
Quantitative Analysis of Probabilistic Pushdown Automata:
Expectations and Variances

(Extended Abstract)

Javier Esparza
Institute for Formal Methods in Computer Science,

University of Stuttgart,
Universität str. 38, 70569 Stuttgart, Germany.
esparza@informatik.uni-stuttgart.de

Antonı́n Kučera∗

Faculty of Informatics, Masaryk University,
Botanická 68a, 60200 Brno,

Czech Republic.
tony@fi.muni.cz

Richard Mayr
Department of Computer Science, Campus Box 8207,

North Carolina State University, Raleigh, NC 27695-8207, USA
mayr@csc.ncsu.edu

Abstract

Probabilistic pushdown automata (pPDA) have been iden-
tified as a natural model for probabilistic programs with re-
cursive procedure calls. Previous works considered the de-
cidability and complexity of the model-checking problem for
pPDA and various probabilistic temporal logics. In this pa-
per we concentrate on computing the expected values and
variances of various random variables defined over runs
of a given probabilistic pushdown automaton. In particu-
lar, we show how to compute the expected accumulated re-
ward and the expected gain for certain classes of reward
functions. Using these results, we show how to analyze var-
ious quantitative properties of pPDA that are not express-
ible in conventional probabilistic temporal logics.

1. Introduction

Pushdown automata (or recursive state machines) are a nat-
ural model for sequential programs with recursive proce-
dure calls [5, 2, 10, 4]. Recent papers are, e.g., [1, 8, 3].
Recently, probabilistic aspects of such programs have been
taken into account, and several papers have studied in de-
tail the decidability and complexity of model-checking both
linear and branching-time probabilistic temporal logics for
probabilistic pushdown automata (pPDA) [6, 11, 13, 12].
Using these results it is possible to decide if, say, the proba-

∗ Supported by the Alexander von Humboldt Foundation and by the re-
search centre Institute for Theoretical Computer Science (ITI), project
No. 1M0021620808.

bility that a pPDA terminates is at least 0.98, even though its
associated Markov chain may have infinitely many states.

However, we are often interested not only in the prob-
ability of termination, but also in the expected termination
time, defined over the runs of the program that terminate.
Moreover, we may wish to obtain some more information
about the probability distribution of the termination time, in
particular its variance.

In this paper we address this problem. We obtain some
generic results about computing expectations and variance
of reward functions, and apply them to three fundamen-
tal problems: termination time, renewal time (time between
two visits to a given control state), and stack length. All
three are obviously relevant for the design and performance
analysis of probabilistic programs.

The semantic of a pPDA is a possibly infinite Markov
chain whose states areconfigurations, i.e., pairs consisting
of a control state and a stack content. A trajectory in this
chain is called arun. We consider reward functions that as-
sign a reward to every configuration of the pPDA. When
the pPDA enters a configuration, it collects its associated
reward. Given a reward function, our goal is to compute
(a) the expectation of the reward accumulated during a fi-
nite run. For infinite runs this reward is usually infinite, and
so our goal is to compute (b) the expectation of thegain,
defined as the average reward earned per transition. (For-
mally, the gain is the random variable that assigns to an in-
finite run the limit, asn approaches infinity, of the reward
accumulated during the firstn transitions divided byn.) We
are also interested in the variances of the corresponding ran-
dom variables.

The first part of the paper deals with reward functions
that only depend on the control state, which we callsimple
functions. In a first step (Section 3) we show how to com-
pute the expected accumulated reward and its variance for
finite runs of the pPDA starting at a configuration of the
form pX (control statep and stack contentX , of length 1),
and ending at a configurationqε (control stateq and empty
stack). The termination time corresponds to the simple re-
ward function that assigns 1 to each control state.

In a second and more involved step (Section 4), we use
the results of Section 3 to compute the expected value of
the gain for simple reward functions. We apply the tech-
nique developed in [11] (see also [12]) to solve the LTL
model-checking problem. This technique consists of com-
puting a finite Markov chain which records theminimaof
an infinite run of the pPDA, defined as the configurations
at which the run reaches for the first time a certain length,
but in such a way that in the future it never goes below that
length. A transition of this finite chain, which in the rest of
the introduction we call a ‘jump’, corresponds to the (finite)
sequence of transitions carried out by the pPDA in order to
move from one minimum to the next. We define a modifi-
cation of this chain, and show how to compute the expected
accumulated reward for each jump. Then, we show how to
use this information to obtain the expected gain. In fact, the
technique has a limitation: It only works if the expected re-
ward for each jump is finite. Fortunately, the case of infinite
expected reward per jump is rather pathological, and should
correspond to a design fault in most cases. The renewal time
for a setP of control states, i.e., the expected time between
two visits to configurations whose control states belong to
P , corresponds to the simple function which assigns 1 to
the control states ofP , and0 to the others. More precisely,
the renewal time is the inverse of the gain of this function.

In the second part of the paper, we extend the techniques
of the first part to reward functions that depend on the con-
trol state and (linearly) on the length of the stack, which
we call linear reward functions. Again, this part is divided
into two steps. The first step (Section 5) extends the results
of Section 3, and is rather straightforward. The second step
(Section 6) requires some more care. The reason is that, in
general, the reward obtained when executing a jump now
may depend on the past, i.e., on all the previous jumps. For-
tunately, we are able to show that when this is the case the
expected reward is infinite. So we only need to worry about
the memoryless case, and we are thus able to apply the re-
sults of Section 4. The expected average stack length corre-
sponds to the linear function that assigns to a configuration
the length of its stack content.

While the expectation of the average stack length pro-
vides some useful information, there is a more interesting
parameter, namely themaximalstack length, i.e., the ran-
dom variable that assigns to a run the maximal stack length

reached along it. In Section 6.1 we provide some partial re-
sults on this variable. More precisely, we show how to com-
pute the probability that the maximal stack length remains
bounded, and the probability, for each valuen, that the max-
imal stack length is at mostn.

2. Preliminaries

Let N, N0, Q, Q+, R, and R+ denote the sets of posi-
tive integers, non-negative integers, rational numbers, non-
negative rational numbers, real numbers, and non-negative
real numbers, respectively. We also useQ+

ω andR+
ω to de-

note the setsQ+ ∪ {ω} andR+ ∪ {ω}, respectively, where
ω 6∈ Q ∪ R is a special symbol. We stipulate thatc + ω =
ω + c = ω + ω = ω andc/ω = 0 for eachc ∈ R+, and
c · ω = ω for each positivec ∈ R+.

For a given alphabetΣ, the symbolΣ∗ denotes the set
of all finite words overΣ. The length of a givenw ∈ Σ∗ is
denoted by|w|, and the empty word is denoted byε.

