Model Checking Probabilistic Pushdown Automata

Javier Esparza Antonin KucCera
Institute for Formal Methods in Computer Science, Faculty of Informatics, Masaryk University,
University of Stuttgart, Botanicka 68a, 60200 Brno,
Universitat str. 38, 70569 Stuttgart, Germany. Czech Republic.
esparza@informatik.uni-stuttgart.de tony@fi.muni.Cz

Richard Mayf
Department of Computer Science,
Albert-Ludwigs-University Freiburg
Georges-Koehler-Allee 51,
D-79110 Freiburg, Germany.
mayrri@informatik.uni-freiburg.de

Abstract underlying semantics is defined in terms of homogeneous
Markov chains, which are also called “fully probabilistic

We consider the model checking problem for probabilistic transition systems” in this context. For fully probabilst
pushdown automata (pPDA) and properties expressible infinite-state systems, algorithms for various (probalii)st
various probabilistic logics. We start with properties tha temporal logics like LTL, PCTL, PCTL, probabilistic:-
can be formulated as instances of a generalized randomcalculus, etc., have been presented in [22, 18, 26, 10, 17,
walk problem. We prove that both qualitative and quantita- 5, 11, 19, 12]. As for infinite-state systems, most works
tive model checking for this class of properties and pPDA is so far considered probabilistic lossy channel systems [20]
decidable. Then we show that model checking for the qual-which model asynchronous communication through unreli-
itative fragment of the logic PCTL and pPDA is also decid- able channels [7, 1, 2, 8]. A notable recent result is the de-
able. Moreover, we develop an error-tolerant model check- cidability of quantitative model checking of liveness prop
ing algorithm for general PCTL and the subclass of state- erties specified by Biichi-automata for probabilistic Yoss
less pPDA. Finally, we consider the class of properties de- channel systems [24]. In fact, this algorithmesor tol-
finable by deterministicBchi automata, and show that both  erantin the sense that the quantitative model checking is
qualitative and quantitative model checking for pPDA is de- solved only up to an arbitrarily small (but non-zero) given
cidable. error.

In this paper we considgsrobabilistic pushdown au-
tomata (pPDA)which are a natural model for probabilistic
sequential programs with recursive procedure calls. There

1. Introduction is a large number of results about model checking of
non-probabilistic PDA or similar models (see for instance

Probabilistic systems can be used for modeling systemsj4, 9, 13, 27]), but the probabilistic extension has so far
that exhibit uncertainty, such as communication protocols not been considered. As a related work we can mention
over unreliable channels, randomized distributed systems[23], where it is shown that a restricted subclass of pPDA
or fault-tolerant systems. Finite-state models of such sys (where essentially all probabilities for outgoing arcs aire
tems often use variants of probabilistic automata whosether 1 or 1/2) generates a richer class of languages than
non-deterministic PDA. Another work [3] shows the equiv-
% On leave at the Institute for Formal Methods in Computer 1Bme alence of pPDA and probabilistic context-free grammars.
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and various probabilistic logics. We start with a class of erties expressible in PCTL is strictly larger). In Sectioh,4
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Figure 1. Bernoulli random walk as a pBPA

properties that can be specified as a generaliaadom
walk problem To get a better intuition about this class

of problems, realize that some random walks can easily
be specified by pBPA systems. For example, consider aTh

pBPA with just three stack symbol§ I, D and transitions

z % 12,2 "= pz,1 5 11,15 ¢, D= DD,
andD % &, wherez € [0,1]. Then the transition graph
of Z (see Fig. 1) is the well-knowBernoulli walk A typi-

cal question examined in theory of random walks is “Do we
eventually revisit a given state (with probability one)8t,
more generally “What is the probability of reaching a given

state from another given state?” For example, it is a stan-

dard result that the staté of Fig. 1 is revisited with prob-
ability 1 iff « = 1/2. This simple example indicates that

answers to qualitative questions about pPDA (i.e., whether

something holds with probability or 0) depend on the ex-
act probabilities of individual transitions. This is difént

from finite-state systems where qualitative properties de-

pend only on the topology of a given finite-state Markov
chain.

we give a model checking algorithm for thealitative frag-
mentof PCTL and pPDA processes. For general PCTL for-
mulae and pBPA processes, amor tolerantmodel check-
ing algorithm is developed in Section 4.2. The question
whether this result can be extended to pPDA is left open.
Finally, in Section 5 we prove that both qualitative and
guantitative model checking for the class of properties de-
finable by deterministic Buchi automata is decidable for
pPDA. Again, this is done without computing the probabil-
ity explicitly, but rational lower and upper approximatsn
can be computed up to an arbitrarily small given error.
Due to the lack of space, some proofs have been omitted.
ese can be found in a full version of this paper [14].

2. Preliminary Definitions

Definition 2.1. A (fully) probabilistic transition systems a
triple 7 = (S, —, Prob) whereS is a finite or countably
infinite set ofstates— C S x S is atransition relation
and Prob is a function which to each transition — ¢ of
T assigns its probabilityProb (s — t) € (0, 1] so that for
everys € S we haved  _, Prob(s — t) € {0,1}. (The
sum above can beif it is empty, i.e., ifs does not have any
outgoing transitions.)

