
ever, while the problemPDA ∼ FS is PSPACE -complete (see Section 3) the problem
PDA ∼ PDA is at leastEXPTIME -hard. ThisEXPTIME lower bound even holds for
the subclass of normedPDA (a PDA is normediff from every reachable configuration
it is possible to empty the stack).

The proof of the following theorem uses a technique which canbe traced back to
Jančar [1]; a more explicit formulation is due to Srba [10] who used the technique in
the different context of Basic Parallel Processes. The mainidea is that in a bisimulation
game the defender can force the attacker to do certain thingsaccording to the defender’s
choices. The full proof can be found in [5].

Theorem 6. The problemPDA ∼ PDA is EXPTIME -hard, even for normedPDA.

Proof. (sketch) The proof is done by a polynomial-time reduction ofthe (EXPTIME -
complete) acceptance problem of alternating LBA to thePDA ∼ PDA problem. The
bisimulation game proceeds as follows. The attacker guesses LBA configurations and
pushes them onto the stack. The defender is forced to copy these moves. At existential
control states (of the LBA) the attacker chooses the successor control state, and at the
universal control states (of the LBA) the defender gets to choose the successor control
state (this requires the technique mentioned above where the defender forces the at-
tacker to do certain things). At any time, the defender can force the attacker to enter a
so-called check-phase. In this check-phase it is verified ifthe LBA configuration at the
top of the stack is really a successor configuration (according to the transition rules of
the LBA) of the LBA configuration that was pushed onto the stack before. If not, then
the defender wins the bisimulation game. This constructionforces the attacker to play
‘honestly’, i.e., to correctly simulate the behavior of theLBA. If an accepting configu-
ration (of the LBA) is reached in this way then the attacker wins the bisimulation game
(having proved, despite the interference of the defender’schoices at the universal con-
trol states, that the alternating LBA accepts). Otherwise,the bisimulation game goes on
forever and the defender wins. This construction ensures that the attacker has a winning
strategy if and only if the alternating LBA accepts. Thus, the alternating LBA accepts
iff the two PDAs are not bisimilar. ⊓⊔

3 Upper Bounds

The next theorem extends the result for strong simulation which appeared in [6]; the
proof is based on the same idea, but the constructed formulaϕ is now completely fixed.

Theorem 7. The problemsPDA ⊑w FS, FS ⊑w PDA, and PDA ≃w FS are in
EXPTIME .

Proof. All of the above mentioned problems are polynomially reducible to the model-
checking problem with pushdown automata and a fixed formulaϕ of the modalµ-
calculus (which is decidable in deterministic exponentialtime [17]).

Letϕ ≡ νX.2a3b〈c〉X , where2aψ ≡ νY.(ψ∧ [a]Y) and3bψ ≡ νZ.(ψ∨〈b〉Z).
Intuitively, 2aψ says that each state which is reachable from a given process via a finite
sequence ofa-transitions satisfiesψ, and3bψ says that a given process can reach a
state satisfyingψ via a finite sequence ofb-transitions. Hence, the meaning ofϕ can be
explained as follows: a process satisfiesϕ iff after each finite sequence ofa-transitions
it can perform a finite sequence ofb-transitions ended with onec-transition so that the
state which is entered again satisfiesϕ (we refer to [3] for a precise definition of the syn-
tax and semantics of the modalµ-calculus). Now let∆ = (Q,Γ,Act , δ) be a pushdown
system,F = (F,Act ,→) a finite-state system,pα a process of∆, andf a process of
F . We construct a pushdown system∆ = (Q×F×Act×{0, 1}, Γ ∪ {Z}, {a, b, c}, δ′)

(whereZ 6∈ Γ is a new bottom symbol) which ‘alternates’ the
x
⇒ transitions of∆ and

F , remembering the ‘x’ in its finite control. Formally,δ′ is constructed as follows:

– for all qA
x
→ rβ ∈ δ andg ∈ F we add(q, g, τ, 0)A

a
→ (r, g, x, 0)β to δ′;

– for all qA
τ
→ rβ ∈ δ, x ∈ Act , andg ∈ F we add(q, g, x, 0)A

a
→ (r, g, x, 0)β to

δ′;
– for all q ∈ Q, g ∈ F , x ∈ Act , andY ∈ Γ ∪ {Z} we add(q, g, x, 0)Y

b
→

(q, g, x, 1)Y to δ′;

– for each transitiong
x
→ g′ ofF and allq ∈ Q,Y ∈ Γ∪{Z} we add(q, g, x, 1)Y

b
→

(q, g′, τ, 1)Y to δ′;