Definition 2.1. A (fully) probabilistic transition systemis a
triple T = (S,→,Prob) whereS is a finite or countably in-
finite set ofstates, → ⊆ S × S is a transition relation, and
Prob is a function which to each transitions → t of T as-
signs its probabilityProb(s → t) ∈ (0, 1] so that for ev-
ery s ∈ S we have

∑

s→t Prob(s → t) ∈ {0, 1}. (The
sum above can be0 if s does not have any outgoing transi-
tions.)

In the rest of this paper we also writes
x
→ t instead of

Prob(s → t) = x. A path in T is a finite or infinite se-
quencew = s0, s1, · · · of states such thatsi → si+1 for ev-
ery i. We also usew(i) to denote the statesi of w (by writ-
ing w(i) = s we implicitly impose the condition that the
length ofw is at leasti + 1). The prefixs0, s1, . . . , si of w
is denoted bywi. A run is a maximal path, i.e., a path which
cannot be prolonged. The sets of all finite paths and all runs
of T are denotedFPath andRun, respectively. Similarly,
the sets of all finite paths and runs that start in a givens ∈ S
are denotedFPath(s) andRun(s), respectively.

A strongly connected component (SCC) ofT is a subset
C ⊆ S where for allx, y ∈ C we have thatx →∗ y. A SCC
is a bottom SCC (BSCC) if no other SCC is reachable from
it. It follows that all BSCC are maximal SCC.

A reward functionis a functionf : S → Q+ that as-
signs to a states a rewardf(s). We assume that when
a process enters a configurations it collects the reward
f(s). Given a reward functionf , we extend it to a func-
tion F : FPath → Q+ by F (s0, · · · , sn) =

∑n

i=1 f(si).
Hence,F assigns to each path itsaccumulated reward. Note
thatf(s0) is not included in the sum.

Eachw ∈ FPath determines abasic cylinderRun(w)
which consists of all runs that start withw. To everys ∈ S
we associate the probabilistic space(Run(s),F ,P) where

F is theσ-field generated by all basic cylindersRun(w)
wherew starts withs, andP : F → [0, 1] is the unique
probability function such thatP(Run(w)) = Πm−1

i=0 xi

wherew = s0, · · · , sm andsi
xi→ si+1 for every0 ≤ i < m

(if m = 0, we putP(Run(w)) = 1).

Definition 2.2. A probabilistic pushdown automaton
(pPDA) is a tuple∆ = (Q, Γ, δ,Prob) whereQ is a fi-
nite set ofcontrol states, Γ is a finitestack alphabet, δ ⊆
Q × Γ × Q × Γ∗ is a transition relationsuch that when-
ever(p, X, q, α) ∈ δ, then|α| ≤ 2, andProb is a function
which to each transitionpX → qα assigns a rational prob-
ability Prob(pX → qα) ∈ (0, 1] so that for allp ∈ Q and
X ∈ Γ we have that

∑

pX→qα Prob(pX → qα) ∈ {0, 1}.

In the rest of this paper we adopt a more intuitive notation,
writing pX → qα instead of(p, X, q, α) ∈ δ andpX

x
→ qα

instead ofProb(pX → qα) = x. The setQ×Γ∗ of all con-
figurations of∆ is denoted byC(∆). Given a configuration
pXα of ∆, we callpX theheadandα thetail of pXα.

To ∆ we associate the probabilistic transition systemT∆

whereC(∆) is the set of states and the probabilistic transi-
tion relation is determined bypXβ

x
→ qαβ iff pX

x
→ qα is

a transition of∆.

Now we recall some known results which will be
used in the following sections. Let us fix a pPDA∆ =
(Q, Γ, δ,Prob). For all p, q ∈ Q and X ∈ Γ, the sym-
bol [pXq] denotes the probability that a run initiated in
pX hits qε. More precisely,[pXq] = P(w ∈ Run(pX) |
∃i ∈ N : w(i) = qε). It has been shown in [11] (see also
[13]) that there effectively exists a finite system of recur-
sive quadratic equations with variables of the form〈pXq〉
(i.e., there is a variable〈pXq〉 for all p, q ∈ Q andX ∈ Γ)
such that the family of all[pXq] probabilities forms the
least solution of this system of equations with respect to
component-wise ordering. Since all terms in these equations
are built using just summation, multiplication, and rational
constants, each of the[pXq] probabilities is effectively ex-
pressible in(R, +, ∗,≤) in the following sense: there effec-
tively exists a formulaΦ of (R, +, ∗,≤) with one free vari-
ablex such thatΦ[x/c] holds iff c = [pXq]. Hence, for
all ∼ ∈ {<, >,≤,≥, =} and all rational constants̺ one
can decide if[pXq] ∼ ̺ simply by checking if the formula
∃x(Φ∧x∼̺) is valid or not. One can also compute the value
[pXq] up to an arbitrarily small non-zero error (for exam-
ple, by a simple binary search). Since the value of[pXq] can
be irrational [13], it cannot be computed precisely in gen-
eral.

The decidability of(R, +, ∗,≤) is due to Tarski [15],
and some fragments of(R, +, ∗,≤) are known to have a
relatively reasonable complexity. For example, the existen-
tial (and hence also the universal) fragment is inPSPACE
[7], and each fragment with a bounded alternation depth of

quantifiers is inEXPTIME [14]. We use these results to es-
timate the complexity of our algorithms.

In this paper we show that a number of quantitative fea-
tures of pPDA are effectively expressible in(R, +, ∗,≤)
(we just say that a given random variable, or its expected
value, or its variance, is “expressible”). This also applies to
features which can be infinite. For example, in the next sec-
tion we consider the expected length of a terminating com-
putation (i.e., we express the average length of the subset of
all finite runs) which can be infinite even if a given pPDA
configuration terminates with probability one. In that case,
the associated formulaΦ does not hold for anyc ∈ R+

0 . So,
the problem whether the expected time is finite or infinite
can be decided by checking whether the formula∃x ≥ 0.Φ
is valid or invalid, respectively. If the time is finite, we can
use the formulaΦ in the ways described above.

Let us note that once a certain feature is shown express-
ible, it can be used to define other features which then be-
come expressible as well. In some cases, the structure of
the resulting formula is quite complicated. Our complex-
ity results are based on evaluating the size and structure of
these formulae. The size remains typically polynomial in
the size of the original pPDA. Sometimes we obtain a for-
mula of the existential fragment, and sometimes we need
to nest the quantifiers to some fixed depth. Therefore, typi-
cal upper bounds presented in this paper arePSPACEand
EXPTIME .