In the rest of this paper we also write ¢ instead of
Prob(s — t) = x. A pathin 7 is a finite or infinite se-
guencew = sg, s1,--- Of states such that; — s;41 for
everyi. We also usewv(i) to denote the state; of w (by

The generalized random walk problem is formulated as writing w(i) = s we implicitly impose the condition that

follows: Let C; andCs be subsets of the set of states of a
given Markov chain, and let be a state of,. What is the
probability that, starting a¢, a state of’; is reached via a
path leading only through states 6f? Let us denote this
probability by P(s,C1 U Cs). The problem of computing

the length ofw is at least + 1). A runis a maximal path,
i.e., a path which cannot be prolonged. The sets of all finite
paths and all runs df are denoted'Path andRun, respec-
tively?. Similarly, the sets of all finite paths and runs that
start in a givens € S are denotedPath(s) and Run(s),

P(s,C1UCy) has been previously considered (and solved) respectively.

for finite-state systems, where this probability can be com-

Eachw € FPath determines dasic cylinderRun(w)

puted precisely [17, 11]. In Section 3, we propose a solution which consists of all runs that start with To everys € S

for pPDA applicable to those safs, C. which areregular,
i.e., recognizable by finite-state automata. More pregisel
we show that the problem wheth@&t(s,C1UCs) ~ o,
where~ € {<,<,>,>,=} andp € [0,1], is decidable.
Interestingly, this is achieved without explicitly comput
ing the probabilityP(s,C1 U C2). Nevertheless, for an ar-
bitrary precision0 < A < 1 we can compute rational
lower and upper approximatio?’, P* < [0, 1] such that
Pt < P(5,C1UCy) < P*andP¥ — PF < .

we associate the probabilistic spadeun(s), F, P) where
F is the o-field generated by all basic cylindef&un(w)
wherew starts withs, andP : F — [0,1] is the unique
probability function such tha®(Run(w)) 7yt
wherew = sg,- - - , 8, ands; = 5,4, forevery0 <i <m
(if m = 0, we putP(Run(w)) = 1). We say that sets
A C FPath(s) and A" C FPath(s") are’P-equivalentiff
> wea P(Run(w)) = >, c 4 P(Run(w)).

In Section 4, we consider the model checking problem The Logic PCTL

for pPDA and the logic PCTL. This is a more general prob-

lem than the one about random walks (the class of prop-by

class of stateless PDA corresponds to a natural subclasS®kAown
as Basic Process Algebra [6].

PCTL, the probabilistic extension of CTL, was defined
Hansson & Jonsson in [17]. Lety = {a,b,c,...} bea

2 Inthis paper, th€ is always clear from the context.



countably infinite set odtomic propositionsThe syntax of
PCTL3 is given by the following abstract syntax equation:

@ ttal @] o1 Apa | X7 | o1 U ™ py

Herea ranges overdp, o € [0, 1], and~ € {<, <, >,>}.
Let7 = (S, —, Prob) be a probabilistic transition system.
Foralls € S,allC,C1,Co C S, and allk € Ny, let

o Run(s, XC) = {w € Run(s) | w(l) € C}

o Run(s,C1UC3) = {w € Run(s) | 3 > 0 : w(i) €
Co andw(j) € Cy forall 0 < j < i}

e FPath®(s,CiUCy) = {s0,---,5¢ € FPath(s) | 0 <
0 <k,sp €Cyands; € C1~Coforall0 < j < ¢}

e FPath(s,CiUCs) = U2, FPath™(s,C1 U Cs)

Obviously,

P(Run(s,C1UCs)) = P(Run(w)).

>

weFPath(s,C1 UC2)

Letv : Ap — 2° be avaluation The denotation of a
PCTL formulay over7 w.r.t. v, denotedy]”, is defined
inductively as follows:

[tt]Y = S
[a]” = v(a)
[=¢]” = S~[el”
ler Ap2]” = [pr]” N [g2]”
[X7%]" = {se€S|P(Run(s, X[¢]")) ~ o}
[pr U ™2p2]” = {s€S|P(Run(s,[p1]"U[p2]")) ~ o}

As usual, we writes =¥ ¢ instead ofs € [¢]".

Thequalitative fragmenof PCTL is obtained by restrict-
ing the allowed operator/number combinationstod’ and
‘> 1", which will be also written as= 0’ and ‘= 1’, resp.
(Observe that& 1', * > 0’ are definable from< 0’, * > 17,
and negation; for exampleZ/ <'b = —~(ald Z'b).)

Probabilistic PDA

Definition 2.2. A probabilistic pushdown automaton
(pPDA) is a tupleA = (Q,T, 6, Prob) where@ is a fi-
nite set ofcontrol statesI" is a finite stack alphabet C
Q x I' x Q x I'" is a finitetransition relation(we write
pX — qainstead of(p, X, ¢, «) € 4), and Prob is a func-
tion which to each transitiopX — qa assigns its proba-
bility Prob(pX — ga) € (0,1] so that for allp € @ and
X eTwehavethad® , Prob(pX — qa) € {0,1}.

A pBPAis a pPDA with just one control state. Formally,
a pBPA is understood as a tripla = (T, §, Prob) where
0 CT xI*.

