
Cobra: A Tool for Solving General Deductive
Games

Miroslav Klimoš and Antońın Kučera?

Faculty of Informatics, Masaryk University, Brno, CZ
klimos@mail.muni.cz, kucera@fi.muni.cz

Abstract. We propose a general framework for modelling and solving deduc-
tive games, where one player selects a secret code and the other player strives
to discover this code using a minimal number of allowed experiments that re-
veal some partial information about the code. The framework is implemented
in a software tool Cobra, and its functionality is demonstrated by producing
new results about existing deductive games.

1 Introduction

Deductive games (also known as codebreaking games) are played by two players, the
codemaker and the codebreaker, where the codemaker selects a secret code from a
given finite set, and the codebreaker strives to reveal the code through a series of
experiments whose outcomes give some partial information about the code. A code-
breaker’s strategy is a recipe how to assemble the next experiment depending on the
outcomes of the previous experiments so that the code is eventually discovered. The
efficiency of a given strategy is measured either by the maximal number of experi-
ments required to discover the code in the worst case, or by the expected number
of experiments required to discover the code assuming the uniform probability dis-
tribution over the secret codes. Although various special types of deductive games
have been deeply analyzed at both theoretical and experimental level (see below), to
the best of authors’ knowledge there is no software tool which inputs a description
of a deductive game (written in a suitable high-level language) and then computes
optimal strategies automatically. In this paper, we present a software tool Cobra
(COde-BReaking game Analyser [1]) which achieves this functionality. Despite its
versatility, Cobra can fully analyze non-trivial deductive games where the number
of admissible experiments is very large (1064 or even more). Note that one cannot
even enumerate all of these experiments in reasonable time, and Cobra implements
advanced methods for identifying and bypassing families of experiments that are
equivalent to already considered ones (up to some symmetry) without considering
them explicitly. This is perhaps the most advanced part of Cobra’s design which
is based on nontrivial concepts and observations (see Section 2). Using Cobra, we
were able to produce results about some standard deductive games that were not
known before (see Section 3).

Existing works. Simple examples of well-studied deductive games include vari-
ous board games and puzzles such as Mastermind and the counterfeit coin problem
(CCP), which are also used as running examples in this paper. In Mastermind, the
codemaker chooses a secret sequence of n code pegs of c colors (repetitions allowed).

? Supported by the Czech Science Foundation, grant No. 15-17564S.

The codebreaker tries to reveal the code by making guesses (experiments) which are
evaluated by a certain number of black and white markers. A black marker is re-
ceived for each code peg from the guess which is correct in both color and position.
A white marker indicates the existence of a correct color code peg placed in the wrong
position. For the classical variant with four pegs and six colors, Knuth [17] demon-
strated a strategy that requires five guesses in the worst case and 4.478 guesses on
average. Later, Irving [14], Neuwirth [20], and Koyama & Lai [19] presented strategies
which improve the expected number of guesses to 4.369, 4.364, and 4.34, respectively
(the bound 4.34 is already optimal). More recently, strategies for Mastermind were
constructed semi-automatically by using evolutionary algorithms [2], simulated an-
nealing [4], genetic algorithms (see, e.g., [3] and the references therein), or clustering
techniques [7].

In the basic variant of the counterfeit coin problem (CCP), one is given N coins,
all identical in appearance, and all identical in weight except for one, which is either
heavier or lighter than the remaining N−1 coins. The goal is to devise a procedure to
identify the counterfeit coin using a minimal number of weighings with a balance. This
basic variant was considered by Dyson [8] who proved that CCP can be solved with
w weighings (experiments) iff 3 ≤ N ≤ (3w−3)/2. There are numerous modifications
and generalizations of the basic variant (higher number of counterfeit coins, additional
regular coins, multi-pan balance scale, parallel weighing, etc.) which are harder to
analyze and in some cases only partial results exist. We refer to [13] for an overview.

Deductive games can also model certain types of attacks in modern security sys-
tems based on information leakage, where an unauthorized attacker reveals a part of
secret information in some unexpected way. For example, in ATM networks, hardware
security modules (HSMs) are used to perform sensitive cryptographic operations such
as checking a PIN entered by a customer. These HSMs are controlled by a strictly
defined API to enforce security. API-level attacks are sequences of unanticipated API
calls aiming to determine the PIN value; after each call, a piece of information about
the PIN value is leaked, and the whole sequence collects enough data to reconstruct
the PIN. One such attack, described in [6, 21], can be modeled as a deductive game
similar to Mastermind. Clearly, the problem of synthesizing an optimal codebreaker’s
strategy is highly interesting in this context.

Other examples of deductive games include string matching games, where the
secret code is a sequence of letters and the codebreaker repeatedly tries to guess the
string. Each guess is evaluated by revealing the total number of matching letters. This
game was studied already by Erdös & Rényi [10] who gave some asymptotic results
about the worst-case number of guesses. Recently, this game found an application in
genetics for selecting a subset of genotyped individuals for phenotyping [12, 11].

Due to space constraints, some proofs and tables describing the outcomes of
experimental results achieved by Cobra are omitted. These can be found in [16].

2 Cobra: The Underlying Principles

Given a finite or countable set A, the set of all propositional formulae over A is de-
noted by Form(A). Apart of standard Boolean connectives, we also use the operator
exactlyi, where i ∈ N, such that exactlyi(ϕ1, . . . , ϕm) is true iff exactly i of the
formulae ϕ1, . . . , ϕm are true. For technical convenience, we assume that all Boolean
connectives used in formulae of Form(A) are commutative. That is, we allow for
¬,∧,∨,exactlyi, . . ., but we forbid implication which must be expressed using the

allowed operators. For a given formula ϕ ∈ Form(A), we use Val(ϕ) to denote the
set of all valuations of A satisfying ϕ. We write ϕ ≈ ψ and ϕ ≡ ψ to denote that ϕ
and ψ are semantically and syntactically equivalent, respectively, and we extend this
notation also to sets of formulae. Hence, if Φ, Ψ are sets of formulae, then Φ ≈ Ψ and
Φ ≡ Ψ means that the two sets are the same up to the respective equivalence. The
syntactic equivalence ≡ is considered modulo basic identities such as commutativity
or associativity.