In the following sections we also use[qY ↑] to denote the
probability that a run initiated inqY is infinite. Observe that
since[qY ↑] = 1−

∑

p∈Q[qY p], this probability is express-
ible. Finally, let us note that since the variance of a given
random variableY is equal toE(Y 2) − (E(Y))2, the vari-
ance ofY is expressible if bothE(Y) andE(Y 2) are ex-
pressible (and this is what we usually prove).

3. Simple reward functions: Expected accu-
mulated reward

In this section, let us fix a pPDA∆ = (Q, Γ, δ,Prob) such
that for each transitionpX

x
→ qα we have that|α| ∈ {0, 2}.

This assumption is not restrictive (for every PDA there is an
equivalent one in this form, up to transition graph isomor-
phism), and becomes particularly useful in this section (oth-
erwise, the systems of equations considered in Theorem 3.1
and Theorem 3.4 would take even less readable form).

Since the probabilities[pXq] are known to be express-
ible (see Section 2), we assume that they are already
“known” and can safely be used in expressions for other
variables (see the discussion in Section 2).

In this section we considersimplereward functions. A
reward functionf is simple if f(pα) only depends onp.
For the rest of the section we fix a simple reward function
f , and writef(p) instead off(pα).

For all p, q ∈ Q andX ∈ Γ, we compute the condi-
tional expectation of the reward accumulated by the pPDA
along a path, under the condition that the path starts atpX
and ends atqε. We also compute the corresponding condi-
tional variance.

Consider the probabilistic space(Run(pX),F ,P). For
eachq ∈ Q, let Run(pXq) be the set of allw ∈ Run(pX)
such thatw(i) = qε for somei ∈ N. For a givenpX we
consider only thoseq ∈ Q such that[pXq] > 0. The other
control states are irrelevant (and the notions introduced be-
low do not make sense if[pXq] = 0).

We define a random variableRpXq overRun(pX) in the
following way:

RpXq(w) =

{

0 if w 6∈ Run(pXq)
F (wℓ) if w(ℓ) = qε

ThenE(RpXq | Run(pXq)) is the conditional expected ac-
cumulated reward frompX to qε, under the condition that
qε is reached. From now on we write[E(pXq)] instead of
E(RpXq | Run(pXq)).

We show that[E(pXq)] can be computed as the min-
imal solution of a system of linear equations overR+

ω . Let
V := {〈E(pXq)〉 | p, q ∈ Q, X ∈ Γ, [pXq] > 0} be a set of
variables overRω. That is, for every[E(pXq)] there is the
associated variable〈E(pXq)〉. Consider the following sys-
tem of recursive equations:〈E(pXq)〉 = 0 for [pXq] = 0.
Otherwise,

〈E(pXq)〉 =
1

[pXq]

0

B

@

X

pX
x
→qε

x · f(q) +
X

pX
x
→rY Z

x · KpX,rY Z

1

C

A

where the termKpX,rY Z is given by
∑

s∈Q

[rY s][sZq](f(r) + 〈E(rY s)〉 + 〈E(sZq)〉)

If [rY s] or [sZq] is zero, then the corresponding summand
of KpX,rY Z is removed (thus we avoid problems with un-
defined expressions like0 · ω; note that, e.g.,[E(rY s)] can
beω).

Theorem 3.1. The tuple of all[E(pXq)] values is exactly
the leastsolution of the above system of equations inR+

ω

with respect to component-wise ordering.

Proof sketch.The system of equations determines a unique
operatorF : (R+

ω)|V| → (R+
ω)|V| whereF(t) is the tuple

of values obtained by evaluating the right-hand sides of the
equations where each variable ofV is substituted with its
associated value int. SinceF is monotonic and continuous,
F has the least fixed-pointµ. We show thatµ is exactly the
tuple of all[E(pXq)] values.

We first prove thatµ is smaller than or equal to the tu-
ple of [E(pXq)] values. We show that the equations hold if
each〈E(pXq)〉 is substituted with[E(pXq)] (which means

that the tuple of all[E(pXq)] values is a fixed-point ofF ,
and hence this tuple can only be larger thatµ). A run that
starts with a transitionpX

x
→ rY Z and ends atqε must

go through a first configuration of stack length1. Moreover,
this configuration must haveZ as stack content. Fix a state
s, and consider the accumulated reward under the assump-
tion that this intermediate state of the run iss. The run can
be split into three parts as follows:pX

x
→ rY Z →∗ sZ →∗

qε. The expectation of the reward accumulated during the
path is the sum of the expectations of the accumulated re-
wards, and so equal tof(rY Z)+[E(rY Z, sZ)]+[E(sZq)],
where[E(rY Z, sZ)] denotes the conditional expected ac-
cumulated reward between the configurationsrY Z andsZ.
Sincef is simple, we havef(rY Z) = f(r), and, moreover,
the rewards accumulated during the pathrY Z →∗ sZ and
the pathrY →∗ sε obtained by removingZ from all con-
figurations ofrY Z →∗ sZ coincide. So[E(rY Z, sZ)] =
[E(rY s)], and so the expected value for paths of the form
pX

x
→ rY Z →∗ sZ →∗ qε isf(r)+[E(rY s)]+[E(sZq)].

The conditional expectation under the assumption that the
run starts withpX

x
→ rY Z and hass as intermediate state

is then given by[rY s][sZq](f(r)+〈E(rY s)〉+〈E(sZq)〉).
The other inequality is proven inductively—for each

i ∈ N we define a random variableRpXq,i over
Run(pX), which returns F (wℓ) if w(ℓ) = qε for
some ℓ≤i, and zero otherwise. Then we can also ap-
proximate[E(pXq)] by a family of conditional expecta-
tions [E(pXq)]i = E(RpXq,i | Run(pXq)). Obviously,
[E(pXq)] = limi→∞[E(pXq)]i. Then, it is inductively
shown that for eachi ∈ N, the tuple of all[E(pXq)]i val-
ues can only be less thenµ. Hence, the same holds for the
limit [E(pXq)].

Corollary 3.2. [E(pXq)] is expressible. Moreover, the
problem whether[E(pXq)] ∼ ̺, where ̺ ∈ Qω and
∼ ∈ {<, >,≤,≥, =}, is in PSPACE.

In Corollary 3.2, some extra care is needed to compute all
[E(pXq)] that take the valueω.

Example 3.3 (Termination time). If we assume that every
transition of the pPDA takes one time unit, the expected ter-
mination time of the system when started in the configura-
tion p0X0 can be computed as follows. Letf be the simple
reward function that assigns1 to each control state. Then,
the expected termination time under the condition that the
pPDA terminates (i.e., reaches a configuration with empty
stack) is given by

∑

q∈Q[E(p0X0q)] · [p0X0q]

1 − [p0X0↑]

Hence, the conditional expected termination time is express-
ible (of course, the fraction only makes sense if the proba-
bility of termination is non-zero).

