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Abstract. We study the complexity of comparing pushdown automata (PDA
and context-free processes (BPA) to finite-state systems, sirong and weak
simulation preorder/equivalence and strong and weak bisition equivalence.
We present a complete picture of the complexity of all thesblems. In partic-
ular, we show that strong and weak simulation preorder (artd simulation
equivalence) isEXPTIME-complete between PDA/BPA and finite-state sys-
tems in both directions. For PDA the lower bound even holdbéffinite-state
system is fixed, while simulation-checking between BPA any fixed finite-
state system is already polynomial. Furthermore, we shatwikak (and strong)
bisimilarity between PDA and finite-state system$isPA CE-complete, while
strong (and weak) bisimilarity between two PDAHX PTIME-hard.

1 Introduction

Transition systemsre a fundamental and widely accepted model of processés wit
discrete states and dynamics (such as computer prograonsjaly, a transition system

is a triple7 = (S, Act,—) whereS is a set ofstates(or processes Act is a finite set

of actions and— C S x Act x S is atransition relation We write s - ¢ instead of
(s,a,t) € — and we extend this notation to elementsAft* in the natural way. A
statet is reachablefrom a states, writtens —* ¢, iff s — t for somew € Act*.

In theequivalence-checkirgpproach to formal verification, one describesgpe-
cification (the intended behavior) and the actiraplementatiorof a given process as
states in transition systems, and then it is shown that thegquivalentHere the no-
tion of equivalence can be formalized in various ways adogrtb specific needs of a
given practical problem (see, e.g., [15] for an overviewsdems, however, thatm-
ulation andbisimulationequivalence are of special importance as their accompgnyin
theory has been developed very intensively and found itstavayany practical appli-
cations. Letl = (5, Act, —) be a transition system. A binary relatiéhC S x S is a
simulationiff whenever(s, t) € R, then for eachs % s’ there is some - ¢’ such that
(s',t') € R. Aprocess is simulatedby ¢, writtens C ¢, iff there is a simulatiorR such
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that(s,t) € R. Processes, t aresimulation equivalentwritten s ~ ¢, iff they can sim-
ulate each other. Aisimulationis a symmetric simulation relation, and two processes
s andt arebisimilar iff they are related by some bisimulation. In order to aligtfeom
internal (‘invisible’) transitions of a given system, sikations and bisimulations are
sometimes considered in theieakforms. Here, the silent steps are usually modeled
by a distinguished action, and theextendedransition relation= C S x Act x S'is

-

defined bys % ¢ iff either s = ¢ anda = 7, ors > s’ % ' 7> ¢ for somei, j € N,
ands’,t’ € S.

Simulations (and bisimulations) can also be viewedamed12, 14] between two
players, the attacker and the defender. In a simulation dhenattacker wants to show
thats IZ ¢, while the defender attempts to frustrate this. Imaginétthere are two to-
kens put on statesandt. Now the two players, attacker and defender, start to play a
simulation gamevhich consists of a (possibly infinite) numberrmolindswhere each
round is performed as follows: The attacker takes the tokieiclhwwas put ors orig-
inally and moves it along a transition labeled by (somgjhe task of the defender
is to move the other token along a transition with the samelldbone player cannot
move then the other player wins. The defender wins everyiiafjame. It can be easily
shown thats C ¢ iff the defender has a universal winning strategy. The oiffeience
between a simulation game antbigimulation gamés that the attacker cazthoosehis
token at the beginning of every round (the defender has fresby moving the other
token). Again we get that ~ ¢ iff the defender has a winning strategy. Corresponding
‘weak forms’ of the two games are defined in the obvious wayuééthe introduced
games at some points to give a more intuitive justificatianofar claims. Simulations
and bisimulations can also be used to relate statelffefenttransition systems; for-
mally, two systems are considered to be a single one by takendisjoint union.

