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Abstract. We consider infinite-state turn-based stochastic games of two play-
ers, � and ^, who aim at maximizing and minimizing the expected total reward
accumulated along a run, respectively. Since the total accumulated reward is un-
bounded, the determinacy of such games cannot be deduced directly from Mar-
tin’s determinacy result for Blackwell games. Nevertheless, we show that these
games are determined both for unrestricted (i.e., history-dependent and random-
ized) strategies and deterministic strategies, and the equilibrium value is the same.
Further, we show that these games are generally not determined for memoryless
strategies. Then, we consider a subclass of ^-finitely-branching games and show
that they are determined for all of the considered strategy types, where the equi-
librium value is always the same. We also examine the existence and type of
(ε-)optimal strategies for both players.

1 Introduction

Turn-based stochastic games of two players are a standard model of discrete systems
that exhibit both non-deterministic and randomized choice. One player (called � or
Max in this paper) corresponds to the controller who wishes to achieve/maximize some
desirable property of the system, and the other player (called ^ or Min) models the
environment which aims at spoiling the property. Randomized choice is used to model
events such as system failures, bit-flips, or coin-tossing in randomized algorithms.

Technically, a turn-based stochastic game (SG) is defined as a directed graph where
every vertex is either stochastic or belongs to one of the two players. Further, there is a
fixed probability distribution over the outgoing transitions of every stochastic vertex. A
play of the game is initiated by putting a token on some vertex. Then, the token is moved
from vertex to vertex by the players or randomly. A strategy specifies how a player
should play. In general, a strategy may depend on the sequence of vertices visited so
far (we say that the strategy is history-dependent (H)), and it may specify a probability
distribution over the outgoing transitions of the currently visited vertex rather than a
single outgoing transtion (we say that the strategy is randomized (R)). Strategies that
do not depend on the history of a play are called memoryless (M), and strategies that
do not randomize (i.e., select a single outgoing transition) are called determinisctic (D).
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Thus, we obtain the MD, MR, HD, and HR strategy classes, where HR are unrestricted
strategies and MD are the most restricted memoryless deterministic strategies.

A game objective is usually specified by a payoff function which assigns some real
value to every run (infinite path) in the game graph. The aim of Player � is to maximize
the expected payoff, while Player ^ aims at minimizing it. It has been shown in [22]
that for bounded and Borel payoff functions, Martin’s determinacy result for Blackwell
games [23] implies that

sup
σ∈HR�

inf
π∈HR^

Eσ,πv [Payoff ] = inf
π∈HR^

sup
σ∈HR�

Eσ,πv [Payoff ] (1)

where HR� and HR^ are the classes of HR strategies for Player � and Player ^, respec-
tively. Hence, every vertex v has a HR value ValHR(v) specified by (1). A HR strategy is
optimal if it achieves the outcome ValHR(v) or better against every strategy of the other
player. In general, optimal strategies are not guaranteed to exist, but (1) implies that
both players have ε-optimal HR strategies for every ε > 0 (see Section 2 for precise
definitions).

The determinacy results of [23, 22] cannot be applied to unbounded payoff func-
tions, i.e., these results do not imply that (1) holds if Payoff is unbounded, and they do
not say anything about the existence of a value for restricted strategy classes such as MD
or MR. In the context of performance analysis and controller synthesis, these questions
rise naturally; in some cases, the players cannot randomize or remember the history of a
play, and some of the studied payoff functions are not bounded. In this paper, we study
these issues for the total accumulated reward payoff function and infinite-state games.

The total accumulated reward payoff function, denoted by Acc, is defined as follows.
Assume that every vertex v is assigned a fixed non-negative reward r(v). Then Acc
assigns to every run the sum of rewards all vertices visited along the run. Obviously,
Acc is unbounded in general, and may even take the ∞ value. A special case of total
accumulated reward is termination time, where all vertices are assigned reward 1, except
for terminal vertices that are assigned reward 0 (we also assume that the only outgoing
transition of every terminal vertex t is a self-loop on t). Then, Eσ,πv [Acc] corresponds to
the expected termination time under the strategies σ, π. Another special (and perhaps
simplest) case of total accumulated reward is reachability, where the target vertices
are assigned reward 1 and the other vertices have zero reward (here we assume that
every target vertex has a single outgoing transition to a special state s with zero reward,
where s→ s is the only outgoing transition of s). Although the reachability payoff is
bounded, some of our negative results about the total accumulated reward hold even for
reachability (see below).

The reason for considering infinite-state games is that many recent works study
various algorithmic problems for games over classical automata-theoretic models, such
as pushdown automata [15–17, 14, 9, 8], lossy channel systems [3, 2], one-counter au-
tomata [7, 5, 6], or multicounter automata [18, 11, 10, 21, 12, 4], which are finitely rep-
resentable but the underlying game graph is infinite and sometimes even infinitely-
branching (see, e.g., [11, 10, 21]). Since the properties of finite-state games do not carry
over to infinite-state games in general (see, e.g., [20]), the above issues need to be re-
visited and clarified explicitly, which is the main goal of this paper.
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Our contribution: We consider general infinite-state games, which may contain
vertices with infinitely many outgoing transitions, and ^-finitely-branching games,
where every vertex of V^ has finitely many outgoing transitions, with the total accu-
mulated reward objective. For general games, we show the following:

– Every vertex has both a HR and a HD value, and these values are equal1.
– There is a vertex v of a game G with reachability objective such that v has neither

MD nor MR value. Further, the game G has only one vertex (belonging to Player^)
with infinitely many outgoing transitions.

It follows from previous works (see, e.g., [8, 20]) that optimal strategies in general
games may not exist, and even if they do exist, they may require infinite memory. Inter-
estingly, we observe that an optimal strategy for Player � (if it exists) may also require
randomization in some cases.

For ^-finitely-branching games, we prove the following results:

– Every vertex has a HR, HD, MR, and MD value, and all of these values are equal.
– Player ^ has an optimal MD strategy in every vertex.

It follows from the previous works that Player � may not have an optimal strategy and
even if he has one, it may require infinite memory. Let us note that in finite-state games,
both players have optimal MD strategies (see, e.g., [19]).

Our results are obtained by generalizing the arguments for reachability objectives
presented in [8], but there are also some new observations based on original ideas and
new counterexamples. In particular, this applies to the existence of a HD value and the
non-existence of MD and MR values in general games.

2 Preliminaries

In this paper, the sets of all positive integers, non-negative integers, rational numbers,
real numbers, and non-negative real numbers are denoted by N, N0, Q, R, and R≥0,
respectively. We also use R≥0

∞ to denote the set R≥0 ∪ {∞}, where∞ is treated according
to the standard conventions. For all c ∈ R≥0

∞ and ε ∈ [0,∞), we define the lower and
upper ε-approximation of c, denoted by c 	 ε and c ⊕ ε, respectively, as follows:

c ⊕ ε = c + ε for all c ∈ R≥0
∞ and ε ∈ [0,∞),

c 	 ε = c − ε for all c ∈ R≥0 and ε ∈ [0,∞),
∞	 ε = 1/ε for all ε ∈ (0,∞),
∞	 0 = ∞ .