– for all g
τ
→ g′ of F , x ∈ Act , q ∈ Q, andY ∈ Γ ∪ {Z} we add(q, g, x, 1)Y

b
→

(q, g′, x, 1)Y to δ′;
– for all q ∈ Q, g ∈ F , andY ∈ Γ ∪ {Z} we add(q, g, τ, 1)Y

c
→ (q, g, τ, 0)Y to δ′;

We claim thatpα ⊑w f iff (p, f, τ, 0)αZ |= ϕ. Indeed, each sequence ofa-transitions
of (p, f, τ, 0)αZ corresponds to some

x
⇒ move ofpα and vice versa; and after each

such sequence, the ‘token’ can be switched from0 to 1 (performingb), and now each
sequence ofb’s ended with onec corresponds to a

x
⇒ move off . Then, the token is

switched back to0 and the computation proceeds in the same way.ϕ says that this can
be repeated forever, unless we reach a state which cannot do any a when the token is
set to0. The new bottom symbolZ has been added to ensure that(p, f, τ, 0)αZ cannot
get stuck just due to the emptiness of the stack. TheFS ⊑w PDA direction is handled
in a very similar way (the roles ofpα andf are just interchanged). ⊓⊔

Corollary 8. The problemsBPA ⊑w FS, FS ⊑w BPA, andBPA ≃w FS are decidable
in polynomial time for (any)fixedfinite-state process.

Proof. The complexity result of [17] says that model-checking withany fixed formula
of the modalµ-calculus and pushdown processes with afixednumber of control states
is decidable in polynomial time. By synchronizing a given BPA process with a given
(fixed) finite-state process as in Theorem 7 we obtain a pushdown system with a fixed
number of control states, and the result follows. ⊓⊔

Now we show that the problemPDA ≈ FS is in PSPACE . First, we recall some results
from [2]. A characteristic formula of a finite-state systemF w.r.t. ≈ is a formulaΘF

s.t. for every general systemG which uses the same set of actions asF we have that
G |= ΘF ⇐⇒ G ≈ F . It has been shown in [2] that characteristic formulae for finite-
state systems w.r.t.≈ can be effectively constructed in the temporal logic EF (a simple
fragment of CTL), by using the following theorem (here,≈k denotes ‘weak bisimilarity
up-tok’, which means that the defender has a strategy to defend for at leastk rounds in
the weak bisimulation game).

Theorem 9. (taken from [2])
LetF be a finite-state system withn states andG a general system. Statesg ∈ G and
f ∈ F are weakly bisimilar iff the following conditions hold: (1)g ≈n f and (2) For
each stateg′ which is reachable fromg there is a statef ′ ∈ F such thatg′ ≈n f

′.

One constructs characteristic formulaeΦk,f for statesf in F w.r.t.≈k that satisfyg |=
Φk,f ⇐⇒ g ≈k f . The family ofΦk,f formulae is defined inductively onk as follows:

Φ0,f := true

Φk+1,f :=

∧

a∈Act

∧

f ′∈S(f,a)

3aΦk,f ′

 ∧

∧

a∈Act

(¬3a(
∧

f ′∈S(f,a)

¬Φk,f ′))

whereS(f, a) = {f ′ | f
a
→ f ′} and3τ means “reachable via a finite number of

τ -transitions” and3a := 3τ 〈a〉3τ for a 6= τ .
Empty conjunctions are equivalent totrue. Thus, by Theorem 9, the characteristic

formulaΘf for a processf of a finite-state systemF = (F,Act ,→) with n states is

Θf ≡ Φn,f ∧ ¬3

∧

f ′∈F

¬Φn,f ′

So one can reduce the problemPDA ≈ FS to a model checking problem for pushdown
automata and (a slight extension of) the logic EF. The following proof-sketch uses many
results by Walukiewicz [16]. For a complete proof, it would be necessary to repeat
many of these, so we just sketch the main ideas and the crucialmodification of the
algorithm from [16]. It has been shown by Walukiewicz in [16]that model checking
pushdown automata with the logic EF isPSPACE -complete. But our result does not
follow directly from that. First, our characteristic formulae use a slight extension of
EF, because of the3τ operator (normal EF has only the3 operator). However, the
model checking algorithm of [16] can trivially be generalized to this extension of EF,
without increasing its complexity. The second, and more important problem is that the
size of the characteristic formulaΘF is exponential inn (wheren is the number of
states ofF). However, a closer analysis of the model checking algorithm presented in
[16] reveals that its complexity does not depend directly onthe size of the formula, but
rather on the number of its distinct subformulae. More precisely, this algorithm uses a
so-called assumption function that assigns sets of subformulae to every control-state of
the PDA. Of course, each EF formula has only a polynomial number of subformulae
and hence the assumption function can be represented in polynomial space. However,
it is also true for our characteristic formulaΘF — although its size is exponential inn,
the number of its distinct subformulaeΦk,f is bounded byO(n2), because0 ≤ k ≤ n

andF has onlyn states. Hence, we can run the mentioned model-checking algorithm
for EF. Instead of ‘unwinding’ theΦk,f subformulae, we keep the abbreviationsΦk,f as
long as possible and expand them only (on-the-fly) when necessary (using the inductive
definitions above). Thus, the whole algorithm works in polynomial space and we obtain
the following theorem.