Let us note that the problem of computing the expected ac-
cumulated reward between a given pair of (arbitrary) con-
figurationspα andqβ is easily reducible to the problem of
computing[E(pXq)]. Hence, we can also solve this prob-
lem.

Now we show how to compute the conditional vari-
ance of the accumulated reward of a path under the con-
dition that it starts atpX and ends atqε. Since we al-
ready know how to computeE(RpXq | Run(pXq)), it
only remains to compute the conditional second moment
E(R2

pXq | Run(pXq)).
Similarly as before, consider the probabilistic space

(Run(pX),F ,P). For everyq ∈ Q such that[pXq] > 0
we define a random variableQpXq overRun(pX) as fol-
lows:

QpXq(w) =

{

0 if w 6∈ Run(pXq)
(F (wℓ))2 if w(ℓ) = qε

E(QpXq | Run(pXq)) is the conditional expected square
of the accumulated reward frompX to qε, under the con-
dition thatqε is reached. From now on we write[Q(pXq)]
instead ofE(QpXq | Run(pXq)).

Analogously as for[E(pXq)] we now show that the tu-
ple of all [Q(pXq)] values forms the least solution of an ef-
fectively constructible system of linear equations. Sincethe
values of[E(pXq)] are expressible, they can be used as co-
efficients in the system. So, letV = {〈Q(pXq)〉 | p, q ∈
Q, X ∈ Γ, [pXq] > 0} be a set of variables overR+

ω . Con-
sider the following system of linear equations (linear in the
〈Q(aBc)〉 variables):〈Q(pXq)〉 = 0 for [pXq] = 0, else

〈Q(pXq)〉 =
1

[pXq]

0

@

X

pX
x
→qε

x · f(q)2 +

+
X

pX
x
→rY Z

x ·
X

s∈Q

[rY s][sZq]KpX,rY Z,s

1

A

where the expressionKpX,rY Z,s stands for

〈Q(rY s)〉 + 〈Q(sZq)〉 + f(r)2+

2[E(rY s)][E(sZq)] + 2f(r)[E(rY s)] + 2f(r)[E(sZq)]

If [rY s], [sZq], [E(rY s)], or [E(sZq)] is zero, then the cor-
responding summands are eliminated. Now we derive anal-
ogous results as in the case of[E(pXq)]:

Theorem 3.4. The tuple of all[Q(pXq)] is exactly theleast
solution of the above system of equations inR+

ω .

Proof sketch.The structure of the proof is the same as for
Theorem 3.1. Let us just explain the key points for obtain-
ing KpX,rY Z,s. Recall that ifA andB are independent ran-
dom variables, thenE((A + B)2) = E(A2) + E(B2) +
2E(A) ·E(B). In general, ifX =

∑n

i=1 Xi and theXi are
pairwise independent, thenE(X2) is expressible as a poly-
nomial inE(Xi) andE(X2

i).

We are interested in the conditional second moment of
the accumulated reward of a path under the assumption that
the path has the formpX

x
→ rY Z →∗ sZ →∗ qε for fixed

pX , rY Z, sZ, andqε, as in Theorem 3.1. Now we make
two observations. First, for simple reward functions the ex-
pectation of the reward accumulated along the path is given
by f(r) + [E(rY s)] + [E(sZq)] (see the proof of Theo-
rem 3.1). Second, for arbitrary reward functions the random
variables that assign to each part of the run its accumulated
reward are pairwise independent (follows from the fact that
we have fixed the configurationsrY Z, sZ, qε, and so the
initial configuration of a part of the path does not depend
on the previous parts). From these two observations follows
that the square of the accumulated reward can be expressed
in terms of(f(r))2, [Q(rY s)], [Q(sZq)], f(r), [E(rY s)],
[E(sZq)]. The termKpX,rY Z,s is now obtained by a rou-
tine calculation.

Corollary 3.5. [Q(pXq)] is expressible. Moreover, the
problem whether[Q(pXq)] ∼ ̺, where ̺ ∈ Qω and
∼ ∈ {<, >,≤,≥, =}, is in PSPACE.

Example 3.6. Consider the pPDA model of the “gambler’s

ruin” problem. We have the rulespC
x
→ pCC, pC

1−x
→ pε,

and the initial configurationpC. The minimal solution of
the recursive equation system for[pCp] yields that[pCp] =
1 if x ≤ 1/2 and[pCp] = (1 − x)/x if x > 1/2.

By solving the recursive equations of Theorem 3.1 and
Theorem 3.4, one obtains the following results. The condi-
tional expectation[E(pCp)] of the distance frompC to pε
is 0 for x = 1, ω for x = 1/2, and otherwise

[E(pCp)] =
1 − x + x[pCp]2

[pCp] − 2x[pCp]2

The conditional expectation[Q(pCp)] of the square of the
distance is0 for x = 1, ω for x = 1/2, and otherwise

[Q(pCp)] =
(1 − x) + x[pCp]2(2[E(pCp)]2 + 4[E(pCp)] + 1)

[pCp] − 2x[pCp]2

For x = 3/4 one obtains[pCp] = 1/3, [E(pCp)] = 2,
and[Q(pCp)] = 10. Hence, the conditional variance is6.

For x = 1/2 one obtains the well-known result
[pCp] = 1 and [E(pCp)] = ω, i.e., althoughpε is reached
almost surely, the expected number of steps to get there is
infinite.

Finally, let us note that the approach of this section can
be used to compute the conditionalkth momentE(Rk

pXq |
Run(pXq)) for everyk ∈ N, which can be useful for a
deeper analysis ofRun(pXq).

4. Simple reward functions: Expected gain

Similarly as in Section 3, let us fix a simple reward func-
tion f and its associated functionF which assigns an ac-

cumulated reward to each finite computation path. We also
fix a pPDA ∆ = (Q, Γ, δ,Prob). To simplify our presen-
tation, we assume that there is a specialinitial configura-
tion q0Z0, whereq0 ∈ Q andZ0 ∈ Γ, such that the symbol
Z0 can never be removed from the stack.

We define a functionGf : Run(q0Z0) → R+ as follows.

Gf (w) =

(

limn→∞
F (wn)

n
if the limit exists;

⊥ otherwise.

If P(Gf=⊥) = 0 andP(Gf≤x) exists for eachx ∈ R+,
then Gf is a random variable whereGf (w) corresponds
to the average reward earned per transition during the ex-
ecution of w, which we call thegain of w. Our aim is
to compute the expected value ofGf , which is given by
E(Gf) =

∫

Run(q0Z0) Gf (w) dP , assuming that the inte-
gral exists. Generally, computingE(Gf) appears to be a
difficult problem. Nevertheless, it becomes solvable under
a relatively mild assumption. In order to formulate the as-
sumption, we need to recall a definition of [11]. (In fact, this
definition is slightly extended to fit our present needs.)