Given a set V , the elements of (R≥0
∞ )V are written as vectors x, y, . . ., where xv denotes

the v-component of x for every v ∈ V . The standard component-wise ordering on (R≥0
∞ )V

is denoted by v.

1 For a given strategy type T (such as MD or MR), we say that a vertex v has a T value if
supσ∈T� infπ∈T^ E

σ,π
v [Payoff ] = infπ∈T^ supσ∈T� E

σ,π
v [Payoff ], where T� and T^ are the classes

of all T strategies for Player � and Player ^, respectively.
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For every finite or countably infinite set M, a binary relation→ ⊆ M × M is total if
for every m ∈ M there is some n ∈ M such that m → n. A finite path inM = (M,→)
is a finite sequence w = m0, . . . ,mk such that mi → mi+1 for every i, where 0 ≤ i < k.
The length of w, i.e., the number of transitions performed along w, is denoted by |w|. A
run inM is an infinite sequence ω = m0,m1, . . . every finite prefix of which is a path.
We also use ω(i) to denote the element mi of ω, and ωi to denote the run mi,mi+1, . . .
Given m, n ∈ M, we say that n is reachable from m, written m →∗ n, if there is a finite
path from m to n. The sets of all finite paths and all runs inM are denoted by Fpath(M)
and Run(M), respectively. For every finite path w, we use Run(M,w) and Fpath(M,w)
to denote the set of all runs and finite paths, respectively, prefixed by w. IfM is clear
from the context, we write just Run, Run(w), Fpath and Fpath(w) instead of Run(M),
Run(M,w), Fpath(M) and Fpath(M,w), respectively.

Now we recall basic notions of probability theory. Let A be a finite or countably
infinite set. A probability distribution on A is a function f : A → R≥0 such that∑

a∈A f (a) = 1. A distribution f is rational if f (a) ∈ Q for every a ∈ A, positive if
f (a) > 0 for every a ∈ A, Dirac if f (a) = 1 for some a ∈ A, and uniform if A is finite
and f (a) = 1

|A| for every a ∈ A. A σ-field over a set X is a set F ⊆ 2X that includes X and
is closed under complement and countable union. A measurable space is a pair (X,F )
where X is a set called sample space and F is a σ-field over X. A probability measure
over a measurable space (X,F ) is a function P : F → R≥0 such that, for each countable
collection {Xi}i∈I of pairwise disjoint elements of F ,P(

⋃
i∈I Xi) =

∑
i∈I P(Xi), and more-

over P(X) = 1. A probability space is a triple (X,F ,P) where (X,F ) is a measurable
space and P is a probability measure over (X,F ).

Definition 1. A stochastic game is a tuple G = (V, → , (V�,V^,V©),Prob) where V is
a finite or countably infinite set of vertices, → ⊆ V × V is a total transition relation,
(V�,V^,V©) is a partition of V, and Prob is a probability assignment which to each
v ∈ V© assigns a positive probability distribution on the set of its outgoing transitions.
We say that G is ^-finitely-branching if for each v ∈ V^ there are only finitely many
u ∈ V such that v→ u.

Strategies. A stochastic game G is played by two players, � and ^, who select the
moves in the vertices of V� and V^, respectively. Let � ∈ {�,^}. A strategy for Player �
in G is a function which to each finite path in G ending a vertex v ∈ V� assigns a
probability distribution on the set of outgoing transitions of v. We say that a strategy τ
is memoryless (M) if τ(w) depends just on the last vertex of w, and deterministic (D)
if it returns a Dirac distribution for every argument. Strategies that are not necessarily
memoryless are called history-dependent (H), and strategies that are not necessarily
deterministic are called randomized (R). Thus, we obtain the MD, MR, HD, and HR
strategy types. The set of all strategies for Player � of type T in a game G is denoted
by TG

� , or just by T� if G is understood (for example, MR� denotes the set of all MR
strategies for Player �).

Every pair of strategies (σ, π) ∈ HR� × HR^ and an initial vertex v determine a
unique probability space (Run(v),F ,Pσ,πv ), where F is the σ-field over Run(v) gen-
erated by all Run(w) such that w starts with v, and Pσ,πv is the unique probability
measure such that for every finite path w = v0, . . . , vk initiated in v we have that
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P
σ,π
v (Run(w)) = Πk−1

i=0 xi, where xi is the probability of vi→ vi+1 assigned either by
σ(v0, . . . , vi), π(v0, . . . , vi), or Prob(vi), depending on whether vi belongs to V�, V^,
or V©, respectively (in the case when k = 0, i.e., w = v, we put Pσ,πv (Run(w)) = 1).

Determinacy, optimal strategies. In this paper, we consider games with the total accu-
mulated reward objective and reachability objective, where the latter is understood as a
restricted form of the former (see below).

Let r : V → R≥0 be a reward function, and Acc : Run → R≥0
∞ a function which to

every run ω assigns the total accumulated reward Acc(ω) =
∑∞

i=0 r(ω(i)). Let T be a
strategy type. We say that a vertex v ∈ V has a T-value in G if

sup
σ∈T�

inf
π∈T^
Eσ,πv [Acc] = inf

π∈T^
sup
σ∈T�
Eσ,πv [Acc]

where Eσ,πv [Acc] denotes the expected value of Acc in (Run(v),F ,Pσ,πv ). If v has a
T -value, then ValT (v, r,G) (or just ValT (v) if G and r are clear from the context) de-
notes the T-value of v defined by this equality.

Let G be a class of games. If every vertex of every G ∈ G has a T -value for every
reward function, we say thatG is T-determined. Note that Acc is generally not bounded,
and therefore we cannot directly apply the results of [23, 22] to conclude that the class
of all games is HR-determined. Further, these results do not say anything about deter-
minacy for the other strategy types even for bounded objective functions.

If a given vertex v has a T -value, we can define the notion of ε-optimal T strategy
for both players.

Definition 2. Let v be a vertex which has a T-value, and let ε ≥ 0. We say that

– σ ∈ T� is ε-T -optimal in v if Eσ,πv [Acc] ≥ ValT (v) 	 ε for all π ∈ T^;
– π ∈ T^ is ε-T -optimal in v if Eσ,πv [Acc] ≤ ValT (v) ⊕ ε for all σ ∈ T�.

A 0-T -optimal strategy is called T -optimal.

In this paper we also consider reachability objectives, which can be seen as a re-
stricted form of the total accumulated reward objectives introduced above. A “standard”
definition of the reachability payoff function looks as follows: We fix a set R ⊆ V of
target vertices, and define a function Reach : Run → {0, 1} which to every run as-
signs either 1 or 0 depending on whether or not the run visits a target vertex. Note
that Eσ,πv [Reach] is the probability of visiting a target vertex in the corresponding play
of G. Obviously, if we assign reward 1 to the target vertices and 0 to the others, and re-
place all outgoing transitions of target vertices with a single transition leading to a fresh
stochastic vertex u with reward 0 and only one transition u→ u, then Eσ,πv [Reach] in the
original game is equal to Eσ,πv [Acc] in the modified game. Further, if the original game
was ^-finitely-branching or finite, then so is the modified game. Therefore, all “posi-
tive” results about the total accumulated reward objective (e.g., determinacy, existence
of T -optimal strategies, etc.) achieved in this paper carry over to the reachability ob-
jective, and all “negative” results about reachability carry over to the total accumulated
reward.
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v : 0

q1 : 2 q2 : 4 q3 : 8 q4 : 16

t : 0

Fig. 1. Player � has an MR-optimal strategy in v, but no HD-optimal strategy in v. All vertices
are labelled by pairs of the form vertex name:reward.