Our formal model of deductive games is based on propositional logic. Informally,
a deductive game is given by

– a finite set X of propositional variables and a propositional formula ϕ0 over X
such that every secret code c can be represented by a unique valuation vc of X,
and for every valuation v of X we have that v(ϕ0) = true iff v = vc for some
secret code c;

– a finite set of allowed experiments T .

To model CCP with N coins, we put X = {x1, . . . , xN , y}, and we represent a
secret code c where the i-th coin is heavier by a valuation vc where vc(xi) = true,
vc(xj) = false for all j 6= i, and vc(y) = true (i.e., y is set to true iff the different
coin is heavier). The formula ϕ0 says that precisely one of the variables x1, . . . , xN
is set to true. In Mastermind with n pegs and m colors, the set X contains variables
xi,j for all 1 ≤ i ≤ n and 1 ≤ j ≤ m; the variable xi,j is set to true iff the i-th peg
has color j. The formula ϕ0 says that each peg has precisely one color.

Typically, the number of possible experiments is large but many of them differ
only in the concrete choice of participating objects. For example, in CCP with 6 coins
there are essentially three types of experiments (we can weight either 1 + 1, 2 + 2, or
3 + 3 coins) which are instantiated by a concrete selection of coins. In Mastermind,
we perform essentially only one type of experiment (a guess) which is instantiated by
a concrete tuple of colors. In general, we use a finite set Σ of parameters to represent
the objects (such as coins and colors) participating in experiments. A parameterized
experiment t ∈ T is a triple (k, P, Φ) where k is the number of parameters, P ⊆ Σk

is the set of admissible instances, and Φ are possible outcomes given as abstract
propositional formulae (see below).

Definition 1. A deductive game is a tuple G = (X,ϕ0, Σ, F, T), where X is a finite
set of (propositional) variables, ϕ0 ∈ Form(X) is a satisfiable initial constraint, Σ is
a finite set of parameters, and

– F ⊆ XΣ is a set of attributes such that for all f, f ′ ∈ F where f 6= f ′ we have
that the images of f and f ′ are disjoint,

– T is a finite set of parameterized experiments of the form (k, P, Φ) where k ∈ N
is the number of parameters, P ⊆ Σk is a set of instances, and Φ is a finite
subset of Form(X ∪ {f($j) | f ∈ F, 1 ≤ j ≤ k}). The elements of Φ are called
outcomes.

The intuition behind X, ϕ0, and Σ is explained above. Each attribute f ∈ F corre-
sponds to some “property” that every object a ∈ Σ either does or does not satisfy,
and f(a) is the propositional variable of X which encodes the f -property of a. In
CCP with N coins, the objects are the coins (i.e., Σ = {coini | 1 ≤ i ≤ N}), and for
each coin we need to encode the property of “being different”. So, there is just one
attribute d which maps coini to xi for all 1 ≤ i ≤ N . In Mastermind with n pegs and

m colors, each object (color) has the property of “being the color of peg i”, where
i ∈ {1, . . . , n}. Hence, there are n attributes peg1, . . . , pegn where peg i(color j) = xi,j .

Now consider a parameterized experiment t = (k, P, Φ). An instance of t is a
k-tuple p ∈ P ⊆ Σk of parameters. For every instance p ∈ P and every outcome
ψ ∈ Φ, we define the p-instance of ψ as the formula ψ(p) ∈ Form(X) obtained from
ψ by substituting each atom f($j) with the variable f(pj). Hence, f($j) denotes the
variable which encodes the f -attribute of pj . In the rest of this paper, we typically
use ϕ,ψ to range over outcomes, and ξ, χ to range over their instances. We also use
E to denote the set of all experiment instances (or just experiments) defined by E =
{(t,p) | t ∈ T, p is an instance of t}. Further, for every experiment e = (t,p), we use
Φ(e) to denote the set of p-instances of all outcomes of t. An evaluated experiment is
a pair (e, ξ), where ξ ∈ Φ(e). The set of all evaluated experiments is denoted by Ω.

Example 2. CCP with four coins can be modeled as a game G = (X,ϕ0, Σ, F, T)
where X = {x1, x2, x3, x4, y}, ϕ0 = exactly1(x1, x2, x3, x4), Σ =
{coin1, coin2, coin3, coin4}, F = {d} where d(coini) = xi for every 1 ≤ i ≤ 4,
and T = {t1, t2} where t1 = (2, Σ〈2〉, {ϕ<, ϕ=, ϕ>}), t2 = (4, Σ〈4〉, {ψ<, ψ=, ψ>}),
and

ϕ< = (d($1) ∧ ¬y) ∨ (d($2) ∧ y)
ϕ= = ¬d($1) ∧ ¬d($2)
ϕ> = (d($1) ∧ y) ∨ (d($2) ∧ ¬y)
ψ< = ((d($1) ∨ d($2)) ∧ ¬y) ∨ ((d($3) ∨ d($4)) ∧ y)
ψ= = ¬d($1) ∧ ¬d($2) ∧ ¬d($3) ∧ ¬d($4)
ψ> = ((d($1) ∨ d($2)) ∧ y) ∨ ((d($3) ∨ d($4)) ∧ ¬y)

Here, Σ〈k〉 ⊆ Σk consists of all w ∈ Σk such that every letter of Σ appears at most
once in w. Note that t1 and t2 correspond to weighings of 1 + 1 and 2 + 2 coins,
respectively. The formulae ϕ<, ϕ=, and ϕ> encode the three possible outcomes of
weighing 1 + 1 coins. In particular, ϕ< describes the outcome when the left pan is
lighter; then we learn that either the first coin is different and lighter, or the second
coin is different and heavier. If we put p = (coin4, coin3), then ϕ<(p) is the formula
(x4 ∧ ¬y) ∨ (x3 ∧ y).

For the rest of this section, we fix a deductive game G = (X,ϕ0, Σ, F, T). We
assume that G is well-formed, i.e., for every valuation of Val(ϕ0), each experiment
produces exactly one valid outcome (deductive games that correctly encode mean-
ingful problems are well-formed, so this condition is not restrictive). Intuitively, the
game G is played as follows:

1. The codemaker selects a secret code v ∈ Val(ϕ0).
2. The codebreaker selects the next experiment e ∈ E.
3. The codemaker evaluates e for v and returns the resulting evaluated experi-

ment (e, ξ).
4. If the codemaker has enough information to determine v, the play ends. Other-

wise, it continues with Step 2.

