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tony@fi.muni.cz.

bUniversity of Edinburgh, School of Informatics, LFCS, 10 Crichton Street, Edinburgh EH8 9AB,
UK.

Abstract
For a given process equivalence, we say that a process g is fully equivalent to a pro-
cess f of a transition system T if g is equivalent to f and every reachable state of
g is equivalent to some state of T . We propose a generic method for deciding full
equivalence between pushdown processes and finite-state processes applicable to
every process equivalence satisfying certain abstract conditions. Then, we show
that these conditions are satisfied by bisimulation-like equivalences (including
weak and branching bisimilarity), weak simulation equivalence, and weak trace
equivalence, which are the main conceptual representatives of the linear/branching
time spectrum. The list of particular results obtained by applying our method in-
cludes items which are first of their kind, and the associated upper complexity
bounds are essentially optimal.
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1. Introduction

One of the main paradigms in formal verification is equivalence-checking,
where the correctness of a given implementation is demonstrated by proving se-
mantic equivalence with its intended behavior called the specification. Formally,
the implementation and the specification are understood as processes, i.e., states
in labeled transition systems, and the semantic equivalence is some equivalence
over the class of all processes. Equivalence proofs are often long and tedious, es-
pecially when the implementation uses unbounded data structures such as coun-
ters, stacks, or queues making the state space infinite. A natural question is
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whether such proofs can be produced automatically, i.e., whether a given pro-
cess equivalence is decidable in a given class of processes, and what is the as-
sociated complexity. The equivalence-checking problem has been considered for
various process equivalences and various classes of infinite-state processes in the
last decades; we refer to, e.g., [49, 18, 37, 9, 43, 11, 53] for surveys of some
subfields.

A special variant of the equivalence-checking problem is regular equivalence-
checking, where the specification is a finite-state process. Hence, an instance of
the regular equivalence-checking problem is a process g of a (possibly infinite-
state) transition system U, and a process f of a finite-state transition system T .
The question is whether g and f are equivalent for some fixed process equiva-
lence. In general, the process g may reach states that are not equivalent to any
state of T , i.e., the system T does not necessarily characterize the state space
of g up to the chosen equivalence. This motivates the problem of full regular
equivalence-checking, where we require that g and f are fully equivalent, i.e.,
they are equivalent and each state reachable from g is equivalent to some state
of T . The concept of full equivalence was introduced in [40] and studied in [47],
where it was shown that, for a large class of process equivalences, the problem
of full regular equivalence-checking is reducible to the model-checking problem
with a slightly extended version of the branching-time logic EF.

In this paper, we restrict our attention to implementations definable by push-
down automata (PDA), a widely accepted model1 for sequential programs with
recursive procedure calls (see, e.g., [2, 3, 20, 22, 21]). The operational behav-
ior of a given PDA ∆ is formally defined by the associated transition system T∆,
where the states are the configurations of ∆ and the transitions are determined by
the rules of ∆ in the natural way (see Section 2). Hence, T∆ has infinitely many
states. We use PDAk to denote the subclass of PDA processes where the underly-
ing pushdown automaton has at most k control states. Due to historical reasons,
we also refer to PDA1 processes as BPA processes.2

1From the language-theoretic point of view, the definition of PDA adopted in this paper cor-
responds to the subclass of real-time PDA. The concept of ε-transitions is replaced by “silent”
transitions with a distinguished label τ which may (but do not have to) be treated in a special way
by a given semantic equivalence.

2The “BPA” acronym stands for Basic Process Algebra, a natural fragment of ACP [5]. BPA al-
gebra is expressively equivalent (up to strong bisimilarity) to PDA processes with one control state.
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1.1. Our contribution
We give a generic algorithm for the full regular equivalence-checking problem

where the implementation (i.e., the process g) is a PDA process. The algorithm
is applicable to every process equivalence satisfying certain abstract criteria, and
we show that these criteria are met by bisimulation-like equivalences (incl. weak,
early, delay, and branching bisimilarity), weak simulation equivalence, and weak
trace equivalence. These equivalences are the main conceptual representatives of
the linear/branching time spectrum [57, 58], and the applicability of the presented
algorithm extends to many (if not all) equivalences in this spectrum by modifying
the techniques used for the aforementioned representatives. For PDAk processes,
where k ≥ 1 is a fixed constant, the obtained algorithms are essentially optimal.

More specifically, we show that, given a PDA ∆ and a finite-state system T ,
the full equivalence between the processes of ∆ and T is representable by a finite
relation B called base. All pairs of fully equivalent processes can be generated
from B by applying simple substitution rules assuming that the chosen process
equivalence is a right PDA congruence (see Definition 5). Then, we show how to
compute the base B as the greatest fixed-point of a certain monotonic function.
This monotonic function depends on another function called expansion which
must be tailored specifically for each process equivalence so that the criteria of
Definition 12 are satisfied. Finally, we show how to design an appropriate expan-
sion for the concrete process equivalences mentioned above. The list of particular
results obtained in this way includes the following:

(a) Branching bisimilarity [59] between PDAk and finite-state processes is de-
cidable in polynomial time. To the best of our knowledge, this is the first result
about computational tractability of branching bisimilarity for systems with in-
finitely many states (the same actually applies to early and delay bisimilarity).
Branching bisimilarity plays a distinguished role in the semantics of systems with
silent moves [56], similarly as strong bisimilarity [50] for processes without silent
moves.

(b) For weak simulation equivalence, we prove that full equivalence between
PDAk and finite-state processes is decidable in polynomial time. Since checking
(non-full) weak simulation equivalence between PDAk and finite-state processes
is EXPTIME-complete even for BPA [46], this result shows that full regular
equivalence-checking can be more tractable than “ordinary” regular equivalence-
checking.

(c) For weak trace equivalence, we show that full equivalence between PDAk

and finite-state processes is decidable in polynomial space, and the problem is
PSPACE-hard even for BPA. Since checking (weak) trace equivalence between
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BPA and finite-state processes is undecidable, we see that full regular equivalence-
checking can be even “more decidable” than regular equivalence-checking.

Another generic outcome of our method is an algorithm deciding whether a
given finite-state process is the ∼-quotient of a given PDA process for a given se-
mantic equivalence ∼. Here we need to assume that ∼ is preserved under quotients
(see Definition 18) which is not really restrictive because most of the existing pro-
cess equivalences satisfy this property [40, 42].

1.2. Related work
Language equivalence is undecidable for general nondeterministic PDA and

BPA [30]. However, for the deterministic subclass (dPDA), language equivalence
is decidable [51] (see also [55, 34]). The computational complexity of this prob-
lem is open and no nontrivial lower bound is known. For the subclass of deter-
ministic one-counter automata, language equivalence-checking is NL-complete
[8].

Checking bisimulation equivalence is decidable for PDA processes [52]. A
nonelementary lower bound has been shown in [6] (see also [35]), improving
the previous EXPTIME lower bound of [46]; the exact complexity is still open.
However, bisimilarity is known to be PSPACE-complete for the subclass of one-
counter automata [7]. In the context of bisimilarity-checking, a special atten-
tion has been devoted BPA which are strictly less expressive than PDA w.r.t.
bisimulation-like equivalences. The first positive result is due to Baeten, Bergstra,
and Klop [4] who proved the decidability of strong bisimilarity for normed BPA
(a PDA is normed if the stack can be emptied from every reachable configuration).
Simpler proofs were given later in [14, 26, 32], and there is even a polynomial-
time algorithm [28]. The decidability result was extended to all (not necessar-
ily normed) BPA in [16], and a 2-EXPTIME upper complexity bound is due to
[12, 33]. An EXPTIME lower complexity bound for BPA bisimilarity was shown
in [39].

In the presence of silent τ-moves, the equivalence-checking problems become
harder. Weak bisimilarity is undecidable for PDA [54], and in fact even for a
very modest subclass of PDA known as one-counter nets3 [48] . The decidabil-
ity of weak bisimilarity for BPA is open. However, it is known that branching
bisimilarity is decidable for normed BPA [24], which extends the previous results

3One-counter nets are a subclass of one-counter automata where the counter cannot be tested
for zero explicitly; one-counter nets are expressively equivalent to Petri nets with at most one
unbounded place.
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about totally normed BPA [31, 15]. The best known upper complexity bound for
checking branching bisimilarity for normed BPA processes is EXPTIME [27]
(a NEXPTIME upper bound is due to [17]). It is open whether the decidabil-
ity result can be extended to all BPA processes, but it is already clear that such
extensions cannot go much beyond the BPA class [60].

For simulation-like and trace-like equivalences, the equivalence-checking
problem is undecidable even for (normed) BPA; this follows directly from Fried-
man’s result about the undecidability of language inclusion for simple gram-
mars [23]. Simulation equivalence is decidable for one-counter nets [1] (see also
[38, 29]), and the relationship between strong bisimilarity and simulation equiva-
lence over one-counter nets was studied in [36].

Regular equivalence-checking for PDA processes is computationally easier.
Strong and weak bisimilarity between PDA and finite-state processes is PSPACE-
complete [46]. The complexity is lower for the subclass of one-counter automata;
strong bisimilarity between processes of one-counter automata and finite-state
processes is decidable in polynomial time [41], while checking weak bisimilarity
is PNP-complete [25]. Strong and weak bisimilarity between BPA and finite-state
processes is decidable in polynomial time [45]. Checking strong and weak simula-
tion equivalence between BPA and finite-state processes is EXPTIME-complete,
and the same holds for general PDA [46, 44]. Trace-like equivalences between
BPA and finite-state processes are undecidable (this is a direct consequence of the
undecidability of the universality problem for context-free languages [30]).

Our results subsume and generalize the method used in [45] to decide weak
bisimilarity between BPA and finite-state processes in polynomial time. The pres-
ence of control states in PDA makes the (de)composition technique more intricate,
which is overcome by utilizing partial functions associating processes to control
states (see Definitions 7 and 8). Further, the technique is no longer limited to
weak bisimilarity, but applicable to an arbitrary right PDA congruence satisfying
the abstract conditions formulated in Definition 12. This is achieved by abstract-
ing the equivalence-specific part into the notion of expansion, and inventing new
techniques applicable to simulation-like and trace-like equivalences.

Both [45] and the work presented in this paper build on the idea of finite bisim-
ulation bases pioneered by Caucal [14]. Finite bisimulation bases exist for pro-
cesses of BPA and BPP systems. For the normed subclasses of BPA and BPP,
bisimulation bases are even computable in polynomial time. We refer to [11] for
a detailed exposition of these results. Bisimulation bases use simple congruence
rules to generate new pairs of bisimilar processes, and they are usually computed
iteratively by “cleaning” a sufficiently large relation subsuming the base. The
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same principle is used in [45] and the presented work, although the base and the
way of generating new pairs of processes are technically different. Since the scope
of our work includes equivalences with silent τ-moves, we have to deal with infi-
nite sets of configurations reachable by sequences of silent moves of unbounded
length, which complicates the “cleaning” phase. This difficulty is overcome by
representing the relevant infinite sets of configurations by efficiently constructible
finite-state automata. New insights are also required to handle the restrictions on
intermediate states visited by silent moves imposed by early, delay, and branching
bisimilarity. Simulation-like and trace-like equivalences need specific treatment
which has no direct counterpart in previous works.

The paper is organized as follows. In Section 2, we recall transition systems,
process equivalences, PDA systems, and the concept of full regular equivalence
[40, 47]. In Section 3, we introduce a finite semantic base representing full equiv-
alence between processes of a given PDA system and a given finite-state system.
Finally, in Section 4 we show how to compute the base B.

2. Basic Definitions

In this paper, processes are understood as states in transition systems.

Definition 1. A transition system is a triple T = (S ,A, → ) where S is a finite or
countably infinite set of states, A is a finite set of actions, and → ⊆ S × A × S
is a transition relation. A process is a pair (T , s), where T is a transition system
and s is a state of T .