In the rest of this paper we adopt a more intuitive nota-
tion, writing pX 5 qa instead ofProb(pX — qa) = .

3 For simplicity we omit the bounded ‘until’ operator of [17]

The set@ x I'* of all configurations ofA is denoted by
C(A). We also assume (w.l.0.g.) thapiX — ga € J, then
laf < 2.

To A we associate the probabilistic transition systEm
whereC(A) is the set of states and the probabilistic transi-
tion relation is determined byX 3 = qa3 iff pX = qa.

The model checking problem for pPDA configurations
and PCTL formulae (i.e., the question whether =* ¢
for givenpa, ¢, andv) is clearly undecidable for general
valuations. Therefore, we restrict ourselvesdgular valu-
ations which to every € Ap assign aegular set of config-
urations

Definition 2.3. A A-automatoris a triple A = (St,~y, Acc)
whereSt is afinite set obtates.t.Q C St,~ : StxI' — St
is a (total)transition functionand Acc C St a set ofac-
cepting states

The functiony is extended to the elements Bf in
the standard way. Eachh-automatonA4 determines a set
C(A) C C(A) given bypa € C(A) iff v(p,aft) € Acc.
Herea® is the reverse aof, i.e., the word obtained by read-
ing « from right to left.

We say that a sef C C(A) is regulariff there is aA-
automatonA such thatC = C(A).

In other words, regular sets of configurations are rec-
ognizable by finite-state automata which read the stack
bottom-up (the bottom-up direction was chosen just for
technical convenience).

3. Random Walks on pPDA Graphs

For the rest of this section, let us fix a pPDA =
(Q,T, 6, Prob).

An important technical step in our development is the
replacement of regular sets of configurations with “simple”
ones for which the membership function depends just on the
control state and the top stack symbol of a given configura-
tion.

Definition 3.1. A set of configurations is simpleif there is
asetG C Q x (' U{e}) such that for eacha € C(A) we
have thatpa € C iff eithera = e andpe € G, ora = X3
andpX € G.

The next lemma says that regular sets of configurations
can be effectively replaced with simple ones. A proof is
standard (see, e.g.,[15]).

Lemma 3.2. For each pPDAA = (Q, T, 4, Prob) and reg-
ular setsCy, - - - ,C, C C(A) there effectively exist a pPDA
A = (Q,I",d', Prob"), simple set€},--- ,C, C C(A),
and an injective mapping : C(A) — C(A’) such that for
eachpa € C(A) the following conditions are satisfied:

e if pa % 3, thenG(pa) % G(¢B);



e if G(pa) % s for somes € C(A'), then there ipa = ¢3
such thag(¢f) = s;
o for eachl < j < k we havepa € C; iff G(pa) € C;.

Moreover, ifC C C(A’) is regular, theng—1(C) is also reg-
ular.

For the rest of this section, I1€4,C> C C(A) be (fixed)
simple sets, and le¥;, G2 C @ x (T'U{e}) be the sets as-
sociated t&’y, C; in the sense of Definition 3.1. To simplify
our notation, we adopt the following conventions:

e ForeaclC C C(A), letC®* =C~ (Qx{e}). Observe that
if C is simple, then so i€°.

eForalp,g € QandX € T, we use[pXgq| to ab-
breviateP (pX,C1~\C2U {¢e}), and[pX e] to abbreviate

PpX,CLUCS).

The next lemma says
'P(Run(le Xn,Cﬂ/{Cg)) from
ily of all [pXgq|, [pX o] probabilities.
Lemma 3.3. For eachpX; --- X,, € C(A) wheren > 0
we have thaP (Run(pX; - -- X,,C1 U C2)) equals to

n
=1 (g1, ,q:)€Q’
wherep=q1

+ by

(g1, qn+1)€QH!
wherep=q; andgq,,+1e€Ca

to
finite

how
the

compute
fam-

i—1

g Xio] - [ ]l X 0541]

j=1

n

H 9 X qj+1]
j=1

with the convention that empty sum equal$ tand empty
product equals td.

Now we show that the probabilitigpX ¢, [pX e] form

oif pX € Go, then(pXe) = 1;if pX ¢ G1 U Gs, then
(pXe) = 0; otherwise we put

(pXe) = Z z-({(rYe) + Z (rY't) - (tZe))
pPX5rY Z teQ
+ Z x - (rYe)

For givent € [0,1]IV!, p,¢ € Q, andX € T we use
(pXq), and (pXe), to denote the component ofwhich
corresponds to the variab{gX ¢) and(pX e), respectively.

The above defined system of equations determines a unique
operatorF : [0,1]'YI — [0,1)V! whereF(t) is the tu-

ple of values obtained by evaluating the right-hand sides of
the equations where alpX¢) and (pXe) are substituted
with (pX ¢), and(pXe),, respectively.

Theorem 3.4. The operatorF has the least fixed-point.
Moreover, for allp,q € Q and X € I' we have that
(pXq), = [pXqg] and(pXe) = [pXe].

