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Abstract bility that a pPDA terminates is at least 0.98, even though it
associated Markov chain may have infinitely many states.

Probabilistic pushdown automata (pPDA) have been iden-  However, we are often interested not only in the prob-
tified as a natural model for probabilistic programs with re-  ability of termination, but also in the expected terminatio
cursive procedure calls. Previous works considered the de-time, defined over the runs of the program that terminate.
cidability and complexity of the model-checking problemfo Moreover, we may wish to obtain some more information
pPDA and various probabilistic temporal logics. In this pa- about the probability distribution of the termination tinie

per we concentrate on computing the expected values antarticular its variance.

variances of various random variables defined over runs |, this paper we address this problem. We obtain some
of a given probabilistic pushdown automaton. In particu- generic results about computing expectations and variance
lar, we show how to compute the expected accumulated re<¢ reward functions, and apply them to three fundamen-
ward and the expected gain for certain classes of reward 5| proplems: termination time, renewal time (time between
functions. Using these results, we show how to analyze vary,,q visits to a given control state), and stack length. All

ious quantitative properties of pPDA that are not express- three are obviously relevant for the design and performance
ible in conventional probabilistic temporal logics. analysis of probabilistic programs.

The semantic of a pPDA is a possibly infinite Markov

1. Introduction chain whose states acenfigurationsi.e., pairs consisting

of a control state and a stack content. A trajectory in this
Pushdown automata (or recursive state machines) are a naghain is called aun. We consider reward functions that as-
ural model for sequential programs with recursive proce- sign a reward to every configuration of the pPDA. When
dure calls [5, 2, 10, 4]. Recent papers are, e.g., [1, 8, 3].the pPDA enters a configuration, it collects its associated
Recently, probabilistic aspects of such programs have beerieward. Given a reward function, our goal is to compute
taken into account, and several papers have studied in dea) the expectation of the reward accumulated during a fi-
tail the decidability and complexity of model-checkinglbot  nite run. For infinite runs this reward is usually infinite gan
linear and branching-time probabilistic temporal logios f S0 our goal is to compute (b) the expectation of ¢jaén,
probabilistic pushdown automata (pPDA) [6, 11, 13, 12]. defined as the average reward earned per transition. (For-
Using these results it is possible to decide if, say, the@rob mally, the gain is the random variable that assigns to an in-
finite run the limit, as» approaches infinity, of the reward
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The first part of the paper deals with reward functions reached along it. In Section 6.1 we provide some partial re-
that only depend on the control state, which we satiple sults on this variable. More precisely, we show how to com-
functions. In a first step (Section 3) we show how to com- pute the probability that the maximal stack length remains
pute the expected accumulated reward and its variance fobounded, and the probability, for each vatyéhat the max-
finite runs of the pPDA starting at a configuration of the imal stack length is at most
form pX (control statep and stack conten, of length 1),
and ending at a configuratiaa (control state; and empty
stack). The termination time corresponds to the simple re-

ward function that assigns 1 to each control state. Let N, No, @, QF, R, andR* denote the sets of posi-

In a second and more involved step (Section 4), we usetive integers, non-negative integers, rational numbess; n
the results of Section 3 to compute the expected value ofnegative rational numbers, real numbers, and non-negative
the gain for simple reward functions. We apply the tech- real numbers, respective|y_ We also @§ andR;’; to de-
nique developed in [11] (see also [12]) to solve the LTL note the set§t U {w} andR™ U {w}, respectively, where

model-checking problem. This technique consists of com-, ¢ Q U R is a special symbol. We stipulate that- w =
puting a finite Markov chain which records th@nima of w+c=w+w=wandc/w = 0 for eachc € R*, and

an infinite run of the pPDA, defined as the configurations . ., =  for each positive: € R*.

at which the run reaches for the first time a certain length,  For a given alphabe¥, the symbolX* denotes the set
but in such a way that in the future it never goes below that of gJ finite words overs. The length of a give € ©* is

length. A transition of this finite chain, which in the rest of ' genoted byw|, and the empty word is denoted by

the introduction we call a ‘jump’, corresponds to the (fihite e o . .
sequence of transitions carried out by the pPDA in order to Definition 2.1. A (fully) probabilistic transition systeis a
move from one minimum to the next. We define a modifi- {riple 7 = (S, —, Prob) wheres is afinite or countably in-
cation of this chain, and show how to compute the expectedfinite set ofstates — C 5 x S'is atransition relationand
accumulated reward for each jump. Then, we show how to £70b is a function which to each transition— ¢ of 7 as-
use this information to obtain the expected gain. In fae, th Signs its probabilityProb(s — t) € (0,1] so that for ev-
technique has a limitation: It only works if the expected re- €y s € S we have}_ , Prob(s — t) € {0,1}. (The
ward for each jump is finite. Fortunately, the case of infinite SUM above can beif s does not have any outgoing transi-
expected reward per jump is rather pathological, and shouldtions.)

correspondtoadesignfault_in most cases. Th(_a renewal timg, the rest of this paper we also write % ¢ instead of
for a setP of control states, i.e., the expected time between Prob(s — t) = z. A pathin 7 is a finite or infinite se-
two visits to configurations whose control states belong to quencew = so, s1, - - - of states such that — s;; for ev-

P, corresponds to the simple function which assigns 1 to eryi. We also useu(i) to denote the state of w (by writ-
the control st_ates.oP, a_ndO to the otherg. More.precise.zly, ing w(i) = s we implicitly impose the condition that the
the renewal time is the inverse of the gain of this function. length ofw is at least + 1). The prefixs, s1,. . ., s; of w