When T is clearly determined by the context, we write just s instead of (T , s).
Further, we write s a

→ t instead of (s, a, t) ∈ → , and we extend this notation to
the elements of A∗ in the standard way. We say that a state t is reachable from
a state s, written s→ ∗t, if there is w ∈ A∗ such that s w

→ t. A state space of a
process (T , s) is the set of all states reachable from s in T . Two processes s, t are
isomorphic if there is a one-to-one correspondence h between their state spaces
such that h(s) = t and for all states u, u′ reachable from s we have that u a

→ u′ iff
h(u) a
→ h(u′).

We assume that A always contains a special silent action denoted by τ. In-
tuitively, τ-labeled transitions model “internal” computational steps that are not
directly visible to an external observer. For all s, t ∈ S , a “ τ

⇒” move from s to t is
a sequence of transitions s=u0

τ
→ · · ·

τ
→ ui=t where i ≥ 0, and a “ a

⇒ ” move from s
to t, where a , τ, is a sequence of transitions s=u0

τ
→ · · ·

τ
→ ui

a
→ v0

τ
→ · · ·

τ
→ v j=t
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where i, j ≥ 0. A “ a
⇒ ” move from s to t, where a ∈ A, is usually denoted by

s a
⇒ t. Note that there may exist infinitely many “ a

⇒ ” moves from s to t, and if
we needed to consider two different “ a

⇒ ” moves from s to t at the same time,
our notation would be insufficient (we could not denote both of these moves by
s a
⇒ t). Fortunately, there is no such need in this paper. When no confusion arises,

we slightly abuse our notation and write s a
⇒ t to indicate the existence of a “ a

⇒ ”
move from s to t.

A process equivalence is an equivalence over the class4 of all processes. In
general, a process equivalence ∼ does not fully characterize the state space of a
given process up to ∼. That is, even if s ∼ t, a state reachable from s is not nec-
essarily ∼-equivalent to any state reachable from t. This motivates the following
definition.

Definition 2. Let ∼ be a process equivalence and (T1, s1), (T2, s2) processes. We
say that (T1, s1) is fully equivalent to (T2, s2), denoted by (T1, s1) - (T2, s2), if
s1 ∼ s2 and for every s′1 reachable from s1 there is a state s′2 of T2 (not necessarily
reachable from s2) such that s′1 ∼ s′2.

Remark 3. Observe that if (T1, s1) - (T2, s2) and s1→
∗s′1, then for every state

s′2 of T2 such that s′1 ∼ s′2 we also have that s′1 - s′2.

In this paper, we are interested in the problem of checking full equivalence
with a finite-state process, formalized as follows:

Problem: Full regular equivalence-checking.
Instance: A process (U, g) and a finite-state process (T , f ).
Question: Do we have g - f ?

Here, we assume some finite encoding of (U, g). In our setting, (U, g) will always
be a pushdown process.

The concept of full regular equivalence was introduced and studied in [47].
For bisimulation-like equivalences, g ∼ f implies g - f , because bisimilar pro-
cesses have the same state space up to bisimilarity. However, for simulation-like
and trace-like equivalences, this implication does not hold. As a simple example

4In our setting, we can safely assume that the class of all processes is actually a set; for-
mally, this is achieved by fixing two sets States and Actions such that every transition system
T = (S ,A, → ) satisfies S ⊆ States andA ⊆ Actions.
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illustrating the difference, consider a finite-state system T with just one state f
where f a

→ f . Further, let ∼ be the trace equivalence5. Then,

• g ∼ f iff g can perform an arbitrarily long finite sequence of a’s and no other
action;
• g - f iff every state reachable from g can perform an arbitrarily long finite

sequence of a’s and no other action.

Obviously, the second condition is stronger and, in this particular case, encodes
the same property as strong bisimilarity to f . If we extend T by another state
f ′ which does not have any ingoing/outgoing transitions, then full trace equiva-
lence to f means that each reachable state can either perform an arbitrarily long
finite sequence of a’s (and no other action) or it is terminated. This property can-
not be encoded as bisimulation/simulation/trace equivalence with any finite-state
process.

An important advantage of full regular equivalence is its computational
tractability. As we shall see in Section 4, full regular equivalence-checking tends
to be more tractable and more decidable than “ordinary” regular equivalence-
checking (i.e., the question whether g ∼ f ).

One can argue that full regular equivalence is “asymmetric” in the sense that
the state space of g must be included in the set of states of T , but not vice versa.
In fact, a “symmetric” variant of full regular equivalence, where we require that
g ∼ f and the state spaces of g and f are the same up to ∼, is equally tractable as
the asymmetric version, at least for processes generated by pushdown automata
(see Remark 17). The main reasons for considering the asymmetric version are
its simplicity and convenience—we usually aim at specifying some kind of safety
property by describing the set of all admissible behaviors up to ∼ (by constructing
the system T ), and then it is not so important whether g can exhibit all or just
some of these behaviors.

Now we formally introduce pushdown automata and the corresponding class
of infinite-state processes.

Definition 4. A pushdown automaton (PDA) is a tuple ∆ = (Q,Γ,A, δ) where
Q , ∅ is a finite set of control states, Γ , ∅ is a finite stack alphabet, A , ∅ is
a finite input alphabet, and δ ⊆ (Q × Γ) × A × (Q × Γ≤2) is a set of rules where
Γ≤2 = {ε} ∪ Γ ∪ (Γ×Γ). A PDAk, where k ≥ 1, is a PDA with at most k control

5A word w ∈ Act∗ is a trace of a process s if s w
→ t for some t. Processes s, s′ are trace

equivalent if they have the same set of traces.
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states.

A configuration of ∆ is a pair pα ∈ Q × Γ∗. To ∆ we associate the transition
system T∆ where the states are the configurations of ∆, A is the set of actions,
and the transition relation, denoted by “→ ”, is the least relation % satisfying the
following condition: If (pX, a, qβ) ∈ δ, then (pXα, a, qβα) ∈ % for all α ∈ Γ∗. For
every pα ∈ Q × Γ∗, we use Mpα to denote the set of all r ∈ Q such that pα→ ∗rε.

In the rest of this paper, the elements of Q and Γ are denoted by lower case and
upper case Latin letters such as p, q, . . . and X,Y, . . ., respectively. The elements
of Γ∗ are denoted by Greek letters α, β, . . ., where ε denotes the empty word with
the standard conventions (in particular, εα = αε = α for every α ∈ Γ∗).

3. A Finite Semantic Base for PDA

For the rest of this section, we fix a pushdown automaton ∆ = (Q,Γ,A, δ), and a
finite state system T = (F,A, → ). The symbol F⊥ denotes the set F∪{⊥}, where
⊥ < F is formally understood as a process without any outgoing transitions.

Our aim is to show that the relation - between the processes of T∆ and T can
be represented by a finite set B called base such that for all pα ∈ Q×Γ∗ and f ∈ F
we have that pα - f iff the pair (pα, f ) can be generated from B by applying
simple substitution rules.

To get some intuition, let us first consider the case when ∆ has only one control
state p. For simplicity, we write just α instead of pα. For every α ∈ Γ∗ and a
process s, we use αs to denote the process which behaves like α until α reaches ε;
from this point on, αs behaves like s. Now, let us fix some X1X2 · · · X` ∈ Γ∗ and
f ∈ F such that X1X2 · · · X` - f . There are two possibilities.

• X1→
∗ε. Then X1X2 · · · X`→

∗X2 . . . Xk, and hence there exists g ∈ F such that
X2 · · · X` ∼ g. By substituting X2 . . . X` with g in X1X2 · · · X`, we obtain the
process X1g. We intuitively expect X1 · · · X` ∼ X1g, but this does not hold
in general; we need to assume that ∼ is a right congruence w.r.t. sequential
composition, i.e., if s ∼ t for some processes s, t, then αs ∼ αt for all α ∈
Γ∗. Under this assumption, which is satisfied by most of the standard process
equivalences, we easily obtain X1g - f .
Thus, X1X2 · · · X` - f is “decomposed” into X1g - f and X2 · · · X` ∼ g. We
“remember” the pair (X1g, f ) and continue by decomposing X2 · · · X` - g (see
Remark 3). If ` = 1, i.e., X2 · · · X` = ε, we stop and “remember” the pair (ε, g).
• X1 9∗ ε. Then, we have that X1s - f for an arbitrary process s, assuming

that ∼ does not distinguish between isomorphic processes. For technical reason
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clarified below, we “remember” the pairs (X⊥, f ), (ε,⊥), together with all pairs
of the form (Yg,⊥) where Y ∈ Γ and g ∈ F⊥.

Our base B consists of all pairs we need to remember when applying the decom-
position procedure above. That is,

B = {(Xg, f ) | Xg - f ,where X ∈ Γ, X → ∗ε, and g, f ∈ F}
∪ {(ε, f ) | ε - f ,where f ∈ F}
∪ {(X⊥, f ) | X - f ,where X ∈ Γ, X 9∗ ε, and f ∈ F}
∪ {(Yg,⊥) | Y ∈ Γ, g ∈ F⊥}
∪ {(ε,⊥)}

Note that B is finite and its size is O(|Γ| · |F|2). Also observe that by “reversing”
the above decomposition principle, the original pairs (α, f ) such that α - f can
be generated from B. Formally, let Cl(B) be the least set L subsuming B such that
whenever (αh, f ) ∈ L and B contains a pair of the form (w, h), where h ∈ F⊥, then
(αw, f ) ∈ L. Now it is easy to see that for all α ∈ Γ∗ and f ∈ F we have that
α - f iff (α, f ) ∈ Cl(B). The “⇒” direction follows by a simple induction on
the length of α; in the inductive step, we argue by distinguishing the two possible
ways of decomposing α - f (see above). Note that if X - f where X 9∗ ε,
then (Xβ, f ) ∈ Cl(B) for every β ∈ Γ∗. This explains the role of the “auxiliary”
pairs (Yg,⊥) and (ε,⊥); recall that g ranges over F⊥, including ⊥. For the “⇐”
direction, we just check that the above closure rule is safe.

Now we extend the above construction to general PDA with arbitrarily many
control states. We start by generalizing the notion of right congruence w.r.t. se-
quential composition, and then show how to adapt the base.

3.1. Right PDA Congruence
Recall that a process equivalence ∼ is a right congruence w.r.t. the standard

sequential composition “·” if for all processes s, t, u we have that t ∼ u implies
s · t ∼ s ·u. A process pα of ∆ can be seen as a sequential composition of recursive
procedure calls stored in the stack. The process pα terminates by emptying its
stack, i.e., by reaching a configuration rε. Let P be the set of all processes6, and
let ϕ : Q → P be a function assigning (some) process to every control state of Q.

6Since the set of states of every transition system T = (S ,A, → ) is finite or countably infinite,
we may safely assume S ⊆ S for some fixed set S. Similarly, we may assume that A is a subset
of some fixed set. Then, the class of all processes P is also a set.
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Now we can naturally define the sequential composition of pα and ϕ, denoted
by pαϕ, behaving like pα until a terminated configuration rε is reached, where
the process “switches” to ϕ(r). Formally, the behaviour of pαϕ is defined by the
following rules:

pα a
→ qβ

pαϕ a
→ qβϕ

ϕ(p) a
→ s

pϕ a
→ pϕ[s/p]

Here, ϕ[s/p] : Q → P is a function which returns the same result as ϕ for every
argument except for p where ϕ[s/p](p) = s. In principle, we could simplify the
second rule into

ϕ(p) a
→ s

pϕ a
→ s

which makes a clear sense if the operational behaviour of s is known. For our
purposes, the previous “more complicated” variant is more advantageous, because
it simplifies the structure of the base B defined in Section 3.2.

Clearly, the processes pϕ and ϕ(p) are isomorphic. Also observe that if ϕ(r) =

ψ(r) for all r ∈ Mpα, then the processes pαϕ and pαψ are isomorphic. Now we
formally define the notion of right PDA congruence.

Definition 5. We say that a process equivalence ∼ is a right PDA congruence if
the following conditions are satisfied:

• For every configuration pα of ∆ and all ϕ, ψ : Q→ P such that ϕ(q) ∼ ψ(q) for
all q ∈ Mpα, it holds that pαϕ ∼ pαψ.
• Isomorphic processes are ∼-equivalent.

