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Abstract

We propose a generic method for proving the decidability of the finite sat-
isfiability problem for PCTL fragments and demonstrate its applicability in
several non-trivial examples.
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1. Introduction

Probabilistic CTL (PCTL) [1] is a temporal logic applicable to discrete-
time probabilistic systems with Markov chain semantics. PCTL is obtained
from the standard CTL (see, e.g., [2]) by replacing the existential/universal
path quantifiers with the probabilistic operator P (Φ) ▷◁ r. Here, Φ is a path
formula, ▷◁ is a comparison such as ≥ or <, and r is a numerical constant.
A formula P (Φ) ▷◁ r holds in a state s if the probability of all runs initiated
in s satisfying Φ is ▷◁-bounded by r. The satisfiability problem for PCTL,
asking whether a given PCTL formula has a model, is a long-standing open
question in probabilistic verification resisting numerous research attempts.

Unlike CTL and other non-probabilistic temporal logics, PCTL does not
have the small model property guaranteeing the existence of a bounded-
size model for every satisfiable formula. In fact, one can easily construct
satisfiable PCTL formulae without any finite model (see, e.g., [3]). Hence,
the PCTL satisfiability problem is studied in two basic variants: (1) finite
satisfiability, where we ask about the existence of a finite model, and (2)
general satisfiability, where we ask about the existence of an unrestricted
model.
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For the qualitative fragment of PCTL, where the range of admissible
probability constraints is restricted to {=0, >0,=1, <1}, both variants of the
satisfiability problem are EXPTIME-complete, and a finite description of
a model for a (finitely) satisfiable formula is effectively constructible [4, 3].
Unfortunately, the underlying proof techniques are not applicable to general
PCTL with unrestricted probability constraints such as ≥0.25 or <0.7.

To solve the finite satisfiability problem for some PCTL fragment, it
suffices to establish a computable upper bound on the number of states of a
model for a finite-satisfiable formula of the fragment1. At first glance, one
is tempted to conjecture the existence of such a bound for the whole PCTL
because there is no apparent way how a finite-satisfiable PCTL formula φ
can “enforce” the existence of F (φ) distinct states in a model of φ, where F
grows faster than any computable function. Interestingly, this conjecture is
provably wrong in a slightly modified setting where we ask about finite PCTL
satisfiability in a subclass of Markov chainsMk where every state has at most
k ≥ 2 immediate successors (the k is an arbitrarily large fixed constant). This
problem is undecidable and hence no computable upper bound on the size of
a finite model in Mk exists [3] (see [5] for a full proof). So far, all attempts at
extending the undecidability proof of [3] to the class of unrestricted Markov
chains have failed; it is not yet clear whether the obstacles are invincible.

Regardless of the ultimate decidability status of the (finite) PCTL sat-
isfiability, the study of PCTL fragments brings important insights into the
structure and expressiveness of PCTL. The existing works [6, 7] identify
several fragments where every (finitely) satisfiable formula has a model of
bounded size and specific shape. In [7], it is shown that every formula φ
of the bounded fragment of PCTL, where the validity of φ in a state s de-
pends only on a bounded prefix of a run initiated in s, has a bounded-size
tree model. In [6], several PCTL fragments based on F and G operators are
studied. For each of these fragments, it is shown that every finitely satis-
fiable formula has a bounded-size model where every non-bottom SCC is a
singleton. It is also shown that there are finitely satisfiable PCTL formulae

1Although there are uncountably many Markov chains with n states, the edge proba-
bilities can be represented symbolically by variables, and the satisfiability of a given PCTL
formula in a Markov chain with n states can then be encoded in the existential fragment
of first-order theory of the reals. This construction is presented in Appendix A.
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Figure 1: A Markov chain M such that s |= φ.

without a model of this shape. An example of such a formula is

φ ≡ G=1

(
F≥0.5(a ∧ F≥0.2¬a) ∨ a

)
∧ F=1G=1 a ∧ ¬a (1)

In [6], it is shown that φ is finitely satisfiable2, but every finite model of φ
has a non-bottom SCC with at least two states, such as the Markov chain
M of Fig. 1.

Our contribution. A crucial step towards solving the finite satisfiability
problem for PCTL is understanding the role of non-bottom SCCs. Intuitively,
if a given PCTL formula φ enforces a model with a non-bottom SCC, then
the top SCC must achieve some “progress” in satisfying φ, and successor
SCCs are required to satisfy only “simpler” formulae. If this progress is
effectively measurable, there is a computable upper bound on the model’s
size. We start by elaborating this intuition into a workable set of conditions
defining effectively progressive PCTL fragments in Section 3. This entails a
generic method for proving the decidability of the finite satisfiability problem
for PCTL fragments.

The method applies to the fragments considered in [6, 7] and also to
other fragments not covered by the existing results (see Section 3.1). Then,
we design an abstract class of loop progressive fragments in Section 4, where
the progress is achievable by a finite loop with one exit state. We show that
every loop progressive fragment is effectively progressive, and establish the
2-EXPSPACE upper complexity bound for the finite satisfiability problem.
Furthermore, we give three examples of loop progressive fragments (two of
them subsume the formula φ defined by (1) above).

In our constructions, we had to address fundamental issues specific to
quantitative PCTL. The basic observation behind the small model property

2In [6], the formula φ has the same structure but uses qualitative probability con-
straints.
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proofs for non-probabilistic temporal logics (and also qualitative PCTL) is
that the satisfaction of a given formula in a given state s is determined by the
satisfaction of φ and its subformulae in the successor states of s. This does
not hold for quantitative PCTL. For example, knowing whether immediate
successors of a state s satisfy the formula F≥0.2 φ does not necessarily allow
to determine the satisfaction of F≥0.2 φ in s. We need a precise probability
of satisfying the path formula Fφ in the successors of s. Clearly, it makes
no sense to filter a model according to the satisfaction of infinitely many
formulae of the form F≥r φ. In our proofs, we use a method for extending
the set of “relevant formulae” so that it remains bounded and still captures
the crucial properties of states.

Related work. The satisfiability problem for (non-probabilistic) CTL is
known to be EXPTIME-complete [8]. The same upper bound is valid also
for a richer logic of the modal µ-calculus [9, 10]. The probabilistic extension
of CTL (and also CTL∗) was initially studied in its qualitative form [11, 12,
4]. The satisfiability problem is shown decidable in these works. A precise
complexity classification of general and finite satisfiability and a construction
of (a finite description of) a model are given in [3]. In the same paper,
it is also shown that the satisfiability and the finite satisfiability problems
are undecidable when the class of admissible models is restricted to Markov
chains with a k-bounded branching degree, where k ≥ 2 is an arbitrary
constant. A variant of the bounded satisfiability problem, where transition
probabilities are restricted to {1

2
, 1}, is proven NP-complete in [13]. The

decidability of finite satisfiability for various quantitative PCTL fragments
is established in the works [6, 7] discussed above.

The model-checking problem for PCTL has been studied both for finite
Markov chains (see, e.g., [14, 15, 16, 17]) and for infinite Markov chains gen-
erated by probabilistic pushdown automata and their subclasses [18, 19, 20].
PCTL formulae have also been used as objectives in Markov decision pro-
cesses (MDPs) and stochastic games, where the players controlling non-
deterministic states strive to satisfy/falsify a given PCTL formula. Positive
decidability results exist for finite MDPs and qualitative PCTL formulae
[21]. For quantitative PCTL and finite MDPs, the problem becomes unde-
cidable [22]. Let us note that the aforementioned undecidability results for
the (finite) PCTL satisfiability problem in subclasses of Markov chains with
bounded branching degree follow by utilizing proof techniques of [22].
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2. Preliminaries

We use N, Q, R to denote the sets of non-negative integers, rational
numbers, and real numbers, respectively. We use the standard notation for
writing intervals of real numbers, e.g., [0, 1) denotes the set of all r ∈ R such
that 0 ≤ r < 1. For a set A, we use |A| to denote the cardinality of A.

The logic PCTL [1] is a probabilistic version of Computational Tree Logic
[2] obtained by replacing the existential and universal path quantifiers with
the probabilistic operator P (Φ) ▷◁ r, where Φ is a path formula, ▷◁ is a
comparison, and r ∈ [0, 1] is a constant.

In full PCTL, the syntax of path formulae is based on the X, U, and U≤k

(‘next’, ‘until’, and ‘bounded until’) operators. In this paper, we consider a
simplified variant of PCTL based on F and G operators.