In the second part of the paper, we extend the techniquess denoted byv?. A runis a maximal path, i.e., a path which
of the first part to reward functions that depend on the con- cannot be prolonged. The sets of all finite paths and all runs
trol state and (linearly) on the length of the stack, which of 7 are denoted”Path and Run, respectively. Similarly,
we calllinear reward functions. Again, this part is divided the sets of all finite paths and runs that start in a givenS
into two steps. The first step (Section 5) extends the resultsare denotedPath(s) and Run(s), respectively.
of Section 3, and is rather straightforward. The second step A strongly connected component (SCC)Bis a subset
(Section 6) requires some more care. The reason is that, inC' C S where for allz, y € C' we have that: —* y. ASCC
general, the reward obtained when executing a jump nowis a bottom SCC (BSCC) if no other SCC is reachable from
may depend on the past, i.e., on all the previous jumps. For-it. It follows that all BSCC are maximal SCC.
tunately, we are able to show that when this is the case the A reward functionis a functionf: S — Q that as-
expected reward is infinite. So we only need to worry about signs to a states a rewardf(s). We assume that when
the memoryless case, and we are thus able to apply the req process enters a configuratierit collects the reward
sults of Section 4. The expected average stack length corre(s). Given a reward functiorf, we extend it to a func-
sponds to the linear function that assigns to a configurationtion F : FPath — Q" by F(sg, - ,8n) = omy f(s0)-
the length of its stack content. Hence F assigns to each path ascumulated rewarcdNote

While the expectation of the average stack length pro- that f(s¢) is notincluded in the sum.
vides some useful information, there is a more interesting Eachw € FPath determines dasic cylinderRun(w)
parameter, namely th@aximalstack length, i.e., the ran-  which consists of all runs that start with To everys € S
dom variable that assigns to a run the maximal stack lengthwe associate the probabilistic spadeun(s), F, P) where

2. Preliminaries



F is theo-field generated by all basic cylindefsun(w)
wherew starts withs, andP : F — [0,1] is the unique
probability function such tha®(Run(w)) e
wherew = sg, - - - , 5, ands; = 5,4, forevery0 < i <m
(if m =0, we putP(Run(w)) = 1).

Definition 2.2. A probabilistic pushdown automaton
(pPDA) is a tupleA = (Q,T, 6, Prob) where@ is a fi-
nite set ofcontrol statesI' is a finite stack alphabet C

Q x I x Q x I'* is atransition relatiorsuch that when-
ever(p, X, q,a) € 0, then|a| < 2, and Prob is a function
which to each transitiopX — qa assigns a rational prob-
ability Prob(pX — ga) € (0,1] so that for allp € @ and
X el'wehavethad_ v, Prob(pX — qa) € {0,1}.

In the rest of this paper we adopt a more intuitive notation,
writing pX — gainstead ofp, X, ¢, a) € § andpX % qa
instead ofProb(pX — qa) = x. The sety x I'* of all con-
figurations ofA is denoted by’ (A). Given a configuration
pXaof A, we callpX theheadanda thetail of pXa.

To A we associate the probabilistic transition systEm
whereC(A) is the set of states and the probabilistic transi-
tion relation is determined byX 8 = qaf iff pX 5 qacis
a transition ofA.

Now we recall some known results which will be
used in the following sections. Let us fix a pPDA =
(Q,T,4, Prob). For allp,q € @ andX € T, the sym-
bol [pX¢| denotes the probability that a run initiated in
pX hits ge. More precisely[pXq] = P(w € Run(pX) |
Ji € N : w(i) = ge). It has been shown in [11] (see also
[13]) that there effectively exists a finite system of recur-
sive quadratic equations with variables of the fofwX ¢)
(i.e., there is a variablé&y X q) for all p, g € Q andX €I
such that the family of al[pX¢q| probabilities forms the

least solution of this system of equations with respect to

component-wise ordering. Since all terms in these equstion
are built using just summation, multiplication, and ratibn
constants, each of thHgX¢| probabilities is effectively ex-
pressible iR, +, x, <) in the following sense: there effec-
tively exists a formulab of (R, +, x, <) with one free vari-
ablez such that®[x/c| holds iff ¢ = [pXgq]. Hence, for

all ~ € {<,>,<,>,=} and all rational constants one
can decide ifpX¢q| ~ o simply by checking if the formula
Jz(PAx~p) is valid or not. One can also compute the value
[pX q] up to an arbitrarily small non-zero error (for exam-
ple, by a simple binary search). Since the valup&fq] can

be irrational [13], it cannot be computed precisely in gen-
eral.

The decidability of(R, +, x, <) is due to Tarski [15],
and some fragments dR, +, x, <) are known to have a
relatively reasonable complexity. For example, the eriste
tial (and hence also the universal) fragment i$BPACE

quantifiers is rTEXPTIME [14]. We use these results to es-
timate the complexity of our algorithms.

In this paper we show that a number of quantitative fea-
tures of pPDA are effectively expressible (R, +, x, <)

(we just say that a given random variable, or its expected
value, or its variance, is “expressible”). This also apptie
features which can be infinite. For example, in the next sec-
tion we consider the expected length of a terminating com-
putation (i.e., we express the average length of the subset o
all finite runs) which can be infinite even if a given pPDA
configuration terminates with probability one. In that case
the associated formufa does not hold for any € R{". So,

the problem whether the expected time is finite or infinite
can be decided by checking whether the forntata> 0.9

is valid or invalid, respectively. If the time is finite, werca
use the formula in the ways described above.

Let us note that once a certain feature is shown express-
ible, it can be used to define other features which then be-
come expressible as well. In some cases, the structure of
the resulting formula is quite complicated. Our complex-
ity results are based on evaluating the size and structure of
these formulae. The size remains typically polynomial in
the size of the original pPDA. Sometimes we obtain a for-
mula of the existential fragment, and sometimes we need
to nest the quantifiers to some fixed depth. Therefore, typi-
cal upper bounds presented in this paperR&ACE and
EXPTIME .

