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Tomáš Brázdil∗, Krishnendu Chatterjee†, Vojtěch Forejt‡∗, and Antonı́n Kučera∗
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Abstract—We study the complexity of central controller syn-
thesis problems for finite-state Markov decision processes, where
the objective is to optimize both the expected mean-payoff
performance of the system and its stability. We argue that the
basic theoretical notion of expressing the stability in terms of the
variance of the mean-payoff (called global variance in our paper)
is not always sufficient, since it ignores possible instabilities on
respective runs. For this reason we propose alernative definitions
of stability, which we call local and hybrid variance, and which
express how rewards on each run deviate from the run’s own
mean-payoff and from the expected mean-payoff, respectively.

We show that a strategy ensuring both the expected mean-
payoff and the variance below given bounds requires randomiza-
tion and memory, under all the above semantics of variance. We
then look at the problem of determining whether there is a such
a strategy. For the global variance, we show that the problem
is in PSPACE, and that the answer can be approximated in
pseudo-polynomial time. For the hybrid variance, the analogous
decision problem is in NP, and a polynomial-time approximating
algorithm also exists. For local variance, we show that the
decision problem is in NP. Since the overall performance can be
traded for stability (and vice versa), we also present algorithms
for approximating the associated Pareto curve in all the three
cases.

Finally, we study a special case of the decision problems,
where we require a given expected mean-payoff together with
zero variance. Here we show that the problems can be all solved
in polynomial time.

I. Introduction
Markov decision processes (MDPs) are a standard model for

stochastic dynamic optimization. Roughly speaking, an MDP
consists of a finite set of states, where in each state, one of the
finitely many actions can be chosen by a controller. For every
action, there is a fixed probability distribution over the states.
The execution begins in some initial state where the controller
selects an outgoing action, and the system evolves into another
state according to the distribution associated with the chosen
action. Then, another action is chosen by the controller, and
so on. A strategy is a recipe for choosing actions. In general, a
strategy may depend on the execution history (i.e., actions may
be chosen differently when revisiting the same state) and the
choice of actions can be randomized (i.e., the strategy specifies
a probability distribution over the available actions). Fixing a
strategy for the controller makes the behaviour of a given MDP
fully probabilistic and determines the usual probability space
over its runs, i.e., infinite sequences of states and actions.

A fundamental concept of performance and dependability
analysis based on MDP models is mean-payoff. Let us assume

that every action is assigned some rational reward, which
corresponds to some costs (or gains) caused by the action.
The mean-payoff of a given run is then defined as the long-
run average reward per executed action, i.e., the limit of
partial averages computed for longer and longer prefixes of
a given run. For every strategy σ, the overall performance (or
throughput) of the system controlled by σ then corresponds
to the expected value of mean-payoff, i.e., the expected mean-
payoff. It is well known (see, e.g., [15]) that optimal strate-
gies for minimizing/maximizing the expected mean-payoff are
positional (i.e., deterministic and independent of execution
history), and can be computed in polynomial time. However,
the quality of services provided by a given system often
depends not only on its overall performance, but also on its
stability. For example, an optimal controller for a live video
streaming system may achieve the expected throughput of
approximately 2 MBits/sec. That is, if a user connects to the
server many times, he gets 2 Mbits/sec connection on average.
If an acceptable video quality requires at least 1.8 Mbits/sec,
the user is also interested in the likelihood that he gets at least
1.8 Mbits/sec. That is, he requires a certain level of overall
stability in service quality, which can be measured by the
variance of mean-payoff, called global variance in this paper.
The basic computational question is “given rationals u and v,
is there a strategy that achieves the expected mean-payoff u (or
better) and variance v (or better)?”. Since the expected mean-
payoff can be “traded” for smaller global variance, we are
also interested in approximating the associated Pareto curve
consisting of all points (u, v) such that (1) there is a strategy
achieving the expected mean-payoff u and global variance v;
and (2) no strategy can improve u or v without worsening the
other parameter.

The global variance says how much the actual mean-payoff

of a run tends to deviate from the expected mean-payoff.
However, it does not say anything about the stability of
individual runs. To see this, consider again the video streaming
system example, where we now assume that although the
connection is guaranteed to be fast on average, the amount
of data delivered per second may change substantially along
the executed run for example due to a faulty network in-
frastructure. For simplicity, let us suppose that performing
one action in the underlying MDP model takes one second,
and the reward assigned to a given action corresponds to the
amount of transferred data. The above scenario can be modeled



by saying that 6 Mbits are downloaded every third action,
and 0 Mbits are downloaded in other time frames. Then the
user gets 2 Mbits/sec connection almost surely, but since the
individual runs are apparently “unstable”, he may still see a lot
of stuttering in the video stream. As an appropriate measure
for the stability of individual runs, we propose local variance,
which is defined as the long-run average of (ri(ω) − mp(ω))2,
where ri(ω) is the reward of the i-th action executed in a run
ω and mp(ω) is the mean-payoff of ω. Hence, local variance
says how much the rewards of the actions executed along a
given run deviate from the mean-payoff of the run on average.
For example, if the mean-payoff of a run is 2 Mbits/sec and
all of the executed actions deliver 2 Mbits, then the run is
“absolutely smooth” and its local variance is zero. The level of
“local stability” of the whole system (under a given strategy)
then corresponds to the expected local variance. The basic
algorithmic problem for local variance is similar to the one
for global variance, i.e., “given rationals u and v, is there a
strategy that achieves the expected mean-payoff u (or better)
and the expected local variance v (or better)?”. We are also
interested in the underlying Pareto curve.

Observe that the global variance and the expected local
variance capture different and to a large extent independent
forms of systems’ (in)stability. Even if the global variance is
small, the expected local variance may be large, and vice versa.
In certain situations, we might wish to minimize both of them
at the same. Therefore, we propose another notion of hybrid
variance as a measure for “combined” stability of a given
system. Technically, the hybrid variance of a given run ω is de-
fined as the long-run average of (ri(ω)−E

[
mp

]
)2, where E

[
mp

]
is the expected mean-payoff. That is, hybrid variance says
how much the rewards of individual actions executed along a
given run deviate from the expected mean-payoff on average.
The combined stability of the system then corresponds to the
expected hybrid variance. One of the most crucial properties
motivating the definition of hybrid variance is that the expected
hybrid variance is small iff both the global variance and the
expected local variance are small (in particular, for a prominent
class of strategies the expected hybrid variance is a sum of
expected local and global variances). The studied algorithmic
problems for hybrid variance are analogous to the ones for
global and local variance.

The Results. Our results are as follows:

1) (Global variance). The global variance problem was
considered before but only under the restriction of
memoryless strategies [18]. We first show that in general
randomized memoryless strategies are not sufficient for
Pareto optimal points for global variance (Example 1).
We then establish that 2-memory strategies are sufficient.
We show that the basic algorithmic problem for global
variance is in PSPACE, and the approximate version can
be solved in pseudo-polynomial time.

2) (Local variance). The local variance problem comes
with new conceptual challenges. For example, for
unichain MDPs, deterministic memoryless strategies are

sufficient for global variance, whereas we show (Exam-
ple 2) that even for unichain MDPs both randomization
and memory is required for local variance. We estab-
lish that 3-memory strategies are sufficient for Pareto
optimality for local variance. We show that the basic
algorithmic problem (and hence also the approximate
version) is in NP.