Definition 4.1. Letw = p1α1, p2α2 · · · be an (infinite) run
in Run(q0Z0). For eachi ∈ N we define theith minimum
of w, denotedmini(w), inductively as follows. Theith min-
imumcan be eitherincreasingor non-increasing.

• min1(w) = p1α1 (i.e., min1(w) is the starting config-
uration q0Z0 of w). We stipulate thatmin1(w) is non-
increasing.

• Let mini(w) = pℓαℓ. Thenmini+1(w) = pkαk where
k is the least number such thatk > ℓ and |αk′ | ≥ |αk|
for eachk′ ≥ k. Observe that|αk| − |αℓ| equals either
1 or 0. In the first case,mini+1(w) is increasing. Other-
wise,mini+1(w) is non-increasing.

Our assumption is the following:the expected accumulated
reward between any two consecutive minima is finite. A pre-
cise formulation of this condition is given below; as we shall
see, the condition can be effectively checked in polynomial
space. From a practical point of view, the introduced re-
striction is not strong. In the context of programs with pro-
cedures, one sufficient condition which implies that our as-
sumption is satisfied is that the expected termination time of
each procedure is finite. One can argue that if the expected
termination time for some procedure is infinite, there is a
design error in the system.

The Markov chainX. For eachi ∈ N we define a random
variableXi overRun(q0Z0) as follows:Xi(w) = (qY, m),
where qY is the head ofmini(w), and m is either +
or 0 depending on whethermini(w) is increasing or non-
increasing, respectively. The next lemma reveals that the se-
quenceX = X1, X2, · · · is a homogeneous Markov chain.

Lemma 4.2. For all n≥2 and(q1Y1, m1), · · · , (qnYn, mn)

whereP(
∧n−1

i=1 Xi=(qiYi, mi))>0 we have that

P(Xn=(qnYn, mn) |
n−1̂

i=1

Xi=(qiYi, mi)) =
K

[qn−1Yn−1↑]

whereK is equal either to
X

qn−1Yn−1

x
→qnYnZ

x · [qnYn↑] or to

X

qn−1Yn−1

x
→rZYn

x·[rZqn]·[qnYn↑]+
X

qn−1Yn−1

x
→qnYn

x·[qnYn↑]

depending on whethermn is equal to+ or 0, respectively.

Proof sketch.Let us assume that the current minimum is
pXα. This assumption means that we only consider those
runs frompXα which never accessα (and henceα is com-
pletely irrelevant). Under this assumption, the probability
that the next minimum will be increasing and of the form
qY Zα is equal to the probability that we execute a tran-
sition of the formpX

x
→ qY Z from pXα and the stack

is never decreased toZα in the future. Hence, the consid-
ered conditional probability is equal to

∑

pX
x
→qY Z

x· [qY ↑]
[pX↑] .

Similarly, the conditional probability that the next minimum
will be non-increasing and of the formqY α is also evalu-
ated by considering the first transition ofpXα. This transi-
tion is either of the formpX

x
→ qY , in which case the con-

sidered conditional probability equalsx · [qY ↑]
[pX↑] , or of the

form pX
x
→ rZY , where we have to get rid of the sym-

bol Z by a sequence of transitions of the formrZ →∗ qε.
Hence, in the second case the conditional probability equals
x[rZq] [qY ↑]

[pX↑] .

Observe that the expression given in Lemma 4.2 depends
just on the values ofXn andXn−1. Since all probabilities
which appear in this expression are expressible, the transi-
tion probabilities ofX are expressible as well.

A trajectory in X is an infinite sequences0, s1, · · · of
states ofX such thats0 = (q0Z0, 0) and the probability of
si → si+1 is non-zero for eachi ∈ N0.

To eachw ∈ Run(q0Z0) we can associate itsfootprint
X1(w), X2(w), · · · . Note that there can be runs whose foot-
prints arenottrajectories inX. LetC1, · · · , Ck be the BSCC
of X. To eachCi we associate the setRun(q0Z0, Ci) con-
sisting of allw ∈ Run(q0Z0) such that the footprint ofw
is a trajectory inX which hits the componentCi. Note that
sinceX has finitely many states,P(Run(q0Z0, Ci)) is com-
putable by standard methods for finite-state Markov chains.
Moreover, it can easily be shown that

k
∑

i=1

P(Run(q0Z0, Ci)) = 1 (1)

In the following we show that various quantitative proper-
ties ofRun(q0Z0) can be analyzed by considering the prop-
erty for eachRun(q0Z0, Ci) separately and combining the
obtained results. For this we use generic results which are
described next.

The random variableMf . For eachi ∈ N we define
a random variableMf

i over Run(q0Z0) as follows: Let
w = s1, s2, · · · be a run ofRun(q0Z0). ThenMf

i (w) =
F (sk, · · · , sℓ), wheresk = mini(w) andsℓ = mini+1(w).
In other words,Mf

i (w) is the reward accumulated between
mini(w) andmini+1(w).

Lemma 4.3. Let i ∈ N, and let (pX, m), (qY, n) be
two states ofX (not necessarily different) such that
P(Xi=(pX, m)∧Xi+1=(qY, n)) > 0. The conditional ex-
pectation

E(Mf
i | Xi=(pX, m) ∧ Xi+1=(qY, n))

is equal either tof(q) or to
P

pX
x
→rZY

x[rZq][qY ↑](f(r) + [E(rZq)]) +
P

pX
x
→qY

x[qY ↑]f(q)

Prob((pX, m) → (qY, n))

depending on whethern is equal to+ or 0, respectively.

Proof sketch.We use a similar approach as in Lemma 4.2,
only that now the associated analysis of possible runs be-
tween two consecutive minima must be carried out rather
carefully.

SinceE(Mf
i | Xi=(pX, m) ∧ Xi+1=(qY, n)) is indepen-

dent ofi as long asP(Xi=(pX, m)∧Xi+1=(qY, n)) > 0,
this conditional expectation can be associated directly with
the edge(pX, m) → (qY, n) in X, and will be denoted by
Ef ((pX, m) → (qY, n)) in the rest of this paper. Observe
thatEf ((pX, m) → (qY, n)) is expressible due to the re-
sults of Section 3.

Similarly, we can also express the conditional second
momentE((Mf

i)2 | Xi=(pX, m)∧Xi+1=(qY, n)) by em-
ploying the results of Section 3. The conditional second mo-
ment (and hence also the conditional variance) are thus ex-
pressible.