Example 3.5. Let us consider the pBPA systeXrof Fig. 1,
and letC; = I'*, C; = {Z}. Then we obtain the following
system of equations (since has only one control statg,
we write (X, o) and (X, ¢) instead of(pXe) and (pXp),
resp.):

(Z,0) = 1

(Z,ey = x(l,e)(Z,e) + (1—z)(D,e){Z, &)
<Iv.> = l‘(( 7.> + <I7€><Iv.>)

I,e) = =z{,e){l,e) + 1—x

(D,o) = (1-z)((D,e) + (D,e)(D,e))
(D,ey = (1—z)(D,e){D,e) + z

the least solution of an effectively constructible systeim o As the least solution we obtain the probabilitig® e] =
equations. This can be seen as a generalization of a simid, [Z,e] = 0, [[,¢] = 0, [[,e] = min{l, (1-z)/z},

lar result for finite-state systems [17, 11]. In the finitatst

[D,e] = 0, [D,e] = min{l,z/(1—z)}. By applying

case, the equations are linear and can be further modified sé-emma 3.3 we further obtain that, e. (/1 Z,C1 U Cs) =

that they have aniquesolution (which is then computable,

e.g., by Gauss elimination). In the case of pPDA, the equa-

min{1, (1-x)%/22}.
In Example 3.5, the least solution of the constructed sys-

tions are not linear and cannot be generally solved by anatem of equations could be computed explicitly. This is gen-
lytical methods. The question whether the equations can beerally impossible, but certain properties of the least tiofu
further modified so that they have a unique solution is left gre still decidable. For our purposes, it suffices to comside
open; we just note that the method used for finite-state sys+ne class of properties defined in the next theorem.

tems is insufficient (this is demonstrated by Example 3.5).

Let V = {{(pXq), (pXe)|p,q€ Q,X €T} be asetof

Theorem 3.6. Let Const = Q U {[pX¢q], [pXe] | p,q €

“variables”. Let us consider the system of recursive equa- @ andX & I'}, whereQ is the set of all rational constants.

tions constructed as follows:
oif pX & G1~\G2, then(pXq) = 0 for eachq € Q; other-

wise, we put
(pXq) = > x-Y (Vi) (tZq)
pXSryz  t€Q
Yoo

+ Z z-(rYq) +
pXSry pXSqe

Let F1, F» be expressions built ovef'onst using “’ and
‘+’,and let~ € {<,=}. Itis decidable whetheF; ~ Fj.

Proof. We show that, due to Theorem 34, ~ Es is ef-
fectively expressible as a closed formula (&, +, , <).
Hence, the theorem follows from the decidability of first-
order arithmetic of reals [25].

Forallp,g € QandX € T, let 2(pXq), x(pXe),
y(pXq), andy(pXe) be first order variables, and let



andY be the vectors of alt(pX ¢), z(pXe), andy(pXq),
y(pXe) variables, respectively. Let us consider the formula
® constructed as follows:

3X :0<X<1T A X=FX)

ANWY : (<Y <TAY=FFY)) = X<Y))

A Ey[X /7] ~ Eo[X /7]
Observe that the condition§ = F(X) andY = F(Y)
are expressible only using multiplication, summation, and
equality. The expressions;[X /x| and E»[X /7] are ob-
tained fromE; and E; by substituting al[pX ¢] and[pX e]

with 2(pX¢q) andz(pXe), respectively. It follows immedi-
ately thatF; ~ F, iff @ holds. O

Input: pX € C(A),0< A< 1
Output: P¢, P
1: PL=0;P* = 1;
for i =1 to [—logy A]
if [pXo]+3 . .cc, [PXql > (P* —P")/2
then P* = (P" —P*)/2
else P := (P* —P*%)/2
fi

o Ok W N

Figure 2. Computing P*, P

An immediate consequence of Theorem 3.6 is the fol-
lowing:

Theorem 3.7. Let pa € C(A), o € [0,1], ~ €
{<,<,>,>}and0 < A < 1. Itis decidable whether
P(pa, C1 U C3) ~ p. Moreover, there effectively exist ratio-
nal numbersP?, P* such thatP! < P(pa,Ci U Cy) < P
andPv — Pt < \.

Proof. We can assume w.l.o.g. that X for some
X € T. Note thatP(pX,C1UCs) ~ ¢ iff [pXe] +
quec2 [pXq] ~ o by Lemma 3.3. Hence, we can apply
Theorem 3.6. The numbef, P* are computable, e.g., by
the algorithm of Fig. 2. O

4. Model Checking PCTL for pPDA Processes

4.1. Qualitative Fragment of PCTL

For the rest of this section we fix a pPDA
(Q,T, 9, Prob).
Lemma4.1. LetC C C(A) be a simple set. The setsa €
C(A) | P(pa, XC) = 1} and{pa € C(A) | P(pa, XC) =
0} are effectively regular.

Proof. Immediate. O

Lemma 4.2. LetC;,C2 C C(A) be simple sets. The set
{pa € C(A) | P(pa,C1UCy) = 1} is effectively regu-
lar.