3) (Hybrid variance). After defining hybrid variance, we
establish that for Pareto optimality 2-memory strategies
are sufficient, and in general randomized memoryless
strategies are not. We show the basic algorithmic prob-
lem for hybrid variance is in NP, and the approximate
version can be solved in polynomial time.

4) (Zero variance). Finally, we consider the problem where
the variance is optimized to zero (as opposed to a
given non-negative number in the general case). In this
case, we present polynomial-time algorithms to compute
the optimal mean-payoff that can be ensured with zero
variance (if zero variance can be ensured) for all the
three cases. The polynomial-time algorithms for zero
variance for mean-payoff objectives is in sharp contrast
to the NP-hardness for cumulative reward MDPs [13].

To prove the above results, one has to overcome various
obstacles. For example, although at multiple places we build
on the techniques of [10] and [2] which allow us to deal with
maximal end components of an MDP separately, we often
need to extend these techniques, since unlike the above works
which study multiple “independent” objectives, in the case of
global and hybrid variance any change of value in the expected
mean payoff implies a change of value of the variance. Also,
since we do not impose any restrictions on the structure of the
strategies, we cannot even assume that the limits defining the
mean-payoff and the respective variances exist; this becomes
apparent in the case of local and hybrid variance, where we
need to rely on delicate techniques of selecting runs from
which the limits can be extracted. Another complication is
that while most of the work on multi-objective verification
deals with linear objective functions, our objective functions
are inherently quadratic due to the definition of variance.

The summary of our results is presented in Table I. A simple
consequence of our results is that the Pareto curves can be
approximated in pseudo-polynomial time in the case of global
and hybrid variance, and in exponential time for local variance.

Related Work. Studying the trade-off between multiple ob-
jectives in an MDP has attracted significant attention in the
recent years (see [1] for overview). In the verification area,
MDPs with multiple mean-payoff objectives [2], discounted
objectives [7], cumulative reward objectives [12], and multiple
ω-regular objectives [10] have been studied. As for the stability
of a system, the variance penalized mean-payoff problem
(where the mean-payoff is penalized by a constant times
the variance) under memoryless (stationary) strategies was
studied in [11]. The mean-payoff variance trade-off problem
for unichain MDPs was considered in [8], where a solution
using quadratic programming was designed; under memoryless
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Memory size Complexity Approx. complexity Zero-var. complexity
Global 2-memory PSPACE (Theorem 1) Pseudo-polynomial (Theorem 1) PTIME (Theorem 4)

LB: Example 1, UB: Theorem 1
Local LB: 2-memory (Example 2) NP (Theorem 2) NP PTIME (Theorem 4)

UB: 3-memory (Theorem 2)
Hybrid 2-memory NP (Theorem 3) PTIME (Theorem 3) Quadratic (Theorem 4)

LB: Example 4, UB: Theorem 3

TABLE I
Summary of the results, where LB and UB denotes lower- and upper-bound, respectively.

(stationary) strategies the problem was considered in [18]. All
the above works for mean-payoff variance trade-off consider
the global variance, and are restricted to memoryless strategies.
The problem for general strategies and global variance was
not solved before. Although restrictions to unichains or mem-
oryless strategies are feasible in some areas, many systems
modelled as MDPs might require more general approach. For
example, a decision of a strategy to shut the system down
might make it impossible to return the running state again,
yielding in a non-unichain MDP. Similarly, it is natural to
synthesise strategies that change their decisions over time.

As regards other types of objectives, no work considers the
local and hybrid variance problems. The variance problem for
discounted reward MDPs was studied in [17]. The trade-off of
expected value and variance of cumulative reward in MDPs
was studied in [13], showing the zero variance problem to be
NP-hard. This contrasts with our results, since in our setting
we present polynomial-time algorithms for zero variance.

II. Preliminaries

We use N, Z, Q, and R to denote the sets of positive integers,
integers, rational numbers, and real numbers, respectively. We
assume familiarity with basic notions of probability theory,
e.g., probability space, random variable, or expected value.
As usual, a probability distribution over a finite or countable
set X is a function f : X → [0, 1] such that

∑
x∈X f (x) = 1. We

call f positive if f (x) > 0 for every x ∈ X, rational if f (x) ∈ Q
for every x ∈ X, and Dirac if f (x) = 1 for some x ∈ X. The
set of all distributions over X is denoted by dist(X).

For our purposes, a Markov chain is a triple M = (L, → , µ)
where L is a finite or countably infinite set of locations,
→ ⊆ L × (0, 1] × L is a transition relation such that for each
fixed ` ∈ L,

∑
`

x
→`′

x = 1, and µ is the initial probability distri-
bution on L. A run in M is an infinite sequence ω = `1`2 . . . of
locations such that `i

x
→ `i+1 for every i ∈ N. A finite path in M

is a finite prefix of a run. Each finite path w in M determines
the set Cone(w) consisting of all runs that start with w. To
M we associate the probability space (RunsM ,F ,P), where
RunsM is the set of all runs in M, F is the σ-field generated by
all Cone(w) for finite paths w, and P is the unique probability
measure such that P(Cone(`1, . . . , `k)) = µ(`1) ·

∏k−1
i=1 xi, where

`i
xi→ `i+1 for all 1 ≤ i < k (the empty product is equal to 1).

Markov decision processes. A Markov decision process
(MDP) is a tuple G = (S , A,Act, δ) where S is a finite set
of states, A is a finite set of actions, Act : S → 2A \ {∅} is
an action enabledness function that assigns to each state s the

set Act(s) of actions enabled at s, and δ : S × A → dist(S ) is
a probabilistic transition function that given a state s and an
action a ∈ Act(s) enabled at s gives a probability distribution
over the successor states. For simplicity, we assume that every
action is enabled in exactly one state, and we denote this state
Src(a). Thus, henceforth we will assume that δ : A→ dist(S ).

A run in G is an infinite alternating sequence of states and
actions ω = s1a1s2a2 . . . such that for all i ≥ 1, Src(a)i = si and
δ(ai)(si+1) > 0. We denote by RunsG the set of all runs in G. A
finite path of length k in G is a finite prefix w = s1a1 . . . ak−1sk

of a run, and we use last(w) = sk for the last state of w. Given
a run ω ∈ RunsG, we denote by Ai(ω) the i-th action ai of ω.