We assume that the only information available to the codebreaker is the history
of evaluated experiments played so far. Hence, a strategy is a (total) function
σ : Ω∗ → E which specifies the next experiment for a given finite history of eval-
uated experiments.

e1 = (t1, (1, 2))

e2 = (t1, (1, 3)) e2 = (t1, (1, 3)) e3 = (t1, (2, 4))

e4 = (t1, (1, 4))

1, ` 2, h

3, h 3, `

2, ` 1, h

4, h 4, `

(e1, ϕ<(1, 2)) (e1, ϕ=(1, 2)) (e1, ϕ>(1, 2))

(e2, ϕ=(1, 3))(e2, ϕ<(1, 3)) (e3, ϕ<(2, 4)) (e3, ϕ=(2, 4))

(e2, ϕ<(1, 3)) (e2, ϕ>(1, 3))(e2, ϕ=(1, 3))

(e4, ϕ<(1, 4)) (e4, ϕ>(1, 4))

Fig. 1. A decision tree for a simple strategy.

Every strategy σ determines the associated decision tree, denoted by Treeσ, where
the internal nodes are labeled by experiments, the leaves are labeled by valuations
of Val(ϕ0), and the edges are labeled by evaluated experiments. For every node u of
Treeσ, let λσu = (e1, ξ1), . . . , (en, ξn) be the unique sequence of evaluated experiments
that label the edges of the unique finite path from the root of Treeσ to u (note that
if u is the root, then λσu = ε). We also use Ψσu to denote the formula ϕ0∧ ξ1∧· · ·∧ ξn.
The structure of Treeσ is completely determined by the following conditions:

– Every node u of Treeσ is either an internal node labeled by σ(λσu), or a leaf
labeled by the only valuation of Val(Ψσu), depending on whether |Val(Ψσu)| > 1
or not, respectively.

– Every internal node u of Treeσ labeled by e has a unique successor uξ for each
ξ ∈ Φ(e) such that the formula Ψσu ∧ ξ is still satisfiable. The edge from u to uξ
is labeled by (e, ξ).

Note that different nodes/edges may have the same labels, and Treeσ may contain
infinite paths in general.

Example 3. Consider the game G of Example 2. A decision tree for a simple strategy
σ is shown in Fig. 1 (we write just i instead of coini, and we use i, ` (or i, h) to
denote the valuation of Val(ϕ0) which sets xi to true and y to false (or to true,
respectively)). Note that σ discovers the secret code by performing at most three
experiments. Also note that some internal nodes have only two successors, because
the third outcome is impossible.

Since G is well-formed, every strategy σ and every v ∈ Val(ϕ0) determine a
unique (finite or infinite) path u1, u2, u3, . . . initiated in the root of Treeσ, which
intuitively correspond to a play of G where the codemaker selects the secret code v. We
use λσv = (e1, ξ1), (e2, ξ2), (e3, ξ3), . . . to denote the associated sequence of evaluated
experiments, i.e., (ei, ξi) is the label of (ui, ui+1). The length of λσv is denoted by

#λσv . Further, for every k ≤ #λσv , we use Ψσv [k] to denote the formula Ψσuk which
represents the knowledge accumulated after evaluating the first k experiments.

Now we can define the worst/average case complexity of σ, denoted by Cworst(σ)
and Cavg(σ), in the following way:

Cworst(σ) = max{#λσv | v ∈ Val(ϕ0)} Cavg(σ) =

∑
v∈Val(ϕ0)

#λσv

|Val(ϕ0)|

Note that the worst/average case complexity of σ is finite iff every v ∈ Val(ϕ0) is
discovered by σ after a finite number of experiments. We say that G is solvable iff
there exists a strategy σ with a finite worst/average case complexity. Further, we
say that a strategy σ is worst case optimal iff for every strategy σ′ we have that
Cworst(σ) ≤ Cworst(σ

′). Similarly, σ is average case optimal iff Cavg(σ) ≤ Cavg(σ′) for
every strategy σ′.

In general, a codebreaker’s strategy may depend not only on the outcomes of
previously evaluated experiments, but also on their order. Now we show that the
codebreaker can select the next experiment only according to the semantics of the
knowledge accumulated so far.

Definition 4. A strategy σ is knowledge-based if for all v1, v2 ∈ Val(ϕ0) and
k1, k2 ∈ N such that Ψσv1 [k1] ≈ Ψσv2 [k2] we have that σ(λσv1(1), . . . , λσv1(k1)) =
σ(λσv2(1), . . . , λσv2(k2)).

The next theorem says that knowledge-based strategies are equally powerful as gen-
eral strategies.

Theorem 5. . Let G be a well-formed deductive game. For every strategy σ there
exists a knowledge-based strategy τ such that for every v ∈ Val(ϕ0) we have that
#λτv ≤ #λσv .

In the proof of Theorem 5, we show that the only reason why σ might not be
knowledge-based is that σ schedules completely useless experiments which can be
safely omitted. Thus, we transform σ into τ .

Since the codebreaker may safely determine the next experiment just by consider-
ing the currently accumulated knowledge, we can imagine that he somehow “ranks”
the outcomes of available experiments and then chooses the most promising one. More
precisely, let Know ⊆ Form(X) be the set of all formulae representing an accumu-
lated knowledge, i.e., Know consists of all Ψσv [k] where σ is a strategy, v ∈ Val(ϕ0),
and k ∈ N. For every ϕ ∈ Know and every experiment e ∈ E, we define the set

Updates[ϕ, e] = {ϕ ∧ ξ | ξ ∈ Φ(e)}

which represents possible “updates” in the accumulated knowledge that can be ob-
tained by performing e. Further, let r : 2Know → R be a ranking function, and �
(some) total ordering over the set E of all experiments.

Definition 6. A ranking strategy determined by r and � is a function
τ [r ,�] : Know→ E such that τ [r ,�](ϕ) is the least element of {e ∈ E |
r(Updates[ϕ, e]) = Min} w.r.t. �, where Min = min{r(Updates[ϕ, e′]) | e′ ∈ E}.