Proof. Let R(pX) = {q € Q | [pXq] > 0} forall p €
Q, X € T. For eachi € Ny we define the se$; C C(A)
inductively as follows:

oSy ={ge|ge € C} U{gXa|[gXe] =1, acT*}
o Siv1 ={pXB|[pPXe]l+ > crpx)pPXq =1and
Vq € R(pX) : qB € Si}

Using Lemma 3.3, we can easily check thdf°, S; =
{pa € C(A) | P(pa,C1UC3) = 1}. To see that the set
Ui, Si is effectively regular, for each € @ we construct
afinite automatorM,, such thatL(M,,) = {a € T* | pa €
U=, Si}. A A-automatonA recognizing the set);~ S;
can then be constructed using standard algorithms of au-
tomata theory (in particular, note that regular languages a
effectively closed under reverse). The statesvtf are all
subsets of), {p} is the initial stateI is the input alpha-
bet, final states are thogé C @ where for everyy € T
we have thage € Cs (in particular, note thaf is a final

state), and transition function is given ﬁyﬁ U iff for ev-
eryg € T we have thafgXe] + >, ., x)[¢X7] = 1 and

U = U,er R(gX). Note that) X ¢ for eachX € T.
The definition ofM,, is effective due to Theorem 3.6. It is
straightforward to check tha(M,) = {« € T* | pa €
Uzo Si}. O]

Lemma 4.3. LetC;,C2 C C(A) be simple sets. The set
{pa € C(A) | P(pa,C1UCy) = 0} is effectively regu-
lar.

Proof. Let R(pX) = {q € Q | [pXq] > 0} forall p €
Q, X € TI. For eachi € N; we define the se$; C C(A)
inductively as follows:

e So = {qe | qe ¢ Co}

e Sit1={pXB|[pXe]=0andvqg € R(pX):gp € S;}

The fact ;2 S; = {pa € C(A) | P(pe,C1UC5) = 0}
follows immediately from Lemma 3.3. The sgf~, S; is
effectively regular, which can be shown by constructing a
finite automatonM,, recognizing the sefa € T* | pa €
U:2, Si}- This construction and the rest of the argument are
very similar to the ones of the proof of Lemma 4.2. There-
fore, they are not given explicitly. O

Theorem 4.4. Let ¢ be a qualitative pCTL formula and
a regular valuation. The seffpa € C(A) | pa =¥ ¢} is
effectively regular.

Proof. By induction on the structure af. The cases when
%) tt and ¢ a follow immediately. For Boolean
connectives we use the fact that regular sets are closed
under complement and intersection. The other cases are



covered by Lemma 4.1, 4.2, and 4.3 (here we also needeif o € C(AZ) (or a € C(A%)), thenP(a,CiUCo) >
Lemma 3.2). O 0— A (orP(a,CiUCs) < o+ A respectively.)

Theorem 4.7. There is an error-tolerant PCTL model

In this section we provide an error tolerant model check- Proof. The proof is similar to the one of Theorem 4.4, us-
ing algorithm for PCTL formulae and pBPA processes. ing Lemma 4.5 and 4.6 instead of Lemma 4.1, 4.2, and 4.3.
Since it is not so obvious what is meant by error tolerance Note that Lemma 3.2 is applicable also to pBPA (the sys-
in the context of PCTL model checking, this notion is de- tem A’ constructed in Lemma 3.2 has the same set of con-

fined formally.

Let T = (S,—, Prob) be a probabilistic transition sys-
tem and0 < A < 1. For every negation-free PCTL for-
mulay and valuationv we define the denotation of over
7 w.r.t.v with error tolerance), denoted ], in the same

way as[¢]”. The only exception iy U ~2p, where
oif ~ € {<, <}, then

[or U “2p2] X = {s € S| P(Run(s, [pr]l XU [p2]3)) ~ o+A}
oif ~ € {>,>} then
[or U “2p2] X = {s € S| P(Run(s, [pr] XU [p2]3)) ~ 0—A}

Note that for every negation-free formula we have
that [¢]” C [¢]}. Negations can be “pushed inside” to
atomic propositions using dual connectives (note that, e.g
(U =) is equivalent tap U <€), and for regular val-
uations we can further replace every with a fresh propo-
sition b wherev(b) is the complement of(a). Hence, we
can assume w.l.0.g. thatis negation-free.

An error tolerant PCTL model checking algorithisman
algorithm which, for each PCTL formula, valuationv,

s €5,and0 < X < 1, outputs YES/NO so that

e if s € [¢]”, then the answer is YES;
o if the answer is YES, then € [¢]}.

For the rest of this section, let us fix a pBRA =
(T, 8, Prob). SinceA has just one (or “none”) control state
p, we write[ X, o] and[ X, £] instead ofp X ] and[pXp], re-
spectively.

Lemma 4.5. LetC C C(A) be a simple sef € [0, 1], and
~ e {<,<,>,>}. The se{a € C(A) | P(a, XC) ~ o}
is effectively regular.

Proof. Immediate. O

The following lemma presents the crucial part of the al- i

trol states as the original systedy). O

5. Model Checking Deterministic Bichi Au-
tomata Specifications

Definition 5.1. A deterministic Buchi automatads a tuple
B = (%, B, 0,br, Acc), whereX is a finitealphabet B is
a finite set ofstatesp: B x ¥ — B is a (total)transition
function(we writeb % b’ instead ofo(b, a) = V'), by is the
initial state and Acc C B is a set ofaccepting states

Arunof B is an infinite sequendgb, . .. of states such
that for everyi > 0 there isa € X such thath; % b, 1.
A run bgb; ... is acceptingf b; € Acc for infinitely many
indices: > 0.