A pair (T, B) with ∅ , T ⊆ S and B ⊆
⋃

t∈T Act(t) is an
end component of G if (1) for all a ∈ B, if δ(a)(s′) > 0
then s′ ∈ T ; and (2) for all s, t ∈ T there is a finite path
w = s1a1 . . . ak−1sk such that s1 = s, sk = t, and all states and
actions that appear in w belong to T and B, respectively. An
end component (T, B) is a maximal end component (MEC) if
it is maximal wrt. pointwise subset ordering. The set of all
MECs of G is denoted by MEC(G). Given an end component
C = (T, B), we sometimes abuse notation by considering C as
the disjoint union of T and B (e.g. we write S ∩C to denote
the set T ). For a given C ∈ MEC(G), we use RC to denote the
set of all runs ω = s1a1s2a2 . . . that eventually stay in C, i.e.,
there is k ∈ N such that for all k′ ≥ k we have that sk′ , ak′ ∈ C.
Strategies and plays. Intuitively, a strategy in an MDP G is
a “recipe” to choose actions. Usually, a strategy is formally
defined as a function σ : (S A)∗S → dist(A) that given a finite
path w, representing the execution history, gives a probability
distribution over the actions enabled in last(w). In this paper
we adopt a definition which is equivalent to the standard one,
but more convenient for our purpose. Let M be a finite or
countably infinite set of memory elements. A strategy is a
triple σ = (σu, σn, α), where σu : A × S × M → dist(M)
and σn : S × M → dist(A) are memory update and next
move functions, respectively, and α is an initial distribution on
memory elements. We require that for all (s,m) ∈ S ×M, the
distribution σn(s,m) assigns a positive value only to actions
enabled at s. The set of all strategies is denoted by Σ (the
underlying MDP G will be always clear from the context).

A play of G determined by an initial state s ∈ S and a
strategy σ is a Markov chain Gσ

s (or Gσ if s is clear from the
context) where the set of locations is S × M × A, the initial
distribution µ is positive only on (some) elements of {s}×M×A
where µ(s,m, a) = α(m) ·σn(s,m)(a), and (t,m, a) x

→ (t′,m′, a′)
iff x = δ(a)(t′) · σu(a, t′,m)(m′) · σn(t′,m′)(a′) > 0. Hence, Gσ

s
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starts in a location chosen randomly according to α and σn. In
a current location (t,m, a), the next action to be performed is a,
hence the probability of entering t′ is δ(a)(t′). The probability
of updating the memory to m′ is σu(a, t′,m)(m′), and the
probability of selecting a′ as the next action is σn(t′,m′)(a′).
Since these choices are independent (in the probability theory
sense), we obtain the product above.

Note that every run in Gσ
s determines a unique run in G.

Hence, every notion originally defined for the runs in G can
also be used for the runs in Gσ

s , and we use this fact implicitly
at many places in this paper. For example, we use the symbol
RC to denote the set of all runs in Gσ

s that eventually stay in C,
certain functions originally defined over RunsG are interpreted
as random variables over the runs in Gσ

s , etc.

Strategy types. In general, a strategy may use infinite memory,
and both σu and σn may randomize. A strategy is pure (or
deterministic) if α is Dirac and both the memory update
and the next move functions give a Dirac distribution for
every argument, and stochastic-update if α, σu, and σn are
unrestricted. Note that every pure strategy is stochastic-update.
A randomized strategy is a strategy which is not necessarily
pure. We also classify the strategies according to the size
of memory they use. Important subclasses are memoryless
strategies, in which M is a singleton, n-memory strategies, in
which M has exactly n elements, and finite-memory strategies,
in which M is finite.

For a finite-memory strategy σ, a bottom strongly con-
nected component (BSCC) of Gσ

s is a subset of locations
W ⊆ S ×M × A such that for all `1 ∈ W and `2 ∈ S ×M × A
we have that (i) if `2 is reachable from `1, then `2 ∈ W,
and (ii) for all `1, `2 ∈ W we have that `2 is reachable
from `1. Every BSCC W determines a unique end component
({s | (s,m, a) ∈ W}, {a | (s,m, a) ∈ W}), and we sometimes do
not distinguish between W and its associated end component.

An MDP is strongly connected if all its states form a single
(maximal) end component. A strongly connected MDP is a
unichain if for all end components (T, B) we have T = S .

Throughout this paper we will use the following standard
result about MECs.

Lemma 1 ([9, Proposition 3.1]). Almost all runs eventually
end in a MEC, i.e. Pσs

[⋃
C∈Mec(G) RC

]
= 1 for all σ and s.

Global, local, and hybrid variance. Let G = (S , A,Act, δ) be
an MDP, and r : A → Q a reward function. We define the
mean-payoff of a run ω ∈ RunsG by

mp(ω) = lim sup
n→∞

1
n

n−1∑
i=0

r(Ai(ω)) .

The expected value and variance of mp in Gσ
s are denoted

by Eσs
[
mp

]
and Vσs

[
mp

]
, respectively (recall that Vσs

[
mp

]
=

Eσs
[
(mp − Eσs

[
mp

]
)2
]

= Eσs
[
mp2

]
− (Eσs

[
mp

]
)2). Intuitively,

Eσs
[
mp

]
corresponds to the “overall performance” of Gσ

s , and
Vσs

[
mp

]
is a measure of “global stability” of Gσ

s indicating
how much the mean payoffs of runs in Gσ

s tend to deviate

from Eσs
[
mp

]
(see Section I). In the rest of this paper, we

refer to Vσs
[
mp

]
as global variance.

The stability of a given run ω ∈ RunsG (see Section I) is
measured by its local variance defined as follows:

lv(ω) = lim sup
n→∞

1
n

n−1∑
i=0

(
r(Ai(ω)) − mp(ω)

)2

Note that lv(ω) is not really a “variance” in the usual sense of
probability theory1. We call the function lv(ω) “local variance”
because we find this name suggestive; lv(ω) is the long-run
average square of the distance from mp(ω). The expected value
of lv in Gσ

s is denoted by Eσs [lv].
Finally, given a run ω in Gσ

s , we define the hybrid variance
of ω in Gσ

s as follows:

hv(ω) = lim sup
n→∞

1
n

n−1∑
i=0

(
r(Ai(ω)) − Eσs

[
mp

])2

The definition of hv(ω) depends on the expected mean payoff,
and hence it makes sense only after fixing a strategy σ and a
state s. Sometimes we also write hvσ,s(ω) instead of hv(ω) to
prevent confusion about the underlying σ and s. The expected
value of hv in Gσ

s is denoted by Eσs [hv]. Intuitively, Eσs [hv]
measures the “combined” stability of Gσ

s (see Section I).
From now on, we restrict ourselves to reward functions

which only assign non-negative rewards. This is w.l.o.g.,
since for a reward function r we can define r′ given by
r′(a) = r(a) + mina′∈A r(a′) for all a, and under any strategy σ
the expected mean payoff w.r.t. r′ is by mina′∈A r(a′) greater
than the one w.r.t. r, and the variances remain unchanged.

Pareto optimality. We say that a strategy σ is Pareto
optimal in s wrt. global variance if for every strategy ζ
we have that (Eσs

[
mp

]
,Vσs

[
mp

]
) ≥ (Eζs

[
mp

]
,V

ζ
s
[
mp

]
) implies

(Eσs
[
mp

]
,Vσs

[
mp

]
) = (Eζs

[
mp

]
,V

ζ
s
[
mp

]
), where ≥ is the stan-

dard component-wise ordering. Similarly, we define Pareto
optimality of σ wrt. local and hybrid variance by replacing
Vαs

[
mp

]
with Eαs [lv] and Eαs [hv], respectively. We choose the

order ≥ for technical convenience, if one wishes to maxi-
mize the expected value while minimizing the variance, it
suffices to multiply all rewards by −1. The Pareto curve
for s wrt. global, local, and hybrid variance consists of all
points of the form (Eσs

[
mp

]
,Vσs

[
mp

]
), (Eσs

[
mp

]
,Eσs [lv]), and

(Eσs
[
mp

]
,Eσs [hv]), where σ is a Pareto optimal strategy wrt.

global, local, and hybrid variance, respectively.