Now we introduce another random variableMf over
Run(q0Z0) which corresponds to the average accumulated
reward between two consecutive minima. Formally, for
eachw ∈ Run(q0Z0) we define

M
f (w) =

(

limn→∞

M
f
1

(w)+···+Mf
n(w)

n
if the limit exists;

⊥ otherwise.

Theorem 4.4. Let C be a BSCC ofX, and let µC be
the invariant probability distribution forC (here we
view C as an irreducible finite-state Markov chain).
Let kC =

∑

s∈C µC(s) ·
∑

s
x
→t

x · Ef (s → t). Then
P(Mf = kC | Run(q0Z0, C)) = 1.

Proof sketch.Realize that if the transitions ofC were as-
signed fixed values, we could apply standard results for
finite-state Markov chains to compute the average reward
of a transition. The resulting expression would be the one
given in our theorem. Since we deal with expected rewards
between two states, a full proof is somewhat technical.

According to Theorem 4.4, the variableMf takes the same
value kC for almost all runs ofRun(q0Z0, C). Together
with Equation (1), this implies thatP(Mf=⊥) = 0. More-
over, we have the following corollary:

Corollary 4.5. LetC be a BSCC ofX. Then

E(Mf | Run(q0Z0, C)) =
∑

s∈C

µC(s) ·
∑

s
x
→t

x · Ef (s → t)

and thus

E(Mf) =
X

C∈C

P(Run(q0Z0, C))·
X

s∈C

µC(s)·
X

s
x
→t

x·Ef (s → t)

Hence,E(Mf) is expressible.

Consider the reward function1 that assigns1 to each con-
trol state. LetC be a BSCC ofX. The next lemma tells
how to computeGf (w) for the runs ofRun(q0Z0, C) when
Ef (s → t) is finite for all statess, t of C.

Lemma 4.6. LetC be a BSCC ofX, and let us assume that
for all statess, t ∈ C we have thatEf (s → t) is finite.
Then for almost allw ∈ Run(q0Z0, C) we have that

Gf (w) =

∑

s∈C µC(s) ·
∑

s
x
→t

x · Ef (s → t)
∑

s∈C µC(s) ·
∑

s
x
→t

x · E1(s → t)

Hence, Gf (w) is the same for almost allw ∈
Run(q0Z0, C), and thus we finally obtain:

Theorem 4.7. Let C be the set of all BSCC ofX. Let
us assume that for eachC ∈ C and all statess, t ∈
C we have thatEf (s → t) is finite. ThenE(Gf) =
∑

C∈C P(Run(q0Z0, C)) · Gf (C), where

Gf (C) =

∑

s∈C µC(s) ·
∑

s
x
→t

x · Ef (s → t)
∑

s∈C µC(s) ·
∑

s
x
→t

x · E1(s → t)

Remark 4.8. Note that Lemma 4.6 actually says that the
variableGf only takes one of the finitely many given val-
ues for almost all runs ofRun(q0Z0). Since these values
and the associated probabilities are expressible, we have a
bit more detailed information about the behaviour ofq0Z0,
which is not reflected in the averageE(Gf).

The complexity bounds associated to Theorem 4.7 are given
in the following corollary:

Corollary 4.9. The problem whether the assumption of
Theorem 4.7 is satisfied for a given pPDA∆ is in PSPACE.
If the assumption is satisfied, then the problem whether
E(Gf) ∼ ̺, where∼ ∈ {<, >,≤,≥, =} and ̺ ∈ Q, is
in EXPTIME.

Finally, let us note thatE(Gf) can exist even if the assump-
tion of Theorem 4.7 is not satisfied. This is demonstrated in
the following example:

Example 4.10.Let us consider a pPDA given by the rules

qZ
1/2
→ pIZ qZ

1/2
→ pZ qI

1/2
→ pII qI

1/2
→ pε

pZ
1/2
→ qIZ pZ

1/2
→ qZ pI

1/2
→ qII pI

1/2
→ qε

where the initial configuration isqZ. Then the chainX looks
as follows (we omit the states that are not reachable from
the state(qZ, 0)):

1/2

1/2

1/21/2 (pZ, 0) (qZ, 0)

Let f(p) = 1 andf(q) = 0. SinceEf ((pZ, 0) → (qZ, 0))
andEf ((qZ, 0) → (pZ, 0)) are infinite, Theorem 4.7 can-
not be applied. Nevertheless,E(Gf) = 1/2 because the
control statesp and q regularly alternate in eachw ∈
Run(qZ).

Renewal times.Given a setP ⊆ Q of control states, let
fP be the reward function given byfP (p) = 1 if p ∈ P
and fP (p) = 0 otherwise. The variableGfP

assigns to
an infinite run the average number of visits to states ofP
per transition. Therefore, ifE(GfP

) 6= 0, then1/E(GfP
)

gives the average number of transitions between any two
visits toP , i.e., the average renewal time associated toP (if
E(GfP

) = 0 then we can say that the average renewal time
is infinite).

5. Linear reward functions: Expected accu-
mulated reward

Let us fix a pPDA∆ = (Q, Γ, δ,Prob) as in Section 3. A
reward functionf : C(∆) → R+ is linear if there are func-
tionsg : Q → R+ andc : Γ → R+ such that for everypα ∈
C(∆) we have thatf(pα) = g(p) +

∑

Y ∈Γ c(Y) · #Y (α),
where#Y (α) denotes the number of occurrences ofY in
α. Notice that the simple reward functions correspond to
the special case whenc(Y) = 0 for everyY ∈ Γ.

For the rest of this section we fix a linear reward func-
tion ℓ given by the functionsg andc. The associated reward
function for finite paths is denotedL.

We use the notation introduced in Section 3. Observe
that the definition of conditional expectation[E(pXq)]
makes sense for an arbitrary reward functionf . We write
[E(pXq), f] to denote this conditional expectation for a

givenf . In particular, we shall consider the functionℓ in-
troduced above, and the function1 of the previous section
which assigns1 to all configurations. Since the function1
is simple,[E(pXq), 1] is expressible (see Corollary 3.2).

Let 〈E(pXq), ℓ〉 be a variable for allp, q ∈ Q and
X ∈ Γ such that[pXq] > 0. Now consider the system
of recursive equations, where each variable〈E(pXq), ℓ〉 is
equal to

1

[pXq]

0

B

@

X

pX
x
→qε

x · ℓ(qε) +
X

pX
x
→rY Z

x ·
X

s∈Q

[rY s][sZq]K ′
pX,rY Z

1

C

A

where the termK ′
pX,rY Z is given by

〈E(rY s), ℓ〉 + 〈E(sZq), ℓ〉 + ℓ(rY Z) + c(Z)[E(rY s, 1)]

Observe that in the case whenc(Y) = 0 for everyY ∈ Γ
we recover the system of Section 3. Also note that since
[E(pXq, 1)] appears in the above equation, we would still
have to handle simple reward functions separately if we
started directly with linear reward functions in Section 3.