Intuitively, the first item of Definition 5 says that if the computation of pα is “pro-
longed” by ∼-equivalent processes, then all such extensions are ∼-equivalent. It is
easy to check that bisimulation-like, simulation-like, and trace-like equivalences
(even in their “weak” forms) are right PDA congruences.

3.2. The Base B
Intuitively, the baseB is obtained by generalizing the relationB introduced for

BPA and strong bisimilarity at the beginning of Section 3. The only difference is
that the elements of F⊥ appearing in the pairs of B are replaced by the elements of
(F⊥)Q, i.e., by functions from Q to F⊥, which are consistently denoted by symbols
such as F ,G,H , . . . in the rest of this paper.

The operational semantics of a process pαF is defined by the rules given in
Section 3.1 (recall that⊥ is formally understood as a process without any outgoing
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transitions). Still, the role of ⊥ is somewhat special, which is reflected in our next
definition.

Definition 6. A function F : Q→ F⊥ is compatible with pα iff for every q ∈ Mpα

we have that F (q) , ⊥. The class of all functions compatible with pα is denoted
by C(pα).

Note that if F ∈ C(pα) and pα→ ∗qβ, then F ∈ C(qβ).
For the rest of this section, we fix a right PDA congruence ∼. For all α ∈ Γ∗

and F ,G : Q→ F⊥, we write

• α - F if pα - F (p) for all p ∈ Q where F (p) , ⊥;
• αG - F if G ∈ C(pα) and pαG - F (p) for all p ∈ Q where F (p) , ⊥.

In particular, note that if F (p) = ⊥ for all p ∈ Q, then α - F and αG - F for all
α ∈ Γ∗ and G : Q→ F⊥.

In the rest of this paper, the set of all processes of the form pα and pαF , where
p ∈ Q, α ∈ Γ∗, and F ∈ C(pα), is denoted by P(∆, F), and we use pw, qv, ru, . . .
to range over P(∆, F). When we write pw = pα or pw = pαF , we mean that pw
takes the respective form.

Now we are ready to define the base B. For technical reasons, we first intro-
duce a more general notion of well-formed sets. As we shall see in Section 4, the
base B is computable by “cleaning” the greatest well-formed set.

Definition 7. A well-formed set is a set K consisting of

• all pairs of the form (ε,F ) such that ε - F ;
• all pairs of the form (G,F ) such that G - F ;
• some (possibly none) pairs of the form (XG,F ) such that F (p) , ⊥ implies
G ∈ C(pX).

Further, we require7 that if (XG,F ) ∈ K and F - H , then (XG,H) ∈ K. The
base B is a well-formed set defined by

B = {(ε,F ) | ε - F } ∪ {(G,F ) | G - F } ∪ {(XG,F ) | XG - F } .

Note that if ∼ is decidable for finite-state processes, then the greatest well-
formed set G is effectively constructible. The only possible difference between

7This condition is needed in Lemma 11(c).
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G and B are some extra pairs of the form (XG,F ) which are “cleaned” by the
algorithm presented in Section 4.

Our next definition says how to generate new pairs of the form (α,F ) and
(αG,F ) from a given well-formed set K.

Definition 8. Let K be a well-formed set. The closure of K, denoted by Cl(K), is
the least set L satisfying the following conditions:

(1) K ⊆ L;
(2) if (αG,F ) ∈ L where α , ε and (ε,G) ∈ K, then (α,F ) ∈ L;
(3) if (αG,F ) ∈ L where α , ε and (XH ,G) ∈ K, then (αXH ,F ) ∈ L.

Clearly, Cl(K) =
⋃∞

i=0 Cli(K) where

• Cl0(K) = K;
• Cli+1(K) consists of exactly those pairs which are either in Cli(K) or can be de-

rived from K and Cli(K) by applying one of the rules (2) and (3) of Definition 8.

We intuitively expect that B generates precisely the pairs (α,F ) and (αG,F )
such that α - F and αG - F . The next theorem says that this is indeed the case.

Theorem 9. For all α ∈ Γ∗ and F ,G : Q→ F⊥ we have the following:

(A) αG - F iff (αG,F ) ∈ Cl(B);
(B) α - F iff (α,F ) ∈ Cl(B).

Proof. For the “⇐” direction of (A) and (B), it suffices to show that the
rules (2) and (3) of Definition 8 preserve the relation -. Since the arguments are
similar, we give an explicit proof just for the rule (3). Suppose αG - F and
XH - G. We need to show that αXH - F , i.e., for every p ∈ Q such that
F (p) , ⊥ we have that

(a)H ∈ C(pαX),
(b) pαXH - F (p).

Let us fix some p ∈ Q such that F (p) , ⊥. We start by proving (a). Clearly,
C(pαX) =

⋂
r∈Mpα

C(rX), and hence it suffices to proveH ∈ C(rX) for an arbitrary
fixed r ∈ Mpα. Since αG - F and F (p) , ⊥, we obtain G ∈ C(pα), which
implies G(r) , ⊥ because r ∈ Mpα. Since XH - G and G(r) , ⊥, we obtain
H ∈ C(rX) as needed. Now we prove (b). Recall that for every r ∈ Mpα we have
that G(r) , ⊥, which implies rXH - G(r) because XH - G. For every r ∈ Mpα,
we put ϕ(r) = rXH and ψ(r) = G(r). Since ∼ is a right PDA congruence, for
every qβ such that pα→ ∗qβ we obtain qβϕ ∼ qβψ. We prove that

13



(1) pαXH ∼ F (p),
(2) for every tw such that pαXH→ ∗tw there is g ∈ F such that tw ∼ g.

(1) follows immediately, because pαϕ ∼ pαψ, and the processes pαϕ and pαψ
are isomorphic to pαXH and pαG, respectively. Hence, pαXH ∼ pαϕ ∼ pαψ ∼
pαG. Further, pαG ∼ F (p) because αG - F and F (p) , ⊥. Thus, pαXH ∼
F (p). It remains to prove (2). Let pαXH→ ∗tw. We distinguish two cases:

• tw = qβXH where pα→ ∗qβ. Then pαG→ ∗qβG. Since αG - F and F (p) ,
⊥, there is g ∈ F such that qβG ∼ g. Further, qβϕ ∼ qβψ, where qβϕ and qβψ
are isomorphic to qβXH and qβG, respectively. Thus, we obtain qβXH ∼ g.
• pαXH→ ∗rXH→ ∗tw where pα→ ∗rε. Then r ∈ Mpα, which impliesG(r) , ⊥

(see above). Since XH - G and G(r) , ⊥, we obtain rXH - G(r). As
rXH→ ∗tw, there exists g ∈ F such that tw ∼ g.

The “⇒” direction of (A) is proven by induction on the length of α. If α = ε,
we are done immediately because if G - F , then (G,F ) ∈ B by Definition 7.
Now assume α = βY where βYG - F . We prove that (βYG,F ) ∈ Cl(B). Let
MF ,β be the union of all Mpβ such that F (p) , ⊥. Since βYG - F , for every
r ∈ MF ,β we can fix fr ∈ F such that rYG ∼ fr. Let H : Q → F⊥ be a function
defined by H(r) = fr for all r ∈ MF ,β, and H(r) = ⊥ for all r ∈ Q r MF ,β. We
show that

(i) YG - H ,
(ii) βH - F .

Using (i) and (ii), the proof can be completed as follows. If β = ε, we have that
YG - H andH - F . This implies YG - F , hence (YG,F ) ∈ B by Definition 7.
If β , ε, we have that (YG,H) ∈ B by Definition 7, (βH ,F ) ∈ Cl(B) by induction
hypothesis, and (βYG,F ) ∈ Cl(B) by applying the rule (3) of Definition 8.

So, it remains to prove (i) and (ii). Observe that (i) follows directly from
the definition of H (see also Remark 3). Let ϕ(r) = rYG and ψ(r) = fr for all
r ∈ MF ,β. To prove (ii), let us fix some p ∈ Q such that F (p) , ⊥. Clearly,
H ∈ C(pβ). We show that pβH - F (p). Since ∼ is a right PDA congruence,
we obtain pβϕ ∼ pβψ, where pβϕ and pβψ are isomorphic to pβYG and pβH ,
respectively. Hence, pβYG ∼ pβH , and since pβYG ∼ F (p), we obtain pβH ∼
F (p). It remains to show that every process reachable from pβH is ∼-equivalent
to some process of F. Let pβH→ ∗tw. We distinguish two cases:

• tw = qγH where pβ→ ∗qγ. Then pβYG →∗ qγYG. Since βYG - F , there
is g ∈ F such that qγYG ∼ g. Further, qγϕ ∼ qγψ, where qγϕ and qγψ are
isomorphic to qγYG and qγH , respectively. Hence, qγH ∼ g.

14



• pβH→ ∗rH→ ∗tw where pβ→ ∗rε. Note that then t = r and w = J for some
J : Q→ F⊥, and the process tw is isomorphic to J(r). Hence, tw ∼ J(r).

The “⇒” direction of (B) follows easily now. Let α - F . If α = ε, we have
that ε - F , hence (ε,F ) ∈ B by Definition 7. Now let α , ε, and let MF ,α be
the union of all Mpα such that F (p) , ⊥. Since α - F , for every r ∈ MF ,α we
can fix fr ∈ F such that rε ∼ fr. Let H : Q → F⊥ be a function defined by
H(r) = fr for all r ∈ MF ,α, and H(r) = ⊥ for all r ∈ Q r MF ,α. Similarly as
above, we obtain ε - H and αH - F . Hence, (ε,H) ∈ B by Definition 7, and
(αH ,F ) ∈ Cl(B) due to (A) which has already been proven. By applying the
rule (2) of Definition 8, we obtain (α,F ) ∈ Cl(B). �

4. Computing the Base

In this section, we present algorithms for computing the base B for various pro-
cess equivalences. We start by describing the generic part of the method together
with some auxiliary technical results. The applicability of the method to concrete
process equivalences is demonstrated in the subsequent subsections.

For the rest of this section, we fix

• a pushdown automaton ∆ = (Q,Γ,A, δ) of size n;
• a finite-state system T = (F,A, → ) of size m;
• a process equivalence ∼ such that

− ∼ is a right PDA congruence;
− ∼ is decidable for finite-state processes.

Note that we can safely assume that the input alphabet of ∆ and the set of ac-
tions of T are the same. In our complexity estimations we also use the parameter
z = |F||Q|.

Definition 10. Let K be a well-formed set. For every i ∈ N0, we define the set
Geni(K) ⊆ P(∆, F) × F as follows:

Geni(K) = {(pα, f ) | there is F such that F (p) = f and (α,F ) ∈ Cli(K)}
∪ {(pαG, f ) | there is F such that F (p) = f and (αG,F ) ∈ Cli(K)}

Further, we put Gen(K) =
⋃∞

i=0 Geni(K).

Some useful properties of Gen are given in the next lemma (all items follow im-
mediately from Definitions 7 and 8).

15



Lemma 11. Let K be a well-formed set. Then we have the following:

(a) (pG, f ) ∈ Gen(K) iff G(p) , ⊥ and pG - f .
(b) (pε, f ) ∈ Gen(K) iff pε - f .
(c) If (pw, f ) ∈ Gen(K) and f ∼ g, then (pw, g) ∈ Gen(K).