For the rest of this section, we fix a pPDA
(Q,T, 6, Prob).

Definition 5.2. Given a configuratiomX o of A, we call
pX the headand « thetail of pX«. The set x I' of all
heads ofA is also denoted b (A).

We consider specifications given by deterministic Buchi
automata havingi(A) as their alphabet. It is well known
that every LTL formula whose atomic propositions are in-
terpreted over simple sets can be encoded imoraleter-
ministicBuichi automaton having((A) as alphabet. Deter-
ministic Buchi automata can encode the fragment of LTL
that can also be expressed in the alternation-free medal
calculus [21]. Our results can be extended to atomic propo-
sitions interpreted over arbitrary regular sets of configur
tions using the same technique as in [15].

Definition 5.3. Theproductof A and B is a probabilistic
pushdown automatoAB = (Qx B, T, &', Prob’) whered’

and Prob’ are determined as followsp, 5| X 5 [p/, ¥']c iff

pX 5 p'aandbd 2% i are transitions ofA andB, respec-
vely.

gorithm. This is the place where we need the assumption

thatA is stateless.

Lemma 4.6. LetCy,Cy C C(A) be simple sets. For alf €
[0,1] and0 < X < 1 there effectively exish-automatad=
and.A= such that for alle € C(A) we have that

oif P(a,C1UC2) > o (or P(a,C1UC2) < ), thena €
C(AZ) (or o € C(A=), respectively.)

Notice that every (finite or infinite) path ifiaz corre-
sponds to a unique path i\ obtained by projecting the
control state of every configuratidp, bja of the path onto
its first component, yielding the configuratigrav. Con-
versely, for each path ifia (starting in some«) and each
b € B thereis exactly one path ifi 5 starting in[p, bj« be-
cause is deterministic.



Definition 5.4. A configuration[p, bja. of AB is accepting
if b € Acc. Arunin7ap is acceptingf it visits accepting
configurations infinitely often. A run ifia is accepting if
its corresponding run irfa 3 is accepting.

The probability P(pa, B) that a configurationpa of
A satisfies the specificatioi is defined asP(pa, B) =
P{w € Run(pa) | wis accepting).

We solve the following two problems for a given config-

urationpa of A:

(a) Giveng € [0,1] and~ € {<,<,>,>,=}, do we have
P(pa,B) ~07?

(b) Given0 < X\ < 1, compute rational®’, P such that
P! < P(pa,B) < P*andP* — P* < A

e min; (w) = prag, wherek € Ny is the least number such
that|ag/| > |ay| for eachk’ > k.

e min; 1 (w) = ming(wey1), wheremin;(w) = peay.
Herew,4 is the suffix ofw that starts withp, 11 sy .

We say thatw flashesat min;(w) if eitheri = 1 and

min; (w) is accepting, ori > 1 and w visits an accept-
ing configuration betweemin;_; (w) andmin;(w) (where

min;_1 (w) is notincluded).

Sometimes we abuse language and ms$e; (w) to de-
note not only a configuration, but the particutacurrence
of the configuration that corresponds to iffeminimum.

For all pX € H(A) and alli € N we define a ran-
dom variabIeVQ over Run(pX) as follows: The possi-

For finite-state automata, the problem can be solved asy|e values oﬂ/(l are all pairs of the fornfgY,, f), where
follows (see [11]). Letd be a finite-state automaton. Since  ;y- ¢ 74(A) andf € {0,1} is a boolean flag; there is also a

the product automatad x B is finite, it can be transformed

into a finite Markov chainV/ by just ‘copying’ the proba-

bilities of the system [11]. Itis then possible to reduceypro
lems (a),(b) to the problem of computing the probability o

hitting a bottom strongly connected componend6fvhich
contains a state of the forfa, b), whereb is accepting.
In our case, the product automataifs is again a pPDA,

and so its associated probabilistic transition systemfis in
nite. The key to our solution for (a) and (b) is the construc-
tion of a new finite Markov chaid/a s that plays the rble

of M in the case of finite automata.

5.1. The Markov chain Ma

A Buchi pPDA is a tupleA = (Q,T, 6, Prob, Acca),

where all elements except fdicc o are defined as for pPDA

andAcca C Q is a set ofaccepting states
A configurationpa of A is acceptingif p € Acca. A

run of A is acceptingif it visits accepting configurations

infinitely often. For allp € @Q andX € T, the probabil-

ity that a runw € Run(pX) is accepting is denoted by holds if and only |fP(

P(pX, Acc).

Obviously, the model checking problems (a),(b) of the
previous section can be reduced to the following problems

about a given configuratignX of a Buichi pPDAA (where
pX € H(A)):

(A) Givenp € [0,1] and~ € {<, <, >,>,=}, do we have
P(pX,Acc) ~0?

(B) Given0 < X\ < 1, compute rational$’, P* such that
Pt < P(pX, Acc) < P*andP* — P* < A
For the rest of this section, we fix a Buchi pPI¥ =

(Q,T, 9, Prob, Acca).