In the following sections we also u§gy" 1] to denote the
probability that a run initiated inY” is infinite. Observe that
sincelqY 1] = 13" o lqY p], this probability is express-
ible. Finally, let us note that since the variance of a given
random variablé” is equal toE(Y?) — (E(Y))?, the vari-
ance ofY is expressible if bothE(Y) and E(Y?2) are ex-
pressible (and this is what we usually prove).

3. Simple reward functions: Expected accu-
mulated reward

In this section, let us fix a pPDA = (Q, T, 6, Prob) such

that for each transitionX % ga we have thaja| € {0,2}.

This assumption is not restrictive (for every PDA there is an

equivalent one in this form, up to transition graph isomor-

phism), and becomes particularly useful in this sectioh-(ot

erwise, the systems of equations considered in Theorem 3.1

and Theorem 3.4 would take even less readable form).
Since the probabilitie X ] are known to be express-

ible (see Section 2), we assume that they are already

“known” and can safely be used in expressions for other

variables (see the discussion in Section 2).

In this section we considesimplereward functions. A
reward functionf is simple if f(pa) only depends onp.
For the rest of the section we fix a simple reward function

[7], and each fragment with a bounded alternation depth of f, and writef(p) instead off (p«).



Forallp,q € Q@ andX € T, we compute the condi- that the tuple of al[E(pX¢)] values is a fixed-point of",
tional expectation of the reward accumulated by the pPDA and hence this tuple can only be larger thatA run that
along a path, under the condition that the path starisXat  starts with a transitopX = 7Y Z and ends atie must
and ends age. We also compute the corresponding condi- go through a first configuration of stack lengthiMoreover,
tional variance. this configuration must havg as stack content. Fix a state

Consider the probabilistic spa¢&un(pX), F, P). For s, and consider the accumulated reward under the assump-
eachg € Q, let Run(pXq) be the set of allu € Run(pX) tion that this intermediate state of the rursisThe run can
such thatw(i) = ¢e for somei € N. For a givenpX we be splitinto three parts as followsX =5 rY Z —* sZ —*
consider only those € @ such thafpXgq] > 0. The other ge. The expectation of the reward accumulated during the
control states are irrelevant (and the notions introdueed b path is the sum of the expectations of the accumulated re-

low do not make sense [jp.X q] = 0). wards, and so equal {(rY Z)+[E(rY Z, sZ)|+[E(sZq)],
We define arandom variabl, x, over Run(pX ) in the where[E(rY Z, sZ)] denotes the conditional expected ac-
following way: cumulated reward between the configuratioFisZ andsZ.
_ Sincef is simple, we hav¢ (rY Z) = f(r), and, moreover,
Rpxq(w) = { 0 . !f w & Run(pXq) the rewards accumulated during the pathZ —* sZ and
F(w’) ifw(l) =qe the pathrY” —* se obtained by removing from all con-

ThenE(R,x, | Run(pXq)) is the conditional expected ac- figurations ofrY' 2 —" sZ coincide. SAE(rY Z,52)] =

cumulated reward fromX to ge, under the condition that [E(rY's)], and so the expected value for paths of the form

¢e is reached. From now on we writ€(pX ¢)] instead of ~ PX — 7Y Z =" sZ =" qeis f(r) +[E0Y s)|+[E(sZq)].
E(Rpxq | Run(pXq)). The conditional expectation under the assumption that the

We show thaf E(pX¢)] can be computed as the min- run starts withpX = Y Z and hass as intermediate state
imal solution of a system of linear equations ofkey. Let 1S then givenbyrY's|[sZq|(f (r)+(E(rY 5)) +(E(s Zq))).

V:={(E(pXq))|p,q € Q,X €T, [pXq] > 0} be aset of The other inequality is proven inductively—for each
variables oveR,. That is, for everyE(pXq)] thereisthe ¢ € N we define a random variabld?,x,; over
associated variablg® (pX ¢)). Consider the following sys-  Run(pX), which returns F(w®) if w(f) = ¢e for
tem of recursive equationsE(pX q)) = 0 for [pX¢q| = 0. some ¢<i, and zero otherwise. Then we can also ap-
Otherwise, proximate [E(pXq)] by a family of conditional expecta-
tions [E(pXq)li = E(Rpxq: | Run(pXq)). Obviously,
(E(pXq)) = L oz fl@+ D, z-Kpxavz [E(pXq)] = lim;—[E(pXq)];- Then, it is inductively
[pXd] pXSqe pX 50y Z shown that for each € N, the tuple of alllE(pXq)]; val-

ues can only be less then Hence, the same holds for the

where the ternk(, x v z is given by limit [F(pX q)]. O
Z [rY's|[sZq](f(r) + (E(rYs)) + (E(sZq))) Corollary 3.2. [E(pXq)] is expressible. Moreover, the
s€Q problem whethefE(pXq)] ~ o, wherep € Q, and

i i ~ € {<,>,<,>,=},isinPSPACE.
If [rY s] or [sZq] is zero, then the corresponding summand

of K,x.vz is removed (thus we avoid problems with un- In Corollary 3.2, some extra care is heeded to compute all
defined expressions like- w; note that, e.g[E(rY's)] can  [E(pX¢q)] that take the value.

bew). Example 3.3 (Termination time). If we assume that every
Theorem 3.1. The tuple of alllE(pXq)] values is exactly  transition of the pPDA takes one time unit, the expected ter-
the leastsolution of the above system of equation®jh mination time of the system when started in the configura-
with respect to component-wise ordering. tion pp Xy can be computed as follows. LEbe the simple

reward function that assignsto each control state. Then,
the expected termination time under the condition that the
pPDA terminates (i.e., reaches a configuration with empty
stack) is given by

Proof sketch.The system of equations determines a unique
operatorF : (RH)VI — (R})IVI whereF(t) is the tuple
of values obtained by evaluating the right-hand sides of the
equations where each variable ¥fis substituted with its
associated value i Since is monotonic and continuous, > el E(oXo0q)] - [poXoq]
F has the least fixed-poipt We show thaj: is exactly the _

1 — [poXoT]
tuple of all[F(pX q)] values.