In this paper we mainly consider processepo$hdown automatavhich are in-
terpreted as a (natural) model of sequential systems wittually recursive proce-
dures. A pushdown automaton is a tuple = (Q, I, Act,d) where@ is a finite
set of control states I is a finite stack alphabetAct is a finiteinput alphabetand
0:(Q xTI') = P(Act x (Q x I'*)) is atransition functionwith finite image (here
P(M) denotes the power set af). We can assume (w.l.o.g.) that each transition in-
creases the height (or length) of the stack by at most oné @Bé\ can be efficiently
transformed to this kind of normal form). In the rest of thappr we adopt a more
intuitive notation, writingpA % ¢f € ¢ instead of(a, (¢, 8)) € d(p, A). To A we
associate the transition system where@ x I'* is the set of states (we wrijev in-
stead of(p, a)), Act is the set of actions, and the transition relation is deteechiby
pAa N qBa iff pA 5 qB € 6.

Let A, B be classes of processes. The problem whether a given prooéss is
simulated (or weakly simulated) by a given procesg B is denoted byd C B (or
A C,, B, respectively). Similarly, the problem if and¢ are simulation equivalent,
weakly simulation equivalent, bisimilar, or weakly bislari is denoted byd ~ B,
A~, B, A~ B,orA = B, respectively. The classes of all pushdown processes and
finite-state processes (i.e., processes of finite-statsitimn systems) are denotBdA
andFsS, respectivelyBPA (basic process algebra), also called context-free presess
the subclass d?DA where|Q| = 1, i.e., without a finite-control.



The state of the art for simulation:
It has been known for some time that strong simulation predodtweerPDA andFS
is decidable in exponential time. This is because one carceetthe simulation problem
to the model-checking problem witPDA and a fixed formula of the modatcalculus
(see, e.qg., [6, 4]). As model checkiiPA with the modalu-calculus isSEXPTIME-
complete [17] the result follows. &SPACE lower bound for the=S C BPA prob-
lem and a coVP lower bound for theBPA C FS andBPA ~ FS problems have
been shown in [6]. Furthermore, & PTIME lower bound for th&=S = PDA and
FS ~ PDA problems have been shown in [4], but in these constructlom§inite-state
systems were not fixed. The problems of comparing two diffeB&A/PDA processes
w.r.t. simulation preorder/equivalence are all undedielab
Our contribution:
We show that the problen®BPA C FS, FS C BPA andBPA ~ FSare EXPTIME-
complete, but polynomial for every fixed finite-state syst&@m the other hand, the
problemsPDA C FS, FS C PDA andPDA ~ FSare EXPTIME-complete, even fora
fixed finite-state system. Here, the main point are the lowanks, which require some
new insights into the power of the defender in simulation ganThe matching upper
bounds are obtained by a straightforward extension of tlheementioned reduction
to the model-checking problem with the mogactalculus.
The state of the art for bisimulation:
It was known that strong and weak bisimulation equivaleretevbenPDA andFS is
decidable in exponential time, because one can constmugofiynomial time) char-
acteristic modal:-calculus formulae for the finite-state system and thus cedbe
problem to model checking theDA with a modalu-calculus formula [11], which is
decidable in exponential time [17]. The best known lowerrmbiéor thePDA ~ FS
problem wasPSPACE-hardness, which even holds for a fixed finite state system [8]
The problemPDA ~ FSis also PSPACE-hard, but polynomial in the size of the
PDA for every fixed finite-state system [8]. Interestingly, theldemBPA ~ FS (and
BPA ~ FS) is polynomial [7]. The symmetric problem &DA ~ PDA is decidable
[9, 13], but the complexity is not known. So far, the best kndewer bound for it was
PSPACE-hardness [8]. The decidability of tiRDA ~ PDA problem is still open.
Our contribution:
We show that the problenBDA ~ FS andPDA =~ FS are PSPACE-complete by
improving the knownEXPTIME upper bound taPSPACE. Furthermore, we show
that the symmetric proble®DA ~ PDA is EXPTIME-hard, by improving the known
PSPACE lower bound toEXPTIME. This newEXPTIME lower bound even holds
for the subclass of normdeDA.

Due to space constraints, several proofs are omitted. Teye found in the full
version of the paper [5].