Frequency functions. Let C be a MEC. We say that f :
C ∩ A→ [0, 1] is a frequency function on C if
•

∑
a∈C∩A f (a) = 1

•
∑

a∈C∩A f (a) · δ(a)(s) =
∑

a∈Act(s) f (a) for every s ∈ C ∩ S
Define mp[ f ] :=

∑
a∈C f (a)·r(a) and lv[ f ] :=

∑
a∈C f (a)·(r(a)−

mp[ f ])2.

1By investing some effort, one could perhaps find a random variable X such
that lv(ω) is the variance of X, but this question is not really relevant—we
only use lv as a random variable which measures the level of local stability
of runs. One could perhaps study the variance of lv, but this is beyond the
scope of this paper. The same applies to the function hv.
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The studied problems. In this paper, we study the following
basic problems connected to the three stability measures intro-
duced above (below Vσ

s is either Vσs
[
mp

]
, Eσs [lv], or Eσs [hv]):

• Pareto optimal strategies and their memory. Do Pareto
optimal strategies exist for all points on the Pareto curve?
Do Pareto optimal strategies require memory and random-
ization in general? Do strategies achieving non-Pareto
points require memory and randomization in general?

• Deciding strategy existence. For a given MDP G, an initial
state s, a rational reward function r, and a point (u, v) ∈
Q2, we ask whether there exists a strategy σ such that
(Eσs

[
mp

]
,Vσ

s ) ≤ (u, v).
• Approximation of strategy existence. For a given MDP G,

an initial state s, a rational reward function r, a number
ε and a point (u, v) ∈ Q2, we want to get an algorithm
which (a) outputs “yes” if there is a strategy σ such that
(Eσs

[
mp

]
,Vσ

s ) ≤ (u − ε, v − ε); (b) outputs “no” if there is
no strategy such that (Eσs

[
mp

]
,Vσ

s ) ≤ (u, v).
• Strategy synthesis. If there exists a strategy σ such that

(Eσs
[
mp

]
,Vσ

s ) ≤ (u, v), we wish to compute such strategy.
Note that it is not a priori clear that σ is finitely
representable, and hence we also need to answer the
question what type of strategies is needed to achieve
Pareto optimal points.

• Optimal performance with zero-variance. Here we are
interested in deciding if there exists a Pareto point of
the form (u, 0) and computing the value of u, i.e., the
optimal expected mean payoff achievable with “absolute
stability” (note that the variance is always non-negative
and its value 0 corresponds to stable behaviours).

Remark 1. If the approximation of strategy existence problem
is decidable, we design the following algorithm to approximate
the Pareto curve up to an arbitrarily small given ε > 0. We
compute a finite set of points P ⊆ Q2 such that (1) for every
Pareto point (u, v) there is (u′, v′) ∈ P with (|u − u′|, |v − v′|) ≤
(ε, ε), and (2) for every (u′, v′) ∈ P there is a Pareto point
(u, v) such that (|u− u′|, |v− v′|) ≤ (ε, ε). Let R = maxa∈A |r(a)|.
Note that |Eσs

[
mp

]
| ≤ R and Vσ

s ≤ R2 for an arbitrary strategy
σ. Hence, the set P is computable by a naive algorithm which
decides the approximation of strategy existence for O(|R|3/ε2)
points in the corresponding ε-grid and puts O(|R|2/ε) points
into P. The question whether the three Pareto curves can be
approximated more efficiently by sophisticated methods based
on deeper analysis of their properties is left for future work.

III. Global variance

In the rest of this paper, unless specified otherwise, we
suppose we work with a fixed MDP G = (S , A,Act, δ) and
a reward function r : A → Q. We start by proving that both
memory and randomization is needed even for achieving non-
Pareto points; this implies that memory and randomization
is needed even to approximate the value of Pareto points.
Then we show that 2-memory stochastic update strategies are
sufficient, which gives a tight bound.

s1

s2

s3 s4

a, 0 0.5

0.5

b, 4

c, 5 e, 0
d, 0

Fig. 1. An MDP witnessing the need for memory and randomization in Pareto
optimal strategies for global variance.

Example 1. Consider the MDP of Fig. 1. Observe that the
point (4, 2) is achievable by a strategy σ which selects c with
probability 4

5 and d with probability 1
5 upon the first visit to

s3; in every other visit to s3, the strategy σ selects c with
probability 1. Hence, σ is a 2-memory randomized strategy
which stays in MEC C = ({s3}, {c}) with probability 1

2 ·
4
5 = 2

5 .
Clearly, Eσs1

[
mp

]
= 1

2 · 4 + 1
2 ·

4
5 · 5 + 1

2 ·
1
5 · 0 = 4 and

Vσs1

[
mp

]
= 1

2 · 4
2 + 1

2 ·
4
5 · 5

2 + 1
2 ·

1
5 · 0

2 − 42 = 2. Further, note
that every strategy σ̄ which stays in C with probability x satis-
fies Eσ̄s1

[
mp

]
= 1

2 ·4+x·5 and Vσ̄s1

[
mp

]
= 1

2 ·4
2 +x·52−(2+x·5)2.

For x > 2
5 we get Eσ̄s1

[
mp

]
> 4, and for x < 2

5 we get
Vσ̄s1

[
mp

]
> 2, so (4, 2) is indeed a Pareto point. Every

deterministic (resp. memoryless) strategy can stay in C with
probability either 1

2 or 0, giving Eσ̄s1

[
mp

]
= 9

2 or Vσ̄s1

[
mp

]
= 4.

So, both memory and randomization are needed to achieve the
Pareto point (4, 2) or a non-Pareto point (4.1, 2.1).

Interestingly, if the MDP is strongly connected, memoryless
deterministic strategies always suffice, because in this case a
memoryless strategy that minimizes the expected mean payoff

immediately gets zero variance. This is in contrast with local
and hybrid variance, where we will show that memory and
randomization is required in general already for unichain
MDPs. For the general case of global variance, the sufficiency
of 2-memory strategies is captured by the following theorem.

Theorem 1. If there is a strategy ζ satisfying
(Eζs

[
mp

]
,V

ζ
s
[
mp

]
) ≤ (u, v), then there is a 2-memory

strategy with the same properties. Moreover, Pareto optimal
strategies always exist, the problem whether there is a strategy
achieving a point (u, v) is in PSPACE, and approximation of
the answer can be done in pseudo-polynomial time.

Note that every C ∈ MEC(G) can be seen as a strongly
connected MDP. By using standard linear programming meth-
ods (see, e.g., [15]), for every C ∈ MEC(G) we can compute
the minimal and the maximal expected mean payoff achievable
in C, denoted by αC and βC , in polynomial time (since C is
strongly connected, the choice of initial state is irrelevant).
Thus, we can also compute the system L of Fig. 2 in polyno-
mial time. We show the following:

Proposition 1. Let s ∈ S and u, v ∈ R.
1) If there is a strategy ζ with (Eζs

[
mp

]
,V

ζ
s
[
mp

]
) ≤ (u, v)

then the system L of Fig. 2 has a non-negative solution.
2) If the system L of Fig. 2 has a non-negative solution,

then there is a 2-memory stochastic-update strategy σ
and z ∈ R with (Eσs

[
mp

]
,Vσs

[
mp

]
) ≤ (u, v) and for all

C ∈ MEC(G) we have the following: If αC > z, then
xC = αC; if βC < z, then xC = βC; otherwise xC = z.