3 Results

Our main results about the determinacy of general stochastic games with the total ac-
cumulated reward payoff function are summarized in the following theorem:

Theorem 3. Let G be the class of all games. Then

a) G is both HR-determined and HD-determined. Further, for every vertex v of every
G ∈ G and every reward function r we have that ValHR(v) = ValHD(v).

b) G is neither MD-determined nor MR-determined, and these results hold even for
reachability objectives.

An optimal strategy for Player � does not necessarily exist, even if G is a game with a
reachability payoff function such that V^ = ∅ and every vertex of V� has at most two
outgoing transitions (see, e.g., [8, 20]). In fact, it suffices to consider the vertex v of
Fig. 2 where the depicted game is modified by replacing the vertex u with a stochastic
vertex u′, where u′→ u′ is the only outgoing transition of u′, and u′ is the only target
vertex (note that all vertices in the first two rows become unreachable and can be safely
deleted). Clearly, ValHR(v) = 1, but Player � has no optimal strategy.

Similarly, an optimal strategy for Player ^ may not exist even if V� = ∅ [8, 20]. To
see this, consider the vertex u of Fig. 2, where t is the only target vertex and the depicted
game is modified by redirecting the only outgoing transition of p back to u (this makes
all vertices in the last two rows unreachable). We have that ValHR(u) = 0, but Player ^
has no optimal strategy.

One may be also tempted to think that if Player � (or Player ^) has some optimal
strategy, then he also has an optimal MD strategy. However, optimal strategies generally
require infinite memory even for reachability objectives (this holds for both players).
Since the corresponding counterexamples are not completely trivial, we refer to [20] for
details. Interestingly, an optimal strategy for Player � may also require randomization.
Consider the vertex v of Fig. 1. Let σ∗ ∈ MR� be a strategy selecting v→ qn with
probability 1/2n. Since V^ = ∅, we have that infπ∈HR^ E

σ∗,π
v [Acc] = ∞ = ValHR(v).

However, for every σ ∈ HD� we have that infπ∈HR^ E
σ,π
v [Acc] < ∞.
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For ^-finitely-branching games, the situation is somewhat different, as our second
main theorem reveals.

Theorem 4. Let G be the class of all ^-finitely-branching games. Then G is
HR-determined, HD-determined, MR-determined, and MD-determined, and for every
vertex v of every G ∈ G and every reward function r we have that

ValHR(v) = ValHD(v) = ValMR(v) = ValMD(v) .

Further, for every G ∈ G there exists a MD strategy for Player ^ which is optimal in
every vertex of G.

An optimal strategy for Player �may not exist in ^-finitely-branching games, and even
if it does exist, it may require infinite memory [20].

Theorems 3 and 4 are proven by a sequence of lemmas presented below. For the rest
of this section, we fix a stochastic game G = (V, → , (V�,V^,V©),Prob) and a reward
function r : V → R≥0. We start with the first part of Theorem 3 (a), i.e., we show that
every vertex has a HR-value. This is achieved by defining a suitable Bellman operator L
and proving that the least fixed-point of L is the tuple of all HR-values. More precisely,
let L : (R≥0

∞ )V → (R≥0
∞ )V , where y = L(x) is defined as follows:

yv =


r(v) + supv→v′ xv′ if v ∈ V�
r(v) + infv→v′ xv′ if v ∈ V^
r(v) +

∑
v→v′ xv′ · Prob(v)(v, v′) if v ∈ V©.

A proof of the following lemma can be found in the full version of this paper. Some
parts of this proof are subtle, and we also need to make several observations that are
useful for proving the other results.

Lemma 5. The operator L has the least fixed point K (w.r.t. v) and for every v ∈ V we
have that

Kv = sup
σ∈HR�

inf
π∈HR^

Eσ,πv [Acc] = inf
π∈HR^

sup
σ∈HR�

Eσ,πv [Acc] = ValHR(v).

Moreover, for every ε > 0 there is πε ∈ HD^ such that for every v ∈ V we have that
supσ∈HR� E

σ,πε
v ≤ ValHR(v) ⊕ ε.

To complete our proof of Theorem 3 (a), we need to show the existence of a
HD-value in every vertex, and demonstrate that HR and HD values are equal. Due to
Lemma 5, for every ε > 0 there is πε ∈ HD^ such that πε is ε-HR-optimal in every
vertex. Hence, it suffices to show the same for Player �. The following lemma is proved
in the full version.

Lemma 6. For every ε > 0, there is σε ∈ HD� such that σε is ε-HR-optimal in every
vertex.

The next lemma proves Item (b) of Theorem 3.
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Lemma 7. Consider the vertex v of the game shown in Fig. 2, where t is the only target
vertex and all probability distributions assigned to stochastic states are uniform. Then

(a) supσ∈MD� infπ∈MD^ E
σ,π
v [Reach] = supσ∈MR� infπ∈MR^ E

σ,π
v [Reach] = 0;

(b) infπ∈MD^ supσ∈MD� E
σ,π
v [Reach] = infπ∈MR^ supσ∈MR� E

σ,π
v [Reach] = 1.

Proof. We start by proving item (a) for MD strategies. Let σ∗ ∈ MD�. We show that
infπ∈MD^ E

σ∗,π
v [Reach] = 0. Let us fix an arbitrarily small ε > 0. We show that there

is a suitable π∗ ∈ MD^ such that Eσ
∗,π∗

v [Reach] ≤ ε. If the probability of reaching
the vertex u from v under the strategy σ∗ is at most ε, we are done. Otherwise, let ps

be the probability of visiting the vertex s from v under the strategy σ without passing
through the vertex u. Note that ps > 0 and ps does not depend on the strategy chosen by
Player ^. The strategy π∗ selects a suitable successor of u such that the probability pt

of visiting the vertex t from u without passing through the vertex v satisfies pt/ps < ε
(note that pt can be arbitrarily small but positive). Then

Eσ
∗,π∗

v [Reach] ≤

∞∑
i=1

(1 − ps)i pt =
(1 − ps)pt

ps
≤ ε

For MR strategies, the argument is the same.
Item (b) is proven similarly. We show that for all π∗ ∈ MD^ and 0 < ε < 1 there

exists a suitable σ∗ ∈ MD� such that Eσ
∗,π∗

v [Reach] ≥ 1 − ε. Let pt be the probability of
visiting t from u without passing through the vertex v under the strategy π∗. We choose
the strategy σ∗ so that the probability ps of visiting the vertex s from v without passing
through the vertex u satisfies ps/pt < ε. Note almost all runs initiated in v eventually
visit either s or t under (σ∗, π∗). Since the probability of visiting s is bounded by ε (the
computation is similar to the one of item (a)), we obtain Eσ

∗,π∗

v [Reach] ≥ 1− ε. For MR
strategies, the proof is almost the same. ut

We continue by proving Theorem 4. This theorem follows immediately from
Lemma 5 and the following proposition:

Proposition 8. If G is ^-finitely-branching, then

1. for all v ∈ V and ε > 0, there is σε ∈ MD� such that σε is ε-HR-optimal in v;
2. there is π ∈ MD^ such that π is HR-optimal in every vertex.