The base B is computed by taking the greatest well-formed set G as the initial
over-approximation of B, and then applying one or more “cleaning steps” until
reaching a fixed-point. In each cleaning step, all pairs of the form (XG,F ) con-
tained in a current approximation K of the base are examined, and it is checked
whether every (pXG,F (p)), where F (p) , ⊥, expands in Gen(K). Intuitively,
the expansion condition is designed so that it implies pXG - F (p) if all pairs
of Gen(K) are “correct”, i.e., Gen(K) ⊆ -. For example, in the case of strong
bisimilarity, (pXG,F (p)) expands in Gen(K) if for every a

→ move of one process
there is a matching a

→ move of the other process such that the resulting pair of
processes belongs to Gen(K). If (pXG,F (p)) does not expand in Gen(K) for some
p ∈ Q such that F (p) , ⊥, the pair (XG,F ) is deleted from K, together with all
(XG,H) such that H - F (hence, the resulting relation is again well-formed).
Formally, an expansion is a function which to a given relation R ⊆ P(∆, F) × F
assigns a subset R′ ⊆ R of all pairs (pw, f ) ∈ R that expand in R. The desired
properties of expansion are formulated in the next definition.

Definition 12. We say that a pair of the form (XG,F ) is contained in a relation
R ⊆ P(∆, F) × F if (pXG,F (p)) ∈ R for all p ∈ Q such that F (p) , ⊥.

An expansion for ∼ is a function Exp which to every relation R ⊆ P(∆, F) × F
assigns a set Exp(R) ⊆ R so that the following conditions are satisfied (where- is
interpreted as a subset of P(∆, F)×F consisting of all (pw, f ) such that pw - f ):

(1) Exp is monotonic.
(2) Exp(-) = -.
(3) For every R ⊆ P(∆, F) × F, if Exp(R) = R then R ⊆ -.
(4) For every well-formed set K, we have that if every (XG,F ) ∈ K is contained

in Exp(Gen(K)), then Exp(Gen(K)) = Gen(K).
(5) Given a well-formed set K and a pair (XG,F ) ∈ K, it is decidable whether

(XG,F ) is contained in Exp(Gen(K)).

The next theorem says that if Exp is an expansion for ∼, then the base B is
computable in the way indicated above, i.e., by applying the algorithm of Fig. 1.

Theorem 13. If Exp is an expansion for ∼, then the algorithm of Fig. 1 computes
the base B.
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Input: A PDA ∆, a finite-state system T
Output: The base B

1: K := the greatest well-formed set G
2: repeat
3: U := K
4: for each (XG,F ) ∈ U do
5: if (XG,F ) is not contained in Exp(Gen(U))
6: then K := K r {(XG,H) | H - F }
7: until K = U
8: return K

Figure 1: An algorithm for computing the base B

Proof. First, realize that the greatest well-formed set G used at line 1 is com-
putable because the set {(ε,F ) | ε - F } ∪ {(G,F ) | G - F } is computable (recall
that ∼ is decidable for finite-state processes), and the set of all pairs of the form
(XG,F ), where F (p) , ⊥ implies G ∈ C(pX), is computable in time polyno-
mial in m, n, z, because the set MpX is computable in time polynomial in n (see,
e.g., [30]). Further, the condition in the if statement at line 5 is effective due to
Definition 12(5). The correctness of the algorithm is implied by the following
observations:

• If K is a well-formed set such that B ⊆ K and (XG,F ) ∈ K is not con-
tained in Exp(Gen(K)), then (XG,F ) < B (and hence (XG,H) < B for all
H - F ). To see this, realize that - = Exp(-) = Exp(Gen(B)) (here we use
Definition 12(2) and Theorem 9), hence every (XG,F ) ∈ B is contained in
Exp(Gen(B)). Further, Exp(Gen(B)) ⊆ Exp(Gen(K)) because Exp is monotonic
(Definition 12(1)). Thus, every (XG,F ) ∈ B is contained also in Exp(Gen(K)).
• Consider the well-formed set K returned by the algorithm at line 8. The pre-

vious observation implies B ⊆ K. Further, every (XG,F ) ∈ K is contained in
Exp(Gen(K)). This means Exp(Gen(K)) = Gen(K) by Definition 12(4), hence
Gen(K) ⊆ - by applying Definition 12(3). Hence, for each (XF ,G) ∈ K we
have that XF - G, which implies K ⊆ B. �

As we shall see, an appropriate expansion can be designed for almost every pro-
cess equivalence of the linear/branching time spectrum [57, 58].
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4.1. Finite multi-automata
A general problem related to equivalences with silent τ-moves is that the set of

states reachable in one a
⇒ move can be infinite. For example, in the case of weak

bisimilarity, it is natural to stipulate that (pXG,F (p)) expands in Gen(K) if for
every a

→ move of one process there is a matching a
⇒ move of the other process

such that the resulting pair of processes belongs to Gen(K) (cf. the paragraph
preceding Definition 12). It is not hard to verify that the associated Exp indeed
satisfies the conditions (1)–(4) of Definition 12. Now consider the condition (5).
Given a well-formed set K, a pair (XG,F ) ∈ K, and p ∈ Q such thatF (p) , ⊥, we
need to decide whether (pXG,F (p)) expands in Gen(K). In particular, this means
to check whether for every F (p) a

→ f there exists a matching move pXG a
⇒ qw

such that (qw, f ) ∈ Gen(K). Since there may exist infinitely many candidates
for qw, we cannot try all of them one by one. Instead, we construct

• a finite-state automaton recognizing all words qw such that pXG a
⇒ qw;

• a finite-state automaton recognizing all words qw such that (qw, f ) ∈ Gen(K).

Then, we just check whether the languages recognized by the two finite-state au-
tomata have a non-empty intersection. Interestingly, this is achievable in time
polynomial in m, n, z.

Now we develop these tools formally. The next definition is borrowed
from [10].

Definition 14. A multi-automaton is a tupleM = (S ,Σ, γ,Acc) where

• S is a finite set of states such that Q ⊆ S (i.e., the control states of ∆ are among
the states ofM);
• Σ = Γ∪ {F | F : Q→ F⊥} is the input alphabet (i.e., the alphabet has a special

symbol for each F : Q→ F⊥);
• γ ⊆ S × Σ × S is a transition relation, which is extended to the elements of

S × Σ∗ × S in the natural way;
• Acc ⊆ S is a set of accepting states.

Every multi-automatonM determines a unique set

L(M) = {pw | p ∈ Q,w ∈ Σ∗, γ(p,w) ∩ Acc , ∅} .

A set P ⊆ P(∆, F) is recognized by a multi-automatonM if P = L(M).

Now we show that the set of all configurations reachable from a set of con-
figurations represented by a given multi-automaton is also representable by an
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efficiently constructible multi-automaton. For every set of processes P and every
action a, we define the sets

• Posta(P) = {t | there is s ∈ P such that s a
→ t},

• Post∗(P) = {t | there is s ∈ P such that s→ ∗t},
• Post∗τ(P) = {t | there is s ∈ P such that s τ

⇒ t} .

Note that if P ⊆ P(∆, F), then Posta(P), Post∗(P), and Post∗τ(P) are also subsets
of P(∆, F). A proof of the following lemma is obtained by applying the standard
saturation technique for pushdown automata (see, e.g., [13] for an overview of
recent results). An explicit proof can be found in [19].

Lemma 15. Let P ⊆ P(∆, F) be a set of processes recognized by a multi-
automaton M. Then one can compute multi-automata recognizing the sets
Posta(P), Post∗(P), and Post∗τ(P) in time which is polynomial in m, n, z and the
size ofM.

In the next lemma we prove that for every well-formed set K and every f ∈
F, one can efficiently construct a multi-automaton recognizing all pw such that
(pw, f ) ∈ Gen(K). Here we utilize the simplicity of Cl(K), see Definition 8.

Lemma 16. Let K be a well-formed set and f ∈ F. There is a multi-automaton
MK, f constructible in time polynomial in the size of K recognizing the set
Gen f (K) = {pw | (pw, f ) ∈ Gen(K)}.

Proof. The multi-automatonMK, f is constructed as follows:

• the set of states is Q ∪ {fin} ∪ {F̂ | F : Q→ F⊥};
• the transition relation is the least γ satisfying the following conditions:

− for all (XG,F ) ∈ K and p ∈ Q such that F (p) = f we have that (p, X, Ĝ) ∈ γ;
− for all (G,F ) ∈ K and p ∈ Q such that F (p) = f we have that (p,G, fin) ∈ γ;
− if (XG,F ) ∈ K, then (F̂ , X, Ĝ) ∈ γ;
− if (y, X, Ĝ) ∈ δ and (ε,G) ∈ K, then (y, X, fin) ∈ γ;
− (F̂ ,F , fin) ∈ γ for every F : Q→ F⊥;

• the set of accepting states is

{fin} ∪ {p ∈ Q | there is (ε,F ) ∈ K such that F (p) = f } .

One can easily verify that L(MK, f ) = Gen f (K). �

19



Remark 17. Lemma 15 and Lemma 16 can also be used to decide the “sym-
metric” variant of full regular equivalence discussed in Section 2 where we re-
quire that g ∼ f and the sets of states reachable from g and f are the same up
to ∼. Given a PDA process pα and a process f of a finite-state transition sys-
tem T , we first restrict the set of states of T to the subset of states reachable
from f , then compute the base B, and finally check whether pα ∈ Gen f (B) and
Post∗({pα}) ∩ Gen f ′(B) , ∅ for every f ′ such that f → ∗ f ′.

It is worth noting that the base B together with Lemma 15 and Lemma 16 can
also be used to decide whether a given finite-state process f is the ∼-quotient of a
given PDA process pα, under the condition that ∼ is preserved under quotients.

Definition 18. Let s be a process with state space S and ∼ a process equivalence.
The ∼-quotient of s is the process [s] of the transition system (S/∼,A, � ), where
A consists of all actions a such that t a

→ u for some t, u ∈ S , and [t] a� [u] iff
t′ a
→ u′ for some t′, u′ ∈ S such that t ∼ t′ and u ∼ u′. We say that ∼ is preserved

under quotients iff s ∼ [s] for every process s.

It has been shown in [40] (see also [42]) that all reasonable process equivalences
are preserved under quotients.

An algorithm deciding whether f is isomorphic to the ∼-quotient of pα (where
∼ is preserved under quotients) is given in Fig. 2. First, it is verified that the set
of actions AT of T is equal to the set of actions executable in the configurations
reachable from pα (line 1). Note that the set

{a ∈ A | there exist (qX, a, rγ) ∈ δ and β ∈ Γ∗ such that pα→ ∗qXβ}

is computable in time polynomial in the size of pα and ∆ (see Lemma 15). At
line 2, it is verified that the states of F are pairwise non-equivalent. Then, it is
checked whether the state space of pα is included in F up to ∼ (lines 3 and 4).
Note that T may still contain some extra states and transitions which are not
present in the ∼-quotient of pα. At line 6, it is checked that for each transition
f ′ a
→ f ′′ of T there exists a transition qβ a

→ rγ such that qβ - f ′, rγ - f ′′, and
pα→ ∗qβ. Similarly, at line 7 it is checked that no transition of the ∼-quotient
of pα is missing in T . Observe that the if statements at lines 6 and 7 can be
implemented by computing a multi-automatonM recognizing the set

Posta(Post∗({pα}) ∩ Gen f ′(B)) ∩ Gen f ′′(B)
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Input: A process pα of a PDA ∆ = (Q,Γ,A, δ),
a process f of a finite-state transition system T = (F,AT , → ).

Output: YES if f is the ∼-quotient of pα, NO otherwise.

1: if AT , {a ∈ A | there exist (qX, a, rγ) ∈ δ and β ∈ Γ∗ such that pα→ ∗qXβ}
then return NO

2: if there are f ′, f ′′ ∈ F such that f ′ , f ′′ and f ′ ∼ f ′′ then return NO
3: compute the base B
4: if pα < Gen f (B) then return NO
5: for all f ′, f ′′ ∈ F, a ∈ A do
6: if f ′ a

→ f ′′ and Posta(Post∗({pα}) ∩ Gen f ′(B)) ∩ Gen f ′′(B) = ∅

then return NO
7: if (not f ′ a

→ f ′′) and Posta(Post∗({pα}) ∩ Gen f ′(B)) ∩ Gen f ′′(B) , ∅
then return NO

8: od
9: return YES

Figure 2: An algorithm deciding whether f is the ∼-quotient of pα.

and checking whether L(M) = ∅ (note thatM is effectively constructible due to
Lemma 15 and Lemma 16). Moreover, if the base B is computable in time poly-
nomial in m, n, z, then the algorithm of Fig. 2 also terminates in time polynomial
in m, n, z.