We first prove thaj: is smaller than or equal to the tu- Hence, the conditional expected termination time is exgpres

ple of [E(pX ¢)] values. We show that the equations hold if ible (of course, the fraction only makes sense if the proba-
each(E(pXq)) is substituted withE' (pX ¢)] (whichmeans  bility of termination is non-zero).




Let us note that the problem of computing the expected ac- We are interested in the conditional second moment of
cumulated reward between a given pair of (arbitrary) con- the accumulated reward of a path under the assumption that
figurationspa andqg is easily reducible to the problem of the path has the formX 5 rY Z —* sZ —* qe for fixed
computing[E(pX ¢q)]. Hence, we can also solve this prob- pX, rY Z, sZ, andge, as in Theorem 3.1. Now we make
lem. two observations. First, for simple reward functions the ex
Now we show how to compute the conditional vari- pectation of the reward accumulated along the path is given
ance of the accumulated reward of a path under the con-by f(r) + [E(rY's)] + [E(sZq)] (see the proof of Theo-

dition that it starts apX and ends ate. Since we al- rem 3.1). Second, for arbitrary reward functions the random
ready know how to comput&(R,x, | Run(pXgq)), it variables that assign to each part of the run its accumulated
only remains to compute the conditional second momentreward are pairwise independent (follows from the fact that
E(Rf)xq | Run(pXq)). we have fixed the configurationy”Z, sZ, ¢, and so the
Similarly as before, consider the probabilistic space initial configuration of a part of the path does not depend
(Run(pX),F,P). For everyg € Q such thafpXgq] > 0 on the previous parts). From these two observations follows
we define a random variab@, x, over Run(pX) as fol- that the square of the accumulated reward can be expressed
lows: in terms of(f(r))?, [Q(rYs)], [Q(sZq)], f(r), [E(rY s)],
0 if w ¢ Run(pXq) [E(qu)]. Tr_le termK,x vz s iS NOw obtained by a rou-
Qpxq(w) = { (F(w)? if w(f) = ge tine calculation. O

E(Qpx, | Run(pXq)) is the conditional expected square Corollary 3.5. [Q(pXq)] is expressible. Moreover, the

of the accumulated reward fromX to ¢e, under the con- Eroebl{ein gfftieﬂ:@}(ﬁfia)ésgpéé whereo € Q. and

dition thatge is reached. From now on we wrif@ (pX q)] e '

instead ofE(Q,x, | Run(pXq)). Example 3.6. Consider the pPDA model of the “gambler’s
Analogously as fof E(pX ¢)] we now show that the tu-  ruin” problem. We have the rulesC' = pC'C, pC =" pe,

ple of all [Q(pX ¢)] values forms the least solution of an ef- ang the initial configurationpC. The minimal solution of

fectively constructible system of linear equations. Sithee  {he recursive equation system fpC'p] yields thatpCp] =

values ofl E(pX ¢)] are expressible, they can be used as co- | j¢ . « 1/2and[pCp| = (1 — z)/a if = > 1/2.

efficients in the system. So, I8t = {(Q(pX¢q)) | p.q € By solving the recursive equations of Theorem 3.1 and

Q,X € I, [pXq] > 0} be a set of variables ové;,. Con- Theorem 3.4, one obtains the following results. The condi-

sider the following system of linear equations (lineariath o1 ax : ;
. ) pectatioriE'(pCp)] of the distance frompC' to pe
(Q(aBc)) variables){Q(pXq)) = 0 for [pXq] = 0, else isOforz=1,w fgr :c( = 1}]2, and otherwise

1 2 1 -z +z[pCp]®
X = — : E(pCp)] = — 8
(QpXq)) X (pxé:qs:v @ + [E(pCp)] O] — 22(pC)
The conditional expectatiof® (pCp)] of the square of the
+ > @ ZQ VYS][SZQ]KMWZ@) distance i9) for z = 1, w for x = 1/2, and otherwise
e s€
e _ (L=2) + 2lpCpPIEEOR)]? + 4[EECR)] + 1)
[Q(rCp)] = o ool
where the expressiofi,, x v z,s stands for [pCp] — 2z[pChp]
(Q(rY's)) +(Q(sZq)) + f(r)*+ For z = 3/4 one obtaingpCp| = 1/3, [E(pCp)] = 2,
2[E(rY s)|[E(sZq)] + 2f(r)[E(rYs)] + 2f(r)[E(sZq)) and[Q(pCp)] = 10. Hence, the conditional variance s
For x = 1/2 one obtains the well-known result

If [rY s], [sZq], [E(rY s)], or[E(sZq)] is zero, then the cor-
responding summands are eliminated. Now we derive anal-
ogous results as in the case[B8f(pXq)]:

[pCp] = 1 and[E(pCp)] = w, i.e., althougtpe is reached
almost surely, the expected number of steps to get there is
infinite.