Theorem 5.1. The tuple of all[E(pXq), ℓ] values is ex-
actly the least solution of the above system of equations in
R+

ω with respect to component-wise ordering.

Proof sketch.The proof is very similar to that of Theo-
rem 3.1. The only difference is the following. As in The-
orem 3.1, letrY →∗ sε be the path obtained by remov-
ing Z from all configurations ofrY Z →∗ sZ. In the case
of simple reward functions, the rewards accumulated during
rY Z →∗ sZ andrY →∗ sε coincide. In the case of lin-
ear functions, the reward accumulated duringrY Z →∗ sZ
is equal to the reward accumulated duringrY →∗ sε
plus c(Z) times the length ofrY →∗ sε. So, in average
this reward equals[E(rY s), ℓ]+ c(Z)[E(rY s, 1)], because
[E(rY s, 1)] is the expected length of the pathrY Z →∗ sZ.
This leads to the termK ′

pX,rY Z .

For the conditional second moment, we adopt a similar no-
tation as above. Consider the system of equations

〈Q(pXq), ℓ〉 =
1

[pXq]

0

@

X

pX
x
→qε

x · ℓ(qε)2 +

X

pX
x
→rY Z

x ·
X

s∈Q

[rY s][sZq]K′
pX,rY Z,s

1

A

where the expressionK ′
pX,rY Z,s stands for

〈Q(rY s), ℓ〉 + 〈Q(sZq), ℓ〉 + ℓ(rY Z)2 + 2[E(rY s, ℓ)][E(sZq, ℓ)]

+2ℓ(rY Z)[E(rY s, ℓ)] + 2ℓ(rY Z)[E(sZq, ℓ)]

+2c(Z)([E(rY s, ℓ)] + (ℓ(rY Z) + [E(sZq, ℓ)])[E(rY s, 1)]) +
c(Z)2[E(rY s, 1)])

Again, takingc(Y) = 0 for everyY ∈ Γ we recover the
system of Section 3. We have the following result, which is
proved by combining the observations presented in proofs
of Theorem 3.4 and Theorem 5.1:

Theorem 5.2. The tuple of all[Q(pXq, ℓ)] values is ex-
actly theleastsolution of the above system of equations in
R+

ω with respect to component-wise ordering.

6. Linear reward functions: Expected gain

Let us fix a pPDA∆ = (Q, Γ, δ,Prob) and its initial con-
figurationq0Z0 as in Section 4. We also fix a linear reward
functionℓ given by the functionsg andc. In this section we
show how to computeE(Gℓ).

We say that a transition(qY, m) → (rZ, n) of the
Markov chainX is boundedif either n = + and for all
transitions of the formqY

x
→ rZT we have thatc(T) = 0,

or n = 0 and for all transitions of the formqY
x
→ tTZ

we have that[E(tT r), ℓ] is finite. Note that we can effec-
tively check if a given transition is bounded by using the re-
sults of Section 5. A transition which is not bounded isun-
bounded.

Lemma 6.1. LetC be a BSCC ofX which contains an un-
bounded transition. Then for almost allw ∈ Run(q0Z0) we
have thatGℓ(w) is infinite.

Now assume thatC is a BSCC ofX where all transitions
are bounded. For simplicity, consider first the case whenX
is strongly connected. As in Section 4, define a random vari-
ableM ℓ

i which for everyw ∈ Run(q0Z0) returns the ac-
cumulated reward betweenmini(w) andmini+1(w), and a
random variableM ℓ as the average reward collected when
moving from one minimum to the next.

In the case of a simple functionf that depends only on
the control state, the variableMf

i depends only onXi and
Xi+1. This is no longer the case for a linear functionℓ. The
reason is that the variableXi records only the head of the
ith minimum, but not the stack content which is needed
to compute the reward. The stack content of theith min-
imum depends on the values of all ofX1, . . . , Xi. When-
ever one of these variables is of the form(pX, +), the stack
length of theith minimum increases by 1. Fortunately, since
we assume that all transitions are bounded, increasing min-
ima are no longer a problem, because thec-value of sym-
bols that are pushed is zero. ThenM ℓ

i depends only onXi

and Xi+1, and we can reuse all the results of Section 4.
In particular, Lemma 4.3 still holds after some straightfor-
ward modifications (these modifications are based on the
same idea which was used in Theorem 5.1 to modify the
equations of Theorem 3.1). This shows how to compute
Eℓ((pX, m) → (qY, n)). Corollary 4.5 shows how to com-
puteE(M ℓ) after replacingf by ℓ, and Theorem 4.7 shows
how to computeE(Gℓ) after replacingf by ℓ.

If X is not strongly connected, then the problem is
slightly more complicated, and we only sketch the argu-
ment. LetB be the random variable which for everyw ∈
Run(q0Z0) returns either⊥ if the footprint ofw does not

hit a BSCC ofX, orc(β) whereβ is the tail of the first mini-
mal configuration which hits a BSCC ofX. For each BSCC
C, we expressE(BC), the conditional expected value of
B under the assumption that the BSCC reached by the
run is C. Now we expressE(Gℓ,C), the conditional ex-
pected value ofGℓ under the condition that the run starts
in C (this can be done by the method described in the pre-
vious paragraph). Thus, for each BSCCC of ∆ we get
E(Gℓ | Run(q0Z0, C)) = E(BC) + E(Gℓ,C), hence

E(Gℓ) =
∑

C

P(Run(q0Z0, C)) · (E(BC) + E(Gℓ,C))

Average stack length.The average stack length corresponds
to the linear functionℓ(pα) = |α|, and so its expectation can
be computed using the results of this section.

6.1. Maximal stack length

For many applications, the maximal stack length of a run
is perhaps more interesting than the average stack length
which can be computed by applying the results of the pre-
vious section.

Formally, let us define the random variableML over
Run(q0Z0) as follows:ML(w) is the least̺ ∈ R+

ω such
that ℓ(w(i)) ≤ ̺ for all i ∈ N. If ML(w) < ω, thenw
is calledbounded. Observe that in the special case when
g(p) = 0 andc(Y) = 1 for all p ∈ Q andY ∈ Γ we have
thatML(w) is themaximal stack lengthin w. We are inter-
ested in the probabilityP(ML=ω) of unbounded runs. The
next theorem says how to compute this probability, but we
need a preliminary definition.