4.2. Bisimulation Equivalences with Silent Moves
In this subsection, we show how to compute the base B for bisimulation-like

equivalences with silent moves. We explicitly consider the four main representa-
tives which are weak, early, delay, and branching bisimilarity. We prove that for
all of these equivalences, the base B is computable in time polynomial in m, n, z.

Definition 19. Let T1 = (S 1, → ,A) and T2 = (S 2, → ,A) be transition systems8

such that S 1 ∩ S 2 = ∅. Further, let R ⊆ S 1 × S 2 and (s, a, s′) ∈ S 1 × A × S 1

(note that (s, a, s′) is not necessarily a transition of T1). We say that a move

8Although we use the same symbol “→ ” to denote the transition relations of T1 and T2, no
confusion arises because the sets S 1 and S 2 are disjoint.
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t a
⇒ t′ is R-consistent with (s, a, s′) in a weak, early, delay, or branching style, if

(s, t), (s′, t′) ∈ R and one of the following conditions holds:

• a = τ and t = t′;
• the move t a

⇒ t′ takes the form t=u0
τ
→ · · ·

τ
→ ui

a
→ v0

τ
→ · · ·

τ
→ v j=t′ where

i, j ≥ 0, and

(i) if the style is early or branching, then (s, ui) ∈ R;
(ii) if the style is delay or branching, then (s′, v0) ∈ R.

Further, we say that a move t a
⇒ t′ is tightly R-consistent with (s, a, s′) (in a given

style) if stronger variants of the above conditions are satisfied, where (i) requires
(s, uk) ∈ R for all k ≤ i, and (ii) requires (s′, vk) ∈ R for all k ≤ j.

A pair (s, t) ∈ R b-expands in R if

• for every s a
→ s′ there is a move t a

⇒ t′ which is R-consistent with s a
→ s′;

• for every t a
→ t′ there is a move s a

⇒ s′ which is R−1-consistent with t a
→ t′.

Let BExp be a function which to every R ⊆ S 1 × S 2 assigns the set of all (s, t) ∈
R that b-expand in R. A tight b-expansion and a function TBExp are defined
analogously using tight R-consistency instead of R-consistency.

We say that R is a weak, early, delay, or branching bisimulation if R ⊆
BExp(R), where the function BExp is parameterized by the respective style. Pro-
cesses s, t are weakly, early, delay, or branching bisimilar if they are related by
some weak, early, delay, or branching bisimulation, respectively.

Since our constructions are to a large extent independent of the chosen style of
bisimilarity, from now on we refer just to “bisimilarity” which is denoted by ∼ in
the rest of this subsection. As bisimilar processes have the same state space up
to ∼, we do not distinguish between the relations ∼ and -.

The next lemma recalls the standard property of bisimilarity used in the proof
of Lemma 23.

Lemma 20. Let T1 = (S 1, → ,A) and T2 = (S 2, → ,A) be transition systems
where S 1 ∩ S 2 = ∅, and let ∼ be the relation of bisimilarity over S 1 × S 2. Then
TBExp(∼) = ∼.

Proof. Let R ⊆ S 1 × S 2 be a relation defined by (s, t) ∈ R if one of the following
conditions holds:

• There are u, u′ ∈ S 1 and moves u τ
⇒ s, s τ

⇒ u′ such that u ∼ t, and u′ ∼ t.
• There are v, v′ ∈ S 2 and moves v τ

⇒ t, t τ
⇒ v′ such that s ∼ v, and s ∼ v′.
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It is easy to verify that R is a bisimulation, and hence R ⊆ ∼. From this we
immediately obtain ∼ ⊆ TBExp(∼), hence TBExp(∼) = ∼. �

For technical reasons that become clear in the proof of Lemma 23, we need to
assume that the transition relation of T is “complete” in the following sense:

Definition 21. Let ∼F be the relation of bisimilarity over F × F. We say that
T is complete if, for all f , f ′ ∈ F and a ∈ A, the existence of a move f a

⇒ f ′

∼F-consistent with ( f , a, f ′) implies f a
→ f ′.

The completeness assumption is not restrictive because if we add the missing
transitions to T (which can be done in time polynomial in m), each state f of T
stays bisimilar to itself. Note that this would not be true if we added a f a

→ f ′

transition for every move f a
⇒ f ′ (consider, e.g., branching bisimilarity).

Our aim is to design a suitable function Exp satisfying the conditions (1)–(5)
of Definition 12. A natural idea is to employ the function BExp introduced in
Definition 19. Obviously, BExp is monotonic, BExp(∼) = ∼, and if BExp(R) = R,
then R ⊆ ∼. Now let K be a well-formed set such that every (XG,F ) ∈ K is
contained in BExp(Gen(K)). We need to show Gen(K) ⊆ BExp(Gen(K)), which
can be achieved by proving Geni(K) ⊆ BExp(Gen(K)) for every i ≥ 0 (by in-
duction on i). However, there are some difficulties in the induction step. To see
this, consider a pair (pαXG, f ) ∈ Geni+1(K) such that (pαF , f ) ∈ Geni(K) and
(XG,F ) ∈ K. Then

(a) (pαF , f ) b-expands in Gen(K) by induction hypothesis,
(b) for every q ∈ Q such that F (q) , ⊥ we have that (qXG,F (q)) b-expands in

Gen(K) (because (XG,F ) is contained in BExp(Gen(K))).

We need to show that (pαXG, f ) b-expands in Gen(K). In particular, this means
to prove that for every f a

→ g, where a , τ, there is a “ a
⇒ ” move of pαXG which

is Gen(K)−1-consistent with f a
→ g. Due to (a), we know that such a “ a

⇒ ” move
exists for pαF . One of the problematic cases is when the style is branching and
this move takes the form

pαF
τ
⇒ rF

τ
⇒ rJ

a
⇒ rH

where pα τ
⇒ rε and (rH , g) ∈ Gen(K). Here, we would like to conclude that

there exists a move F (r) a
⇒H(r) ∼F-consistent with (F (r), a,H(r)) (see Defini-

tion 21), hence F (r) a
→H(r), and due to (b) there is a move rXG a

⇒ tw which is
Gen(K)−1-consistent with F (r) a

→H(r). Further, the sequence

pαXG
τ
⇒ rXG

a
⇒ tw

23



should form a “ a
⇒ ” move which is Gen(K)−1-consistent with f a

→ g. Unfortu-
nately, there is no clear justification for the existence of a move F (r) a

⇒H(r)
∼F-consistent with (F (r), a,H(r)). If we used TBExp instead of BExp, the above
argument would work, because then (rF , f ) ∈ Gen(K), hence rF ∼ f by
Lemma 11(a), and F (r) ∼ f because rF ∼ F (r). However, deciding whether
a given (XG,F ) ∈ K is contained in TBExp(Gen(K)) (cf. condition (5) of Defi-
nition 12) is complicated because of the constraints that must be satisfied by all
of the intermediate configurations visited along the move pXG a

⇒ tw. So, TBExp
is not an ideal choice either. After considering possible ways of resolving these
problems, it turned out that a simple solution is to modify the function BExp as
follows:

Definition 22. Let R ⊆ P(∆, F)×F. We say that a pair (pw, f ) ∈ R quasi-expands
in R if the following conditions hold:

• for every pw a
→ qv, there is f a

→ g such that (qv, g) ∈ R;
• for every f a

→ g, one of the following conditions hold:

− a = τ and (pw, g) ∈ R;
− there is a “ a

⇒” move of pw which is R−1-consistent with f a
→ g. Further, this

move contains at most one transition of the form rG x
→ rH (which can appear

only at the end of the whole move).

A function which to every R ⊆ P(∆, F)×F assigns the set of all (pw, f ) ∈ R which
quasi-expand in R is denoted by QExp.

We immediately obtain that QExp is monotonic, and if QExp(R) = R, then R ⊆ ∼.
It remains to check the conditions (2), (4), and (5) of Definition 12.

Lemma 23. Let ∼ be the relation of bisimilarity over P(∆, F) × F. Then
QExp(∼) = ∼.

Proof. Let (pw, f ) ∈ P(∆, F) × F be a bisimilar pair of processes. We need
to show that (pw, f ) quasi-expands in ∼. Let pw a

→ qv. Since (pw, f ) tightly
b-expands in ∼ (see Lemma 20), there are two possibilities.

(a) a = τ and qv ∼ f . Since the sequence consisting only of f is a f τ
⇒ f move

∼F-consistent with ( f , τ, f ), we obtain f τ
→ f due to the completeness of T .

(b) There is a move f a
⇒ g tightly ∼-consistent with pw a

→ qv (see Lemma 20).
Then, the move f a

⇒ g is ∼F-consistent with ( f , a, g), and due to the complete-
ness of T we obtain f a

→ g.
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Now let f a
→ g. Since (pw, f ) tightly b-expands in ∼ (see Lemma 20), we either

have that a = τ and pw ∼ g (and we are done), or there is a move pw a
⇒ qv which

is tightly ∼−1-consistent with f a
→ g. The only problematic case not admitted by

Definition 22 is when the move pw a
⇒ qv takes the form

pαG
x1
−→ · · ·

xn
−→ qG = qG0

y1
−→ · · ·

ym
−→ qGm = qv

where m ≥ 2. However, the sequence G0(q) y1−→ · · ·
ym−→Gm(q) is then a “ x

⇒ ”
move ∼F-consistent with (G0(q), x,Gm(q)), where x = a or x = τ. Observe that
here we need the tight ∼−1-consistency of pw a

⇒ qv with f a
→ g. Thus, we obtain

G0(q) x
→Gm(q) because T is complete. Now it is easy to check that

pαG
x1
−→ · · ·

xn
−→ qG = qG0

x
−→ qGm = qv

is a “ a
⇒ ” move ∼−1-consistent with f a

→ g. �

Lemma 24. Let K be a well-formed set such that every (XG,F ) ∈ K is contained
in QExp(Gen(K)). Then QExp(Gen(K)) = Gen(K).

Proof. By induction on i, we show that Geni(K) ⊆ QExp(Gen(K)) for all i ≥ 0.
In the base case (when i = 0), we need to consider pairs of the form

(A) (pε,F (p)) where (ε,F ) ∈ K and F (p) , ⊥;
(B) (pG,F (p)) where (G,F ) ∈ K and F (p) , ⊥;
(C) (pXG,F (p)) where (XG,F ) ∈ K and F (p) , ⊥.

We start with (A). Observe that there is no transition of the form pε a
→ qβ. Now

let F (p) a
→ g. As pε ∼ F (p), there is a “ a

⇒ ” move of pε which leads to a
configuration bisimilar to g. Since the only “ a

⇒ ” move of pε is pε τ
⇒ pε, we

obtain a = τ and pε ∼ g. Then (pε, g) ∈ Gen(K) by Lemma 11(b), and we are
done. Case (B) is also simple (we use Lemma 11(a)), and case (C) follows by
applying the assumption of our lemma.

Now assume (pw, f ) ∈ Geni+1(K). If (pw, f ) ∈ Geni(K), we apply induction
hypothesis. Otherwise, there are two possibilities (cf. the rules (2) and (3) of
Definition 8):

(a) pw = pα where α , ε, and there is F such that (pαF , f ) ∈ Geni(K) and
(ε,F ) ∈ K.

(b) pw = pαXG where α , ε, and there is F such that (pαF , f ) ∈ Geni(K) and
(XG,F ) ∈ K.
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We show that (pw, f ) quasi-expands in Gen(K). Consider Case (a). Here we need
to show that if (pαF , f ) quasi-expands in Gen(K) and (ε,F ) ∈ K, then (pα, f )
quasi-expands in Gen(K).