5



1s(t) +
∑
a∈A

ya · δ(a)(t) =
∑

a∈Act(t)

ya + yt for all t ∈ S (1)∑
C∈MEC(G)

t∈S∩C

yt = 1 (2)

yκ ≥ 0 for all κ ∈ S ∪ A (3)
αC ≤ xC for all C ∈ MEC(G) (4)
xC ≤ βC for all C ∈ MEC(G) (5)

u ≥
∑

C∈MEC(G)

xC ·
∑

t∈S∩C

yt (6)

v ≥
( ∑
C∈MEC(G)

x2
C ·

∑
t∈S∩C

yt

)
−

( ∑
C∈MEC(G)

xC ·
∑

t∈S∩C

yt

)2
(7)

Fig. 2. The system L. (Here 1s0 (s) = 1 if s = s0, and 1s0 (s) = 0 otherwise.)

Observe that the existence of Pareto optimal strategies
follows from the above proposition, since we define points
(u, v) that some strategy can achieve by a continous function
from values xC and

∑
t∈S∩C yt for C ∈ MEC(G) to R2. Because

the domain is bounded (all xC and
∑

t∈S∩C yt have minimal and
maximal values they can achieve) and closed (the points of the
domain are expressible as a projection of feasible solutions of
a linear program), it is also compact, and a continuous map
of a compact set is compact [16], and hence closed.

Let us briefly sketch the proof of Proposition 1, which com-
bines new techniques with results of [2], [10]. We start with
Item 1. Let ζ be a strategy satisfying (Eζs

[
mp

]
,V

ζ
s
[
mp

]
) ≤ (u, v).

First, note that almost every run of Gζ
s eventually stays in

some MEC of G by Lemma 1. The way how ζ determines
the values of all yκ, where κ ∈ S ∪ A, is exactly the same
as in [2] and it is based on the ideas of [10]. The details
are given in [3]. The important property preserved is that for
every C ∈ MEC(G) and every state t ∈ S ∩ C, the value of yt

corresponds to the probability that a run stays in C and enters
C via the state t. Hence,

∑
t∈S∩C yt is the probability that a

run of Gζ
s eventually stays in C. The way how ζ determines

the value of ya, where a ∈ A, is explained in [3]. The value
of xC is the conditional expected mean payoff under the
condition that a run stays in C, i.e., xC = E

ζ
s
[
mp | RC

]
. Hence,

αC ≤ xC ≤ βC , which means that (4) and (5) are satisfied.
Further, Eζs

[
mp

]
=

∑
C∈MEC(G) xC ·

∑
t∈S∩C yt, and hence (6)

holds. Note that Vζs
[
mp

]
is not necessarily equal to the right-

hand side of (7), and hence it is not immediately clear why (7)
should hold. Here we need the following lemma (a proof is
given in [3]):

Lemma 2. Let C ∈ MEC(G), and let zC ∈ [αC , βC]. Then
there exists a memoryless randomized strategy σzC such that
for every state t ∈ C ∩ S we have that P

σzC
t

[
mp=zC

]
= 1.

Using Lemma 2, we can define another strategy ζ′ from
ζ such that for every C ∈ MEC(G) we have the following:
(1) the probability of RC in Gζ

s and in Gζ′

s is the same; (2)
almost all runs ω ∈ RC satisfy mp(ω) = xC . This means that

E
ζ
s
[
mp

]
= E

ζ′

s
[
mp

]
, and we show that Vζs

[
mp

]
≥ V

ζ′

s
[
mp

]
(see

[3]). Hence, (Eζ
′

s
[
mp

]
,V

ζ′

s
[
mp

]
) ≤ (u, v), and therefore (1)–(6)

also hold if we use ζ′ instead of ζ to determine the values
of all variables. Further, the right-hand side of (7) is equal
to Vζ

′

s
[
mp

]
, and hence (7) holds. This completes the proof of

Item 1.
Item 2 is proved as follows. Let yκ, where κ ∈ S ∪ A, and

xC , where C ∈ MEC(G), be a non-negative solution of L.
For every C ∈ MEC(G), we put yC =

∑
t∈S∩C yt. By using

the results of Sections 3 and 5 of [10] and the modifications
presented in [2], we first construct a finite-memory stochastic
update strategy % such that the probability of RC in G%

s is equal
to yC . Then, we construct a strategy σ̂ which plays according
to % until a bottom strongly connected component B of G%

s is
reached. Observe that the set of all states and actions which
appear in B is a subset of some C ∈ MEC(G). From that point
on, the strategy σ̂ “switches” to the memoryless randomized
strategy σxC of Lemma 2. Hence, E%s

[
mp

]
and V%s

[
mp

]
are equal

to the right-hand sides of (6) and (7), respectively, and thus
we get (E%s

[
mp

]
,V

%
s
[
mp

]
) ≤ (u, v). Note that σ̂ may use more

than 2-memory elements. A 2-memory strategy is obtained by
modifying the initial part of σ̂ (i.e., the part before the switch)
into a memoryless strategy in the same way as in [2]. Then,
σ̂ only needs to remember whether a switch has already been
performed or not, and hence 2 memory elements are sufficient.
Finally, we transform σ̂ into another 2-memory stochastic
update strategy σ which satisfies the extra conditions of Item 2
for a suitable z. This is achieved by modifying the behaviour
of σ̂ in some MECs so that the probability of staying in
every MEC is preserved, the expected mean payoff is also
preserved, and the global variance can only decrease. This
part is somewhat tricky and the details are given in [3].

We can solve the strategy existence problem by encoding
the existence of a solution to L as a closed formula Φ of the
existential fragment of (R,+, ∗,≤). Since Φ is computable in
polynomial time and the existential fragment of (R,+, ∗,≤) is
decidable in polynomial space [4], we obtain Theorem 1.

The pseudo-polynomial-time approximation algorithm is
obtained as follows. First note that if we had the number z
above, we could simplify the system L of Fig. 2 by substituting
all xC variables with constants. Then, (4) and (5) can be
eliminated, (6) becomes a linear constraint, and (7) the only
quadratic constraint. Thus, the system L can be transformed
into a quadratic program Lz in which the quadratic constraint
is negative semi-definite with rank 1 (see [3]), and hence
approximated in polynomial time [20]. Since we do not know
the precise number z we try different candidates z̄, namely we
approximate the value (to the precision ε

2 ) of Lz̄ for all numbers
z̄ between mina∈A r(a) and maxa∈A r(a) that are a multiple of
τ = ε

8 max{N,1} where N is the maximal absolute value of an
assigned reward. If any Lz̄ has a solution lower than u − ε

2 ,
we output “yes”, otherwise we output “no”. The correctness
of the algorithm is proved in [3].