We say that a transition(qY, m) → (rZ, n) of X is lim-
ited if either n = + and for all transitions of the form
qY

x
→ rZT we have thatc(T) = 0, or n = 0 and there

is ̺ ∈ R+ such that for every pathw from qY to rZ we
have thatℓ(w(i)) ≤ ̺ for every statew(i) of w. Observe
that the exact values of transition probabilities in∆ do not
matter here. Hence, one can rely on standard results for non-
probabilistic PDA and conclude that the problem whether a
given transition is limited is decidable in polynomial time.
(The problem whether(qY, m) → (rZ, 0) is limited can
be decided, e.g., using the results of [10]: One can com-
pute the setpost∗(qY) of all successor configurations of
qY , the setpre∗(rZ) of all predecessor configurations of
rZ. Since these sets are regular, their homomorphic images
obtained by replacing allY ∈ Γ such thatc(Y) = 0 with ε
are also regular. Obviously, the considered transition is lim-
ited iff the intersection of these two images is finite. The
whole procedure can be implemented in polynomial time.)

Theorem 6.2. LetC be the set of all BSCC ofX which con-
tain at least one non-limited transition. ThenP(ML=ω) is
equal to

∑

C∈C P(Run(q0Z0, C)).

Proof sketch.Let C be a BSCC ofX. We show that (1)
if C ∈ C then almost all runs ofRun(q0Z0, C) are
unbounded, and (2) ifC 6∈ C then almost all runs of
Run(q0Z0, C) are bounded. For (1) we can distinguish two
cases:

(a) If C contains a non-limited transition of the form
(qY, m) → (rZ, +), one can argue that almost all runs of
Run(q0Z0, C) contain infinitely many pairs of consecutive
configurations of the formqY α, rZTα, wherec(T) > 0,
which are both minimal (realize that ifw(i) is an increas-
ing minimum of a runw, thenw(i− 1) is also a minimum).
Hence, theT is pushed infinitely many times when enter-
ing a minimal configuration, and hence almost all runs of
Run(q0Z0, C) are unbounded.

(b) If C contains a non-limited transition of the form
(qY, m) → (rZ, 0), one has to realize that almost all runs
of Run(q0Z0, C) have infinitely many pairs of consecu-
tive minima whoseX-values are(qY, m) and(rZ, 0). Since
each finite path betweenqY andrZ has a non-zero fixed
probability, almost all runs ofRun(q0Z0, C) execute each
of these finite paths infinitely many times. Hence, almost all
runs are again unbounded.

Finally, (2) follows by observing that almost all runs of
Run(q0Z0, C) have only finitely many “properly increas-
ing” minima, i.e., those increasing minima where the in-
coming transition pushes a symbolT such thatc(T) > 0.
Hence, the value ofℓ remains bounded if we restrict our-
selves to the minimal configurations. However, from the
definition of limited transitions it follows that the value of
ℓ is bounded also between the minimal configurations by a
global constant.

Corollary 6.3. The problem whetherP(ML=ω) ∼ ̺,
where∼ ∈ {<, >,≤,≥, =} and̺ ∈ Q, is in EXPTIME.
In the special case when̺∈ {0, 1} the problem belongs to
PSPACE.

Theorem 6.2 shows that the probabilityP(ML=ω) is ex-
pressible. We can easily show that alsoP(ML=̺) and
P(ML≤̺) are expressible for every̺ ∈ Q by apply-
ing results about the quantitative model-checking problem
for LTL properties [11, 6, 12]. Computing the expectation
E(ML) seems to be a harder problem which is left for fu-
ture work.

7. Conclusions and future work

The results about expected gain for simple reward functions
indicate that our proof techniques might also be used for
analysis of long-run average behavior of probabilistic sys-
tems in the style of [9]. In certain situations, properties of
individual runs are more relevant than ensemble averages
computed over all runs. For example, one can ask what is
the probability of all runs where the average reward per

transition stays within certain bounds. In fact, using our re-
sults wecananswer even this question, at least for simple
reward functions (see Remark 4.8). Hence, an interesting
open problem is whether one can extend our results to an-
swer more complicated quantitative questions of this kind.

Acknowledgments We thank Olivier Serre for drawing our
attention to the stack length problem, and Tomáš Brázdilfor
reading a preliminary draft of this paper.

References

[1] R. Alur, K. Etessami, and P. Madhusudan. A temporal logic
of nested calls and returns. InProc. TACAS 2004, LNCS
2988, p. 467–481. Springer, 2004.

[2] R. Alur, K. Etessami, and M. Yannakakis. Analysis of re-
cursive state machines. InProc. CAV 2001, LNCS2102, p.
207–220. Springer, 2001.

[3] R. Alur and P. Madhusudan. Visibly pushdown languages.
In Proc. STOC 2004, p. 202–211. ACM Press, 2004.

[4] M. Benedikt, P. Godefroid, and T.W. Reps. Model check-
ing of unrestricted hierarchical state machines. InProc.
ICALP’2001, LNCS2076, p. 652–666. Springer, 2001.

[5] A. Bouajjani, J. Esparza, and O. Maler. Reachability analy-
sis of pushdown automata: application to model checking. In
Proc. CONCUR’97, LNCS1243, 135–150. Springer, 1997.

[6] T. Brázdil, A. Kučera, and O. Stražovský. On the decidability
of temporal properties of probabilistic pushdown automata.
In Proc. STACS’2005, LNCS 3404, p. 145–157. Springer,
2005.

[7] J. Canny. Some algebraic and geometric computations in
PSPACE. InProc. STOC’88, p. 460–467. ACM Press, 1988.

[8] S. Chaudhuri, R. Alur, K. Etessami, and P. Madhusudan. On-
the-fly reachability and cycle detection for recursive state
machines. InProc. TACAS 2005, LNCS 3440. Springer,
2005.

[9] L. de Alfaro. How to specify and verify the long-run average
behavior of probabilistic systems. InProc. LICS’98, p. 454–
465. IEEE, 1998.

[10] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Effi-
cient algorithms for model checking pushdown systems. In
Proc. CAV 2000, LNCS1855, p. 232–247. Springer, 2000.

[11] J. Esparza, A. Kučera, and R. Mayr. Model-checking prob-
abilistic pushdown automata. InProc. LICS 2004, p. 12–21.
IEEE, 2004.

[12] K. Etessami and M. Yannakakis. Algorithmic verification of
recursive probabilistic systems. InProc. TACAS 2005, LNCS
3440, p. 253–270. Springer, 2005.

[13] K. Etessami and M. Yannakakis. Recursive Markov chains,
stochastic grammars, and monotone systems of non-linear
equations. InProc. STACS’2005, LNCS3404, p. 340–352.
Springer, 2005.

[14] D. Grigoriev. Complexity of deciding Tarski algebra.Jour-
nal of Symbolic Computation, 5(1–2):65–108, 1988.

[15] A. Tarski. A Decision Method for Elementary Algebra and
Geometry. Univ. of California Press, Berkeley, 1951.