Theorem 3.4. The tuple of allQ(pX q)] is exactly theeast

solution of the above system of equation&jn Finally, let us note that the approach of this section can

be used to compute the conditiorkdt momentE (R}, |
Proof sketch.The structure of the proof is the same as for Run(pXq)) for everyk € N, which can be useful for a
Theorem 3.1. Let us just explain the key points for obtain- deeper analysis dRun(pXgq).

ing Kpx,rvz,s. Recall that ifA and B are independent ran-

dom variables, the’((A + B)*) = E(A*) + E(B*) + 4. Simple reward functions: Expected gain
2E(A)- E(B). Ingeneral, ifX = >"" | X; and theX; are

pairwise independent, theiii( X 2) is expressible as a poly-  Similarly as in Section 3, let us fix a simple reward func-
nomial in E(X;) and B(X?). tion f and its associated functioR which assigns an ac-



cumulated reward to each finite computation path. We alsoLemma 4.2. Forall n>2 and(q1Y1,m1), -+ , (¢ Yn, my)

fix a pPDAA = (Q,T, 4, Prob). To simplify our presen-
tation, we assume that there is a speduiélal configura-
tion g9 Zy, whereqy € Q andZ, € T, such that the symbol
Zy can never be removed from the stack.

We define a functiol s : Run(goZo) — R as follows.

limp oo £ if the limit exists;

Gr(w) = {

1L otherwise.

If P(Gy=1) = 0 andP(Gs<zx) exists for eachr € R*,

whereP(A"~," X;=(g;Yi, m;))>0 we have that

n—1

P(Xn:(QnYmmn) | /\ Xz:(qlifwml)) =

i=1

__K
[qnflynflﬂ

whereK is equal either to >

x
An—1Yn—1—anY¥nZ

>

x
An—-1Yn—1=qn¥n

x - [gnYn1] Or tO

w[qun][QnYnT]"‘ x~[annT]

>

Gn—1Yn—1571ZY,

then G is a random variable wher€'(w) corresponds

to the average reward earned per transition during the ex-depending on whether.,, is equal to+ or 0, respectively.
ecution ofw, which we call thegain of w. Our aim is
to compute the expected value 6f;, which is given by  Proof sketch.Let us assume that the current minimum is
E(Gf) = [Run(qozo) G£(w) dP, assuming that the inte-  pXa. This assumption means that we only consider those
gral exists. Generally, computing(G ;) appears to be a  runs frompXa which never access (and hencer is com-
difficult problem. Nevertheless, it becomes solvable under pletely irrelevant). Under this assumption, the probabili

a relatively mild assumption. In order to formulate the as- that the next minimum will be increasing and of the form
sumption, we need to recall a definition of [11]. (Infactsthi ¢Y Z« is equal to the probability that we execute a tran-
definition is slightly extended to fit our present needs.) sition of the formpX % Y Z from pXa and the stack

is never decreased t6« in the future. Hence, the consid-
ered conditional probability is equalls) , -, ., - [[ZEV(H .
Similarly, the conditional probability that the next mirim

will be non-increasing and of the forgt « is also evalu-
ated by considering the first transition@X «. This transi-
tion is either of the formpX = ¢Y’, in which case the con-

sidered conditional probability equats- [[ZQ]] or of the

form pX 5 rZY, where we have to get rid of the sym-
bol Z by a sequence of transitions of the fortd —* ¢e.
Hence, in the second case the conditional probability equal

x[rZq| [[Zf(% : O

Definition 4.1. Letw = pyag, peas - - - be an (infinite) run
in Run(qoZo). For eachi € N we define thé*" minimum
of w, denotednin; (w), inductively as follows. Th&" min-
imum can be eitheincreasingor non-increasing

e min; (w) = piay (i.€., min; (w) is the starting config-
uration ¢oZy of w). We stipulate thatnin; (w) is non-
increasing.

e Let min;(w) = ppay. Thenmin, 1 (w) = prax where
k is the least number such that> ¢ and|ay| > |ak]
for eachk’ > k. Observe thafay| — |ay| equals either
1 or 0. In the first casemin; ; (w) is increasing. Other-
wise,min; 1 (w) is non-increasing.

Observe that the expression given in Lemma 4.2 depends
just on the values oX,, and X,,_;. Since all probabilities
which appear in this expression are expressible, the transi

Our assumption is the followinghe expected accumulated
reward between any two consecutive minima is fiditpre-
cise formulation of this condition is given below; as we $hal tion probabilities oX are expressible as well.

see, the condition can be effectively checked in polynomial A trajectoryin X is an infinite sequencey, si,--- of
space. From a practical point of view, the introduced re- states ofX such thatsg = (g0 Zo, 0) and the probability of
striction is not strong. In the context of programs with pro- s; — s;;1 is non-zero for each € Ny.

cedures, one sufficient condition which implies that our as- To eachw € Run(goZ,) we can associate ifeotprint
sumption is satisfied is that the expected termination time 0 X; (w), X2(w), - - - . Note that there can be runs whose foot-
each procedure is finite. One can argue that if the expectedrints arenottrajectoriesirX. LetC, - - - , Ci be the BSCC
termination time for some procedure is infinite, there is a of X. To eachC; we associate the séun(qoZo, C;) con-
design error in the system. sisting of allw € Run(goZy) such that the footprint ofv

is a trajectory inX which hits the componerdt;. Note that
sinceX has finitely many state®( Run(qo Zo, C;)) is com-
putable by standard methods for finite-state Markov chains.
Moreover, it can easily be shown that

The Markov chairX. For eachi € N we define a random
variableX; over Run(qoZp) as follows:X;(w) = (¢Y, m),
where ¢Y is the head ofmin;(w), and m is either +
or 0 depending on whethenin;(w) is increasing or non-
increasing, respectively. The next lemma reveals thatghe s k

quenceX = X1, X, - is a homogeneous Markov chain. Z P(Run(qoZo, C;)) = 1

=1

1)



In the following we show that various quantitative proper- Proof sketch.Realize that if the transitions af' were as-
ties of Run(qo Zy) can be analyzed by considering the prop- signed fixed values, we could apply standard results for
erty for eachRun(qoZo, C;) separately and combining the finite-state Markov chains to compute the average reward
obtained results. For this we use generic results which areof a transition. The resulting expression would be the one
described next. given in our theorem. Since we deal with expected rewards
The random variableM . For eachi ¢ N we define between two states, a full proof is somewhat technical.

a random variable’\/[f over Run(qoZp) as follows: Let
w = s1,82,--- be arun ofRun(goZo). ThenMif(w) =
F(sk,--+,80), wheres;, = min;(w) andsy = min; 41 (w).