As an immediate corollary to Proposition 8, we obtain the following result:

Corollary 9. If G is^-finitely-branching, V� is finite, and every vertex of V� has finitely
many successors, then there is σ ∈ MD� such that σ is HR-optimal in every vertex.

Proof. Due to Proposition 8, for every vertex v and every ε > 0, there is σε ∈ MD� such
that σε is ε-HR-optimal in v. Since V� is finite and every vertex of V� has only finitely
many successors, there are only finitely many MD-strategies for Player �. Hence,
there is a MD strategy σ that is ε-HR-optimal in v for infinitely many ε from the set
{1, 1/2, 1/4, . . . }. Such a strategy is clearly HR-optimal in v. Note that σ is HR-optimal
in every vertex which can be reached from v under σ and some strategy π for Player ^.
For the remaining vertices, we can repeat the argument, and thus eventually produce a
MD strategy that is HR-optimal in every vertex. ut
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v

s

u

t

p

Fig. 2. A game whose vertex v has neither MD-value nor MR-value.

Hence, if all non-stochastic vertices have finitely many successors and V� is finite,
then both players have HR-optimal MD strategies. This can be seen as a (tight) gener-
alization of the corresponding result for finite-state games [19].

The rest of this section is devoted to a proof of Proposition 8. We start with Item 1.
The strategyσε is constructed by employing discounting. Assume, w.l.o.g., that rewards
are bounded by 1 (if they are not, we may split every state v with a reward r(v) into a
sequence of dr(v)e states, each with the reward r(v)/dr(v)e). Given λ ∈ (0, 1), define
Accλ : Run → R≥0 to be a function which to every run ω assigns Accλ(ω) =

∑∞
i=0 λ

i ·

r(ω(i)).

Lemma 10. For λ sufficiently close to one we have that

sup
σ∈HR�

inf
π∈HR^

Eσ,πv (Accλ) ≥ ValHR(v) 	
ε

2

Proof. We show that for every ε > 0 there is n ≥ 0 such that the expected reward that
Player � may accumulate up to n steps is ε-close to ValHR(v) no matter what Player ^
is doing. Formally, define Acck : Run → R≥0 to be a function which to every run ω
assigns Acck(ω) =

∑k
i=0 r(ω(i)). The following lemma is proved in the full version of

this paper.

Lemma 11. If G is ^-finitely-branching, then for every v ∈ V there is n ∈ N such that

sup
σ∈HR�

inf
π∈HR^

Eσ,πv (Accn) > ValHR(v) 	
ε

4

Clearly, if λ is close to one, then for every run ω we have that

Accλ(ω) ≥ Accn(ω) −
ε

4
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Thus,

sup
σ∈HR�

inf
π∈HR^

Eσ,πv (Accλ) ≥ sup
σ∈HR�

inf
π∈HR^

Eσ,πv (Accn) −
ε

4
≥ ValHR(v) 	

ε

2

This proves Lemma 10. ut

So, it suffices to find a MD strategy σε satisfying

inf
π∈HR^

Eσε,πv (Accλ) ≥ sup
σ∈HR�

inf
π∈HR^

Eσ,πv (Accλ) −
ε

2
.

We define such a strategy as follows. Let us fix some ` ∈ N satisfying

λ`

1 − λ
·max

v∈V
r(v) <

ε

8
.

Intuitively, the discounted reward accumulated after ` steps can be at most ε
8 . In a given

vertex v ∈ V�, the strategy σε chooses a fixed successor vertex u satisfying

sup
σ∈HR�

inf
π∈HR^

Eσ,πu (Accλ) ≥ sup
v→u′

sup
σ∈HR�

inf
π∈HR^

Eσ,πu′ (Accλ) −
ε

` · 4

Now we show that

inf
π∈HR^

Eσε,πv (Accλ) ≥ sup
σ∈HR�

inf
π∈HR^

Eσ,πv (Accλ) −
ε

2
.

which finishes the proof of Item 1 of Proposition 8.
For every k ∈ N we denote by σk a strategy for Player � defined as follows: For

the first k steps the strategy makes the same choices as σε, i.e., chooses, in each state
v ∈ V�, a next state u satisfying

sup
σ∈HR�

inf
π∈HR^

Eσ,πu (Accλ) ≥ sup
v→u′

sup
σ∈HR�

inf
π∈HR^

Eσ,πu′ (Accλ) −
ε

k · 4

From k+1-st step on, say in a state u, the strategy follows some strategy ζ satisfying

inf
π∈HR^

E
ζ,π
u (Accλ) ≥ sup

σ∈HR�
inf

π∈HR^
Eσ,πu (Accλ) −

ε

8

A simple induction reveals that σk satisfies

inf
π∈HR^

Eσk ,π
v (Accλ) ≥ sup

σ∈HR�
inf

π∈HR^
Eσ,πv (Accλ) −

3ε
8

(2)

(Intuitively, the error of each of the first k steps is at most ε
k·4 and thus the total error of

the first k steps is at most k · ε
k·4 = ε

4 . The rest has the error at most ε
8 and thus the total

error is at most 3ε
8 .)

We consider k = ` (recall that λ`

1−λ ·maxv∈V r(v) < ε
8 ). Then

inf
π∈HR^

Eσε,πv (Accλ) ≥ inf
π∈HR^

Eσk ,π
v (Accλ) −

ε

8
≥ sup

σ∈HR�
inf

π∈HR^
Eσ,πv (Accλ) −

ε

2
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Here the first equality follows from the fact that σk behaves similarly to σε on the first
k = ` steps and the discounted reward accumulated after k steps is at most ε

8 . The second
inequality follows from Equation (2).

It remains to prove Item 2 of Proposition 8. The MD strategy π can be easily con-
structed as follows: In every state v ∈ V^, the strategy π chooses a successor u minimiz-
ing ValHR(u) among all successors of v. We show in the full version that this is indeed
an optimal strategy.