Note that every ranking strategy can be understood as a “general” strategy, and
hence all notions introduced for general strategies (such as the decision tree) make
sense also for ranking strategies. Further, for every knowledge-based strategy τ there
is an “equivalent” ranking strategy τ [r ,�] where, for all ϕ ∈ Know and e ∈ E, the
value of r(Updates[ϕ, e]) is either 0 or 1, depending on whether Updates[ϕ, e] is equal
to Updates[ϕ, τ(ϕ)] or not, respectively. The ordering � can be chosen arbitrarily.

One can easily show that for every v ∈ Val(ϕ0) we have that #λτv = #λ
τ [r,�]
v . So,

ranking strategies are equally powerful as knowledge-based strategies and hence also
general strategies by Theorem 5. In particular, there exist worst/average case optimal
ranking strategies, but it is not clear what kind of ranking functions they need to
employ. Since optimal strategy synthesis is computationally costly, one may also fix
some r and �, synthesize τ [r,�], and evaluate its worst/average case complexity.
Thus, by experimenting with different r and �, one may obtain various strategies
that solve the game, and then choose the most efficient one.

Now we introduce several distinguished ranking functions (all of them are imple-
mented in Cobra). They generalize concepts previously used for solving Mastermind,
and there are also two new rankings based on the number of fixed variables. The asso-
ciated ranking strategies always use the lexicographical ordering over E determined
by some fixed linear orderings over the sets T and Σ.

– max-models(Ψ) = maxψ∈Ψ |Val(ψ)|. The associated ranking strategy minimizes
the worst-case number of remaining secret codes. For Mastermind, this was sug-
gested by Knuth [17].

– exp-models(Ψ) =
∑
ψ∈Ψ |Val(ψ)|2∑
ψ∈Ψ |Val(ψ)| . The associated ranking strategy minimizes the

expected number of remaining secret codes. For Mastermind, this was suggested
by Irwing [14].

– ent-models(Ψ) =
∑
ψ∈Ψ

|Val(ψ)|
N · log(|Val(ψ)|

N), where N =
∑
ψ∈Ψ |Val(ψ)|. The

associated ranking strategy minimizes the entropy of the numbers of remaining
secret codes. For Mastermind, this was suggested by Neuwirth [20].

– parts(Ψ) = −|{ψ ∈ Ψ | ψ is satisfiable}|. The associated ranking strategy min-
imizes the number of satisfiable outcomes. For Mastermind, this was suggested
by Kooi [18].

We say that a variable x ∈ X is fixed in a formula ϕ ∈ Form(X) if x is set to the
same value by all valuations satisfying ϕ (i.e., for all v, v′ ∈ Val(ϕ) we have that
v(x) = v′(x)). The set of all variables that are fixed in ϕ is denoted by Fix (ϕ). We
consider two ranking functions based on the number of fixed variables.

– min-fixed(Ψ) = −minψ∈Ψ |Fix (ψ)|. The associated ranking function maximizes
the number of fixed variables.

– exp-fixed(Ψ) = −
∑
ψ∈Ψ |Val(ψ)|·|Fix(ψ)|∑

ψ∈Ψ |Val(ψ)| . The associated ranking function maxi-

mizes the expected number of fixed variables.

Intuitively, a “good” ranking function should satisfy two requirements:

– The associateted ranking strategy should have a low worst/average case com-
plexity. Ideally, this strategy should be optimal.

– The ranking function should be easy to evaluate for a given experiment e. This
is crucial for automatic strategy synthesis.

max-models exp-models ent-models parts min-fixed exp-fixed
e1 4 3 −1.04 −3 −2 −2
e2 4 4 −0.69 −2 0 0

Table 1. A table summarizing the outcomes of ranking functions.

Obviously, there is a conflict in these two requirement. For example, the max-models
ranking often produces a rather efficient strategy, but the number of satisfying val-
uations of a given propositional formula is hard to compute. On the other hand,
min-fixed ranking produces a good ranking strategy only in some cases (e.g., for
CCP and its variants), but it is relatively easy to compute with modern SAT solvers
even for large formulae.

Example 7. Consider again the game G of Example 2 formalizing CCP with four
coins. Further, consider the experiments

– e1 = (t1, (coin1, coin2)),
– e2 = (t2, (coin1, coin2, coin3, coin4))

for the first step (i.e., when the current accumulated knowledge is just ϕ0). In e1,
we weight coin1 against coin2. The number of satisfying assignments is 2 for the
outcomes ϕ< and ϕ>, and 4 for the outcome ϕ=. For the outcomes ϕ< and ϕ>,
we know that the counterfeit coin is not among coin3 and coin4, and for the ϕ=

outcome, we know it is not among coin1 and coin2. Hence, every outcome fixes
2 variables. Similarly, we can evaluate e2 and the other ranking functions. The results
are summarized in Table 1. Observe that all of the considered ranking strategies would
prefer e1 to e2 in the first step, possibly except for the max-models ranking strategy
where the choice depends on the chosen liner ordering over T and Σ (it t1 is smaller
that t2, this strategy also prefers e1).

Although computing τ [r,�] for given r and � appears computationally eas-
ier than synthesizing an optimal strategy, we still need to (repeatedly) compute
the least element of {e ∈ E | r(Updates[ϕ, e]) = Min} w.r.t. �, where Min =
min{r(Updates[ϕ, e′]) | e′ ∈ E}, which is not achievable by enumerating all exper-
iments. For example, in CCP with 60 coins, there are more than 1063 ways of in-
stantiating the parameterized experiment t formalizing the weighing of 20+20 coins.
However, observe that if t is performed in the first step, i.e., when the accumulated
knowledge is just ϕ0, then all instances of t are “equivalent” in the sense that the
knowledge learned by these instances is the same up to a permutation of coins. Hence,
it suffices to consider only one instance of t and disregard the others. Cobra im-
plements an algorithm which can efficiently recognize and exploit such symmetries.
Now we briefly explain the main ideas behind this algorithm.

A permutation of X is a bijection π : X → X. We use Perm(X) to denote
the set of all permutations of X. Given a formula ϕ ∈ Form(X) and a permutation
π ∈ Perm(X), we use π(ϕ) to denote the formula obtained from ϕ by simultaneously
substituting every occurrence of every x ∈ X with π(x). For a given Φ ⊆ Form(X),
we use π(Φ) to denote the set {π(ϕ) | ϕ ∈ Φ}.