Definition 1 (PCTL). Let AP be a set of atomic propositions. The syntax
of PCTL state and path formulae is defined by the following abstract syntax
equations:

φ ::= a | ¬a | φ ∧ φ | φ ∨ φ | P (Φ) ▷ r
Φ ::= Fφ | Gφ

Here, a ∈ AP, ▷ ∈ {≥, >}, and r ∈ [0, 1], where the trivial probability
constraints ‘≥0’ and ‘>1’ are syntactically forbidden.

Since the formula Φ in the probabilistic operator P (Φ) ▷ r is always of the
form Fφ or Gφ, we often write just F▷r φ and G▷r φ instead of P (Fφ)▷r and
P (Gφ) ▷ r, respectively. The probability constraint ‘≥1’ is usually written
as ‘=1’. The sets of all state and path subformulae of a given state formula
φ are denoted by sub(φ) and psub(φ), respectively. Note that every formula
in psub(φ) is of the form Fψ or Gψ. We also use AP(φ) to denote the set
of all atomic propositions occurring in φ.

Observe that the negation is applicable only to atomic propositions, and
the comparison ranges only over {≥, >}. This causes no loss of generality
because negations can be pushed inside, and formulae such as F≤r φ and
G<r φ are equivalent to G≥1−r ¬φ and F>1−r ¬φ, respectively.

The encoding size of a given PCTL formula φ is denoted by ||φ||. When
PCTL formulae are given as input to algorithms, we assume that their prob-
ability bounds are rational and written as irreducible fractions of binary
integers. The original definition of PCTL [1] (and also Definition 1) admits
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arbitrary probability bounds in the interval [0, 1]. This is convenient be-
cause we sometimes consider PCTL formulae where the probability bounds
correspond to probabilities of certain events in unspecified Markov chains.

PCTL formulae are interpreted over Markov chains where every state s
is assigned a subset v(s) ⊆ AP of atomic propositions valid in s.

Definition 2 (Markov chain). A Markov chain is a triple M = (S, P, v),
where S is a finite or countably infinite set of states, P : S × S → [0, 1] is
a function such that

∑
t∈S P (s, t) = 1 for every s ∈ S, and v : S → 2AP is a

valuation.

A path in M is a finite sequence w = s0 . . . sn of states where n ≥ 0 and
P (si, si+1) > 0 for all i < n. A run in M is an infinite sequence π = s0s1 . . .
of states such that every finite prefix of π is a path in M . We also use π(i)
to denote the state si of π.

A strongly connected component (SCC) of M is a maximal U ⊆ S such
that, for all s, t ∈ U , there is a path from s to t. Given two SCCs U and
V , we say that V is a successor/predecessor of U if U ̸= V and there exists
a path from/to a state of U to/from a state of V . A bottom SCC (BSCC)
is a SCC without successors, and a top SCC is a SCC without predecessors.
The successor relation is a strict partial order and determines the standard
directed acyclic graph (DAG) of SCCs.

For every path w = s0 . . . sn, let Run(w) be the set of all runs starting
with w, and let P(Run(w)) =

∏n−1
i=0 P (si, si+1). To every state s, we associate

the probability space (Run(s),Fs,Ps), where Fs is the σ-field generated by
all Run(w) where w starts in s, and Ps is the unique probability measure
obtained by extending P in the standard way (see, e.g., [23]).

The validity of a PCTL state/path formula for a given state/run of M is
defined inductively as follows:

s |= a iff a ∈ v(s),
s |= ¬a iff a ̸∈ v(s),
s |= φ1 ∧ φ2 iff s |= φ1 and s |= φ2,
s |= φ1 ∨ φ2 iff s |= φ1 or s |= φ2,
s |= P (Φ) ▷ r iff Ps({π ∈ Run(s) | π |= Φ}) ▷ r,
π |= Fφ iff π(i) |= φ for some i ∈ N,
π |= Gφ iff π(i) |= φ for all i ∈ N.
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Figure 2: The structure of a finite model of φ.

We say that M is a model of φ if s |= φ for some state s of M . A PCTL
formula φ is valid if ¬φ does not have a model. We say that φ implies ψ if
the implication φ→ ψ is a valid formula.

The (finite) PCTL satisfiability problem is the question of whether a given
PCTL formula has a (finite) model.

Remark 1. In this paper, we often apply notions and constructions defined
for a single formula to finite sets of formulae. Such a set X should then be
formally understood as a conjunction of its elements. For example, s |= X
means that s |=

∧
φ∈X φ.

3. Effectively Progressive PCTL Fragments

In this section, we introduce a general technique for establishing the de-
cidability of the finite satisfiability problem for PCTL fragments.

As we already noted in Section 1, one sufficient condition implying the
decidability of the finite satisfiability problem for a given PCTL fragment L
is the existence of a computable function B : L → N such that every finitely
satisfiable φ ∈ L has a model with at most B(φ) states. This follows directly
from the next (folklore) proposition:

Proposition 1. Let φ be a PCTL formula and n ∈ N. The problem of
whether φ has a model with at most n states is decidable is space polynomial
in ||φ|| and n.

For the sake of completeness, a proof of Proposition 1 is given in Appendix A.
Consider a PCTL formula φ with a finite model M . Let s be a state of

M such that s |= φ, and let C be the SCC containing s. Clearly, all SCCs of
M that are not reachable from s can be removed fromM without influencing
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the validity of φ is s. Hence, we can assume that M has only one top SCC
C, and C contains a state s satisfying φ. Furthermore, we can assume that
M has been chosen so that the height of the corresponding DAG of SCCs
(called the DAG-height of M in the sequel) is minimal, and we use H(φ) to
denote this height.

In our next theorem, we show that all finitely satisfiable PCTL formulae
φ such that H(φ) = 0 have a model of bounded size. This entails the
decidability of the problem of whether H(φ) = 0 for a given PCTL formula.

Theorem 2. For every PCTL formula φ we have that H(φ) = 0 iff φ has
a strongly connected model with at most 2|AP(φ)| states.

Proof. Let φ be a PCTL formula such that H(φ) = 0, and let s |= φ where
s is a state of a strongly connected Markov chain M . For every state t of M ,
let AP(φ, t) be the set of all a ∈ AP(φ) valid in t. Consider a Markov chain
M ′ where {AP(φ, t) | t is a state of M} is the set of states and the transitions
are defined arbitrarily so that M ′ is strongly connected. Furthermore, every
state α of M ′ satisfies exactly those propositions of AP(φ) that occur in α.
By a straightforward induction on the structure of ξ, we obtain that t |= ξ
implies AP(φ, t) |= ξ for every state t of M and every ξ ∈ sub(φ) (here,
we use the standard result of finite Markov chain theory saying that a run
initiated in an arbitrary state of a strongly connected finite Markov chain
visits all states with probability one). In particular, AP(φ, s) |= φ. □

Now assume H(φ) ≥ 1. Let M be a model of φ with one top SCC
C and the DAG-height equal to H(φ) such that s |= φ for some s ∈ C.
Intuitively, the top SCC C must then achieve some “progress” in satisfying
φ before a run leaves C, because otherwise C could be removed from the
model and the DAG height of M would not be minimal. In other words,
the initial commitment of satisfying φ in s is “transformed” into finitely
many simpler commitments imposed on C-descendants, i.e., states t1, . . . , tn
entered right after leaving C (see Fig. 2). We use Desc(C) to denote the set
of all C-descendants.

Now we formalize the above intuition.

Definition 3 (φ-commitment). Let φ be a PCTL formula. A φ-commitment
is a vector X ∈ [0, 1]AP(φ)∪psub(φ) where X(a) ∈ {0, 1} for all a ∈ AP(φ).

Intuitively, each φ-commitment X represents a finite set of PCTL formulae
consisting of all
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• a such that a ∈ AP(φ) and X(a) = 1,

• ¬a such that a ∈ AP(φ) and X(a) = 0,

• P (Φ) ≥ r such that Φ ∈ psub(φ) and X(Φ) = r > 0.

Note that in the last item, we disregard the case when r = 0 because the
constraint “≥ 0” is trivial and syntactically forbidden. Slightly abusing our
notation, we use X to denote the associated set of formulae (writing, e.g.,
s |= X or ψ ∈ X).