• Let pα a
→ rβ. Since (pαF , f ) quasi-expands in Gen(K) and pαF a

→ rβF , there
is f a
→ g such that (rβF , g) ∈ Gen(K). Since (ε,F ) ∈ K, we have that (rβ, g) ∈

Gen(K) as needed.
• Let f a

→ g. Since (pαF , f ) quasi-expands in Gen(K), there is a move pαF a
⇒ rw

which is Gen(K)−1-consistent with f a
→ g. We distinguish two cases.

− The move pαF a
⇒ rw takes the form

pαF = p0γ0F
x1
−→ p1γ1F

x2
−→ · · ·

xn
−→ pnγnF = rw

where n ≥ 0 and γ j , ε for all j < n. Then p0γ0
x1→ p1γ1

x2→ · · ·
xn→ pnγn

is a “ a
⇒ ” move of pα which is Gen(K)−1-consistent with f a

→ g because
(ε,F ) ∈ K.
− Otherwise, the move pαF a

⇒ rw takes the form

pαF = p0γ0F
x1
−→ · · ·

xn−1
−→ pn−1γn−1F

xn
−→ qF

x
−→ qH = rw

where n ≥ 1, γ j , ε for all j < n, and (qH , g) ∈ Gen(K). First, we show
that x = τ and qF ∼ qH ∼ qε ∼ g. Since (ε,F ) ∈ K, F ∈ C(pα), and q ∈
Mpα, we have that (qε,F (q)) quasi-expands in Gen(K). As F (q) x

−→H(q),
there is a “ x

⇒ ” move of qεwhich is Gen(K)−1-consistent withF (q) x
−→H(q).

The only candidate for this move is qε τ
⇒ qε, which means that x = τ and

(qε,H(q)) ∈ Gen(K). Hence, qε ∼ H(q) ∼ qH , and since (qH , g) ∈ Gen(K),
we further obtain qH ∼ H(q) ∼ g (see Lemma 11).
Since qε ∼ g, we have that (qε, g) ∈ Gen(K) due to Lemma 11(b). Now
consider the sequence

pα = p0γ0
x1
−→ p1γ1

x2
−→ · · ·

xn
−→ qε

If this sequence forms a “ a
⇒ ” move which is Gen(K)−1-consistent with

f a
→ g, we are done. Otherwise, the style is early or branching, xi = τ for

all 1 ≤ i ≤ n (hence a = τ), and (qF , f ) ∈ Gen(K). But then f ∼ g, and as
(pα, f ) ∈ Gen(K) (this is because (pαF , f ) ∈ Gen(K) and (ε,F ) ∈ K), we
also obtain (pα, g) ∈ Gen(K) by Lemma 11(c). So, the condition of quasi-
expansion is satisfied.
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Now consider Case (b). We need to show that if (pαF , f ) quasi-expands
in Gen(K) and (XG,F ) ∈ K, then (pαXG, f ) quasi-expands in Gen(K). If
pαXG a

→ qβXG, then pαF a
→ qβF (recall α , ε) and hence there is f a

→ g such
that (qβF , g) ∈ Gen(K). Then also (qβXG, g) ∈ Gen(K) because (XG,F ) ∈ K.
Now let f a

→ g. Then there is a move pαF a
⇒ rw which is Gen(K)−1-consistent

with f a
→ g. Similarly as in Case (b), we distinguish two cases.

• The move pαF a
⇒ rw takes the form

pαF = p0γ0F
x1
−→ p1γ1F

x2
−→ · · ·

xn
−→ pnγnF = rw

where n ≥ 0 and γ j , ε for all j < n. Then p0γ0XG x1→ · · ·
xn→ pnγnXG is a “ a

⇒ ”
move of pαXG which is Gen(K)−1-consistent with f a

→ g because (XG,F ) ∈ K.
• The move pαF a

⇒ rw takes the form

pαF = p0γ0F
x1
−→ · · ·

xn
−→ qF

x
−→ qH = rw

where n ≥ 1, γ j , ε for all j < n, and (qH , g) ∈ Gen(K).
Since (qXG,F (q)) quasi-expands in Gen(K), there is a move qXG x

⇒ sv
which is Gen(K)−1-consistent with F (q) x

−→H(q). Now it is easy to
check that the sequence of transition obtained by concatenating pαXG =

p0γ0XG x1−→ · · ·
xn−→ qXG with the move qXG x

⇒ sv forms a “ a
⇒ ” move which

is Gen(K)−1-consistent with f a
→ g. �

Lemma 25. The problem whether (XG,F ) is contained in QExp(Gen(K)) for a
given well-formed set K and a given pair (XG,F ) ∈ K is decidable in time poly-
nomial in m, n, z.

Proof. Let us fix some p ∈ Q such that F (p) = f , ⊥. To decide whether
(pXG, f ) quasi-expands in Gen(K), we need to verify the following conditions:

• For each pXG a
→ qβG there is some f a

→ g such that (qβG, g) ∈ Gen(K). How-
ever, it suffices check whether f a

→ g for some g ∈ F such that qβG ∈ L(MK,g),
whereMK,g is the multi-automaton of Lemma 16. Obviously, this is achievable
in time polynomial in m, n, z.
• For each f a

→ g, one of the following conditions is satisfied:

(A) a = τ and (pXG, g) ∈ Gen(K);
(B) there is a sequence pX τ

⇒ qα a
→ rβ τ

⇒ sγ such that (sγG, g) ∈ Gen(K) and

∗ if the style is early or branching, then (qαG, f ) ∈ Gen(K);
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∗ if the style is delay or branching, then (rβG, g) ∈ Gen(K);

(C) there exist a sequence pX τ
⇒ qα a

→ rβ τ
⇒ sε and H such that sG τ

→ sH ,
(sH , g) ∈ Gen(K), and

∗ if the style is early or branching, then (qαG, f ) ∈ Gen(K);
∗ if the style is delay or branching, then (rβG, g) ∈ Gen(K);

(D) there exist a move pX τ
⇒ sε and H such that sG a

→ sH , (sH , g) ∈ Gen(K),
and if the style is early or branching, then also (sG, f ) ∈ Gen(K).

Condition (A) can be decided by checking whether pXG ∈ L(MK,g). Now
consider Condition (B). Clearly, for every h ∈ F there is a multi-automaton
M
G

K,h constructible in time polynomial in m, n, z recognizing the set

GenGh (K) = {pα | (pαG, h) ∈ Gen(K)} .

Note that MG

K,h can be obtained by a trivial modification of MK,h. Depending
on whether the style is weak, early, delay, or branching, Condition (B) can be
reformulated as follows:

− Post∗τ(Posta(Post∗τ({pX}))) ∩ GenGg (K) , ∅;
− Post∗τ(Posta(Post∗τ({pX}) ∩ GenGf (K))) ∩ GenGg (K) , ∅;
− Post∗τ(Posta(Post∗τ({pX})) ∩ GenGg (K)) ∩ GenGg (K) , ∅;
− Post∗τ(Posta(Post∗τ({pX}) ∩ GenGf (K)) ∩ GenGg (K)) ∩ GenGg (K) , ∅.

Due to Lemma 16 and Lemma 15, each of these four conditions can be checked
in a purely “symbolic” way by performing the required operations directly on
the underlying multi-automata. Obviously, the whole procedure can be imple-
mented in time polynomial in m, n, z. Also observe that the last two lines can
actually be simplified into

− Posta(Post∗τ({pX})) ∩ GenGg (K) , ∅;
− Posta(Post∗τ({pX}) ∩ GenGf (K)) ∩ GenGg (K) , ∅.

Condition (C) is handled similarly. Let TGg (K) be the set of all sε such that
sG τ
→ sH for some H satisfying (sH , g) ∈ Gen(K). Clearly, the set TGg (K) is

constructible in time polynomial in m, n, z. Depending on whether the style is
weak, early, delay, or branching, Condition (C) can now be stated as follows:

− Post∗τ(Posta(Post∗τ({pX}))) ∩ TGg (K) , ∅;
− Post∗τ(Posta(Post∗τ({pX}) ∩ GenGf (K))) ∩ TGg (K) , ∅;
− Post∗τ(Posta(Post∗τ({pX})) ∩ GenGg (K)) ∩ TGg (K) , ∅;
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− Post∗τ(Posta(Post∗τ({pX}) ∩ GenGf (K)) ∩ GenGg (K)) ∩ TGg (K) , ∅.

Again, these conditions can be checked symbolically it time polynomial in
m, n, z. Condition (D) can be reformulated and verified similarly. �

As a direct corollary to Lemmata 23, 24, and 25, we obtain the following theorem:

Theorem 26. The problems of weak, early, delay, and branching bisimilarity be-
tween PDA processes and finite-state processes are decidable in time polynomial
in m, n, z. For PDAk processes, where k ≥ 1 is a fixed constant, the problems are
decidable in time polynomial in m, n.

According to Theorem 26, bisimulation-like equivalences between PDAk pro-
cesses and finite-state processes are decidable in polynomial time. In particular,
this holds for BPA (i.e., PDA1) processes. Thus, we obtain a substantial general-
ization of the polynomial-time algorithm for deciding weak bisimilarity between
BPA and finite-state processes presented in [45].

4.3. Simulation-Like Equivalences
In this section we show how to design an appropriate expansion for simulation-

like equivalences. We have chosen weak simulation equivalence as a representa-
tive example.

Definition 27. Let T1 = (S 1, → ,A) and T2 = (S 2, → ,A) be transition systems
such that S 1 ∩ S 2 = ∅, and let R ⊆ S 1 × S 2. We say that R is a weak simulation if
for all (s, t) ∈ R and s a

→ s′ there is a move t a
⇒ t′ such that (s′, t′) ∈ R.

We say that t weakly simulates s, written s v t, if there is a weak simulation R
such that (s, t) ∈ R. Further, s, t are weakly simulation equivalent, written s ∼ t,
if they weakly simulate each other.

Similarly as in Section 4.2, we need to assume that T is complete in the following
sense: For all f , g ∈ F and a ∈ A we have that if f a

⇒ g, then also f a
→ g. Again,

this assumption is not restrictive because the missing transitions can be added in
polynomial time and each state of F stays weakly simulation equivalent to itself.

Note that if pw - f , then pw v f , f v pw, and for every qv reachable from
pw there is ḡ ∈ F such that qv - ḡ. Observe the following:

• If pw a
→ qv, there is a matching f a

⇒ g (and hence also f a
→ g) such that qv v g.

Further, there is ḡ ∈ F such that qv - ḡ, hence ḡ v g. This is illustrated in
Fig. 3 (left).
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a

v

a a

v

a

∼ v v ∼

Figure 3: An expansion for weak simulation equivalence.

• If f a
→ g, there is a matching pw a

⇒ qv such that g v qv. Further, there is ḡ ∈ F
such that qv - ḡ, hence g v ḡ. This is illustrated in Fig. 3 (right).

The above properties are directly reflected in the expansion condition for simula-
tion equivalence.

Definition 28. Let R ⊆ P(∆, F) × F be a relation. We say that a pair (pw, f ) ∈ R
sim-expands in R if the following conditions are satisfied:

• for all a ∈ A and pw a
→ qv, there are ḡ ∈ F and f a

→ g such that (qv, ḡ) ∈ R and
ḡ v g;
• for all a ∈ A and f a

→ g, there are ḡ ∈ F and a move pw a
⇒ qv such that

(qv, ḡ) ∈ R and g v ḡ.

A function which to every R ⊆ P(∆, F)×F assigns the set of all (pw, f ) ∈ R which
sim-expand in R is denoted by SExp(R).

The function SExp is clearly monotonic. Further, it is easy to check that
SExp(-) = -. It remains to verify the conditions (3), (4), and (5) of Definition 12.

Lemma 29. Let R ⊆ P(∆, F) × F such that SExp(R) = R. Then R ⊆ -.

Proof. Let us fix some R ⊆ P(∆, F) × F such that SExp(R) = R. It suffices to
show R ⊆ ∼, because for every (pw, f ) ∈ R and every qv reachable from pw there
clearly exists g ∈ F such that (qv, g) ∈ R (cf. the first item of Definition 28). Let

• Rv = {(pw, f ) | there is f̄ ∈ F such that (pw, f̄ ) ∈ R and f̄ v f };
• Rw = {(pw, f ) | there is f̄ ∈ F such that (pw, f̄ ) ∈ R and f v f̄ }.