2 Lower Bounds

In this section we prove that all of the proble®BBA C FS, FS C BPA andBPA ~
FS are EXPTIME-hard. The problem®DA C FS, FS C PDA, PDA ~ FS are
EXPTIME-hard even for dixedfinite-state system. Moreover, we sh@x PTIME-
hardness of theDA ~ PDA problem.



An alternating LBAIs a tupleM = (S, X, so,F, 1, 7) where S, X v, so, F,
and - are defined as for ordinary non-deterministic LBA. In parée, S is a fi-
nite set of control states (we reserv@’ ‘to denote a set of control states of push-
down automata);, 4 € X' are the left-end and right-end markers, respectively, and
7w : S — {V,3, acc, rej} is a function which partitions the control statesinto uni-
versal existentia] accepting andrejecting respectively. We assume (w.l.0.g.) thais
defined so that

— forall s € SandA € X suchthatr(s) = Vorw(s) = Iwe have thaty(s, A)| = 2
(i.e.,v(s,A) = {s1,s2} for somesy,s; € S). The first element ofy(s, A) is
denoted byfirst(s, A), and the second one bycond(s, A). It means that each
configuration ofM where the control state is universal or existential hastbxac
two immediate successors (configurations reachable in @m@ugtational step).

—forall s € SandA € X such thatr(s) = acc or n(s) = rej we have that
v(s, A) = 0, i.e., each configuration 081 where the control state is accepting or
rejecting is ‘terminated’ (without any successors).

A computational tredor M on a wordw € X* is a finite treeT” satisfying the fol-
lowing: the root ofT" is (labeled by) the initial configuratiosy-w- of M, and if N
is a node ofM labeled by a configurationsv whereu,v € X* ands € S, then the
following holds:

— if sis accepting or rejecting, thefis a leaf;

— if sis existential, thel” has one successor whose label is one of the two configu-
rations reachable fromsv in one step (here, the notion of a computational step is
defined in the same way as for ‘ordinary’ Turing machines);

— if sis universal, thed” has two successors labeled by the two configurations reach-
able fromusv in one step.

M acceptsw iff there is a computational tre& such that all leafs ofl" are ac-
cepting configurations. The acceptance problem for altenpd.BA is known to be
EXPTIME-complete.

In subsequent proofs we often usg to denote the set/ U {x} whereM is a set
andx ¢ M is a fresh symbol.

Theorem 1. The problenBPA C FSis EXPTIME-hard.

Proof. Let M = (S, X, , so,F, -, 7) be an alternating LBA and» € X* an input
word. We construct (in polynomial time) a BPA systeth = (I, Act, ), a finite-
state system¥ = (5, Act,—), and processea and X of A and F, resp., such
that M acceptsw iff a Z X. Letn be the length ofw. We putl” = S, xX U
Sx X, x{0,---,n+2} U SxEXx{W} U {T, Z}. Configurations of\1 are encoded by
strings ovelsS, x X of lengthn 4 2. A configurationusv, whereu, v € X* ands € S, is
written as{x, v(k)) (x,v(k — 1)) -+ (%, v(2)) (s,v(1)) (x,u(m)) --- (x,u(1)) where
k andm are the lengths of andu, resp., and(i) denotes thé* symbol ofv (con-
figurations are represented in a ‘reversed order’ since wd teawrite the top stack
symbol on the left-hand side). Elements$tx X, x {0,---,n + 2} are used as top
stack symbols when pushing a new configuration to the staekl{slow); they should



be seen as a finite memory where we keep (and update) the etfiomabout the po-
sition of the symbol which will be guessed by the next traosifas we count symbols
from zero, the bounded counter reaches the valye after guessing the last symbol),
about the control state which is to be pushed, and about tig)(®mbol of the form
(s,a) which was actually pushed. TH&is a special ‘bottom’ symbol which can emit
all actions and cannot be popped. The role of symbolS»Ex{W} U {T} will be
clarified later. The set of actions isct = {a, ¢, f, s,d,t} U (S, xX), andd consists of
the following transitions:

1. ({s,%),1) = ({s,%),i 4+ 1) (%, A) forallAe X,se€S5,0<i<n+1;
2. ((s,%),1) = ((s,A),i +1) (s, A) forallAe X,s€5,0<i<n+1,;
3. ((s,A),i) %5 ((s,A),i +1)(x,B) forall A,Be ¥,s€5,0<i<n+1;
4. ((s,A),n+2) 5 ((s,A), W) forall Ae X,s € S;
5. ((s,A),W) e forall s € S, A € X such thats is not
rejecting;
6. ({s, A), W) L ((s,%),0) for all s,s’ € S, A € ¥ such that
w(s) € {V,3} ands’ = first(s, A);
7. ((s,A), W) > ({s',%),0) for all s,s’ € S, A € X such that
w(s) € {V,3} ands’ = second(s, A);
8. ({s, A), W) L ((s,%),0) for all s,s' € S, A € ¥ such that
m(s) = Jands’ = second(s, A);
9. ((s,A), W) > ((s',%),0) for all s,s'’ € S, A € X such that
m(s) = Jands’ = first(s, A);
10. ((s, A), W) L T forall s € S,y € {f,s} such that
m(s) = acc;
11.T5T
12. 74 7 forall y € Act;
13. (z, A) 2 ¢ forallz € S,, A € X.

The process corresponds to the initial configuration.6f, i.e.,
a = ({s0,F),n+2) {x, ) (rw(n)) - Gk w(2)) (xw(l)) (so,F) Z

The behavior ofv can be described as follows: whenever the top stack symbbtie
form ((s, A), W), we know that the previously pushed configuration contdirsyym-
bol (s, A). If s is rejecting no further transitions are possible. Otherwige, A), W)
can either disappear (emitting the actidna-see rule 5), or it can perform one of tlfe
ands actions as follows:

— If sisuniversalor existentia) ((s, A), W) can emit eitheyf or s, storingfirst(s, A)
or second(s, A) in the top stack symbol, respectively (rules 6, 7).

— If sisexistentia) ((s, A), W) can also emiff ands while storingsecond(s, A) and
first(s, A), respectively (rules 8, 9).

— If sisaccepting ({s, A), W) emits f or s and pushes the symb®lwhich can do
the actiont forever (rules 10, 11).



If ((s,A),W) disappears, the other symbols stored in the stack subsiyyen-

form their symbol-specific actions and disappear (rule #3}.is not accepting and
({s,A), W) emits f or s, a new configuration is guessed and pushed to the stack; the
construction ob ensures that

— exactlyn + 2 symbols are pushed (rules 1-4);

— at most one symbol of the forfs’, B) is pushed; moreover, thé must be the
control state stored in the top stack symbol. After pusHisigB), the B is also
remembered in the top stack symbol (rule 2);

— if no symbol of the form(s’, B) is pushed, no further transitions are possible after
guessing the last symbol of the configuration (there areantsitions for symbols
of the form((s’, x),n + 2));

— after pushing the last symbol, the actionis emitted and a ‘waiting’ symbol
((s’, B), W) is pushed.

Now we define the finite-state systefi The set of states of is given by
S = {XvFvstcha'"7OH}U{007"'5071} X {O,,?’L—Fl} X (S* X E)i
Transitions ofF are

1. X2X, X5F X558 X550 forevery0 <i<n;

2 FLx FYU for everyy € Act — {f};

3.53Xx, 55U for everyy € Act — {s};