Observe that a φ-commitment X determines the (in)validity of all a ∈
AP(φ) and implies the validity of some state subformulae of φ. In particular,
some φ-commitments imply φ. This is illustrated in the following example:

Example 1. Let φ ≡ F≥0.4 a ∨ G≥0.3 b, and let X be a φ-commitment such
that X(a) = 0, X(b) = 1, X(F a) = 0.5, and X(G a) = 0.2. Then X implies
the state subformula F≥0.4 a (and hence also φ), but not the state subformula
G≥0.3 b (clearly, if t |= X, then also t |= F≥0.4 a and t |= φ, but it may happen
that t ̸|= G≥0.3 b).

Also observe that even if φ is finitely satisfiable, some φ-commitments may
not be (finitely) satisfiable.

As we already indicated, the progress in satisfying φ corresponds to de-
creasing the “complexity” of φ-commitments imposed on the descendants of
SCCs in a model with the minimal DAG-height. In general, such progress
may not be achievable for all finitely satisfiable φ-commitments in the same
way. However, it suffices to achieve progress for an eligible subset of φ-
commitments.

Definition 4 (eligible set of φ-commitments). Let φ be a finitely sat-
isfiable PCTL formula. A set Comφ of φ-commitments is eligible if every
element of Comφ is finitely satisfiable and there exists X ∈ Comφ such that
X implies φ.

Now we define a complexity measure for Comφ.

Definition 5 (complexity measure). Let φ be a finitely satisfiable PCTL
formula and Comφ an eligible set of φ-commitments. A complexity measure
for Comφ is a function g : Comφ → N such that g(X) = 0 only if H(X) = 0.
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The requirement g(X) = 0 only if H(X) = 0 avoids the problematic case
when H(X) ≥ 1 and g(X) = 0 (note that if H(X) ≥ 1, then each SCC C
containing a state satisfying X must have a non-empty set of descendants;
if we also had g(X) = 0, the g-value of the commitments assigned to these
descendants could not be further decreased).

So far, we have not discovered a universal complexity measure applicable
to all Comφ (this would yield the decidability of the finite satisfiability prob-
lem for the whole PCTL). Since we do not require the computability of g, the
function H appears to be a natural candidate. However, some effectiveness
assumption is unavoidable to obtain a computable upper bound on the size
of a model. In our setup (see Definition 7), we need an effective upper bound
on the size of

min{g(X) | X ∈ Comφ, X implies φ}

which prevents using H. Nevertheless, it is possible to tailor specific com-
plexity measures for various PCTL fragments, as we shall see in the next
sections.

The concept of assigning commitments to C-descendants is formalized as
follows:

Definition 6 (C-assignment). Let C be a SCC in some Markov chain,
X ∈ Comφ, and g a complexity measure for Comφ. A C-assignment is a
function A : Desc(C) → Comφ. We say that A is

• safe for X if there exists t ∈ C such that t |= X in every Markov chain
obtained from C by replacing each u ∈ Desc(C) with a state satisfying
A(u);

• g-progressive for X if for every u ∈ Desc(C) we have that either
H(A(u)) = 0 or g(A(u)) < g(X).

Now we define an effectively progressive PCTL fragment and prove that
the finite satisfiability problem is decidable for each such fragment.

Definition 7 (effectively progressive PCTL fragment). A PCTL frag-
ment L is effectively progressive if there are computable functions c, h : L →
N such that, for every finitely satisfiable φ ∈ L, there exist an eligible set
Comφ and a complexity measure g for Comφ satisfying the following condi-
tions:
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• There is X ∈ Comφ such that X implies φ and g(X) ≤ h(φ).

• For every X ∈ Comφ such that H(X) > 0 there exists a SCC C of
some Markov chain satisfying the following conditions:

– |C| ≤ c(φ).

– There is a C-assignment which is safe and g-progressive for X.

Using the conditions of Definition 7, we immediately obtain the existence of
a finite modelM for φ whose DAG-height is bounded by h(φ) and every non-
bottom SCC ofM has at most c(φ) states. Now we prove that the branching
degree of M can also be effectively bounded, yielding a computable upper
bound on the number of states of M .

We start by introducing a special φ-commitment that is also used in the
following sections.

Definition 8 (Xt commitment). Let φ be a PCTL formula. For every
state t of a Markov chain M , let Xt be the φ-commitment defined as follows:

• For every a ∈ AP(φ), we have that Xt(a) is either 1 or 0, depending
on whether t |= a or not, respectively.

• For every Φ ∈ psub(φ), we put Xt(Φ) = r, where r = Pt({π ∈ Run(t) |
π |= Φ}).

Let φ be a PCTL formula. Furthermore, let M = (S, P, v) be a finite
Markov chain, C a SCC of M , and s ∈ C. Let Desc(C, s) = {u1, . . . , un} be
the set of all C-descendants of s, i.e., Desc(C, s) = {u ∈ Desc(C) | P (s, u) >
0}. Consider a Markov chain obtained by changing the set Desc(C, s) into
{v1, . . . , vm} where v1, . . . , vm ̸∈ C. That is, the function P is changed into
P ′ so that

• P ′(x, y) = P (x, y) whenever x ̸= s or y ̸∈ {u1, . . . , un, v1, . . . , vm};

•
∑n

i=1 P (s, ui) =
∑m

i=1 P
′(s, vi).

Now observe that for all Φ ∈ psub(φ) and t ∈ C we have that if

n∑
i=1

P (s, ui) · Xui(Φ) ≤
m∑
i=1

P ′(s, vi) · Xvi(Φ) (2)
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then also

Pt(π ∈ Run(t) | π |= Φ) ≤ P′
t(π ∈ Run(t) | π |= Φ) (3)

where P and P′ are the probability measures induced by P and P ′, respec-
tively. This follows immediately from the semantics of PCTL path formulae.

Now suppose that t |= X for some t ∈ C and a φ-commitment X. Con-
sider the vector

Y =
n∑
i=1

P (s, ui)

Ps
· Xui

where Ps =
∑n

i=1 P (s, ui). By Carathéodory’s convex hull theorem, there
exist {v1, . . . , vm} ⊆ {u1, . . . , un} and positive coefficients p1, . . . , pm such
that m ≤ |psub(φ)|+ 1,

∑m
i=1 pi = 1, and

Y (Φ) ≤
m∑
i=1

pi · Xvi(Φ)

for every Φ ∈ psub(φ). Let P ′(s, vi) = pi · Ps. Then (2) is satisfied for all
Φ ∈ psub(φ), and hence (3) holds for t and all Φ ∈ psub(φ). This means that
t |= X in the modified Markov chain where the C-descendants {u1, . . . , un}
of s are replaced with {v1, . . . , vm}. The same procedure can be repeated for
all states of C. Thus, we obtain the following theorem:

Theorem 3. If a PCTL formula φ has a finite model M , then φ also has
a model M ′ such that for every SCC C of M ′, the following conditions are
satisfied:

• C is a SCC of M ;

• Desc(C, s) in M ′ is a subset of Desc(C, s) in M for every s ∈ C;

• the size of Desc(C, s) in M ′ is at most |psub(φ)|+ 1.

For effectively progressive PCTL fragments, Theorem 3 allows for computing
an upper bound on the size of a finite model.

Theorem 4. Let L be an effectively progressive PCTL fragment. Then every
finitely satisfiable φ ∈ L has a model with at most

2 · (c(φ) · |sub(φ)|)h(φ) ·max{c(φ), 2|AP(φ)|}

states.
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Proof. According to Definition 7 and Theorem 3, φ has a model where
every non-bottom SCC has at most c(φ) states and hence at most c(φ) ·
(|psub(φ)+1|) descendants. Clearly, |psub(φ)+1| ≤ |sub(φ)|. The DAG-height
of the model is bounded by h(φ), and hence the total number of all SCCs of

the model is bounded by 2 · (c(φ) · |sub(φ)|)h(φ). The number of states in a
non-bottom SCC is bounded by c(φ), and the number of states in a BSCC
is bounded by 2|AP(φ)| by Theorem 2. Thus, we obtain the presented bound
on the number of states. □

3.1. Examples of Effectively Progressive PCTL Fragments

First, let us note that the quantitative PCTL fragments with decidable
finite satisfiability problem studied in [6, 7] are effectively progressive.