Definition 8. Let e, e′ ∈ E and π ∈ Perm(X). We say that e′ is π-symmetrical
to e if π(Φ(e)) ≈ Φ(e′). A symmetry group of G, denoted by Π, consist of all π ∈
Perm(X) such that for every e ∈ E there is a π-symmetrical e′ ∈ E.

We say that e, e′ ∈ E are equivalent w.r.t. a given ϕ ∈ Know, written e ∼ϕ e′,
if there is π ∈ Π such that {ϕ ∧ ψ | ψ ∈ Φ(e)} ≈ {π(ϕ ∧ %) | % ∈ Φ(e′)}.

Note that Π is indeed a group, i.e., Π contains the identity and if π ∈ Π, then the
inverse π−1 of π also belongs to Π.

Example 9. Consider the game of Example 2. Then Π = {π ∈ Perm(X) | π(y) = y}.
Hence, for all p, q ∈ Σ〈4〉 we have that (t2,p) ∼ϕ0

(t2, q), and the partition E/∼ϕ0

has only two equivalence classes corresponding to t1 and t2. For ϕ = ϕ0 ∧¬(x1 ∨x2),
we have that (t1(coin4, coin3)) ∼ϕ (t2, (coin3, coin1, coin2, coin4)).

The core of Cobra are the algorithms for synthesizing worst/average case optimal
strategies, and for analyzing the efficiency of τ [r,�]. For a current accumulated knowl-
edge ϕ ∈ Know, these algorithms need to consider at least one experiment for each
equivalence class of E/∼ϕ. This is achieved by invoking a function Experiments(ϕ)
parameterized by ϕ which computes a set of experiments Sϕ ⊆ E such that for every
e ∈ E there is at least one e′ ∈ Sϕ where e ∼ϕ e′. A naive approach to constructing

Sϕ is to initialize Ŝϕ := ∅ and then process every t = (k, P, Φ) ∈ T as follows: for

every p ∈ Σk, we check whether p ∈ P and (t,p) 6∼ϕ e for all e ∈ Ŝϕ; if this test

is positive, we put Ŝϕ := Ŝϕ ∪ {(t,p)}, and continue with the next p. When we are

done with all t ∈ T , we set Sϕ := Ŝϕ. Obviously, this trivial algorithm is inefficient
for at least two reasons.

1. The size of Σk can be very large (think again of CCP with 60 coins), and it may
not be possible to go over all p ∈ Σk.

2. The problem of checking ∼ϕ is computationally hard.

Now we indicate how Cobra overcomes these issues. Intuitively, the first issue is
tackled by optimizing the trivial backtracking algorithm which would normally gen-
erate all elements of Σk lexicographically using some total ordering � over Σ. We
improve the functionality of this algorithm as follows: when the backtracking algo-
rithm is done with generating all k-tuples starting with a given prefix ua ∈ Σm,
where m ∈ {1, . . . , k}, and aims to generate all k-tuples starting with ub, we first
check whether ub is dominated by ua w.r.t. ϕ and t. The dominance by ua guarantees
that all of the experiments that would be obtained by using the k-tuples starting with
ub are equivalent to some of the already generated ones. Hence, if ub is dominated
by ua w.r.t. ϕ and t, we continue immediately with the �-successor c of b, i.e., we
do not examine the k-tuples starting with ub at all (note that uc is again checked
for dominance by ua). This can lead to drastic improvements in the total number of
generated instances which can be much smaller than |Σ|k. The set of all experiments
generated in the first phase is denoted by S1

ϕ.
The second issue is tackled by designing an algorithm which tries to decide ∼ϕ

for a given pair of experiments e1, e2 by first removing the fixed variables in ϕ and
the outcomes of e1, e2 using a SAT solver, and then constructing two labeled graphs
Bϕ,e1 and Bϕ,e1 which are checked for isomorphism (here Cobra relies on existing
software tools for checking graph isomorphism). If the graphs are isomorphic, we have
that e1 ∼ϕ e2, and we can safely remove e1 or e2 from S1

ϕ. When the experiments
are ordered by some �, we prefer to remove the larger one. Thus, we produce the
set Sϕ. Now we explain both phases in greater detail.

Let t = (k, P, Φ) be a parameterized experiment, and let i, j ∈ {1, . . . , k} be
two positions. We say that i, j are closely dependent if i = j or there exists an

attribute f ∈ F such that both f($i) and f($j) occur in the formulae of Φ. Further,
we say that i, j are dependent if they are related by the transitive closure of close
dependence relation. Note that the set {1, . . . , k} can be partitioned into disjoint
subsets of mutually dependent indexes. Further, for every i ∈ {1, . . . , k} we define
the set Fi consisting of all f ∈ F such that f($j) occurs in some formula of Φ where
j ∈ {1, . . . , k} and i, j are dependent.

As an example, consider the parameterized experiment t2 in the game of Exam-
ple 2. Then all indexes are mutually dependent and Fi = {d} for every i ∈ {1, 2, 3, 4}.
In Mastermind with n pegs and m colors, there is only one parameterized experiment
t = (n, {color1, . . . , colorm}n, Φ), and all indexes are again mutually dependent. We
have that Fi = {peg1, . . . , pegn} for all i ∈ {1, . . . , n}.

We say that r ∈ Σi, where 1 ≤ i ≤ k, is t-feasible if there is s ∈ Σk−i such
that rs ∈ P . Further, for all p ∈ Σk, m ∈ {1, . . . , k}, and a, b ∈ Σ, we denote by
p[m, a↔b] the element of Σk obtained from p by simultaneously substituting every
occurrence of a with b and every occurrence of b with a at all positions j where m
and j are dependent.

Definition 10. Let ϕ ∈ Know, t = (k, P, Φ) ∈ T , and let ua ∈ Σm be a t-feasible
tuple, where 1 ≤ m < k. We say that ub ∈ Σm is dominated by ua w.r.t. ϕ and t if
the following conditions are satisfied:

– for every v where p = ubv ∈ P we have that p[m, a↔b] ∈ P and p[m, a↔b] � p;
– for every f ∈ Fm, the variables f(a) and f(b) do not occur in the formulae of Φ;
– the permutation π, defined by π(f(a)) = f(b), π(f(b)) = f(a) for all f ∈ Fm,

and π(y) = y for the other variables, is a symmetry of ϕ, i.e., ϕ ≡ π(ϕ).