Note that if we knew the constant z we would even get
that the approximation problem can be solved in polynomial
time (assuming that the number of digits in z is polynomial

6



s1 s2

a, 0

b, 2

c, 2

Fig. 3. An MDP showing that Pareto optimal strategies need randomiza-
tion/memory for local and hybrid variance.

in the size of the problem instance). Unfortunately, our proof
of Item 2 does not give a procedure for computing z, and we
cannot even conclude that z is rational. We conjecture that
the constant z can actually be chosen as a rational number
with small number of digits (which would immediately lower
the complexity of strategy existence to NP using the results
of [19] for solving negative semi-definite quadratic programs).
Also note that Remark 1 and Theorem 1 immediately yield the
following result.

Corollary 1. The approximate Pareto curve for global vari-
ance can be computed in pseudo-polynomial time.

IV. Local variance

In this section we analyse the problem for local variance.
As before, we start by showing the lower bounds for memory
needed by strategies, and then provide an upper bound together
with an algorithm computing a Pareto optimal strategy. As in
the case of global variance, Pareto optimal strategies require
both randomization and memory, however, in contrast to global
variance where for unichain MDPs deterministic memoryless
strategies are sufficient we show (in the following example)
that for local variance both memory and randomization is
required even for unichain MDPs.

Example 2. Consider the MDP from Figure 3 and consider a
strategy σ that in the first step in s1 makes a random choice
uniformly between a and b, and then, whenever the state s1 is
revisited, it chooses the action that was chosen in the first step.
The expected mean-payoff under such strategy is 0.5·2+0.5·1 =

1.5 and the variance is
(
0.5·

(
0.5·(0−1)2+0.5·(2−1)2))+(

0.5·(2−

2)2
)

= 0.5. We show that the point (1.5, 0.5) cannot be achieved
by any memoryless randomized strategy σ′. Given x ∈ {a, b, c},
denote by f (x) the frequency of the action x under σ′. Clearly,
f (c) = 0.5 and f (b) = 0.5 − f (a). If f (a) < 0.2, then the
mean-payoff Eσ

′

s1

[
mp

]
= 2 · ( f (c) + f (b)) = 2 − 2 f (a) is greater

than 1.6. Assume that 0.2 ≤ f (a) ≤ 0.5. Then Eσ
′

s1

[
mp

]
≤ 1.6

but the variance is at least 0.64 (see [3] for computation).
Insufficiency of deterministic history-dependent strategies is
proved using the same equations and the fact that there is
only one run under such a strategy.

Thus have shown that memory and randomization is needed
to achieve a non-Pareto point (1.55, 0.6). The need of memory
and randomization to achieve Pareto points will follow later
from the fact that there always exist Pareto optimal strategies.

In the remainder of this section we prove the following.

Theorem 2. If there is a strategy ζ satisfying
(Eζs0

[
mp

]
,E

ζ
s0 [lv]) ≤ (u, v) then there is a 3-memory strategy

with the same properties. The problem whether such a
strategy exists belongs to NP. Moreover, Pareto optimal
strategies always exist.

We start by proving that 3-memory stochastic update strate-
gies achieve all achievable points wrt. local variance.

Proposition 2. For every strategy ζ there is a 3-memory
stochastic-update strategy σ satisfying

(Eσs0

[
mp

]
,Eσs0

[lv]) ≤ (Eζs0

[
mp

]
,E

ζ
s0 [lv])

Moreover, the three memory elements of σ, say m1,m2,m′2,
satisfy the following:
• The memory element m1 is initial, σ may randomize in

m1 and may stochastically update its memory either to
m2, or to m′2.

• In m2 and m′2 the strategy ζ behaves deterministically and
never changes its memory.

Proof. By Lemma 1
∑

C∈MEC(G) P(RC) = 1, and

(Eζs0

[
mp

]
,E

ζ
s0 [lv])

=
( ∑

C∈MEC(G)

P(RC)·Eζs0

[
mp | RC

]
,

∑
C∈MEC(G)

P(RC)·Eζs0 [lv | RC]
)
.

In what follows we sometimes treat each MEC C as a
standalone MDP obtained by restricting G to C. Then, for
example, Cκ denotes the Markov chain obtained by applying
the strategy κ to the component C.

The next proposition formalizes the main idea of our proof:

Proposition 3. Let C be a MEC. There are two frequency
functions fC : C → R and f ′C : C → R on C, and a number
pC ∈ [0, 1] such that the following holds

pC · (mp[ fC], lv[ fC]) + (1 − pC) · (mp[ f ′C], lv[ f ′C])

≤ (Eζs0

[
mp|RC

]
,E

ζ
s0 [lv|RC]) .

The proposition is proved in [3], where we first show that it
follows from a relaxed version of the proposition which gives
us, for any ε > 0, frequency functions fε and f ′ε and number
pε such that

pε · (mp[ fε], lv[ fε]) + (1 − pε) · (mp[ f ′ε ], lv[ f ′ε ])

≤ (Eζs0

[
mp|RC

]
,E

ζ
s0 [lv|RC]) + (ε, ε) .

Then we show that the weaker version holds by showing that
there are runs ω from which we can extract the frequency
functions fε and f ′ε . The selection of runs is rather involved,
since it is not clear a priori which runs to pick or even how to
extract the frequencies from them (note that the naive approach
of considering the average ratio of taking a given action a does
not work, since the averages might not be defined).

Proposition 3 implies that any expected mean payoff and
local variance achievable on a MEC C can be achieved
by a composition of two memoryless randomized strategies
giving precisely the frequencies of actions specified by fC
and f ′C (note that lv[ fC] and lv[ f ′C] may not be equal to
the expected local variance of such strategies, but we show
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that the “real” expected local variance cannot be larger).
By further selecting BSCCs of these strategies and using
some de-randomization tricks we obtain, for every MEC C,
two memoryless deterministic strategies πC and π′C and a
constant hC such that for every s ∈ C ∩ S the value of
hC(EπC

s
[
mp

]
,EπC

s [lv]) + (1 − hC)(Eπ
′
C

s
[
mp

]
,E

π′C
s [lv]) is equal to

a fixed (u′, v′) (since both CπC and Cπ′C have only one BSCC)
satisfying (u′, v′) ≤ (Eζs0

[
mp|RC

]
,E

ζ
s0 [lv|RC]). We define two

memoryless deterministic strategies π and π′ that in every C
behave as πC and π′C , respectively. Details of the steps above
are in [3].

Using similar arguments as in [2] (that in turn depend
on results of [10]) one may show that there is a 2-memory
stochastic update strategy σ′, with two memory locations
m1,m2, satisfying the following properties: In m1, the strategy
σ′ may randomize and may stochastically update its memory
to m2. In m2, the strategy σ′ never changes its memory. Most
importantly, the probability that σ′ updates its memory from
m1 to m2 in a given MEC C is equal to Pζs0 [RC].

We modify the strategy σ′ to the desired 3-memory σ by
splitting the memory element m2 into two elements m2,m′2.
Whenever σ′ updates to m2, the strategy σ further chooses
randomly whether to update either to m2 (with prob. hC), or to
m′2 (with prob. 1−hC). Once in m2 or m′2, the strategy σ never
changes its memory and plays according to π or π′, respec-
tively. For every MEC C we have Pσs0

(update to m2 in C) =

P(RC) · hC and Pσs0
(update to m′2 in C) = P(RC) · (1− hC). Thus

we get
(Eζs0

[
mp

]
,E

ζ
s0 [lv]) = (Eσs0

[
mp

]
,Eσs0

[lv]) (8)

as shown in [3]. �

Proposition 2 combined with results of [2] allows us to
finish the proof of Theorem 2.