Clearly, the relations Rv and Rw subsume R, and it is straightforward to check that
both Rv and R−1

w are weak simulations, which implies R ⊆ ∼. �

Lemma 30. Let K be a well-formed set such that every (XG,F ) ∈ K is contained
in SExp(Gen(K)). Then SExp(Gen(K)) = Gen(K).
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Proof. By induction on i, we show that Geni(K) ⊆ SExp(Gen(K)) for all i ≥ 0.
The base case (when i = 0) is similar as in the proof of Lemma 24. Now as-
sume (pw, f ) ∈ Geni+1(K). If (pw, f ) ∈ Geni(K), we apply induction hypothesis.
Otherwise, there are two possibilities (cf. the rules (2) and (3) of Definition 8):

(a) pw = pα where α , ε, and there is F such that (pαF , f ) ∈ Geni(K) and
(ε,F ) ∈ K.

(b) pw = pαXG where α , ε, and there is F such that (pαF , f ) ∈ Geni(K) and
(XG,F ) ∈ K.

We show that (pw, f ) sim-expands in Gen(K). In Case (a), we need to show that
if (pαF , f ) sim-expands in Gen(K) and (ε,F ) ∈ K, then (pα, f ) sim-expands in
Gen(K).

• Let pα a
→ rβ. Since (pαF , f ) sim-expands in Gen(K) and pαF a

→ rβF , there
are ḡ ∈ F and f a

→ g such that (rβF , ḡ) ∈ Gen(K) and ḡ v g. Since (ε,F ) ∈ K,
we have that (rβ, ḡ) ∈ Gen(K) as needed.
• Let f a

→ g. Since (pαF , f ) sim-expands in Gen(K), there are ḡ ∈ F and a move
pαF a

⇒ rw such that (rw, ḡ) ∈ Gen(K) and g v ḡ. We distinguish two cases.

− The move pαF a
⇒ rw is of the form pαF a

⇒ rβF where pα a
⇒ rβ. Since

(rβF , ḡ) ∈ Gen(K) and (ε,F ) ∈ K, we obtain (rβ, ḡ) ∈ Gen(K) as needed.
− Otherwise, the move pαF a

⇒ rw takes the form pαF x
⇒ rF y

⇒ rH where
pα x
⇒ rε. Now it suffices to show that x = a and rε ∼ ḡ, because then also

rε - ḡ and hence (rε, ḡ) ∈ Gen(K) by Lemma 11(b). Since (ε,F ) ∈ K
and F (r) , ⊥ (this is because F ∈ C(pα) and r ∈ Mpα), we obtain
rε ∼ F (r) ∼ rF . This implies that every process reachable from rF can
execute only τ-labeled transitions, and hence it is weakly simulation equiva-
lent to rε. In particular, y = τ (hence x = a) and rε ∼ rH ∼ ḡ as needed.

Now consider Case (b). We need to show that if (pαF , f ) sim-expands in Gen(K)
and (XG,F ) ∈ K, then (pαXG, f ) sim-expands in Gen(K). If pαXG a

→ qβXG,
then pαF a

→ qβF (recall α , ε) and hence there are ḡ ∈ F and f a
→ g such that

(qβF , ḡ) ∈ Gen(K) and ḡ v g. Since (XG,F ) ∈ K, we have that (qβXG, ḡ) ∈
Gen(K) as needed. Now let f a

→ g. Since (pαF , f ) sim-expands in Gen(K), there
are ḡ ∈ F and a move pαF a

⇒ rw such that (rw, ḡ) ∈ Gen(K) and g v ḡ. There are
two possibilities.

• The move pαF a
⇒ rw is of the form pαF a

⇒ rβF where pα a
⇒ rβ. Then

pαXG a
⇒ rβXG, and since (rβF , ḡ) ∈ Gen(K) and (XG,F ) ∈ K, we obtain

(rβXG, ḡ) ∈ Gen(K) as needed.
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• The move pαF a
⇒ rw takes the form pαF x

⇒ rF y
⇒ rH where pαXG x

⇒ rXG
and (rH , ḡ) ∈ Gen(K). Due to Lemma 11(a), we have that rH ∼ ḡ,
hence g v ḡ v rH v H(r). Since rF y

⇒ rH , we also have F (r) y
⇒H(r),

hence F (r) y
→H(r) because T is complete. Since (XF ,F ) is contained in

SExp(Gen(K)), the pair (rXG,F (r)) sim-expands in Gen(K), and therefore there
exist h̄ ∈ F and a move rXG y

⇒ qv such that (qv, h̄) ∈ Gen(K) and H(r) v h̄.
Hence, pαXG x

⇒ rXG y
⇒ qv, where (qv, h̄) ∈ Gen(K) and g v H(r) v h̄. �

Given a well-formed set K and a pair (XG,F ) ∈ K, the problem whether
(XG,F ) is contained in SExp(Gen(K)) can be decided in time polynomial in
m, n, z by using the same technique as in Lemma 25. That is, we use Lemma 16
and Lemma 15 to check the required conditions symbolically. Thus, we obtain
the following:

Theorem 31. The problem of full weak simulation equivalence between PDA and
finite-state processes is decidable in time polynomial in m, n, z. For PDAk pro-
cesses, where k ≥ 1 is a fixed constant, the problem is decidable in time polyno-
mial in m, n.

Let us note that the problem of checking weak (and also strong) simulation
equivalence between PDA and finite-state processes is EXPTIME-complete, and
the EXPTIME-hardness holds even for BPA (i.e., PDA1) processes [46].

4.4. Trace-Like Equivalences
In this section we consider trace-like equivalences. We show how to design an

appropriate expansion for weak trace equivalence.

Definition 32. Let T = (S ,A, → ) be a transition system. For all s, t ∈ S and
all finite words x = a1 . . . ak ∈ A

∗ (where k ≥ 0), we write s x
⇒ t if there are

s0, . . . , sk ∈ S such that s = s0, t = sk, and si−1
ai=⇒ si for all 1 ≤ i ≤ k. A trace

of s ∈ S is a word x ∈ A∗ such that s x
⇒ t for some t ∈ S . The set of all traces of

s is denoted by Tr(s). Processes s, t are weakly trace equivalent, written s ∼ t, if
Tr(s) = Tr(t).

To get some intuition behind the next definition, realize that if pw - f , the
following conditions are satisfied:
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Tr(pw) Tr( f ) Tr( f ) Tr(pw)

pw f f pw

qv g1 gk g q1v1 qivi

Tr(qv) Tr(g1) ∪ ∪ Tr(gk) Tr(g) Tr(q1v1) ∪ ∪ Tr(q`v`)

Tr(ḡ)
⋃

ḡ∈E[q1v1]

Tr(ḡ)
⋃

ḡ∈E[qivi]

Tr(ḡ)

⊆ ⊆

a a
a

a a
a

⊆

=

⊆

= =

Figure 4: An expansion for weak trace equivalence.

• If pw a
⇒ qv, there is ḡ ∈ F such that qv - ḡ. Further, each trace of qv is a trace

of some g ∈ F such that f a
⇒ g. Hence,

Tr(qv) = Tr(ḡ) ⊆
⋃
f

a
⇒g

Tr(g) .

See Fig. 4 (left).
• If f a

⇒ g, then Tr(g) ⊆
⋃

pw
a
⇒qv

Tr(qv). Further, for every qv such that pw a
⇒ qv,

the set E[qv] = {ḡ ∈ F | qv - ḡ} is non-empty. We have that

Tr(g) ⊆
⋃

pw
a
⇒qv

Tr(qv) =
⋃

pw
a
⇒qv

⋃
ḡ∈E[qv]

Tr(ḡ) .

See Fig. 4 (right). Note that all ḡ ∈ E[qv] have the same set of traces, so
the above inclusion holds even if we used just one representative of each E[qv].
For our purposes (see Definition 33), it is more convenient to consider the union⋃

ḡ∈E[qv] Tr(ḡ).

Definition 33. Let R ⊆ P(∆, F) × F be a relation. For every pw ∈ P(∆, F), we
define the set R[pw] = {g ∈ F | (pw, g) ∈ R}.

We say that a pair (pw, f ) ∈ R trace-expands in R if the following two condi-
tions are satisfied:

• for all a ∈ A and pw a
⇒ qv there is ḡ ∈ R[qv] such that Tr(ḡ) ⊆

⋃
f

a
⇒g

Tr(g).
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• for all a ∈ A and f a
⇒ g we have that Tr(g) ⊆

⋃
pw

a
⇒qv

⋃
ḡ∈R[qv] Tr(ḡ).

A function which to every R ⊆ P(∆, F)×F assigns the set of all (pw, f ) ∈ R which
trace-expand in R is denoted by TExp(R).

The monotonicity of TExp and the equality TExp(-) = - are easy to verify.
We prove the remaining properties of Definition 12.

Lemma 34. Let R ⊆ P(∆, F) × F such that TExp(R) = R. Then R ⊆ -.

Proof. Let R ⊆ P(∆, F) × F such that TExp(R) = R. It suffices to show R ⊆ ∼
(then also R ⊆ - due to the first item of Definition 33). By induction on the length
of x ∈ A∗, we show that for all (pw, f ) ∈ R we have that x ∈ Tr(pw) iff x ∈ Tr( f ).
The base case when x = ε is immediate, because ε is a trace of every process.
Now let x = ay where a ∈ A, and let (pw, f ) ∈ R.

• If ay ∈ Tr(pw), there are qv and ru such that pw a
⇒ qv y

⇒ ru. Since the pair
(pw, f ) trace-expands in R, there is ḡ ∈ F such that (qv, ḡ) ∈ R (hence, y ∈ Tr(ḡ)
by induction hypothesis) and Tr(ḡ) ⊆

⋃
f

a
⇒g

Tr(g). This implies y ∈ Tr(g) for
some g ∈ F such that f a

⇒ g, which means ay ∈ Tr( f ).
• If ay ∈ Tr( f ), there are g, h ∈ F such that f a

⇒ g y
⇒ h. Since the pair (pw, f )

trace-expands in R, we have that y ∈
⋃

pw
a
⇒qv

⋃
ḡ∈R[qv] Tr(ḡ). Hence, there exist

qv and ḡ such that pw a
⇒ qv, (qv, ḡ) ∈ R, and y ∈ Tr(ḡ). By induction hypothesis,

we obtain y ∈ Tr(qv), hence ay ∈ Tr(pw). �

Lemma 35. Let K be a well-formed set such that every (XG,F ) ∈ K is contained
in TExp(Gen(K)). Then TExp(Gen(K)) = Gen(K).

Proof. By induction on i, we show that Geni(K) ⊆ TExp(Gen(K)) for all i ≥ 0.
The base case (when i = 0) is similar as in the proof of Lemma 24. Now as-
sume (pw, f ) ∈ Geni+1(K). If (pw, f ) ∈ Geni(K), we apply induction hypothesis.
Otherwise, there are two possibilities (cf. the rules (2) and (3) of Definition 8):

(a) pw = pα where α , ε, and there is F such that (pαF , f ) ∈ Geni(K) and
(ε,F ) ∈ K.

(b) pw = pαXG where α , ε, and there is F such that (pαF , f ) ∈ Geni(K) and
(XG,F ) ∈ K.