Theorem 11. Let ϕ ∈ Know, t = (k, P, Φ) ∈ T , and let ua ∈ Σm be a t-feasible
tuple, where 1 ≤ m < k. If ub is dominated by ua w.r.t. ϕ and t, then for
every v ∈ Σk−m such that p = ubv ∈ P we have that p[m, a↔b] ∈ P and
(t,p) ∼ϕ (t,p[m, a↔b]).

Proof. Let q = p[m, a↔b], and let π be the permutation introduced in Definition 10.
We show that {ϕ∧ψ | ψ ∈ Φ((t,p))} ≡ {π(ϕ∧ %) | % ∈ Φ((t, q))}. Since ϕ ≡ π(ϕ), it
suffices to prove that Ψ(p) ≡ π(Ψ(q)) for all Ψ ∈ Φ. Let us fix some Ψ ∈ Φ. Observe
that the formulae Ψ(p) and π(Ψ(q)) are the same except that all f($i) are evaluated
either to f(pi) or to π(f(qi)), respectively. Let us examine possible cases.

– If a 6= pi 6= b, then pi = qi and π(f(qi)) = π(f(pi)) = f(pi) by Definition 10.
– If i and m are independent, then again pi = qi and π(f(qi)) = π(f(pi)) = f(pi)

by Definition 10 (note that f 6∈ Fm).
– If i,m are dependent and pi = a, then π(f(pi)) = π(f(a)) = f(b) = f(qi)

because f ∈ Fi. The case when i,m are dependent and pi = b is symmetric. ut

Theorem 11 fully justifies the correctness of the improved backtracking algorithm
discussed above in the sense that the resulting set S1

ϕ indeed contains at least one
representative for each equivalence class of E/∼ϕ.

Now we describe the second phase, when we try to identify and remove some
equivalent experiments in S1

ϕ. The method works only under the condition that for
every t = (k, P, Φ) ∈ T we have that P is closed under all permutations of Σ (note
that this condition is satisfied when P = Σk or P = Σ〈k〉). Possible generalizations
are left for future work. The method starts by constructing a labeled base graph
B = (V,E,L) of G, where the set of vertices V is X ∪F (we assume X ∩F = ∅) and
the edges of E are determined as follows:

– (f, x) ∈ E, where f ∈ F and x ∈ X, if there is a ∈ Σ such that f(a) = x;
– (x, y) ∈ E, where x, y ∈ X, if there are a ∈ Σ, f, g ∈ F , t ∈ T , some outcome
ψ of T , such that f(a) = x, g(a) = y, and both f($i) and g($i) appear in ψ for
some i ∈ {1, . . . , k}.

The labeling L : V → X ∪ F ∪ {var}, where var 6∈ X ∪ F , assigns var to every
variable x ∈ X such that x does not appear in any outcome of any parameterized
experiment of T . For the other vertices v ∈ V , we have that L(v) = v. The base
graph B represents a subset of Π in the following sense:

Theorem 12. Let π be an automorphism of B. Then π restricted to X belongs to Π.

Now, let ϕ ∈ FormX be a formula representing the accumulated knowledge, and
let e1 = (t1,p) and e2 = (t2, q) be experiments. We show how to construct two
labeled graphs Bϕ,e1 and Bϕ,e2 such that the existence of an isomorphism between
Bϕ,e1 and Bϕ,e2 implies e1 ∼ϕ e2.

For every formula ψ ∈ FormX , let Stree(ψ) be the syntax tree of ψ, where every
inner node is labeled by the associated Boolean operator, the leaves are labeled by
the associated variables of X, and the root is a fresh vertex root(ψ) with only one
successor which corresponds to the topmost operator of ψ (the label of root(ψ) is
irrelevant for now). Recall that we only allow for commutative operators, so the
ordering of successors of a given inner node of Stree(ψ) is not significant. Each such
Stree(ψ) can be attached to any graph B′ which subsumes B by taking the disjoint
union of the vertices of B′ and the inner vertices of Stree(ψ), and identifying all leaves
of Stree(ψ) labeled by x ∈ X with the unique node x of B′. All edges and labels are
preserved.

The graph Bϕ,e1 is obtained by subsequently attaching the formulae Stree(ϕ),

Stree(ψ1(p)), . . . ,Stree(ψn(p)) to the base graph of B, where ψ1, . . . , ψn are the out-
comes of t1, and for every ψ ∈ Form(X), the formula ψ is obtained from ψ by
removing its fixed variables (see above) using a SAT solver. The root of Stree(ϕ) is
labeled by acc, and the roots of Stree(ψ1(p)), . . . ,Stree(ψn(p)) are labeled by out .
The graph Bϕ,e2 is constructed in the same way, again using the labels acc and out .

Theorem 13. If Bϕ,e1 , Bϕ,e2 are isomorphic, then e1 ∼ϕ e2.

The procedure Experiments(ϕ) is used to compute decision trees for rank-
ing strategies and optimal worst/average case strategies in the following way. Let
τ [r,�] be a ranking strategy such that for all e1, e2 ∈ E and ϕ ∈ Know we
have that e1 ∼ϕ e2 implies r(e1) = r(e2). Note that all ranking functions intro-
duced in this section satisfy this property. The decision tree Treeτ [r,�] is computed
top-down. When we need to determine the label of a given node u where the as-
sociated accumulated knowledge is Ψu, we first check whether |Val(Ψu)| = 1 us-
ing a SAT solver. If it is the case, we label u with the only valuation of Val(Ψu).
Otherwise, we need to compute the experiment τ [r,�](Ψu). It follows immedi-
ately that τ [r,�](Ψu) is contained in SΨu := Experiments(Ψu). Hence, we la-
bel u with the least element of {e ∈ SΨu | Updates[Ψu, e] = Min} w.r.t. �, where
Min = min{Updates[Ψu, e

′] | e′ ∈ SΨu}. This element is computed with the help of a
SAT solver.