Proof (of Theorem 2). Intuitively, the non-deterministic poly-
nomial time algorithm works as follows: First, guess two
memoryless deterministic strategies π and π′. Verify whether
there is a 3-memory stochastic update strategy σ with memory
elements m1,m2,m′2 which in m2 behaves as π, and in m′2
behaves as π′ such that (Eσs0

[
mp

]
,Eσs0

[lv]) ≤ (u, v). Note that it
suffices to compute the probability distributions chosen by σ
in the memory element m1 and the probabilities of updating to
m2 and m′2. This can be done by a reduction to the controller
synthesis problem for two dimensional mean-payoff objectives
studied in [2].

More concretely, we construct a new MDP G[π, π′] with
• the set of states S ′ := {sin} ∪ (S × {m1,m2,m′2})

(Intuitively, the m1,m2,m′2 correspond to the memory
elements of σ.)

• the set of actions2 A ∪ {[π], [π′], default}
• the mapping Act′ defined by Act′(sin) = {[π], [π′], default},

Act′((s,m1)) = Act(s) ∪ {[π], [π′]} and Act′((s,m2)) =

Act′((s,m′2)) = {default}

2To keep the presentation simple, here we do not require that every action
is enabled in at most one step.

(Intuitively, the actions [π] and [π′] simulate the update
of the memory element m2 and to m′2, respectively, in σ.
As σ is supposed to behave in a fixed way in m2 and m′2,
we do not need to simulate its behavior in these states in
G[π, π′]. Hence, the G[π, π′] just loops under the action
default in the states (s,m2) and (s,m′2). The action default
is also used in the initial state to denote that the initial
memory element is m1.)

• the probabilistic transition function δ′ defined as follows:
– δ′(sin)(default)((s0,m1)) = δ(sin, [π])((s0,m2)) =

δ(sin, [π′])((s0,m′2)) = 1 for a ∈ A and t ∈ S
– δ′((s,m1), a)((t,m1)) = δ(s, a)(t) for a ∈ A and t ∈ S
– δ′((s,m1), [π])((s,m2)) =

δ′((s,m1), [π′])((s,m′2)) = 1
– δ′((s,m2), default)((s,m2)) =

δ′((s,m′2), default)((s,m′2)) = 1
We define a vector of rewards ~r : S ′ → R2 as
follows: ~r((s,m2)) := (Eπs

[
mp

]
,Eπs [lv]) and ~r((s,m′2)) :=

(Eπ
′

s
[
mp

]
,Eπ

′

s [lv]) and ~r(sin) = ~r((s,m1)) := (maxa∈A r(a) +

1, (maxa∈A r(a) − mina∈A r(a))2 + 1). (Here the rewards are
chosen in such a way that no (Pareto) optimal scheduler can
stay in the states of the form (s,m1) with positive probability.)
Note that ~r can be computed in polynomial time using standard
algorithms for computing mean-payoff in Markov chains [14].

In [3] we show that if there is a strategy ζ for G such that
(Eζs0

[
mp

]
,E

ζ
s0 [lv]) ≤ (u, v), then there is a (memoryless random-

ized) strategy ρ in G[π, π′] such that (Eρsin

[
mp~r1

]
,E

ρ
sin

[
mp~r2

]
) ≤

(u, v). Also, we show that such ρ can be computed in poly-
nomial time using results of [2]. Finally, it is straightforward
to move the second component of the states of G[π, π′] to
the memory of a stochastic update strategy which gives a 3-
memory stochastic update strategy σ for G with the desired
properties. Thus a non-deterministic polynomial time algo-
rithm works as follows: (1) guess π, π′ (2) construct G[π, π′]
and ~r (3) compute ρ (if it exists). As noted above, ρ can be
transformed to the 3-memory stochastic update strategy σ in
polynomial time.

Finally, we can show that Pareto optimal strategies exist by
a reasoning similar to the one used in global variance. �

Theorem 2 and Remark 1 give the following corollary.

Corollary 2. The approximate Pareto curve for local variance
can be computed in exponential time.

V. Hybrid variance

We start by showing that memory or randomization is
needed for Pareto optimal strategies in unichain MDPs for
hybrid variance; and then show that both memory and ran-
domization is required for hybrid variance for general MDPs.

Example 3. Consider again the MDP from Fig. 3, and any
memoryless deterministic strategy. There are in fact two of
these. One, which choses a in s1, yields the variance 1, and
the other, which chooses b in s1, yields the expectation 2.

However, a memoryless randomized strategy σ which ran-
domizes uniformly between a and b yields the expectation 1.5
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and variance 0.75 which makes it incomparable to either of the
memoryless deterministic strategies. Similarly, the determinis-
tic strategy which alternates between a and b on subsequent
visits of s1 yields the same values as the σ above. This gives
us that memory or randomization is needed even to achieve a
non-Pareto point (1.6, 0.8).

Before proceeding with general MDPs, we give the follow-
ing proposition, which states an interesting and important re-
lation between the three notions of variance3. The proposition
is proved in [3].

Proposition 4. Suppose σ is a strategy under which for almost
all ω the limits exists for hv(ω), mp(ω), and lv(ω) (i.e. the
lim sup in their definitions can be swapped for lim). Then

Eσs [hv] = Vσs
[
mp

]
+ Eσs [lv] .

Now we can show that both memory and randomization is
needed, by extending Example 1.

Example 4. Consider again the MDP from Fig. 1. Under
every strategy, every run ω satisfies lv(ω) = 0, and the limits
for mp(ω), lv(ω) and hv(ω) exist. Thus Eζs[lv] = 0 for all ζ and
by Proposition 4 we get Eζs[hv] = V

ζ
s
[
mp

]
. Hence we can use

Example 1 to reason that both memory and randomization is
needed to achieve the Pareto point (4, 2) in Fig. 1.

Now we prove the main theorem of this section.

Theorem 3. If there is a strategy ζ satisfying
(Eζs

[
mp

]
,E

ζ
s0 [hv]) ≤ (u, v), then there is a 2-memory

strategy with the same properties. The problem whether such
a strategy exists belongs to NP, and approximation of the
answer can be done in polynomial time. Moreover, Pareto
optimal strategies always exist.

We start by proving that 2-memory stochastic update strate-
gies are sufficient for Pareto optimality wrt. hybrid variance.

Proposition 5. Let s0 ∈ S and u, v ∈ R.
1) If there is a strategy ζ satisfying (Eζs0

[
mp

]
,E

ζ
s0 [hv]) ≤

(u, v), then the system LH (Fig. 4) has a non-negative
solution.

2) If there is a non-negative solution for the system LH

(Fig. 4), then there is a 2-memory stochastic-update
strategy σ satisfying (Eσs0

[
mp

]
,Eσs0

[hv]) ≤ (u, v).

Notice that we get the existence of Pareto optimal strategies
as a side product of the above proposition, similarly to the case
of global variance.