The fragments studied in [6] are arranged into a syntactic hierarchy with
two maximal elements Gq(Fq,Gq,∨) and Fq,G1,∨. The fragment Gq(Fq,Gq,∨)
consists of formulae φ defined by the following abstract syntax:

φ ::= G▷r ψ
ψ ::= a | ¬a | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | F▷r ψ | G▷r ψ

In [6], it is shown that H(φ) = 0 for every finitely satisfiable formula φ of
this fragment. Hence, the conditions of Definition 7 are satisfied as follows.
For every finitely satisfiable φ, we put

• c(φ) = h(φ) = 0;

• Comφ = {Xs} where s is a state of a strongly connected model of φ
such that s |= φ; we also put g(X) = 0.

Note that the second condition of Definition 7 holds trivially because g(X) =
0 for every X ∈ Comφ.

The fragment Fq,G1,∨ is defined as follows:

φ ::= a | ¬a | φ1 ∧ φ2 | F▷r ψ | G=1 ψ

As it is proven in [6], every finitely satisfiable formula φ of Fq,G1,∨ has a
model where every non-bottom SCC is a singleton, and the DAG of SCCs
is a tree of height at most H(φ) where H(φ) ∈ N is a computable constant.
Again, the model’s shape allows us to construct the functions required in
Definition 7 almost trivially. For every finitely satisfiable φ, we fix a tree-like
model Mφ of height at most H(φ). For every state s of Mφ, let Hs be the
DAG-height of the Markov chain obtained from Mφ by removing all SCCs
that are not reachable from the SCC containing s. We put
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• c(φ) = 0, h(φ) = H(φ);

• Comφ = {Xs | s is a state of M};

• g(Xs) = min{Ht | t is a state of Mφ such that t |= Xs}.

Then, the two conditions of Definition 7 are satisfied.
The bounded PCTL fragment studied in [7] contains formulae whose va-

lidity in a state s depends only on an effectively bounded prefix of runs
initiated in s. Hence, every finitely satisfiable formula of this fragment has
a tree-like model of an effectively bounded height. In principle, the effective
progressivity of the fragment can be justified in the same way as for the
Fq,G1,∨ fragment above. However, our definition of effectively progressive
fragments (Definition 7) is tailored for a simplified variant of PCTL without
the bounded until operator used in the bounded PCTL fragment. Hence, we
first need to adjust Definition 7 to full PCTL syntax, which is straightforward
(observe that even if the set psub(φ) changes, the notion of φ-commitments
makes good sense, and Definition 7 does not require any major modifica-
tions).

Now we give an example of an effectively progressive PCTL fragment that
is not covered by the results of [6, 7].

Let L1 be a PCTL fragment defined by the following abstract syntax
equations:

φ ::= a | ¬a | φ1 ∧ φ2 | φ1 ∨ φ2 | F▷r φ | G▷r θ
θ ::= a | ¬a | θ1 ∧ θ2 | θ1 ∨ θ2 | G▷r θ

Note that the syntax of L1 forbids using the F▷r operator inside formulae of
the form G▷r θ. We show that L1 is effectively progressive. To achieve that,
we need some additional definitions.

For every φ ∈ L1, let Comφ be the set of all finitely satisfiable φ-commitments.
Furthermore, let c, h : L1 → N and g : Comφ → N be functions defined as fol-
lows:

c(φ) = 1,

h(φ) =
∑

Fψ∈psub(φ)

⟨Fψ⟩,

g(X) =
∑

Fψ∈psub(φ)
X(Fψ)>0

⟨Fψ⟩.
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Here, ⟨Φ⟩ is defined for every path formula Φ of the form Fφ or Gφ induc-
tively by ⟨Φ⟩ = 1+

∑
Ψ∈psub(φ)⟨Ψ⟩ (the empty sum denotes 0). Observe that

g(X) = 0 only if X contains only formulae of the form a, ¬a, and G▷r ψ.
One can easily show that each such X ∈ Comφ has a one-state model, i.e.,
H(X) = 0.

For the rest of this section, we fix a finitely satisfiable φ ∈ L1. For
every X ∈ Comφ and every state s in some Markov chain such that s |= X,
let Cl(X, s) (the closure of X in s) be the least set K of PCTL formulae
satisfying the following conditions:

• X ⊆ K,

• if ψ1 ∨ ψ2 ∈ K and s |= ψ1, then ψ1 ∈ K,

• if ψ1 ∨ ψ2 ∈ K and s |= ψ2, then ψ2 ∈ K,

• if ψ1 ∧ ψ2 ∈ K, then ψ1, ψ2 ∈ K,

• if P (Gψ) ▷ r ∈ K, then ψ ∈ K,

• if P (Fψ) ▷ r ∈ K and s |= ψ, then ψ ∈ K.

Observe that Cl(X, s) ⊆ L1 and s |= Cl(X, s). Furthermore, we define a
φ-commitment X[s] ∈ Comφ as follows:

• X[s](a) = X(a) for every a ∈ AP(φ);

• X[s](Gψ) = Ps({π ∈ Run(s) | π |= Gψ}) for all Gψ ∈ Cl(X, s);

• X[s](Fψ) = Ps({π ∈ Run(s) | π |= Fψ}) for all Fψ ∈ Cl(X, s) such
that s ̸|= ψ;

• X[s](Ψ) = 0 for all other Ψ ∈ psub(φ).

Intuitively, the φ-commitment X[s] may only strengthen the requirements
specified by X, i.e., X[s] implies X. At first glance, this does not seem to be
the case because X[s] seemingly “disregards” subformulae of the form Fψ
where s |= ψ by setting X[s](Fψ) = 0. However, X[s] also sets (possibly
new) requirements implying the satisfaction of ψ. Thus, X[s] enforces the
satisfaction of F=1 ψ.
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Example 2. Let φ ≡ F≥0.2(G≥0.5 a), and let X be a φ-commitment such that
X(a) = 1, X(F(G≥0.5 a)) = 0.7, and X(G a) = 0. Consider a state s such
that s |= G=0.8 a. Then X[s](a) = 1, X[s](F(G≥0.5 a)) = 0, and X[s](G a) =
0.8.

Note that X[s] implies X, and the requirement of satisfying F(G≥0.5 a)
with probability at least 0.7 is “replaced” with a new requirement of satisfying
G a with probability at least 0.8. Also observe that g(X[s]) < g(X).

In general, we have that g(X[s]) ≤ g(X), but the inequality is not neces-
sarily strict. As we shall see, the decrease of g is achieved by considering
appropriate successors of s and “updating” X[s] in these successors. Now we
formalize and prove the above observations.

Lemma 5. X[s] implies X.

Proof. Since X ⊆ Cl(X, s), it suffices to show that X[s] implies ψ for every
ψ ∈ Cl(X, s). Recall that s |= Cl(X, s). We proceed by induction on the
structure of ψ.

• ψ ≡ a or ψ ≡ ¬a. It suffices to realize that a ∈ Cl(X, s) iff X(a) = 1
iff X[s](a) = 1, and ¬a ∈ Cl(X, s) iff X(a) = 0 iff X[s](a) = 0.

• ψ ≡ ψ1 ∧ ψ2 or ψ ≡ ψ1 ∨ ψ2. Immediately by induction hypothesis.

• ψ ≡ P (Gψ) ▷ r. Since s |= P (Gψ) ▷ r, we have that X[s](Gψ) ▷ r by
definition of X[s]. Hence, X[s] implies P (Gψ) ▷ r.

• ψ ≡ P (Fψ) ▷ r. Then s |= P (Fψ) ▷ r, and we distinguish two possibil-
ities.

– s |= Ψ. Then Ψ ∈ Cl(X, s), and henceX[s] implies Ψ by induction
hypothesis. This means that X[s] implies P (Fψ) = 1, and hence
also P (Fψ) ▷ r.

– s ̸|= Ψ. Then X[s](Fψ) ▷ r, and hence X[s] implies P (Fψ) ▷ r.