4. C; % (Ch,0,%,%,%,%), C; L U forevery0 <i <n,y € Act — {d};
5.U%U for everyy € Act;

6. (Cy, J, %, %, %, %) 2 (Ci, j+1,%,%,%,%) forall0 <i<n,0<j<iandye

Sex X,
(Ciyiy k%, %) S (Cyy i1, y, %, %,%) forall0 <i<nandy e S,xX;
8. (Cy,i+1,y,%,%,%) = (C4, (i+2) mod(n+2),y, 2, x, %)
forall0 <i <mandy,z e S,x;
9. (Ci, 4, y, 2, %, %) = (Cf, (j+1) mod(n+2),y, 2, *, %)
forall0 <i<n,i+2 <j <n+l,andy,z € S, x X,
10. (Cy, 4, y, 2, %, %) — (Cy, j+1,y, 2, %, %)
forall0 <i<n,0<j<iandy,z,u € S, xX;
11. (Ci i, y, 2, %, %) — (Ci,i+1,y, z,u, %)
forall0 < i <mandy,z,u € S,xX;
12. (Cy,i+1,y, z,u, %) = (Cf, (i+2) mod(n+2),y, 2, u, v)
forall0 <i <mnandy,z,u,v € S, x;
13. (C;, (i+2) mod(n+2), y, 2, u,v) = U
forall 0 <i < n,z € Act, andy, z,u,v € S, xX such that(y, z) and(u, v) are
not compatible pairs (see below).

~

A fragment of ¥ is shown in Fig. 1. The role of states of the fo(f¥};, 0, , x, x, x) and
their successors (which are not drawn in Fig. 1) is clarifield.

Now we prove thatM acceptsaw iff « [Z X. Intuitively, the simulation game be-
tweena and X corresponds to constructing a branch in a computationalfore M
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(Cn ’0’*’*’*’*
Fig. 1. The systemsF and.F’ (successors ofC;, 0, x, x, x, %) in F are omitted).

onw. The attacker (who plays with) wants to show that there is an accepting com-
putational tree, while the defender aims to demonstratedmeerse. The attacker is
therefore ‘responsible’ for choosing the appropriate sasors of all existential con-
figurations (selecting those for which an accepting sulesests), while the defender
chooses successors of universal configurations (seletbiirsg for which no accepting
subtree exists). The attacker wins iff the constructed thrapaches an accepting con-
figuration. The choice is implemented as follows: after pughhe last symbol of a
configuration, the attacker has to emit thaction and push a ‘waiting’ symbol (see
above). The defender can reply by entering the gtat&, or one of the; states. Intu-
itively, he chooses among the possibilities of selectirgfitst or the second successor,
or checking that thé*® symbol of the lastly pushed configuration was guessed cor-
rectly (w.r.t. the previous configuration). Technicallyetchoice is done by forcing the
attacker to emit a specific action in thextround—observe that if the defender per-
forms, e.g., theX 5 F, transition, then the attackemustuse one of higf transitions

in the next round, because otherwise the defender would geeifrately to the state’
where he can simulate ‘everything’, i.e., the attackerdabe game. As the defender
is responsible only for selecting the successonsnifersalconfigurations, the attacker
has to follow his ‘dictate’ only if the lastly pushed configtion was universal; if it was
existential, he can choose the successor accordihig tawn will (see the rules 6-9 in
the definition ofd). If the lastly pushed configuration was rejecting, theckita cannot
perform any further transitions from the waiting symbol,jgthmeans that the defender
wins. If the configuration was accepting and the defendarshtof S via the actiorr,
then the attacker wins; first he replaces the waiting symlitbl W, emitting f or s, resp.
(so that the defender has to go backkipand then he does the actiarirhe purpose of
the states”; (and their successors) is to ensure that the attacker cgaimoanything
by ‘cheating’, i.e., by guessing configurations incorngdfithe defender is suspicious
that the attacker has cheated when pushing the last cortfiurbe can ‘punish’ the
attacker by going (via the actiar) to one of theC; states. Doing so, he forces the at-
tacker toremovethe waiting symbol in the next round (see the rule 5 in the defimof