Definition 5.5. Letw = poayg, p1ay, - - - be an infinite run
in 7. For eachi € N we define thé*” minimumof w, de-
notedmin, (w), inductively as follows:

special valuel.. For a givernw € Run(pX), Vp(;() (w) is de-
termined as follows:

t eif wis finite thenV 'Y (w) = L;

o if conditions (1)—(3) below are satisfied, thbfﬁ() (w) =
(Y, 1);
(1) w is infinite;
(2) the head ofnin; (w) is ¢Y’;
(3) w flashes atin,; (w).

o if conditions (1) and (2) above are satisfied and condition
(3) is not satisfied, thek ) (w) = (¢Y,0)

Notice that the random variables are well defined, because

they assign to each run exactly one value.

Lemma 5.6. For all pX € H(A),n € N, andwy, -+ , v,
the probability Oﬂ/p()l():vl Ao A sz;):vn exists (i.e., the
set of allw € Run(pX) which satisfy this condition i®-
measurable). Moreover, for every rational constagrihere
is an effectively constructible formula @, +, *, <) which

_’Ul /\"'/\V;g?:vn) =1q.

The following lemma proves the Markov property. In
fact, it follows immediatelly from the construction used in
the proof of Lemma 5.6.

Lemma 5.7. The conditional probability of/p(;)

the hypothesis/()l() =vi A A Vp(;_l) = v,_1 is equal

to the probability oﬂ/X = v,, conditioned On‘/;;;fl) —

= v, 0N

vn—1, assuming that the probability dﬂl;f)l() =V A A
Vp(;_l) = v,,_1 IS NON-Zero.

For each control staig € @ we define a flagf;, which
is equal either td or 0 depending on wheth@re Acca or

not, respectively. Another consequence of Lemma 5.6 is the

following:



Lemma 5.8. The conditional probability of
Vp(;):(q’Y’, f) on the hypothesisvzf;_l):(qY,f))
is equal to the conditional probability df’q(é):(q’Y’, I
on the hypothesis Vq(;):(qY, fo)s that
PVyx ' =(aY. f)) #0.

Now we can define the finite Markov chaildx .

assuming

Definition 5.9. Let Ma be a finite-state Markov chain
where the set of states is

{(gY,0) | ¢ & Acca,Y €T, PV, =(qY,0)) > 0}
U {(@V.1) ] qY € H(A) PV, =(aY. /) > 0}
U H(A)U{L}

and transition probabilities are defined as follows:

e Prob(L — 1)=1,

o Prob(pX — (¢, f)) = P(V,=(aY. ),

e Prob(pX — 1) = P(VZS():J_).

 Prob((qY, f) — (¢'Y', ["))
VY =(aY. £,)).

One can readily check that/a is indeed a Markov
chain, i.e., for every state of M we have that the sum
of probabilities of all outgoing transitions afis equal to
one.

A trajectoryin M, is an infinite sequencg(0) o (1) - -
of states of\/ A whereProb(c(i) — o(i + 1)) > 0 for ev-
eryi € No.

To every runw € Run(pX) of A we associate itfoot-
print, which is an infinite sequence of states ofM 5 de-
fined as follows:

e o(0) =pX

o if w is finite, then for every € N we haver (i) = L;

o if w is infinite, then for everyi € N we haveo(i) =
(piXi, fi), wherep; X; is the head ofnin;(w), and f;
1iff w flashes ain;(w).

PV =Y, 1) |

We say that a givew € Run(pX) is goodif the footprint
of w is a trajectory inM A . Our next lemma reveals that al-
most all runs are good.

Lemma 5.10. Let pX € H(A). We have thaP({w €
Run(pX) | wis good) = 1.

It follows directly from the definition of\/ A that if both
(¢Y,0) and (¢Y,1) are states of\/a, then they have the
“same” outgoing arcs (i.e(¢Y,0) = (rZ, f) iff (¢¥,1) =
(rZ,f), wherez > 0). In particular, this means that if
(¢Y,0) or (¢Y, 1) belongs to some strongly connected com-
poneniC of M, then all of the outgoing arcs ¢§Y, 0) and
(¢Y, 1) lead toC. Hence, the following definition is correct:

Definition 5.11. We say that a giveqY” € H(A) is recur-
rentif there is a bottom strongly connected comporEgt
of Ma such that(¢Y, f) € Cyy for somef € {0, 1}.

Each recurrent head is eithercceptingor rejecting de-
pending on whethef';y contains a state of the for(nZ, 1)
or not, respectively.

We say that a runw of A hits a headqY € H(A) if
there is someé € N such that the head @hin, (w) is ¢Y.
The next lemma says that an infinite run eventually hits a re-
current head.

Lemma 5.12. LetpX € H(A). The conditional probabil-
ity thatw € Run(pX) hits a recurrent head on the hypoth-
esis thatw is infinite is equal to one.

So, an infinite run eventually hits a recurrent head. Now
we prove that if this head is accepting/rejecting, then time r
will be accepting/rejecting with probability one.