The way of computing a decision tree for an optimal worst/average case strategy
is more involved. Let WoptG and AoptG be the sets of all knowledge-based strategies
which are worst case optimal and average case optimal, respectively. First, observe

1 Function Optimal(ϕ, upper)
2 if |Val(ϕ)| = 1 then return 〈v, 0〉 where v ∈ Val(ϕ)
3 if ϕ is cached then return the cached result
4 [W] if dlogOut(|Val(ϕ)|)e > upper then return 〈err ,∞〉
5 Sϕ := Experiments(ϕ)
6 best := upper ; eϕ := some element of Sϕ
7 for e ∈ Sϕ do
8 val := 0
9 for ψ ∈ Φ(e) do

10 if SAT (ϕ ∧ ψ) then
11 〈eψ, Cψ〉 := Optimal(ϕ ∧ ψ, best − 1)
12 [W] val := max(val, 1 + Cψ)
13 [A] val := val + |Val(ϕ ∧ ψ)| · (1 + Cψ)

14 [A] val := val / |Val(ϕ)|
15 if val ≤ best then best := val; eϕ := e

16 Cache the result 〈eϕ, best〉 for ϕ
17 return 〈eϕ, best〉

Fig. 2. Computing optimal strategies.

that if τ ∈WoptG and τ(ϕ) = e for some ϕ ∈ Know, then for every e′ ∈ E where
e ∼ϕ e′ there is τ ′ ∈ WoptG such that τ ′(ϕ) = e′. Hence, we can safely restrict
the range of τ(ϕ) to Experiments(ϕ). Further, if τ(ϕ) = e and ϕ′ ≡ π(ϕ) for
some π ∈ Π, we can safely put τ(ϕ′) = π(e). The same properties hold also for the
strategies of AoptG .

A recursive function for computing a worst/average case optimal strategy is shown
in Fig. 2. The function is parameterized by ϕ ∈ Know and an upper bound on
the worst/average number of experiments performed by an optimal strategy for the
initial knowledge ϕ. The function returns a pair 〈eϕ, Cϕ〉 where eϕ is the experiment
selected for ϕ and Cϕ is the worst/average number of experiments that are needed
to solve the game for the initial knowledge ϕ. Hence, the algorithm is invoked by
Optimal(ϕ0,∞). Note that the algorithm caches the computed results and when it
encounters that ϕ is π-symmetric to some previously processed formula, it uses the
cached results immediately (line 3). The lines executed only when constructing the
worst (or average) case optimal strategy are prefixed by [W] (or [A], respectively).
At line 4, the constant Out is equal to max(k,P,Φ)∈T |Φ(t)|. Obviously, we need at
least dlogOut(|Val(ϕ)|)e experiments to distinguish among the remaining |Val(ϕ)|
alternatives.

3 Cobra: The Tool and Experimental Results

Cobra [1] is a command-line tool envoked as follows:

cobra [-m <mode>] [-s <sat solver>] [other options] <file>

The <file> contains a deductive game description (the syntax implements Def-
inition 1). The <mode> can be either overview, analysis, optimal-worst, or
optimal-average. The overview mode serves for basic consistency checks (in partic-
ular, the well-formed condition is verified, see Section 2). The analysis mode allows

CCP 26 CCP 39 CCP 50
(≈ 1026 exp.) (≈ 1046 exp.) (≈ 1064 exp.)

Exp.No. Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2

hline 1 13.0 13.0 19.0 19.0 25.0 25.0
2 4,365.0 861.7 26,638.7 3,318.0 83,625.0 8,591.0
3 603.0 36.4 2,263.0 88.1 5,733.4 172.2
4 76.3 4.2 214.7 7.2 405.1 10.4
5 - - - - 153.2 4.1

MM 3x8 (512 exp.) MM 4x6 (1296 exp.) MM 5x3 (243 exp.)
max-models parts max-models parts max-models parts

Exp.No. Phase 1Phase 2 Phase 1Phase 2 Phase 1Phase 2 Phase 1Phase 2 Phase 1Phase 2 Phase 1Phase 2
1 5.00 3.00 5.00 3.00 15.00 5.00 15.00 5.00 41.00 5.00 41.00 5.00
2 70.13 17.38 70.13 17.38 144.82 34.91 337.23 106.62 243.00 59.25 243.00 59.25
3 144.50 72.31 147.29 87.83 587.54 243.40 819.49 580.03 243.00 121.45 243.00 186.90
4 134.25 71.54 155.14 87.98 791.30 344.02 819.68 417.02 - - - -
5 91.36 25.36 100.46 31.97 - - 334.33 95.83 - - - -

Table 2. The size of S1
ϕ and Sϕ for selected deductive games.

to analyze the worst/average case complexity of ranking strategies for several ranking
functions. Currently, Cobra supports max-models, exp-models, ent-models, part,
min-fixed, and exp-fixed ranking functions, where the first four functions minimize
the worst-case number of remaining secret codes, the expected number of remaining
secret codes, the entropy of the numbers of remaining secret codes, and the number of
satisfiable outcomes, respectively, and the last two functions maximize the (expected)
number of fixed variables (precise definitions can be found in Appendix ??). Finally,
the optimal-worst and optimal-average are the modes where Cobra computes
the worst and the average case optimal strategies, respectively. The optional -s switch
allows to specify the SAT solver used by Cobra for evaluating the supported ranking
functions (currently available options are MiniSat [9] and PicoSAT [5]). Cobra
also uses the tool Bliss [15] for checking graph isomorphism to determine equiva-
lent experiments. The source code, installation instructions, examples, and a more
detailed specification of Cobra’s functionality are available freely at GitHub [1].

In the rest of this section we briefly describe some experimental results achieved
with Cobra. In the first part, we demonstrate the efficiency of the algorithm for
eliminating symmetric experiments discussed at the end of Section 2. In the second
part, we show that Cobra is powerful enough to produce new results about existing
deductive games and their variants.

The functionality of Experiments(ϕ) can be well demonstrated on CCP and
Mastermind. Consider CCP with 26, 39, and 50 coins. Table 2 (top) shows the average
size of S1

ϕ and Sϕ when computing the i-th experiment in the decision tree for the
max-models ranking strategy. The total number of experiments for 26, 39 and 50
coins is larger than 1026, 1046, and 1064, respectively. Observe that for 26 and 39
coins, only four experiments are needed to reveal the counterfeit coin, and hence
the last row is empty. Note that in the first round, all equivalent experiments are
discovered already in the first phase, i.e., when computing S1. These experiments
correspond to the number of coins that can be weighted (e.g., for 50 coins we can
weight 1+1, . . . , 25+25 coins, which gives 25 experiments). In the second round, when
we run Experiments(ϕ) for three different formulae ϕ ∈ Know, the average size
of S1

ϕ is already larger, and the second phase (eliminating equivalent experiments)
further reduces the average size of the resulting Sϕ.