Lemma 6. g(X[s]) ≤ g(X). Furthermore, if there is a formula Fψ such
that X(Fψ) > 0 and s |= ψ, then g(X[s]) < g(X).
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Proof. Recall
g(X) =

∑
Fψ∈psub(φ)
X(Fψ)>0

⟨Fψ⟩

Let Fψ ∈ psub(φ) such that X(Fψ) > 0. If X ̸|= ψ, then the summand for
Fψ in g(X[s]) does not change. Otherwise, the summand for Fψ in g(X[s]) is
replaced with (zero or more) summands for subformulae F ϱ1, . . . ,F ϱk where
k ≥ 0 and F ϱi ∈ psub(Fφ) for every i ≤ k (see the definition of X[s] above).
Since ⟨Fψ⟩ >

∑k
i=1⟨F ϱi⟩, we are done. □

Note that in Lemma 6, we rely on the syntactic restrictions imposed by
the definition of L1. Since L1 prohibits the use of F within subformulae of
the form Gψ, no “new” subformulae of the form F ϱ in X[s] can be generated
by the closure of Gψ in s. Without this restriction, Lemma 6 may not hold,
as illustrated in the following example:

Example 3. Let φ ≡ G≥0.4 F≥0.8 a. Note that φ ̸∈ L1. Consider a φ-commitment
X such that X(GF≥0.8 a) = 0.5 and X(F a) = 0. Then for every state s such
that s |= X we have that X[s](F a) ≥ 0.8. Observe that g(X) = 0 and
g(X[s]) = 1, and hence Lemma 6 does not hold for φ. Intuitively, the prob-
lem is that φ keeps “regenerating” the requirement F≥0.8 a, and hence the
progress in satisfying φ cannot be measured by the progress in satisfying its
F-subformulae.

Now we show that the two conditions of Definition 7 are satisfied for the
functions c, h and g defined above. To verify the first condition, consider
a state s of a finite Markov chain such that s |= φ. Then Xs ∈ Comφ,
Xs implies X, and g(Xs) ≤ h(φ) as required. Now let X ∈ Comφ such
that H(X) > 0, and let s |= X where s is a state in a finite Markov chain
M = (S, P, v). Consider the set B of all t ∈ S such that t belongs to some
BSCC of M or t |= ψ for some F▷r ψ ∈ X[s]. Furthermore, for every t ∈ B,
let

• ν(t) be the probability of all runs initiated in s visiting the state t so
that all states preceding the first visit to t are not contained in B;

• Yt be the φ-commitment obtained by “updating” X[s] in t, i.e., Yt(a) =
Xt(a) for all a ∈ AP(φ), and for every path formula Φ we have that
Yt(Φ) is equal either to 0 or Xt(Φ), depending on whether X[s](Φ) = 0
or X[s](Φ) > 0, respectively.
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Observe that t |= Yt and g(Yt) ≤ g(X). If t belongs to a BSCC of M ,
then H(Yt) = H(Yt[t]) = 0. Otherwise, g(Yt[t]) < g(Yt) by Lemma 6, hence
g(Yt[t]) < g(X).

Let T be the set of all t ∈ B such that ν(t) > 0. Since the probability
of all runs initiated is s that eventually visit a BSCC of M is equal to one,
we obtain

∑
t∈T ν(t) = 1. Now consider Markov chain M ′ = (S ′, P ′, v′) with

a SCC C = {s′} such that v′(s′) = v(s), Desc(C) = {t′ | t ∈ T}, and
P ′(s′, t′) = ν(t) for every t ∈ T . Then |C| = 1 = c(φ), and a C-assignment
A such that A(t′) = Yt[t] is g-progressive for X. It remains to verify that A
is safe for X. To see this, recall that X[s] implies X and realize the following:

• For every formula Fψ such thatX[s](Fψ) > 0 we have thatX[s](Fψ) =∑
t∈T ν(t) · Yt[t](Fψ).

• For every formula Gψ such thatX[s](Gψ) > 0 we have thatX[s](Gψ) ≤∑
t∈T ν(t) · Yt[t](Gψ). Note that the inequality can be strict because

the formula ψ can be invalid in some states visited along a path from s
to a state of T .

Hence, if every t′ is replaced with a state satisfying Yt[t], then s
′ |= X[s] and

hence also s′ |= X as required.

4. Loop Progressive Fragments

In this section, we introduce a special class of effectively progressive PCTL
fragments called loop-progressive fragments, where the “progress SCC” C of
Definition 7 is a simple loop with one exit state. To some extent, the pre-
sented notions and observations generalize the ones presented in Section 3.1.

As a running example, we use the formula

φ ≡ G=1

(
F≥0.5(a ∧ F≥0.2¬a) ∨ a

)
∧ F=1G=1 a ∧ ¬a

and its model of Fig. 1.

Definition 9 (the sets C(ξ, s) and E(ξ, s)). For a PCTL formula ξ and
a state s in a Markov chain M such that s |= ξ, we define the set C(ψ, s) as
the least set K satisfying the following conditions:

• ξ ∈ K;
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• if ψ1 ∨ ψ2 ∈ K and s |= ψ1, then ψ1 ∈ K;

• if ψ1 ∨ ψ2 ∈ K and s |= ψ2, then ψ2 ∈ K;

• if ψ1 ∧ ψ2 ∈ K, then ψ1, ψ2 ∈ K;

• if F▷r ψ ∈ K and s |= ψ, then ψ ∈ K.

The set E(ξ, s) is defined in the same way as C(ξ, s), except the last condition
is omitted.

Recall that every φ-commitmentX can be interpreted as a PCTL formula
(see Remark 1), which means that C(X, s) and E(X, s) are defined.

Observe that C(ξ, s) contains some but not necessarily all subformulae of
ξ that are valid in s. In particular, there is no rule saying that if G▷r ψ ∈ K,
then ψ ∈ K. As we shall see, the subformulae within the scope of the G▷r

operator are treated in a special way. Also note that C(ξ, s) and E(ξ, s) are
defined differently from the set Cl(ξ, s) used in Section 3.1.

In our next definition, we introduce the set Comφ consisting of “relevant”
φ-commitments used to progressively simplify the original φ in the sense of
Definition 7.

Definition 10 (φ-commitment Ys,ξ). Let L be a PCTL fragment and φ ∈
L. For every ξ ∈ L and every state s in some finite-state Markov chain such
that psub(ξ) ⊆ psub(φ) and s |= ξ, we define the φ-commitment Ys,ξ where

• for every a ∈ AP(φ), we have that Ys,ξ(a) = 1 if s |= a, and Ys,ξ(a) = 0
otherwise,

• Ys,ξ(Φ) = Ps({π ∈ Run(s) | π |= Φ}) for all Φ ∈ psub(φ) such that
Cl(ξ, s) contains a formula of the form P (Φ) ▷ r,

• Ys,ξ(Φ) = 0 for the other Φ ∈ psub(φ).

The set Comφ consists of all Ys,ξ.

Note that Comφ is eligible, because every element of Comφ is finitely satis-
fiable and Ys,φ implies φ for every s such that s |= φ.
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Example 4. For the formula φ and the state s of our running example, we
obtain

C(φ, s) = {φ, G=1

(
F≥0.5(a ∧ F≥0.2 ¬a) ∨ a

)
, F=1 G=1 a, ¬a}

Observe that although F=1 G=1 a ∈ C(φ, s), the formula G=1 a is not in-
cluded into C(φ, s) because s ̸|= G=1 a. Furthermore,

• Ys,φ
(
G
(
F≥0.5(a ∧ F≥0.2 ¬a) ∨ a

))
= 1,

• Ys,φ(F G=1 a) = 1,

and all other components of Ys,φ (incl. Ys,φ(a)) are zero.

Now we introduce several notions needed to define a loop-progressive
PCTL fragment.

Consider a φ-commitment Ys,ξ ∈ Comφ where s is a state of some finite
Markov chain. Intuitively, we aim to simplify Ys,ξ not only by constructing
appropriate successors of s, but also by connecting a suitable “predecessor”
loop L with states ℓ0, . . . , ℓn and one exit edge leading to s (see Fig. 3).

We start by formalizing the notion of a progress loop.

Definition 11 (progress loop). Let φ be a finitely satisfiable PCTL for-
mula and Ys,ξ ∈ Comφ. A progress loop for Ys,ξ is a finite sequence L =
L0, . . . , Ln of subsets of sub(Ys,ξ) satisfying the following conditions:

(1) Ys,ξ ⊆ Li for some i ∈ {0, . . . , n};

(2) L0, . . . , Ln are pairwise different (this induces an upper bound on n);

(3) for every i ∈ {0, . . . , n}, we have that

– if a ∈ Li, then ¬a ̸∈ Li;

– if ψ1 ∧ ψ2 ∈ Li, then ψ1, ψ2 ∈ Li;

– if ψ1 ∨ ψ2 ∈ Li, then ψ1 ∈ Li or ψ2 ∈ Li;

– if G▷r ψ ∈ Li, then ψ ∈ Lj for every j ∈ {0, . . . , n}.