4 Conclusions

We have considered infinite-state stochastic games with the total accumulated reward
objective, and clarified the determinacy questions for the HR, HD, MR, and MD strat-
egy types. Our results are almost complete. One natural question which remains open
is whether Player � needs memory to play ε-HR-optimally in general games (it follows
from the previous works, e.g., [8, 20], that ε-HR-optimal strategies for Player ^ require
infinite memory in general).
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11. Brázdil, T., Jančar, P., Kučera, A.: Reachability games on extended vector addition systems
with states. In: Proceedings of ICALP 2010, Part II. Lecture Notes in Computer Science, vol.
6199, pp. 478–489. Springer (2010)

11



12. Chatterjee, K., Doyen, L., Henzinger, T., Raskin, J.F.: Generalized mean-payoff and energy
games. In: Proceedings of FST&TCS 2010 [1], pp. 505–516

13. Cousot, P., Cousot, R.: Constructive versions of Tarski’s fixed point theorems. Pacific Journal
of Mathematics 82, 43–57 (1979)

14. Etessami, K., Wojtczak, D., Yannakakis, M.: Recursive stochastic games with positive re-
wards. In: Proceedings of ICALP 2008, Part I. Lecture Notes in Computer Science, vol.
5125, pp. 711–723. Springer (2008)

15. Etessami, K., Yannakakis, M.: Recursive Markov decision processes and recursive stochastic
games. In: Proceedings of ICALP 2005. Lecture Notes in Computer Science, vol. 3580, pp.
891–903. Springer (2005)

16. Etessami, K., Yannakakis, M.: Efficient qualitative analysis of classes of recursive Markov
decision processes and simple stochastic games. In: Proceedings of STACS 2006. Lecture
Notes in Computer Science, vol. 3884, pp. 634–645. Springer (2006)

17. Etessami, K., Yannakakis, M.: Recursive concurrent stochastic games. In: Proceedings of
ICALP 2006. Lecture Notes in Computer Science, vol. 4052, pp. 324–335. Springer (2006)

18. Fahrenberg, U., Juhl, L., Larsen, K., Srba, J.: Energy games in multiweighted automata.
In: Proceedings of the 8th International Colloquium on Theoretical Aspects of Computing
(ICTAC’11). Lecture Notes in Computer Science, vol. 6916, pp. 95–115. Springer (2011)

19. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer (1996)
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Technical Appendix
A Proof of Lemma 5

Lemma 5. The operator L has the least fixed point K (w.r.t. v) and for every v ∈ V we
have that

Kv = sup
σ∈HR�

inf
π∈HR^

Eσ,πv [Acc] = inf
π∈HR^

sup
σ∈HR�

Eσ,πv [Acc] = ValHR(v).

Moreover, for every ε > 0 there is πε ∈ HD^ such that for every v ∈ V we have that
supσ∈HR� E

σ,πε
v ≤ ValHR(v) ⊕ ε.

The partially ordered set ((R≥0
∞ )V ,v), where v is a standard componentwise order-

ing, is a complete lattice. Moreover, from the definition of L we can easily see that L is
monotonic, i.e. L(x) v L(x′) whenever x v x′. Thus, by the Knaster-Tarski theorem the
operator L has the least fixed point, which we denote by K.

In order to prove that Kv = ValHR(v) for every v ∈ V , it suffices to prove the follow-
ing:

∀v ∈ V : Kv ≤ sup
σ∈HR�

inf
π∈HR^

Eσ,πv (Acc) ≤ inf
π∈HR^

sup
σ∈HR�

Eσ,πv (Acc) ≤ Kv. (3)

The second inequality holds trivially, so it suffices to prove the remaining ones.
To prove the first inequality, it suffices to show that the vector S ∈ (R≥0

∞ )V defined by
Sv = supσ∈HR� infπ∈HR^ E

σ,π
v (Acc) is a fixed point of L. Since K is the least fixed point of

L, the inequality then follows. So let v ∈ V be arbitrary. We will show that L(S)v = Sv.
If v ∈ V�, then we have to show that

L(S)v = r(u) + sup
v→v′

sup
σ∈HR�

inf
π∈HR^

Eσ,πv′ (Acc) = sup
σ∈HR�

inf
π∈HR^

Eσ,πv (Acc) = Sv.

Assume, for the sake of contradiction, that the equality does not hold, i.e. that either
L(S)v < Sv or L(S)v > Sv. If L(S)v > Sv, then there is a transition v→ v′ and a strategy
σ′ ∈ HR� such that r(u) + infπ∈HR^ E

σ′,π
v′ (Acc) > supσ∈HR� infπ∈HR^ E

σ,π
v (Acc). If we

denote by σ′′ the strategy that moves from the initial vertex v to v′ with probability 1
and then starts to behave exactly like the strategy σ′, then we obtain

inf
π∈HR^

Eσ
′′,π

v (Acc) = r(u) + inf
π∈HR^

Eσ
′,π

v′ (Acc) > sup
σ∈HR�

inf
π∈HR^

Eσ,πv (Acc) ≥ inf
π∈HR^

Eσ
′′,π

v (Acc),

a contradiction. So assume that L(S)v < Sv. Then there is some δ > 0 and some function
f : HR� × V → HR^ such that for every transition v→ v′ and every σ ∈ HR� we have
r(u)+E

σ, f (σ,v′)
v′ < Sv	δ. For any strategy σ we denote by pv′

σ the probability the strategy
σ assigns to transition v→ v′ in a game starting in v. Then we can write

sup
σ∈HR�

inf
π∈HR^

Eσ,πv (Acc) = r(u) + sup
σ∈HR�

inf
π∈HR^

∑
v→v′

pv′
σ · E

σ,π
v′ (Acc)

≤ r(u) + sup
σ∈HR�

∑
v→v′

pv′
σ · E

σ, f (σ,v′)
v′ (Acc) < Sv 	 δ

≤ Sv = sup
σ∈HR�

inf
π∈HR^

Eσ,πv (Acc),

13



again a contradiction.
For v ∈ V^ the proof is dual to the proof for v ∈ V�, so we omit it. Finally, for

v ∈ V© we have

L(Sv) = r(u) +
∑
v→v′

Prob(v)(v, v′) ·
 sup
σ∈HR�

inf
π∈HR^

Eσ,πv′ (Acc)


= sup
σ∈HR�

inf
π∈HR^

r(u) +
∑
v→v′

Prob(v)(v, v′) · Eσ,πv′ (Acc)

 = sup
σ∈HR�

inf
π∈HR^

Eσ,πv (Acc) = Sv.

This concludes the proof that S is a fixed point of L and thus also the proof of the first
inequality in (3).

It remains to prove the third inequality in (3). To this end we prove that for every
ε > 0 there is a strategy πε ∈ HD^ such that for every v ∈ V we have supσ∈HR� E

σ,πε
v ≤

Kv + ε. Note that this will also prove the second part of the lemma.
If Kv = ∞, then the desired inequality holds trivially for any strategy of player ^

(and particularly for every π ∈ HD^). So assume that Kv is finite and fix arbitrary ε > 0.
We define the strategy πε as follows: let wu be any finite path with u ∈ V^. Since K is a
fixed point of L, there must be a successor u′ of u such that r(u) + Ku′ ≤ Ku + ε/2|wu|+1.
We set πε(w) to be a Dirac distribution that selects the transition u→ u′ with probability
1.

We will now prove the following lemma, that not only shows that the strategy πε
has the desired property, but it will also be useful later.

Lemma 12. Let ε ≥ 0 be arbitrary and let πε be any deterministic strategy of player
^ that has the following property: for every finite path wu starting in v and ending in
u ∈ V^, the transition u→ u′ selected by πε(wu) satisfies r(u) + Ku′ ≤ Ku + ε/2|wu|+1.
Then supσ∈HR� E

σ,πε
v (Acc) ≤ Kv + ε.