0). Now the atacker can only pop symbols from the stack and émisymbol-specific
actions. The defender ‘counts’ those actions and ‘remeshtiex symbols at positions
i andi + 1 in the lastly and the previously pushed configurations. rte defender
collects the four symbols, he either enters a universa &tdt.e., he wins the game), or
gets ‘stuck’ (which means that the attacker wins). It degesrdwhether the two pairs



of symbols are compatible w.r.t. the transition functipof M or not (here we use a
folklore technique of checking the consistency of suceessonfigurations of Turing
machines). Observe that if the lastly pushed configuratias accepting, the defender
still has a chance to perform a consistency check (in fagg,hts ‘last chance’ to win
the game). On the other hand, if the defender decides to dhec&onsistency right
at the beginning of the game (when the attacker plays: tihansition froma), he in-
evitably loses because the attacker reaches the bottonosyhib n+2 transitions and
then he can emit the actignlt follows that the attacker has a winning strategy/ff
acceptsu. O

Theorem 2. The problenPDA C FSis EXPTIME-hard even for a fixed finite-state
process.

Proof. We modify the construction of Theorem 1. Intuitively, wetjps-implement the
cheating detection so that the compatibility of selectddspef symbols is checked by
the pushdown system and not BBy (now we can store the four symbols in the finite
control). However, it must still be the defender who selelts (position of the) pair.
This can be achieved with a fixed number of states (see [5]).

Theorem 3. The problenFS C BPA is EXPTIME-hard.

Proof. The technique is similar to the one of Theorem 1 (see [5]).

Theorem 4. The problentS C PDA is EXPTIME-hard even for a fixed finite-state
process.

An immediate consequence of Theorem 1 and Theorem 2 is tloavfog:

Corollary 5. The problemBPA ~ FSis EXPTIME-hard. Moreover, the problem
PDA ~ FSis EXPTIME-hard even for a fixed finite-state process.

Proof. There is a simple (general) reduction from theC B problem to thed ~ B
problem (whered, B are classes of processes) which applies also in this caser-gi
processep € A andq € B, we construct processes, ¢’ such thaty’ has only the
transitiong’ % p, p’ % ¢, andqg’ has only the transitiogd % g. It follows immediately
thatp’ ~ ¢ iff p C q. O

The problem oPDA ~ PDA is decidable, but the exact complexity is not known. The
decision procedures described in [9, 13] do not give any uppmplexity bound. So
far, the best known lower bound for this problem waSPA CE-hardness [8]. How-
ever, while the probler®DA ~ FSis PSPACE-complete (see Section 3) the problem
PDA ~ PDAs atleastEX PTIME-hard. ThisEXPTIME lower bound even holds for
the subclass of normd@DA (a PDA is normediff from every reachable configuration
it is possible to empty the stack).

The proof of the following theorem uses a technique whichlmatraced back to
Jancar [1]; a more explicit formulation is due to Srba [10Joanused the technique in
the different context of Basic Parallel Processes. The mdaiais that in a bisimulation
game the defender can force the attacker to do certain thtggsding to the defender’s
choices. The full proof can be found in [5].



Theorem 6. The problenPDA ~ PDA is EXPTIME-hard, even for normeBDA.

Proof. (sketch) The proofis done by a polynomial-time reductiothef (EX PTIME-
complete) acceptance problem of alternating LBA toRfiA ~ PDA problem. The
bisimulation game proceeds as follows. The attacker ggdsBA configurations and
pushes them onto the stack. The defender is forced to copg theves. At existential
control states (of the LBA) the attacker chooses the suocesstrol state, and at the
universal control states (of the LBA) the defender gets wosk the successor control
state (this requires the techniqgue mentioned above wherédfender forces the at-
tacker to do certain things). At any time, the defender caoeféhe attacker to enter a
so-called check-phase. In this check-phase it is verifidtbifLBA configuration at the
top of the stack is really a successor configuration (acogrtli the transition rules of
the LBA) of the LBA configuration that was pushed onto the lstaefore. If not, then
the defender wins the bisimulation game. This construdtioces the attacker to play
‘honestly’, i.e., to correctly simulate the behavior of tHRA. If an accepting configu-
ration (of the LBA) is reached in this way then the attackersithe bisimulation game
(having proved, despite the interference of the defendbidsces at the universal con-
trol states, that the alternating LBA accepts). Otherwiise pisimulation game goes on
forever and the defender wins. This construction ensugdglile attacker has a winning
strategy if and only if the alternating LBA accepts. Thug #iternating LBA accepts
iff the two PDAs are not bisimilar. O

3 Upper Bounds

The next theorem extends the result for strong simulatioichvappeared in [6]; the
proof is based on the same idea, but the constructed formislaow completely fixed.