Definition 11 by itself does not guarantee any progress in satisfying Ys,ξ.
This is achieved by additional conditions specified later. A better intuitive
understanding of the actual purpose of a progress loop can be developed after
introducing the necessary notions (see Remark 3).
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Example 5. Consider the φ-commitment Ys,φ of our running example. Then
L0, L1, where

L0 = {φ, G=1

(
F≥0.5(a ∧ F≥0.2 ¬a) ∨ a

)
, F≥0.5(a ∧ F≥0.2 ¬a) ∨ a,

F≥0.5(a ∧ F≥0.2 ¬a), F=1G=1 a, ¬a}
L1 = {F≥0.5(a ∧ F≥0.2 ¬a) ∨ a, F≥0.5(a ∧ F≥0.2 ¬a), a ∧ F≥0.2 ¬a, a, F≥0.2 ¬a}

is a progress loop for Ys,φ. Note that L0 is the least set containing φ satisfying
the closure properties of Definition 11. The set L1 then inevitably contains
the formula F≥0.5(a∧F≥0.2 ¬a)∨ a, but the conditions of Definition 11 would
be satisfied even if we used

L′
1 = {F≥0.5(a ∧ F≥0.2 ¬a) ∨ a, a}

instead of L1. However, we will impose additional restrictions on progress
loops preventing using L′

1.

For a given progress loop L , we use ∆(L ) to denote the set of all formu-
lae occurring in L whose satisfaction is not guaranteed by L itself. More
precisely, the set ∆(L ) is defined as follows:

Definition 12 (the set ∆(L )). Let L = L0, . . . , Ln be a progress loop for
Ys,ξ ∈ Comφ. The set ∆(L ) is the union of all ψ ∈ L0 ∪ · · · ∪ Ln such that
one of the following conditions holds:

• ψ ≡ G▷r ϱ;

• ψ ≡ F▷r ϱ and ϱ ̸∈ L0 ∪ · · · ∪ Ln;

• ψ ≡ F=1 ϱ and F=1 ϱ ∈ Li for some i such that ϱ ̸∈ Li ∪ · · · ∪ Ln.

Example 6. Consider the progress loop L = L0, L1 for Ys,φ of Example 5.
Then

∆(L ) = {G=1

(
F≥0.5(a ∧ F≥0.2 ¬a) ∨ a

)
, F=1G=1 a} .

Note that Ys,∆(L ) = Ys,φ. For the progress loop L ′ = L0, L
′
1 of Example 5,

we obtain
∆(L ′) = ∆(L ) ∪ {F≥0.5(a ∧ F≥0.2 ¬a)}

Now we define loop progressive PCTL fragments.
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Definition 13 (loop progressive PCTL fragment). A PCTL fragment
L is loop progressive if for every finitely satisfiable φ ∈ L and every Ys,ξ ∈
Comφ such that H(Ys,ξ) > 0 there exists a progress loop L = L0, . . . , Ln
such that

(1) ∆(L ) ∈ L;

(2) s |= ∆(L );

(3) s ̸|= ϱ for every formula of the form F▷r ϱ such that F▷r ϱ ∈ ∆(L );

(4) degs(∆(L )) ⊂ degs(Ys,ξ) or cfs(∆(L )) ⊆ cfs(Ys,ξ).
Here, the sets degs(X) and cfs(X), where X is a set of PCTL fomulae,
are defined as follows:

– degs(X) consists of all formulae G ϱ such that sub(X) contains a
formula of the form G▷r ϱ and s ̸|= G=1 ϱ;

– cfs(X) consists of all formulae F ϱ such that X contains a formula
of the form F▷r ϱ, s ̸|= ϱ, and there is a finite path from s to a
state t where t |= ϱ and degt(X) = degs(X).

Remark 2. Intuitively, the sets degs(X) and cfs(X) represent the “complex-
ity of G and F requirements imposed by X on s”. More specifically,

• degs(X) contains G ϱ formulae that are “mentioned” in X as subfor-
mulae but are not satisfied in s with probability one.

• cfs(X) contains some of the formulae F ϱ where F▷r ϱ occurs in X.
Intuitively, we do not need to include such a formula into cfs(X) if
either s |= ϱ, or every state t reachable from s such that t |= ϱ sat-
isfies degt(X) ⊂ degs(X). In the first case, the F▷r ϱ requirement is
satisfied immediately in s. In the second case, the future satisfaction
of ϱ inevitably causes a decrease in the complexity of G requirements
measured by deg.

Let us illustrate the technical conditions of Definition 13 on our running
example.

Example 7. Consider the φ-commitment Ys,φ. Recall that Ys,φ can be in-
terpreted as a set of formulae

Ys,φ = {¬a, G=1

(
F≥0.5(a ∧ F≥0.2 ¬a) ∨ a

)
, F=1G=1 a}
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1− p

Ys,∆(L )

Figure 3: A graph for a progress loop L0, . . . , Ln.

We have that
degs(Ys,φ) = {G a}
cfs(Ys,φ) = ∅

In particular, note that the formula FG=1 a does not belong to cfs(Ys,φ),
because the only state t reachable from s such that t |= G=1 a also satisfies
degt(Ys,φ) = ∅, hence degt(Ys,φ) ⊂ degs(Ys,φ) (see Fig. 1).

Furthermore, for the progress loops L ,L ′ of Example 5, we obtain

degs(∆(L )) = {G a}
cfs(∆(L )) = ∅
degs(∆(L ′)) = {G a}
cfs(∆(L ′)) = {F(a ∧ F≥0.2 ¬a)}

Hence, the conditions of Definition 13 are satisfied for the progress loop L
but not for the progress loop L ′.

Remark 3. Example 7 also reveals the actual purpose of progress loops.
States of a progress loop L are used to ensure that satisfaction of formu-
lae of the form F▷r ϱ generated by G-formulae occurring in Ys,ξ happens on
the progress loop itself. In other words, L needs to be chosen so that ∆(L )
does not contain any “new” formulae of the form F▷r ϱ that are not contained
in Ys,ξ. The only exceptions are when

• degs(∆(L )) ⊂ degs(Ys,ξ), which is a sufficiently strong progress indi-
cator by itself (this condition may hold even though Ys,ξ is included in
some state of L , see Definition 12);

• every state t reachable from s such that t |= ϱ satisfies degt(∆(L )) ⊂
degs(∆(L )). Then, F▷r ϱ does not contribute to the “complexity of
F-requirements imposed by ∆(L ) on s” in the sense of Remark 2.
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A proof of the next theorem shows how to construct the descendants of
s in a progress loop for Ys,ξ ∈ Comφ together with a safe and progressive
assignment.

Theorem 7. If a PCTL fragment L is loop progressive, then L is effectively
progressive.

Proof. Let L be a loop progressive PCTL fragment. For every finitely
satisfiable φ ∈ L, we put c(φ) = 2|psub(φ)|. The functions h and g required in
Definition 7 are defined later.

For the rest of this proof, we fix a finitely satisfiable φ ∈ L. Let Ys,ξ ∈
Comφ, where s is a state of a finite Markov chain N and H(Ys,ξ) > 0. Let
L = L0, . . . , Ln be a progress loop for Ys,ξ satisfying the conditions of Defi-
nition 13. We construct a finite Markov chain M by extending N with fresh
states ℓ0, . . . , ℓn in the way shown in Fig. 3. The states ℓ0, . . . , ℓn correspond
to L0, . . . , Ln and form the only top SCC C of M where Desc(C) = {s}.
The valuation v of N is extended to M so that a ∈ v(ℓi) iff a ∈ Li. The
probability p > 0 is chosen so that 1− p is strictly larger than the maximal
r ̸= 1 appearing in formulae of the form F▷r ϱ ∈ L0 ∪ · · · ∪ Ln.

Recall that Ys,ξ ⊆ Li for some 0 ≤ i ≤ n. First, we show that a
C-assigment A such that A(s) = Ys,∆(L ) is safe for Ys,ξ. This is achieved by
proving a stronger claim saying that if θ ∈ Li where 0 ≤ i ≤ n, then ℓi |= θ.
We proceed by induction on the structure of θ.

• θ ≡ a or θ ≡ ¬a. If θ ∈ Li, then ℓi |= θ by the definition of v.

• θ ≡ ψ1 ∧ ψ2. If ψ1 ∧ ψ2 ∈ Li, then ψ1, ψ2 ∈ Li, and hence ℓi |= ψ1 ∧ ψ2

by induction hypothesis.

• θ ≡ ψ1 ∨ ψ2. Similarly as above.