Proof. We will prove that for every v, every n ∈ N0 and every strategy σ of player �
we have Eσ,πεv (

∑n
i=0 ω(i)) ≤ Kv + ε. By the monotone convergence theorem this means

that Eσ,πεv (Acc) ≤ Kv + ε for every σ, and thus also supσ∈HR� E
σ,πε
v (Acc) ≤ Kv + ε.

So let us fix arbitrary v, n and σ. Recall that Eσ,πv [X|Y] denotes the conditional
expectation of random variable X given the event Y . We show that for every 0 ≤ k ≤ n
and every finite path w = v0, . . . , vk we have

Eσ,πεv [
n∑

i=k

r(ω(i)) | Run(w)] ≤ Kvk +

n∑
i=k

ε/2k+1.

In particular, this means that Eσ,πεv (
∑n

i=0 ω(i)) = Eσ,πεv [
∑n

i=0 r(ω(i)) | Run(v)] ≤ Kv + ε.
We proceed by downward induction on k. If n = k, then we trivially have

Eσ,πεv [
n∑

i=k

r(ω(i)) | Run(w)] = r(vk) ≤ L(K)vk = Kvk ,

where the inequality follows from the definition of L.
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Now suppose that k < n. We distinguish two cases. If vk ∈ V^, denote by u the
successor of vk chosen by πε. Then we have

Eσ,πεv [
n∑

i=k

r(ω(i)) | Run(w)] = r(vk) + Eσ,πε [
n∑

i=k+1

r(ω(i)) | Run(wu)]

≤ r(vk) + Ku +

n∑
i=k+1

ε/2i+1

≤ Kvk +

n∑
i=k

ε/2i+1,

where the inequality on the second line follows from induction hypothesis and the in-
equality on the third line follows from the definition of πε.

If vk ∈ V� ∪ V©, then we can see that Eσ,πεv [
∑n

i=k r(ω(i)) | Run(w)] =∑
vk→u pu · E

σ,πε [
∑n

i=k+1 r(ω(i)) | Run(wu)] for some sequence of real numbers (pu)vk→u
s.t. pu ≥ 0 for every u and

∑
vk→u pu = 1. By induction hypothesis we have

Eσ,πε [
∑n

i=k+1 r(ω(i)) | Run(wu)] ≤ Ku +
∑n

i=k+1 ε/2
i+1 for every vk→ u. Finally, from

the definition of L we obtain Kvk = L(K)vk ≥
∑

vk→u pu · Ku (the inequality can be strict
only if v ∈ V�). Together, we have

Eσ,πεv [
n∑

i=k

r(ω(i)) | Run(w)] ≤ Kvk +

n∑
i=k+1

ε/2i+1 < Kvk +

n∑
i=k

ε/2i+1.

ut

This finishes the proof of Lemma 5.

B Proof of Lemma 6

Lemma 6. For every ε > 0, there is σε ∈ HD� such that σε is ε-HR-optimal in every
vertex.

Let ε > 0 be arbitrary. It suffices to fix an arbitrary initial vertex v, define choices
of the strategy σε only on the finite paths starting in v and verify, that the resulting
strategy is ε-HR-optimal in v. By repeating this construction for every v ∈ V we obtain
a strategy that is ε-HR-optimal in every vertex.

For the sake of better readability, we first present the detailed construction of the
deterministic ε-HR-optimal strategy σε for games in which the HR-value is finite in
every vertex. Almost identical construction can be used for games with arbitrary HR-
values; there are some subtle technical differences that will be presented in the second
part of the proof.

We already know that the least fixed point K of the operator L is equal to the vector
of HR-values. Moreover, from the standard results of the fixed-point theory (see, e.g.,
Theorem 5.1 in [13]) we know that K = Lα(0) for some ordinal number α (where 0
is the vector of zeros and where the transfinite iteration of L is defined in a standard
way, i.e. we put Lβ(0) = supγ<β Lγ(0) for every limit ordinal β). The following lemma
is instrumental in the construction of σε.
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Lemma 13. Let ε > 0 be arbitrary. Denote by α the ordinal number α such that
Lα(0)v = ValHR(v) and denote by Ordα the set of all ordinal numbers lesser than or
equal to α. Then there is a labeling function d : Fpath(v)→ Ordα satisfying the follow-
ing conditions:

(a) d(v) = α.
(b) For every wu ∈ Fpath(v) it holds either d(w) = 0 or d(wu) < d(w).
(c) For every wu ∈ Fpath(v), we have

Ld(wu)(0)u −
ε

2|wu|+1 ≤


r(u) + Ld(wuu′)(0)u′ , for some u→ u′ if u ∈ V�
r(u) + infu→u′ Ld(wuu′)(0)u′ if u ∈ V^
r(u) +

∑
u→u′ Prob(u)(u, u′) · Ld(wuu′)(0)u′ if u ∈ V©.

Proof. We define the labeling d inductively, proceeding from the shorter paths to the
longer ones. Obviously we set d(v) = α. Now suppose that d(wu) has already been
defined. We will define d(wuu′) for all successors u′ of u simultaneously. First let us
assume that d(wu) is a successor ordinal of the form β + 1. Then it suffices to put
d(wuu′) = β for all successors u′ of u. From the definition of L we can easily see that
for every δ > 0 it then holds

Lβ+1(0)u − δ ≤


r(u) + Lβ(0)u′ , for some u→ u′ if u ∈ V�
r(u) + infu→u′ Lβ(0)u′ if u ∈ V^
r(u) +

∑
u→u′ Prob(u)(u, u′) · Lβ(0)u′ if u ∈ V©,

so in particular the inequality in (c) holds for wu.
Now let us assume that d(wu) is a limit ordinal. Then Ld(wu)(0)u = supγ<d(wu) Lγ(0)u.

This means that there is γ < d(wu) such that Ld(wu)(0)u − ε/2|wu|+2 ≤ Lγ(0)u. Clearly, we
can assume that γ = β + 1 fore some ordinal β. Now we again set d(wuu′) = β for all
successors u′ of u. Using the argument from the previous paragraph with δ = ε/2|wu|+2

we obtain

Ld(wu)(0)u−
ε

2|wu|+1 ≤ Lγ(0)u−
ε

2|wu|+2 ≤


r(u) + Lβ(0)u′ , for some u→ u′ if u ∈ V�
r(u) + infu→u′ Lβ(0)u′ if u ∈ V^
r(u) +

∑
u→u′ Prob(u)(u, u′) · Lβ(0)u′ if u ∈ V©,

so (c) again holds for wu.
Finally, if d(wu) = 0, then we set d(wuu′) = 0 for all successors u′ of u. In this way,

we eventually define d(w) for every finite path starting in v. It is obvious that d satisfies
(a)–(c). ut

We use the labeling d provided by the previous lemma to define the ε-HR-optimal
HD strategy σε of player �. For a given finite path wu the strategy σε selects a transition
u→ u′ such that Ld(wu)(0)u − ε/2|wu|+1 ≤ r(u) + Ld(wuu′)(0)u′ . Such a transition always
exists due to the previous lemma. We now prove that the strategy σε is ε-HD-optimal
in v. We will actually prove a more general statement, that we will reuse later.
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Lemma 14. For every run ω denote by τ(ω) the least k such that d(ω(0), . . . , ω(k)) =

0 and denote by S τ
k the random variable defined by S τ

k(ω) =
∑τ(ω)

i=k r(ω(i)). Then the
following holds for every wu ∈ Fpath(v):

inf
π∈HR^

Eσε,πv [S τ
|wu| | Run(wu)] ≥ Ld(wu)(0)u −

ε

2|wu|
. (4)

In particular, we have

inf
π∈HR^

Eσε,πv (Acc) ≥ inf
π∈HR^

Eσε,πv [S τ
0 | Run(v)] ≥ Lα(0)v − ε = ValHR(v) − ε.