In other words M/ (w) is the reward accumulated between
min; (w) andmin; 1 (w).

Lemma 4.3. Leti € N, and let (pX,m), (¢Y,n) be
two states of X (not necessarily different) such that

According to Theorem 4.4, the variahlé/ takes the same
value k¢ for almost all runs ofRun(qoZo, C'). Together
with Equation (1), this implies thg® (M= 1) = 0. More-
over, we have the following corollary:

Corollary 4.5. LetC be a BSCC oX. Then

f Bt
P(Xi=(pX,m) A Xss1=(q¥,n)) > 0. The conditional ex-  E(M” [ Run(aoZ0,C)) =D pc(s) - D Jw- B (s — 1)
pectation seC st
E(M] | Xi=(pX,m) A X;11=(qY,n)) and thus
. . fy— !
is equal either tof (¢) or to BE(M?) = P(Run(a0Zo,C))- D _ po(s)y o Bl (s — 1)
cecC seC

s5t

S x gy S ZAY V() + [BCZa) + X, 3 o wla¥ 11F(0)
Prob((pX,m) — (qY,n))

Hence,E(M7) is expressible.

depending on whether is equal to+ or 0, respectively. Consider the reward functiohthat assignd to each con-
trol state. LetC' be a BSCC ofX. The next lemma tells
how to compute s (w) for the runs ofRun(go Zo, C) when
"E'(s — t) is finite for all states;, ¢ of C.

Proof sketch.We use a similar approach as in Lemma 4.2,
only that now the associated analysis of possible runs be-
tween two consecutive minima must be carried out rather
carefully. O Lemma 4.6. LetC be a BSCC oK, and let us assume that
for all statess,t € C we have thatE/ (s — t) is finite.

. f _ S .. )
SinceE(M] | X;=(pX, m) A X;11=(¢Y, n)) is indepen Then for almost allw € Run(qyZo, C') we have that

dent ofi as long aP (X;=(pX, m) A X;41=(qY,n)) > 0,
this conditional expectation can be associated directiii wi  Saoncls) S, x B (s — )
the edggpX, m) — (qY,n) in X, and will be denoted by Gr(w) = 5 5 - B oD
Ef((pX,m) — (qY,n)) in the rest of this paper. Observe sec HC st

: - . . ) _
that B/ ((pX, m) (¢Y,n)) is expressible due to the re Hence, G(w) is the same for aimost allw e
un(qoZo, C), and thus we finally obtain:

sults of Section 3.

Similarly, we can also express the conditional second
momentE((le)2 | X;=(pX,m)AX;+1=(¢Y,n)) by em- Theorem 4.7. Let C be the set of all BSCC oK. Let
ploying the results of Section 3. The conditional second mo- us assume that for eac’ € C and all statess,t <
ment (and hence also the conditional variance) are thus exC we have thatE/(s — t) is finite. ThenE(G;) =

pressible. ' > cee P(Run(qoZo, C)) - G¢(C), where
Now we introduce another random variablé/ over
Run(goZo) which corresponds to the average accumulated a1 (C Seectc(s) Y o, @ Ef(s —t)
reward between two consecutive minima. Formally, for i = =
y ! Zsec po(s) Zsétx El(s —1)

eachw € Run(qoZo) we define

Remark 4.8. Note that Lemma 4.6 actually says that the
variable G only takes one of the finitely many given val-
ues for almost all runs oRun(qyZy). Since these values
Theorem 4.4. Let C' be a BSCC ofX, and let uc be and the associated probabilities are expressible, we have a
the invariant probability distribution forC' (here we  Pit more detailed information about the behaviourgy,
view C' as an irreducible finite-state Markov chain). Whichis notreflected in the averadgG ).

Let ko =3 ccmo(s) X =, Ef(s—1t). Then The complexity bounds associated to Theorem 4.7 are given
P(M/ = ke | Run(goZo,C)) = 1. in the following corollary:

. M (W)t ME(w) o
Mf(w) _{ limp,— 0o ————2—ifthe limit exists;

1 otherwise.



Corollary 4.9. The problem whether the assumption of given f. In particular, we shall consider the functidnn-
Theorem 4.7 is satisfied for a given pPRAs in PSPACE. troduced above, and the functidrof the previous section
If the assumption is satisfied, then the problem whetherwhich assignd to all configurations. Since the functidn
E(Gy) ~ o, where~ € {<,> <, > =}andp € Q, is is simple,[E(pXq), 1] is expressible (see Corollary 3.2).
in EXPTIME. Let (E(pXq),£) be a variable for alp,q € @ and
X € T such that[qu] > 0. Now consider the system

tion of Theorem 4.7 is not satisfied. This is demonstrated in equal to

the following example:
Example 4.10. Let us consider a pPDA given by the rules Xl doowllg)+ Y w- ) Ysl[sZqlK)x vy
pX Zge pXBryz  S€Q
1/2 1/2 1/2 1/2
9Z = plZ qZ = pZ ql = pll ql = pe where the ternk) . ..y, is given by

1/2 1/2 1/2 1/2
pZ = alz pZ = aqZ pl=qll pl =g (E(rY s),0) + (E(sZq),0) + {(rY Z) + ¢(Z)[E(rY s, 1)]

where the initial configurationigZ. Then the chaiiX looks

as follows (we omit the states that are not reachable from
the statg(¢Z, 0)):

Observe that in the case wheft) = 0 for everyY € I’

we recover the system of Section 3. Also note that since
[E(pXq,1)] appears in the above equation, we would still

have to handle simple reward functions separately if we
1/2 C (pZ,0) —~ (¢Z,0) O 1/2 started directly with linear reward functions in Section 3.