Lemma 5.13. Let¢Y be an accepting/rejecting head. The
conditional probability thatw € Run(pX) is accept-
ing/rejecting on the hypothesis that the first recurrentdhea
hit by w is accepting/rejecting is equal to one.

Lemma 5.14. (cf. Proposition 4.1.5 of [11]) LepX €
H(A). P(pX, Acc) is equal to the probability that a trajec-
tory frompX in M hits a state of the fornyY, f) where

qY is an accepting head (this is equivalent to saying that
the trajectory hits a bottom strongly connected component
of M which contains a state of the fortnz, 1)).

Theorem 5.15. Let A be a Bichi pPDA. Given a head
pX € H(A), ~ € {<,<,>,>,=},andp € [0,1],
we can decide ifP(pX, Acc) ~ p. Further, for each
0 < A < 1 we can compute rational®’, P* such that
Pt < P(pX, Acc) < P*andP* — P! < \.

Proof. Similarly as in Theorem 3.6, we compute a closed
formula® of (R, +, x, <) such thatP(pX, Acc) ~ o iff
® holds. Then, the rationalg’, P* can be computed by a
simple binary search similarly as in Fig. 2.

Due to Lemma 5.14 we know tha®(pX, Acc) =
P(pX,C1UC2), whereC, is the set of all states di/», and
C, consists of all states of the for(@Y, f) whereqY is an
accepting head. This means that there is a system of recur-
sive equations such th&(pX, Acc) appears in the tuple of
values which form the least solution of the system (we can
assume thaP (pX, Acc) is, e.g., the first element of this tu-
ple). SinceM 4 is finite, these equations are linear and by
using the results of [17, 11] we can even assume that there
is a unique solution. The only problem is that numeric co-
efficients in this system of equations are the probabilities
of transitions inMa which cannot be precisely computed.
This can be overcome as follows: we construct the men-
tioned system of linear equations where we replace each co-
efficient with a fresh first-order variable; It be the tuple



of all variables which correspond to the coefficients. Now 6. Conclusions
we can effectively construct the formula
. . . We have provided model checking algorithms for
V = 32:Z=L(Z) N Zi~o0 pushdown automata against PCTL specifications, and
- - o against linear-time specifications represented as detemi
whereZ = L(Z) says that the tuple of variablésis asolu- i Bjichi automata. Contrary to the case of finite automata,
tion of the constructed system of linear equations. Note tha qualitative properties (i.e., whether a property holdshwit

W is not closed because the variablesCofwhich appear — yropapility 0 or 1), depend on the exact probabilities of the
inthe Z = £(Z) subformula) are free. Due to Lemma 5.6, iransitions.

for each of these coefficients there effectively exists a for  1pere are many possibilities for future work. An obvi-

mula of (R, +, ¥, <) which says that a given coefficientis 4,5 question is what is the complexity of the obtained al-
equal to the probability of the corresponding transition in 4qrithms. Since the formulae of first order arithmetic which
M (we just “translate” the definition aProb giveninDef- a6 constructed in our algorithms have a fixed alternation
inition 5.9 into(R, +, , <), usmgth_eformulae provided by depth, we can apply a powerful result of Grigoriev [16]

Lemma 5.6). Letl » by a conjunction of all these formu-  \yhich says that the validity of such formulae is decidable in
lae. The formulap is constructed as follows: single exponential time. From this we can easily derive the

_ 2 oA > > = time complexity of some of our algorithms (for example,

® = J7:3C:Vz N Z=L(Z Zy ~ o N
Cila A L2Z) N Zi~o the qualitative/quantitative random walk problem of Sec-
Obviously,P(pX, Acc) ~ giff ® holds. | tion 3 is decidable in exponential time). Since the complex-

_ ) _ _ ity issues were not the main priority of our work, the effi-
We conclude this section by trying to explain why ourre-  ciency of our algorithms can be improved even by relatively
sults cannot be directly extended to nondeterministidBUc  straightforward optimizations. Moreover, there is a lot of
automata. First of all, notice that we cannot assign proba-space for advanced numerical algorithms which might be

bilities to the transitions oAB in a meaningful way, be-  ysed to compute the required probabilities with enough pre-
cause a transitiopa. — ¢@ of A should ‘split’ into sev-  ision.

eral transitions oAB. In the case of a finite automatoh An obvious question about linear-time specifications is
this problem can be solved by working with the product of \yhether our procedure can be improved to deal with nonde-
A anddB, wheredpB is the result of applying the deter-  terministic Biichi automata. Another possibility is to eon
minization construction té. Let AdB denote this product.  gjger LTL specifications and try to generalize the technique
In [11], a definition of recurrence is provided, which char- of [11], which modifies the probabilistic transition system
acterizes the statés, b| of AdB that, loosely speaking, re-  gtep-by-step and at the same time simplifies the formula, un-

turn to[s, b] with probability 1 in terms of topological prop- i it becomes a propositional formula.
erties of the probabilistic transition systedu5. It is then

possible to compute the accepting recurrent states.
Unfortunately, this construction does not seem to gener-

alize to the case of pushdown automata. The problemisthat The authors would like to thank Stefan Schwoon for

the Buchi pPDAAdB has infinitely many states, and so it many helpful insights.

must be replaced by the chalia ;5. However, inMa 45
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