Theorem 7. The problem$DA C,, FS, FS C,, PDA, and PDA ~, FSare in
EXPTIME.

Proof. All of the above mentioned problems are polynomially redlecto the model-
checking problem with pushdown automata and a fixed formutE the modalyu-
calculus (which is decidable in deterministic exponeriiag [17]).

Lety = vX.0,04{c) X, whered, ¢ = vY.(¢ Ala]Y) andOpp = vZ. (¢ V (D) Z).
Intuitively, O, says that each state which is reachable from a given pro@adinite
sequence ofi-transitions satisfieg, and O, says that a given process can reach a
state satisfying) via a finite sequence éftransitions. Hence, the meaningg@tan be
explained as follows: a process satisfietdf after each finite sequence aftransitions
it can perform a finite sequence ltransitions ended with onetransition so that the
state which is entered again satisfie@ve refer to [3] for a precise definition of the syn-
tax and semantics of the modakalculus). Now letA = (Q, I, Act, &) be a pushdown
system,F = (F, Act,—) afinite-state systenpw a process ofp, and f a process of
F. We construct a pushdown systefn= (Qx F'x Actx{0,1},I"U{Z},{a,b,c},d)
(whereZ ¢ I' is a new bottom symbol) which ‘alternates’ tHe transitions ofA and
F, remembering ther” in its finite control. Formallyy’ is constructed as follows:

— forall A % r3 € 6 andg € F we add(q, g,7,0)A % (r,g,2,0)5 t0 &';



— forallgA = r3 € 6,z € Act, andg € F we add(q, g, z,0)A = (r,g,z,0)3 to
o'

—foralqg € Q, g € F,z € Act,andY € I' U{Z} we add(q,g,2,0)Y LR
(¢,9,2,1)Y to &';

— foreach transitiog = ¢’ of Fandallg € Q,Y € I'u{Z}we add(q, g,z,1)Y LR
(¢,9',7,1)Y t0 ¢;

—forallg = ¢’ of F,z € Act,q € Q,andY € I' U {Z} we add(q, g,z,1)Y >
(¢,9,2,1)Y tod;

—forallge Q,g € F,andY € I'U{Z}we add(q,g,7,1)Y > (¢,9,7,0)Y to &';

We claim thappa C,, fiff (p, f,7,0)aZ = ¢. Indeed, each sequencewfransitions
of (p, f,7,0)aZ corresponds to som& move ofpa and vice versa; and after each
such sequence, the ‘token’ can be switched ffbota 1 (performingb), and now each
sequence ob's ended with one: corresponds to & move of f. Then, the token is
switched back t® and the computation proceeds in the same wasays that this can
be repeated forever, unless we reach a state which cannatydowahen the token is
set to0. The new bottom symbd! has been added to ensure thatf, 7,0)aZ cannot
get stuck just due to the emptiness of the stack. FBe,, PDA direction is handled
in a very similar way (the roles gfo: and f are just interchanged). a

Corollary 8. The problem8PA C,, FS, FSC,, BPA, andBPA ~,, FSare decidable
in polynomial time for (anylixed finite-state process.

Proof. The complexity result of [17] says that model-checking veitty fixed formula

of the modalu-calculus and pushdown processes wifixadnumber of control states
is decidable in polynomial time. By synchronizing a givenABgrocess with a given
(fixed) finite-state process as in Theorem 7 we obtain a pushdgstem with a fixed
number of control states, and the result follows. O

Now we show that the problePDA =~ FSis in PSPACE. First, we recall some results
from [2]. A characteristic formula of a finite-state systémw.r.t. = is a formula® g
s.t. for every general systetid which uses the same set of actionsfasve have that
G E ©r < G = F.Ithas been shown in [2] that characteristic formulae fatdin
state systems w.r4v can be effectively constructed in the temporal logic EF (apde
fragment of CTL), by using the following theorem (hexg, denotes ‘weak bisimilarity
up-tok’, which means that the defender has a strategy to defend feastk rounds in
the weak bisimulation game).