• θ ≡ G▷r ψ. If G▷r ψ ∈ Li, then for every 0 ≤ j ≤ n we have that
ψ ∈ Lj and hence ℓj |= ψ by induction hypothesis. Furthermore,
G▷r ψ ∈ ∆(L ), hence s |= G▷r ψ because s |= ∆(L ). This implies
ℓi |= G▷r ψ.

• θ ≡ F▷r ψ. Then there are three cases:

– r < 1 and ψ ∈ L0 ∪ · · · ∪Ln. If F▷r ψ ∈ Li, then ℓi |= F▷r ψ by our
choice of p and induction hypothesis.
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– r < 1 and ψ ̸∈ L0 ∪ · · · ∪ Ln. If F▷r ψ ∈ Li, then F▷r ψ ∈ ∆(L ),
hence s |= F▷r ψ, and thus also ℓi |= F▷r ψ because the probability
of all runs initiated in ℓi that visit the state s is equal to one.

– r = 1 and for every i such that F=1 ψ ∈ Li we have that ψ ∈
Li ∪ · · · ∪ Ln. Then ℓi |= F=1 ψ by induction hypothesis.

– r = 1 and F=1 ψ ∈ Li for some i such that ψ ̸∈ Li∪· · ·∪Ln. Then
F=1 ψ ∈ ∆(L ), hence s |= F=1 ψ, and we obtain ℓi |= F=1 ψ.

Since the φ-commitment Ys,∆(L ) is not necessarily different from Ys,ξ (see
Example 6), it is generally not “simpler” than Ys,ξ. Now we show that there
exist a finite set T of states of N and a probability distribution ν over T such
that

Ys,∆(L ) ≤
∑
t∈T

ν(t) · Yt,∆t(L ) . (4)

Here, ∆t(L ) denotes the set ∆(L ) “updated” to t, i.e., ∆t(L ) is obtained
from ∆(L ) by changing every P (Φ) ▷ r ∈ ∆(L ) into P (Φ) ≥ r′, where
r′ = Pt({π ∈ Run(t) | π |= Φ}). If r′ = 0, the formula P (Φ) ≥ r′ is not
included into ∆t(L ). Observe that t |= ∆t(L ).

Furthermore, we prove that g(Yt,∆t(L )) < g(Ys,ξ) for every t ∈ T such that
H(Yt,∆t(L ))) ≥ 1 where g : Comφ → N is the complexity measure defined
below. Thus, the second condition of Definition 7 is established, because we
can then replace s with T by setting Desc(C) = T and P (ℓn, t) = p · ν(t) for
every t ∈ T . Clearly, the C-assignment defined by A(t) = Yt,∆t(L ) is both
g-progressive and safe for Ys,ξ.

Let B be the set of all states t of N such that t either belongs to a BSCC
of N or there exists a formula F▷r ψ ∈ ∆(L ) such that t |= ψ. For every
t ∈ B, let ν(t) be the probability of all runs initiated in s visiting the state
t so that all states preceding the first visit to t are not contained in B. Let
T be the set of all t ∈ B such that ν(t) > 0. Since the probability of all runs
initiated is s that eventually visit a BSCC of N is equal to one, we obtain∑

t∈T ν(t) = 1. Now consider the vector

X =
∑
t∈T

ν(t) · Yt,∆t(L )

Clearly, for every F▷r ψ ∈ ∆(L ) we have that Ys,∆(L )(Fψ) = X(Fψ). Fur-
thermore, for every G▷r ψ ∈ ∆(L ) we obtain Ys,∆(L )(Gψ) ≤ X(Gψ). This
inequality can be strict because ψ can become invalid along a path from s
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before visiting a state of B (the runs initiated by such a path do not satisfy
Gψ). This proves Inequality (4).

Now we define the function g : Comφ → N. Recall the functions degs(X)
and cfs(X) introduced in Definition 13, and for every Yu,ϱ ∈ Comφ, we put

g(Yu,ϱ) = |degu(Yu,ϱ)| ·
(
1 +

∑
Φ∈psub(Yu,ϱ)

⟨Φ⟩
)
+

∑
Φ∈cfu(Yu,ϱ)

⟨Φ⟩

Here, ⟨Φ⟩ is defined for every path formula Φ of the form F η or G η in-
ductively by ⟨Φ⟩ = 1 +

∑
Ψ∈psub(η)⟨Ψ⟩ (the empty sum denotes 0). Observe

that if g(Yu,ϱ) = 0, then s |= G=1 η for every G η ∈ psub(Yu,ϱ), and if Yu,ϱ
contains a formula of the form F▷r η, then s |= η. Hence, Yu,ϱ has a strongly
connected model, i.e., H(Yu,ϱ) = 0.

It remains to show that g(Yt,∆t(L )) < g(Ys,ξ) for every t ∈ T such that
t does not belong to a BSCC of N (if t belongs to a BSCC of N , then
H(Yt,∆t(L )) = 0). Realize the following:

(a) degt(∆t(L )) ⊆ degs(∆(L )) ⊆ degs(Ys,ξ). This follows directly from
the definition of deg (also recall that the probability of all runs initiated
in s visiting t is positive).

(b)
∑

Φ∈psub(Yt,∆t(L ))
⟨Φ⟩ ≤

∑
Φ∈psub(Ys,ξ)

⟨Φ⟩

According to item (4) of Definition 13, we can distinguish two possibilities:

1. degs(∆(L )) ⊂ degs(Ys,ξ). Then, we obtain degt(∆t(L )) ⊂ degs(Ys,ξ)
by applying (a). Also observe degt(Yt,∆t(L )) = degt(∆t(L )). Hence, we
can use (b) to conclude that the difference between the first summand
of g(Ys,ξ) and the first summand of g(Yt,∆t(L )) is at least

1 +
∑

Φ∈psub(Ys,ξ)

⟨Φ⟩

Since cft(Yt,∆t(L )) ⊆ psub(Yt,∆t(L )), by applying (b) we also obtain
that the difference between the second summand of g(Yt,∆t(L )) and
the second summand of g(Ys,ξ) is at most∑

Φ∈psub(Ys,ξ)

⟨Φ⟩

Hence, g(Ys,ξ)− g(Yt,∆t(L )) ≥ 1, which proves g(Yt,∆t(L )) < g(Ys,ξ).
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2. cfs(∆(L )) ⊆ cfs(Ys,ξ). Since degt(Yt,∆t(L )) = degt(∆t(L )) ⊆ degs(Ys,ξ)
(see (a)), the difference between the first summand of g(Ys,ξ) and the
first summand of g(Yt,∆t(L )) is non-negative. Furthermore, cft(Yt,∆t(L )) ⊂
cfs(∆(L )) because t |= ψ for some F▷r ψ ∈ ∆(L ). This means that
the second summand of g(Yt,∆t(L )) is strictly smaller than the second
summand of g(Ys,ξ), hence g(Yt,∆t(L )) < g(Ys,ξ). □

Since g(X) ≤ 3 · ||φ||3 for every φ-commitment X, we put h(φ) = 3 · ||φ||3 to
satisfy the first condition of Definition 7. □

An immediate consequence of Theorem 7, Theorem 4, and Proposition 1
is the following:

Theorem 8. Let L be a loop progressive PCTL fragment. Then the finite
satisfiability problem for L is in 2-EXPSPACE.

Theorem 8 can be applied to various PCTL fragments by demonstrating
their loop progressivity, and can be interpreted as a “unifying principle”
behind these concrete decidability results. To illustrate this, we give examples
of loop progressive fragments in Section 4.1.

4.1. Examples of Loop Progressive Fragments

In this section, we give examples of loop progressive fragments. Let us
note that the fragment L1 of Section 3.1 is also loop progressive. For a
finitely satisfiable formula of L1, a progress loop can always be chosen as a
singleton, and hence is not too interesting. In the following abstract syntax
equations, the constraint ▷r has the same meaning as in Definition 1, and
▷w stands for an arbitrary constraint except for ‘=1’.