Proof. We proceed by transfinite induction on d(wu). If d(wu) = 0, then the inequality
(4) clearly holds. Now suppose that d(wu) > 0 and that the inequality (4) holds for
every β < d(wu). We distinguish three cases depending on the type of u.

(1.) u ∈ V�. Denote by u′ the successor of u selected by σε(wu). Then we have

inf
π∈HR^

Eσε,πv [S τ
|wu| | Run(wu)] = r(u) + inf

π∈HR^
Eσε,πv [S τ

|wuu′ | | Run(wuu′)]

≥ r(u) + Ld(wuu′)(0)u′ −
ε

2|wu|+1

≥ Ld(wu)(0)u −
ε

2|wu|
,

where the second line follows from the induction hypothesis and from the fact that
d(wuu′) < d(wu), and the third line follows from the definition of σε.

(2.) u ∈ V^. Then we have

inf
π∈HR^

Eσε,πv [S τ
|wu| | Run(wu)] = r(u) + inf

u→u′
inf

π∈HR^
Eσε,πv [S τ

|wuu′ | | Run(wuu′)]

≥ r(u) + inf
u→u′

Ld(wuu′)(0)u′ −
ε

2|wu|+1

≥ Ld(wu)(0)u −
ε

2|wu|
,

where the first line is easy, the second line again follows from the induction hy-
pothesis and the third line follows from Lemma 13.

(3.) u ∈ V©. We denote by u x
→ u′ the fact that Prob(u)(u, u′) = x. We have

inf
π∈HR^

Eσε,πv [S τ
|wu| | Run(wu)] = r(u) +

∑
u

x
→u′

x ·
(

inf
π∈HR^

Eσε,πv [S τ
|wuu′ | | Run(wuu′)]

)
≥ r(u) +

( ∑
u

x
→u′

x · Ld(wuu′)(0)u′

)
−

ε

2|wu|+1

≥ Ld(wu)(0)u −
ε

2|wu|
,

where again the second and the third line follows from induction hypothesis and
Lemma 13, respectively.

ut
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It remains to show how to handle the case when there are vertices with infinite
HR-values. The idea is the same, but the proof is more technical. We need to slightly
generalize the previous two lemmas. The following lemma generalizes Lemma 13. We
denote by last(w) the last vertex on a nonempty path w.

Lemma 15. Under the assumptions of Lemma 13 there exists a labeling function
d : Fpath(v)→ Ordα satisfying the following conditions:

(a) d(v) = α.
(b) For every wu ∈ Fpath(v) it holds either d(w) = 0 or d(wu) < d(w).
(c) For every wu ∈ Fpath(v), such that Ld(wu)(0)u < ∞, we have

Ld(wu)(0)u −
ε

2|wu|+1 ≤


r(u) + Ld(wuu′)(0)u′ , for some u→ u′ if u ∈ V�
r(u) + infu→u′ Ld(wuu′)(0)u′ if u ∈ V^
r(u) +

∑
u→u′ Prob(u)(u, u′) · Ld(wuu′)(0)u′ if u ∈ V©,

and for every wu ∈ Fpath(v), such that Ld(wu)(0)u = ∞, we have

1
ε

+ ε · (|wu| + 1) + F(w) ≤


r(u) + Ld(wuu′)(0)u′ , for some u→ u′ if u ∈ V�
r(u) + infu→u′ Ld(wuu′)(0)u′ if u ∈ V^
r(u) +

∑
u→u′ Prob(u)(u, u′) · Ld(wuu′)(0)u′ if u ∈ V©,

where F(w) =

Ld(w)(0)last(w) if w is nonempty and Ld(w)(0)last(w) < ∞

0 otherwise.

Proof. We again define the function d inductively, starting by putting d(v) = α. Now
let wu be an arbitrary finite path such that Ld(wu)(0)u = ∞. If d(wu) = β + 1 for some
ordinal β, then we can put d(wuu′) = β for all successors u′ of u. From the definition of
L it then easily follows that the inequality in (c) holds for wu. (For example, if u ∈ V�,
then we have ∞ = r(u) + supu→u′ Lβ(0)u′ and there is surely u→ u′ s.t. r(u) + Lβ(0)u′ ≥

1/ε + ε · (|wu| + 1) + F(w). It is of course possible that Lβ(0)u′ = ∞.)
If d(wu) is an limit ordinal, then there is a successor ordinal β + 1 < d(wu) s.t.

Lβ+1(0)u ≥ 2/ε + ε · (|wu| + 1) + F(w). We set d(wuu′) = β for all successors u′ of
u. If Lβ+1(0)u = ∞, then from the previous paragraph we get that (c) holds for wu. If
Lβ+1(0)u < ∞, then the same argument as in the proof of Lemma 13 shows, that for
every δ > 0 the right-hand side of the inequality in (c) is δ-close to Lβ+1(0)0. If we set
δ = 1/ε, we get that (c) holds for wu.

For wu with Ld(wu)(0)u < ∞ we can use the same construction as in the Lemma 13.
ut

For every wu let us set

Awu
ε =

Ld(wu)(0)u −
ε

2|wu|+1 if Ld(wu)(0)u < ∞
1
ε

+ ε · (|wu| + 1) + F(w) otherwise,

and

Bwu
ε =

Ld(wu)(0)u −
ε

2|wu| if Ld(wu)(0)u < ∞
1
ε

+ ε · |wu| + F(w) otherwise.
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Note that Awu
ε − δ ≥ Bwu

ε for every 0 ≤ δ ≤ ε/2|wu|+1. We now define the ε-HR-optimal
deterministic strategy σε as follows: for a given wu ∈ Fpath(v), the σ(wu) selects a
transition u→ u′ such that Awu

ε ≤ r(u) + Ld(wuu′)(0)u′ . It remains to prove that σε is
ε-HR-optimal in v. We generalize Lemma 14 as follows:

Lemma 16. The following holds for every wu ∈ Fpath(v):

inf
π∈HR^

Eσε,πv [S τ
|wu| | Run(wu)] ≥ Bwu

ε . (5)

Proof. The proof again proceeds by transfinite induction on d(wu). The base case is
the same as in Lemma 14, because if d(wu) = 0, then Bwu

ε = − ε
2|wu|+1 . So assume that

d(wu) > 0 and that (5) hols for all α < d(wu). If Ld(wu)(0)u < ∞, then we can basically
proceed in exactly the same way as in the Lemma 14. The only difference here is the
case when u ∈ V^, Ld(wu)(0)u < ∞ and Ld(wuu′)(0)u′ = ∞ for some u→ u′. But in this
case we have Eσε,πv [S τ

|wuu′ | | Run(wuu′)] ≥ Bwuu′
ε > 1/ε + F(wu) = 1/ε + Ld(wu)(0)u ≥

1/ε + infu→u′ Ld(wuu′)(0)u′ , so the computation in part (2.) of the proof of Lemma 14 is
still valid.