/ Theorem 5.1. The tuple of all[E(pXgq), ¢] values is ex-
Let f(p) = 1 and f(¢) = 0. SinceE’ ((pZ,0) — (¢Z,0)) actly the least solution of the above system of equations in
andE7((¢Z,0) — (pZ,0)) are infinite, Theorem 4.7 can- R} with respect to component-wise ordering.
not be applied. Neverthelesg,(G;) = 1/2 because the
control statesp and ¢ regularly alternate in eachv €
Run(qZ).

Proof sketch.The proof is very similar to that of Theo-
rem 3.1. The only difference is the following. As in The-
orem 3.1, letrY —* se be the path obtained by remov-
Renewal timesGiven a setP C (@ of control states, let  ing Z from all configurations ofY Z —* sZ. In the case
fp be the reward function given bjp(p) = 1if p € P of simple reward functions, the rewards accumulated during
and fp(p) = 0 otherwise. The variablé&/;, assigns to rYZ —* sZ andrY —* se coincide. In the case of lin-
an infinite run the average number of visits to stateg?of ear functions, the reward accumulated dund@Z —* sZ
per transition. Therefore, iE(Gy,) # 0, thenl/E(Gy,) is equal to the reward accumulated durinf —* se
gives the average number of transitions between any twoplus ¢(Z) times the length ofY —* se. So, in average
visits to P, i.e., the average renewal time associatef (& this reward equalfF (rY's), {] + ¢(Z)[E(rY s, 1)], because
E(Gy,) = 0then we can say that the average renewal time [E(rY s, 1)] is the expected length of the path Z —* sZ.

is infinite). This leads to the termk y .y . O

. ) For the conditional second moment, we adopt a similar no-
5. Linear reward functions: Expected accu- tation as above. Consider the system of equations

mulated reward .
(QWXq),l) = v 4(ge)” +
Let us fix a pPDAA = (Q,T, §, Prob) as in Section 3. A [pX4] <p>§qs
reward functionf: C(A) — R* islinear if there are func-
tionsg: Q@ — RT andc: ' — R such that for everpa € Z - Z [rYs][sZq K x vy 2 )
C(A) we have thalf (pa) = g(p) + Yy c(Y) - #v (@), pXEryz  S€Q

where+#y (a) denotes the number of occurrencestofn
. Notice that the simple reward functions correspond to Where the expressiol) .y ; stands for
the special case whettY’) = 0 for everyY € T'. (Q(rYs),£) + (Q(s2q), &) + £(rY Z)2 + 2[E(rY s, £)|[E(s2q, £)]

For the rest of this section we fix a linear reward func- +20(rY Z)[E(rY s, £)] 4+ 20(rY Z)[E(sZq, £))
tion ¢ given by the functiong andc. The associated reward +2c(Z)([E(rY s, 0)] + (L(rY Z) + [E(sZq,0)])[E(rY s, 1)]) +
function for finite paths is denoted (Z2)°|E(rYs, 1))

We use the notation introduced in Section 3. Observe Again, takinge(Y) = 0 for everyY € T we recover the
that the definition of conditional expectatidi(pXq)] system of Section 3. We have the following result, which is
makes sense for an arbitrary reward functjoriVe write proved by combining the observations presented in proofs
[E(pXq), f] to denote this conditional expectation for a of Theorem 3.4 and Theorem 5.1:



Theorem 5.2. The tuple of all|lQ(pXgq, ¢)] values is ex-  hita BSCC ofX, orc¢(3) whereg is the tail of the first mini-
actly theleastsolution of the above system of equations in mal configuration which hits a BSCC &f. For each BSCC

R} with respect to component-wise ordering. C, we express(B¢), the conditional expected value of
B under the assumption that the BSCC reached by the
6. Linear reward functions: Expected gain run is C. Now we expressZ(Gy,c), the conditional ex-

pected value ofy, under the condition that the run starts
Let us fix a pPDAA = (Q, T, 8, Prob) and its initial con- in C (this can be done by the method described in the pre-
figurationgo Zo as in Section 4. We also fix a linear reward Vious paragraph). Thus, for each BSCCof A we get
function? given by the functiong ande. In this sectionwe  £(Ge | Run(a02o,C)) = E(Bc) + E(Ge.c), hence
show how to comput& (G/).

We say that a transitiorigY,m) — (rZ,n) of the B(Ge) = ZP(R“"(%ZO’C)) (B(Bo) + E(Grc))

Markov chainX is boundedif either n = + and for all ¢
transitions of the fornyY” = »ZT we have that(T") = 0, Average stack lengthThe average stack length corresponds
orn = 0 and for all transitions of the formY” = tTZ  tothe linear functiod(pa) = |a|, and so its expectation can
we have thatE(tT'r), /] is finite. Note that we can effec- be computed using the results of this section.
tively check if a given transition is bounded by using the re-

sults of Section 5. A transition which is not boundediis 6.1. Maximal stack length

bounded

Lemma 6.1. LetC be a BSCC oK which contains an un-  For many applications, the maximal stack length of a run

bounded transition. Then for almost alle Run(qoZ,)we IS Perhaps more interesting than the average stack length

have thatG (w) is infinite. whlch can be computed by applying the results of the pre-
vious section.