We show that (pw, f ) trace-expands in Gen(K). In Case (a), we need to show that
if (pαF , f ) trace-expands in Gen(K) and (ε,F ) ∈ K, then (pα, f ) trace-expands
in Gen(K).
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• Let pα a
⇒ qβ. Since (pαF , f ) trace-expands in Gen(K) and pαF a

⇒ qβF , there
is ḡ ∈ Gen(K)[qβF ] such that Tr(ḡ) ⊆

⋃
f

a
⇒g

Tr(g). Since (ε,F ) ∈ K, we have
that ḡ ∈ Gen(K)[qβ] as needed.
• Let f a

⇒ g. Since (pαF , f ) trace-expands in Gen(K), we have that Tr(g) ⊆⋃
pαF

a
⇒qv

⋃
ḡ∈Gen(K)[qv] Tr(ḡ). Now it suffices to show that for every move

pαF a
⇒ qv there is a move pα a

⇒ qu such that, for every ḡ ∈ F, (qv, ḡ) ∈ Gen(K)
implies (qu, ḡ) ∈ Gen(K). So, let us fix a move pαF a

⇒ qv. We distinguish two
cases.

− The move pαF a
⇒ qv takes the form pαF a

⇒ qβF , where pα a
⇒ qβ. Since

(qβF , ḡ) ∈ Gen(K) implies (qβ, ḡ) ∈ Gen(K) (because (ε,F ) ∈ K), we are
done.
− The move pαF a

⇒ rw takes the form pαF x
⇒ qF y

⇒ qH where pα x
⇒ qε and

x, y ∈ {τ, a}. It suffices to show that x = a, and if (qH , ḡ) ∈ Gen(K), then
also (qε, ḡ) ∈ Gen(K). Since (ε,F ) ∈ K and F (q) , ε, we obtain qε ∼
F (q) ∼ qF . This implies that every process reachable from qF can execute
only τ-labeled transitions, and hence it is weakly trace equivalent to qε. In
particular, y = τ (hence x = a), and qε ∼ qH . Now suppose (qH , ḡ) ∈
Gen(K). Then qH - ḡ (see Lemma 11(a)), hence qε - ḡ, and (qε, ḡ) ∈
Gen(K) by Lemma 11(b).

In Case (b), we need to show that if (pαF , f ) trace-expands in Gen(K) and
(XG,F ) ∈ K, then (pαXG, f ) trace-expands in Gen(K). Let pαXG a

⇒ qv. There
are two possibilities.

• The move pαXG a
⇒ qv takes the form pαXG a

⇒ qβXG where pα a
⇒ qβ. Then

pαF a
⇒ qβF and hence there is ḡ ∈ Gen(K)[qβF ] such that Tr(ḡ) ⊆⋃

f
a
⇒g

Tr(g). Since (XG,F ) ∈ K, we have that ḡ ∈ Gen(K)[qβXG] as needed.
• The move pαXG a

⇒ qv takes the form pαXG x
⇒ rXG y

⇒ qv, where pα x
⇒ rε and

x, y ∈ {τ, a}. Then pαF x
⇒ rF and since (pαF , f ) trace-expands in Gen(K),

there is ¯̀ ∈ Gen(K)[rF ] such that Tr( ¯̀) ⊆
⋃

f
x
⇒`

Tr(`). By Lemma 11(a),
we have that F (r) ∼ rF ∼ ¯̀. Further, since (rXG,F (r)) trace-expands in
Gen(K) and rXG y

⇒ qv, there is h̄ ∈ Gen(K)[qv] such that Tr(h̄) ⊆
⋃
F (r)

y
⇒h

Tr(h).
Hence, it suffices to show Tr(h̄) ⊆

⋃
f

a
⇒g

Tr(g). However, by applying the above
inclusions we immediately obtain

Tr(h̄) ⊆
⋃
F (r)

y
⇒h

Tr(h) =
⋃
¯̀ y
⇒h

Tr(h) ⊆
⋃
f

x
⇒`

⋃
`

y
⇒h

Tr(h) ⊆
⋃
f

a
⇒g

Tr(g) .
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Now let f a
⇒ g. As (pαF , f ) trace-expands in Gen(K), we obtain

Tr(g) ⊆
⋃

pαF
a
⇒qv

⋃
ḡ∈Gen(K)[qv]

Tr(ḡ) .

Hence, it suffices to show that for every pαF a
⇒ qv and every ḡ ∈ Gen(K)[qv],

Tr(ḡ) ⊆
⋃

pαXG
a
⇒ru

⋃
h̄∈Gen(K)[ru]

Tr(h̄) .

So, let us fix some pαF a
⇒ qv and ḡ ∈ Gen(K)[qv]. There are two possibilities.

• The move pαF a
⇒ qv is of the form pαF a

⇒ qβF where pα a
⇒ qβ. Then

pαXG a
⇒ qβXG, and since (qβF , ḡ) ∈ Gen(K) implies (qβXG, ḡ) ∈ Gen(K)

(because (XG,F ) ∈ K), we are done.
• The move pαF a

⇒ qv takes the form pαF x
⇒ qF y

⇒ qH where pαXG x
⇒ qXG,

F (q) y
⇒H(q), and x, y ∈ {τ, a}. Since (qH , ḡ) ∈ Gen(K), we have H(q) ∼

qH ∼ ḡ by Lemma 11(a). As F (q) a
⇒H(q) and (qXG,F (q)) trace-expands in

Gen(K), we obtain

Tr(H(q)) ⊆
⋃

qXG
y
⇒ru

⋃
h̄∈Gen(K)[ru]

Tr(h̄) .

Thus,

Tr(ḡ) = Tr(H(q)) ⊆
⋃

qXG
y
⇒ru

⋃
h̄∈Gen(K)[ru]

Tr(h̄) ⊆
⋃

pαXG
a
⇒ru

⋃
h̄∈Gen(K)[ru]

Tr(h̄) .

�

Since the trace equivalence problem for T is PSPACE-complete9, the problem of
checking full weak trace equivalence between PDA and finite-state processes is
PSPACE-hard even for BPA (i.e., PDA1) processes. We prove the following:

9Trace equivalence is defined similarly as weak trace equivalence. The only difference is that
τ is treated as an “ordinary” action; a trace of a given process s is a sequence w ∈ A∗ such that
s w
→ t for some t. The PSPACE-hardness of trace equivalence for finite-state processes follows

immediately from PSPACE-completeness of language inclusion/equivalence problem for non-
deterministic finite automata; see, e.g., [30].
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Lemma 36. The problem whether (XG,F ) is contained in TExp(Gen(K)) for a
given well-formed set K and a given pair (XG,F ) ∈ K is decidable in space
polynomial in m, n, z.

Proof. Let K be a well-formed set, (XG,F ) ∈ K, and p ∈ F such that F (p) , ⊥.
To decide whether (pXG,F (p)) trace-expands in TExp(K), we need to check the
following conditions:

• For all a ∈ A and pXG a
⇒ qv, there is ḡ ∈ Gen(K)[qv] such that Tr(ḡ) ⊆⋃

f
a
⇒g

Tr(g). For a given a ∈ A, this condition can be verified as follows. First,
we compute the set Ḡ ⊆ F of all ḡ such that Tr(ḡ) ⊆

⋃
f

a
⇒g

Tr(g). This is achiev-
able in space polynomial in m. Then, for each ḡ ∈ Ḡ, we compute a multi-
automaton M[ḡ] recognizing the set {qv | pXG a

⇒ qv and (qv, ḡ) ∈ Gen(K)}.
We also compute a multi-automatonM[a] recognizing the set {qv | pXG a

⇒ qv}.
Clearly, these multi-automata are constructible in time polynomial in m, n, z,
and their size is polynomial in m, n, z. Now we check whether L(M[a]) ⊆⋃

ḡ∈Ḡ L(M[ḡ]), which is achievable in space polynomial in m, n, z.
• For all a ∈ A and f a

⇒ g we have that Tr(g) ⊆
⋃

pXG
a
⇒qv

⋃
ḡ∈Gen(K)[qv] Tr(ḡ). Here

we use Lemma 16 and Lemma 15 to construct the set

Ḡ = {ḡ ∈ F | (qv, ḡ) ∈ Gen(K) for some qv such that pXG a
⇒ qv}

and then check whether Tr(g) ⊆
⋃

ḡ∈Ḡ Tr(ḡ). Obviously, this is achievable in
space polynomial in m, n, z. �

Theorem 37. The problem of full weak trace equivalence between PDA and
finite-state processes is decidable in space polynomial in m, n, z. For PDAk pro-
cesses, where k ≥ 1 is a fixed constant, the problem is decidable in space polyno-
mial in m, n. Moreover, the problem is PSPACE-hard even for BPA processes.

Note that checking trace-like equivalences between BPA and finite-state systems
is undecidable (this follows easily from the undecidability of the universality prob-
lem for context-free grammars, i.e., the question whether L(G) = Σ∗ for a given
CFG; see, e.g., [30]).

Remark 38. It is worth noting that the problem of full language equivalence be-
tween PDA and finite-state processes is easily reducible to the problem of full
weak trace equivalence. Let ∆ = (Q,Γ,A, δ) be a PDA (where the τ-labeled
rules correspond to the ε-moves, cf. [30]) which accepts by empty stack, i.e., the
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language accepted by a given configuration pα consists of all w ∈ A∗ such that
pα w
⇒ qε for some q ∈ Q. Further, let T = (F,A, → ) be a finite-state system

which accepts by entering a final state g ∈ F. We construct another PDA ∆′ and
a finite-state system T ′ as follows:

• ∆′ = (Q ∪ {pu},Γ ∪ {Z},A ∪ {#}, δ′), where pu, Z, # are fresh symbols, and δ′

contains all rules of δ together with

− pX a
→ puX for all p ∈ Q, X ∈ Γ ∪ {Z}, and a ∈ A;

− puX a
→ puX for all X ∈ Γ ∪ {Z} and a ∈ A;

− pZ #
→ pε for all p ∈ Q.

The stack symbol Z is used as the bottom-of-the-stack marker, and the action #
marks the end of an accepted word. It is easy to check that for every configura-
tion pα of ∆ and every w ∈ A∗ we have that pα accepts w iff the configuration
pαZ of ∆′ has a trace w#. Further, observe that every v ∈ A∗ is a trace of pαZ.
• T ′ = (F ∪ { f#, fu},A ∪ {#}, � ) where f#, fu are fresh states, and � contains

all transitions of → together with

− g #� f#;
− f a� fu for all f ∈ F and a ∈ A;
− fu

a� fu for all a ∈ A.

Now it is easy to check that for every configuration pα of ∆ and every state f of
T we have that pα is fully language equivalent to f iff the configuration pαZ of
∆′ is fully weak trace equivalent to the state f of T ′.

5. Conclusions

We have shown that the problem of checking full regular equivalence with
PDA processes is decidable for selected conceptual representatives of the lin-
ear/branching time spectrum. For bisimulation and simulation-like equivalences,
our algorithm is polynomial if the number of control states in PDA is bounded by
some fixed constant. Since we aimed mainly at demonstrating the versatility and
efficiency of the designed method, we have not paid much attention to the imple-
mentation details and performed only a rough complexity analysis. Nevertheless,
this is sufficient for separating the problems solvable in polynomial time from the
computationally hard ones.

A crucial parameter influencing the complexity of our algorithm is the num-
ber of control states of ∆ (recall z = |F||Q|). A closer look reveals that we can
actually refine z into |F|Ret, where Ret = max{|MpX | | pX ∈ Q × Γ}. Intuitively,
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Ret represents the maximal amount of information returned by a procedure call
in the recursive program represented by ∆. We can easily modify ∆ so that for
every pX ∈ Q × Γ we have that MpX ⊆ { f1, . . . , fRet}, where f1, . . . , fRet are some
fixed control states (the modification may increase the size of Γ, but only polyno-
mially). Then, we can safely restrict the range of the functions F ,G,H , . . . into
{ f1, . . . , fRet}. Hence, the presented complexity bounds remain valid even if we put
z = |F|Ret and define PDAk as the class of all PDA where Ret ≤ k.
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[31] H. Hüttel. Silence is golden: Branching bisimilarity is decidable for context-
free processes. In Proceedings of CAV’91, volume 575 of Lecture Notes in
Computer Science, pages 2–12. Springer, 1992.
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[34] P. Jančar. Bisimulation equivalence of first-order grammars. In Proceedings
of ICALP 2014, Part II, volume 8573 of Lecture Notes in Computer Science,
pages 232–243. Springer, 2014.
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