If Ld(wu)(0)u = ∞, then we consider the following cases:

(1.) u ∈ V�. Denote by u′ the successor of u selected by σε(wu). Then

inf
π∈HR^

Eσε,πv [S τ
|wu| | Run(wu)] = r(u) + inf

π∈HR^
Eσε,πv [S τ

|wuu′ | | Run(wuu′)]

≥ r(u) + Bwuu′
ε ,

where the second line comes from the induction hypothesis. There are two possi-
bilities. Either

Bwuu′
ε = 1/ε + ε · |wu| + ε + F(w) > 1/ε + ε · |wu| + F(w) = Bwu

ε , (6)

or
r(u) + Bwuu′

ε = r(u) + Ld(wuu′)(0)u′ −
ε

2|wu|+1 ≥ Awu
ε −

ε

2|wu|+1 ≥ Bwu
ε , (7)

where the second inequality follows from Lemma 15 and from the definition of σε.
In both cases the equation (5) holds.

(2.) u ∈ V^. Then we have

inf
π∈HR^

Eσε,πv [S τ
|wu| | Run(wu)] = r(u) + inf

u→u′
inf

π∈HR^
Eσε,πv [S τ

|wuu′ | | Run(wuu′)]

≥ inf
u→u′

(
r(u) + Bwuu′

ε

)
.

Exactly the same computation as in the case (1.) reveals that (6) or (7) holds for
all u→ u′, and thus for all these transitions we have r(u) + Bwuu′

ε ≥ Bwu
ε . Thus,

infu→u′
(
r(u) + Bwuu′

ε

)
≥ Bwu

ε and (5) holds for wu.
(3.) u ∈ V©. Then again from the induction hypothesis it follows that

inf
π∈HR^

Eσε,πv [S τ
|wu| | Run(wu)] = r(u) +

∑
u

x
→u′

x ·
(

inf
π∈HR^

Eσε,πv [S τ
|wuu′ | | Run(wuu′)]

)
≥

∑
u

x
→u′

x ·
(
r(u) + Bwuu′

ε

)
≥ Bwu

ε ,
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where the last inequality can be justified in exactly the same way as in the previous
two cases.

ut

C Proof of Lemma 11

Lemma 11. If G is ^-finitely-branching, then for every v ∈ V there is n ∈ N such that

sup
σ∈HR�

inf
π∈HR^

Eσ,πv (Accn) > ValHR(v) 	
ε

4
(8)

Let v ∈ V be arbitrary. Without loss of generality, we can assume that v ∈ V© and
that v has only one outgoing transition. If this is not the case, we can simply add a new
stochastic vertex v′ with a zero reward and a single new transition v→ v′. It is clear, that
if the statement of the lemma holds for v′ in this new game, then it holds for v in the
original game.

Observe that if every vertex of player ^ has only finitely many successors, then the
operator L is Scott-continuous.

Lemma 17. Let D ⊆ (R≥0
∞ )V be an arbitrary directed set (i.e. such a set that each pair

of elements in D has an upper bound in D.) Then L(supd∈D d) = supd∈D L(d).

Proof. The inequality ≥ follows immediately from the monotonicity of L. So it suf-
fices to prove that for every directed set D and every vertex v we have L(supd∈D d)v ≤

supd∈D L(d)v. Note that (supd∈D d)v = supd∈D dv. We consider three cases:

(1.) v ∈ V�. Then we trivially have

L(sup
d∈D

d)v = sup
v→v′

sup
d∈D

dv′ = sup
d∈D

sup
v→v′

dv′ = sup
d∈D

L(d)v.

(2.) v ∈ V^. Assume, for the sake of contradiction, that infv→v′ supd∈D dv′ >
supd∈D infv→v′ dv′ . Then for each of the finitely many transitions v→ v′ there is a
vector d(v′) ∈ D such that d(v′)v′ > supd∈D infv→v′ dv′ . But since the set D is di-
rected and there are only finitely many v→ v′, there is a vector d∗ ∈ D such that
d(v′) v d∗ for every successor v′ of v. We thus have

sup
d∈D

inf
v→v′

dv′ ≥ inf
v→v′

d∗v′ ≥ inf
v→v′

d(v′)v′ > inf
v→v′

sup
d∈D

inf
v→v′

dv′ = sup
d∈D

inf
v→v′

dv′ ,

a contradiction. (Above, the second inequality follows from the fact that d(v′) v
d∗ for every v′ and the first inequality and the last equality are trivial. The third
inequality is strict because there are only finitely many successors of v.)

(3.) v ∈ V©. Then we again trivially have

L(sup
d∈D

d)v =
∑
v→v′

Prob(v)(v, v′) · sup
d∈D

dv′ = sup
d∈D

∑
v→v′

Prob(v)(v, v′) · dv′ = sup
d∈D

L(d)v.

ut
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From the Kleene fixed-point theorem it follows that Lω(0) = K, i.e. that the ordinal
number α from Lemmas 13 and 15 can be assumed to be equal to ω. Fix a labeling d of
finite paths starting in v that satisfies the conditions (a)–(c) in Lemma 13 (or Lemma 15,
if there are some vertices with infinite HR-value). Then v is labeled by ω and all other
elements of Fpath(v) are labeled with nonnegative integers. Recall that τ(ω) denotes
the least k such that d(ω(0), . . . , ω(k)) = 0.

Now let u be the unique successor of v. We set n = d(vu) + 1. To see that this n
satisfies (8), consider the deterministic (ε/8)-HR-optimal strategy σε/8 constructed in
the proof of Lemma 6. From Lemma 13 (or Lemma 15) it follows that

inf
π∈HR^

E
σε/8,π
v [

τ(ω)∑
i=0

r(ω(i)) | Run(v)] ≥ ValHR 	
ε

8
.

But now we clearly have τ(ω) ≤ n = d(vu) + 1 for all runs ω starting in v. Thus, we
have

inf
π∈HR^

E
σε/8,π
v (Accn) ≥ inf

π∈HR^
E
σε/8,π
v [

τ(ω)∑
i=0

r(ω(i)) | Run(v)] ≥ ValHR 	
ε

8
> ValHR 	

ε

4
.

This finishes the proof of Lemma 11.

D MD-optimal strategies for player ^

We prove Item 2 of Proposition 8, i.e. the fact that for every ^-finitely-branching game
G there is π ∈ MD^ such that π is HR-optimal in every vertex. We have already defined
π as follows: In every state v ∈ V^, the strategy π chooses a successor u minimizing
ValHR(u) among all successors of v. But the HR-optimality of this strategy immediately
follows from Lemma 12 (note that this lemma works for ε = 0) and Lemma 5 (which
says that the least fixed-point K of L is equal to the vector of HR-values).
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