Average-case
Size MM MM+col MM+pos
2x8 3.67187 3.64062 2
3x6 3.19444 3.18981 3
4x4 2.78516 2.74609 2.78516

Worst-case
Size MM MM+col MM+pos
2x8 5 5 2
3x6 4 4 3
4x4 3 3 3

Table 3. The average/worst case complexity of selected deductive games.

A similar table for Mastermind is shown in Table 2 (bottom). Here we consider
three variants with 3/8, 4/6, and 5/3 pegs/colors. The table shows the average size
of Sϕ when computing the i-th experiment in the decision trees for max-models and
parts ranking strategies. Note that for Mastermind, the reduction is more efficient
for more colors and less pegs, and that the values for the two ranking strategies sig-
nificantly differ, which means that they divide the solution space in a rather different
way.

Now we present examples of results obtained by running our tool that, to the
best of our knowledge, have not yet been published in the existing literature about
deductive games. Our first example concerns CCP. While the worst case complexity
of CCP is fully understood [8], we are not aware of any results about the average case
complexity of CPP. Using Cobra, we were able to compute the average-case optimal
strategy for up to 60 coins. Further, we can compare the average-case complexity of
an optimal strategy with the average-case complexities of various ranking strategies,
which can be synthesized for even higher number of coins (more than 80). The results
are summarized in the graph of Table 3 (left). The precise values shown in the plot
can be found in [16].

As the last example, we consider two variants of Mastermind: MM+col, where
we can also ask for all pegs colored by a given color, and MM+pos, where we can
also ask for the color of a given peg. These extensions are inspired by the API-
level attacks mentioned in Section 1. Using Cobra, we can compute the optimal
worst/average case complexity for 2/8, 3/6, and 4/4 pegs/colors. The results are
summarized in Table 3 (right). When comparing these results to “classical” results
about Mastermind, the following subtle difference in game rules must be taken into
account: Plays of “our” deductive games terminate as soon as we obtain enough
information to reveal the secret code. The “classical” Mastermind terminates when
the secret code is “played”, which may require an extra experiment even if the code
is already known. Our numbers are valid for the first setup.

4 Conclusions

The results produced by Cobra witness that non-trivial deductive games can be
solved by a generic tool. The main advantage of Cobra is its versatility ; small
changes in the structure of the secret code and/or experiments can easily be reflected
in the input description, which greatly simplifies the analysis of new versions of

security protocols, new forms of attacks, etc. The challenge is to push the frontiers of
fully automatic analysis of deductive games even further. Obviously, there are many
ways of improving the functionality of Cobra by elaborating the concepts presented
in this paper. The interface to SAT solvers can also be tuned, there is a lot of space
for parallelism, etc. One may also try alternative approaches to modeling and solving
deductive games based on constraint solving or artificial intelligence techniques.

References

1. COBRA, the COde-BReaking game Analyzer. https://github.com/myreg/cobra (2014)
2. Bento, L., Pereira, L., Rosa, A.: Mastermind by evolutionary algorithms. In: Proceedings

of the International Symposium on Applied Computing. pp. 307–311. ACM (1999)
3. Berghman, L., Goossens, D., Leus, R.: Efficient solutions for Mastermind using genetic

algorithms. Computers & Operations Research 36(6), 1880–1885 (2009)
4. Bernier, J., Herraiz, C., Merelo, J., Olmeda, S., Prieto, A.: Solving Mastermind using

gas and simulated annealing: A case of dynamic constraint optimization. In: Parallel
Problem Solving from Nature - PPSN IV, International Conference on Evolutionary
Computation. The 4th International Conference on Parallel Problem Solving from Na-
ture. Lecture Notes in Computer Science, vol. 1141, pp. 554–563. Springer (1996)

5. Biere, A.: PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and Compu-
tation 4(2–4), 75–97 (2008)

6. Bond, M., Zieliński, P.: Decimalisation table attacks for PIN cracking. Tech. Rep.
UCAM-CL-TR-560 arXiv:1407.3926, University of Cambridge (2003)

7. Chen, S.T., Lin, S.S., Huang, L.T., Hsu, S.H.: Strategy optimization for deductive
games. European Journal of Operational Research 183, 757–766 (2007)

8. Dyson, F.: The problem of the pennies. The Mathematical Gazette 30, 231–234 (1946)
9. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Proceedings of SAT 2003. Lecture

Notes in Computer Science, vol. 2919, pp. 502–518. Springer (2004)
10. Erdös, P., Rényi, A.: On two problems of information theory. Magyar Tud. Akad. Mat.

Kutató Int. Közl 8, 229–243 (1963)
11. Gagneur, J., Elze, M., Tresch, A.: Selective phenotyping, entropy reduction, and the

Mastermind game. BMC Bioinformatics 12(406) (2011)
12. Goodrich, M.: The Mastermind attack on genomic data. In: Proceedings of 30th IEEE

Symposium on Security and Privacy. pp. 204–218. IEEE (2009)
13. Guy, R., Nowakowski, R.: Coin-weighting problems. The American Mathematical

Monthly 102(2), 164–167 (1995)
14. Irving, R.: Towards an optimum Mastermind strategy. Journal of Recreational Mathe-

matics 11(2), 81–87 (1978–79)
15. Junttila, T., Kaski, P.: Engineering an efficient canonical labeling tool for large and

sparse graphs. In: Proceedings of the Ninth Workshop on Algorithm Engineering and
Experiments (ALENEX 2007). pp. 135–149. SIAM (2007)

16. Klimoš, M., Kučera, A.: Strategy synthesis for general deductive games based on SAT
solving. CoRR abs/1407.3926 (2015)

17. Knuth, D.: The computer as Mastermind. Journal of Recreational Mathematics 9(1),
1–6 (1976)

18. Kooi, B.: Yet another Mastermind strategy. ICGA Journal 28(1), 13–20 (2005)
19. Koyama, K., Lai, T.: An optimal Mastermind strategy. Journal of Recreational Math-

ematics 25(4), 251–256 (1993)
20. Neuwirth, E.: Some strategies for Mastermind. Zeitschrift für Operations Research 26,

257–278 (1982)
21. Steel, G.: Formal analysis of PIN block attacks. Theoretical Computer Science 367(1–2),

257–270 (2006)