Theorem 9. (taken from [2])

Let F' be a finite-state system withstates and~ a general system. States= G and
f € F are weakly bisimilar iff the following conditions hold: (%)=, f and (2) For
each statgy’ which is reachable frorg there is a statgf’ € F such thaty’ ~,, f'.

One constructs characteristic formutbg  for statesf in F w.r.t. =, that satisfyg =
b5 < g~y f. Thefamily of®, ; formulae is defined inductively anas follows:

Do ¢ 1= true
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acActf’eS(f,a) acAct f'es(f.a)

whereS(f,a) = {f' | f = f'} and<, means “reachable via a finite number of
T-transitions” and®,, := <, {(a)<, fora # 7.

Empty conjunctions are equivalenttime. Thus, by Theorem 9, the characteristic
formula®©; for a procesg of a finite-state systetft = (F, Act, —) with n states is

O = Ppp N O /\ =D, fr
frer

So one can reduce the probl&DA =~ FSto a model checking problem for pushdown
automata and (a slight extension of) the logic EF. The falhguproof-sketch uses many
results by Walukiewicz [16]. For a complete proof, it would hecessary to repeat
many of these, so we just sketch the main ideas and the cmaidification of the
algorithm from [16]. It has been shown by Walukiewicz in [XEht model checking
pushdown automata with the logic EF #5PA CE-complete. But our result does not
follow directly from that. First, our characteristic fortae use a slight extension of
EF, because of the . operator (normal EF has only th& operator). However, the
model checking algorithm of [16] can trivially be generalizto this extension of EF,
without increasing its complexity. The second, and moreartant problem is that the
size of the characteristic formut@r is exponential inn (wheren is the number of
states ofF"). However, a closer analysis of the model checking algorifinesented in
[16] reveals that its complexity does not depend directlyhensize of the formula, but
rather on the number of its distinct subformulae. More m&lyi this algorithm uses a
so-called assumption function that assigns sets of sulflaeno every control-state of
the PDA. Of course, each EF formula has only a polynomial remalb subformulae
and hence the assumption function can be represented ingulgl space. However,
it is also true for our characteristic formuty — although its size is exponential in
the number of its distinct subformulde, ; is bounded byO(n?), becaus® < k < n
and F' has onlyn states. Hence, we can run the mentioned model-checkingthlgo
for EF. Instead of ‘unwinding’ the®;, ; subformulae, we keep the abbreviatidns; as
long as possible and expand them only (on-the-fly) when sacg$using the inductive
definitions above). Thus, the whole algorithm works in paolymal space and we obtain
the following theorem.

Theorem 10. The problenPDA = FSisin PSPACE.

4 Conclusions

The following table summarizes the complexity of all prabkeof comparing PDA and
BPA to finite-state systems w.r.t. strong and weak simutgpiceorder/equivalence and
strong and weak bisimilaritfzS means a finite-state system that is part of the input of
the problem, whileF means “any fixed finite-state system” for the upper compjexit
bounds and “some fixed finite-state system” for the lower dewxity bounds.



C., FS Co F FSC., F Cuw ~., FS ~ F ~ FS ~F ~F
CFS CF FSC FC ~ FS ~ F ~ FS
BPA [EXPTIME inP EXPTIME inP EXPTIME inP inP inP inP
complete complete complete
PDA | EXPTIME [ EXPTIME [ EXPTIME [ EXPTIME | EXPTIME | EXPTIME| PSPACE inP PSPACE
complete | complete| complete | complete | complete | complete | complete complete

Finally, we have also shown (in Theorem 6) that the probRDA ~ PDA of
checking bisimilarity of two pushdown systemsAX PTIME-hard. Thus, it is harder
than the problenPDA ~ FS of checking bisimilarity of a pushdown system and a
finite-state system, which is on§SPA CE-complete.
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