Now assume thaf’ is a BSCC ofX where all transitions Formally, let us define the random variabléL over

are bounded. For simplicity, consider first the case wKken (40 7,) as follows: ML(w) is the leastp € R such
is strongly connected. As in Section 4, define arandom vari-that ¢(w(i)) < o foralli € N. If ML(w) < w, thenw
able M which for everyw € RU”(QOZO). returns the ac- s calledbounded Observe that in the special case when
cumulated reward betweenin; (w) andmin, (w), and a g(p) = 0andc(Y) = 1forallp € Q andY € I' we have
random variable\/¢ as the average reward collected when that ML(w) is themaximal stack lengt w. We are inter-
moving from one minimum to the next. ested in the probabilitf(ML=w) of unbounded runs. The
In the case of a simple functiohthat depends only on  next theorem says how to compute this probability, but we
the control state, the variable; depends only ork; and need a preliminary definition.

Xi+1. This is no longer the case for a linear functidhe We say that a transitiofyY, m) — (rZ, n) of X is lim-
reason is that the variabl§; records only the head of the jieqd if either n = + and for all transitions of the form

" minimum, but not the stack content which is n_eeded qV % rZT we have that(T) = 0, orn = 0 and there
to compute the reward. The stack content of ttfemin- is o € R* such that for every path from ¢Y to rZ we

imum depends on th.e valugs of all &f;, ..., X;. When- have that/(w(i)) < o for every statew(i) of w. Observe
ever one of these variables is of the fofpX’, +), the stack  that the exact values of transition probabilitiesindo not
length of the/”" minimum increases by 1. Fortunately, since matter here. Hence, one can rely on standard results for non-
we assume that all transitions are bounded, increasing min'probabilistic PDA and conclude that the problem whether a
ima are no longer a problem, because thalue of sym-  given transition is limited is decidable in polynomial time
bols that are pushed is zero. Theff depends only orX;; (The problem whethefqY, m) — (rZ,0) is limited can

and X, 1, and we can reuse all the results of Section 4. pe decided, e.g., using the results of [10]: One can com-
In particular, Lemma 4.3 still holds after some straightfor pute the sepost*(qY) of all successor configurations of
ward modifications (these modifications are based on the,y the setpre*(rZ) of all predecessor configurations of
same idea which was used in Theorem 5.1 to modify the . 7 since these sets are regular, their homomorphic images
equations of Theorem 3.1). This shows how to compute gptained by replacing alt’ € I such that:(Y') = 0 with ¢
E*((pX,m) — (g, n)). Corollary 4.5 shows how to com-  are also regular. Obviously, the considered transitioimis |
pute £(M*) after replacingf by ¢, and Theorem 4.7 shows  jied iff the intersection of these two images is finite. The

how to compute(G*) after replacingf by /. whole procedure can be implemented in polynomial time.)
If X is not strongly connected, then the problem is )
slightly more complicated, and we only sketch the argu- Theorem 6.2. LetC be the set of all BSCC &f which con-

ment. LetB be the random variable which for every € tain at least one non-limited transition. Thé{ ML=w) is
Run(qoZo) returns eithetL if the footprint ofw does not ~ €4ual 0} o P(Run(q0Zo, C)).



Proof sketch.Let C' be a BSCC ofX. We show that (1)

if C € C then almost all runs ofRun(goZy,C) are
unbounded, and (2) itC ¢ C then almost all runs of
Run(qoZy, C) are bounded. For (1) we can distinguish two
cases:

(a) If C contains a non-limited transition of the form
(¢Y,m) — (rZ,+), one can argue that almost all runs of
Run(qoZy, C) contain infinitely many pairs of consecutive
configurations of the formpY o, rZT'«r, wherec(T') > 0,
which are both minimal (realize that if(¢) is an increas-
ing minimum of a runw, thenw(i — 1) is also a minimum).
Hence, thel’ is pushed infinitely many times when enter-
ing a minimal configuration, and hence almost all runs of
Run(qoZy, C) are unbounded.

(b) If C contains a non-limited transition of the form
(¢Y,m) — (rZ,0), one has to realize that almost all runs
of Run(qoZoy,C) have infinitely many pairs of consecu-
tive minima whoseX-values ardqY, m) and(rZ, 0). Since
each finite path betweef” andrZ has a non-zero fixed
probability, almost all runs oRun(qyZy, C') execute each
of these finite paths infinitely many times. Hence, almost all
runs are again unbounded.

Finally, (2) follows by observing that almost all runs of
Run(qoZo, C) have only finitely many “properly increas-
ing” minima, i.e., those increasing minima where the in-
coming transition pushes a symbiBlsuch that(T") > 0.
Hence, the value of remains bounded if we restrict our-
selves to the minimal configurations. However, from the
definition of limited transitions it follows that the valué o
¢ is bounded also between the minimal configurations by a
global constant. O

Corollary 6.3. The problem whetheP(ML=w) ~ p,
where~ € {<, > <, > =} andp € Q, is in EXPTIME.
In the special case whene {0, 1} the problem belongs to
PSPACE.

Theorem 6.2 shows that the probabil®(ML=w) is ex-
pressible. We can easily show that atB§ML=p) and
P(ML<p) are expressible for every € Q by apply-

ing results about the quantitative model-checking problem
for LTL properties [11, 6, 12]. Computing the expectation
E(ML) seems to be a harder problem which is left for fu-
ture work.

7. Conclusions and future work

The results about expected gain for simple reward functions

indicate that our proof techniques might also be used for
analysis of long-run average behavior of probabilistic- sys
tems in the style of [9]. In certain situations, propertiés o
individual runs are more relevant than ensemble average
computed over all runs. For example, one can ask what i
the probability of all runs where the average reward per
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transition stays within certain bounds. In fact, using @ir r
sults wecan answer even this question, at least for simple
reward functions (see Remark 4.8). Hence, an interesting
open problem is whether one can extend our results to an-
swer more complicated quantitative questions of this kind.
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