Fragment L2

φ ::= a | ¬a | φ1 ∧ φ2 | φ1 ∨ φ2 | F▷r φ | G=1 θ
θ ::= a | ¬a | θ1 ∧ θ2 | θ1 ∨ θ2 | F▷w θ

Fragment L3

φ ::= a | ¬a | φ1 ∧ φ2 | φ1 ∨ φ2 | F▷r φ | G=1 θ | G=1 ϱ
θ ::= a | ¬a | θ1 ∧ θ2 | θ1 ∨ θ2 | F▷w θ
ϱ ::= ϱ1 ∧ ϱ2 | ϱ1 ∨ ϱ2 | F▷w θ | G=1 θ | G=1 ϱ
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Fragment L4

φ ::= a | ¬a | φ1 ∧ φ2 | φ1 ∨ φ2 | F▷r φ | G=1 θ
θ ::= a | ¬a | θ1 ∧ θ2 | θ1 ∨ θ2 | F>0 θ | G=1 θ

Observe that L2 and L3 contain the formula φ defined by (1) in Section 1.
The above fragments are chosen so that they are not covered by the results
of [6] and illustrate various properties of Definition 13. All of them contain
formulae requiring non-bottom SCCs with more than one state.

Proposition 9. Fragment L2 is loop progressive.

Proof. Let φ ∈ L2 and Ys,ξ ∈ Comφ where H(Ys,ξ) ≥ 1. We need to show
the existence of a progress loop L = L0, . . . , Ln. We construct the loop
inductively so that every Li is associated with some state ti reachable from
s where ti |= Li.

The set L0 is the least set K satisfying the following conditions:

• Ys,ξ ⊆ K;

• if ψ ∈ K, then C(ψ, s) ⊆ K;

• if G▷r ψ ∈ K, then ψ ∈ K.

We put t0 = s (observe that s |= L0). Furthermore, let N be the set of all ϱ
such that G=1 ϱ ∈ L0.

Suppose that L0, . . . , Ln are the sets constructed so far where ti |= Li for
every i ∈ {0, . . . , n}. Now we distinguish two possibilities:

• If for every formula of the form F▷r ϱ ∈ L0∪ . . .∪Ln where F▷r ϱ ̸∈ Ys,ξ
there exists i ∈ {0, . . . , n} such that ϱ ∈ Li, then the construction
terminates.

• Otherwise, let F▷r ϱ ∈ Li be a formula such that F▷r ϱ ̸∈ Ys,ξ and
ϱ ̸∈ L0 ∪ . . . ∪ Ln. It follows from the definition of L2 that r ̸= 1.
Furthermore, ti ̸|= ϱ (this is guaranteed by the closure rules defining L0

and Lk+1, see below). Since ti |= F▷r ϱ, there exists a state t reachable
from ti (and hence also from s) such that t |= ϱ. Moreover, t |= N .
Now, we construct Ln+1 as the least set K satisfying the following
conditions:
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– ϱ ∈ K;

– N ⊆ K;

– if ψ ∈ K, then C(ψ, t) ⊆ K.

Observe that if G=1 ψ ∈ K, then G=1 ψ ∈ N because ϱ does not con-
tain any subformula of the form G▷r ψ (this follows directly from the
definition of L2). Furthermore, t |= Ln+1.

Note that if F▷r ψ ∈ ∆(L ), then this formula belongs also to Ys,ξ. Now it is
easy to verify that the constructed L = L0, . . . , Ln is a progress loop. □

The argument for L3 is similar, but a progress loop needs to be con-
structed somewhat differently. Let Ys,ξ ∈ Comφ where H(Ys,ξ) ≥ 1. For
every state t reachable from s, let Lt be the least set K satisfying the follow-
ing conditions, where θ and ϱ range over the sets of formulae defined by the
corresponding abstract syntax equations in the definition of L3:

(i) if there is F▷w θ ∈ sub(Ys,ξ) such that t |= θ, then E(θ, t) ⊆ K;

(ii) if there is G=1 θ ∈ sub(Ys,ξ) such that t |= θ, then E(θ, t) ⊆ K;

(iii) if there is G=1 ϱ ∈ sub(Ys,ξ) such that s |= ϱ, then E(ϱ, s) ⊆ K;

(iv) if t = s, then C(Ys,ξ, s) ⊆ K.

Note that Lt ⊆ sub(Ys,ξ). The syntactic restrictions of L3 imply the follow-
ing:

• The closure rule (iii) cannot add new formulae of the form a or ¬a into
Lt.

• The closure rules (i) and (ii) cannot add new formulae of the form G▷rλ
into Lt.

Let {L0, . . . , Ln} be the set of all Lt such that t is reachable from s (we
assume Li ̸= Lj for i ̸= j). We put L = L0, . . . , Ln. The conditions of
Definition 13 are now easy to verify.

A progress loop for L4 is constructed by altering the definition of Lt above
and considering only a suitable subset of states reachable from s.
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5. Conclusions

We have designed a general method for proving the decidability of the fi-
nite satisfiability problem for PCTL fragments. As an application, we derived
a meta-result about loop progressive fragments with four concrete instances
L1, . . . ,L4. A natural continuation of our work is considering fragments
requiring a more complex shape of a progress-achieving SCC. Natural can-
didates are loops with several exit states, and SCCs with arbitrary topology
but one exit state. Here, increasing the probability of satisfying Fφ sub-
formulae can be “traded” for decreasing the probability of satisfying Gφ
subformulae, and understanding this phenomenon is another important step
towards solving the finite satisfiability problem for the whole PCTL.
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Appendix A. Encoding PCTL bounded satisfiability in existential
theory of the reals

In this section, we sketch a (non-deterministic) polynomial space algo-
rithm deciding bounded PCTL satisfiability. Let φ be a PCTL formula and
n ∈ N a bound on the size of the model. Without restrictions3, we assume
that φ is constructed according to the abstract syntax equation

φ ::= a | ¬a | φ1 ∧ φ2 | φ1 ∨ φ2 | F▷◁ r φ

where ▷◁ ∈ {≥, >,≤, <}. We disregard the trivial probability constraints
‘≥0’, ‘>1’, ‘<0’, and ‘≤ 1’.

The algorithm starts by guessing a finite directed graph (V,−→), where
V = {v1, . . . , vm} andm ≤ n. Furthermore, for every subformula ψ ∈ sub(φ),
the algorithm guesses a subset V (ψ) ⊆ V so that

• V (a) = V \V (¬a) for every atomic proposition a such that ¬a ∈ sub(φ);

• V (ξ1 ∧ ξ2) = V (ξ1) ∩ V (ξ2) for every ξ1 ∧ ξ2 ∈ sub(φ);

• V (ξ1 ∨ ξ2) = V (ξ1) ∪ V (ξ2) for every ξ1 ∨ ξ2 ∈ sub(φ);

3Observe that every occurrence of G▷r φ can be replaced with F◁r ¬φ.
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• V (φ) ̸= ∅.

Then, the algorithm constructs the following formula of existential theory of
the reals, where k = |E| and Fsub(φ) is the set of all subformulae of φ of the
form F▷◁r ψ.

∃x1, . . . , xk :
n∧
i=1

0 < xi ≤ 1 ∧
∧
v∈V

Distr(v) ∧
∧

ψ∈Fsub(φ)

Correct(V (ψ))

The variables x1, . . . , xn represent the (positive) edge probabilities. We
write vi

xt−→ vj to indicate that xt represents the probability of vi −→ vj.
The formula Distr(v) says that the sum of the variables associated with

the outgoing edges of v is equal to 1, i.e.,∑
v

xt−→vj

xt = 1

The formula Correct(V (F▷◁r ψ)) says that the set of vertices satisfying the
formula F▷◁r ψ is precisely V (F▷◁r ψ), assuming that V (ψ) is correct.

∃y1, . . . , yn :
∧

vi∈V (ψ)

yi=1 ∧
∧

vi∈Out(V (ψ))

yi=0

∧
∧

vi∈Other(V (ψ))

yi =
∑

vi
xt−→vj

xt · yj

∧
∧

vi∈V (F▷◁r ψ)

yi ▷◁ r ∧
∧

vi ̸∈V (F▷◁r ψ)

yi ̸▷◁ r

Here, Out(V (ψ)) is the set of all vertices v ∈ V such that there is no path from
v to a state of V (ψ) in (V,−→), and Other(V (ψ)) = V \ (V (ψ)∪Out(V (ψ))).
Hence, the variable yi represents the probability of all runs initiated in vi
visiting a vertex in V (ψ).

Observe that the constructed formula belongs to existential theory of
the reals and its size is polynomial in the size of φ and n. Our algorithm
outputs ‘yes’ or ‘no’ depending on whether the formula is valid or not (which
is decidable in space polynomial in the size of φ and n [24]). Thus, the
existence of a model of φ with at most n states is decided in polynomial
space.
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