Theorem 10. The problemPDA ≈ FS is in PSPACE .

4 Conclusions

The following table summarizes the complexity of all problems of comparing PDA and
BPA to finite-state systems w.r.t. strong and weak simulation preorder/equivalence and
strong and weak bisimilarity.FS means a finite-state system that is part of the input of
the problem, whileF means “any fixed finite-state system” for the upper complexity
bounds and “some fixed finite-state system” for the lower complexity bounds.

⊑w FS ⊑w F FS ⊑w F ⊑w ≃w FS ≃w F ≈ FS ∼ F ≈ F
⊑ FS ⊑ F FS ⊑ F ⊑ ≃ FS ≃ F ∼ FS

BPA EXPTIME in P EXPTIME in P EXPTIME in P in P in P in P
complete complete complete

PDA EXPTIME EXPTIME EXPTIME EXPTIME EXPTIME EXPTIME PSPACE in P PSPACE
complete complete complete complete complete complete complete complete

Finally, we have also shown (in Theorem 6) that the problemPDA ∼ PDA of
checking bisimilarity of two pushdown systems isEXPTIME -hard. Thus, it is harder
than the problemPDA ∼ FS of checking bisimilarity of a pushdown system and a
finite-state system, which is onlyPSPACE -complete.

References

[1] P. Jančar. High undecidability of weak bisimilarity for Petri nets. InProceedings of
CAAP’95, volume 915 ofLNCS, pages 349–363. Springer, 1995.

[2] P. Jančar, A. Kučera, and R. Mayr. Deciding bisimulation-like equivalences with finite-state
processes.Theoretical Computer Science, 258(1–2):409–433, 2001.

[3] D. Kozen. Results on the propositionalµ-calculus.Theoretical Computer Science, 27:333–
354, 1983.

[4] A. Kučera. On simulation-checking with sequential systems. InProceedings of ASIAN
2000, volume 1961 ofLNCS, pages 133–148. Springer, 2000.

[5] A. Kučera and R. Mayr. On the complexity of semantic equivalences for pushdown au-
tomata and BPA. Technical report FIMU-RS-2002-01, Facultyof Informatics, Masaryk
University, 2002.

[6] A. Kučera and R. Mayr. Simulation preorder over simple process algebras.Information
and Computation, 173(2):184–198, 2002.

[7] A. Kučera and R. Mayr. Weak bisimilarity between finite-state systems and BPA or normed
BPP is decidable in polynomial time.Theoretical Computer Science, 270(1–2):677–700,
2002.

[8] R. Mayr. On the complexity of bisimulation problems for pushdown automata. InProceed-
ings of IFIP TCS’2000, volume 1872 ofLNCS, pages 474–488. Springer, 2000.

[9] G. Sénizergues. Decidability of bisimulation equivalence for equational graphs of finite out-
degree. InProceedings of 39th Annual Symposium on Foundations of Computer Science,
pages 120–129. IEEE Computer Society Press, 1998.

[10] J. Srba. Strong bisimilarity and regularity of basic parallel processes is PSPACE-hard. In
Proceedings of STACS 2002, volume 2285 ofLNCS, pages 535–546. Springer, 2002.

[11] B. Steffen and A. Ingólfsdóttir. Characteristic formulae for processes with divergence.
Information and Computation, 110(1):149–163, 1994.

[12] C. Stirling. The joys of bisimulation. InProceedings of MFCS’98, volume 1450 ofLNCS,
pages 142–151. Springer, 1998.

[13] C. Stirling. Decidability of DPDA equivalence.Theoretical Computer Science, 255:1–31,
2001.

[14] W. Thomas. On the ehrenfeucht-fraı̈ssé game in theoretical computer science. InProceed-
ings of TAPSOFT’93, volume 668 ofLNCS, pages 559–568. Springer, 1993.

[15] R. van Glabbeek. The linear time—branching time spectrum. Handbook of Process Alge-
bra, pages 3–99, 1999.

[16] I. Walukiewicz. Model checking CTL properties of pushdown systems. InProceedings of
FST&TCS 2000, volume 1974 ofLNCS, pages 127–138. Springer, 2000.

[17] I. Walukiewicz. Pushdown processes: Games and model-checking. Information and Com-
putation, 164(2):234–263, 2001.