We briefly sketch the main ingredients for the proof of
Proposition 5. We first establish the sufficiency of finite-
memory strategies by showing that for an arbitrary strategy
ζ, there is a 3-memory stochastic update strategy σ such that
(Eσs0

[
mp

]
,Eσs0

[hv]) ≤ (Eζs0

[
mp

]
,E

ζ
s0 [hv]). The key idea of the

proof of the construction of a 3-memory stochastic update

3Note that Proposition 4 does not simplify the decision problem for hybrid
variance, since it does not imply that the algorithms for global and local
variance could be combined.

1s0 (s) +
∑
a∈A

ya · δ(a)(s) =
∑

a∈Act(s)

ya + ys for all s ∈ S (9)∑
C∈MEC(G)

∑
s∈S∩C

ys = 1 (10)∑
s∈C

ys =
∑

a∈A∩C

xa for all C ∈ MEC(G) (11)∑
a∈A

xa · δ(a)(s) =
∑

a∈Act(s)

xa for all s ∈ S (12)

u ≥
∑
a∈A

xa · r(a) (13)

v ≥
∑
a∈A

xa · r2(a) −
(∑

a∈A

xa · r(a)
)2

(14)

Fig. 4. The system LH . (Here 1s0 (s) = 1 if s = s0, and 1s0 (s) = 0 otherwise.)

strategy σ from an arbitrary strategy ζ is similar to the proof
of Proposition 2. The details are in [3]. We then focus on
finite-memory strategies. For a finite-memory strategy ζ, the
frequencies are well-defined, and for an action a ∈ A, let
f (a) B lim`→∞

1
`

∑`−1
t=0 P

ζ
s0 [At = a] denote the frequency of

action a. We show that setting xa B f (a) for all a ∈ A
satisfies Eqns. (12), Eqns. (13) and Eqns. (14) of LH . To
obtain ya and ys, we define them in the same way as done
in [2, Proposition 2] using the results of [10]. The details
are in [3]. This completes the proof of the first item. The
proof of the second item is as follows: the construction of a
2-memory stochastic update strategy σ from the constraints of
the system LH (other than constraint of Eqns 14) was presented
in [2, Proposition 1]. The key argument to show that strategy
σ also satisfies Eqns 14 is obtained by establishing that for the
strategy σ we have: Eσs [hv] = Eσs

[
mpr2

]
−Eσs

[
mp

]2 (here mpr2 is
the value of mp w.r.t. reward function defined by r2(a) = r(a)2;
the equality is shown in [3]). It follows immediately that
Eqns 14 is satisfied. This completes the proof of Proposition 5.
Finally we show that for the quadratic program defined by the
system LH , the quadratic constraint satisfies the conditions of
negative semi-definite programming with matrix of rank 1 (see
[3]). Since negative semi-definite programs can be decided in
NP [19] and with the additional restriction of rank 1 can be
approximated in polynomial time [20], we get the complexity
bounds of Theorem 3. Finally, Theorem 3 and Remark 1 give
the following result.

Corollary 3. The approximate Pareto curve for hybrid vari-
ance can be computed in pseudo-polynomial time.

VI. Zero variance with optimal performance

Now we present polynomial-time algorithms to compute
the optimal expectation that can be ensured along with zero
variance. The results are captured in the following theorem.

Theorem 4. The minimal expectation that can be ensured
1) with zero hybrid variance can be computed in O((|S | ·
|A|)2) time using discrete graph theoretic algorithms;
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2) with zero local variance can be computed in PTIME;
3) with zero global variance can be computed in PTIME.

Hybrid variance. The algorithm for zero hybrid variance is
as follows: (1) Order the rewards in an increasing sequence
β1 < β2 < . . . < βn; (2) find the least i such that Ai is the set of
actions with reward βi and it can be ensured with probability 1
(almost-surely) that eventually only actions in Ai are visited,
and output βi; and (3) if no such i exists output “NO” (i.e., zero
hybrid variance cannot be ensured). Since almost-sure winning
for MDPs with eventually always property (i.e., eventualy only
actions in Ai are visited) can be decided in quadratic time with
discrete graph theoretic algorithm [6], [5], we obtain the first
item of Theorem 4. The correctness is proved in [3].
Local variance. For zero local variance, we make use of
the previous algorithm. The intuition is that to minimize the
expectation with zero local variance, a strategy σ needs to
reach states s in which zero hybrid variance can be ensured
by strategies σs, and then mimic them. Moreover, σ minimizes
the expected value of mp among all possible behaviours
satisfying the above. The algorithm is as follows: (1) Use the
algorithm for zero hybrid variance to compute a function β that
assigns to every state s the minimal expectation value β(s) that
can be ensured along with zero hybrid variance when starting
in s, and if zero hybrid variance cannot be ensured, then β(s)
is assigned +∞. Let M = 1 + maxs∈S β(s). (2) Construct an
MDP G as follows: For each state s such that β(s) < ∞ we
add a state s with a self-loop on it, and we add a new action
as that leads from s to s. (3) Assign a reward β(s) − M to
as, and 0 to all other actions. Let T = {as | β(s) < ∞} be the
target set of actions. (4) Compute a strategy that minimizes
the cumulative reward and ensures almost-sure (probability 1)
reachability to T in G. Let β̂(s) denote the minimal expected
payoff for the cumulative reward; and β(s) = β̂(s) + M. In
[3] we show that β(s) is the minimal expectation that can be
ensured with zero local variance, and every step of the above
computation can be achieved in polynomial time. This gives
us the second item of Theorem 4.
Global variance. The basic intuition for zero global variance
is that we need to find the minimal number y such that there
is an almost-sure winning strategy to reach the MECs where
expectation exactly y can be ensured with zero variance.

The algorithm works as follows: (1) Compute the MEC de-
composition of the MDP and let the MECs be C1,C2, . . . ,Cn.
(2) For every MEC Ci compute the minimal expectation
αCi = infσ mins∈Ci E

σ
s
[
mp

]
and the maximal expectation βCi =

supσ maxs∈Ci E
σ
s
[
mp

]
that can be ensured in the MDP induced

by the MEC Ci. (3) Sort the values αCi in a non-decreasing
order as `1 ≤ `2 ≤ . . . ≤ `n. (4) Find the least i such that
(a) Ci = {C j | αC j ≤ `i ≤ βC j } is the MEC’s whose interval
contains `i; (b) almost-sure (probability 1) reachability to the
set

⋃
C j∈Ci

C j (the union of the MECs in Ci) can be ensured;
and output `i. (5) If no such i exists, then the answer to zero
global variance is “NO” (i.e., zero global variance cannot be
ensured). All the above steps can be computed in polynomial
time. The correctness is proved in [3], and we obtain the last

item of Theorem 4.

VII. Conclusion

We studied three notions of variance for MDPs with mean-
payoff objectives: global (the standard one), local and hybrid
variance. We established a strategy complexity (i.e., the mem-
ory and randomization required) for Pareto optimal strategies.
For the zero variance problem, all the three cases are in
PTIME. There are several interesting open questions. The
most interesting open questions are whether the approximation
problem for local variance can be solved in polynomial time,
and what are the exact complexities of the strategy existence
problem.
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